1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ktrace.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/limits.h> 38 #include <sys/clock.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/kernel.h> 45 #include <sys/sleepqueue.h> 46 #include <sys/syscallsubr.h> 47 #include <sys/sysctl.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/posix4.h> 51 #include <sys/time.h> 52 #include <sys/timers.h> 53 #include <sys/timetc.h> 54 #include <sys/vnode.h> 55 #ifdef KTRACE 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <vm/vm.h> 60 #include <vm/vm_extern.h> 61 #include <vm/uma.h> 62 63 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 64 #define CPUCLOCK_BIT 0x80000000 65 #define CPUCLOCK_PROCESS_BIT 0x40000000 66 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 67 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 68 #define MAKE_PROCESS_CPUCLOCK(pid) \ 69 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 70 71 #define NS_PER_SEC 1000000000 72 73 static struct kclock posix_clocks[MAX_CLOCKS]; 74 static uma_zone_t itimer_zone = NULL; 75 76 /* 77 * Time of day and interval timer support. 78 * 79 * These routines provide the kernel entry points to get and set 80 * the time-of-day and per-process interval timers. Subroutines 81 * here provide support for adding and subtracting timeval structures 82 * and decrementing interval timers, optionally reloading the interval 83 * timers when they expire. 84 */ 85 86 static int settime(struct thread *, struct timeval *); 87 static void timevalfix(struct timeval *); 88 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 89 int flags, const struct timespec *ua_rqtp, 90 struct timespec *ua_rmtp); 91 92 static void itimer_start(void); 93 static int itimer_init(void *, int, int); 94 static void itimer_fini(void *, int); 95 static void itimer_enter(struct itimer *); 96 static void itimer_leave(struct itimer *); 97 static struct itimer *itimer_find(struct proc *, int); 98 static void itimers_alloc(struct proc *); 99 static int realtimer_create(struct itimer *); 100 static int realtimer_gettime(struct itimer *, struct itimerspec *); 101 static int realtimer_settime(struct itimer *, int, 102 struct itimerspec *, struct itimerspec *); 103 static int realtimer_delete(struct itimer *); 104 static void realtimer_clocktime(clockid_t, struct timespec *); 105 static void realtimer_expire(void *); 106 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 107 108 static void realitexpire(void *arg); 109 110 static int register_posix_clock(int, const struct kclock *); 111 static void itimer_fire(struct itimer *it); 112 static int itimespecfix(struct timespec *ts); 113 114 #define CLOCK_CALL(clock, call, arglist) \ 115 ((*posix_clocks[clock].call) arglist) 116 117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 118 119 static int 120 settime(struct thread *td, struct timeval *tv) 121 { 122 struct timeval delta, tv1, tv2; 123 static struct timeval maxtime, laststep; 124 struct timespec ts; 125 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) 156 return (EPERM); 157 if (delta.tv_sec > 1) { 158 tv->tv_sec = tv1.tv_sec + 1; 159 printf("Time adjustment clamped to +1 second\n"); 160 } 161 laststep = *tv; 162 } 163 } 164 165 ts.tv_sec = tv->tv_sec; 166 ts.tv_nsec = tv->tv_usec * 1000; 167 tc_setclock(&ts); 168 resettodr(); 169 return (0); 170 } 171 172 #ifndef _SYS_SYSPROTO_H_ 173 struct clock_getcpuclockid2_args { 174 id_t id; 175 int which, 176 clockid_t *clock_id; 177 }; 178 #endif 179 /* ARGSUSED */ 180 int 181 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 182 { 183 clockid_t clk_id; 184 int error; 185 186 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 187 if (error == 0) 188 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 189 return (error); 190 } 191 192 int 193 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 194 clockid_t *clk_id) 195 { 196 struct proc *p; 197 pid_t pid; 198 lwpid_t tid; 199 int error; 200 201 switch (which) { 202 case CPUCLOCK_WHICH_PID: 203 if (id != 0) { 204 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 205 if (error != 0) 206 return (error); 207 PROC_UNLOCK(p); 208 pid = id; 209 } else { 210 pid = td->td_proc->p_pid; 211 } 212 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 213 return (0); 214 case CPUCLOCK_WHICH_TID: 215 tid = id == 0 ? td->td_tid : id; 216 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 217 return (0); 218 default: 219 return (EINVAL); 220 } 221 } 222 223 #ifndef _SYS_SYSPROTO_H_ 224 struct clock_gettime_args { 225 clockid_t clock_id; 226 struct timespec *tp; 227 }; 228 #endif 229 /* ARGSUSED */ 230 int 231 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 232 { 233 struct timespec ats; 234 int error; 235 236 error = kern_clock_gettime(td, uap->clock_id, &ats); 237 if (error == 0) 238 error = copyout(&ats, uap->tp, sizeof(ats)); 239 240 return (error); 241 } 242 243 static inline void 244 cputick2timespec(uint64_t runtime, struct timespec *ats) 245 { 246 uint64_t tr; 247 tr = cpu_tickrate(); 248 ats->tv_sec = runtime / tr; 249 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr; 250 } 251 252 void 253 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 254 { 255 uint64_t runtime, curtime, switchtime; 256 257 if (targettd == NULL) { /* current thread */ 258 spinlock_enter(); 259 switchtime = PCPU_GET(switchtime); 260 curtime = cpu_ticks(); 261 runtime = curthread->td_runtime; 262 spinlock_exit(); 263 runtime += curtime - switchtime; 264 } else { 265 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 266 thread_lock(targettd); 267 runtime = targettd->td_runtime; 268 