xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision ebd297a2affadb6f6f4d2e5d975c1eda18ac762d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6x_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
718 	    !readl(txq->bd.reg_desc_active) ||
719 	    !readl(txq->bd.reg_desc_active) ||
720 	    !readl(txq->bd.reg_desc_active) ||
721 	    !readl(txq->bd.reg_desc_active))
722 		writel(0, txq->bd.reg_desc_active);
723 
724 	return 0;
725 }
726 
727 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)728 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
729 			  struct net_device *ndev,
730 			  struct bufdesc *bdp, int index, char *data,
731 			  int size, bool last_tcp, bool is_last)
732 {
733 	struct fec_enet_private *fep = netdev_priv(ndev);
734 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
735 	unsigned short status;
736 	unsigned int estatus = 0;
737 	dma_addr_t addr;
738 
739 	status = fec16_to_cpu(bdp->cbd_sc);
740 	status &= ~BD_ENET_TX_STATS;
741 
742 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
743 
744 	if (((unsigned long) data) & fep->tx_align ||
745 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
746 		memcpy(txq->tx_bounce[index], data, size);
747 		data = txq->tx_bounce[index];
748 
749 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
750 			swap_buffer(data, size);
751 	}
752 
753 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
754 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
755 		dev_kfree_skb_any(skb);
756 		if (net_ratelimit())
757 			netdev_err(ndev, "Tx DMA memory map failed\n");
758 		return NETDEV_TX_OK;
759 	}
760 
761 	bdp->cbd_datlen = cpu_to_fec16(size);
762 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
763 
764 	if (fep->bufdesc_ex) {
765 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
766 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
767 		if (skb->ip_summed == CHECKSUM_PARTIAL)
768 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
769 		ebdp->cbd_bdu = 0;
770 		ebdp->cbd_esc = cpu_to_fec32(estatus);
771 	}
772 
773 	/* Handle the last BD specially */
774 	if (last_tcp)
775 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
776 	if (is_last) {
777 		status |= BD_ENET_TX_INTR;
778 		if (fep->bufdesc_ex)
779 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
780 	}
781 
782 	bdp->cbd_sc = cpu_to_fec16(status);
783 
784 	return 0;
785 }
786 
787 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)788 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
789 			 struct sk_buff *skb, struct net_device *ndev,
790 			 struct bufdesc *bdp, int index)
791 {
792 	struct fec_enet_private *fep = netdev_priv(ndev);
793 	int hdr_len = skb_tcp_all_headers(skb);
794 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
795 	void *bufaddr;
796 	unsigned long dmabuf;
797 	unsigned short status;
798 	unsigned int estatus = 0;
799 
800 	status = fec16_to_cpu(bdp->cbd_sc);
801 	status &= ~BD_ENET_TX_STATS;
802 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
803 
804 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
805 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
806 	if (((unsigned long)bufaddr) & fep->tx_align ||
807 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
808 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
809 		bufaddr = txq->tx_bounce[index];
810 
811 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
812 			swap_buffer(bufaddr, hdr_len);
813 
814 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
815 					hdr_len, DMA_TO_DEVICE);
816 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
817 			dev_kfree_skb_any(skb);
818 			if (net_ratelimit())
819 				netdev_err(ndev, "Tx DMA memory map failed\n");
820 			return NETDEV_TX_OK;
821 		}
822 	}
823 
824 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
825 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
826 
827 	if (fep->bufdesc_ex) {
828 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
829 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
830 		if (skb->ip_summed == CHECKSUM_PARTIAL)
831 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
832 		ebdp->cbd_bdu = 0;
833 		ebdp->cbd_esc = cpu_to_fec32(estatus);
834 	}
835 
836 	bdp->cbd_sc = cpu_to_fec16(status);
837 
838 	return 0;
839 }
840 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)841 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
842 				   struct sk_buff *skb,
843 				   struct net_device *ndev)
844 {
845 	struct fec_enet_private *fep = netdev_priv(ndev);
846 	int hdr_len, total_len, data_left;
847 	struct bufdesc *bdp = txq->bd.cur;
848 	struct bufdesc *tmp_bdp;
849 	struct bufdesc_ex *ebdp;
850 	struct tso_t tso;
851 	unsigned int index = 0;
852 	int ret;
853 
854 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
855 		dev_kfree_skb_any(skb);
856 		if (net_ratelimit())
857 			netdev_err(ndev, "NOT enough BD for TSO!\n");
858 		return NETDEV_TX_OK;
859 	}
860 
861 	/* Protocol checksum off-load for TCP and UDP. */
862 	if (fec_enet_clear_csum(skb, ndev)) {
863 		dev_kfree_skb_any(skb);
864 		return NETDEV_TX_OK;
865 	}
866 
867 	/* Initialize the TSO handler, and prepare the first payload */
868 	hdr_len = tso_start(skb, &tso);
869 
870 	total_len = skb->len - hdr_len;
871 	while (total_len > 0) {
872 		char *hdr;
873 
874 		index = fec_enet_get_bd_index(bdp, &txq->bd);
875 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
876 		total_len -= data_left;
877 
878 		/* prepare packet headers: MAC + IP + TCP */
879 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
880 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
881 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
882 		if (ret)
883 			goto err_release;
884 
885 		while (data_left > 0) {
886 			int size;
887 
888 			size = min_t(int, tso.size, data_left);
889 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
890 			index = fec_enet_get_bd_index(bdp, &txq->bd);
891 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
892 							bdp, index,
893 							tso.data, size,
894 							size == data_left,
895 							total_len == 0);
896 			if (ret)
897 				goto err_release;
898 
899 			data_left -= size;
900 			tso_build_data(skb, &tso, size);
901 		}
902 
903 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
904 	}
905 
906 	/* Save skb pointer */
907 	txq->tx_buf[index].buf_p = skb;
908 
909 	skb_tx_timestamp(skb);
910 	txq->bd.cur = bdp;
911 
912 	/* Trigger transmission start */
913 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
914 	    !readl(txq->bd.reg_desc_active) ||
915 	    !readl(txq->bd.reg_desc_active) ||
916 	    !readl(txq->bd.reg_desc_active) ||
917 	    !readl(txq->bd.reg_desc_active))
918 		writel(0, txq->bd.reg_desc_active);
919 
920 	return 0;
921 
922 err_release:
923 	/* Release all used data descriptors for TSO */
924 	tmp_bdp = txq->bd.cur;
925 
926 	while (tmp_bdp != bdp) {
927 		/* Unmap data buffers */
928 		if (tmp_bdp->cbd_bufaddr &&
929 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
930 			dma_unmap_single(&fep->pdev->dev,
931 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
932 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
933 					 DMA_TO_DEVICE);
934 
935 		/* Clear standard buffer descriptor fields */
936 		tmp_bdp->cbd_sc = 0;
937 		tmp_bdp->cbd_datlen = 0;
938 		tmp_bdp->cbd_bufaddr = 0;
939 
940 		/* Handle extended descriptor if enabled */
941 		if (fep->bufdesc_ex) {
942 			ebdp = (struct bufdesc_ex *)tmp_bdp;
943 			ebdp->cbd_esc = 0;
944 		}
945 
946 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
947 	}
948 
949 	dev_kfree_skb_any(skb);
950 
951 	return ret;
952 }
953 
954 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)955 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
956 {
957 	struct fec_enet_private *fep = netdev_priv(ndev);
958 	int entries_free;
959 	unsigned short queue;
960 	struct fec_enet_priv_tx_q *txq;
961 	struct netdev_queue *nq;
962 	int ret;
963 
964 	queue = skb_get_queue_mapping(skb);
965 	txq = fep->tx_queue[queue];
966 	nq = netdev_get_tx_queue(ndev, queue);
967 
968 	if (skb_is_gso(skb))
969 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
970 	else
971 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
972 	if (ret)
973 		return ret;
974 
975 	entries_free = fec_enet_get_free_txdesc_num(txq);
976 	if (entries_free <= txq->tx_stop_threshold)
977 		netif_tx_stop_queue(nq);
978 
979 	return NETDEV_TX_OK;
980 }
981 
982 /* Init RX & TX buffer descriptors
983  */
fec_enet_bd_init(struct net_device * dev)984 static void fec_enet_bd_init(struct net_device *dev)
985 {
986 	struct fec_enet_private *fep = netdev_priv(dev);
987 	struct fec_enet_priv_tx_q *txq;
988 	struct fec_enet_priv_rx_q *rxq;
989 	struct bufdesc *bdp;
990 	unsigned int i;
991 	unsigned int q;
992 
993 	for (q = 0; q < fep->num_rx_queues; q++) {
994 		/* Initialize the receive buffer descriptors. */
995 		rxq = fep->rx_queue[q];
996 		bdp = rxq->bd.base;
997 
998 		for (i = 0; i < rxq->bd.ring_size; i++) {
999 
1000 			/* Initialize the BD for every fragment in the page. */
1001 			if (bdp->cbd_bufaddr)
1002 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1003 			else
1004 				bdp->cbd_sc = cpu_to_fec16(0);
1005 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1006 		}
1007 
1008 		/* Set the last buffer to wrap */
1009 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1010 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1011 
1012 		rxq->bd.cur = rxq->bd.base;
1013 	}
1014 
1015 	for (q = 0; q < fep->num_tx_queues; q++) {
1016 		/* ...and the same for transmit */
1017 		txq = fep->tx_queue[q];
1018 		bdp = txq->bd.base;
1019 		txq->bd.cur = bdp;
1020 
1021 		for (i = 0; i < txq->bd.ring_size; i++) {
1022 			/* Initialize the BD for every fragment in the page. */
1023 			bdp->cbd_sc = cpu_to_fec16(0);
1024 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1025 				if (bdp->cbd_bufaddr &&
1026 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1027 					dma_unmap_single(&fep->pdev->dev,
1028 							 fec32_to_cpu(bdp->cbd_bufaddr),
1029 							 fec16_to_cpu(bdp->cbd_datlen),
1030 							 DMA_TO_DEVICE);
1031 				if (txq->tx_buf[i].buf_p)
1032 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1033 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1034 				if (bdp->cbd_bufaddr)
1035 					dma_unmap_single(&fep->pdev->dev,
1036 							 fec32_to_cpu(bdp->cbd_bufaddr),
1037 							 fec16_to_cpu(bdp->cbd_datlen),
1038 							 DMA_TO_DEVICE);
1039 
1040 				if (txq->tx_buf[i].buf_p)
1041 					xdp_return_frame(txq->tx_buf[i].buf_p);
1042 			} else {
1043 				struct page *page = txq->tx_buf[i].buf_p;
1044 
1045 				if (page)
1046 					page_pool_put_page(page->pp, page, 0, false);
1047 			}
1048 
1049 			txq->tx_buf[i].buf_p = NULL;
1050 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1051 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1052 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1053 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1054 		}
1055 
1056 		/* Set the last buffer to wrap */
1057 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1058 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1059 		txq->dirty_tx = bdp;
1060 	}
1061 }
1062 
fec_enet_active_rxring(struct net_device * ndev)1063 static void fec_enet_active_rxring(struct net_device *ndev)
1064 {
1065 	struct fec_enet_private *fep = netdev_priv(ndev);
1066 	int i;
1067 
1068 	for (i = 0; i < fep->num_rx_queues; i++)
1069 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1070 }
1071 
fec_enet_enable_ring(struct net_device * ndev)1072 static void fec_enet_enable_ring(struct net_device *ndev)
1073 {
1074 	struct fec_enet_private *fep = netdev_priv(ndev);
1075 	struct fec_enet_priv_tx_q *txq;
1076 	struct fec_enet_priv_rx_q *rxq;
1077 	int i;
1078 
1079 	for (i = 0; i < fep->num_rx_queues; i++) {
1080 		rxq = fep->rx_queue[i];
1081 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1082 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1083 
1084 		/* enable DMA1/2 */
1085 		if (i)
1086 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1087 			       fep->hwp + FEC_RCMR(i));
1088 	}
1089 
1090 	for (i = 0; i < fep->num_tx_queues; i++) {
1091 		txq = fep->tx_queue[i];
1092 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1093 
1094 		/* enable DMA1/2 */
1095 		if (i)
1096 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1097 			       fep->hwp + FEC_DMA_CFG(i));
1098 	}
1099 }
1100 
1101 /* Whack a reset.  We should wait for this.
