1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 #define FEC_ENET_RSEM_V 0x84
89 #define FEC_ENET_RSFL_V 16
90 #define FEC_ENET_RAEM_V 0x8
91 #define FEC_ENET_RAFL_V 0x8
92 #define FEC_ENET_OPD_V 0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
94
95 #define FEC_ENET_XDP_PASS 0
96 #define FEC_ENET_XDP_CONSUMED BIT(0)
97 #define FEC_ENET_XDP_TX BIT(1)
98 #define FEC_ENET_XDP_REDIR BIT(2)
99
100 struct fec_devinfo {
101 u32 quirks;
102 };
103
104 static const struct fec_devinfo fec_imx25_info = {
105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108
109 static const struct fec_devinfo fec_imx27_info = {
110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 FEC_QUIRK_HAS_MDIO_C45,
112 };
113
114 static const struct fec_devinfo fec_imx28_info = {
115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120
121 static const struct fec_devinfo fec_imx6q_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128
129 static const struct fec_devinfo fec_mvf600_info = {
130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 FEC_QUIRK_HAS_MDIO_C45,
132 };
133
134 static const struct fec_devinfo fec_imx6x_info = {
135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 FEC_QUIRK_HAS_MDIO_C45,
142 };
143
144 static const struct fec_devinfo fec_imx6ul_info = {
145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 FEC_QUIRK_HAS_MDIO_C45,
151 };
152
153 static const struct fec_devinfo fec_imx8mq_info = {
154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 FEC_QUIRK_HAS_MDIO_C45,
162 };
163
164 static const struct fec_devinfo fec_imx8qm_info = {
165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173
174 static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180 };
181
182 static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193 static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212 #if defined(CONFIG_M5272)
213 /*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217 #if defined(CONFIG_NETtel)
218 #define FEC_FLASHMAC 0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define FEC_FLASHMAC 0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define FEC_FLASHMAC 0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define FEC_FLASHMAC (0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC 0xffc0406b
227 #else
228 #define FEC_FLASHMAC 0
229 #endif
230 #endif /* CONFIG_M5272 */
231
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE 64
239
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS BIT(1)
242 #define FEC_RACC_PRODIS BIT(2)
243 #define FEC_RACC_SHIFT16 BIT(7)
244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
248
249 /*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256 defined(CONFIG_ARM64)
257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
258 #else
259 #define OPT_FRAME_SIZE 0
260 #endif
261
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST (1 << 30)
264 #define FEC_MMFR_ST_C45 (0)
265 #define FEC_MMFR_OP_READ (2 << 28)
266 #define FEC_MMFR_OP_READ_C45 (3 << 28)
267 #define FEC_MMFR_OP_WRITE (1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE (0)
269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
271 #define FEC_MMFR_TA (2 << 16)
272 #define FEC_MMFR_DATA(v) (v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET BIT(0)
275 #define FEC_ECR_ETHEREN BIT(1)
276 #define FEC_ECR_MAGICEN BIT(2)
277 #define FEC_ECR_SLEEP BIT(3)
278 #define FEC_ECR_EN1588 BIT(4)
279 #define FEC_ECR_BYTESWP BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP BIT(0)
282 #define FEC_RCR_HALFDPX BIT(1)
283 #define FEC_RCR_MII BIT(2)
284 #define FEC_RCR_PROMISC BIT(3)
285 #define FEC_RCR_BC_REJ BIT(4)
286 #define FEC_RCR_FLOWCTL BIT(5)
287 #define FEC_RCR_RMII BIT(8)
288 #define FEC_RCR_10BASET BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD BIT(8)
291
292 #define FEC_MII_TIMEOUT 30000 /* us */
293
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296
297 #define FEC_PAUSE_FLAG_AUTONEG 0x1
298 #define FEC_PAUSE_FLAG_ENABLE 0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS 100
305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307 #define IS_TSO_HEADER(txq, addr) \
308 ((addr >= txq->tso_hdrs_dma) && \
309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311 static int mii_cnt;
312
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 struct bufdesc_prop *bd)
315 {
316 return (bdp >= bd->last) ? bd->base
317 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 struct bufdesc_prop *bd)
322 {
323 return (bdp <= bd->base) ? bd->last
324 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 struct bufdesc_prop *bd)
329 {
330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 int entries;
336
337 entries = (((const char *)txq->dirty_tx -
338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340 return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 int i;
346 unsigned int *buf = bufaddr;
347
348 for (i = 0; i < len; i += 4, buf++)
349 swab32s(buf);
350 }
351
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 struct fec_enet_private *fep = netdev_priv(ndev);
355 struct bufdesc *bdp;
356 struct fec_enet_priv_tx_q *txq;
357 int index = 0;
358
359 netdev_info(ndev, "TX ring dump\n");
360 pr_info("Nr SC addr len SKB\n");
361
362 txq = fep->tx_queue[0];
363 bdp = txq->bd.base;
364
365 do {
366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 index,
368 bdp == txq->bd.cur ? 'S' : ' ',
369 bdp == txq->dirty_tx ? 'H' : ' ',
370 fec16_to_cpu(bdp->cbd_sc),
371 fec32_to_cpu(bdp->cbd_bufaddr),
372 fec16_to_cpu(bdp->cbd_datlen),
373 txq->tx_buf[index].buf_p);
374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 index++;
376 } while (bdp != txq->bd.base);
377 }
378
379 /*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 gfp_t gfp)
386 {
387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 dma_addr_t handle)
392 {
393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 gfp_t gfp)
398 {
399 return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 dma_addr_t handle)
404 {
405 dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409 struct fec_dma_devres {
410 size_t size;
411 void *vaddr;
412 dma_addr_t dma_handle;
413 };
414
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 struct fec_dma_devres *this = res;
418
419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 gfp_t gfp)
424 {
425 struct fec_dma_devres *dr;
426 void *vaddr;
427
428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 if (!dr)
430 return NULL;
431 vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 if (!vaddr) {
433 devres_free(dr);
434 return NULL;
435 }
436 dr->vaddr = vaddr;
437 dr->dma_handle = *handle;
438 dr->size = size;
439 devres_add(dev, dr);
440 return vaddr;
441 }
442
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 /* Only run for packets requiring a checksum. */
452 if (skb->ip_summed != CHECKSUM_PARTIAL)
453 return 0;
454
455 if (unlikely(skb_cow_head(skb, 0)))
456 return -1;
457
458 if (is_ipv4_pkt(skb))
459 ip_hdr(skb)->check = 0;
460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462 return 0;
463 }
464
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 struct page_pool_params pp_params = {
471 .order = 0,
472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 .pool_size = size,
474 .nid = dev_to_node(&fep->pdev->dev),
475 .dev = &fep->pdev->dev,
476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 .offset = FEC_ENET_XDP_HEADROOM,
478 .max_len = FEC_ENET_RX_FRSIZE,
479 };
480 int err;
481
482 rxq->page_pool = page_pool_create(&pp_params);
483 if (IS_ERR(rxq->page_pool)) {
484 err = PTR_ERR(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 if (err < 0)
491 goto err_free_pp;
492
493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 rxq->page_pool);
495 if (err)
496 goto err_unregister_rxq;
497
498 return 0;
499
500 err_unregister_rxq:
501 xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 page_pool_destroy(rxq->page_pool);
504 rxq->page_pool = NULL;
505 return err;
506 }
507
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 struct sk_buff *skb,
511 struct net_device *ndev)
512 {
513 struct fec_enet_private *fep = netdev_priv(ndev);
514 struct bufdesc *bdp = txq->bd.cur;
515 struct bufdesc_ex *ebdp;
516 int nr_frags = skb_shinfo(skb)->nr_frags;
517 int frag, frag_len;
518 unsigned short status;
519 unsigned int estatus = 0;
520 skb_frag_t *this_frag;
521 unsigned int index;
522 void *bufaddr;
523 dma_addr_t addr;
524 int i;
525
526 for (frag = 0; frag < nr_frags; frag++) {
527 this_frag = &skb_shinfo(skb)->frags[frag];
528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 ebdp = (struct bufdesc_ex *)bdp;
530
531 status = fec16_to_cpu(bdp->cbd_sc);
532 status &= ~BD_ENET_TX_STATS;
533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535
536 /* Handle the last BD specially */
537 if (frag == nr_frags - 1) {
538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 if (fep->bufdesc_ex) {
540 estatus |= BD_ENET_TX_INT;
541 if (unlikely(skb_shinfo(skb)->tx_flags &
542 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 estatus |= BD_ENET_TX_TS;
544 }
545 }
546
547 if (fep->bufdesc_ex) {
548 if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 if (skb->ip_summed == CHECKSUM_PARTIAL)
551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553 ebdp->cbd_bdu = 0;
554 ebdp->cbd_esc = cpu_to_fec32(estatus);
555 }
556
557 bufaddr = skb_frag_address(this_frag);
558
559 index = fec_enet_get_bd_index(bdp, &txq->bd);
560 if (((unsigned long) bufaddr) & fep->tx_align ||
561 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 bufaddr = txq->tx_bounce[index];
564
565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 swap_buffer(bufaddr, frag_len);
567 }
568
569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 DMA_TO_DEVICE);
571 if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 if (net_ratelimit())
573 netdev_err(ndev, "Tx DMA memory map failed\n");
574 goto dma_mapping_error;
575 }
576
577 bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 /* Make sure the updates to rest of the descriptor are
580 * performed before transferring ownership.
581 */
582 wmb();
583 bdp->cbd_sc = cpu_to_fec16(status);
584 }
585
586 return bdp;
587 dma_mapping_error:
588 bdp = txq->bd.cur;
589 for (i = 0; i < frag; i++) {
590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 }
594 return ERR_PTR(-ENOMEM);
595 }
596
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 struct sk_buff *skb, struct net_device *ndev)
599 {
600 struct fec_enet_private *fep = netdev_priv(ndev);
601 int nr_frags = skb_shinfo(skb)->nr_frags;
602 struct bufdesc *bdp, *last_bdp;
603 void *bufaddr;
604 dma_addr_t addr;
605 unsigned short status;
606 unsigned short buflen;
607 unsigned int estatus = 0;
608 unsigned int index;
609 int entries_free;
610
611 entries_free = fec_enet_get_free_txdesc_num(txq);
612 if (entries_free < MAX_SKB_FRAGS + 1) {
613 dev_kfree_skb_any(skb);
614 if (net_ratelimit())
615 netdev_err(ndev, "NOT enough BD for SG!\n");
616 return NETDEV_TX_OK;
617 }
618
619 /* Protocol checksum off-load for TCP and UDP. */
620 if (fec_enet_clear_csum(skb, ndev)) {
621 dev_kfree_skb_any(skb);
622 return NETDEV_TX_OK;
623 }
624
625 /* Fill in a Tx ring entry */
626 bdp = txq->bd.cur;
627 last_bdp = bdp;
628 status = fec16_to_cpu(bdp->cbd_sc);
629 status &= ~BD_ENET_TX_STATS;
630
631 /* Set buffer length and buffer pointer */
632 bufaddr = skb->data;
633 buflen = skb_headlen(skb);
634
635 index = fec_enet_get_bd_index(bdp, &txq->bd);
636 if (((unsigned long) bufaddr) & fep->tx_align ||
637 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 memcpy(txq->tx_bounce[index], skb->data, buflen);
639 bufaddr = txq->tx_bounce[index];
640
641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 swap_buffer(bufaddr, buflen);
643 }
644
645 /* Push the data cache so the CPM does not get stale memory data. */
646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 dev_kfree_skb_any(skb);
649 if (net_ratelimit())
650 netdev_err(ndev, "Tx DMA memory map failed\n");
651 return NETDEV_TX_OK;
652 }
653
654 if (nr_frags) {
655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 if (IS_ERR(last_bdp)) {
657 dma_unmap_single(&fep->pdev->dev, addr,
658 buflen, DMA_TO_DEVICE);
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
661 }
662 } else {
663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 if (fep->bufdesc_ex) {
665 estatus = BD_ENET_TX_INT;
666 if (unlikely(skb_shinfo(skb)->tx_flags &
667 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 estatus |= BD_ENET_TX_TS;
669 }
670 }
671 bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674 if (fep->bufdesc_ex) {
675
676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 fep->hwts_tx_en))
680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682 if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685 if (skb->ip_summed == CHECKSUM_PARTIAL)
686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688 ebdp->cbd_bdu = 0;
689 ebdp->cbd_esc = cpu_to_fec32(estatus);
690 }
691
692 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 /* Save skb pointer */
694 txq->tx_buf[index].buf_p = skb;
695
696 /* Make sure the updates to rest of the descriptor are performed before
697 * transferring ownership.
698 */
699 wmb();
700
701 /* Send it on its way. Tell FEC it's ready, interrupt when done,
702 * it's the last BD of the frame, and to put the CRC on the end.