thread_unlock(targettd); 269 } 270 cputick2timespec(runtime, ats); 271 } 272 273 void 274 kern_process_cputime(struct proc *targetp, struct timespec *ats) 275 { 276 uint64_t runtime; 277 struct rusage ru; 278 279 PROC_LOCK_ASSERT(targetp, MA_OWNED); 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 kern_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 kern_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct proc *p; 322 323 p = td->td_proc; 324 switch (clock_id) { 325 case CLOCK_REALTIME: /* Default to precise. */ 326 case CLOCK_REALTIME_PRECISE: 327 nanotime(ats); 328 break; 329 case CLOCK_REALTIME_FAST: 330 getnanotime(ats); 331 break; 332 case CLOCK_VIRTUAL: 333 PROC_LOCK(p); 334 PROC_STATLOCK(p); 335 calcru(p, &user, &sys); 336 PROC_STATUNLOCK(p); 337 PROC_UNLOCK(p); 338 TIMEVAL_TO_TIMESPEC(&user, ats); 339 break; 340 case CLOCK_PROF: 341 PROC_LOCK(p); 342 PROC_STATLOCK(p); 343 calcru(p, &user, &sys); 344 PROC_STATUNLOCK(p); 345 PROC_UNLOCK(p); 346 timevaladd(&user, &sys); 347 TIMEVAL_TO_TIMESPEC(&user, ats); 348 break; 349 case CLOCK_MONOTONIC: /* Default to precise. */ 350 case CLOCK_MONOTONIC_PRECISE: 351 case CLOCK_UPTIME: 352 case CLOCK_UPTIME_PRECISE: 353 nanouptime(ats); 354 break; 355 case CLOCK_UPTIME_FAST: 356 case CLOCK_MONOTONIC_FAST: 357 getnanouptime(ats); 358 break; 359 case CLOCK_SECOND: 360 ats->tv_sec = time_second; 361 ats->tv_nsec = 0; 362 break; 363 case CLOCK_THREAD_CPUTIME_ID: 364 kern_thread_cputime(NULL, ats); 365 break; 366 case CLOCK_PROCESS_CPUTIME_ID: 367 PROC_LOCK(p); 368 kern_process_cputime(p, ats); 369 PROC_UNLOCK(p); 370 break; 371 default: 372 if ((int)clock_id >= 0) 373 return (EINVAL); 374 return (get_cputime(td, clock_id, ats)); 375 } 376 return (0); 377 } 378 379 #ifndef _SYS_SYSPROTO_H_ 380 struct clock_settime_args { 381 clockid_t clock_id; 382 const struct timespec *tp; 383 }; 384 #endif 385 /* ARGSUSED */ 386 int 387 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 388 { 389 struct timespec ats; 390 int error; 391 392 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 393 return (error); 394 return (kern_clock_settime(td, uap->clock_id, &ats)); 395 } 396 397 static int allow_insane_settime = 0; 398 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 399 &allow_insane_settime, 0, 400 "do not perform possibly restrictive checks on settime(2) args"); 401 402 int 403 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 404 { 405 struct timeval atv; 406 int error; 407 408 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 409 return (error); 410 if (clock_id != CLOCK_REALTIME) 411 return (EINVAL); 412 if (!timespecvalid_interval(ats)) 413 return (EINVAL); 414 if (!allow_insane_settime && 415 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 416 ats->tv_sec < utc_offset())) 417 return (EINVAL); 418 /* XXX Don't convert nsec->usec and back */ 419 TIMESPEC_TO_TIMEVAL(&atv, ats); 420 error = settime(td, &atv); 421 return (error); 422 } 423 424 #ifndef _SYS_SYSPROTO_H_ 425 struct clock_getres_args { 426 clockid_t clock_id; 427 struct timespec *tp; 428 }; 429 #endif 430 int 431 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 432 { 433 struct timespec ts; 434 int error; 435 436 if (uap->tp == NULL) 437 return (0); 438 439 error = kern_clock_getres(td, uap->clock_id, &ts); 440 if (error == 0) 441 error = copyout(&ts, uap->tp, sizeof(ts)); 442 return (error); 443 } 444 445 int 446 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 447 { 448 449 ts->tv_sec = 0; 450 switch (clock_id) { 451 case CLOCK_REALTIME: 452 case CLOCK_REALTIME_FAST: 453 case CLOCK_REALTIME_PRECISE: 454 case CLOCK_MONOTONIC: 455 case CLOCK_MONOTONIC_FAST: 456 case CLOCK_MONOTONIC_PRECISE: 457 case CLOCK_UPTIME: 458 case CLOCK_UPTIME_FAST: 459 case CLOCK_UPTIME_PRECISE: 460 /* 461 * Round up the result of the division cheaply by adding 1. 462 * Rounding up is especially important if rounding down 463 * would give 0. Perfect rounding is unimportant. 464 */ 465 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1; 466 break; 467 case CLOCK_VIRTUAL: 468 case CLOCK_PROF: 469 /* Accurately round up here because we can do so cheaply. */ 470 ts->tv_nsec = howmany(NS_PER_SEC, hz); 471 break; 472 case CLOCK_SECOND: 473 ts->tv_sec = 1; 474 ts->tv_nsec = 0; 475 break; 476 case CLOCK_THREAD_CPUTIME_ID: 477 case CLOCK_PROCESS_CPUTIME_ID: 478 cputime: 479 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1; 480 break; 481 default: 482 if ((int)clock_id < 0) 483 goto cputime; 484 return (EINVAL); 485 } 486 return (0); 487 } 488 489 int 490 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 491 { 492 493 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 494 rmt)); 495 } 496 497 static uint8_t nanowait[MAXCPU]; 498 499 int 500 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 501 const struct timespec *rqt, struct timespec *rmt) 502 { 503 struct timespec ts, now; 504 sbintime_t sbt, sbtt, prec, tmp; 505 time_t over; 506 int error; 507 bool is_abs_real; 508 509 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC) 510 return (EINVAL); 511 if ((flags & ~TIMER_ABSTIME) != 0) 512 return (EINVAL); 513 switch (clock_id) { 514 case CLOCK_REALTIME: 515 case CLOCK_REALTIME_PRECISE: 516 case CLOCK_REALTIME_FAST: 517 case CLOCK_SECOND: 518 is_abs_real = (flags & TIMER_ABSTIME) != 0; 519 break; 520 case CLOCK_MONOTONIC: 521 case CLOCK_MONOTONIC_PRECISE: 522 case CLOCK_MONOTONIC_FAST: 523 case CLOCK_UPTIME: 524 case CLOCK_UPTIME_PRECISE: 525 case CLOCK_UPTIME_FAST: 526 is_abs_real = false; 527 break; 528 case CLOCK_VIRTUAL: 529 case CLOCK_PROF: 530 case CLOCK_PROCESS_CPUTIME_ID: 531 return (ENOTSUP); 532 case