1102  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1103  * instead of reset MAC itself.
1104  */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1105 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1106 {
1107 	u32 val;
1108 
1109 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1111 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1112 			writel(0, fep->hwp + FEC_ECNTRL);
1113 		} else {
1114 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1115 			udelay(10);
1116 		}
1117 	} else {
1118 		val = readl(fep->hwp + FEC_ECNTRL);
1119 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 		writel(val, fep->hwp + FEC_ECNTRL);
1121 	}
1122 }
1123 
1124 /*
1125  * This function is called to start or restart the FEC during a link
1126  * change, transmit timeout, or to reconfigure the FEC.  The network
1127  * packet processing for this device must be stopped before this call.
1128  */
1129 static void
fec_restart(struct net_device * ndev)1130 fec_restart(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 	u32 temp_mac[2];
1134 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1135 	u32 ecntl = FEC_ECR_ETHEREN;
1136 
1137 	if (fep->bufdesc_ex)
1138 		fec_ptp_save_state(fep);
1139 
1140 	fec_ctrl_reset(fep, false);
1141 
1142 	/*
1143 	 * enet-mac reset will reset mac address registers too,
1144 	 * so need to reconfigure it.
1145 	 */
1146 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1147 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1148 	       fep->hwp + FEC_ADDR_LOW);
1149 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1150 	       fep->hwp + FEC_ADDR_HIGH);
1151 
1152 	/* Clear any outstanding interrupt, except MDIO. */
1153 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1154 
1155 	fec_enet_bd_init(ndev);
1156 
1157 	fec_enet_enable_ring(ndev);
1158 
1159 	/* Enable MII mode */
1160 	if (fep->full_duplex == DUPLEX_FULL) {
1161 		/* FD enable */
1162 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1163 	} else {
1164 		/* No Rcv on Xmit */
1165 		rcntl |= 0x02;
1166 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1167 	}
1168 
1169 	/* Set MII speed */
1170 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1171 
1172 #if !defined(CONFIG_M5272)
1173 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1174 		u32 val = readl(fep->hwp + FEC_RACC);
1175 
1176 		/* align IP header */
1177 		val |= FEC_RACC_SHIFT16;
1178 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1179 			/* set RX checksum */
1180 			val |= FEC_RACC_OPTIONS;
1181 		else
1182 			val &= ~FEC_RACC_OPTIONS;
1183 		writel(val, fep->hwp + FEC_RACC);
1184 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1185 	}
1186 #endif
1187 
1188 	/*
1189 	 * The phy interface and speed need to get configured
1190 	 * differently on enet-mac.
1191 	 */
1192 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1193 		/* Enable flow control and length check */
1194 		rcntl |= 0x40000000 | 0x00000020;
1195 
1196 		/* RGMII, RMII or MII */
1197 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1198 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1199 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1200 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1201 			rcntl |= (1 << 6);
1202 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1203 			rcntl |= FEC_RCR_RMII;
1204 		else
1205 			rcntl &= ~FEC_RCR_RMII;
1206 
1207 		/* 1G, 100M or 10M */
1208 		if (ndev->phydev) {
1209 			if (ndev->phydev->speed == SPEED_1000)
1210 				ecntl |= (1 << 5);
1211 			else if (ndev->phydev->speed == SPEED_100)
1212 				rcntl &= ~FEC_RCR_10BASET;
1213 			else
1214 				rcntl |= FEC_RCR_10BASET;
1215 		}
1216 	} else {
1217 #ifdef FEC_MIIGSK_ENR
1218 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1219 			u32 cfgr;
1220 			/* disable the gasket and wait */
1221 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1222 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1223 				udelay(1);
1224 
1225 			/*
1226 			 * configure the gasket:
1227 			 *   RMII, 50 MHz, no loopback, no echo
1228 			 *   MII, 25 MHz, no loopback, no echo
1229 			 */
1230 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1231 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1232 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1233 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1234 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1235 
1236 			/* re-enable the gasket */
1237 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1238 		}
1239 #endif
1240 	}
1241 
1242 #if !defined(CONFIG_M5272)
1243 	/* enable pause frame*/
1244 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1245 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1246 	     ndev->phydev && ndev->phydev->pause)) {
1247 		rcntl |= FEC_RCR_FLOWCTL;
1248 
1249 		/* set FIFO threshold parameter to reduce overrun */
1250 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1251 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1252 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1253 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1254 
1255 		/* OPD */
1256 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1257 	} else {
1258 		rcntl &= ~FEC_RCR_FLOWCTL;
1259 	}
1260 #endif /* !defined(CONFIG_M5272) */
1261 
1262 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1263 
1264 	/* Setup multicast filter. */
1265 	set_multicast_list(ndev);
1266 #ifndef CONFIG_M5272
1267 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1268 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1269 #endif
1270 
1271 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1272 		/* enable ENET endian swap */
1273 		ecntl |= FEC_ECR_BYTESWP;
1274 		/* enable ENET store and forward mode */
1275 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1276 	}
1277 
1278 	if (fep->bufdesc_ex)
1279 		ecntl |= FEC_ECR_EN1588;
1280 
1281 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1282 	    fep->rgmii_txc_dly)
1283 		ecntl |= FEC_ENET_TXC_DLY;
1284 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1285 	    fep->rgmii_rxc_dly)
1286 		ecntl |= FEC_ENET_RXC_DLY;
1287 
1288 #ifndef CONFIG_M5272
1289 	/* Enable the MIB statistic event counters */
1290 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1291 #endif
1292 
1293 	/* And last, enable the transmit and receive processing */
1294 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1295 	fec_enet_active_rxring(ndev);
1296 
1297 	if (fep->bufdesc_ex) {
1298 		fec_ptp_start_cyclecounter(ndev);
1299 		fec_ptp_restore_state(fep);
1300 	}
1301 
1302 	/* Enable interrupts we wish to service */
1303 	if (fep->link)
1304 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1305 	else
1306 		writel(0, fep->hwp + FEC_IMASK);
1307 
1308 	/* Init the interrupt coalescing */
1309 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1310 		fec_enet_itr_coal_set(ndev);
1311 }
1312 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1313 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1314 {
1315 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1316 	      of_machine_is_compatible("fsl,imx8qxp") ||
1317 	      of_machine_is_compatible("fsl,imx8dxl")))
1318 		return 0;
1319 
1320 	return imx_scu_get_handle(&fep->ipc_handle);
1321 }
1322 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1323 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1324 {
1325 	struct device_node *np = fep->pdev->dev.of_node;
1326 	u32 rsrc_id, val;
1327 	int idx;
1328 
1329 	if (!np || !fep->ipc_handle)
1330 		return;
1331 
1332 	idx = of_alias_get_id(np, "ethernet");
1333 	if (idx < 0)
1334 		idx = 0;
1335 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1336 
1337 	val = enabled ? 1 : 0;
1338 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1339 }
1340 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1341 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1342 {
1343 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1344 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1345 
1346 	if (stop_gpr->gpr) {
1347 		if (enabled)
1348 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1349 					   BIT(stop_gpr->bit),
1350 					   BIT(stop_gpr->bit));
1351 		else
1352 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1353 					   BIT(stop_gpr->bit), 0);
1354 	} else if (pdata && pdata->sleep_mode_enable) {
1355 		pdata->sleep_mode_enable(enabled);
1356 	} else {
1357 		fec_enet_ipg_stop_set(fep, enabled);
1358 	}
1359 }
1360 
fec_irqs_disable(struct net_device * ndev)1361 static void fec_irqs_disable(struct net_device *ndev)
1362 {
1363 	struct fec_enet_private *fep = netdev_priv(ndev);
1364 
1365 	writel(0, fep->hwp + FEC_IMASK);
1366 }
1367 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1368 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1369 {
1370 	struct fec_enet_private *fep = netdev_priv(ndev);
1371 
1372 	writel(0, fep->hwp + FEC_IMASK);
1373 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1374 }
1375 
1376 static void
fec_stop(struct net_device * ndev)1377 fec_stop(struct net_device *ndev)
1378 {
1379 	struct fec_enet_private *fep = netdev_priv(ndev);
1380 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1381 	u32 val;
1382 
1383 	/* We cannot expect a graceful transmit stop without link !!! */
1384 	if (fep->link) {
1385 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1386 		udelay(10);
1387 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1388 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1389 	}
1390 
1391 	if (fep->bufdesc_ex)
1392 		fec_ptp_save_state(fep);
1393 
1394 	fec_ctrl_reset(fep, true);
1395 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1396 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1397 
1398 	/* We have to keep ENET enabled to have MII interrupt stay working */
1399 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1400 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1401 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1402 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1403 	}
1404 
1405 	if (fep->bufdesc_ex) {
1406 		val = readl(fep->hwp + FEC_ECNTRL);
1407 		val |= FEC_ECR_EN1588;
1408 		writel(val, fep->hwp + FEC_ECNTRL);
1409 
1410 		fec_ptp_start_cyclecounter(ndev);
1411 		fec_ptp_restore_state(fep);
1412 	}
1413 }
1414 
1415 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1416 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1417 {
1418 	struct fec_enet_private *fep = netdev_priv(ndev);
1419 
1420 	fec_dump(ndev);
1421 
1422 	ndev->stats.tx_errors++;
1423 
1424 	schedule_work(&fep->tx_timeout_work);
1425 }
1426 
fec_enet_timeout_work(struct work_struct * work)1427 static void fec_enet_timeout_work(struct work_struct *work)
1428 {
1429 	struct fec_enet_private *fep =
1430 		container_of(work, struct fec_enet_private, tx_timeout_work);
1431 	struct net_device *ndev = fep->netdev;
1432 
1433 	rtnl_lock();
1434 	if (netif_device_present(ndev) || netif_running(ndev)) {
1435 		napi_disable(&fep->napi);
1436 		netif_tx_lock_bh(ndev);
1437 		fec_restart(ndev);
1438 		netif_tx_wake_all_queues(ndev);
1439 		netif_tx_unlock_bh(ndev);
1440 		napi_enable(&fep->napi);
1441 	}
1442 	rtnl_unlock();
1443 }
1444 
1445 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1446 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1447 	struct skb_shared_hwtstamps *hwtstamps)
1448 {
1449 	unsigned long flags;
1450 	u64 ns;
1451 
1452 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1453 	ns = timecounter_cyc2time(&fep->tc, ts);
1454 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1455 
1456 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1457 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1458 }
1459 
1460 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1461 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1462 {
1463 	struct	fec_enet_private *fep;
1464 	struct xdp_frame *xdpf;
1465 	struct bufdesc *bdp;
1466 	unsigned short status;
1467 	struct	sk_buff	*skb;
1468 	struct fec_enet_priv_tx_q *txq;
1469 	struct netdev_queue *nq;
1470 	int	index = 0;
1471 	int	entries_free;
1472 	struct page *page;
1473 	int frame_len;
1474 
1475 	fep = netdev_priv(ndev);
1476 
1477 	txq = fep->tx_queue[queue_id];
1478 	/* get next bdp of dirty_tx */
1479 	nq = netdev_get_tx_queue(ndev, queue_id);
1480 	bdp = txq->dirty_tx;
1481 
1482 	/* get next bdp of dirty_tx */
1483 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1484 
1485 	while (bdp != READ_ONCE(txq->bd.cur)) {
1486 		/* Order the load of bd.cur and cbd_sc */
1487 		rmb();
1488 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1489 		if (status & BD_ENET_TX_READY)
1490 			break;
1491 
1492 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1493 
1494 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1495 			skb = txq->tx_buf[index].buf_p;
1496 			if (bdp->cbd_bufaddr &&
1497 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1498 				dma_unmap_single(&fep->pdev->dev,
1499 						 fec32_to_cpu(bdp->cbd_bufaddr),
1500 						 fec16_to_cpu(bdp->cbd_datlen),
1501 						 DMA_TO_DEVICE);
1502 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1503 			if (!skb)
1504 				goto tx_buf_done;
1505 		} else {
1506 			/* Tx processing cannot call any XDP (or page pool) APIs if
1507 			 * the "budget" is 0. Because NAPI is called with budget of
1508 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1509 			 * however, we can't use the page pool from IRQ context.