703 */
704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 bdp->cbd_sc = cpu_to_fec16(status);
706
707 /* If this was the last BD in the ring, start at the beginning again. */
708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709
710 skb_tx_timestamp(skb);
711
712 /* Make sure the update to bdp is performed before txq->bd.cur. */
713 wmb();
714 txq->bd.cur = bdp;
715
716 /* Trigger transmission start */
717 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
718 !readl(txq->bd.reg_desc_active) ||
719 !readl(txq->bd.reg_desc_active) ||
720 !readl(txq->bd.reg_desc_active) ||
721 !readl(txq->bd.reg_desc_active))
722 writel(0, txq->bd.reg_desc_active);
723
724 return 0;
725 }
726
727 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)728 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
729 struct net_device *ndev,
730 struct bufdesc *bdp, int index, char *data,
731 int size, bool last_tcp, bool is_last)
732 {
733 struct fec_enet_private *fep = netdev_priv(ndev);
734 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
735 unsigned short status;
736 unsigned int estatus = 0;
737 dma_addr_t addr;
738
739 status = fec16_to_cpu(bdp->cbd_sc);
740 status &= ~BD_ENET_TX_STATS;
741
742 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
743
744 if (((unsigned long) data) & fep->tx_align ||
745 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
746 memcpy(txq->tx_bounce[index], data, size);
747 data = txq->tx_bounce[index];
748
749 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
750 swap_buffer(data, size);
751 }
752
753 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
754 if (dma_mapping_error(&fep->pdev->dev, addr)) {
755 dev_kfree_skb_any(skb);
756 if (net_ratelimit())
757 netdev_err(ndev, "Tx DMA memory map failed\n");
758 return NETDEV_TX_OK;
759 }
760
761 bdp->cbd_datlen = cpu_to_fec16(size);
762 bdp->cbd_bufaddr = cpu_to_fec32(addr);
763
764 if (fep->bufdesc_ex) {
765 if (fep->quirks & FEC_QUIRK_HAS_AVB)
766 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
767 if (skb->ip_summed == CHECKSUM_PARTIAL)
768 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
769 ebdp->cbd_bdu = 0;
770 ebdp->cbd_esc = cpu_to_fec32(estatus);
771 }
772
773 /* Handle the last BD specially */
774 if (last_tcp)
775 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
776 if (is_last) {
777 status |= BD_ENET_TX_INTR;
778 if (fep->bufdesc_ex)
779 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
780 }
781
782 bdp->cbd_sc = cpu_to_fec16(status);
783
784 return 0;
785 }
786
787 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)788 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
789 struct sk_buff *skb, struct net_device *ndev,
790 struct bufdesc *bdp, int index)
791 {
792 struct fec_enet_private *fep = netdev_priv(ndev);
793 int hdr_len = skb_tcp_all_headers(skb);
794 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
795 void *bufaddr;
796 unsigned long dmabuf;
797 unsigned short status;
798 unsigned int estatus = 0;
799
800 status = fec16_to_cpu(bdp->cbd_sc);
801 status &= ~BD_ENET_TX_STATS;
802 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
803
804 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
805 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
806 if (((unsigned long)bufaddr) & fep->tx_align ||
807 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
808 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
809 bufaddr = txq->tx_bounce[index];
810
811 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
812 swap_buffer(bufaddr, hdr_len);
813
814 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
815 hdr_len, DMA_TO_DEVICE);
816 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
817 dev_kfree_skb_any(skb);
818 if (net_ratelimit())
819 netdev_err(ndev, "Tx DMA memory map failed\n");
820 return NETDEV_TX_OK;
821 }
822 }
823
824 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
825 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
826
827 if (fep->bufdesc_ex) {
828 if (fep->quirks & FEC_QUIRK_HAS_AVB)
829 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
830 if (skb->ip_summed == CHECKSUM_PARTIAL)
831 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
832 ebdp->cbd_bdu = 0;
833 ebdp->cbd_esc = cpu_to_fec32(estatus);
834 }
835
836 bdp->cbd_sc = cpu_to_fec16(status);
837
838 return 0;
839 }
840
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)841 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
842 struct sk_buff *skb,
843 struct net_device *ndev)
844 {
845 struct fec_enet_private *fep = netdev_priv(ndev);
846 int hdr_len, total_len, data_left;
847 struct bufdesc *bdp = txq->bd.cur;
848 struct bufdesc *tmp_bdp;
849 struct bufdesc_ex *ebdp;
850 struct tso_t tso;
851 unsigned int index = 0;
852 int ret;
853
854 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
855 dev_kfree_skb_any(skb);
856 if (net_ratelimit())
857 netdev_err(ndev, "NOT enough BD for TSO!\n");
858 return NETDEV_TX_OK;
859 }
860
861 /* Protocol checksum off-load for TCP and UDP. */
862 if (fec_enet_clear_csum(skb, ndev)) {
863 dev_kfree_skb_any(skb);
864 return NETDEV_TX_OK;
865 }
866
867 /* Initialize the TSO handler, and prepare the first payload */
868 hdr_len = tso_start(skb, &tso);
869
870 total_len = skb->len - hdr_len;
871 while (total_len > 0) {
872 char *hdr;
873
874 index = fec_enet_get_bd_index(bdp, &txq->bd);
875 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
876 total_len -= data_left;
877
878 /* prepare packet headers: MAC + IP + TCP */
879 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
880 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
881 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
882 if (ret)
883 goto err_release;
884
885 while (data_left > 0) {
886 int size;
887
888 size = min_t(int, tso.size, data_left);
889 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
890 index = fec_enet_get_bd_index(bdp, &txq->bd);
891 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
892 bdp, index,
893 tso.data, size,
894 size == data_left,
895 total_len == 0);
896 if (ret)
897 goto err_release;
898
899 data_left -= size;
900 tso_build_data(skb, &tso, size);
901 }
902
903 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
904 }
905
906 /* Save skb pointer */
907 txq->tx_buf[index].buf_p = skb;
908
909 skb_tx_timestamp(skb);
910 txq->bd.cur = bdp;
911
912 /* Trigger transmission start */
913 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
914 !readl(txq->bd.reg_desc_active) ||
915 !readl(txq->bd.reg_desc_active) ||
916 !readl(txq->bd.reg_desc_active) ||
917 !readl(txq->bd.reg_desc_active))
918 writel(0, txq->bd.reg_desc_active);
919
920 return 0;
921
922 err_release:
923 /* Release all used data descriptors for TSO */
924 tmp_bdp = txq->bd.cur;
925
926 while (tmp_bdp != bdp) {
927 /* Unmap data buffers */
928 if (tmp_bdp->cbd_bufaddr &&
929 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
930 dma_unmap_single(&fep->pdev->dev,
931 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
932 fec16_to_cpu(tmp_bdp->cbd_datlen),
933 DMA_TO_DEVICE);
934
935 /* Clear standard buffer descriptor fields */
936 tmp_bdp->cbd_sc = 0;
937 tmp_bdp->cbd_datlen = 0;
938 tmp_bdp->cbd_bufaddr = 0;
939
940 /* Handle extended descriptor if enabled */
941 if (fep->bufdesc_ex) {
942 ebdp = (struct bufdesc_ex *)tmp_bdp;
943 ebdp->cbd_esc = 0;
944 }
945
946 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
947 }
948
949 dev_kfree_skb_any(skb);
950
951 return ret;
952 }
953
954 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)955 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
956 {
957 struct fec_enet_private *fep = netdev_priv(ndev);
958 int entries_free;
959 unsigned short queue;
960 struct fec_enet_priv_tx_q *txq;
961 struct netdev_queue *nq;
962 int ret;
963
964 queue = skb_get_queue_mapping(skb);
965 txq = fep->tx_queue[queue];
966 nq = netdev_get_tx_queue(ndev, queue);
967
968 if (skb_is_gso(skb))
969 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
970 else
971 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
972 if (ret)
973 return ret;
974
975 entries_free = fec_enet_get_free_txdesc_num(txq);
976 if (entries_free <= txq->tx_stop_threshold)
977 netif_tx_stop_queue(nq);
978
979 return NETDEV_TX_OK;
980 }
981
982 /* Init RX & TX buffer descriptors
983 */
fec_enet_bd_init(struct net_device * dev)984 static void fec_enet_bd_init(struct net_device *dev)
985 {
986 struct fec_enet_private *fep = netdev_priv(dev);
987 struct fec_enet_priv_tx_q *txq;
988 struct fec_enet_priv_rx_q *rxq;
989 struct bufdesc *bdp;
990 unsigned int i;
991 unsigned int q;
992
993 for (q = 0; q < fep->num_rx_queues; q++) {
994 /* Initialize the receive buffer descriptors. */
995 rxq = fep->rx_queue[q];
996 bdp = rxq->bd.base;
997
998 for (i = 0; i < rxq->bd.ring_size; i++) {
999
1000 /* Initialize the BD for every fragment in the page. */
1001 if (bdp->cbd_bufaddr)
1002 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1003 else
1004 bdp->cbd_sc = cpu_to_fec16(0);
1005 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1006 }
1007
1008 /* Set the last buffer to wrap */
1009 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1010 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1011
1012 rxq->bd.cur = rxq->bd.base;
1013 }
1014
1015 for (q = 0; q < fep->num_tx_queues; q++) {
1016 /* ...and the same for transmit */
1017 txq = fep->tx_queue[q];
1018 bdp = txq->bd.base;
1019 txq->bd.cur = bdp;
1020
1021 for (i = 0; i < txq->bd.ring_size; i++) {
1022 /* Initialize the BD for every fragment in the page. */
1023 bdp->cbd_sc = cpu_to_fec16(0);
1024 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1025 if (bdp->cbd_bufaddr &&
1026 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1027 dma_unmap_single(&fep->pdev->dev,
1028 fec32_to_cpu(bdp->cbd_bufaddr),
1029 fec16_to_cpu(bdp->cbd_datlen),
1030 DMA_TO_DEVICE);
1031 if (txq->tx_buf[i].buf_p)
1032 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1033 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1034 if (bdp->cbd_bufaddr)
1035 dma_unmap_single(&fep->pdev->dev,
1036 fec32_to_cpu(bdp->cbd_bufaddr),
1037 fec16_to_cpu(bdp->cbd_datlen),
1038 DMA_TO_DEVICE);
1039
1040 if (txq->tx_buf[i].buf_p)
1041 xdp_return_frame(txq->tx_buf[i].buf_p);
1042 } else {
1043 struct page *page = txq->tx_buf[i].buf_p;
1044
1045 if (page)
1046 page_pool_put_page(page->pp, page, 0, false);
1047 }
1048
1049 txq->tx_buf[i].buf_p = NULL;
1050 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1051 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1052 bdp->cbd_bufaddr = cpu_to_fec32(0);
1053 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1054 }
1055
1056 /* Set the last buffer to wrap */
1057 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1058 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1059 txq->dirty_tx = bdp;
1060 }
1061 }
1062
fec_enet_active_rxring(struct net_device * ndev)1063 static void fec_enet_active_rxring(struct net_device *ndev)
1064 {
1065 struct fec_enet_private *fep = netdev_priv(ndev);
1066 int i;
1067
1068 for (i = 0; i < fep->num_rx_queues; i++)
1069 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1070 }
1071
fec_enet_enable_ring(struct net_device * ndev)1072 static void fec_enet_enable_ring(struct net_device *ndev)
1073 {
1074 struct fec_enet_private *fep = netdev_priv(ndev);
1075 struct fec_enet_priv_tx_q *txq;
1076 struct fec_enet_priv_rx_q *rxq;
1077 int i;
1078
1079 for (i = 0; i < fep->num_rx_queues; i++) {
1080 rxq = fep->rx_queue[i];
1081 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1082 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1083
1084 /* enable DMA1/2 */
1085 if (i)
1086 writel(RCMR_MATCHEN | RCMR_CMP(i),
1087 fep->hwp + FEC_RCMR(i));
1088 }
1089
1090 for (i = 0; i < fep->num_tx_queues; i++) {
1091 txq = fep->tx_queue[i];
1092 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1093
1094 /* enable DMA1/2 */
1095 if (i)
1096 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1097 fep->hwp + FEC_DMA_CFG(i));
1098 }
1099 }
1100
1101 /* Whack a reset. We should wait for this.
1102 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1103 * instead of reset MAC itself.
1104 */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1105 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1106 {
1107 u32 val;
1108
1109 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1111 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1112 writel(0, fep->hwp + FEC_ECNTRL);
1113 } else {
1114 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1115 udelay(10);
1116 }
1117 } else {
1118 val = readl(fep->hwp + FEC_ECNTRL);
1119 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 writel(val, fep->hwp + FEC_ECNTRL);
1121 }
1122 }
1123
1124 /*
1125 * This function is called to start or restart the FEC during a link
1126 * change, transmit timeout, or to reconfigure the FEC. The network
1127 * packet processing for this device must be stopped before this call.
1128 */
1129 static void
fec_restart(struct net_device * ndev)1130 fec_restart(struct net_device *ndev)
1131 {
1132 struct fec_enet_private *fep = netdev_priv(ndev);
1133 u32 temp_mac[2];
1134 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1135 u32 ecntl = FEC_ECR_ETHEREN;
1136
1137 if (fep->bufdesc_ex)
1138 fec_ptp_save_state(fep);
1139
1140 fec_ctrl_reset(fep, false);
1141
1142 /*
1143 * enet-mac reset will reset mac address registers too,
1144 * so need to reconfigure it.
1145 */
1146 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1147 writel((__force u32)cpu_to_be32(temp_mac[0]),
1148 fep->hwp + FEC_ADDR_LOW);
1149 writel((__force u32)cpu_to_be32(temp_mac[1]),
1150 fep->hwp + FEC_ADDR_HIGH);
1151
1152 /* Clear any outstanding interrupt, except MDIO. */
1153 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1154
1155 fec_enet_bd_init(ndev);
1156
1157 fec_enet_enable_ring(ndev);
1158
1159 /* Enable MII mode */
1160 if (fep->full_duplex == DUPLEX_FULL) {
1161 /* FD enable */
1162 writel(0x04, fep->hwp + FEC_X_CNTRL);
1163 } else {
1164 /* No Rcv on Xmit */
1165 rcntl |= 0x02;
1166 writel(0x0, fep->hwp + FEC_X_CNTRL);
1167 }
1168
1169 /* Set MII speed */
1170 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1171
1172 #if !defined(CONFIG_M5272)
1173 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1174 u32 val = readl(fep->hwp + FEC_RACC);
1175
1176 /* align IP header */
1177 val |= FEC_RACC_SHIFT16;
1178 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1179 /* set RX checksum */
1180 val |= FEC_RACC_OPTIONS;
1181 else
1182 val &= ~FEC_RACC_OPTIONS;
1183 writel(val, fep->hwp + FEC_RACC);
1184 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1185 }
1186 #endif
1187
1188 /*
1189 * The phy interface and speed need to get configured
1190 * differently on enet-mac.
1191 */
1192 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1193 /* Enable flow control and length check */
1194 rcntl |= 0x40000000 | 0x00000020;
1195
1196 /* RGMII, RMII or MII */
1197 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1198 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1199 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1200 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1201 rcntl |= (1 << 6);
1202 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1203 rcntl |= FEC_RCR_RMII;
1204 else
1205 rcntl &= ~FEC_RCR_RMII;
1206
1207 /* 1G, 100M or 10M */
1208 if (ndev->phydev) {
1209 if (ndev->phydev->speed == SPEED_1000)
1210 ecntl |= (1 << 5);
1211 else if (ndev->phydev->speed == SPEED_100)
1212 rcntl &= ~FEC_RCR_10BASET;
1213 else
1214 rcntl |= FEC_RCR_10BASET;
1215 }
1216 } else {
1217 #ifdef FEC_MIIGSK_ENR
1218 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1219 u32 cfgr;
1220 /* disable the gasket and wait */
1221 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1222 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1223 udelay(1);
1224
1225 /*
1226 * configure the gasket:
1227 * RMII, 50 MHz, no loopback, no echo
1228 * MII, 25 MHz, no loopback, no echo
1229 */
1230 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1231 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1232 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1233 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1234 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1235
1236 /* re-enable the gasket */
1237 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1238 }
1239 #endif
1240 }
1241
1242 #if !defined(CONFIG_M5272)
1243 /* enable pause frame*/
1244 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1245 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1246 ndev->phydev && ndev->phydev->pause)) {
1247 rcntl |= FEC_RCR_FLOWCTL;
1248
1249 /* set FIFO threshold parameter to reduce overrun */
1250 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1251 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1252 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1253 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1254
1255 /* OPD */
1256 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1257 } else {
1258 rcntl &= ~FEC_RCR_FLOWCTL;
1259 }
1260 #endif /* !defined(CONFIG_M5272) */
1261
1262 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1263
1264 /* Setup multicast filter. */
1265 set_multicast_list(ndev);
1266 #ifndef CONFIG_M5272
1267 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1268 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1269 #endif
1270
1271 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1272 /* enable ENET endian swap */
1273 ecntl |= FEC_ECR_BYTESWP;
1274 /* enable ENET store and forward mode */
1275 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1276 }
1277
1278 if (fep->bufdesc_ex)
1279 ecntl |= FEC_ECR_EN1588;
1280
1281 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1282 fep->rgmii_txc_dly)
1283 ecntl |= FEC_ENET_TXC_DLY;
1284 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1285 fep->rgmii_rxc_dly)
1286 ecntl |= FEC_ENET_RXC_DLY;
1287
1288 #ifndef CONFIG_M5272
1289 /* Enable the MIB statistic event counters */
1290 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1291 #endif
1292
1293 /* And last, enable the transmit and receive processing */
1294 writel(ecntl, fep->hwp + FEC_ECNTRL);
1295 fec_enet_active_rxring(ndev);
1296
1297 if (fep->bufdesc_ex) {
1298 fec_ptp_start_cyclecounter(ndev);
1299 fec_ptp_restore_state(fep);
1300 }
1301
1302 /* Enable interrupts we wish to service */
1303 if (fep->link)
1304 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1305 else
1306 writel(0, fep->hwp + FEC_IMASK);
1307
1308 /* Init the interrupt coalescing */
1309 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1310 fec_enet_itr_coal_set(ndev);
1311 }
1312
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1313 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1314 {
1315 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1316 of_machine_is_compatible("fsl,imx8qxp") ||
1317 of_machine_is_compatible("fsl,imx8dxl")))
1318 return 0;
1319
1320 return imx_scu_get_handle(&fep->ipc_handle);
1321 }
1322
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1323 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1324 {
1325 struct device_node *np = fep->pdev->dev.of_node;
1326 u32 rsrc_id, val;
1327 int idx;
1328
1329 if (!np || !fep->ipc_handle)
1330 return;
1331
1332 idx = of_alias_get_id(np, "ethernet");
1333 if (idx < 0)
1334 idx = 0;
1335 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1336
1337 val = enabled ? 1 : 0;
1338 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1339 }
1340
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1341 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1342 {
1343 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1344 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1345
1346 if (stop_gpr->gpr) {
1347 if (enabled)
1348 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1349 BIT(stop_gpr->bit),
1350 BIT(stop_gpr->bit));
1351 else
1352 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1353 BIT(stop_gpr->bit), 0);
1354 } else if (pdata && pdata->sleep_mode_enable) {
1355 pdata->sleep_mode_enable(enabled);
1356 } else {
1357 fec_enet_ipg_stop_set(fep, enabled);
1358 }
1359 }
1360
fec_irqs_disable(struct net_device * ndev)1361 static void fec_irqs_disable(struct net_device *ndev)
1362 {
1363 struct fec_enet_private *fep = netdev_priv(ndev);
1364
1365 writel(0, fep->hwp + FEC_IMASK);
1366 }
1367
fec_irqs_disable_except_wakeup(struct net_device * ndev)1368 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1369 {
1370 struct fec_enet_private *fep = netdev_priv(ndev);
1371
1372 writel(0, fep->hwp + FEC_IMASK);
1373 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1374 }
1375
1376 static void
fec_stop(struct net_device * ndev)1377 fec_stop(struct net_device *ndev)
1378 {
1379 struct fec_enet_private *fep = netdev_priv(ndev);
1380 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1381 u32 val;
1382
1383 /* We cannot expect a graceful transmit stop without link !!! */
1384 if (fep->link) {
1385 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1386 udelay(10);
1387 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1388 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1389 }
1390
1391 if (fep->bufdesc_ex)
1392 fec_ptp_save_state(fep);
1393
1394 fec_ctrl_reset(fep, true);
1395 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1396 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1397
1398 /* We have to keep ENET enabled to have MII interrupt stay working */
1399 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1400 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1401 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1402 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1403 }
1404
1405 if (fep->bufdesc_ex) {
1406 val = readl(fep->hwp + FEC_ECNTRL);
1407 val |= FEC_ECR_EN1588;
1408 writel(val, fep->hwp + FEC_ECNTRL);
1409
1410 fec_ptp_start_cyclecounter(ndev);
1411 fec_ptp_restore_state(fep);
1412 }
1413 }
1414
1415 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1416 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1417 {
1418 struct fec_enet_private *fep = netdev_priv(ndev);
1419
1420 fec_dump(ndev);
1421
1422 ndev->stats.tx_errors++;
1423
1424 schedule_work(&fep->tx_timeout_work);
1425 }
1426
fec_enet_timeout_work(struct work_struct * work)1427 static void fec_enet_timeout_work(struct work_struct *work)
1428 {
1429 struct fec_enet_private *fep =
1430 container_of(work, struct fec_enet_private, tx_timeout_work);
1431 struct net_device *ndev = fep->netdev;
1432
1433 rtnl_lock();
1434 if (netif_device_present(ndev) || netif_running(ndev)) {
1435 napi_disable(&fep->napi);
1436 netif_tx_lock_bh(ndev);
1437 fec_restart(ndev);
1438 netif_tx_wake_all_queues(ndev);
1439 netif_tx_unlock_bh(ndev);
1440 napi_enable(&fep->napi);
1441 }
1442 rtnl_unlock();
1443 }
1444
1445 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1446 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1447 struct skb_shared_hwtstamps *hwtstamps)
1448 {
1449 unsigned long flags;
1450 u64 ns;
1451
1452 spin_lock_irqsave(&fep->tmreg_lock, flags);
1453 ns = timecounter_cyc2time(&fep->tc, ts);
1454 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1455
1456 memset(hwtstamps, 0, sizeof(*hwtstamps));
1457 hwtstamps->hwtstamp = ns_to_ktime(ns);
1458 }
1459
1460 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1461 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1462 {
1463 struct fec_enet_private *fep;
1464 struct xdp_frame *xdpf;
1465 struct bufdesc *bdp;
1466 unsigned short status;
1467 struct sk_buff *skb;
1468 struct fec_enet_priv_tx_q *txq;
1469 struct netdev_queue *nq;
1470 int index = 0;
1471 int entries_free;
1472 struct page *page;
1473 int frame_len;
1474
1475 fep = netdev_priv(ndev);
1476
1477 txq = fep->tx_queue[queue_id];
1478 /* get next bdp of dirty_tx */
1479 nq = netdev_get_tx_queue(ndev, queue_id);
1480 bdp = txq->dirty_tx;
1481
1482 /* get next bdp of dirty_tx */
1483 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1484
1485 while (bdp != READ_ONCE(txq->bd.cur)) {
1486 /* Order the load of bd.cur and cbd_sc */
1487 rmb();
1488 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1489 if (status & BD_ENET_TX_READY)
1490 break;
1491
1492 index = fec_enet_get_bd_index(bdp, &txq->bd);
1493
1494 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1495 skb = txq->tx_buf[index].buf_p;
1496 if (bdp->cbd_bufaddr &&
1497 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1498 dma_unmap_single(&fep->pdev->dev,
1499 fec32_to_cpu(bdp->cbd_bufaddr),
1500 fec16_to_cpu(bdp->cbd_datlen),
1501 DMA_TO_DEVICE);
1502 bdp->cbd_bufaddr = cpu_to_fec32(0);
1503 if (!skb)
1504 goto tx_buf_done;
1505 } else {
1506 /* Tx processing cannot call any XDP (or page pool) APIs if
1507 * the "budget" is 0. Because NAPI is called with budget of
1508 * 0 (such as netpoll) indicates we may be in an IRQ context,
1509 * however, we can't use the page pool from IRQ context.
