xref: /titanic_44/usr/src/lib/libm/common/m9x/nearbyint.c (revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak nearbyint = __nearbyint
31 
32 /*
33  * nearbyint(x) returns the nearest fp integer to x in the direction
34  * corresponding to the current rounding direction without raising
35  * the inexact exception.
36  *
37  * nearbyint(x) is x unchanged if x is +/-0 or +/-inf.  If x is NaN,
38  * nearbyint(x) is also NaN.
39  */
40 
41 #include "libm.h"
42 #include <fenv.h>
43 
44 double
__nearbyint(double x)45 __nearbyint(double x) {
46 	union {
47 		unsigned i[2];
48 		double d;
49 	} xx;
50 	unsigned hx, sx, i, frac;
51 	int rm, j;
52 
53 	xx.d = x;
54 	sx = xx.i[HIWORD] & 0x80000000;
55 	hx = xx.i[HIWORD] & ~0x80000000;
56 
57 	/* handle trivial cases */
58 	if (hx >= 0x43300000) {	/* x is nan, inf, or already integral */
59 		if (hx >= 0x7ff00000)	/* x is inf or nan */
60 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
61 			return (hx >= 0x7ff80000 ? x : x + x);
62 			/* assumes sparc-like QNaN */
63 #else
64 			return (x + x);
65 #endif
66 		return (x);
67 	} else if ((hx | xx.i[LOWORD]) == 0)	/* x is zero */
68 		return (x);
69 
70 	/* get the rounding mode */
71 	rm = fegetround();
72 
73 	/* flip the sense of directed roundings if x is negative */
74 	if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
75 		rm = (FE_UPWARD + FE_DOWNWARD) - rm;
76 
77 	/* handle |x| < 1 */
78 	if (hx < 0x3ff00000) {
79 		if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
80 			(hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
81 			xx.i[HIWORD] = sx | 0x3ff00000;
82 		else
83 			xx.i[HIWORD] = sx;
84 		xx.i[LOWORD] = 0;
85 		return (xx.d);
86 	}
87 
88 	/* round x at the integer bit */
89 	j = 0x433 - (hx >> 20);
90 	if (j >= 32) {
91 		i = 1 << (j - 32);
92 		frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
93 			(xx.i[LOWORD] >> (j - 32));
94 		if (xx.i[LOWORD] & (i - 1))
95 			frac |= 1;
96 		if (!frac)
97 			return (x);
98 		xx.i[LOWORD] = 0;
99 		xx.i[HIWORD] &= ~(i - 1);
100 		if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
101 			((frac > 0x80000000u) || ((frac == 0x80000000) &&
102 			(xx.i[HIWORD] & i)))))
103 			xx.i[HIWORD] += i;
104 	} else {
105 		i = 1 << j;
106 		frac = (xx.i[LOWORD] << 1) << (31 - j);
107 		if (!frac)
108 			return (x);
109 		xx.i[LOWORD] &= ~(i - 1);
110 		if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
111 			(frac > 0x80000000u || ((frac == 0x80000000) &&
112 			(xx.i[LOWORD] & i))))) {
113 			xx.i[LOWORD] += i;
114 			if (xx.i[LOWORD] == 0)
115 				xx.i[HIWORD]++;
116 		}
117 	}
118 	return (xx.d);
119 }
120