1510 			 */
1511 			if (unlikely(!budget))
1512 				break;
1513 
1514 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1515 				xdpf = txq->tx_buf[index].buf_p;
1516 				if (bdp->cbd_bufaddr)
1517 					dma_unmap_single(&fep->pdev->dev,
1518 							 fec32_to_cpu(bdp->cbd_bufaddr),
1519 							 fec16_to_cpu(bdp->cbd_datlen),
1520 							 DMA_TO_DEVICE);
1521 			} else {
1522 				page = txq->tx_buf[index].buf_p;
1523 			}
1524 
1525 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1526 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1527 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 				goto tx_buf_done;
1529 			}
1530 
1531 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1532 		}
1533 
1534 		/* Check for errors. */
1535 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1536 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1537 				   BD_ENET_TX_CSL)) {
1538 			ndev->stats.tx_errors++;
1539 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1540 				ndev->stats.tx_heartbeat_errors++;
1541 			if (status & BD_ENET_TX_LC)  /* Late collision */
1542 				ndev->stats.tx_window_errors++;
1543 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1544 				ndev->stats.tx_aborted_errors++;
1545 			if (status & BD_ENET_TX_UN)  /* Underrun */
1546 				ndev->stats.tx_fifo_errors++;
1547 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1548 				ndev->stats.tx_carrier_errors++;
1549 		} else {
1550 			ndev->stats.tx_packets++;
1551 
1552 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1553 				ndev->stats.tx_bytes += skb->len;
1554 			else
1555 				ndev->stats.tx_bytes += frame_len;
1556 		}
1557 
1558 		/* Deferred means some collisions occurred during transmit,
1559 		 * but we eventually sent the packet OK.
1560 		 */
1561 		if (status & BD_ENET_TX_DEF)
1562 			ndev->stats.collisions++;
1563 
1564 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1565 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1566 			 * are to time stamp the packet, so we still need to check time
1567 			 * stamping enabled flag.
1568 			 */
1569 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1570 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1571 				struct skb_shared_hwtstamps shhwtstamps;
1572 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573 
1574 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1575 				skb_tstamp_tx(skb, &shhwtstamps);
1576 			}
1577 
1578 			/* Free the sk buffer associated with this last transmit */
1579 			napi_consume_skb(skb, budget);
1580 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1581 			xdp_return_frame_rx_napi(xdpf);
1582 		} else { /* recycle pages of XDP_TX frames */
1583 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1584 			page_pool_put_page(page->pp, page, 0, true);
1585 		}
1586 
1587 		txq->tx_buf[index].buf_p = NULL;
1588 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1589 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1590 
1591 tx_buf_done:
1592 		/* Make sure the update to bdp and tx_buf are performed
1593 		 * before dirty_tx
1594 		 */
1595 		wmb();
1596 		txq->dirty_tx = bdp;
1597 
1598 		/* Update pointer to next buffer descriptor to be transmitted */
1599 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1600 
1601 		/* Since we have freed up a buffer, the ring is no longer full
1602 		 */
1603 		if (netif_tx_queue_stopped(nq)) {
1604 			entries_free = fec_enet_get_free_txdesc_num(txq);
1605 			if (entries_free >= txq->tx_wake_threshold)
1606 				netif_tx_wake_queue(nq);
1607 		}
1608 	}
1609 
1610 	/* ERR006358: Keep the transmitter going */
1611 	if (bdp != txq->bd.cur &&
1612 	    readl(txq->bd.reg_desc_active) == 0)
1613 		writel(0, txq->bd.reg_desc_active);
1614 }
1615 
fec_enet_tx(struct net_device * ndev,int budget)1616 static void fec_enet_tx(struct net_device *ndev, int budget)
1617 {
1618 	struct fec_enet_private *fep = netdev_priv(ndev);
1619 	int i;
1620 
1621 	/* Make sure that AVB queues are processed first. */
1622 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1623 		fec_enet_tx_queue(ndev, i, budget);
1624 }
1625 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1626 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1627 				struct bufdesc *bdp, int index)
1628 {
1629 	struct page *new_page;
1630 	dma_addr_t phys_addr;
1631 
1632 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1633 	if (unlikely(!new_page))
1634 		return -ENOMEM;
1635 
1636 	rxq->rx_skb_info[index].page = new_page;
1637 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1638 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1639 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1640 
1641 	return 0;
1642 }
1643 
1644 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1645 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1646 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1647 {
1648 	unsigned int sync, len = xdp->data_end - xdp->data;
1649 	u32 ret = FEC_ENET_XDP_PASS;
1650 	struct page *page;
1651 	int err;
1652 	u32 act;
1653 
1654 	act = bpf_prog_run_xdp(prog, xdp);
1655 
1656 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1657 	 * max len CPU touch
1658 	 */
1659 	sync = xdp->data_end - xdp->data;
1660 	sync = max(sync, len);
1661 
1662 	switch (act) {
1663 	case XDP_PASS:
1664 		rxq->stats[RX_XDP_PASS]++;
1665 		ret = FEC_ENET_XDP_PASS;
1666 		break;
1667 
1668 	case XDP_REDIRECT:
1669 		rxq->stats[RX_XDP_REDIRECT]++;
1670 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1671 		if (unlikely(err))
1672 			goto xdp_err;
1673 
1674 		ret = FEC_ENET_XDP_REDIR;
1675 		break;
1676 
1677 	case XDP_TX:
1678 		rxq->stats[RX_XDP_TX]++;
1679 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1680 		if (unlikely(err)) {
1681 			rxq->stats[RX_XDP_TX_ERRORS]++;
1682 			goto xdp_err;
1683 		}
1684 
1685 		ret = FEC_ENET_XDP_TX;
1686 		break;
1687 
1688 	default:
1689 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1690 		fallthrough;
1691 
1692 	case XDP_ABORTED:
1693 		fallthrough;    /* handle aborts by dropping packet */
1694 
1695 	case XDP_DROP:
1696 		rxq->stats[RX_XDP_DROP]++;
1697 xdp_err:
1698 		ret = FEC_ENET_XDP_CONSUMED;
1699 		page = virt_to_head_page(xdp->data);
1700 		page_pool_put_page(rxq->page_pool, page, sync, true);
1701 		if (act != XDP_DROP)
1702 			trace_xdp_exception(fep->netdev, prog, act);
1703 		break;
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1710  * When we update through the ring, if the next incoming buffer has
1711  * not been given to the system, we just set the empty indicator,
1712  * effectively tossing the packet.
1713  */
1714 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1715 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1716 {
1717 	struct fec_enet_private *fep = netdev_priv(ndev);
1718 	struct fec_enet_priv_rx_q *rxq;
1719 	struct bufdesc *bdp;
1720 	unsigned short status;
1721 	struct  sk_buff *skb;
1722 	ushort	pkt_len;
1723 	__u8 *data;
1724 	int	pkt_received = 0;
1725 	struct	bufdesc_ex *ebdp = NULL;
1726 	bool	vlan_packet_rcvd = false;
1727 	u16	vlan_tag;
1728 	int	index = 0;
1729 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1730 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1731 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1732 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1733 	int cpu = smp_processor_id();
1734 	struct xdp_buff xdp;
1735 	struct page *page;
1736 	__fec32 cbd_bufaddr;
1737 	u32 sub_len = 4;
1738 
1739 #if !defined(CONFIG_M5272)
1740 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1741 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1742 	 */
1743 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1744 		data_start += 2;
1745 		sub_len += 2;
1746 	}
1747 #endif
1748 
1749 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1750 	/*
1751 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1752 	 * headers.
1753 	 */
1754 	flush_cache_all();
1755 #endif
1756 	rxq = fep->rx_queue[queue_id];
1757 
1758 	/* First, grab all of the stats for the incoming packet.
1759 	 * These get messed up if we get called due to a busy condition.
1760 	 */
1761 	bdp = rxq->bd.cur;
1762 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1763 
1764 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1765 
1766 		if (pkt_received >= budget)
1767 			break;
1768 		pkt_received++;
1769 
1770 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1771 
1772 		/* Check for errors. */
1773 		status ^= BD_ENET_RX_LAST;
1774 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1775 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1776 			   BD_ENET_RX_CL)) {
1777 			ndev->stats.rx_errors++;
1778 			if (status & BD_ENET_RX_OV) {
1779 				/* FIFO overrun */
1780 				ndev->stats.rx_fifo_errors++;
1781 				goto rx_processing_done;
1782 			}
1783 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1784 						| BD_ENET_RX_LAST)) {
1785 				/* Frame too long or too short. */
1786 				ndev->stats.rx_length_errors++;
1787 				if (status & BD_ENET_RX_LAST)
1788 					netdev_err(ndev, "rcv is not +last\n");
1789 			}
1790 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1791 				ndev->stats.rx_crc_errors++;
1792 			/* Report late collisions as a frame error. */
1793 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1794 				ndev->stats.rx_frame_errors++;
1795 			goto rx_processing_done;
1796 		}
1797 
1798 		/* Process the incoming frame. */
1799 		ndev->stats.rx_packets++;
1800 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1801 		ndev->stats.rx_bytes += pkt_len;
1802 
1803 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1804 		page = rxq->rx_skb_info[index].page;
1805 		cbd_bufaddr = bdp->cbd_bufaddr;
1806 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1807 			ndev->stats.rx_dropped++;
1808 			goto rx_processing_done;
1809 		}
1810 
1811 		dma_sync_single_for_cpu(&fep->pdev->dev,
1812 					fec32_to_cpu(cbd_bufaddr),
1813 					pkt_len,
1814 					DMA_FROM_DEVICE);
1815 		prefetch(page_address(page));
1816 
1817 		if (xdp_prog) {
1818 			xdp_buff_clear_frags_flag(&xdp);
1819 			/* subtract 16bit shift and FCS */
1820 			xdp_prepare_buff(&xdp, page_address(page),
1821 					 data_start, pkt_len - sub_len, false);
1822 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1823 			xdp_result |= ret;
1824 			if (ret != FEC_ENET_XDP_PASS)
1825 				goto rx_processing_done;
1826 		}
1827 
1828 		/* The packet length includes FCS, but we don't want to
1829 		 * include that when passing upstream as it messes up
1830 		 * bridging applications.
1831 		 */
1832 		skb = build_skb(page_address(page), PAGE_SIZE);
1833 		if (unlikely(!skb)) {
1834 			page_pool_recycle_direct(rxq->page_pool, page);
1835 			ndev->stats.rx_dropped++;
1836 
1837 			netdev_err_once(ndev, "build_skb failed!\n");
1838 			goto rx_processing_done;
1839 		}
1840 
1841 		skb_reserve(skb, data_start);
1842 		skb_put(skb, pkt_len - sub_len);
1843 		skb_mark_for_recycle(skb);
1844 
1845 		if (unlikely(need_swap)) {
1846 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1847 			swap_buffer(data, pkt_len);
1848 		}
1849 		data = skb->data;
1850 
1851 		/* Extract the enhanced buffer descriptor */
1852 		ebdp = NULL;
1853 		if (fep->bufdesc_ex)
1854 			ebdp = (struct bufdesc_ex *)bdp;
1855 
1856 		/* If this is a VLAN packet remove the VLAN Tag */
1857 		vlan_packet_rcvd = false;
1858 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1859 		    fep->bufdesc_ex &&
1860 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1861 			/* Push and remove the vlan tag */
1862 			struct vlan_hdr *vlan_header =
1863 					(struct vlan_hdr *) (data + ETH_HLEN);
1864 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1865 
1866 			vlan_packet_rcvd = true;
1867 
1868 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1869 			skb_pull(skb, VLAN_HLEN);
1870 		}
1871 
1872 		skb->protocol = eth_type_trans(skb, ndev);
1873 
1874 		/* Get receive timestamp from the skb */
1875 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1876 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1877 					  skb_hwtstamps(skb));
1878 
1879 		if (fep->bufdesc_ex &&
1880 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1881 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1882 				/* don't check it */
1883 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 			} else {
1885 				skb_checksum_none_assert(skb);
1886 			}
1887 		}
1888 
1889 		/* Handle received VLAN packets */
1890 		if (vlan_packet_rcvd)
1891 			__vlan_hwaccel_put_tag(skb,
1892 					       htons(ETH_P_8021Q),
1893 					       vlan_tag);
1894 
1895 		skb_record_rx_queue(skb, queue_id);
1896 		napi_gro_receive(&fep->napi, skb);
1897 
1898 rx_processing_done:
1899 		/* Clear the status flags for this buffer */
1900 		status &= ~BD_ENET_RX_STATS;
1901 
1902 		/* Mark the buffer empty */
1903 		status |= BD_ENET_RX_EMPTY;
1904 
1905 		if (fep->bufdesc_ex) {
1906 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1907 
1908 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1909 			ebdp->cbd_prot = 0;
1910 			ebdp->cbd_bdu = 0;
1911 		}
1912 		/* Make sure the updates to rest of the descriptor are
1913 		 * performed before transferring ownership.
