Searched hist:"7 a25759eaa04b8c0ecb3db134922d6641ab2e6d1" (Results 1 – 1 of 1) sorted by relevance
/linux/drivers/cpuidle/ |
H A D | cpuidle.c | diff 7a25759eaa04b8c0ecb3db134922d6641ab2e6d1 Mon Nov 30 23:32:02 CET 2020 Mel Gorman <mgorman@techsingularity.net> cpuidle: Select polling interval based on a c-state with a longer target residency
It was noted that a few workloads that idle rapidly regressed when commit 36fcb4292473 ("cpuidle: use first valid target residency as poll time") was merged. The workloads in question were heavy communicators that idle rapidly and were impacted by the c-state exit latency as the active CPUs were not polling at the time of wakeup. As they were not particularly realistic workloads, it was not considered to be a major problem.
Unfortunately, a bug was reported for a real workload in a production environment that relied on large numbers of threads operating in a worker pool pattern. These threads would idle for periods of time longer than the C1 target residency and so incurred the c-state exit latency penalty. The application is very sensitive to wakeup latency and indirectly relying on behaviour prior to commit on a37b969a61c1 ("cpuidle: poll_state: Add time limit to poll_idle()") to poll for long enough to avoid the exit latency cost.
The target residency of C1 is typically very short. On some x86 machines, it can be as low as 2 microseconds. In poll_idle(), the clock is checked every POLL_IDLE_RELAX_COUNT interations of cpu_relax() and even one iteration of that loop can be over 1 microsecond so the polling interval is very close to the granularity of what poll_idle() can detect. Furthermore, a basic ping pong workload like perf bench pipe has a longer round-trip time than the 2 microseconds meaning that the CPU will almost certainly not be polling when the ping-pong completes.
This patch selects a polling interval based on an enabled c-state that has an target residency longer than 10usec. If there is no enabled-cstate then polling will be up to a TICK_NSEC/16 similar to what it was up until kernel 4.20. Polling for a full tick is unlikely (rescheduling event) and is much longer than the existing target residencies for a deep c-state.
As an example, consider a CPU with the following c-state information from an Intel CPU;
residency exit_latency C1 2 2 C1E 20 10 C3 100 33 C6 400 133
The polling interval selected is 20usec. If booted with intel_idle.max_cstate=1 then the polling interval is 250usec as the deeper c-states were not available.
On an AMD EPYC machine, the c-state information is more limited and looks like
residency exit_latency C1 2 1 C2 800 400
The polling interval selected is 250usec. While C2 was considered, the polling interval was clamped by CPUIDLE_POLL_MAX.
Note that it is not expected that polling will be a universal win. As well as potentially trading power for performance, the performance is not guaranteed if the extra polling prevented a turbo state being reached. Making it a tunable was considered but it's driver-specific, may be overridden by a governor and is not a guaranteed polling interval making it difficult to describe without knowledge of the implementation.
tbench4 vanilla polling Hmean 1 497.89 ( 0.00%) 543.15 * 9.09%* Hmean 2 975.88 ( 0.00%) 1059.73 * 8.59%* Hmean 4 1953.97 ( 0.00%) 2081.37 * 6.52%* Hmean 8 3645.76 ( 0.00%) 4052.95 * 11.17%* Hmean 16 6882.21 ( 0.00%) 6995.93 * 1.65%* Hmean 32 10752.20 ( 0.00%) 10731.53 * -0.19%* Hmean 64 12875.08 ( 0.00%) 12478.13 * -3.08%* Hmean 128 21500.54 ( 0.00%) 21098.60 * -1.87%* Hmean 256 21253.70 ( 0.00%) 21027.18 * -1.07%* Hmean 320 20813.50 ( 0.00%) 20580.64 * -1.12%*
Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|