1510 */
1511 if (unlikely(!budget))
1512 break;
1513
1514 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1515 xdpf = txq->tx_buf[index].buf_p;
1516 if (bdp->cbd_bufaddr)
1517 dma_unmap_single(&fep->pdev->dev,
1518 fec32_to_cpu(bdp->cbd_bufaddr),
1519 fec16_to_cpu(bdp->cbd_datlen),
1520 DMA_TO_DEVICE);
1521 } else {
1522 page = txq->tx_buf[index].buf_p;
1523 }
1524
1525 bdp->cbd_bufaddr = cpu_to_fec32(0);
1526 if (unlikely(!txq->tx_buf[index].buf_p)) {
1527 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 goto tx_buf_done;
1529 }
1530
1531 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1532 }
1533
1534 /* Check for errors. */
1535 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1536 BD_ENET_TX_RL | BD_ENET_TX_UN |
1537 BD_ENET_TX_CSL)) {
1538 ndev->stats.tx_errors++;
1539 if (status & BD_ENET_TX_HB) /* No heartbeat */
1540 ndev->stats.tx_heartbeat_errors++;
1541 if (status & BD_ENET_TX_LC) /* Late collision */
1542 ndev->stats.tx_window_errors++;
1543 if (status & BD_ENET_TX_RL) /* Retrans limit */
1544 ndev->stats.tx_aborted_errors++;
1545 if (status & BD_ENET_TX_UN) /* Underrun */
1546 ndev->stats.tx_fifo_errors++;
1547 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1548 ndev->stats.tx_carrier_errors++;
1549 } else {
1550 ndev->stats.tx_packets++;
1551
1552 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1553 ndev->stats.tx_bytes += skb->len;
1554 else
1555 ndev->stats.tx_bytes += frame_len;
1556 }
1557
1558 /* Deferred means some collisions occurred during transmit,
1559 * but we eventually sent the packet OK.
1560 */
1561 if (status & BD_ENET_TX_DEF)
1562 ndev->stats.collisions++;
1563
1564 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1565 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1566 * are to time stamp the packet, so we still need to check time
1567 * stamping enabled flag.
1568 */
1569 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1570 fep->hwts_tx_en) && fep->bufdesc_ex) {
1571 struct skb_shared_hwtstamps shhwtstamps;
1572 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573
1574 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1575 skb_tstamp_tx(skb, &shhwtstamps);
1576 }
1577
1578 /* Free the sk buffer associated with this last transmit */
1579 napi_consume_skb(skb, budget);
1580 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1581 xdp_return_frame_rx_napi(xdpf);
1582 } else { /* recycle pages of XDP_TX frames */
1583 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1584 page_pool_put_page(page->pp, page, 0, true);
1585 }
1586
1587 txq->tx_buf[index].buf_p = NULL;
1588 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1589 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1590
1591 tx_buf_done:
1592 /* Make sure the update to bdp and tx_buf are performed
1593 * before dirty_tx
1594 */
1595 wmb();
1596 txq->dirty_tx = bdp;
1597
1598 /* Update pointer to next buffer descriptor to be transmitted */
1599 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1600
1601 /* Since we have freed up a buffer, the ring is no longer full
1602 */
1603 if (netif_tx_queue_stopped(nq)) {
1604 entries_free = fec_enet_get_free_txdesc_num(txq);
1605 if (entries_free >= txq->tx_wake_threshold)
1606 netif_tx_wake_queue(nq);
1607 }
1608 }
1609
1610 /* ERR006358: Keep the transmitter going */
1611 if (bdp != txq->bd.cur &&
1612 readl(txq->bd.reg_desc_active) == 0)
1613 writel(0, txq->bd.reg_desc_active);
1614 }
1615
fec_enet_tx(struct net_device * ndev,int budget)1616 static void fec_enet_tx(struct net_device *ndev, int budget)
1617 {
1618 struct fec_enet_private *fep = netdev_priv(ndev);
1619 int i;
1620
1621 /* Make sure that AVB queues are processed first. */
1622 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1623 fec_enet_tx_queue(ndev, i, budget);
1624 }
1625
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1626 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1627 struct bufdesc *bdp, int index)
1628 {
1629 struct page *new_page;
1630 dma_addr_t phys_addr;
1631
1632 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1633 if (unlikely(!new_page))
1634 return -ENOMEM;
1635
1636 rxq->rx_skb_info[index].page = new_page;
1637 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1638 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1639 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1640
1641 return 0;
1642 }
1643
1644 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1645 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1646 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1647 {
1648 unsigned int sync, len = xdp->data_end - xdp->data;
1649 u32 ret = FEC_ENET_XDP_PASS;
1650 struct page *page;
1651 int err;
1652 u32 act;
1653
1654 act = bpf_prog_run_xdp(prog, xdp);
1655
1656 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1657 * max len CPU touch
1658 */
1659 sync = xdp->data_end - xdp->data;
1660 sync = max(sync, len);
1661
1662 switch (act) {
1663 case XDP_PASS:
1664 rxq->stats[RX_XDP_PASS]++;
1665 ret = FEC_ENET_XDP_PASS;
1666 break;
1667
1668 case XDP_REDIRECT:
1669 rxq->stats[RX_XDP_REDIRECT]++;
1670 err = xdp_do_redirect(fep->netdev, xdp, prog);
1671 if (unlikely(err))
1672 goto xdp_err;
1673
1674 ret = FEC_ENET_XDP_REDIR;
1675 break;
1676
1677 case XDP_TX:
1678 rxq->stats[RX_XDP_TX]++;
1679 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1680 if (unlikely(err)) {
1681 rxq->stats[RX_XDP_TX_ERRORS]++;
1682 goto xdp_err;
1683 }
1684
1685 ret = FEC_ENET_XDP_TX;
1686 break;
1687
1688 default:
1689 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1690 fallthrough;
1691
1692 case XDP_ABORTED:
1693 fallthrough; /* handle aborts by dropping packet */
1694
1695 case XDP_DROP:
1696 rxq->stats[RX_XDP_DROP]++;
1697 xdp_err:
1698 ret = FEC_ENET_XDP_CONSUMED;
1699 page = virt_to_head_page(xdp->data);
1700 page_pool_put_page(rxq->page_pool, page, sync, true);
1701 if (act != XDP_DROP)
1702 trace_xdp_exception(fep->netdev, prog, act);
1703 break;
1704 }
1705
1706 return ret;
1707 }
1708
1709 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1710 * When we update through the ring, if the next incoming buffer has
1711 * not been given to the system, we just set the empty indicator,
1712 * effectively tossing the packet.
1713 */
1714 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1715 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1716 {
1717 struct fec_enet_private *fep = netdev_priv(ndev);
1718 struct fec_enet_priv_rx_q *rxq;
1719 struct bufdesc *bdp;
1720 unsigned short status;
1721 struct sk_buff *skb;
1722 ushort pkt_len;
1723 __u8 *data;
1724 int pkt_received = 0;
1725 struct bufdesc_ex *ebdp = NULL;
1726 bool vlan_packet_rcvd = false;
1727 u16 vlan_tag;
1728 int index = 0;
1729 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1730 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1731 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1732 u32 data_start = FEC_ENET_XDP_HEADROOM;
1733 int cpu = smp_processor_id();
1734 struct xdp_buff xdp;
1735 struct page *page;
1736 __fec32 cbd_bufaddr;
1737 u32 sub_len = 4;
1738
1739 #if !defined(CONFIG_M5272)
1740 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1741 * FEC_RACC_SHIFT16 is set by default in the probe function.
1742 */
1743 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1744 data_start += 2;
1745 sub_len += 2;
1746 }
1747 #endif
1748
1749 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1750 /*
1751 * Hacky flush of all caches instead of using the DMA API for the TSO
1752 * headers.
1753 */
1754 flush_cache_all();
1755 #endif
1756 rxq = fep->rx_queue[queue_id];
1757
1758 /* First, grab all of the stats for the incoming packet.
1759 * These get messed up if we get called due to a busy condition.
1760 */
1761 bdp = rxq->bd.cur;
1762 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1763
1764 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1765
1766 if (pkt_received >= budget)
1767 break;
1768 pkt_received++;
1769
1770 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1771
1772 /* Check for errors. */
1773 status ^= BD_ENET_RX_LAST;
1774 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1775 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1776 BD_ENET_RX_CL)) {
1777 ndev->stats.rx_errors++;
1778 if (status & BD_ENET_RX_OV) {
1779 /* FIFO overrun */
1780 ndev->stats.rx_fifo_errors++;
1781 goto rx_processing_done;
1782 }
1783 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1784 | BD_ENET_RX_LAST)) {
1785 /* Frame too long or too short. */
1786 ndev->stats.rx_length_errors++;
1787 if (status & BD_ENET_RX_LAST)
1788 netdev_err(ndev, "rcv is not +last\n");
1789 }
1790 if (status & BD_ENET_RX_CR) /* CRC Error */
1791 ndev->stats.rx_crc_errors++;
1792 /* Report late collisions as a frame error. */
1793 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1794 ndev->stats.rx_frame_errors++;
1795 goto rx_processing_done;
1796 }
1797
1798 /* Process the incoming frame. */
1799 ndev->stats.rx_packets++;
1800 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1801 ndev->stats.rx_bytes += pkt_len;
1802
1803 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1804 page = rxq->rx_skb_info[index].page;
1805 cbd_bufaddr = bdp->cbd_bufaddr;
1806 if (fec_enet_update_cbd(rxq, bdp, index)) {
1807 ndev->stats.rx_dropped++;
1808 goto rx_processing_done;
1809 }
1810
1811 dma_sync_single_for_cpu(&fep->pdev->dev,
1812 fec32_to_cpu(cbd_bufaddr),
1813 pkt_len,
1814 DMA_FROM_DEVICE);
1815 prefetch(page_address(page));
1816
1817 if (xdp_prog) {
1818 xdp_buff_clear_frags_flag(&xdp);
1819 /* subtract 16bit shift and FCS */
1820 xdp_prepare_buff(&xdp, page_address(page),
1821 data_start, pkt_len - sub_len, false);
1822 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1823 xdp_result |= ret;
1824 if (ret != FEC_ENET_XDP_PASS)
1825 goto rx_processing_done;
1826 }
1827
1828 /* The packet length includes FCS, but we don't want to
1829 * include that when passing upstream as it messes up
1830 * bridging applications.
1831 */
1832 skb = build_skb(page_address(page), PAGE_SIZE);
1833 if (unlikely(!skb)) {
1834 page_pool_recycle_direct(rxq->page_pool, page);
1835 ndev->stats.rx_dropped++;
1836
1837 netdev_err_once(ndev, "build_skb failed!\n");
1838 goto rx_processing_done;
1839 }
1840
1841 skb_reserve(skb, data_start);
1842 skb_put(skb, pkt_len - sub_len);
1843 skb_mark_for_recycle(skb);
1844
1845 if (unlikely(need_swap)) {
1846 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1847 swap_buffer(data, pkt_len);
1848 }
1849 data = skb->data;
1850
1851 /* Extract the enhanced buffer descriptor */
1852 ebdp = NULL;
1853 if (fep->bufdesc_ex)
1854 ebdp = (struct bufdesc_ex *)bdp;
1855
1856 /* If this is a VLAN packet remove the VLAN Tag */
1857 vlan_packet_rcvd = false;
1858 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1859 fep->bufdesc_ex &&
1860 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1861 /* Push and remove the vlan tag */
1862 struct vlan_hdr *vlan_header =
1863 (struct vlan_hdr *) (data + ETH_HLEN);
1864 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1865
1866 vlan_packet_rcvd = true;
1867
1868 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1869 skb_pull(skb, VLAN_HLEN);
1870 }
1871
1872 skb->protocol = eth_type_trans(skb, ndev);
1873
1874 /* Get receive timestamp from the skb */
1875 if (fep->hwts_rx_en && fep->bufdesc_ex)
1876 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1877 skb_hwtstamps(skb));
1878
1879 if (fep->bufdesc_ex &&
1880 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1881 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1882 /* don't check it */
1883 skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 } else {
1885 skb_checksum_none_assert(skb);
1886 }
1887 }
1888
1889 /* Handle received VLAN packets */
1890 if (vlan_packet_rcvd)
1891 __vlan_hwaccel_put_tag(skb,
1892 htons(ETH_P_8021Q),
1893 vlan_tag);
1894
1895 skb_record_rx_queue(skb, queue_id);
1896 napi_gro_receive(&fep->napi, skb);
1897
1898 rx_processing_done:
1899 /* Clear the status flags for this buffer */
1900 status &= ~BD_ENET_RX_STATS;
1901
1902 /* Mark the buffer empty */
1903 status |= BD_ENET_RX_EMPTY;
1904
1905 if (fep->bufdesc_ex) {
1906 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1907
1908 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1909 ebdp->cbd_prot = 0;
1910 ebdp->cbd_bdu = 0;
1911 }
1912 /* Make sure the updates to rest of the descriptor are
1913 * performed before transferring ownership.
1914 */
1915 wmb();
1916 bdp->cbd_sc = cpu_to_fec16(status);
1917
1918 /* Update BD pointer to next entry */
1919 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1920
1921 /* Doing this here will keep the FEC running while we process
1922 * incoming frames. On a heavily loaded network, we should be
1923 * able to keep up at the expense of system resources.