1914 		 */
1915 		wmb();
1916 		bdp->cbd_sc = cpu_to_fec16(status);
1917 
1918 		/* Update BD pointer to next entry */
1919 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1920 
1921 		/* Doing this here will keep the FEC running while we process
1922 		 * incoming frames.  On a heavily loaded network, we should be
1923 		 * able to keep up at the expense of system resources.
1924 		 */
1925 		writel(0, rxq->bd.reg_desc_active);
1926 	}
1927 	rxq->bd.cur = bdp;
1928 
1929 	if (xdp_result & FEC_ENET_XDP_REDIR)
1930 		xdp_do_flush();
1931 
1932 	return pkt_received;
1933 }
1934 
fec_enet_rx(struct net_device * ndev,int budget)1935 static int fec_enet_rx(struct net_device *ndev, int budget)
1936 {
1937 	struct fec_enet_private *fep = netdev_priv(ndev);
1938 	int i, done = 0;
1939 
1940 	/* Make sure that AVB queues are processed first. */
1941 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1942 		done += fec_enet_rx_queue(ndev, budget - done, i);
1943 
1944 	return done;
1945 }
1946 
fec_enet_collect_events(struct fec_enet_private * fep)1947 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1948 {
1949 	uint int_events;
1950 
1951 	int_events = readl(fep->hwp + FEC_IEVENT);
1952 
1953 	/* Don't clear MDIO events, we poll for those */
1954 	int_events &= ~FEC_ENET_MII;
1955 
1956 	writel(int_events, fep->hwp + FEC_IEVENT);
1957 
1958 	return int_events != 0;
1959 }
1960 
1961 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1962 fec_enet_interrupt(int irq, void *dev_id)
1963 {
1964 	struct net_device *ndev = dev_id;
1965 	struct fec_enet_private *fep = netdev_priv(ndev);
1966 	irqreturn_t ret = IRQ_NONE;
1967 
1968 	if (fec_enet_collect_events(fep) && fep->link) {
1969 		ret = IRQ_HANDLED;
1970 
1971 		if (napi_schedule_prep(&fep->napi)) {
1972 			/* Disable interrupts */
1973 			writel(0, fep->hwp + FEC_IMASK);
1974 			__napi_schedule(&fep->napi);
1975 		}
1976 	}
1977 
1978 	return ret;
1979 }
1980 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1981 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1982 {
1983 	struct net_device *ndev = napi->dev;
1984 	struct fec_enet_private *fep = netdev_priv(ndev);
1985 	int done = 0;
1986 
1987 	do {
1988 		done += fec_enet_rx(ndev, budget - done);
1989 		fec_enet_tx(ndev, budget);
1990 	} while ((done < budget) && fec_enet_collect_events(fep));
1991 
1992 	if (done < budget) {
1993 		napi_complete_done(napi, done);
1994 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1995 	}
1996 
1997 	return done;
1998 }
1999 
2000 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2001 static int fec_get_mac(struct net_device *ndev)
2002 {
2003 	struct fec_enet_private *fep = netdev_priv(ndev);
2004 	unsigned char *iap, tmpaddr[ETH_ALEN];
2005 	int ret;
2006 
2007 	/*
2008 	 * try to get mac address in following order:
2009 	 *
2010 	 * 1) module parameter via kernel command line in form
2011 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2012 	 */
2013 	iap = macaddr;
2014 
2015 	/*
2016 	 * 2) from device tree data
2017 	 */
2018 	if (!is_valid_ether_addr(iap)) {
2019 		struct device_node *np = fep->pdev->dev.of_node;
2020 		if (np) {
2021 			ret = of_get_mac_address(np, tmpaddr);
2022 			if (!ret)
2023 				iap = tmpaddr;
2024 			else if (ret == -EPROBE_DEFER)
2025 				return ret;
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * 3) from flash or fuse (via platform data)
2031 	 */
2032 	if (!is_valid_ether_addr(iap)) {
2033 #ifdef CONFIG_M5272
2034 		if (FEC_FLASHMAC)
2035 			iap = (unsigned char *)FEC_FLASHMAC;
2036 #else
2037 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2038 
2039 		if (pdata)
2040 			iap = (unsigned char *)&pdata->mac;
2041 #endif
2042 	}
2043 
2044 	/*
2045 	 * 4) FEC mac registers set by bootloader
2046 	 */
2047 	if (!is_valid_ether_addr(iap)) {
2048 		*((__be32 *) &tmpaddr[0]) =
2049 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2050 		*((__be16 *) &tmpaddr[4]) =
2051 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2052 		iap = &tmpaddr[0];
2053 	}
2054 
2055 	/*
2056 	 * 5) random mac address
2057 	 */
2058 	if (!is_valid_ether_addr(iap)) {
2059 		/* Report it and use a random ethernet address instead */
2060 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2061 		eth_hw_addr_random(ndev);
2062 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2063 			 ndev->dev_addr);
2064 		return 0;
2065 	}
2066 
2067 	/* Adjust MAC if using macaddr */
2068 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2069 
2070 	return 0;
2071 }
2072 
2073 /* ------------------------------------------------------------------------- */
2074 
2075 /*
2076  * Phy section
2077  */
2078 
2079 /* LPI Sleep Ts count base on tx clk (clk_ref).
2080  * The lpi sleep cnt value = X us / (cycle_ns).
2081  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2082 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2083 {
2084 	struct fec_enet_private *fep = netdev_priv(ndev);
2085 
2086 	return us * (fep->clk_ref_rate / 1000) / 1000;
2087 }
2088 
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2089 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2090 				 bool enable)
2091 {
2092 	struct fec_enet_private *fep = netdev_priv(ndev);
2093 	unsigned int sleep_cycle, wake_cycle;
2094 
2095 	if (enable) {
2096 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2097 		wake_cycle = sleep_cycle;
2098 	} else {
2099 		sleep_cycle = 0;
2100 		wake_cycle = 0;
2101 	}
2102 
2103 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2104 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2105 
2106 	return 0;
2107 }
2108 
fec_enet_adjust_link(struct net_device * ndev)2109 static void fec_enet_adjust_link(struct net_device *ndev)
2110 {
2111 	struct fec_enet_private *fep = netdev_priv(ndev);
2112 	struct phy_device *phy_dev = ndev->phydev;
2113 	int status_change = 0;
2114 
2115 	/*
2116 	 * If the netdev is down, or is going down, we're not interested
2117 	 * in link state events, so just mark our idea of the link as down
2118 	 * and ignore the event.
2119 	 */
2120 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2121 		fep->link = 0;
2122 	} else if (phy_dev->link) {
2123 		if (!fep->link) {
2124 			fep->link = phy_dev->link;
2125 			status_change = 1;
2126 		}
2127 
2128 		if (fep->full_duplex != phy_dev->duplex) {
2129 			fep->full_duplex = phy_dev->duplex;
2130 			status_change = 1;
2131 		}
2132 
2133 		if (phy_dev->speed != fep->speed) {
2134 			fep->speed = phy_dev->speed;
2135 			status_change = 1;
2136 		}
2137 
2138 		/* if any of the above changed restart the FEC */
2139 		if (status_change) {
2140 			netif_stop_queue(ndev);
2141 			napi_disable(&fep->napi);
2142 			netif_tx_lock_bh(ndev);
2143 			fec_restart(ndev);
2144 			netif_tx_wake_all_queues(ndev);
2145 			netif_tx_unlock_bh(ndev);
2146 			napi_enable(&fep->napi);
2147 		}
2148 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2149 			fec_enet_eee_mode_set(ndev,
2150 					      phy_dev->eee_cfg.tx_lpi_timer,
2151 					      phy_dev->enable_tx_lpi);
2152 	} else {
2153 		if (fep->link) {
2154 			netif_stop_queue(ndev);
2155 			napi_disable(&fep->napi);
2156 			netif_tx_lock_bh(ndev);
2157 			fec_stop(ndev);
2158 			netif_tx_unlock_bh(ndev);
2159 			napi_enable(&fep->napi);
2160 			fep->link = phy_dev->link;
2161 			status_change = 1;
2162 		}
2163 	}
2164 
2165 	if (status_change)
2166 		phy_print_status(phy_dev);
2167 }
2168 
fec_enet_mdio_wait(struct fec_enet_private * fep)2169 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2170 {
2171 	uint ievent;
2172 	int ret;
2173 
2174 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2175 					ievent & FEC_ENET_MII, 2, 30000);
2176 
2177 	if (!ret)
2178 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2179 
2180 	return ret;
2181 }
2182 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2183 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2184 {
2185 	struct fec_enet_private *fep = bus->priv;
2186 	struct device *dev = &fep->pdev->dev;
2187 	int ret = 0, frame_start, frame_addr, frame_op;
2188 
2189 	ret = pm_runtime_resume_and_get(dev);
2190 	if (ret < 0)
2191 		return ret;
2192 
2193 	/* C22 read */
2194 	frame_op = FEC_MMFR_OP_READ;
2195 	frame_start = FEC_MMFR_ST;
2196 	frame_addr = regnum;
2197 
2198 	/* start a read op */
2199 	writel(frame_start | frame_op |
2200 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2201 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2202 
2203 	/* wait for end of transfer */
2204 	ret = fec_enet_mdio_wait(fep);
2205 	if (ret) {
2206 		netdev_err(fep->netdev, "MDIO read timeout\n");
2207 		goto out;
2208 	}
2209 
2210 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2211 
2212 out:
2213 	pm_runtime_mark_last_busy(dev);
2214 	pm_runtime_put_autosuspend(dev);
2215 
2216 	return ret;
2217 }
2218 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2219 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2220 				  int devad, int regnum)
2221 {
2222 	struct fec_enet_private *fep = bus->priv;
2223 	struct device *dev = &fep->pdev->dev;
2224 	int ret = 0, frame_start, frame_op;
2225 
2226 	ret = pm_runtime_resume_and_get(dev);
2227 	if (ret < 0)
2228 		return ret;
2229 
2230 	frame_start = FEC_MMFR_ST_C45;
2231 
2232 	/* write address */
2233 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2234 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2235 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2236 	       fep->hwp + FEC_MII_DATA);
2237 
2238 	/* wait for end of transfer */
2239 	ret = fec_enet_mdio_wait(fep);
2240 	if (ret) {
2241 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2242 		goto out;
2243 	}
2244 
2245 	frame_op = FEC_MMFR_OP_READ_C45;
2246 
2247 	/* start a read op */
2248 	writel(frame_start | frame_op |
2249 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2250 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2251 
2252 	/* wait for end of transfer */
2253 	ret = fec_enet_mdio_wait(fep);
2254 	if (ret) {
2255 		netdev_err(fep->netdev, "MDIO read timeout\n");
2256 		goto out;
2257 	}
2258 
2259 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2260 
2261 out:
2262 	pm_runtime_mark_last_busy(dev);
2263 	pm_runtime_put_autosuspend(dev);
2264 
2265 	return ret;
2266 }
2267 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2268 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2269 				   u16 value)
2270 {
2271 	struct fec_enet_private *fep = bus->priv;
2272 	struct device *dev = &fep->pdev->dev;
2273 	int ret, frame_start, frame_addr;
2274 
2275 	ret = pm_runtime_resume_and_get(dev);
2276 	if (ret < 0)
2277 		return ret;
2278 
2279 	/* C22 write */
2280 	frame_start = FEC_MMFR_ST;
2281 	frame_addr = regnum;
2282 
2283 	/* start a write op */
2284 	writel(frame_start | FEC_MMFR_OP_WRITE |
2285 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2286 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2287 	       fep->hwp + FEC_MII_DATA);
2288 
2289 	/* wait for end of transfer */
2290 	ret = fec_enet_mdio_wait(fep);
2291 	if (ret)
2292 		netdev_err(fep->netdev, "MDIO write timeout\n");
2293 
2294 	pm_runtime_mark_last_busy(dev);
2295 	pm_runtime_put_autosuspend(dev);
2296 
2297 	return ret;
2298 }
2299 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2300 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2301 				   int devad, int regnum, u16 value)
2302 {
2303 	struct fec_enet_private *fep = bus->priv;
2304 	struct device *dev = &fep->pdev->dev;
2305 	int ret, frame_start;
2306 
2307 	ret = pm_runtime_resume_and_get(dev);
2308 	if (ret < 0)
2309 		return ret;
2310 
2311 	frame_start = FEC_MMFR_ST_C45;
2312 
2313 	/* write address */
2314 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2315 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2316 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2317 	       fep->hwp + FEC_MII_DATA);
2318 
2319 	/* wait for end of transfer */
2320 	ret = fec_enet_mdio_wait(fep);
2321 	if (ret) {
2322 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2323 		goto out;
2324 	}
2325 
2326 	/* start a write op */
2327 	writel(frame_start | FEC_MMFR_OP_WRITE |
2328 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2329 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2330 	       fep->hwp + FEC_MII_DATA);
2331 
2332 	/* wait for end of transfer */
2333 	ret = fec_enet_mdio_wait(fep);
2334 	if (ret)
2335 		netdev_err(fep->netdev, "MDIO write timeout\n");
2336 
2337 out:
2338 	pm_runtime_mark_last_busy(dev);
2339 	pm_runtime_put_autosuspend(dev);
2340 
2341 	return ret;
2342 }
2343 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2344 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2345 {
2346 	struct fec_enet_private *fep = netdev_priv(ndev);
2347 	struct phy_device *phy_dev = ndev->phydev;
2348 
2349 	if (phy_dev) {
2350 		phy_reset_after_clk_enable(phy_dev);
2351 	} else if (fep->phy_node) {
2352 		/*
2353 		 * If the PHY still is not bound to the MAC, but there is
2354 		 * OF PHY node and a matching PHY device instance already,
2355 		 * use the OF PHY node to obtain the PHY device instance,
2356 		 * and then use that PHY device instance when triggering
2357 		 * the PHY reset.