CLOCK_THREAD_CPUTIME_ID: 533 default: 534 return (EINVAL); 535 } 536 do { 537 ts = *rqt; 538 if ((flags & TIMER_ABSTIME) != 0) { 539 if (is_abs_real) 540 td->td_rtcgen = 541 atomic_load_acq_int(&rtc_generation); 542 error = kern_clock_gettime(td, clock_id, &now); 543 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 544 timespecsub(&ts, &now, &ts); 545 } 546 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 547 error = EWOULDBLOCK; 548 break; 549 } 550 if (ts.tv_sec > INT32_MAX / 2) { 551 over = ts.tv_sec - INT32_MAX / 2; 552 ts.tv_sec -= over; 553 } else 554 over = 0; 555 tmp = tstosbt(ts); 556 prec = tmp; 557 prec >>= tc_precexp; 558 if (TIMESEL(&sbt, tmp)) 559 sbt += tc_tick_sbt; 560 sbt += tmp; 561 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 562 sbt, prec, C_ABSOLUTE); 563 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 564 td->td_rtcgen = 0; 565 if (error != EWOULDBLOCK) { 566 if (TIMESEL(&sbtt, tmp)) 567 sbtt += tc_tick_sbt; 568 if (sbtt >= sbt) 569 return (0); 570 if (error == ERESTART) 571 error = EINTR; 572 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 573 ts = sbttots(sbt - sbtt); 574 ts.tv_sec += over; 575 if (ts.tv_sec < 0) 576 timespecclear(&ts); 577 *rmt = ts; 578 } 579 return (error); 580 } 581 return (0); 582 } 583 584 #ifndef _SYS_SYSPROTO_H_ 585 struct nanosleep_args { 586 struct timespec *rqtp; 587 struct timespec *rmtp; 588 }; 589 #endif 590 /* ARGSUSED */ 591 int 592 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 593 { 594 595 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 596 uap->rqtp, uap->rmtp)); 597 } 598 599 #ifndef _SYS_SYSPROTO_H_ 600 struct clock_nanosleep_args { 601 clockid_t clock_id; 602 int flags; 603 struct timespec *rqtp; 604 struct timespec *rmtp; 605 }; 606 #endif 607 /* ARGSUSED */ 608 int 609 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 610 { 611 int error; 612 613 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 614 uap->rmtp); 615 return (kern_posix_error(td, error)); 616 } 617 618 static int 619 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 620 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 621 { 622 struct timespec rmt, rqt; 623 int error, error2; 624 625 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 626 if (error) 627 return (error); 628 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 629 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 630 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 631 if (error2 != 0) 632 error = error2; 633 } 634 return (error); 635 } 636 637 #ifndef _SYS_SYSPROTO_H_ 638 struct gettimeofday_args { 639 struct timeval *tp; 640 struct timezone *tzp; 641 }; 642 #endif 643 /* ARGSUSED */ 644 int 645 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 646 { 647 struct timeval atv; 648 struct timezone rtz; 649 int error = 0; 650 651 if (uap->tp) { 652 microtime(&atv); 653 error = copyout(&atv, uap->tp, sizeof (atv)); 654 } 655 if (error == 0 && uap->tzp != NULL) { 656 rtz.tz_minuteswest = 0; 657 rtz.tz_dsttime = 0; 658 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 659 } 660 return (error); 661 } 662 663 #ifndef _SYS_SYSPROTO_H_ 664 struct settimeofday_args { 665 struct timeval *tv; 666 struct timezone *tzp; 667 }; 668 #endif 669 /* ARGSUSED */ 670 int 671 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 672 { 673 struct timeval atv, *tvp; 674 struct timezone atz, *tzp; 675 int error; 676 677 if (uap->tv) { 678 error = copyin(uap->tv, &atv, sizeof(atv)); 679 if (error) 680 return (error); 681 tvp = &atv; 682 } else 683 tvp = NULL; 684 if (uap->tzp) { 685 error = copyin(uap->tzp, &atz, sizeof(atz)); 686 if (error) 687 return (error); 688 tzp = &atz; 689 } else 690 tzp = NULL; 691 return (kern_settimeofday(td, tvp, tzp)); 692 } 693 694 int 695 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 696 { 697 int error; 698 699 error = priv_check(td, PRIV_SETTIMEOFDAY); 700 if (error) 701 return (error); 702 /* Verify all parameters before changing time. */ 703 if (tv) { 704 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 705 tv->tv_sec < 0) 706 return (EINVAL); 707 error = settime(td, tv); 708 } 709 return (error); 710 } 711 712 /* 713 * Get value of an interval timer. The process virtual and profiling virtual 714 * time timers are kept in the p_stats area, since they can be swapped out. 715 * These are kept internally in the way they are specified externally: in 716 * time until they expire. 717 * 718 * The real time interval timer is kept in the process table slot for the 719 * process, and its value (it_value) is kept as an absolute time rather than 720 * as a delta, so that it is easy to keep periodic real-time signals from 721 * drifting. 722 * 723 * Virtual time timers are processed in the hardclock() routine of 724 * kern_clock.c. The real time timer is processed by a timeout routine, 725 * called from the softclock() routine. Since a callout may be delayed in 726 * real time due to interrupt processing in the system, it is possible for 727 * the real time timeout routine (realitexpire, given below), to be delayed 728 * in real time past when it is supposed to occur. It does not suffice, 729 * therefore, to reload the real timer .it_value from the real time timers 730 * .it_interval. Rather, we compute the next time in absolute time the timer 731 * should go off. 732 */ 733 #ifndef _SYS_SYSPROTO_H_ 734 struct getitimer_args { 735 u_int which; 736 struct itimerval *itv; 737 }; 738 #endif 739 int 740 sys_getitimer(struct thread *td, struct getitimer_args *uap) 741 { 742 struct itimerval aitv; 743 int error; 744 745 error = kern_getitimer(td, uap->which, &aitv); 