Home
last modified time | relevance | path

Searched hist:"97 e3d26b5e5f371b3ee223d94dd123e6c442ba80" (Results 1 – 4 of 4) sorted by relevance

/linux/arch/x86/include/asm/
H A Dpgtable_areas.hdiff 97e3d26b5e5f371b3ee223d94dd123e6c442ba80 Thu Oct 27 23:54:41 CEST 2022 Peter Zijlstra <peterz@infradead.org> x86/mm: Randomize per-cpu entry area

Seth found that the CPU-entry-area; the piece of per-cpu data that is
mapped into the userspace page-tables for kPTI is not subject to any
randomization -- irrespective of kASLR settings.

On x86_64 a whole P4D (512 GB) of virtual address space is reserved for
this structure, which is plenty large enough to randomize things a
little.

As such, use a straight forward randomization scheme that avoids
duplicates to spread the existing CPUs over the available space.

[ bp: Fix le build. ]

Reported-by: Seth Jenkins <sethjenkins@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
H A Dcpu_entry_area.hdiff 97e3d26b5e5f371b3ee223d94dd123e6c442ba80 Thu Oct 27 23:54:41 CEST 2022 Peter Zijlstra <peterz@infradead.org> x86/mm: Randomize per-cpu entry area

Seth found that the CPU-entry-area; the piece of per-cpu data that is
mapped into the userspace page-tables for kPTI is not subject to any
randomization -- irrespective of kASLR settings.

On x86_64 a whole P4D (512 GB) of virtual address space is reserved for
this structure, which is plenty large enough to randomize things a
little.

As such, use a straight forward randomization scheme that avoids
duplicates to spread the existing CPUs over the available space.

[ bp: Fix le build. ]

Reported-by: Seth Jenkins <sethjenkins@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
/linux/arch/x86/mm/
H A Dcpu_entry_area.cdiff 97e3d26b5e5f371b3ee223d94dd123e6c442ba80 Thu Oct 27 23:54:41 CEST 2022 Peter Zijlstra <peterz@infradead.org> x86/mm: Randomize per-cpu entry area

Seth found that the CPU-entry-area; the piece of per-cpu data that is
mapped into the userspace page-tables for kPTI is not subject to any
randomization -- irrespective of kASLR settings.

On x86_64 a whole P4D (512 GB) of virtual address space is reserved for
this structure, which is plenty large enough to randomize things a
little.

As such, use a straight forward randomization scheme that avoids
duplicates to spread the existing CPUs over the available space.

[ bp: Fix le build. ]

Reported-by: Seth Jenkins <sethjenkins@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
/linux/arch/x86/kernel/
H A Dhw_breakpoint.cdiff 97e3d26b5e5f371b3ee223d94dd123e6c442ba80 Thu Oct 27 23:54:41 CEST 2022 Peter Zijlstra <peterz@infradead.org> x86/mm: Randomize per-cpu entry area

Seth found that the CPU-entry-area; the piece of per-cpu data that is
mapped into the userspace page-tables for kPTI is not subject to any
randomization -- irrespective of kASLR settings.

On x86_64 a whole P4D (512 GB) of virtual address space is reserved for
this structure, which is plenty large enough to randomize things a
little.

As such, use a straight forward randomization scheme that avoids
duplicates to spread the existing CPUs over the available space.

[ bp: Fix le build. ]

Reported-by: Seth Jenkins <sethjenkins@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>