1924 */
1925 writel(0, rxq->bd.reg_desc_active);
1926 }
1927 rxq->bd.cur = bdp;
1928
1929 if (xdp_result & FEC_ENET_XDP_REDIR)
1930 xdp_do_flush();
1931
1932 return pkt_received;
1933 }
1934
fec_enet_rx(struct net_device * ndev,int budget)1935 static int fec_enet_rx(struct net_device *ndev, int budget)
1936 {
1937 struct fec_enet_private *fep = netdev_priv(ndev);
1938 int i, done = 0;
1939
1940 /* Make sure that AVB queues are processed first. */
1941 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1942 done += fec_enet_rx_queue(ndev, budget - done, i);
1943
1944 return done;
1945 }
1946
fec_enet_collect_events(struct fec_enet_private * fep)1947 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1948 {
1949 uint int_events;
1950
1951 int_events = readl(fep->hwp + FEC_IEVENT);
1952
1953 /* Don't clear MDIO events, we poll for those */
1954 int_events &= ~FEC_ENET_MII;
1955
1956 writel(int_events, fep->hwp + FEC_IEVENT);
1957
1958 return int_events != 0;
1959 }
1960
1961 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1962 fec_enet_interrupt(int irq, void *dev_id)
1963 {
1964 struct net_device *ndev = dev_id;
1965 struct fec_enet_private *fep = netdev_priv(ndev);
1966 irqreturn_t ret = IRQ_NONE;
1967
1968 if (fec_enet_collect_events(fep) && fep->link) {
1969 ret = IRQ_HANDLED;
1970
1971 if (napi_schedule_prep(&fep->napi)) {
1972 /* Disable interrupts */
1973 writel(0, fep->hwp + FEC_IMASK);
1974 __napi_schedule(&fep->napi);
1975 }
1976 }
1977
1978 return ret;
1979 }
1980
fec_enet_rx_napi(struct napi_struct * napi,int budget)1981 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1982 {
1983 struct net_device *ndev = napi->dev;
1984 struct fec_enet_private *fep = netdev_priv(ndev);
1985 int done = 0;
1986
1987 do {
1988 done += fec_enet_rx(ndev, budget - done);
1989 fec_enet_tx(ndev, budget);
1990 } while ((done < budget) && fec_enet_collect_events(fep));
1991
1992 if (done < budget) {
1993 napi_complete_done(napi, done);
1994 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1995 }
1996
1997 return done;
1998 }
1999
2000 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2001 static int fec_get_mac(struct net_device *ndev)
2002 {
2003 struct fec_enet_private *fep = netdev_priv(ndev);
2004 unsigned char *iap, tmpaddr[ETH_ALEN];
2005 int ret;
2006
2007 /*
2008 * try to get mac address in following order:
2009 *
2010 * 1) module parameter via kernel command line in form
2011 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2012 */
2013 iap = macaddr;
2014
2015 /*
2016 * 2) from device tree data
2017 */
2018 if (!is_valid_ether_addr(iap)) {
2019 struct device_node *np = fep->pdev->dev.of_node;
2020 if (np) {
2021 ret = of_get_mac_address(np, tmpaddr);
2022 if (!ret)
2023 iap = tmpaddr;
2024 else if (ret == -EPROBE_DEFER)
2025 return ret;
2026 }
2027 }
2028
2029 /*
2030 * 3) from flash or fuse (via platform data)
2031 */
2032 if (!is_valid_ether_addr(iap)) {
2033 #ifdef CONFIG_M5272
2034 if (FEC_FLASHMAC)
2035 iap = (unsigned char *)FEC_FLASHMAC;
2036 #else
2037 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2038
2039 if (pdata)
2040 iap = (unsigned char *)&pdata->mac;
2041 #endif
2042 }
2043
2044 /*
2045 * 4) FEC mac registers set by bootloader
2046 */
2047 if (!is_valid_ether_addr(iap)) {
2048 *((__be32 *) &tmpaddr[0]) =
2049 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2050 *((__be16 *) &tmpaddr[4]) =
2051 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2052 iap = &tmpaddr[0];
2053 }
2054
2055 /*
2056 * 5) random mac address
2057 */
2058 if (!is_valid_ether_addr(iap)) {
2059 /* Report it and use a random ethernet address instead */
2060 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2061 eth_hw_addr_random(ndev);
2062 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2063 ndev->dev_addr);
2064 return 0;
2065 }
2066
2067 /* Adjust MAC if using macaddr */
2068 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2069
2070 return 0;
2071 }
2072
2073 /* ------------------------------------------------------------------------- */
2074
2075 /*
2076 * Phy section
2077 */
2078
2079 /* LPI Sleep Ts count base on tx clk (clk_ref).
2080 * The lpi sleep cnt value = X us / (cycle_ns).
2081 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2082 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2083 {
2084 struct fec_enet_private *fep = netdev_priv(ndev);
2085
2086 return us * (fep->clk_ref_rate / 1000) / 1000;
2087 }
2088
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2089 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2090 bool enable)
2091 {
2092 struct fec_enet_private *fep = netdev_priv(ndev);
2093 unsigned int sleep_cycle, wake_cycle;
2094
2095 if (enable) {
2096 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2097 wake_cycle = sleep_cycle;
2098 } else {
2099 sleep_cycle = 0;
2100 wake_cycle = 0;
2101 }
2102
2103 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2104 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2105
2106 return 0;
2107 }
2108
fec_enet_adjust_link(struct net_device * ndev)2109 static void fec_enet_adjust_link(struct net_device *ndev)
2110 {
2111 struct fec_enet_private *fep = netdev_priv(ndev);
2112 struct phy_device *phy_dev = ndev->phydev;
2113 int status_change = 0;
2114
2115 /*
2116 * If the netdev is down, or is going down, we're not interested
2117 * in link state events, so just mark our idea of the link as down
2118 * and ignore the event.
2119 */
2120 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2121 fep->link = 0;
2122 } else if (phy_dev->link) {
2123 if (!fep->link) {
2124 fep->link = phy_dev->link;
2125 status_change = 1;
2126 }
2127
2128 if (fep->full_duplex != phy_dev->duplex) {
2129 fep->full_duplex = phy_dev->duplex;
2130 status_change = 1;
2131 }
2132
2133 if (phy_dev->speed != fep->speed) {
2134 fep->speed = phy_dev->speed;
2135 status_change = 1;
2136 }
2137
2138 /* if any of the above changed restart the FEC */
2139 if (status_change) {
2140 netif_stop_queue(ndev);
2141 napi_disable(&fep->napi);
2142 netif_tx_lock_bh(ndev);
2143 fec_restart(ndev);
2144 netif_tx_wake_all_queues(ndev);
2145 netif_tx_unlock_bh(ndev);
2146 napi_enable(&fep->napi);
2147 }
2148 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2149 fec_enet_eee_mode_set(ndev,
2150 phy_dev->eee_cfg.tx_lpi_timer,
2151 phy_dev->enable_tx_lpi);
2152 } else {
2153 if (fep->link) {
2154 netif_stop_queue(ndev);
2155 napi_disable(&fep->napi);
2156 netif_tx_lock_bh(ndev);
2157 fec_stop(ndev);
2158 netif_tx_unlock_bh(ndev);
2159 napi_enable(&fep->napi);
2160 fep->link = phy_dev->link;
2161 status_change = 1;
2162 }
2163 }
2164
2165 if (status_change)
2166 phy_print_status(phy_dev);
2167 }
2168
fec_enet_mdio_wait(struct fec_enet_private * fep)2169 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2170 {
2171 uint ievent;
2172 int ret;
2173
2174 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2175 ievent & FEC_ENET_MII, 2, 30000);
2176
2177 if (!ret)
2178 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2179
2180 return ret;
2181 }
2182
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2183 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2184 {
2185 struct fec_enet_private *fep = bus->priv;
2186 struct device *dev = &fep->pdev->dev;
2187 int ret = 0, frame_start, frame_addr, frame_op;
2188
2189 ret = pm_runtime_resume_and_get(dev);
2190 if (ret < 0)
2191 return ret;
2192
2193 /* C22 read */
2194 frame_op = FEC_MMFR_OP_READ;
2195 frame_start = FEC_MMFR_ST;
2196 frame_addr = regnum;
2197
2198 /* start a read op */
2199 writel(frame_start | frame_op |
2200 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2201 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2202
2203 /* wait for end of transfer */
2204 ret = fec_enet_mdio_wait(fep);
2205 if (ret) {
2206 netdev_err(fep->netdev, "MDIO read timeout\n");
2207 goto out;
2208 }
2209
2210 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2211
2212 out:
2213 pm_runtime_mark_last_busy(dev);
2214 pm_runtime_put_autosuspend(dev);
2215
2216 return ret;
2217 }
2218
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2219 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2220 int devad, int regnum)
2221 {
2222 struct fec_enet_private *fep = bus->priv;
2223 struct device *dev = &fep->pdev->dev;
2224 int ret = 0, frame_start, frame_op;
2225
2226 ret = pm_runtime_resume_and_get(dev);
2227 if (ret < 0)
2228 return ret;
2229
2230 frame_start = FEC_MMFR_ST_C45;
2231
2232 /* write address */
2233 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2234 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2235 FEC_MMFR_TA | (regnum & 0xFFFF),
2236 fep->hwp + FEC_MII_DATA);
2237
2238 /* wait for end of transfer */
2239 ret = fec_enet_mdio_wait(fep);
2240 if (ret) {
2241 netdev_err(fep->netdev, "MDIO address write timeout\n");
2242 goto out;
2243 }
2244
2245 frame_op = FEC_MMFR_OP_READ_C45;
2246
2247 /* start a read op */
2248 writel(frame_start | frame_op |
2249 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2250 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2251
2252 /* wait for end of transfer */
2253 ret = fec_enet_mdio_wait(fep);
2254 if (ret) {
2255 netdev_err(fep->netdev, "MDIO read timeout\n");
2256 goto out;
2257 }
2258
2259 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2260
2261 out:
2262 pm_runtime_mark_last_busy(dev);
2263 pm_runtime_put_autosuspend(dev);
2264
2265 return ret;
2266 }
2267
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2268 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2269 u16 value)
2270 {
2271 struct fec_enet_private *fep = bus->priv;
2272 struct device *dev = &fep->pdev->dev;
2273 int ret, frame_start, frame_addr;
2274
2275 ret = pm_runtime_resume_and_get(dev);
2276 if (ret < 0)
2277 return ret;
2278
2279 /* C22 write */
2280 frame_start = FEC_MMFR_ST;
2281 frame_addr = regnum;
2282
2283 /* start a write op */
2284 writel(frame_start | FEC_MMFR_OP_WRITE |
2285 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2286 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2287 fep->hwp + FEC_MII_DATA);
2288
2289 /* wait for end of transfer */
2290 ret = fec_enet_mdio_wait(fep);
2291 if (ret)
2292 netdev_err(fep->netdev, "MDIO write timeout\n");
2293
2294 pm_runtime_mark_last_busy(dev);
2295 pm_runtime_put_autosuspend(dev);
2296
2297 return ret;
2298 }
2299
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2300 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2301 int devad, int regnum, u16 value)
2302 {
2303 struct fec_enet_private *fep = bus->priv;
2304 struct device *dev = &fep->pdev->dev;
2305 int ret, frame_start;
2306
2307 ret = pm_runtime_resume_and_get(dev);
2308 if (ret < 0)
2309 return ret;
2310
2311 frame_start = FEC_MMFR_ST_C45;
2312
2313 /* write address */
2314 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2315 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2316 FEC_MMFR_TA | (regnum & 0xFFFF),
2317 fep->hwp + FEC_MII_DATA);
2318
2319 /* wait for end of transfer */
2320 ret = fec_enet_mdio_wait(fep);
2321 if (ret) {
2322 netdev_err(fep->netdev, "MDIO address write timeout\n");
2323 goto out;
2324 }
2325
2326 /* start a write op */
2327 writel(frame_start | FEC_MMFR_OP_WRITE |
2328 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2329 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2330 fep->hwp + FEC_MII_DATA);
2331
2332 /* wait for end of transfer */
2333 ret = fec_enet_mdio_wait(fep);
2334 if (ret)
2335 netdev_err(fep->netdev, "MDIO write timeout\n");
2336
2337 out:
2338 pm_runtime_mark_last_busy(dev);
2339 pm_runtime_put_autosuspend(dev);
2340
2341 return ret;
2342 }
2343
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2344 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2345 {
2346 struct fec_enet_private *fep = netdev_priv(ndev);
2347 struct phy_device *phy_dev = ndev->phydev;
2348
2349 if (phy_dev) {
2350 phy_reset_after_clk_enable(phy_dev);
2351 } else if (fep->phy_node) {
2352 /*
2353 * If the PHY still is not bound to the MAC, but there is
2354 * OF PHY node and a matching PHY device instance already,
2355 * use the OF PHY node to obtain the PHY device instance,
2356 * and then use that PHY device instance when triggering
2357 * the PHY reset.
2358 */
2359 phy_dev = of_phy_find_device(fep->phy_node);
2360 phy_reset_after_clk_enable(phy_dev);
2361 put_device(&phy_dev->mdio.dev);
2362 }
2363 }
2364
fec_enet_clk_enable(struct net_device * ndev,bool enable)2365 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2366 {
2367 struct fec_enet_private *fep = netdev_priv(ndev);
2368 int ret;
2369
2370 if (enable) {
2371 ret = clk_prepare_enable(fep->clk_enet_out);
2372 if (ret)
2373 return ret;
2374
2375 if (fep->clk_ptp) {
2376 mutex_lock(&fep->ptp_clk_mutex);
2377 ret = clk_prepare_enable(fep->clk_ptp);
2378 if (ret) {
2379 mutex_unlock(&fep->ptp_clk_mutex);
2380 goto failed_clk_ptp;
2381 } else {
2382 fep->ptp_clk_on = true;
2383 }
2384 mutex_unlock(&fep->ptp_clk_mutex);
2385 }
2386
2387 ret = clk_prepare_enable(fep->clk_ref);
2388 if (ret)
2389 goto failed_clk_ref;
2390
2391 ret = clk_prepare_enable(fep->clk_2x_txclk);
2392 if (ret)
2393 goto failed_clk_2x_txclk;
2394
2395 fec_enet_phy_reset_after_clk_enable(ndev);
2396 } else {
2397 clk_disable_unprepare(fep->clk_enet_out);
2398 if (fep->clk_ptp) {
2399 mutex_lock(&fep->ptp_clk_mutex);
2400 clk_disable_unprepare(fep->clk_ptp);
2401 fep->ptp_clk_on = false;
2402 mutex_unlock(&fep->ptp_clk_mutex);
2403 }
2404 clk_disable_unprepare(fep->clk_ref);
2405 clk_disable_unprepare(fep->clk_2x_txclk);
2406 }
2407
2408 return 0;
2409
2410 failed_clk_2x_txclk:
2411 if (fep->clk_ref)
2412 clk_disable_unprepare(fep->clk_ref);
2413 failed_clk_ref:
2414 if (fep->clk_ptp) {
2415 mutex_lock(&fep->ptp_clk_mutex);
2416 clk_disable_unprepare(fep->clk_ptp);
2417 fep->ptp_clk_on = false;
2418 mutex_unlock(&fep->ptp_clk_mutex);
2419 }
2420 failed_clk_ptp:
2421 clk_disable_unprepare(fep->clk_enet_out);
2422
2423 return ret;
2424 }
2425
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2426 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2427 struct device_node *np)
2428 {
2429 u32 rgmii_tx_delay, rgmii_rx_delay;
2430
2431 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2432 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2433 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2434 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2435 return -EINVAL;
2436 } else if (rgmii_tx_delay == 2000) {
2437 fep->rgmii_txc_dly = true;
2438 }
2439 }
2440
2441 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2442 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2443 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2444 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2445 return -EINVAL;
2446 } else if (rgmii_rx_delay == 2000) {
2447 fep->rgmii_rxc_dly = true;
2448 }
2449 }
2450
2451 return 0;
2452 }
2453
fec_enet_mii_probe(struct net_device * ndev)2454 static int fec_enet_mii_probe(struct net_device *ndev)
2455 {
2456 struct fec_enet_private *fep = netdev_priv(ndev);
2457 struct phy_device *phy_dev = NULL;
2458 char mdio_bus_id[MII_BUS_ID_SIZE];
2459 char phy_name[MII_BUS_ID_SIZE + 3];
2460 int phy_id;
2461 int dev_id = fep->dev_id;
2462
2463 if (fep->phy_node) {
2464 phy_dev = of_phy_connect(ndev, fep->phy_node,
2465 &fec_enet_adjust_link, 0,
2466 fep->phy_interface);
2467 if (!phy_dev) {
2468 netdev_err(ndev, "Unable to connect to phy\n");
2469 return -ENODEV;
2470 }
2471 } else {
2472 /* check for attached phy */
2473 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2474 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2475 continue;
2476 if (dev_id--)
2477 continue;
2478 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2479 break;
2480 }
2481
2482 if (phy_id >= PHY_MAX_ADDR) {
2483 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2484 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2485 phy_id = 0;
2486 }
2487
2488 snprintf(phy_name, sizeof(phy_name),
2489 PHY_ID_FMT, mdio_bus_id, phy_id);
2490 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2491 fep->phy_interface);
2492 }
2493
2494 if (IS_ERR(phy_dev)) {
2495 netdev_err(ndev, "could not attach to PHY\n");
2496 return PTR_ERR(phy_dev);
2497 }
2498
2499 /* mask with MAC supported features */
2500 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2501 phy_set_max_speed(phy_dev, 1000);
2502 phy_remove_link_mode(phy_dev,
2503 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2504 #if !defined(CONFIG_M5272)
2505 phy_support_sym_pause(phy_dev);
2506 #endif
2507 }
2508 else
2509 phy_set_max_speed(phy_dev, 100);
2510
2511 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2512 phy_support_eee(phy_dev);
2513
2514 fep->link = 0;
2515 fep->full_duplex = 0;
2516
2517 phy_attached_info(phy_dev);
2518
2519 return 0;
2520 }
2521
fec_enet_mii_init(struct platform_device * pdev)2522 static int fec_enet_mii_init(struct platform_device *pdev)
2523 {
2524 static struct mii_bus *fec0_mii_bus;
2525 struct net_device *ndev = platform_get_drvdata(pdev);
2526 struct fec_enet_private *fep = netdev_priv(ndev);
2527 bool suppress_preamble = false;
2528 struct phy_device *phydev;
2529 struct device_node *node;
2530 int err = -ENXIO;
2531 u32 mii_speed, holdtime;
2532 u32 bus_freq;
2533 int addr;
2534
2535 /*
2536 * The i.MX28 dual fec interfaces are not equal.