746 if (error != 0) 747 return (error); 748 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 749 } 750 751 int 752 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 753 { 754 struct proc *p = td->td_proc; 755 struct timeval ctv; 756 757 if (which > ITIMER_PROF) 758 return (EINVAL); 759 760 if (which == ITIMER_REAL) { 761 /* 762 * Convert from absolute to relative time in .it_value 763 * part of real time timer. If time for real time timer 764 * has passed return 0, else return difference between 765 * current time and time for the timer to go off. 766 */ 767 PROC_LOCK(p); 768 *aitv = p->p_realtimer; 769 PROC_UNLOCK(p); 770 if (timevalisset(&aitv->it_value)) { 771 microuptime(&ctv); 772 if (timevalcmp(&aitv->it_value, &ctv, <)) 773 timevalclear(&aitv->it_value); 774 else 775 timevalsub(&aitv->it_value, &ctv); 776 } 777 } else { 778 PROC_ITIMLOCK(p); 779 *aitv = p->p_stats->p_timer[which]; 780 PROC_ITIMUNLOCK(p); 781 } 782 #ifdef KTRACE 783 if (KTRPOINT(td, KTR_STRUCT)) 784 ktritimerval(aitv); 785 #endif 786 return (0); 787 } 788 789 #ifndef _SYS_SYSPROTO_H_ 790 struct setitimer_args { 791 u_int which; 792 struct itimerval *itv, *oitv; 793 }; 794 #endif 795 int 796 sys_setitimer(struct thread *td, struct setitimer_args *uap) 797 { 798 struct itimerval aitv, oitv; 799 int error; 800 801 if (uap->itv == NULL) { 802 uap->itv = uap->oitv; 803 return (sys_getitimer(td, (struct getitimer_args *)uap)); 804 } 805 806 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 807 return (error); 808 error = kern_setitimer(td, uap->which, &aitv, &oitv); 809 if (error != 0 || uap->oitv == NULL) 810 return (error); 811 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 812 } 813 814 int 815 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 816 struct itimerval *oitv) 817 { 818 struct proc *p = td->td_proc; 819 struct timeval ctv; 820 sbintime_t sbt, pr; 821 822 if (aitv == NULL) 823 return (kern_getitimer(td, which, oitv)); 824 825 if (which > ITIMER_PROF) 826 return (EINVAL); 827 #ifdef KTRACE 828 if (KTRPOINT(td, KTR_STRUCT)) 829 ktritimerval(aitv); 830 #endif 831 if (itimerfix(&aitv->it_value) || 832 aitv->it_value.tv_sec > INT32_MAX / 2) 833 return (EINVAL); 834 if (!timevalisset(&aitv->it_value)) 835 timevalclear(&aitv->it_interval); 836 else if (itimerfix(&aitv->it_interval) || 837 aitv->it_interval.tv_sec > INT32_MAX / 2) 838 return (EINVAL); 839 840 if (which == ITIMER_REAL) { 841 PROC_LOCK(p); 842 if (timevalisset(&p->p_realtimer.it_value)) 843 callout_stop(&p->p_itcallout); 844 microuptime(&ctv); 845 if (timevalisset(&aitv->it_value)) { 846 pr = tvtosbt(aitv->it_value) >> tc_precexp; 847 timevaladd(&aitv->it_value, &ctv); 848 sbt = tvtosbt(aitv->it_value); 849 callout_reset_sbt(&p->p_itcallout, sbt, pr, 850 realitexpire, p, C_ABSOLUTE); 851 } 852 *oitv = p->p_realtimer; 853 p->p_realtimer = *aitv; 854 PROC_UNLOCK(p); 855 if (timevalisset(&oitv->it_value)) { 856 if (timevalcmp(&oitv->it_value, &ctv, <)) 857 timevalclear(&oitv->it_value); 858 else 859 timevalsub(&oitv->it_value, &ctv); 860 } 861 } else { 862 if (aitv->it_interval.tv_sec == 0 && 863 aitv->it_interval.tv_usec != 0 && 864 aitv->it_interval.tv_usec < tick) 865 aitv->it_interval.tv_usec = tick; 866 if (aitv->it_value.tv_sec == 0 && 867 aitv->it_value.tv_usec != 0 && 868 aitv->it_value.tv_usec < tick) 869 aitv->it_value.tv_usec = tick; 870 PROC_ITIMLOCK(p); 871 *oitv = p->p_stats->p_timer[which]; 872 p->p_stats->p_timer[which] = *aitv; 873 PROC_ITIMUNLOCK(p); 874 } 875 #ifdef KTRACE 876 if (KTRPOINT(td, KTR_STRUCT)) 877 ktritimerval(oitv); 878 #endif 879 return (0); 880 } 881 882 static void 883 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 884 { 885 sbintime_t prec; 886 887 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 888 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 889 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 890 } 891 892 void 893 itimer_proc_continue(struct proc *p) 894 { 895 struct timeval ctv; 896 struct itimer *it; 897 int id; 898 899 PROC_LOCK_ASSERT(p, MA_OWNED); 900 901 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 902 p->p_flag2 &= ~P2_ITSTOPPED; 903 microuptime(&ctv); 904 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 905 realitexpire(p); 906 else 907 realitexpire_reset_callout(p, NULL); 908 } 909 910 if (p->p_itimers != NULL) { 911 for (id = 3; id < TIMER_MAX; id++) { 912 it = p->p_itimers->its_timers[id]; 913 if (it == NULL) 914 continue; 915 if ((it->it_flags & ITF_PSTOPPED) != 0) { 916 ITIMER_LOCK(it); 917 if ((it->it_flags & ITF_PSTOPPED) != 0) { 918 it->it_flags &= ~ITF_PSTOPPED; 919 if ((it->it_flags & ITF_DELETING) == 0) 920 realtimer_expire_l(it, true); 921 } 922 ITIMER_UNLOCK(it); 923 } 924 } 925 } 926 } 927 928 /* 929 * Real interval timer expired: 930 * send process whose timer expired an alarm signal. 931 * If time is not set up to reload, then just return. 932 * Else compute next time timer should go off which is > current time. 933 * This is where delay in processing this timeout causes multiple 934 * SIGALRM calls to be compressed into one. 935 * tvtohz() always adds 1 to allow for the time until the next clock 936 * interrupt being strictly less than 1 clock tick, but we don't want 937 * that here since we want to appear to be in sync with the clock 938 * interrupt even when we're delayed. 