2358 		 */
2359 		phy_dev = of_phy_find_device(fep->phy_node);
2360 		phy_reset_after_clk_enable(phy_dev);
2361 		put_device(&phy_dev->mdio.dev);
2362 	}
2363 }
2364 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2365 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2366 {
2367 	struct fec_enet_private *fep = netdev_priv(ndev);
2368 	int ret;
2369 
2370 	if (enable) {
2371 		ret = clk_prepare_enable(fep->clk_enet_out);
2372 		if (ret)
2373 			return ret;
2374 
2375 		if (fep->clk_ptp) {
2376 			mutex_lock(&fep->ptp_clk_mutex);
2377 			ret = clk_prepare_enable(fep->clk_ptp);
2378 			if (ret) {
2379 				mutex_unlock(&fep->ptp_clk_mutex);
2380 				goto failed_clk_ptp;
2381 			} else {
2382 				fep->ptp_clk_on = true;
2383 			}
2384 			mutex_unlock(&fep->ptp_clk_mutex);
2385 		}
2386 
2387 		ret = clk_prepare_enable(fep->clk_ref);
2388 		if (ret)
2389 			goto failed_clk_ref;
2390 
2391 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2392 		if (ret)
2393 			goto failed_clk_2x_txclk;
2394 
2395 		fec_enet_phy_reset_after_clk_enable(ndev);
2396 	} else {
2397 		clk_disable_unprepare(fep->clk_enet_out);
2398 		if (fep->clk_ptp) {
2399 			mutex_lock(&fep->ptp_clk_mutex);
2400 			clk_disable_unprepare(fep->clk_ptp);
2401 			fep->ptp_clk_on = false;
2402 			mutex_unlock(&fep->ptp_clk_mutex);
2403 		}
2404 		clk_disable_unprepare(fep->clk_ref);
2405 		clk_disable_unprepare(fep->clk_2x_txclk);
2406 	}
2407 
2408 	return 0;
2409 
2410 failed_clk_2x_txclk:
2411 	if (fep->clk_ref)
2412 		clk_disable_unprepare(fep->clk_ref);
2413 failed_clk_ref:
2414 	if (fep->clk_ptp) {
2415 		mutex_lock(&fep->ptp_clk_mutex);
2416 		clk_disable_unprepare(fep->clk_ptp);
2417 		fep->ptp_clk_on = false;
2418 		mutex_unlock(&fep->ptp_clk_mutex);
2419 	}
2420 failed_clk_ptp:
2421 	clk_disable_unprepare(fep->clk_enet_out);
2422 
2423 	return ret;
2424 }
2425 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2426 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2427 				      struct device_node *np)
2428 {
2429 	u32 rgmii_tx_delay, rgmii_rx_delay;
2430 
2431 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2432 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2433 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2434 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2435 			return -EINVAL;
2436 		} else if (rgmii_tx_delay == 2000) {
2437 			fep->rgmii_txc_dly = true;
2438 		}
2439 	}
2440 
2441 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2442 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2443 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2444 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2445 			return -EINVAL;
2446 		} else if (rgmii_rx_delay == 2000) {
2447 			fep->rgmii_rxc_dly = true;
2448 		}
2449 	}
2450 
2451 	return 0;
2452 }
2453 
fec_enet_mii_probe(struct net_device * ndev)2454 static int fec_enet_mii_probe(struct net_device *ndev)
2455 {
2456 	struct fec_enet_private *fep = netdev_priv(ndev);
2457 	struct phy_device *phy_dev = NULL;
2458 	char mdio_bus_id[MII_BUS_ID_SIZE];
2459 	char phy_name[MII_BUS_ID_SIZE + 3];
2460 	int phy_id;
2461 	int dev_id = fep->dev_id;
2462 
2463 	if (fep->phy_node) {
2464 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2465 					 &fec_enet_adjust_link, 0,
2466 					 fep->phy_interface);
2467 		if (!phy_dev) {
2468 			netdev_err(ndev, "Unable to connect to phy\n");
2469 			return -ENODEV;
2470 		}
2471 	} else {
2472 		/* check for attached phy */
2473 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2474 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2475 				continue;
2476 			if (dev_id--)
2477 				continue;
2478 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2479 			break;
2480 		}
2481 
2482 		if (phy_id >= PHY_MAX_ADDR) {
2483 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2484 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2485 			phy_id = 0;
2486 		}
2487 
2488 		snprintf(phy_name, sizeof(phy_name),
2489 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2490 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2491 				      fep->phy_interface);
2492 	}
2493 
2494 	if (IS_ERR(phy_dev)) {
2495 		netdev_err(ndev, "could not attach to PHY\n");
2496 		return PTR_ERR(phy_dev);
2497 	}
2498 
2499 	/* mask with MAC supported features */
2500 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2501 		phy_set_max_speed(phy_dev, 1000);
2502 		phy_remove_link_mode(phy_dev,
2503 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2504 #if !defined(CONFIG_M5272)
2505 		phy_support_sym_pause(phy_dev);
2506 #endif
2507 	}
2508 	else
2509 		phy_set_max_speed(phy_dev, 100);
2510 
2511 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2512 		phy_support_eee(phy_dev);
2513 
2514 	fep->link = 0;
2515 	fep->full_duplex = 0;
2516 
2517 	phy_attached_info(phy_dev);
2518 
2519 	return 0;
2520 }
2521 
fec_enet_mii_init(struct platform_device * pdev)2522 static int fec_enet_mii_init(struct platform_device *pdev)
2523 {
2524 	static struct mii_bus *fec0_mii_bus;
2525 	struct net_device *ndev = platform_get_drvdata(pdev);
2526 	struct fec_enet_private *fep = netdev_priv(ndev);
2527 	bool suppress_preamble = false;
2528 	struct phy_device *phydev;
2529 	struct device_node *node;
2530 	int err = -ENXIO;
2531 	u32 mii_speed, holdtime;
2532 	u32 bus_freq;
2533 	int addr;
2534 
2535 	/*
2536 	 * The i.MX28 dual fec interfaces are not equal.
2537 	 * Here are the differences:
2538 	 *
2539 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2540 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2541 	 *  - external phys can only be configured by fec0
2542 	 *
2543 	 * That is to say fec1 can not work independently. It only works
2544 	 * when fec0 is working. The reason behind this design is that the
2545 	 * second interface is added primarily for Switch mode.
2546 	 *
2547 	 * Because of the last point above, both phys are attached on fec0
2548 	 * mdio interface in board design, and need to be configured by
2549 	 * fec0 mii_bus.
2550 	 */
2551 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2552 		/* fec1 uses fec0 mii_bus */
2553 		if (mii_cnt && fec0_mii_bus) {
2554 			fep->mii_bus = fec0_mii_bus;
2555 			mii_cnt++;
2556 			return 0;
2557 		}
2558 		return -ENOENT;
2559 	}
2560 
2561 	bus_freq = 2500000; /* 2.5MHz by default */
2562 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2563 	if (node) {
2564 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2565 		suppress_preamble = of_property_read_bool(node,
2566 							  "suppress-preamble");
2567 	}
2568 
2569 	/*
2570 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2571 	 *
2572 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2573 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2574 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2575 	 * document.
2576 	 */
2577 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2578 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2579 		mii_speed--;
2580 	if (mii_speed > 63) {
2581 		dev_err(&pdev->dev,
2582 			"fec clock (%lu) too fast to get right mii speed\n",
2583 			clk_get_rate(fep->clk_ipg));
2584 		err = -EINVAL;
2585 		goto err_out;
2586 	}
2587 
2588 	/*
2589 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2590 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2591 	 * versions are RAZ there, so just ignore the difference and write the
2592 	 * register always.
2593 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2594 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2595 	 * output.
2596 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2597 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2598 	 * holdtime cannot result in a value greater than 3.