2537 * Here are the differences:
2538 *
2539 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2540 * - fec0 acts as the 1588 time master while fec1 is slave
2541 * - external phys can only be configured by fec0
2542 *
2543 * That is to say fec1 can not work independently. It only works
2544 * when fec0 is working. The reason behind this design is that the
2545 * second interface is added primarily for Switch mode.
2546 *
2547 * Because of the last point above, both phys are attached on fec0
2548 * mdio interface in board design, and need to be configured by
2549 * fec0 mii_bus.
2550 */
2551 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2552 /* fec1 uses fec0 mii_bus */
2553 if (mii_cnt && fec0_mii_bus) {
2554 fep->mii_bus = fec0_mii_bus;
2555 mii_cnt++;
2556 return 0;
2557 }
2558 return -ENOENT;
2559 }
2560
2561 bus_freq = 2500000; /* 2.5MHz by default */
2562 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2563 if (node) {
2564 of_property_read_u32(node, "clock-frequency", &bus_freq);
2565 suppress_preamble = of_property_read_bool(node,
2566 "suppress-preamble");
2567 }
2568
2569 /*
2570 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2571 *
2572 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2573 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2574 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2575 * document.
2576 */
2577 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2578 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2579 mii_speed--;
2580 if (mii_speed > 63) {
2581 dev_err(&pdev->dev,
2582 "fec clock (%lu) too fast to get right mii speed\n",
2583 clk_get_rate(fep->clk_ipg));
2584 err = -EINVAL;
2585 goto err_out;
2586 }
2587
2588 /*
2589 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2590 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2591 * versions are RAZ there, so just ignore the difference and write the
2592 * register always.
2593 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2594 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2595 * output.
2596 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2597 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2598 * holdtime cannot result in a value greater than 3.
2599 */
2600 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2601
2602 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2603
2604 if (suppress_preamble)
2605 fep->phy_speed |= BIT(7);
2606
2607 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2608 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2609 * MII event generation condition:
2610 * - writing MSCR:
2611 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2612 * mscr_reg_data_in[7:0] != 0
2613 * - writing MMFR:
2614 * - mscr[7:0]_not_zero
2615 */
2616 writel(0, fep->hwp + FEC_MII_DATA);
2617 }
2618
2619 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2620
2621 /* Clear any pending transaction complete indication */
2622 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2623
2624 fep->mii_bus = mdiobus_alloc();
2625 if (fep->mii_bus == NULL) {
2626 err = -ENOMEM;
2627 goto err_out;
2628 }
2629
2630 fep->mii_bus->name = "fec_enet_mii_bus";
2631 fep->mii_bus->read = fec_enet_mdio_read_c22;
2632 fep->mii_bus->write = fec_enet_mdio_write_c22;
2633 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2634 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2635 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2636 }
2637 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2638 pdev->name, fep->dev_id + 1);
2639 fep->mii_bus->priv = fep;
2640 fep->mii_bus->parent = &pdev->dev;
2641
2642 err = of_mdiobus_register(fep->mii_bus, node);
2643 if (err)
2644 goto err_out_free_mdiobus;
2645 of_node_put(node);
2646
2647 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2648 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2649 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2650 if (phydev)
2651 phydev->mac_managed_pm = true;
2652 }
2653
2654 mii_cnt++;
2655
2656 /* save fec0 mii_bus */
2657 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2658 fec0_mii_bus = fep->mii_bus;
2659
2660 return 0;
2661
2662 err_out_free_mdiobus:
2663 mdiobus_free(fep->mii_bus);
2664 err_out:
2665 of_node_put(node);
2666 return err;
2667 }
2668
fec_enet_mii_remove(struct fec_enet_private * fep)2669 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2670 {
2671 if (--mii_cnt == 0) {
2672 mdiobus_unregister(fep->mii_bus);
2673 mdiobus_free(fep->mii_bus);
2674 }
2675 }
2676
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2677 static void fec_enet_get_drvinfo(struct net_device *ndev,
2678 struct ethtool_drvinfo *info)
2679 {
2680 struct fec_enet_private *fep = netdev_priv(ndev);
2681
2682 strscpy(info->driver, fep->pdev->dev.driver->name,
2683 sizeof(info->driver));
2684 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2685 }
2686
fec_enet_get_regs_len(struct net_device * ndev)2687 static int fec_enet_get_regs_len(struct net_device *ndev)
2688 {
2689 struct fec_enet_private *fep = netdev_priv(ndev);
2690 struct resource *r;
2691 int s = 0;
2692
2693 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2694 if (r)
2695 s = resource_size(r);
2696
2697 return s;
2698 }
2699
2700 /* List of registers that can be safety be read to dump them with ethtool */
2701 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2702 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2703 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2704 static __u32 fec_enet_register_version = 2;
2705 static u32 fec_enet_register_offset[] = {
2706 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2707 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2708 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2709 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2710 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2711 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2712 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2713 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2714 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2715 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2716 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2717 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2718 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2719 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2720 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2721 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2722 RMON_T_P_GTE2048, RMON_T_OCTETS,
2723 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2724 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2725 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2726 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2727 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2728 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2729 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2730 RMON_R_P_GTE2048, RMON_R_OCTETS,
2731 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2732 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2733 };
2734 /* for i.MX6ul */
2735 static u32 fec_enet_register_offset_6ul[] = {
2736 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2737 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2738 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2739 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2740 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2741 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2742 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2743 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2744 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2745 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2746 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2747 RMON_T_P_GTE2048, RMON_T_OCTETS,
2748 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2749 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2750 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2751 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2752 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2753 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2754 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2755 RMON_R_P_GTE2048, RMON_R_OCTETS,
2756 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2757 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2758 };
2759 #else
2760 static __u32 fec_enet_register_version = 1;
2761 static u32 fec_enet_register_offset[] = {
2762 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2763 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2764 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2765 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2766 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2767 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2768 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2769 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2770 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2771 };
2772 #endif
2773
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2774 static void fec_enet_get_regs(struct net_device *ndev,
2775 struct ethtool_regs *regs, void *regbuf)
2776 {
2777 struct fec_enet_private *fep = netdev_priv(ndev);
2778 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2779 struct device *dev = &fep->pdev->dev;
2780 u32 *buf = (u32 *)regbuf;
2781 u32 i, off;
2782 int ret;
2783 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2784 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2785 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2786 u32 *reg_list;
2787 u32 reg_cnt;
2788
2789 if (!of_machine_is_compatible("fsl,imx6ul")) {
2790 reg_list = fec_enet_register_offset;
2791 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2792 } else {
2793 reg_list = fec_enet_register_offset_6ul;
2794 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2795 }
2796 #else
2797 /* coldfire */
2798 static u32 *reg_list = fec_enet_register_offset;
2799 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2800 #endif
2801 ret = pm_runtime_resume_and_get(dev);
2802 if (ret < 0)
2803 return;
2804
2805 regs->version = fec_enet_register_version;
2806
2807 memset(buf, 0, regs->len);
2808
2809 for (i = 0; i < reg_cnt; i++) {
2810 off = reg_list[i];
2811
2812 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2813 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2814 continue;
2815
2816 off >>= 2;
2817 buf[off] = readl(&theregs[off]);
2818 }
2819
2820 pm_runtime_mark_last_busy(dev);
2821 pm_runtime_put_autosuspend(dev);
2822 }
2823
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2824 static int fec_enet_get_ts_info(struct net_device *ndev,
2825 struct kernel_ethtool_ts_info *info)
2826 {
2827 struct fec_enet_private *fep = netdev_priv(ndev);
2828
2829 if (fep->bufdesc_ex) {
2830
2831 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2832 SOF_TIMESTAMPING_TX_HARDWARE |
2833 SOF_TIMESTAMPING_RX_HARDWARE |
2834 SOF_TIMESTAMPING_RAW_HARDWARE;
2835 if (fep->ptp_clock)
2836 info->phc_index = ptp_clock_index(fep->ptp_clock);
2837
2838 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2839 (1 << HWTSTAMP_TX_ON);
2840
2841 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2842 (1 << HWTSTAMP_FILTER_ALL);
2843 return 0;
2844 } else {
2845 return ethtool_op_get_ts_info(ndev, info);
2846 }
2847 }
2848
2849 #if !defined(CONFIG_M5272)
2850
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2851 static void fec_enet_get_pauseparam(struct net_device *ndev,
2852 struct ethtool_pauseparam *pause)
2853 {
2854 struct fec_enet_private *fep = netdev_priv(ndev);
2855
2856 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2857 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2858 pause->rx_pause = pause->tx_pause;
2859 }
2860
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2861 static int fec_enet_set_pauseparam(struct net_device *ndev,
2862 struct ethtool_pauseparam *pause)
2863 {
2864 struct fec_enet_private *fep = netdev_priv(ndev);
2865
2866 if (!ndev->phydev)
2867 return -ENODEV;
2868
2869 if (pause->tx_pause != pause->rx_pause) {
2870 netdev_info(ndev,
2871 "hardware only support enable/disable both tx and rx");
2872 return -EINVAL;
2873 }
2874
2875 fep->pause_flag = 0;
2876
2877 /* tx pause must be same as rx pause */
2878 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2879 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2880
2881 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2882 pause->autoneg);
2883
2884 if (pause->autoneg) {
2885 if (netif_running(ndev))
2886 fec_stop(ndev);
2887 phy_start_aneg(ndev->phydev);
2888 }
2889 if (netif_running(ndev)) {
2890 napi_disable(&fep->napi);
2891 netif_tx_lock_bh(ndev);
2892 fec_restart(ndev);
2893 netif_tx_wake_all_queues(ndev);
2894 netif_tx_unlock_bh(ndev);
2895 napi_enable(&fep->napi);
2896 }
2897
2898 return 0;
2899 }
2900
2901 static const struct fec_stat {
2902 char name[ETH_GSTRING_LEN];
2903 u16 offset;
2904 } fec_stats[] = {
2905 /* RMON TX */
2906 { "tx_dropped", RMON_T_DROP },
2907 { "tx_packets", RMON_T_PACKETS },
2908 { "tx_broadcast", RMON_T_BC_PKT },
2909 { "tx_multicast", RMON_T_MC_PKT },
2910 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2911 { "tx_undersize", RMON_T_UNDERSIZE },
2912 { "tx_oversize", RMON_T_OVERSIZE },
2913 { "tx_fragment", RMON_T_FRAG },
2914 { "tx_jabber", RMON_T_JAB },
2915 { "tx_collision", RMON_T_COL },
2916 { "tx_64byte", RMON_T_P64 },
2917 { "tx_65to127byte", RMON_T_P65TO127 },
2918 { "tx_128to255byte", RMON_T_P128TO255 },
2919 { "tx_256to511byte", RMON_T_P256TO511 },
2920 { "tx_512to1023byte", RMON_T_P512TO1023 },
2921 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2922 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2923 { "tx_octets", RMON_T_OCTETS },
2924
2925 /* IEEE TX */
2926 { "IEEE_tx_drop", IEEE_T_DROP },
2927 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2928 { "IEEE_tx_1col", IEEE_T_1COL },
2929 { "IEEE_tx_mcol", IEEE_T_MCOL },
2930 { "IEEE_tx_def", IEEE_T_DEF },
2931 { "IEEE_tx_lcol", IEEE_T_LCOL },
2932 { "IEEE_tx_excol", IEEE_T_EXCOL },
2933 { "IEEE_tx_macerr", IEEE_T_MACERR },
2934 { "IEEE_tx_cserr", IEEE_T_CSERR },
2935 { "IEEE_tx_sqe", IEEE_T_SQE },
2936 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2937 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2938
2939 /* RMON RX */
2940 { "rx_packets", RMON_R_PACKETS },
2941 { "rx_broadcast", RMON_R_BC_PKT },
2942 { "rx_multicast", RMON_R_MC_PKT },
2943 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2944 { "rx_undersize", RMON_R_UNDERSIZE },
2945 { "rx_oversize", RMON_R_OVERSIZE },
2946 { "rx_fragment", RMON_R_FRAG },
2947 { "rx_jabber", RMON_R_JAB },
2948 { "rx_64byte", RMON_R_P64 },
2949 { "rx_65to127byte", RMON_R_P65TO127 },
2950 { "rx_128to255byte", RMON_R_P128TO255 },
2951 { "rx_256to511byte", RMON_R_P256TO511 },
2952 { "rx_512to1023byte", RMON_R_P512TO1023 },
2953 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2954 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2955 { "rx_octets", RMON_R_OCTETS },
2956
2957 /* IEEE RX */
2958 { "IEEE_rx_drop", IEEE_R_DROP },
2959 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2960 { "IEEE_rx_crc", IEEE_R_CRC },
2961 { "IEEE_rx_align", IEEE_R_ALIGN },
2962 { "IEEE_rx_macerr", IEEE_R_MACERR },
2963 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2964 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2965 };
2966
2967 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2968
2969 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2970 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2971 "rx_xdp_pass", /* RX_XDP_PASS, */
2972 "rx_xdp_drop", /* RX_XDP_DROP, */
2973 "rx_xdp_tx", /* RX_XDP_TX, */
2974 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2975 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2976 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2977 };
2978
fec_enet_update_ethtool_stats(struct net_device * dev)2979 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2980 {
2981 struct fec_enet_private *fep = netdev_priv(dev);
2982 int i;
2983
2984 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2985 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2986 }
2987
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2988 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2989 {
2990 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2991 struct fec_enet_priv_rx_q *rxq;
2992 int i, j;
2993
2994 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2995 rxq = fep->rx_queue[i];
2996
2997 for (j = 0; j < XDP_STATS_TOTAL; j++)
2998 xdp_stats[j] += rxq->stats[j];
2999 }
3000
3001 memcpy(data, xdp_stats, sizeof(xdp_stats));
3002 }
3003
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3004 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3005 {
3006 #ifdef CONFIG_PAGE_POOL_STATS
3007 struct page_pool_stats stats = {};
3008 struct fec_enet_priv_rx_q *rxq;
3009 int i;
3010
3011 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3012 rxq = fep->rx_queue[i];
3013
3014 if (!rxq->page_pool)
3015 continue;
3016
3017 page_pool_get_stats(rxq->page_pool, &stats);
3018 }
3019
3020 page_pool_ethtool_stats_get(data, &stats);
3021 #endif
3022 }
3023
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3024 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3025 struct ethtool_stats *stats, u64 *data)
3026 {
3027 struct fec_enet_private *fep = netdev_priv(dev);
3028
3029 if (netif_running(dev))
3030 fec_enet_update_ethtool_stats(dev);
3031
3032 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3033 data += FEC_STATS_SIZE / sizeof(u64);
3034
3035 fec_enet_get_xdp_stats(fep, data);
3036 data += XDP_STATS_TOTAL;
3037
3038 fec_enet_page_pool_stats(fep, data);
3039 }
3040
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3041 static void fec_enet_get_strings(struct net_device *netdev,
3042 u32 stringset, u8 *data)
3043 {
3044 int i;
3045 switch (stringset) {
3046 case ETH_SS_STATS:
3047 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3048 ethtool_puts(&data, fec_stats[i].name);
3049 }
3050 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3051 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3052 }
3053 page_pool_ethtool_stats_get_strings(data);
3054
3055 break;
3056 case ETH_SS_TEST:
3057 net_selftest_get_strings(data);
3058 break;
3059 }
3060 }
3061
fec_enet_get_sset_count(struct net_device * dev,int sset)3062 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3063 {
3064 int count;
3065
3066 switch (sset) {
3067 case ETH_SS_STATS:
3068 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3069 count += page_pool_ethtool_stats_get_count();
3070 return count;
3071
3072 case ETH_SS_TEST:
3073 return net_selftest_get_count();
3074 default:
3075 return -EOPNOTSUPP;
3076 }
3077 }
3078
fec_enet_clear_ethtool_stats(struct net_device * dev)3079 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3080 {
3081 struct fec_enet_private *fep = netdev_priv(dev);
3082 struct fec_enet_priv_rx_q *rxq;
3083 int i, j;
3084
3085 /* Disable MIB statistics counters */
3086 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3087
3088 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3089 writel(0, fep->hwp + fec_stats[i].offset);
3090
3091 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3092 rxq = fep->rx_queue[i];
3093 for (j = 0; j < XDP_STATS_TOTAL; j++)
3094 rxq->stats[j] = 0;
3095 }
3096
3097 /* Don't disable MIB statistics counters */
3098 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3099 }
3100
3101 #else /* !defined(CONFIG_M5272) */
3102 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3103 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3104 {
3105 }
3106
fec_enet_clear_ethtool_stats(struct net_device * dev)3107 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3108 {
3109 }
3110 #endif /* !defined(CONFIG_M5272) */
3111
3112 /* ITR clock source is enet system clock (clk_ahb).