939 */ 940 static void 941 realitexpire(void *arg) 942 { 943 struct proc *p; 944 struct timeval ctv; 945 sbintime_t isbt; 946 947 p = (struct proc *)arg; 948 kern_psignal(p, SIGALRM); 949 if (!timevalisset(&p->p_realtimer.it_interval)) { 950 timevalclear(&p->p_realtimer.it_value); 951 return; 952 } 953 954 isbt = tvtosbt(p->p_realtimer.it_interval); 955 if (isbt >= sbt_timethreshold) 956 getmicrouptime(&ctv); 957 else 958 microuptime(&ctv); 959 do { 960 timevaladd(&p->p_realtimer.it_value, 961 &p->p_realtimer.it_interval); 962 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 963 964 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 965 p->p_flag2 |= P2_ITSTOPPED; 966 return; 967 } 968 969 p->p_flag2 &= ~P2_ITSTOPPED; 970 realitexpire_reset_callout(p, &isbt); 971 } 972 973 /* 974 * Check that a proposed value to load into the .it_value or 975 * .it_interval part of an interval timer is acceptable, and 976 * fix it to have at least minimal value (i.e. if it is less 977 * than the resolution of the clock, round it up.) 978 */ 979 int 980 itimerfix(struct timeval *tv) 981 { 982 983 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 984 return (EINVAL); 985 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 986 tv->tv_usec < (u_int)tick / 16) 987 tv->tv_usec = (u_int)tick / 16; 988 return (0); 989 } 990 991 /* 992 * Decrement an interval timer by a specified number 993 * of microseconds, which must be less than a second, 994 * i.e. < 1000000. If the timer expires, then reload 995 * it. In this case, carry over (usec - old value) to 996 * reduce the value reloaded into the timer so that 997 * the timer does not drift. This routine assumes 998 * that it is called in a context where the timers 999 * on which it is operating cannot change in value. 1000 */ 1001 int 1002 itimerdecr(struct itimerval *itp, int usec) 1003 { 1004 1005 if (itp->it_value.tv_usec < usec) { 1006 if (itp->it_value.tv_sec == 0) { 1007 /* expired, and already in next interval */ 1008 usec -= itp->it_value.tv_usec; 1009 goto expire; 1010 } 1011 itp->it_value.tv_usec += 1000000; 1012 itp->it_value.tv_sec--; 1013 } 1014 itp->it_value.tv_usec -= usec; 1015 usec = 0; 1016 if (timevalisset(&itp->it_value)) 1017 return (1); 1018 /* expired, exactly at end of interval */ 1019 expire: 1020 if (timevalisset(&itp->it_interval)) { 1021 itp->it_value = itp->it_interval; 1022 itp->it_value.tv_usec -= usec; 1023 if (itp->it_value.tv_usec < 0) { 1024 itp->it_value.tv_usec += 1000000; 1025 itp->it_value.tv_sec--; 1026 } 1027 } else 1028 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1029 return (0); 1030 } 1031 1032 /* 1033 * Add and subtract routines for timevals. 1034 * N.B.: subtract routine doesn't deal with 1035 * results which are before the beginning, 1036 * it just gets very confused in this case. 1037 * Caveat emptor. 1038 */ 1039 void 1040 timevaladd(struct timeval *t1, const struct timeval *t2) 1041 { 1042 1043 t1->tv_sec += t2->tv_sec; 1044 t1->tv_usec += t2->tv_usec; 1045 timevalfix(t1); 1046 } 1047 1048 void 1049 timevalsub(struct timeval *t1, const struct timeval *t2) 1050 { 1051 1052 t1->tv_sec -= t2->tv_sec; 1053 t1->tv_usec -= t2->tv_usec; 1054 timevalfix(t1); 1055 } 1056 1057 static void 1058 timevalfix(struct timeval *t1) 1059 { 1060 1061 if (t1->tv_usec < 0) { 1062 t1->tv_sec--; 1063 t1->tv_usec += 1000000; 1064 } 1065 if (t1->tv_usec >= 1000000) { 1066 t1->tv_sec++; 1067 t1->tv_usec -= 1000000; 1068 } 1069 } 1070 1071 /* 1072 * ratecheck(): simple time-based rate-limit checking. 1073 */ 1074 int 1075 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1076 { 1077 struct timeval tv, delta; 1078 int rv = 0; 1079 1080 getmicrouptime(&tv); /* NB: 10ms precision */ 1081 delta = tv; 1082 timevalsub(&delta, lasttime); 1083 1084 /* 1085 * check for 0,0 is so that the message will be seen at least once, 1086 * even if interval is huge. 1087 */ 1088 if (timevalcmp(&delta, mininterval, >=) || 1089 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1090 *lasttime = tv; 1091 rv = 1; 1092 } 1093 1094 return (rv); 1095 } 1096 1097 /* 1098 * eventratecheck(): events per second limitation. 1099 * 1100 * Return 0 if the limit is to be enforced (e.g. the caller 1101 * should ignore the event because of the rate limitation). 1102 * 1103 * maxeps of 0 always causes zero to be returned. maxeps of -1 1104 * always causes 1 to be returned; this effectively defeats rate 1105 * limiting. 1106 * 1107 * Note that we maintain the struct timeval for compatibility 1108 * with other bsd systems. We reuse the storage and just monitor 1109 * clock ticks for minimal overhead. 1110 */ 1111 int 1112 eventratecheck(struct timeval *lasttime, int *cureps, int maxeps) 1113 { 1114 int now; 1115 1116 /* 1117 * Reset the last time and counter if this is the first call 1118 * or more than a second has passed since the last update of 1119 * lasttime. 1120 */ 1121 now = ticks; 1122 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1123 lasttime->tv_sec = now; 1124 *cureps = 1; 1125 return (maxeps != 0); 1126 } else { 1127 (*cureps)++; /* NB: ignore potential overflow */ 1128 return (maxeps < 0 || *cureps <= maxeps); 1129 } 1130 } 1131 1132 static void 1133 itimer_start(void) 1134 { 1135 static const struct kclock rt_clock = { 1136 .timer_create = realtimer_create, 1137 .timer_delete = realtimer_delete, 1138 .timer_settime = realtimer_settime, 1139 .timer_gettime = realtimer_gettime, 1140 }; 1141 1142 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1143 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1144 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1145 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1146 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1147 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1148 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1149 } 1150 1151 static int 1152 register_posix_clock(int