2599 	 */
2600 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2601 
2602 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2603 
2604 	if (suppress_preamble)
2605 		fep->phy_speed |= BIT(7);
2606 
2607 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2608 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2609 		 * MII event generation condition:
2610 		 * - writing MSCR:
2611 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2612 		 *	  mscr_reg_data_in[7:0] != 0
2613 		 * - writing MMFR:
2614 		 *	- mscr[7:0]_not_zero
2615 		 */
2616 		writel(0, fep->hwp + FEC_MII_DATA);
2617 	}
2618 
2619 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2620 
2621 	/* Clear any pending transaction complete indication */
2622 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2623 
2624 	fep->mii_bus = mdiobus_alloc();
2625 	if (fep->mii_bus == NULL) {
2626 		err = -ENOMEM;
2627 		goto err_out;
2628 	}
2629 
2630 	fep->mii_bus->name = "fec_enet_mii_bus";
2631 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2632 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2633 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2634 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2635 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2636 	}
2637 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2638 		pdev->name, fep->dev_id + 1);
2639 	fep->mii_bus->priv = fep;
2640 	fep->mii_bus->parent = &pdev->dev;
2641 
2642 	err = of_mdiobus_register(fep->mii_bus, node);
2643 	if (err)
2644 		goto err_out_free_mdiobus;
2645 	of_node_put(node);
2646 
2647 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2648 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2649 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2650 		if (phydev)
2651 			phydev->mac_managed_pm = true;
2652 	}
2653 
2654 	mii_cnt++;
2655 
2656 	/* save fec0 mii_bus */
2657 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2658 		fec0_mii_bus = fep->mii_bus;
2659 
2660 	return 0;
2661 
2662 err_out_free_mdiobus:
2663 	mdiobus_free(fep->mii_bus);
2664 err_out:
2665 	of_node_put(node);
2666 	return err;
2667 }
2668 
fec_enet_mii_remove(struct fec_enet_private * fep)2669 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2670 {
2671 	if (--mii_cnt == 0) {
2672 		mdiobus_unregister(fep->mii_bus);
2673 		mdiobus_free(fep->mii_bus);
2674 	}
2675 }
2676 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2677 static void fec_enet_get_drvinfo(struct net_device *ndev,
2678 				 struct ethtool_drvinfo *info)
2679 {
2680 	struct fec_enet_private *fep = netdev_priv(ndev);
2681 
2682 	strscpy(info->driver, fep->pdev->dev.driver->name,
2683 		sizeof(info->driver));
2684 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2685 }
2686 
fec_enet_get_regs_len(struct net_device * ndev)2687 static int fec_enet_get_regs_len(struct net_device *ndev)
2688 {
2689 	struct fec_enet_private *fep = netdev_priv(ndev);
2690 	struct resource *r;
2691 	int s = 0;
2692 
2693 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2694 	if (r)
2695 		s = resource_size(r);
2696 
2697 	return s;
2698 }
2699 
2700 /* List of registers that can be safety be read to dump them with ethtool */
2701 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2702 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2703 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2704 static __u32 fec_enet_register_version = 2;
2705 static u32 fec_enet_register_offset[] = {
2706 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2707 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2708 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2709 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2710 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2711 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2712 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2713 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2714 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2715 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2716 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2717 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2718 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2719 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2720 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2721 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2722 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2723 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2724 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2725 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2726 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2727 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2728 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2729 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2730 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2731 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2732 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2733 };
2734 /* for i.MX6ul */
2735 static u32 fec_enet_register_offset_6ul[] = {
2736 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2737 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2738 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2739 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2740 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2741 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2742 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2743 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2744 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2745 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2746 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2747 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2748 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2749 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2750 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2751 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2752 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2753 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2754 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2755 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2756 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2757 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2758 };
2759 #else
2760 static __u32 fec_enet_register_version = 1;
2761 static u32 fec_enet_register_offset[] = {
2762 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2763 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2764 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2765 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2766 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2767 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2768 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2769 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2770 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2771 };
2772 #endif
2773 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2774 static void fec_enet_get_regs(struct net_device *ndev,
2775 			      struct ethtool_regs *regs, void *regbuf)
2776 {
2777 	struct fec_enet_private *fep = netdev_priv(ndev);
2778 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2779 	struct device *dev = &fep->pdev->dev;
2780 	u32 *buf = (u32 *)regbuf;
2781 	u32 i, off;
2782 	int ret;
2783 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2784 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2785 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2786 	u32 *reg_list;
2787 	u32 reg_cnt;
2788 
2789 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2790 		reg_list = fec_enet_register_offset;
2791 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2792 	} else {
2793 		reg_list = fec_enet_register_offset_6ul;
2794 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2795 	}
2796 #else
2797 	/* coldfire */
2798 	static u32 *reg_list = fec_enet_register_offset;
2799 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2800 #endif
2801 	ret = pm_runtime_resume_and_get(dev);
2802 	if (ret < 0)
2803 		return;
2804 
2805 	regs->version = fec_enet_register_version;
2806 
2807 	memset(buf, 0, regs->len);
2808 
2809 	for (i = 0; i < reg_cnt; i++) {
2810 		off = reg_list[i];
2811 
2812 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2813 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2814 			continue;
2815 
2816 		off >>= 2;
2817 		buf[off] = readl(&theregs[off]);
2818 	}
2819 
2820 	pm_runtime_mark_last_busy(dev);
2821 	pm_runtime_put_autosuspend(dev);
2822 }
2823 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2824 static int fec_enet_get_ts_info(struct net_device *ndev,
2825 				struct kernel_ethtool_ts_info *info)
2826 {
2827 	struct fec_enet_private *fep = netdev_priv(ndev);
2828 
2829 	if (fep->bufdesc_ex) {
2830 
2831 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2832 					SOF_TIMESTAMPING_TX_HARDWARE |
2833 					SOF_TIMESTAMPING_RX_HARDWARE |
2834 					SOF_TIMESTAMPING_RAW_HARDWARE;
2835 		if (fep->ptp_clock)
2836 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2837 
2838 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2839 				 (1 << HWTSTAMP_TX_ON);
2840 
2841 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2842 				   (1 << HWTSTAMP_FILTER_ALL);
2843 		return 0;
2844 	} else {
2845 		return ethtool_op_get_ts_info(ndev, info);
2846 	}
2847 }
2848 
2849 #if !defined(CONFIG_M5272)
2850 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2851 static void fec_enet_get_pauseparam(struct net_device *ndev,
2852 				    struct ethtool_pauseparam *pause)
2853 {
2854 	struct fec_enet_private *fep = netdev_priv(ndev);
2855 
2856 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2857 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2858 	pause->rx_pause = pause->tx_pause;
2859 }
2860 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2861 static int fec_enet_set_pauseparam(struct net_device *ndev,
2862 				   struct ethtool_pauseparam *pause)
2863 {
2864 	struct fec_enet_private *fep = netdev_priv(ndev);
2865 
2866 	if (!ndev->phydev)
2867 		return -ENODEV;
2868 
2869 	if (pause->tx_pause != pause->rx_pause) {
2870 		netdev_info(ndev,
2871 			"hardware only support enable/disable both tx and rx");
2872 		return -EINVAL;
2873 	}
2874 
2875 	fep->pause_flag = 0;
2876 
2877 	/* tx pause must be same as rx pause */
2878 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2879 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2880 
2881 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2882 			  pause->autoneg);
2883 
2884 	if (pause->autoneg) {
2885 		if (netif_running(ndev))
2886 			fec_stop(ndev);
2887 		phy_start_aneg(ndev->phydev);
2888 	}
2889 	if (netif_running(ndev)) {
2890 		napi_disable(&fep->napi);
2891 		netif_tx_lock_bh(ndev);
2892 		fec_restart(ndev);
2893 		netif_tx_wake_all_queues(ndev);
2894 		netif_tx_unlock_bh(ndev);
2895 		napi_enable(&fep->napi);
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 static const struct fec_stat {
2902 	char name[ETH_GSTRING_LEN];
2903 	u16 offset;
2904 } fec_stats[] = {
2905 	/* RMON TX */
2906 	{ "tx_dropped", RMON_T_DROP },
2907 	{ "tx_packets", RMON_T_PACKETS },
2908 	{ "tx_broadcast", RMON_T_BC_PKT },
2909 	{ "tx_multicast", RMON_T_MC_PKT },
2910 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2911 	{ "tx_undersize", RMON_T_UNDERSIZE },
2912 	{ "tx_oversize", RMON_T_OVERSIZE },
2913 	{ "tx_fragment", RMON_T_FRAG },
2914 	{ "tx_jabber", RMON_T_JAB },
2915 	{ "tx_collision", RMON_T_COL },
2916 	{ "tx_64byte", RMON_T_P64 },
2917 	{ "tx_65to127byte", RMON_T_P65TO127 },
2918 	{ "tx_128to255byte", RMON_T_P128TO255 },
2919 	{ "tx_256to511byte", RMON_T_P256TO511 },
2920 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2921 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2922 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2923 	{ "tx_octets", RMON_T_OCTETS },
2924 
2925 	/* IEEE TX */
2926 	{ "IEEE_tx_drop", IEEE_T_DROP },
2927 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2928 	{ "IEEE_tx_1col", IEEE_T_1COL },
2929 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2930 	{ "IEEE_tx_def", IEEE_T_DEF },
2931 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2932 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2933 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2934 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2935 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2936 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2937 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2938 
2939 	/* RMON RX */
2940 	{ "rx_packets", RMON_R_PACKETS },
2941 	{ "rx_broadcast", RMON_R_BC_PKT },
2942 	{ "rx_multicast", RMON_R_MC_PKT },
2943 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2944 	{ "rx_undersize", RMON_R_UNDERSIZE },
2945 	{ "rx_oversize", RMON_R_OVERSIZE },
2946 	{ "rx_fragment", RMON_R_FRAG },
2947 	{ "rx_jabber", RMON_R_JAB },
2948 	{ "rx_64byte", RMON_R_P64 },
2949 	{ "rx_65to127byte", RMON_R_P65TO127 },
2950 	{ "rx_128to255byte", RMON_R_P128TO255 },
2951 	{ "rx_256to511byte", RMON_R_P256TO511 },
2952 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2953 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2954 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2955 	{ "rx_octets", RMON_R_OCTETS },
2956 
2957 	/* IEEE RX */
2958 	{ "IEEE_rx_drop", IEEE_R_DROP },
2959 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2960 	{ "IEEE_rx_crc", IEEE_R_CRC },
2961 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2962 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2963 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2964 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2965 };
2966 
2967 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2968 
2969 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2970 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2971 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2972 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2973 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2974 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2975 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2976 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2977 };
2978 
fec_enet_update_ethtool_stats(struct net_device * dev)2979 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2980 {
2981 	struct fec_enet_private *fep = netdev_priv(dev);
2982 	int i;
2983 
2984 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2985 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2986 }
2987 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2988 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2989 {
2990 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2991 	struct fec_enet_priv_rx_q *rxq;
2992 	int i, j;
2993 
2994 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2995 		rxq = fep->rx_queue[i];
2996 
2997 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2998 			xdp_stats[j] += rxq->stats[j];
2999 	}
3000 
3001 	memcpy(data, xdp_stats, sizeof(xdp_stats));
3002 }
3003 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3004 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3005 {
3006 #ifdef CONFIG_PAGE_POOL_STATS
3007 	struct page_pool_stats stats = {};
3008 	struct fec_enet_priv_rx_q *rxq;
3009 	int i;
3010 
3011 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3012 		rxq = fep->rx_queue[i];
3013 
3014 		if (!rxq->page_pool)
3015 			continue;
3016 
3017 		page_pool_get_stats(rxq->page_pool, &stats);
3018 	}
3019 
3020 	page_pool_ethtool_stats_get(data, &stats);
3021 #endif
3022 }
3023 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3024 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3025 				       struct ethtool_stats *stats, u64 *data)
3026 {
3027 	struct fec_enet_private *fep = netdev_priv(dev);
3028 
3029 	if (netif_running(dev))
3030 		fec_enet_update_ethtool_stats(dev);
3031 
3032 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3033 	data += FEC_STATS_SIZE / sizeof(u64);
3034 
3035 	fec_enet_get_xdp_stats(fep, data);
3036 	data += XDP_STATS_TOTAL;
3037 
3038 	fec_enet_page_pool_stats(fep, data);
3039 }
3040 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3041 static void fec_enet_get_strings(struct net_device *netdev,
3042 	u32 stringset, u8 *data)
3043 {
3044 	int i;
3045 	switch (stringset) {
3046 	case ETH_SS_STATS:
3047 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3048 			ethtool_puts(&data, fec_stats[i].name);
3049 		}
3050 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3051 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3052 		}
3053 		page_pool_ethtool_stats_get_strings(data);
3054 
3055 		break;
3056 	case ETH_SS_TEST:
3057 		net_selftest_get_strings(data);
3058 		break;
3059 	}
3060 }
3061 
fec_enet_get_sset_count(struct net_device * dev,int sset)3062 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3063 {
3064 	int count;
3065 
3066 	switch (sset) {
3067 	case ETH_SS_STATS:
3068 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3069 		count += page_pool_ethtool_stats_get_count();
3070 		return count;
3071 
3072 	case ETH_SS_TEST:
3073 		return net_selftest_get_count();
3074 	default:
3075 		return -EOPNOTSUPP;
3076 	}
3077 }
3078 
fec_enet_clear_ethtool_stats(struct net_device * dev)3079 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3080 {
3081 	struct fec_enet_private *fep = netdev_priv(dev);
3082 	struct fec_enet_priv_rx_q *rxq;
3083 	int i, j;
3084 
3085 	/* Disable MIB statistics counters */
3086 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3087 
3088 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3089 		writel(0, fep->hwp + fec_stats[i].offset);
3090 
3091 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3092 		rxq = fep->rx_queue[i];
3093 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3094 			rxq->stats[j] = 0;
3095 	}
3096 
3097 	/* Don't disable MIB statistics counters */
3098 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3099 }
3100 
3101 #else	/* !defined(CONFIG_M5272) */
3102 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3103 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3104 {
3105 }
3106 
fec_enet_clear_ethtool_stats(struct net_device * dev)3107 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3108 {
3109 }
3110 #endif /* !defined(CONFIG_M5272) */
3111 
3112 /* ITR clock source is enet system clock (clk_ahb).
