Home
last modified time | relevance | path

Searched hist:"4 bb9780353ed9c7311a608508fea74bc29262d92" (Results 1 – 1 of 1) sorted by relevance

/freebsd/lib/msun/src/
H A Ds_cbrtf.cdiff 4bb9780353ed9c7311a608508fea74bc29262d92 Thu Jan 05 08:57:31 CET 2006 Bruce Evans <bde@FreeBSD.org> Use double precision internally to optimize cbrtf(), and change the
algorithm for the second step significantly to also get a perfectly
rounded result in round-to-nearest mode. The resulting optimization
is about 25% on Athlon64's and 30% on Athlon XP's (about 25 cycles
out of 100 on the former).

Using extra precision, we don't need to do anything special to avoid
large rounding errors in the third step (Newton's method), so we can
regroup terms to avoid a division, increase clarity, and increase
opportunities for parallelism. Rearrangement for parallelism loses
the increase in clarity. We end up with the same number of operations
but with a division reduced to a multiplication.

Using specifically double precision, there is enough extra precision
for the third step to give enough precision for perfect rounding to
float precision provided the previous steps are accurate to 16 bits.
(They were accurate to 12 bits, which was almost minimal for imperfect
rounding in the old version but would be more than enough for imperfect
rounding in this version (9 bits would be enough now).) I couldn't
find any significant time optimizations from optimizing the previous
steps, so I decided to optimize for accuracy instead. The second step
needed a division although a previous commit optimized it to use a
polynomial approximation for its main detail, and this division dominated
the time for the second step. Use the same Newton's method for the
second step as for the third step since this is insignificantly slower
than the division plus the polynomial (now that Newton's method only
needs 1 division), significantly more accurate, and simpler. Single
precision would be precise enough for the second step, but doesn't
have enough exponent range to handle denormals without the special
grouping of terms (as in previous versions) that requires another
division, so we use double precision for both the second and third
steps.
diff 4bb9780353ed9c7311a608508fea74bc29262d92 Thu Jan 05 08:57:31 CET 2006 Bruce Evans <bde@FreeBSD.org> Use double precision internally to optimize cbrtf(), and change the
algorithm for the second step significantly to also get a perfectly
rounded result in round-to-nearest mode. The resulting optimization
is about 25% on Athlon64's and 30% on Athlon XP's (about 25 cycles
out of 100 on the former).

Using extra precision, we don't need to do anything special to avoid
large rounding errors in the third step (Newton's method), so we can
regroup terms to avoid a division, increase clarity, and increase
opportunities for parallelism. Rearrangement for parallelism loses
the increase in clarity. We end up with the same number of operations
but with a division reduced to a multiplication.

Using specifically double precision, there is enough extra precision
for the third step to give enough precision for perfect rounding to
float precision provided the previous steps are accurate to 16 bits.
(They were accurate to 12 bits, which was almost minimal for imperfect
rounding in the old version but would be more than enough for imperfect
rounding in this version (9 bits would be enough now).) I couldn't
find any significant time optimizations from optimizing the previous
steps, so I decided to optimize for accuracy instead. The second step
needed a division although a previous commit optimized it to use a
polynomial approximation for its main detail, and this division dominated
the time for the second step. Use the same Newton's method for the
second step as for the third step since this is insignificantly slower
than the division plus the polynomial (now that Newton's method only
needs 1 division), significantly more accurate, and simpler. Single
precision would be precise enough for the second step, but doesn't
have enough exponent range to handle denormals without the special
grouping of terms (as in previous versions) that requires another
division, so we use double precision for both the second and third
steps.