clockid, const struct kclock *clk) 1153 { 1154 if ((unsigned)clockid >= MAX_CLOCKS) { 1155 printf("%s: invalid clockid\n", __func__); 1156 return (0); 1157 } 1158 posix_clocks[clockid] = *clk; 1159 return (1); 1160 } 1161 1162 static int 1163 itimer_init(void *mem, int size, int flags) 1164 { 1165 struct itimer *it; 1166 1167 it = (struct itimer *)mem; 1168 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1169 return (0); 1170 } 1171 1172 static void 1173 itimer_fini(void *mem, int size) 1174 { 1175 struct itimer *it; 1176 1177 it = (struct itimer *)mem; 1178 mtx_destroy(&it->it_mtx); 1179 } 1180 1181 static void 1182 itimer_enter(struct itimer *it) 1183 { 1184 1185 mtx_assert(&it->it_mtx, MA_OWNED); 1186 it->it_usecount++; 1187 } 1188 1189 static void 1190 itimer_leave(struct itimer *it) 1191 { 1192 1193 mtx_assert(&it->it_mtx, MA_OWNED); 1194 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1195 1196 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1197 wakeup(it); 1198 } 1199 1200 #ifndef _SYS_SYSPROTO_H_ 1201 struct ktimer_create_args { 1202 clockid_t clock_id; 1203 struct sigevent * evp; 1204 int * timerid; 1205 }; 1206 #endif 1207 int 1208 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1209 { 1210 struct sigevent *evp, ev; 1211 int id; 1212 int error; 1213 1214 if (uap->evp == NULL) { 1215 evp = NULL; 1216 } else { 1217 error = copyin(uap->evp, &ev, sizeof(ev)); 1218 if (error != 0) 1219 return (error); 1220 evp = &ev; 1221 } 1222 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1223 if (error == 0) { 1224 error = copyout(&id, uap->timerid, sizeof(int)); 1225 if (error != 0) 1226 kern_ktimer_delete(td, id); 1227 } 1228 return (error); 1229 } 1230 1231 int 1232 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1233 int *timerid, int preset_id) 1234 { 1235 struct proc *p = td->td_proc; 1236 struct itimer *it; 1237 int id; 1238 int error; 1239 1240 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1241 return (EINVAL); 1242 1243 if (posix_clocks[clock_id].timer_create == NULL) 1244 return (EINVAL); 1245 1246 if (evp != NULL) { 1247 if (evp->sigev_notify != SIGEV_NONE && 1248 evp->sigev_notify != SIGEV_SIGNAL && 1249 evp->sigev_notify != SIGEV_THREAD_ID) 1250 return (EINVAL); 1251 if ((evp->sigev_notify == SIGEV_SIGNAL || 1252 evp->sigev_notify == SIGEV_THREAD_ID) && 1253 !_SIG_VALID(evp->sigev_signo)) 1254 return (EINVAL); 1255 } 1256 1257 if (p->p_itimers == NULL) 1258 itimers_alloc(p); 1259 1260 it = uma_zalloc(itimer_zone, M_WAITOK); 1261 it->it_flags = 0; 1262 it->it_usecount = 0; 1263 timespecclear(&it->it_time.it_value); 1264 timespecclear(&it->it_time.it_interval); 1265 it->it_overrun = 0; 1266 it->it_overrun_last = 0; 1267 it->it_clockid = clock_id; 1268 it->it_proc = p; 1269 ksiginfo_init(&it->it_ksi); 1270 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1271 error = CLOCK_CALL(clock_id, timer_create, (it)); 1272 if (error != 0) 1273 goto out; 1274 1275 PROC_LOCK(p); 1276 if (preset_id != -1) { 1277 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1278 id = preset_id; 1279 if (p->p_itimers->its_timers[id] != NULL) { 1280 PROC_UNLOCK(p); 1281 error = 0; 1282 goto out; 1283 } 1284 } else { 1285 /* 1286 * Find a free timer slot, skipping those reserved 1287 * for setitimer(). 1288 */ 1289 for (id = 3; id < TIMER_MAX; id++) 1290 if (p->p_itimers->its_timers[id] == NULL) 1291 break; 1292 if (id == TIMER_MAX) { 1293 PROC_UNLOCK(p); 1294 error = EAGAIN; 1295 goto out; 1296 } 1297 } 1298 p->p_itimers->its_timers[id] = it; 1299 if (evp != NULL) 1300 it->it_sigev = *evp; 1301 else { 1302 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1303 switch (clock_id) { 1304 default: 1305 case CLOCK_REALTIME: 1306 it->it_sigev.sigev_signo = SIGALRM; 1307 break; 1308 case CLOCK_VIRTUAL: 1309 it->it_sigev.sigev_signo = SIGVTALRM; 1310 break; 1311 case CLOCK_PROF: 1312 it->it_sigev.sigev_signo = SIGPROF; 1313 break; 1314 } 1315 it->it_sigev.sigev_value.sival_int = id; 1316 } 1317 1318 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1319 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1320 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1321 it->it_ksi.ksi_code = SI_TIMER; 1322 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1323 it->it_ksi.ksi_timerid = id; 1324 } 1325 PROC_UNLOCK(p); 1326 *timerid = id; 1327 return (0); 1328 1329 out: 1330 ITIMER_LOCK(it); 1331 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1332 ITIMER_UNLOCK(it); 1333 uma_zfree(itimer_zone, it); 1334 return (error); 1335 } 1336 1337 #ifndef _SYS_SYSPROTO_H_ 1338 struct ktimer_delete_args { 1339 int timerid; 1340 }; 1341 #endif 1342 int 1343 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1344 { 1345 1346 return (kern_ktimer_delete(td, uap->timerid)); 1347 } 1348 1349 static struct itimer * 1350 itimer_find(struct proc *p, int timerid) 1351 { 1352 struct itimer *it; 1353 1354 PROC_LOCK_ASSERT(p, MA_OWNED); 1355 if ((p->p_itimers == NULL) || 1356 (timerid < 0) || (timerid >= TIMER_MAX) || 1357 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1358 return (NULL); 1359 } 1360 ITIMER_LOCK(it); 1361 if ((it->it_flags & ITF_DELETING) != 0) { 1362 ITIMER_UNLOCK(it); 1363 it = NULL; 1364 } 1365 return (it); 1366 } 1367 1368 int 1369 kern_ktimer_delete(struct thread *td, int timerid) 1370 { 1371 struct proc *p = td->td_proc; 1372 struct itimer *it; 1373 1374 PROC_LOCK(p); 1375 it = itimer_find(p, timerid); 1376 if (it == NULL) { 1377 PROC_UNLOCK(p); 1378 return (EINVAL); 1379 } 1380 PROC_UNLOCK(p); 1381 1382 it->it_flags |= ITF_DELETING; 1383 while (it->it_usecount > 0) { 1384 it->it_flags |= ITF_WANTED; 1385 