3113  * TCTT unit is cycle_ns * 64 cycle
3114  * So, the ICTT value = X us / (cycle_ns * 64)
3115  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3116 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3117 {
3118 	struct fec_enet_private *fep = netdev_priv(ndev);
3119 
3120 	return us * (fep->itr_clk_rate / 64000) / 1000;
3121 }
3122 
3123 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3124 static void fec_enet_itr_coal_set(struct net_device *ndev)
3125 {
3126 	struct fec_enet_private *fep = netdev_priv(ndev);
3127 	int rx_itr, tx_itr;
3128 
3129 	/* Must be greater than zero to avoid unpredictable behavior */
3130 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3131 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3132 		return;
3133 
3134 	/* Select enet system clock as Interrupt Coalescing
3135 	 * timer Clock Source
3136 	 */
3137 	rx_itr = FEC_ITR_CLK_SEL;
3138 	tx_itr = FEC_ITR_CLK_SEL;
3139 
3140 	/* set ICFT and ICTT */
3141 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3142 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3143 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3144 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3145 
3146 	rx_itr |= FEC_ITR_EN;
3147 	tx_itr |= FEC_ITR_EN;
3148 
3149 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3150 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3151 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3152 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3153 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3154 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3155 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3156 	}
3157 }
3158 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3159 static int fec_enet_get_coalesce(struct net_device *ndev,
3160 				 struct ethtool_coalesce *ec,
3161 				 struct kernel_ethtool_coalesce *kernel_coal,
3162 				 struct netlink_ext_ack *extack)
3163 {
3164 	struct fec_enet_private *fep = netdev_priv(ndev);
3165 
3166 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3167 		return -EOPNOTSUPP;
3168 
3169 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3170 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3171 
3172 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3173 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3174 
3175 	return 0;
3176 }
3177 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3178 static int fec_enet_set_coalesce(struct net_device *ndev,
3179 				 struct ethtool_coalesce *ec,
3180 				 struct kernel_ethtool_coalesce *kernel_coal,
3181 				 struct netlink_ext_ack *extack)
3182 {
3183 	struct fec_enet_private *fep = netdev_priv(ndev);
3184 	struct device *dev = &fep->pdev->dev;
3185 	unsigned int cycle;
3186 
3187 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3188 		return -EOPNOTSUPP;
3189 
3190 	if (ec->rx_max_coalesced_frames > 255) {
3191 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3192 		return -EINVAL;
3193 	}
3194 
3195 	if (ec->tx_max_coalesced_frames > 255) {
3196 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3197 		return -EINVAL;
3198 	}
3199 
3200 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3201 	if (cycle > 0xFFFF) {
3202 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3203 		return -EINVAL;
3204 	}
3205 
3206 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3207 	if (cycle > 0xFFFF) {
3208 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3209 		return -EINVAL;
3210 	}
3211 
3212 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3213 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3214 
3215 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3216 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3217 
3218 	fec_enet_itr_coal_set(ndev);
3219 
3220 	return 0;
3221 }
3222 
3223 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3224 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3225 {
3226 	struct fec_enet_private *fep = netdev_priv(ndev);
3227 
3228 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3229 		return -EOPNOTSUPP;
3230 
3231 	if (!netif_running(ndev))
3232 		return -ENETDOWN;
3233 
3234 	return phy_ethtool_get_eee(ndev->phydev, edata);
3235 }
3236 
3237 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3238 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3239 {
3240 	struct fec_enet_private *fep = netdev_priv(ndev);
3241 
3242 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3243 		return -EOPNOTSUPP;
3244 
3245 	if (!netif_running(ndev))
3246 		return -ENETDOWN;
3247 
3248 	return phy_ethtool_set_eee(ndev->phydev, edata);
3249 }
3250 
3251 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3252 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3253 {
3254 	struct fec_enet_private *fep = netdev_priv(ndev);
3255 
3256 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3257 		wol->supported = WAKE_MAGIC;
3258 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3259 	} else {
3260 		wol->supported = wol->wolopts = 0;
3261 	}
3262 }
3263 
3264 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3265 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3266 {
3267 	struct fec_enet_private *fep = netdev_priv(ndev);
3268 
3269 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3270 		return -EINVAL;
3271 
3272 	if (wol->wolopts & ~WAKE_MAGIC)
3273 		return -EINVAL;
3274 
3275 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3276 	if (device_may_wakeup(&ndev->dev))
3277 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3278 	else
3279 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3280 
3281 	return 0;
3282 }
3283 
3284 static const struct ethtool_ops fec_enet_ethtool_ops = {
3285 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3286 				     ETHTOOL_COALESCE_MAX_FRAMES,
3287 	.get_drvinfo		= fec_enet_get_drvinfo,
3288 	.get_regs_len		= fec_enet_get_regs_len,
3289 	.get_regs		= fec_enet_get_regs,
3290 	.nway_reset		= phy_ethtool_nway_reset,
3291 	.get_link		= ethtool_op_get_link,
3292 	.get_coalesce		= fec_enet_get_coalesce,
3293 	.set_coalesce		= fec_enet_set_coalesce,
3294 #ifndef CONFIG_M5272
3295 	.get_pauseparam		= fec_enet_get_pauseparam,
3296 	.set_pauseparam		= fec_enet_set_pauseparam,
3297 	.get_strings		= fec_enet_get_strings,
3298 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3299 	.get_sset_count		= fec_enet_get_sset_count,
3300 #endif
3301 	.get_ts_info		= fec_enet_get_ts_info,
3302 	.get_wol		= fec_enet_get_wol,
3303 	.set_wol		= fec_enet_set_wol,
3304 	.get_eee		= fec_enet_get_eee,
3305 	.set_eee		= fec_enet_set_eee,
3306 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3307 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3308 	.self_test		= net_selftest,
3309 };
3310 
fec_enet_free_buffers(struct net_device * ndev)3311 static void fec_enet_free_buffers(struct net_device *ndev)
3312 {
3313 	struct fec_enet_private *fep = netdev_priv(ndev);
3314 	unsigned int i;
3315 	struct fec_enet_priv_tx_q *txq;
3316 	struct fec_enet_priv_rx_q *rxq;
3317 	unsigned int q;
3318 
3319 	for (q = 0; q < fep->num_rx_queues; q++) {
3320 		rxq = fep->rx_queue[q];
3321 		for (i = 0; i < rxq->bd.ring_size; i++)
3322 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3323 
3324 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3325 			rxq->stats[i] = 0;
3326 
3327 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3328 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3329 		page_pool_destroy(rxq->page_pool);
3330 		rxq->page_pool = NULL;
3331 	}
3332 
3333 	for (q = 0; q < fep->num_tx_queues; q++) {
3334 		txq = fep->tx_queue[q];
3335 		for (i = 0; i < txq->bd.ring_size; i++) {
3336 			kfree(txq->tx_bounce[i]);
3337 			txq->tx_bounce[i] = NULL;
3338 
3339 			if (!txq->tx_buf[i].buf_p) {
3340 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3341 				continue;
3342 			}
3343 
3344 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3345 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3346 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3347 				xdp_return_frame(txq->tx_buf[i].buf_p);
3348 			} else {
3349 				struct page *page = txq->tx_buf[i].buf_p;
3350 
3351 				page_pool_put_page(page->pp, page, 0, false);
3352 			}
3353 
3354 			txq->tx_buf[i].buf_p = NULL;
3355 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3356 		}
3357 	}
3358 }
3359 
fec_enet_free_queue(struct net_device * ndev)3360 static void fec_enet_free_queue(struct net_device *ndev)
3361 {
3362 	struct fec_enet_private *fep = netdev_priv(ndev);
3363 	int i;
3364 	struct fec_enet_priv_tx_q *txq;
3365 
3366 	for (i = 0; i < fep->num_tx_queues; i++)
3367 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3368 			txq = fep->tx_queue[i];
3369 			fec_dma_free(&fep->pdev->dev,
3370 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3371 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3372 		}
3373 
3374 	for (i = 0; i < fep->num_rx_queues; i++)
3375 		kfree(fep->rx_queue[i]);
3376 	for (i = 0; i < fep->num_tx_queues; i++)
3377 		kfree(fep->tx_queue[i]);
3378 }
3379 
fec_enet_alloc_queue(struct net_device * ndev)3380 static int fec_enet_alloc_queue(struct net_device *ndev)
3381 {
3382 	struct fec_enet_private *fep = netdev_priv(ndev);
3383 	int i;
3384 	int ret = 0;
3385 	struct fec_enet_priv_tx_q *txq;
3386 
3387 	for (i = 0; i < fep->num_tx_queues; i++) {
3388 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3389 		if (!txq) {
3390 			ret = -ENOMEM;
3391 			goto alloc_failed;
3392 		}
3393 
3394 		fep->tx_queue[i] = txq;
3395 		txq->bd.ring_size = TX_RING_SIZE;
3396 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3397 
3398 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3399 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3400 
3401 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3402 					txq->bd.ring_size * TSO_HEADER_SIZE,
3403 					&txq->tso_hdrs_dma, GFP_KERNEL);
3404 		if (!txq->tso_hdrs) {
3405 			ret = -ENOMEM;
3406 			goto alloc_failed;
3407 		}
3408 	}
3409 
3410 	for (i = 0; i < fep->num_rx_queues; i++) {
3411 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3412 					   GFP_KERNEL);
3413 		if (!fep->rx_queue[i]) {
3414 			ret = -ENOMEM;
3415 			goto alloc_failed;
3416 		}
3417 
3418 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3419 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3420 	}
3421 	return ret;
3422 
3423 alloc_failed:
3424 	fec_enet_free_queue(ndev);
3425 	return ret;
3426 }
3427 
3428 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3429 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3430 {
3431 	struct fec_enet_private *fep = netdev_priv(ndev);
3432 	struct fec_enet_priv_rx_q *rxq;
3433 	dma_addr_t phys_addr;
3434 	struct bufdesc	*bdp;
3435 	struct page *page;
3436 	int i, err;
3437 
3438 	rxq = fep->rx_queue[queue];
3439 	bdp = rxq->bd.base;
3440 
3441 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3442 	if (err < 0) {
3443 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3444 		return err;
3445 	}
3446 
3447 	for (i = 0; i < rxq->bd.ring_size; i++) {
3448 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3449 		if (!page)
3450 			goto err_alloc;
3451 
3452 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3453 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3454 
3455 		rxq->rx_skb_info[i].page = page;
3456 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3457 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3458 
3459 		if (fep->bufdesc_ex) {
3460 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3461 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3462 		}
3463 
3464 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3465 	}
3466 
3467 	/* Set the last buffer to wrap. */
3468 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3469 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3470 	return 0;
3471 
3472  err_alloc:
3473 	fec_enet_free_buffers(ndev);
3474 	return -ENOMEM;
3475 }
3476 
3477 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3478 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3479 {
3480 	struct fec_enet_private *fep = netdev_priv(ndev);
3481 	unsigned int i;
3482 	struct bufdesc  *bdp;
3483 	struct fec_enet_priv_tx_q *txq;
3484 
3485 	txq = fep->tx_queue[queue];
3486 	bdp = txq->bd.base;
3487 	for (i = 0; i < txq->bd.ring_size; i++) {
3488 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3489 		if (!txq->tx_bounce[i])
3490 			goto err_alloc;
3491 
3492 		bdp->cbd_sc = cpu_to_fec16(0);
3493 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3494 
3495 		if (fep->bufdesc_ex) {
3496 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3497 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3498 		}
3499 
3500 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3501 	}
3502 
3503 	/* Set the last buffer to wrap. */
3504 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3505 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3506 
3507 	return 0;
3508 
3509  err_alloc:
3510 	fec_enet_free_buffers(ndev);
3511 	return -ENOMEM;
3512 }
3513 
fec_enet_alloc_buffers(struct net_device * ndev)3514 static int fec_enet_alloc_buffers(struct net_device *ndev)
3515 {
3516 	struct fec_enet_private *fep = netdev_priv(ndev);
3517 	unsigned int i;
3518 
3519 	for (i = 0; i < fep->num_rx_queues; i++)
3520 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3521 			return -ENOMEM;
3522 
3523 	for (i = 0; i < fep->num_tx_queues; i++)
3524 		if (fec_enet_alloc_txq_buffers(ndev, i))
3525 			return -ENOMEM;
3526 	return 0;
3527 }
3528 
3529 static int
fec_enet_open(struct net_device * ndev)3530 fec_enet_open(struct net_device *ndev)
3531 {
3532 	struct fec_enet_private *fep = netdev_priv(ndev);
3533 	int ret;
3534 	bool reset_again;
3535 
3536 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3537 	if (ret < 0)
3538 		return ret;
3539 
3540 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3541 	ret = fec_enet_clk_enable(ndev, true);
3542 	if (ret)
3543 		goto clk_enable;
3544 
3545 	/* During the first fec_enet_open call the PHY isn't probed at this
3546 	 * point. Therefore the phy_reset_after_clk_enable() call within
3547 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3548 	 * sure the PHY is working correctly we check if we need to reset again
3549 	 * later when the PHY is probed
3550 	 */
3551 	if (ndev->phydev && ndev->phydev->drv)
3552 		reset_again = false;
3553 	else
3554 		reset_again = true;
3555 
3556 	/* I should reset the ring buffers here, but I don't yet know
3557 	 * a simple way to do that.