3113 * TCTT unit is cycle_ns * 64 cycle
3114 * So, the ICTT value = X us / (cycle_ns * 64)
3115 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3116 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3117 {
3118 struct fec_enet_private *fep = netdev_priv(ndev);
3119
3120 return us * (fep->itr_clk_rate / 64000) / 1000;
3121 }
3122
3123 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3124 static void fec_enet_itr_coal_set(struct net_device *ndev)
3125 {
3126 struct fec_enet_private *fep = netdev_priv(ndev);
3127 int rx_itr, tx_itr;
3128
3129 /* Must be greater than zero to avoid unpredictable behavior */
3130 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3131 !fep->tx_time_itr || !fep->tx_pkts_itr)
3132 return;
3133
3134 /* Select enet system clock as Interrupt Coalescing
3135 * timer Clock Source
3136 */
3137 rx_itr = FEC_ITR_CLK_SEL;
3138 tx_itr = FEC_ITR_CLK_SEL;
3139
3140 /* set ICFT and ICTT */
3141 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3142 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3143 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3144 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3145
3146 rx_itr |= FEC_ITR_EN;
3147 tx_itr |= FEC_ITR_EN;
3148
3149 writel(tx_itr, fep->hwp + FEC_TXIC0);
3150 writel(rx_itr, fep->hwp + FEC_RXIC0);
3151 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3152 writel(tx_itr, fep->hwp + FEC_TXIC1);
3153 writel(rx_itr, fep->hwp + FEC_RXIC1);
3154 writel(tx_itr, fep->hwp + FEC_TXIC2);
3155 writel(rx_itr, fep->hwp + FEC_RXIC2);
3156 }
3157 }
3158
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3159 static int fec_enet_get_coalesce(struct net_device *ndev,
3160 struct ethtool_coalesce *ec,
3161 struct kernel_ethtool_coalesce *kernel_coal,
3162 struct netlink_ext_ack *extack)
3163 {
3164 struct fec_enet_private *fep = netdev_priv(ndev);
3165
3166 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3167 return -EOPNOTSUPP;
3168
3169 ec->rx_coalesce_usecs = fep->rx_time_itr;
3170 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3171
3172 ec->tx_coalesce_usecs = fep->tx_time_itr;
3173 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3174
3175 return 0;
3176 }
3177
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3178 static int fec_enet_set_coalesce(struct net_device *ndev,
3179 struct ethtool_coalesce *ec,
3180 struct kernel_ethtool_coalesce *kernel_coal,
3181 struct netlink_ext_ack *extack)
3182 {
3183 struct fec_enet_private *fep = netdev_priv(ndev);
3184 struct device *dev = &fep->pdev->dev;
3185 unsigned int cycle;
3186
3187 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3188 return -EOPNOTSUPP;
3189
3190 if (ec->rx_max_coalesced_frames > 255) {
3191 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3192 return -EINVAL;
3193 }
3194
3195 if (ec->tx_max_coalesced_frames > 255) {
3196 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3197 return -EINVAL;
3198 }
3199
3200 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3201 if (cycle > 0xFFFF) {
3202 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3203 return -EINVAL;
3204 }
3205
3206 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3207 if (cycle > 0xFFFF) {
3208 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3209 return -EINVAL;
3210 }
3211
3212 fep->rx_time_itr = ec->rx_coalesce_usecs;
3213 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3214
3215 fep->tx_time_itr = ec->tx_coalesce_usecs;
3216 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3217
3218 fec_enet_itr_coal_set(ndev);
3219
3220 return 0;
3221 }
3222
3223 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3224 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3225 {
3226 struct fec_enet_private *fep = netdev_priv(ndev);
3227
3228 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3229 return -EOPNOTSUPP;
3230
3231 if (!netif_running(ndev))
3232 return -ENETDOWN;
3233
3234 return phy_ethtool_get_eee(ndev->phydev, edata);
3235 }
3236
3237 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3238 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3239 {
3240 struct fec_enet_private *fep = netdev_priv(ndev);
3241
3242 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3243 return -EOPNOTSUPP;
3244
3245 if (!netif_running(ndev))
3246 return -ENETDOWN;
3247
3248 return phy_ethtool_set_eee(ndev->phydev, edata);
3249 }
3250
3251 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3252 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3253 {
3254 struct fec_enet_private *fep = netdev_priv(ndev);
3255
3256 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3257 wol->supported = WAKE_MAGIC;
3258 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3259 } else {
3260 wol->supported = wol->wolopts = 0;
3261 }
3262 }
3263
3264 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3265 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3266 {
3267 struct fec_enet_private *fep = netdev_priv(ndev);
3268
3269 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3270 return -EINVAL;
3271
3272 if (wol->wolopts & ~WAKE_MAGIC)
3273 return -EINVAL;
3274
3275 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3276 if (device_may_wakeup(&ndev->dev))
3277 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3278 else
3279 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3280
3281 return 0;
3282 }
3283
3284 static const struct ethtool_ops fec_enet_ethtool_ops = {
3285 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3286 ETHTOOL_COALESCE_MAX_FRAMES,
3287 .get_drvinfo = fec_enet_get_drvinfo,
3288 .get_regs_len = fec_enet_get_regs_len,
3289 .get_regs = fec_enet_get_regs,
3290 .nway_reset = phy_ethtool_nway_reset,
3291 .get_link = ethtool_op_get_link,
3292 .get_coalesce = fec_enet_get_coalesce,
3293 .set_coalesce = fec_enet_set_coalesce,
3294 #ifndef CONFIG_M5272
3295 .get_pauseparam = fec_enet_get_pauseparam,
3296 .set_pauseparam = fec_enet_set_pauseparam,
3297 .get_strings = fec_enet_get_strings,
3298 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3299 .get_sset_count = fec_enet_get_sset_count,
3300 #endif
3301 .get_ts_info = fec_enet_get_ts_info,
3302 .get_wol = fec_enet_get_wol,
3303 .set_wol = fec_enet_set_wol,
3304 .get_eee = fec_enet_get_eee,
3305 .set_eee = fec_enet_set_eee,
3306 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3307 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3308 .self_test = net_selftest,
3309 };
3310
fec_enet_free_buffers(struct net_device * ndev)3311 static void fec_enet_free_buffers(struct net_device *ndev)
3312 {
3313 struct fec_enet_private *fep = netdev_priv(ndev);
3314 unsigned int i;
3315 struct fec_enet_priv_tx_q *txq;
3316 struct fec_enet_priv_rx_q *rxq;
3317 unsigned int q;
3318
3319 for (q = 0; q < fep->num_rx_queues; q++) {
3320 rxq = fep->rx_queue[q];
3321 for (i = 0; i < rxq->bd.ring_size; i++)
3322 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3323
3324 for (i = 0; i < XDP_STATS_TOTAL; i++)
3325 rxq->stats[i] = 0;
3326
3327 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3328 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3329 page_pool_destroy(rxq->page_pool);
3330 rxq->page_pool = NULL;
3331 }
3332
3333 for (q = 0; q < fep->num_tx_queues; q++) {
3334 txq = fep->tx_queue[q];
3335 for (i = 0; i < txq->bd.ring_size; i++) {
3336 kfree(txq->tx_bounce[i]);
3337 txq->tx_bounce[i] = NULL;
3338
3339 if (!txq->tx_buf[i].buf_p) {
3340 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3341 continue;
3342 }
3343
3344 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3345 dev_kfree_skb(txq->tx_buf[i].buf_p);
3346 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3347 xdp_return_frame(txq->tx_buf[i].buf_p);
3348 } else {
3349 struct page *page = txq->tx_buf[i].buf_p;
3350
3351 page_pool_put_page(page->pp, page, 0, false);
3352 }
3353
3354 txq->tx_buf[i].buf_p = NULL;
3355 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3356 }
3357 }
3358 }
3359
fec_enet_free_queue(struct net_device * ndev)3360 static void fec_enet_free_queue(struct net_device *ndev)
3361 {
3362 struct fec_enet_private *fep = netdev_priv(ndev);
3363 int i;
3364 struct fec_enet_priv_tx_q *txq;
3365
3366 for (i = 0; i < fep->num_tx_queues; i++)
3367 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3368 txq = fep->tx_queue[i];
3369 fec_dma_free(&fep->pdev->dev,
3370 txq->bd.ring_size * TSO_HEADER_SIZE,
3371 txq->tso_hdrs, txq->tso_hdrs_dma);
3372 }
3373
3374 for (i = 0; i < fep->num_rx_queues; i++)
3375 kfree(fep->rx_queue[i]);
3376 for (i = 0; i < fep->num_tx_queues; i++)
3377 kfree(fep->tx_queue[i]);
3378 }
3379
fec_enet_alloc_queue(struct net_device * ndev)3380 static int fec_enet_alloc_queue(struct net_device *ndev)
3381 {
3382 struct fec_enet_private *fep = netdev_priv(ndev);
3383 int i;
3384 int ret = 0;
3385 struct fec_enet_priv_tx_q *txq;
3386
3387 for (i = 0; i < fep->num_tx_queues; i++) {
3388 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3389 if (!txq) {
3390 ret = -ENOMEM;
3391 goto alloc_failed;
3392 }
3393
3394 fep->tx_queue[i] = txq;
3395 txq->bd.ring_size = TX_RING_SIZE;
3396 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3397
3398 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3399 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3400
3401 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3402 txq->bd.ring_size * TSO_HEADER_SIZE,
3403 &txq->tso_hdrs_dma, GFP_KERNEL);
3404 if (!txq->tso_hdrs) {
3405 ret = -ENOMEM;
3406 goto alloc_failed;
3407 }
3408 }
3409
3410 for (i = 0; i < fep->num_rx_queues; i++) {
3411 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3412 GFP_KERNEL);
3413 if (!fep->rx_queue[i]) {
3414 ret = -ENOMEM;
3415 goto alloc_failed;
3416 }
3417
3418 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3419 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3420 }
3421 return ret;
3422
3423 alloc_failed:
3424 fec_enet_free_queue(ndev);
3425 return ret;
3426 }
3427
3428 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3429 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3430 {
3431 struct fec_enet_private *fep = netdev_priv(ndev);
3432 struct fec_enet_priv_rx_q *rxq;
3433 dma_addr_t phys_addr;
3434 struct bufdesc *bdp;
3435 struct page *page;
3436 int i, err;
3437
3438 rxq = fep->rx_queue[queue];
3439 bdp = rxq->bd.base;
3440
3441 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3442 if (err < 0) {
3443 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3444 return err;
3445 }
3446
3447 for (i = 0; i < rxq->bd.ring_size; i++) {
3448 page = page_pool_dev_alloc_pages(rxq->page_pool);
3449 if (!page)
3450 goto err_alloc;
3451
3452 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3453 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3454
3455 rxq->rx_skb_info[i].page = page;
3456 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3457 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3458
3459 if (fep->bufdesc_ex) {
3460 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3461 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3462 }
3463
3464 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3465 }
3466
3467 /* Set the last buffer to wrap. */
3468 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3469 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3470 return 0;
3471
3472 err_alloc:
3473 fec_enet_free_buffers(ndev);
3474 return -ENOMEM;
3475 }
3476
3477 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3478 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3479 {
3480 struct fec_enet_private *fep = netdev_priv(ndev);
3481 unsigned int i;
3482 struct bufdesc *bdp;
3483 struct fec_enet_priv_tx_q *txq;
3484
3485 txq = fep->tx_queue[queue];
3486 bdp = txq->bd.base;
3487 for (i = 0; i < txq->bd.ring_size; i++) {
3488 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3489 if (!txq->tx_bounce[i])
3490 goto err_alloc;
3491
3492 bdp->cbd_sc = cpu_to_fec16(0);
3493 bdp->cbd_bufaddr = cpu_to_fec32(0);
3494
3495 if (fep->bufdesc_ex) {
3496 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3497 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3498 }
3499
3500 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3501 }
3502
3503 /* Set the last buffer to wrap. */
3504 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3505 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3506
3507 return 0;
3508
3509 err_alloc:
3510 fec_enet_free_buffers(ndev);
3511 return -ENOMEM;
3512 }
3513
fec_enet_alloc_buffers(struct net_device * ndev)3514 static int fec_enet_alloc_buffers(struct net_device *ndev)
3515 {
3516 struct fec_enet_private *fep = netdev_priv(ndev);
3517 unsigned int i;
3518
3519 for (i = 0; i < fep->num_rx_queues; i++)
3520 if (fec_enet_alloc_rxq_buffers(ndev, i))
3521 return -ENOMEM;
3522
3523 for (i = 0; i < fep->num_tx_queues; i++)
3524 if (fec_enet_alloc_txq_buffers(ndev, i))
3525 return -ENOMEM;
3526 return 0;
3527 }
3528
3529 static int
fec_enet_open(struct net_device * ndev)3530 fec_enet_open(struct net_device *ndev)
3531 {
3532 struct fec_enet_private *fep = netdev_priv(ndev);
3533 int ret;
3534 bool reset_again;
3535
3536 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3537 if (ret < 0)
3538 return ret;
3539
3540 pinctrl_pm_select_default_state(&fep->pdev->dev);
3541 ret = fec_enet_clk_enable(ndev, true);
3542 if (ret)
3543 goto clk_enable;
3544
3545 /* During the first fec_enet_open call the PHY isn't probed at this
3546 * point. Therefore the phy_reset_after_clk_enable() call within
3547 * fec_enet_clk_enable() fails. As we need this reset in order to be
3548 * sure the PHY is working correctly we check if we need to reset again
3549 * later when the PHY is probed
3550 */
3551 if (ndev->phydev && ndev->phydev->drv)
3552 reset_again = false;
3553 else
3554 reset_again = true;
3555
3556 /* I should reset the ring buffers here, but I don't yet know
3557 * a simple way to do that.
3558 */
3559
3560 ret = fec_enet_alloc_buffers(ndev);
3561 if (ret)
3562 goto err_enet_alloc;
3563
3564 /* Init MAC prior to mii bus probe */
3565 fec_restart(ndev);
3566
3567 /* Call phy_reset_after_clk_enable() again if it failed during
3568 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3569 */
3570 if (reset_again)
3571 fec_enet_phy_reset_after_clk_enable(ndev);
3572
3573 /* Probe and connect to PHY when open the interface */
3574 ret = fec_enet_mii_probe(ndev);
3575 if (ret)
3576 goto err_enet_mii_probe;
3577
3578 if (fep->quirks & FEC_QUIRK_ERR006687)
3579 imx6q_cpuidle_fec_irqs_used();
3580
3581 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3582 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3583
3584 napi_enable(&fep->napi);
3585 phy_start(ndev->phydev);
3586 netif_tx_start_all_queues(ndev);
3587
3588 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3589 FEC_WOL_FLAG_ENABLE);
3590
3591 return 0;
3592
3593 err_enet_mii_probe:
3594 fec_enet_free_buffers(ndev);
3595 err_enet_alloc:
3596 fec_enet_clk_enable(ndev, false);
3597 clk_enable:
3598 pm_runtime_mark_last_busy(&fep->pdev->dev);
3599 pm_runtime_put_autosuspend(&fep->pdev->dev);
3600 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3601 return ret;
3602 }
3603
3604 static int
fec_enet_close(struct net_device * ndev)3605 fec_enet_close(struct net_device *ndev)
3606 {
3607 struct fec_enet_private *fep = netdev_priv(ndev);
3608
3609 phy_stop(ndev->phydev);
3610
3611 if (netif_device_present(ndev)) {
3612 napi_disable(&fep->napi);
3613 netif_tx_disable(ndev);
3614 fec_stop(ndev);
3615 }
3616
3617 phy_disconnect(ndev->phydev);
3618
3619 if (fep->quirks & FEC_QUIRK_ERR006687)
3620 imx6q_cpuidle_fec_irqs_unused();
3621
3622 fec_enet_update_ethtool_stats(ndev);
3623
3624 fec_enet_clk_enable(ndev, false);
3625 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3626 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3627
3628 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3629 pm_runtime_mark_last_busy(&fep->pdev->dev);
3630 pm_runtime_put_autosuspend(&fep->pdev->dev);
3631
3632 fec_enet_free_buffers(ndev);
3633
3634 return 0;
3635 }
3636
3637 /* Set or clear the multicast filter for this adaptor.
3638 * Skeleton taken from sunlance driver.
3639 * The CPM Ethernet implementation allows Multicast as well as individual
3640 * MAC address filtering. Some of the drivers check to make sure it is
3641 * a group multicast address, and discard those that are not. I guess I
3642 * will do the same for now, but just remove the test if you want
3643 * individual filtering as well (do the upper net layers want or support
3644 * this kind of feature?).