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1386 } 1387 it->it_flags &= ~ITF_WANTED; 1388 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1389 ITIMER_UNLOCK(it); 1390 1391 PROC_LOCK(p); 1392 if (KSI_ONQ(&it->it_ksi)) 1393 sigqueue_take(&it->it_ksi); 1394 p->p_itimers->its_timers[timerid] = NULL; 1395 PROC_UNLOCK(p); 1396 uma_zfree(itimer_zone, it); 1397 return (0); 1398 } 1399 1400 #ifndef _SYS_SYSPROTO_H_ 1401 struct ktimer_settime_args { 1402 int timerid; 1403 int flags; 1404 const struct itimerspec * value; 1405 struct itimerspec * ovalue; 1406 }; 1407 #endif 1408 int 1409 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1410 { 1411 struct itimerspec val, oval, *ovalp; 1412 int error; 1413 1414 error = copyin(uap->value, &val, sizeof(val)); 1415 if (error != 0) 1416 return (error); 1417 ovalp = uap->ovalue != NULL ? &oval : NULL; 1418 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1419 if (error == 0 && uap->ovalue != NULL) 1420 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1421 return (error); 1422 } 1423 1424 int 1425 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1426 struct itimerspec *val, struct itimerspec *oval) 1427 { 1428 struct proc *p; 1429 struct itimer *it; 1430 int error; 1431 1432 p = td->td_proc; 1433 PROC_LOCK(p); 1434 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1435 PROC_UNLOCK(p); 1436 error = EINVAL; 1437 } else { 1438 PROC_UNLOCK(p); 1439 itimer_enter(it); 1440 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1441 flags, val, oval)); 1442 itimer_leave(it); 1443 ITIMER_UNLOCK(it); 1444 } 1445 return (error); 1446 } 1447 1448 #ifndef _SYS_SYSPROTO_H_ 1449 struct ktimer_gettime_args { 1450 int timerid; 1451 struct itimerspec * value; 1452 }; 1453 #endif 1454 int 1455 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1456 { 1457 struct itimerspec val; 1458 int error; 1459 1460 error = kern_ktimer_gettime(td, uap->timerid, &val); 1461 if (error == 0) 1462 error = copyout(&val, uap->value, sizeof(val)); 1463 return (error); 1464 } 1465 1466 int 1467 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1468 { 1469 struct proc *p; 1470 struct itimer *it; 1471 int error; 1472 1473 p = td->td_proc; 1474 PROC_LOCK(p); 1475 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1476 PROC_UNLOCK(p); 1477 error = EINVAL; 1478 } else { 1479 PROC_UNLOCK(p); 1480 itimer_enter(it); 1481 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1482 itimer_leave(it); 1483 ITIMER_UNLOCK(it); 1484 } 1485 return (error); 1486 } 1487 1488 #ifndef _SYS_SYSPROTO_H_ 1489 struct timer_getoverrun_args { 1490 int timerid; 1491 }; 1492 #endif 1493 int 1494 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1495 { 1496 1497 return (kern_ktimer_getoverrun(td, uap->timerid)); 1498 } 1499 1500 int 1501 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1502 { 1503 struct proc *p = td->td_proc; 1504 struct itimer *it; 1505 int error ; 1506 1507 PROC_LOCK(p); 1508 if (timer_id < 3 || 1509 (it = itimer_find(p, timer_id)) == NULL) { 1510 PROC_UNLOCK(p); 1511 error = EINVAL; 1512 } else { 1513 td->td_retval[0] = it->it_overrun_last; 1514 ITIMER_UNLOCK(it); 1515 PROC_UNLOCK(p); 1516 error = 0; 1517 } 1518 return (error); 1519 } 1520 1521 static int 1522 realtimer_create(struct itimer *it) 1523 { 1524 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1525 return (0); 1526 } 1527 1528 static int 1529 realtimer_delete(struct itimer *it) 1530 { 1531 mtx_assert(&it->it_mtx, MA_OWNED); 1532 1533 /* 1534 * clear timer's value and interval to tell realtimer_expire 1535 * to not rearm the timer. 1536 */ 1537 timespecclear(&it->it_time.it_value); 1538 timespecclear(&it->it_time.it_interval); 1539 ITIMER_UNLOCK(it); 1540 callout_drain(&it->it_callout); 1541 ITIMER_LOCK(it); 1542 return (0); 1543 } 1544 1545 static int 1546 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1547 { 1548 struct timespec cts; 1549 1550 mtx_assert(&it->it_mtx, MA_OWNED); 1551 1552 realtimer_clocktime(it->it_clockid, &cts); 1553 *ovalue = it->it_time; 1554 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1555 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1556 if (ovalue->it_value.tv_sec < 0 || 1557 (ovalue->it_value.tv_sec == 0 && 1558 ovalue->it_value.tv_nsec == 0)) { 1559 ovalue->it_value.tv_sec = 0; 1560 ovalue->it_value.tv_nsec = 1; 1561 } 1562 } 1563 return (0); 1564 } 1565 1566 static int 1567 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1568 struct itimerspec *ovalue) 1569 { 1570 struct timespec cts, ts; 1571 struct timeval tv; 1572 struct itimerspec val; 1573 1574 mtx_assert(&it->it_mtx, MA_OWNED); 1575 1576 val = *value; 1577 if (itimespecfix(&val.it_value)) 1578 return (EINVAL); 1579 1580 if (timespecisset(&val.it_value)) { 1581 if (itimespecfix(&val.it_interval)) 1582 return (EINVAL); 1583 } else { 1584 timespecclear(&val.it_interval); 1585 } 1586 1587 if (ovalue != NULL) 1588 realtimer_gettime(it, ovalue); 1589 1590 it->it_time = val; 1591 if (timespecisset(&val.it_value)) { 1592 realtimer_clocktime(it->it_clockid, &cts); 1593 ts = val.it_value; 1594 if ((flags & TIMER_ABSTIME) == 0) { 1595 /* Convert to absolute time. */ 1596 timespecadd(&it->it_time.it_value, &cts, 1597 &it->it_time.it_value); 1598 } else { 1599 timespecsub(&ts, &cts, &ts); 1600 /* 1601 * We don't care if ts is negative, tztohz will 1602 * fix it. 1603 */ 1604 } 1605 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1606 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1607 it); 1608 } else { 1609 callout_stop(&it->it_callout); 1610 } 1611 1612 return (0); 1613 } 1614 1615 static void 1616 realtimer_clocktime(clockid_t id, struct timespec *ts) 1617 { 1618 if (id == CLOCK_REALTIME) 1619 getnanotime(ts); 1620 else /* CLOCK_MONOTONIC */ 1621 getnanouptime(ts); 1622 } 1623 1624 int 1625 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1626 { 1627 struct itimer *it; 1628 1629 PROC_LOCK_ASSERT(p, MA_OWNED); 1630 it = itimer_find(p, timerid); 1631 if (it != NULL) { 1632 ksi->ksi_overrun = it->it_overrun; 1633 it->it_overrun_last = it->it_overrun; 1634 it->it_overrun = 0; 1635 ITIMER_UNLOCK(it); 1636 return (0); 1637 } 1638 return (EINVAL); 1639 } 1640 1641 static int 1642 itimespecfix(struct timespec *ts) 1643 { 1644 1645 if (!timespecvalid_interval(ts)) 1646 return (EINVAL); 1647 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec) 1648 return (EINVAL); 1649 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1650 ts->tv_nsec = tick * 1000; 1651 return (0); 1652 } 1653 1654 #define timespectons(tsp) \ 1655 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec) 1656 #define timespecfromns(ns) (struct timespec){ \ 1657 .tv_sec = (ns) / NS_PER_SEC, \ 1658 .tv_nsec = (ns) % NS_PER_SEC \ 1659 } 1660 1661 static void 1662 realtimer_expire_l(struct itimer *it, bool proc_locked) 1663 { 1664 struct timespec cts, ts; 1665 struct timeval tv; 1666 struct proc *p; 1667 uint64_t interval, now, overruns, value; 1668 1669 realtimer_clocktime(it->it_clockid, &cts); 1670 /* Only fire if time is reached. */ 1671 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1672 if (timespecisset(&it->it_time.it_interval)) { 1673 timespecadd(&it->it_time.it_value, 1674 &it->it_time.it_interval, 1675 &it->it_time.it_value); 1676 1677 interval = timespectons(&it->it_time.it_interval); 1678 value = timespectons(&it->it_time.it_value); 1679 now = timespectons(&cts); 1680 1681 if (now >= value) { 1682 /* 1683 * We missed at least one period. 1684 */ 1685 overruns = howmany(now - value + 1, interval); 1686 if (it->it_overrun + overruns >= 1687 it->it_overrun && 1688 it->it_overrun + overruns <= INT_MAX) { 1689 it->it_overrun += (int)overruns; 1690 } else { 1691 it->it_overrun = INT_MAX; 1692 it->it_ksi.ksi_errno = ERANGE; 1693 } 1694 value = 1695 now + interval - (now - value) % interval; 1696 it->it_time.it_value = timespecfromns(value); 1697 } 1698 } else { 1699 /* single shot timer ? */ 1700 timespecclear(&it->it_time.it_value); 1701 } 1702 1703 p = it->it_proc; 1704 if (timespecisset(&it->it_time.it_value)) { 1705 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1706 it->it_flags |= ITF_PSTOPPED; 1707 } else { 1708 timespecsub(&it->it_time.it_value, &cts, &ts); 1709 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1710 callout_reset(&it->it_callout, tvtohz(&tv), 1711 realtimer_expire, it); 1712 } 1713 } 1714 1715 itimer_enter(it); 1716 ITIMER_UNLOCK(it); 1717 if (proc_locked) 1718 PROC_UNLOCK(p); 1719 itimer_fire(it); 1720 if (proc_locked) 1721 PROC_LOCK(p); 1722 ITIMER_LOCK(it); 1723 itimer_leave(it); 1724 } else if (timespecisset(&it->it_time.it_value)) { 1725 p = it->it_proc; 1726 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1727 it->it_flags |= ITF_PSTOPPED; 1728 } else { 1729 ts = it->it_time.it_value; 1730 timespecsub(&ts, &cts, &ts); 1731 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1732 callout_reset(&it->it_callout, tvtohz(&tv), 1733 realtimer_expire, it); 1734 } 1735 } 1736 } 1737 1738 /* Timeout callback for realtime timer */ 1739 static void 1740 realtimer_expire(void *arg) 1741 { 1742 realtimer_expire_l(arg, false); 1743 } 1744 1745 static void 1746 itimer_fire(struct itimer *it) 1747 { 1748 struct proc *p = it->it_proc; 1749 struct thread *td; 1750 1751 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1752 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1753 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1754 ITIMER_LOCK(it); 1755 timespecclear(&it->it_time.it_value); 1756 timespecclear(&it->it_time.it_interval); 1757 callout_stop(&it->it_callout); 1758 ITIMER_UNLOCK(it); 1759 return; 1760 } 1761 if (!KSI_ONQ(&it->it_ksi)) { 1762 it->it_ksi.ksi_errno = 0; 1763 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1764 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1765 } else { 1766 if (it->it_overrun < INT_MAX) 1767 it->it_overrun++; 1768 else 1769 it->it_ksi.ksi_errno = ERANGE; 1770 } 1771 PROC_UNLOCK(p); 1772 } 1773 } 1774 1775 static void 1776 itimers_alloc(struct proc *p) 1777 { 1778 struct itimers *its; 1779 1780 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1781 PROC_LOCK(p); 1782 if (p->p_itimers == NULL) { 1783 p->p_itimers = its; 1784 PROC_UNLOCK(p); 1785 } 1786 else { 1787 PROC_UNLOCK(p); 1788 free(its, M_SUBPROC); 1789 } 1790 } 1791 1792 /* Clean up timers when some process events are being triggered. */ 1793 static void 1794 itimers_event_exit_exec(int start_idx, struct proc *p) 1795 { 1796 struct itimers *its; 1797 struct itimer *it; 1798 int i; 1799 1800 its = p->p_itimers; 1801 if (its == NULL) 1802 return; 1803 1804 for (i = start_idx; i < TIMER_MAX; ++i) { 1805 if ((it = its->its_timers[i]) != NULL) 1806 kern_ktimer_delete(curthread, i); 1807 } 1808 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1809 its->its_timers[2] == NULL) { 1810 /* Synchronize with itimer_proc_continue(). */ 1811 PROC_LOCK(p); 1812 p->p_itimers = NULL; 1813 PROC_UNLOCK(p); 1814 free(its, M_SUBPROC); 1815 } 1816 } 1817 1818 void 1819 itimers_exec(struct proc *p) 1820 { 1821 /* 1822 * According to susv3, XSI interval timers should be inherited 1823 * by new image. 1824 */ 1825 itimers_event_exit_exec(3, p); 1826 } 1827 1828 void 1829 itimers_exit(struct proc *p) 1830 { 1831 itimers_event_exit_exec(0, p); 1832 } 1833