3645 */
3646
3647 #define FEC_HASH_BITS 6 /* #bits in hash */
3648
set_multicast_list(struct net_device * ndev)3649 static void set_multicast_list(struct net_device *ndev)
3650 {
3651 struct fec_enet_private *fep = netdev_priv(ndev);
3652 struct netdev_hw_addr *ha;
3653 unsigned int crc, tmp;
3654 unsigned char hash;
3655 unsigned int hash_high = 0, hash_low = 0;
3656
3657 if (ndev->flags & IFF_PROMISC) {
3658 tmp = readl(fep->hwp + FEC_R_CNTRL);
3659 tmp |= 0x8;
3660 writel(tmp, fep->hwp + FEC_R_CNTRL);
3661 return;
3662 }
3663
3664 tmp = readl(fep->hwp + FEC_R_CNTRL);
3665 tmp &= ~0x8;
3666 writel(tmp, fep->hwp + FEC_R_CNTRL);
3667
3668 if (ndev->flags & IFF_ALLMULTI) {
3669 /* Catch all multicast addresses, so set the
3670 * filter to all 1's
3671 */
3672 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3673 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3674
3675 return;
3676 }
3677
3678 /* Add the addresses in hash register */
3679 netdev_for_each_mc_addr(ha, ndev) {
3680 /* calculate crc32 value of mac address */
3681 crc = ether_crc_le(ndev->addr_len, ha->addr);
3682
3683 /* only upper 6 bits (FEC_HASH_BITS) are used
3684 * which point to specific bit in the hash registers
3685 */
3686 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3687
3688 if (hash > 31)
3689 hash_high |= 1 << (hash - 32);
3690 else
3691 hash_low |= 1 << hash;
3692 }
3693
3694 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3695 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3696 }
3697
3698 /* Set a MAC change in hardware. */
3699 static int
fec_set_mac_address(struct net_device * ndev,void * p)3700 fec_set_mac_address(struct net_device *ndev, void *p)
3701 {
3702 struct fec_enet_private *fep = netdev_priv(ndev);
3703 struct sockaddr *addr = p;
3704
3705 if (addr) {
3706 if (!is_valid_ether_addr(addr->sa_data))
3707 return -EADDRNOTAVAIL;
3708 eth_hw_addr_set(ndev, addr->sa_data);
3709 }
3710
3711 /* Add netif status check here to avoid system hang in below case:
3712 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3713 * After ethx down, fec all clocks are gated off and then register
3714 * access causes system hang.
3715 */
3716 if (!netif_running(ndev))
3717 return 0;
3718
3719 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3720 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3721 fep->hwp + FEC_ADDR_LOW);
3722 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3723 fep->hwp + FEC_ADDR_HIGH);
3724 return 0;
3725 }
3726
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3727 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3728 netdev_features_t features)
3729 {
3730 struct fec_enet_private *fep = netdev_priv(netdev);
3731 netdev_features_t changed = features ^ netdev->features;
3732
3733 netdev->features = features;
3734
3735 /* Receive checksum has been changed */
3736 if (changed & NETIF_F_RXCSUM) {
3737 if (features & NETIF_F_RXCSUM)
3738 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3739 else
3740 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3741 }
3742 }
3743
fec_set_features(struct net_device * netdev,netdev_features_t features)3744 static int fec_set_features(struct net_device *netdev,
3745 netdev_features_t features)
3746 {
3747 struct fec_enet_private *fep = netdev_priv(netdev);
3748 netdev_features_t changed = features ^ netdev->features;
3749
3750 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3751 napi_disable(&fep->napi);
3752 netif_tx_lock_bh(netdev);
3753 fec_stop(netdev);
3754 fec_enet_set_netdev_features(netdev, features);
3755 fec_restart(netdev);
3756 netif_tx_wake_all_queues(netdev);
3757 netif_tx_unlock_bh(netdev);
3758 napi_enable(&fep->napi);
3759 } else {
3760 fec_enet_set_netdev_features(netdev, features);
3761 }
3762
3763 return 0;
3764 }
3765
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3766 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3767 struct net_device *sb_dev)
3768 {
3769 struct fec_enet_private *fep = netdev_priv(ndev);
3770 u16 vlan_tag = 0;
3771
3772 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3773 return netdev_pick_tx(ndev, skb, NULL);
3774
3775 /* VLAN is present in the payload.*/
3776 if (eth_type_vlan(skb->protocol)) {
3777 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3778
3779 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3780 /* VLAN is present in the skb but not yet pushed in the payload.*/
3781 } else if (skb_vlan_tag_present(skb)) {
3782 vlan_tag = skb->vlan_tci;
3783 } else {
3784 return vlan_tag;
3785 }
3786
3787 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3788 }
3789
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3790 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3791 {
3792 struct fec_enet_private *fep = netdev_priv(dev);
3793 bool is_run = netif_running(dev);
3794 struct bpf_prog *old_prog;
3795
3796 switch (bpf->command) {
3797 case XDP_SETUP_PROG:
3798 /* No need to support the SoCs that require to
3799 * do the frame swap because the performance wouldn't be
3800 * better than the skb mode.
3801 */
3802 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3803 return -EOPNOTSUPP;
3804
3805 if (!bpf->prog)
3806 xdp_features_clear_redirect_target(dev);
3807
3808 if (is_run) {
3809 napi_disable(&fep->napi);
3810 netif_tx_disable(dev);
3811 }
3812
3813 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3814 if (old_prog)
3815 bpf_prog_put(old_prog);
3816
3817 fec_restart(dev);
3818
3819 if (is_run) {
3820 napi_enable(&fep->napi);
3821 netif_tx_start_all_queues(dev);
3822 }
3823
3824 if (bpf->prog)
3825 xdp_features_set_redirect_target(dev, false);
3826
3827 return 0;
3828
3829 case XDP_SETUP_XSK_POOL:
3830 return -EOPNOTSUPP;
3831
3832 default:
3833 return -EOPNOTSUPP;
3834 }
3835 }
3836
3837 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3838 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3839 {
3840 if (unlikely(index < 0))
3841 return 0;
3842
3843 return (index % fep->num_tx_queues);
3844 }
3845
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3846 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3847 struct fec_enet_priv_tx_q *txq,
3848 void *frame, u32 dma_sync_len,
3849 bool ndo_xmit)
3850 {
3851 unsigned int index, status, estatus;
3852 struct bufdesc *bdp;
3853 dma_addr_t dma_addr;
3854 int entries_free;
3855 u16 frame_len;
3856
3857 entries_free = fec_enet_get_free_txdesc_num(txq);
3858 if (entries_free < MAX_SKB_FRAGS + 1) {
3859 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3860 return -EBUSY;
3861 }
3862
3863 /* Fill in a Tx ring entry */
3864 bdp = txq->bd.cur;
3865 status = fec16_to_cpu(bdp->cbd_sc);
3866 status &= ~BD_ENET_TX_STATS;
3867
3868 index = fec_enet_get_bd_index(bdp, &txq->bd);
3869
3870 if (ndo_xmit) {
3871 struct xdp_frame *xdpf = frame;
3872
3873 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3874 xdpf->len, DMA_TO_DEVICE);
3875 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3876 return -ENOMEM;
3877
3878 frame_len = xdpf->len;
3879 txq->tx_buf[index].buf_p = xdpf;
3880 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3881 } else {
3882 struct xdp_buff *xdpb = frame;
3883 struct page *page;
3884
3885 page = virt_to_page(xdpb->data);
3886 dma_addr = page_pool_get_dma_addr(page) +
3887 (xdpb->data - xdpb->data_hard_start);
3888 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3889 dma_sync_len, DMA_BIDIRECTIONAL);
3890 frame_len = xdpb->data_end - xdpb->data;
3891 txq->tx_buf[index].buf_p = page;
3892 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3893 }
3894
3895 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3896 if (fep->bufdesc_ex)
3897 estatus = BD_ENET_TX_INT;
3898
3899 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3900 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3901
3902 if (fep->bufdesc_ex) {
3903 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3904
3905 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3906 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3907
3908 ebdp->cbd_bdu = 0;
3909 ebdp->cbd_esc = cpu_to_fec32(estatus);
3910 }
3911
3912 /* Make sure the updates to rest of the descriptor are performed before
3913 * transferring ownership.
3914 */
3915 dma_wmb();
3916
3917 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3918 * it's the last BD of the frame, and to put the CRC on the end.
3919 */
3920 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3921 bdp->cbd_sc = cpu_to_fec16(status);
3922
3923 /* If this was the last BD in the ring, start at the beginning again. */
3924 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3925
3926 /* Make sure the update to bdp are performed before txq->bd.cur. */
3927 dma_wmb();
3928
3929 txq->bd.cur = bdp;
3930
3931 /* Trigger transmission start */
3932 writel(0, txq->bd.reg_desc_active);
3933
3934 return 0;
3935 }
3936
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3937 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3938 int cpu, struct xdp_buff *xdp,
3939 u32 dma_sync_len)
3940 {
3941 struct fec_enet_priv_tx_q *txq;
3942 struct netdev_queue *nq;
3943 int queue, ret;
3944
3945 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3946 txq = fep->tx_queue[queue];
3947 nq = netdev_get_tx_queue(fep->netdev, queue);
3948
3949 __netif_tx_lock(nq, cpu);
3950
3951 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3952 txq_trans_cond_update(nq);
3953 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3954
3955 __netif_tx_unlock(nq);
3956
3957 return ret;
3958 }
3959
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3960 static int fec_enet_xdp_xmit(struct net_device *dev,
3961 int num_frames,
3962 struct xdp_frame **frames,
3963 u32 flags)
3964 {
3965 struct fec_enet_private *fep = netdev_priv(dev);
3966 struct fec_enet_priv_tx_q *txq;
3967 int cpu = smp_processor_id();
3968 unsigned int sent_frames = 0;
3969 struct netdev_queue *nq;
3970 unsigned int queue;
3971 int i;
3972
3973 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3974 txq = fep->tx_queue[queue];
3975 nq = netdev_get_tx_queue(fep->netdev, queue);
3976
3977 __netif_tx_lock(nq, cpu);
3978
3979 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3980 txq_trans_cond_update(nq);
3981 for (i = 0; i < num_frames; i++) {
3982 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3983 break;
3984 sent_frames++;
3985 }
3986
3987 __netif_tx_unlock(nq);
3988
3989 return sent_frames;
3990 }
3991
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3992 static int fec_hwtstamp_get(struct net_device *ndev,
3993 struct kernel_hwtstamp_config *config)
3994 {
3995 struct fec_enet_private *fep = netdev_priv(ndev);
3996
3997 if (!netif_running(ndev))
3998 return -EINVAL;
3999
4000 if (!fep->bufdesc_ex)
4001 return -EOPNOTSUPP;
4002
4003 fec_ptp_get(ndev, config);
4004
4005 return 0;
4006 }
4007
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4008 static int fec_hwtstamp_set(struct net_device *ndev,
4009 struct kernel_hwtstamp_config *config,
4010 struct netlink_ext_ack *extack)
4011 {
4012 struct fec_enet_private *fep = netdev_priv(ndev);
4013
4014 if (!netif_running(ndev))
4015 return -EINVAL;
4016
4017 if (!fep->bufdesc_ex)
4018 return -EOPNOTSUPP;
4019
4020 return fec_ptp_set(ndev, config, extack);
4021 }
4022
4023 static const struct net_device_ops fec_netdev_ops = {
4024 .ndo_open = fec_enet_open,
4025 .ndo_stop = fec_enet_close,
4026 .ndo_start_xmit = fec_enet_start_xmit,
4027 .ndo_select_queue = fec_enet_select_queue,
4028 .ndo_set_rx_mode = set_multicast_list,
4029 .ndo_validate_addr = eth_validate_addr,
4030 .ndo_tx_timeout = fec_timeout,
4031 .ndo_set_mac_address = fec_set_mac_address,
4032 .ndo_eth_ioctl = phy_do_ioctl_running,
4033 .ndo_set_features = fec_set_features,
4034 .ndo_bpf = fec_enet_bpf,
4035 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4036 .ndo_hwtstamp_get = fec_hwtstamp_get,
4037 .ndo_hwtstamp_set = fec_hwtstamp_set,
4038 };
4039
4040 static const unsigned short offset_des_active_rxq[] = {
4041 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4042 };
4043
4044 static const unsigned short offset_des_active_txq[] = {
4045 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4046 };
4047
4048 /*
4049 * XXX: We need to clean up on failure exits here.
4050 *
4051 */
fec_enet_init(struct net_device * ndev)4052 static int fec_enet_init(struct net_device *ndev)
4053 {
4054 struct fec_enet_private *fep = netdev_priv(ndev);
4055 struct bufdesc *cbd_base;
4056 dma_addr_t bd_dma;
4057 int bd_size;
4058 unsigned int i;
4059 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4060 sizeof(struct bufdesc);
4061 unsigned dsize_log2 = __fls(dsize);
4062 int ret;
4063
4064 WARN_ON(dsize != (1 << dsize_log2));
4065 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4066 fep->rx_align = 0xf;
4067 fep->tx_align = 0xf;
4068 #else
4069 fep->rx_align = 0x3;
4070 fep->tx_align = 0x3;
4071 #endif
4072 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4073 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4074 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4075 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4076
4077 /* Check mask of the streaming and coherent API */
4078 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4079 if (ret < 0) {
4080 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4081 return ret;
4082 }
4083
4084 ret = fec_enet_alloc_queue(ndev);
4085 if (ret)
4086 return ret;
4087
4088 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4089
4090 /* Allocate memory for buffer descriptors. */
4091 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4092 GFP_KERNEL);
4093 if (!cbd_base) {
4094 ret = -ENOMEM;
4095 goto free_queue_mem;
4096 }
4097
4098 /* Get the Ethernet address */
4099 ret = fec_get_mac(ndev);
4100 if (ret)
4101 goto free_queue_mem;
4102
4103 /* Set receive and transmit descriptor base. */
4104 for (i = 0; i < fep->num_rx_queues; i++) {
4105 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4106 unsigned size = dsize * rxq->bd.ring_size;
4107
4108 rxq->bd.qid = i;
4109 rxq->bd.base = cbd_base;
4110 rxq->bd.cur = cbd_base;
4111 rxq->bd.dma = bd_dma;
4112 rxq->bd.dsize = dsize;
4113 rxq->bd.dsize_log2 = dsize_log2;
4114 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4115 bd_dma += size;
4116 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4117 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4118 }
4119
4120 for (i = 0; i < fep->num_tx_queues; i++) {
4121 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4122 unsigned size = dsize * txq->bd.ring_size;
4123
4124 txq->bd.qid = i;
4125 txq->bd.base = cbd_base;
4126 txq->bd.cur = cbd_base;
4127 txq->bd.dma = bd_dma;
4128 txq->bd.dsize = dsize;
4129 txq->bd.dsize_log2 = dsize_log2;
4130 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4131 bd_dma += size;
4132 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4133 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4134 }
4135
4136
4137 /* The FEC Ethernet specific entries in the device structure */
4138 ndev->watchdog_timeo = TX_TIMEOUT;
4139 ndev->netdev_ops = &fec_netdev_ops;
4140 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4141
4142 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4143 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4144
4145 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4146 /* enable hw VLAN support */
4147 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4148
4149 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4150 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4151
4152 /* enable hw accelerator */
4153 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4154 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4155 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4156 }
4157
4158 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4159 fep->tx_align = 0;
4160 fep->rx_align = 0x3f;
4161 }
4162
4163 ndev->hw_features = ndev->features;
4164
4165 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4166 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4167 NETDEV_XDP_ACT_REDIRECT;
4168
4169 fec_restart(ndev);
4170
4171 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4172 fec_enet_clear_ethtool_stats(ndev);
4173 else
4174 fec_enet_update_ethtool_stats(ndev);
4175
4176 return 0;
4177
4178 free_queue_mem:
4179 fec_enet_free_queue(ndev);
4180 return ret;
4181 }
4182
fec_enet_deinit(struct net_device * ndev)4183 static void fec_enet_deinit(struct net_device *ndev)
4184 {
4185 struct fec_enet_private *fep = netdev_priv(ndev);
4186
4187 netif_napi_del(&fep->napi);
4188 fec_enet_free_queue(ndev);
4189 }
4190
4191 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4192 static int fec_reset_phy(struct platform_device *pdev)
4193 {
4194 struct gpio_desc *phy_reset;
4195 int msec = 1, phy_post_delay = 0;
4196 struct device_node *np = pdev->dev.of_node;
4197 int err;
4198
4199 if (!np)
4200 return 0;
4201
4202 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4203 /* A sane reset duration should not be longer than 1s */
4204 if (!err && msec > 1000)
4205 msec = 1;
4206
4207 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4208 /* valid reset duration should be less than 1s */
4209 if (!err && phy_post_delay > 1000)
4210 return -EINVAL;
4211
4212 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4213 GPIOD_OUT_HIGH);
4214 if (IS_ERR(phy_reset))
4215 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4216 "failed to get phy-reset-gpios\n");
4217
4218 if (!phy_reset)
4219 return 0;
4220
4221 if (msec > 20)
4222 msleep(msec);
4223 else
4224 usleep_range(msec * 1000, msec * 1000 + 1000);
4225
4226 gpiod_set_value_cansleep(phy_reset, 0);
4227
4228 if (!phy_post_delay)
4229 return 0;
4230
4231 if (phy_post_delay > 20)
4232 msleep(phy_post_delay);
4233 else
4234 usleep_range(phy_post_delay * 1000,
4235 phy_post_delay * 1000 + 1000);
4236
4237 return 0;
4238 }
4239 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4240 static int fec_reset_phy(struct platform_device *pdev)
4241 {
4242 /*
4243 * In case of platform probe, the reset has been done
4244 * by machine code.
4245 */
4246 return 0;
4247 }
4248 #endif /* CONFIG_OF */
4249
4250 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4251 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4252 {
4253 struct device_node *np = pdev->dev.of_node;
4254
4255 *num_tx = *num_rx = 1;
4256
4257 if (!np || !of_device_is_available(np))
4258 return;
4259
4260 /* parse the num of tx and rx queues */
4261 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4262
4263 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4264
4265 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4266 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4267 *num_tx);
4268 *num_tx = 1;
4269 return;
4270 }
4271
4272 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4273 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4274 *num_rx);
4275 *num_rx = 1;
4276 return;
4277 }
4278
4279 }
4280
fec_enet_get_irq_cnt(struct platform_device * pdev)4281 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4282 {
4283 int irq_cnt = platform_irq_count(pdev);
4284
4285 if (irq_cnt > FEC_IRQ_NUM)
4286 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4287 else if (irq_cnt == 2)
4288 irq_cnt = 1; /* last for pps */
4289 else if (irq_cnt <= 0)
4290 irq_cnt = 1; /* At least 1 irq is needed */
4291 return irq_cnt;
4292 }
4293
fec_enet_get_wakeup_irq(struct platform_device * pdev)4294 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4295 {
4296 struct net_device *ndev = platform_get_drvdata(pdev);
4297 struct fec_enet_private *fep = netdev_priv(ndev);
4298
4299 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4300 fep->wake_irq = fep->irq[2];
4301 else
4302 fep->wake_irq = fep->irq[0];
4303 }
4304
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4305 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4306 struct device_node *np)
4307 {
4308 struct device_node *gpr_np;
4309 u32 out_val[3];
4310 int ret = 0;
4311
4312 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4313 if (!gpr_np)
4314 return 0;
4315
4316 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4317 ARRAY_SIZE(out_val));
4318 if (ret) {
4319 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4320 goto out;
4321 }
4322
4323 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4324 if (IS_ERR(fep->stop_gpr.gpr)) {
4325 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4326 ret = PTR_ERR(fep->stop_gpr.gpr);
4327 fep->stop_gpr.gpr = NULL;
4328 goto out;
4329 }
4330
4331 fep->stop_gpr.reg = out_val[1];
4332 fep->stop_gpr.bit = out_val[2];
4333
4334 out:
4335 of_node_put(gpr_np);
4336
4337 return ret;
4338 }
4339
4340 static int
fec_probe(struct platform_device * pdev)4341 fec_probe(struct platform_device *pdev)
4342 {
4343 struct fec_enet_private *fep;
4344 struct fec_platform_data *pdata;
4345 phy_interface_t interface;
4346 struct net_device *ndev;
4347 int i, irq, ret = 0;
4348 static int dev_id;
4349 struct device_node *np = pdev->dev.of_node, *phy_node;
4350 int num_tx_qs;
4351 int num_rx_qs;
4352 char irq_name[8];
4353 int irq_cnt;
4354 const struct fec_devinfo *dev_info;
4355
4356 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4357
4358 /* Init network device */
4359 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4360 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4361 if (!ndev)
4362 return -ENOMEM;
4363
4364 SET_NETDEV_DEV(ndev, &pdev->dev);
4365
4366 /* setup board info structure */
4367 fep = netdev_priv(ndev);
4368
4369 dev_info = device_get_match_data(&pdev->dev);
4370 if (!dev_info)
4371 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4372 if (dev_info)
4373 fep->quirks = dev_info->quirks;
4374
4375 fep->netdev = ndev;
4376 fep->num_rx_queues = num_rx_qs;
4377 fep->num_tx_queues = num_tx_qs;
4378
4379 #if !defined(CONFIG_M5272)
4380 /* default enable pause frame auto negotiation */
4381 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4382 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4383 #endif
4384
4385 /* Select default pin state */
4386 pinctrl_pm_select_default_state(&pdev->dev);
4387
4388 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4389 if (IS_ERR(fep->hwp)) {
4390 ret = PTR_ERR(fep->hwp);
4391 goto failed_ioremap;
4392 }
4393
4394 fep->pdev = pdev;
4395 fep->dev_id = dev_id++;
4396
4397 platform_set_drvdata(pdev, ndev);
4398
4399 if ((of_machine_is_compatible("fsl,imx6q") ||
4400 of_machine_is_compatible("fsl,imx6dl")) &&
4401 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4402 fep->quirks |= FEC_QUIRK_ERR006687;
4403
4404 ret = fec_enet_ipc_handle_init(fep);
4405 if (ret)
4406 goto failed_ipc_init;
4407
4408 if (of_property_read_bool(np, "fsl,magic-packet"))
4409 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4410
4411 ret = fec_enet_init_stop_mode(fep, np);
4412 if (ret)
4413 goto failed_stop_mode;
4414
4415 phy_node = of_parse_phandle(np, "phy-handle", 0);
4416 if (!phy_node && of_phy_is_fixed_link(np)) {
4417 ret = of_phy_register_fixed_link(np);
4418 if (ret < 0) {
4419 dev_err(&pdev->dev,
4420 "broken fixed-link specification\n");
4421 goto failed_phy;
4422 }
4423 phy_node = of_node_get(np);
4424 }
4425 fep->phy_node = phy_node;
4426
4427 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4428 if (ret) {
4429 pdata = dev_get_platdata(&pdev->dev);
4430 if (pdata)
4431 fep->phy_interface = pdata->phy;
4432 else
4433 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4434 } else {
4435 fep->phy_interface = interface;
4436 }
4437
4438 ret = fec_enet_parse_rgmii_delay(fep, np);
4439 if (ret)
4440 goto failed_rgmii_delay;
4441
4442 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4443 if (IS_ERR(fep->clk_ipg)) {
4444 ret = PTR_ERR(fep->clk_ipg);
4445 goto failed_clk;
4446 }
4447
4448 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4449 if (IS_ERR(fep->clk_ahb)) {
4450 ret = PTR_ERR(fep->clk_ahb);
4451 goto failed_clk;
4452 }
4453
4454 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4455
4456 /* enet_out is optional, depends on board */
4457 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4458 if (IS_ERR(fep->clk_enet_out)) {
4459 ret = PTR_ERR(fep->clk_enet_out);
4460 goto failed_clk;
4461 }
4462
4463 fep->ptp_clk_on = false;
4464 mutex_init(&fep->ptp_clk_mutex);
4465
4466 /* clk_ref is optional, depends on board */
4467 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4468 if (IS_ERR(fep->clk_ref)) {
4469 ret = PTR_ERR(fep->clk_ref);
4470 goto failed_clk;
4471 }
4472 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4473
4474 /* clk_2x_txclk is optional, depends on board */
4475 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4476 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4477 if (IS_ERR(fep->clk_2x_txclk))
4478 fep->clk_2x_txclk = NULL;
4479 }
4480
4481 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4482 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4483 if (IS_ERR(fep->clk_ptp)) {
4484 fep->clk_ptp = NULL;
4485 fep->bufdesc_ex = false;
4486 }
4487
4488 ret = fec_enet_clk_enable(ndev, true);
4489 if (ret)
4490 goto failed_clk;
4491
4492 ret = clk_prepare_enable(fep->clk_ipg);
4493 if (ret)
4494 goto failed_clk_ipg;
4495 ret = clk_prepare_enable(fep->clk_ahb);
4496 if (ret)
4497 goto failed_clk_ahb;
4498
4499 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4500 if (!IS_ERR(fep->reg_phy)) {
4501 ret = regulator_enable(fep->reg_phy);
4502 if (ret) {
4503 dev_err(&pdev->dev,
4504 "Failed to enable phy regulator: %d\n", ret);
4505 goto failed_regulator;
4506 }
4507 } else {
4508 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4509 ret = -EPROBE_DEFER;
4510 goto failed_regulator;
4511 }
4512 fep->reg_phy = NULL;
4513 }
4514
4515 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4516 pm_runtime_use_autosuspend(&pdev->dev);
4517 pm_runtime_get_noresume(&pdev->dev);
4518 pm_runtime_set_active(&pdev->dev);
4519 pm_runtime_enable(&pdev->dev);
4520
4521 ret = fec_reset_phy(pdev);
4522 if (ret)
4523 goto failed_reset;
4524
4525 irq_cnt = fec_enet_get_irq_cnt(pdev);
4526 if (fep->bufdesc_ex)
4527 fec_ptp_init(pdev, irq_cnt);
4528
4529 ret = fec_enet_init(ndev);
4530 if (ret)
4531 goto failed_init;
4532
4533 for (i = 0; i < irq_cnt; i++) {
4534 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4535 irq = platform_get_irq_byname_optional(pdev, irq_name);
4536 if (irq < 0)
4537 irq = platform_get_irq(pdev, i);
4538 if (irq < 0) {
4539 ret = irq;
4540 goto failed_irq;
4541 }
4542 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4543 0, pdev->name, ndev);
4544 if (ret)
4545 goto failed_irq;
4546
4547 fep->irq[i] = irq;
4548 }
4549
4550 /* Decide which interrupt line is wakeup capable */
4551 fec_enet_get_wakeup_irq(pdev);
4552
4553 ret = fec_enet_mii_init(pdev);
4554 if (ret)
4555 goto failed_mii_init;
4556
4557 /* Carrier starts down, phylib will bring it up */
4558 netif_carrier_off(ndev);
4559 fec_enet_clk_enable(ndev, false);
4560 pinctrl_pm_select_sleep_state(&pdev->dev);
4561
4562 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4563
4564 ret = register_netdev(ndev);
4565 if (ret)
4566 goto failed_register;
4567
4568 device_init_wakeup(&ndev->dev, fep->wol_flag &
4569 FEC_WOL_HAS_MAGIC_PACKET);
4570
4571 if (fep->bufdesc_ex && fep->ptp_clock)
4572 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4573
4574 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4575
4576 pm_runtime_mark_last_busy(&pdev->dev);
4577 pm_runtime_put_autosuspend(&pdev->dev);
4578
4579 return 0;
4580
4581 failed_register:
4582 fec_enet_mii_remove(fep);
4583 failed_mii_init:
4584 failed_irq:
4585 fec_enet_deinit(ndev);
4586 failed_init:
4587 fec_ptp_stop(pdev);
4588 failed_reset:
4589 pm_runtime_put_noidle(&pdev->dev);
4590 pm_runtime_disable(&pdev->dev);
4591 if (fep->reg_phy)
4592 regulator_disable(fep->reg_phy);
4593 failed_regulator:
4594 clk_disable_unprepare(fep->clk_ahb);
4595 failed_clk_ahb:
4596 clk_disable_unprepare(fep->clk_ipg);
4597 failed_clk_ipg:
4598 fec_enet_clk_enable(ndev, false);
4599 failed_clk:
4600 failed_rgmii_delay:
4601 if (of_phy_is_fixed_link(np))
4602 of_phy_deregister_fixed_link(np);
4603 of_node_put(phy_node);
4604 failed_stop_mode:
4605 failed_ipc_init:
4606 failed_phy:
4607 dev_id--;
4608 failed_ioremap:
4609 free_netdev(ndev);
4610
4611 return ret;
4612 }
4613
4614 static void
fec_drv_remove(struct platform_device * pdev)4615 fec_drv_remove(struct platform_device *pdev)
4616 {
4617 struct net_device *ndev = platform_get_drvdata(pdev);
4618 struct fec_enet_private *fep = netdev_priv(ndev);
4619 struct device_node *np = pdev->dev.of_node;
4620 int ret;
4621
4622 ret = pm_runtime_get_sync(&pdev->dev);
4623 if (ret < 0)
4624 dev_err(&pdev->dev,
4625 "Failed to resume device in remove callback (%pe)\n",
4626 ERR_PTR(ret));
4627
4628 cancel_work_sync(&fep->tx_timeout_work);
4629 fec_ptp_stop(pdev);
4630 unregister_netdev(ndev);
4631 fec_enet_mii_remove(fep);
4632 if (fep->reg_phy)
4633 regulator_disable(fep->reg_phy);
4634
4635 if (of_phy_is_fixed_link(np))
4636 of_phy_deregister_fixed_link(np);
4637 of_node_put(fep->phy_node);
4638
4639 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4640 * disabling them again.
4641 */
4642 if (ret >= 0) {
4643 clk_disable_unprepare(fep->clk_ahb);
4644 clk_disable_unprepare(fep->clk_ipg);
4645 }
4646 pm_runtime_put_noidle(&pdev->dev);
4647 pm_runtime_disable(&pdev->dev);
4648
4649 fec_enet_deinit(ndev);
4650 free_netdev(ndev);
4651 }
4652
fec_suspend(struct device * dev)4653 static int fec_suspend(struct device *dev)
4654 {
4655 struct net_device *ndev = dev_get_drvdata(dev);
4656 struct fec_enet_private *fep = netdev_priv(ndev);
4657 int ret;
4658
4659 rtnl_lock();
4660 if (netif_running(ndev)) {
4661 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4662 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4663 phy_stop(ndev->phydev);
4664 napi_disable(&fep->napi);
4665 netif_tx_lock_bh(ndev);
4666 netif_device_detach(ndev);
4667 netif_tx_unlock_bh(ndev);
4668 fec_stop(ndev);
4669 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4670 fec_irqs_disable(ndev);
4671 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4672 } else {
4673 fec_irqs_disable_except_wakeup(ndev);
4674 if (fep->wake_irq > 0) {
4675 disable_irq(fep->wake_irq);
4676 enable_irq_wake(fep->wake_irq);
4677 }
4678 fec_enet_stop_mode(fep, true);
4679 }
4680 /* It's safe to disable clocks since interrupts are masked */
4681 fec_enet_clk_enable(ndev, false);
4682
4683 fep->rpm_active = !pm_runtime_status_suspended(dev);
4684 if (fep->rpm_active) {
4685 ret = pm_runtime_force_suspend(dev);
4686 if (ret < 0) {
4687 rtnl_unlock();
4688 return ret;
4689 }
4690 }
4691 }
4692 rtnl_unlock();
4693
4694 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4695 regulator_disable(fep->reg_phy);
4696
4697 /* SOC supply clock to phy, when clock is disabled, phy link down
4698 * SOC control phy regulator, when regulator is disabled, phy link down
4699 */
4700 if (fep->clk_enet_out || fep->reg_phy)
4701 fep->link = 0;
4702
4703 return 0;
4704 }
4705
fec_resume(struct device * dev)4706 static int fec_resume(struct device *dev)
4707 {
4708 struct net_device *ndev = dev_get_drvdata(dev);
4709 struct fec_enet_private *fep = netdev_priv(ndev);
4710 int ret;
4711 int val;
4712
4713 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4714 ret = regulator_enable(fep->reg_phy);
4715 if (ret)
4716 return ret;
4717 }
4718
4719 rtnl_lock();
4720 if (netif_running(ndev)) {
4721 if (fep->rpm_active)
4722 pm_runtime_force_resume(dev);
4723
4724 ret = fec_enet_clk_enable(ndev, true);
4725 if (ret) {
4726 rtnl_unlock();
4727 goto failed_clk;
4728 }
4729 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4730 fec_enet_stop_mode(fep, false);
4731 if (fep->wake_irq) {
4732 disable_irq_wake(fep->wake_irq);
4733 enable_irq(fep->wake_irq);
4734 }
4735
4736 val = readl(fep->hwp + FEC_ECNTRL);
4737 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4738 writel(val, fep->hwp + FEC_ECNTRL);
4739 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4740 } else {
4741 pinctrl_pm_select_default_state(&fep->pdev->dev);
4742 }
4743 fec_restart(ndev);
4744 netif_tx_lock_bh(ndev);
4745 netif_device_attach(ndev);
4746 netif_tx_unlock_bh(ndev);
4747 napi_enable(&fep->napi);
4748 phy_init_hw(ndev->phydev);
4749 phy_start(ndev->phydev);
4750 }
4751 rtnl_unlock();
4752
4753 return 0;
4754
4755 failed_clk:
4756 if (fep->reg_phy)
4757 regulator_disable(fep->reg_phy);
4758 return ret;
4759 }
4760
fec_runtime_suspend(struct device * dev)4761 static int fec_runtime_suspend(struct device *dev)
4762 {
4763 struct net_device *ndev = dev_get_drvdata(dev);
4764 struct fec_enet_private *fep = netdev_priv(ndev);
4765
4766 clk_disable_unprepare(fep->clk_ahb);
4767 clk_disable_unprepare(fep->clk_ipg);
4768
4769 return 0;
4770 }
4771
fec_runtime_resume(struct device * dev)4772 static int fec_runtime_resume(struct device *dev)
4773 {
4774 struct net_device *ndev = dev_get_drvdata(dev);
4775 struct fec_enet_private *fep = netdev_priv(ndev);
4776 int ret;
4777
4778 ret = clk_prepare_enable(fep->clk_ahb);
4779 if (ret)
4780 return ret;
4781 ret = clk_prepare_enable(fep->clk_ipg);
4782 if (ret)
4783 goto failed_clk_ipg;
4784
4785 return 0;
4786
4787 failed_clk_ipg:
4788 clk_disable_unprepare(fep->clk_ahb);
4789 return ret;
4790 }
4791
4792 static const struct dev_pm_ops fec_pm_ops = {
4793 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4794 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4795 };
4796
4797 static struct platform_driver fec_driver = {
4798 .driver = {
4799 .name = DRIVER_NAME,
4800 .pm = pm_ptr(&fec_pm_ops),
4801 .of_match_table = fec_dt_ids,
4802 .suppress_bind_attrs = true,
4803 },
4804 .id_table = fec_devtype,
4805 .probe = fec_probe,
4806 .remove = fec_drv_remove,
4807 };
4808
4809 module_platform_driver(fec_driver);
4810
4811 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4812 MODULE_LICENSE("GPL");
4813