3558 	 */
3559 
3560 	ret = fec_enet_alloc_buffers(ndev);
3561 	if (ret)
3562 		goto err_enet_alloc;
3563 
3564 	/* Init MAC prior to mii bus probe */
3565 	fec_restart(ndev);
3566 
3567 	/* Call phy_reset_after_clk_enable() again if it failed during
3568 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3569 	 */
3570 	if (reset_again)
3571 		fec_enet_phy_reset_after_clk_enable(ndev);
3572 
3573 	/* Probe and connect to PHY when open the interface */
3574 	ret = fec_enet_mii_probe(ndev);
3575 	if (ret)
3576 		goto err_enet_mii_probe;
3577 
3578 	if (fep->quirks & FEC_QUIRK_ERR006687)
3579 		imx6q_cpuidle_fec_irqs_used();
3580 
3581 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3582 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3583 
3584 	napi_enable(&fep->napi);
3585 	phy_start(ndev->phydev);
3586 	netif_tx_start_all_queues(ndev);
3587 
3588 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3589 				 FEC_WOL_FLAG_ENABLE);
3590 
3591 	return 0;
3592 
3593 err_enet_mii_probe:
3594 	fec_enet_free_buffers(ndev);
3595 err_enet_alloc:
3596 	fec_enet_clk_enable(ndev, false);
3597 clk_enable:
3598 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3599 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3600 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3601 	return ret;
3602 }
3603 
3604 static int
fec_enet_close(struct net_device * ndev)3605 fec_enet_close(struct net_device *ndev)
3606 {
3607 	struct fec_enet_private *fep = netdev_priv(ndev);
3608 
3609 	phy_stop(ndev->phydev);
3610 
3611 	if (netif_device_present(ndev)) {
3612 		napi_disable(&fep->napi);
3613 		netif_tx_disable(ndev);
3614 		fec_stop(ndev);
3615 	}
3616 
3617 	phy_disconnect(ndev->phydev);
3618 
3619 	if (fep->quirks & FEC_QUIRK_ERR006687)
3620 		imx6q_cpuidle_fec_irqs_unused();
3621 
3622 	fec_enet_update_ethtool_stats(ndev);
3623 
3624 	fec_enet_clk_enable(ndev, false);
3625 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3626 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3627 
3628 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3629 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3630 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3631 
3632 	fec_enet_free_buffers(ndev);
3633 
3634 	return 0;
3635 }
3636 
3637 /* Set or clear the multicast filter for this adaptor.
3638  * Skeleton taken from sunlance driver.
3639  * The CPM Ethernet implementation allows Multicast as well as individual
3640  * MAC address filtering.  Some of the drivers check to make sure it is
3641  * a group multicast address, and discard those that are not.  I guess I
3642  * will do the same for now, but just remove the test if you want
3643  * individual filtering as well (do the upper net layers want or support
3644  * this kind of feature?).
3645  */
3646 
3647 #define FEC_HASH_BITS	6		/* #bits in hash */
3648 
set_multicast_list(struct net_device * ndev)3649 static void set_multicast_list(struct net_device *ndev)
3650 {
3651 	struct fec_enet_private *fep = netdev_priv(ndev);
3652 	struct netdev_hw_addr *ha;
3653 	unsigned int crc, tmp;
3654 	unsigned char hash;
3655 	unsigned int hash_high = 0, hash_low = 0;
3656 
3657 	if (ndev->flags & IFF_PROMISC) {
3658 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3659 		tmp |= 0x8;
3660 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3661 		return;
3662 	}
3663 
3664 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3665 	tmp &= ~0x8;
3666 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3667 
3668 	if (ndev->flags & IFF_ALLMULTI) {
3669 		/* Catch all multicast addresses, so set the
3670 		 * filter to all 1's
3671 		 */
3672 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3673 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3674 
3675 		return;
3676 	}
3677 
3678 	/* Add the addresses in hash register */
3679 	netdev_for_each_mc_addr(ha, ndev) {
3680 		/* calculate crc32 value of mac address */
3681 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3682 
3683 		/* only upper 6 bits (FEC_HASH_BITS) are used
3684 		 * which point to specific bit in the hash registers
3685 		 */
3686 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3687 
3688 		if (hash > 31)
3689 			hash_high |= 1 << (hash - 32);
3690 		else
3691 			hash_low |= 1 << hash;
3692 	}
3693 
3694 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3695 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3696 }
3697 
3698 /* Set a MAC change in hardware. */
3699 static int
fec_set_mac_address(struct net_device * ndev,void * p)3700 fec_set_mac_address(struct net_device *ndev, void *p)
3701 {
3702 	struct fec_enet_private *fep = netdev_priv(ndev);
3703 	struct sockaddr *addr = p;
3704 
3705 	if (addr) {
3706 		if (!is_valid_ether_addr(addr->sa_data))
3707 			return -EADDRNOTAVAIL;
3708 		eth_hw_addr_set(ndev, addr->sa_data);
3709 	}
3710 
3711 	/* Add netif status check here to avoid system hang in below case:
3712 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3713 	 * After ethx down, fec all clocks are gated off and then register
3714 	 * access causes system hang.
3715 	 */
3716 	if (!netif_running(ndev))
3717 		return 0;
3718 
3719 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3720 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3721 		fep->hwp + FEC_ADDR_LOW);
3722 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3723 		fep->hwp + FEC_ADDR_HIGH);
3724 	return 0;
3725 }
3726 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3727 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3728 	netdev_features_t features)
3729 {
3730 	struct fec_enet_private *fep = netdev_priv(netdev);
3731 	netdev_features_t changed = features ^ netdev->features;
3732 
3733 	netdev->features = features;
3734 
3735 	/* Receive checksum has been changed */
3736 	if (changed & NETIF_F_RXCSUM) {
3737 		if (features & NETIF_F_RXCSUM)
3738 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3739 		else
3740 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3741 	}
3742 }
3743 
fec_set_features(struct net_device * netdev,netdev_features_t features)3744 static int fec_set_features(struct net_device *netdev,
3745 	netdev_features_t features)
3746 {
3747 	struct fec_enet_private *fep = netdev_priv(netdev);
3748 	netdev_features_t changed = features ^ netdev->features;
3749 
3750 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3751 		napi_disable(&fep->napi);
3752 		netif_tx_lock_bh(netdev);
3753 		fec_stop(netdev);
3754 		fec_enet_set_netdev_features(netdev, features);
3755 		fec_restart(netdev);
3756 		netif_tx_wake_all_queues(netdev);
3757 		netif_tx_unlock_bh(netdev);
3758 		napi_enable(&fep->napi);
3759 	} else {
3760 		fec_enet_set_netdev_features(netdev, features);
3761 	}
3762 
3763 	return 0;
3764 }
3765 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3766 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3767 				 struct net_device *sb_dev)
3768 {
3769 	struct fec_enet_private *fep = netdev_priv(ndev);
3770 	u16 vlan_tag = 0;
3771 
3772 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3773 		return netdev_pick_tx(ndev, skb, NULL);
3774 
3775 	/* VLAN is present in the payload.*/
3776 	if (eth_type_vlan(skb->protocol)) {
3777 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3778 
3779 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3780 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3781 	} else if (skb_vlan_tag_present(skb)) {
3782 		vlan_tag = skb->vlan_tci;
3783 	} else {
3784 		return vlan_tag;
3785 	}
3786 
3787 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3788 }
3789 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3790 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3791 {
3792 	struct fec_enet_private *fep = netdev_priv(dev);
3793 	bool is_run = netif_running(dev);
3794 	struct bpf_prog *old_prog;
3795 
3796 	switch (bpf->command) {
3797 	case XDP_SETUP_PROG:
3798 		/* No need to support the SoCs that require to
3799 		 * do the frame swap because the performance wouldn't be
3800 		 * better than the skb mode.
3801 		 */
3802 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3803 			return -EOPNOTSUPP;
3804 
3805 		if (!bpf->prog)
3806 			xdp_features_clear_redirect_target(dev);
3807 
3808 		if (is_run) {
3809 			napi_disable(&fep->napi);
3810 			netif_tx_disable(dev);
3811 		}
3812 
3813 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3814 		if (old_prog)
3815 			bpf_prog_put(old_prog);
3816 
3817 		fec_restart(dev);
3818 
3819 		if (is_run) {
3820 			napi_enable(&fep->napi);
3821 			netif_tx_start_all_queues(dev);
3822 		}
3823 
3824 		if (bpf->prog)
3825 			xdp_features_set_redirect_target(dev, false);
3826 
3827 		return 0;
3828 
3829 	case XDP_SETUP_XSK_POOL:
3830 		return -EOPNOTSUPP;
3831 
3832 	default:
3833 		return -EOPNOTSUPP;
3834 	}
3835 }
3836 
3837 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3838 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3839 {
3840 	if (unlikely(index < 0))
3841 		return 0;
3842 
3843 	return (index % fep->num_tx_queues);
3844 }
3845 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3846 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3847 				   struct fec_enet_priv_tx_q *txq,
3848 				   void *frame, u32 dma_sync_len,
3849 				   bool ndo_xmit)
3850 {
3851 	unsigned int index, status, estatus;
3852 	struct bufdesc *bdp;
3853 	dma_addr_t dma_addr;
3854 	int entries_free;
3855 	u16 frame_len;
3856 
3857 	entries_free = fec_enet_get_free_txdesc_num(txq);
3858 	if (entries_free < MAX_SKB_FRAGS + 1) {
3859 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3860 		return -EBUSY;
3861 	}
3862 
3863 	/* Fill in a Tx ring entry */
3864 	bdp = txq->bd.cur;
3865 	status = fec16_to_cpu(bdp->cbd_sc);
3866 	status &= ~BD_ENET_TX_STATS;
3867 
3868 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3869 
3870 	if (ndo_xmit) {
3871 		struct xdp_frame *xdpf = frame;
3872 
3873 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3874 					  xdpf->len, DMA_TO_DEVICE);
3875 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3876 			return -ENOMEM;
3877 
3878 		frame_len = xdpf->len;
3879 		txq->tx_buf[index].buf_p = xdpf;
3880 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3881 	} else {
3882 		struct xdp_buff *xdpb = frame;
3883 		struct page *page;
3884 
3885 		page = virt_to_page(xdpb->data);
3886 		dma_addr = page_pool_get_dma_addr(page) +
3887 			   (xdpb->data - xdpb->data_hard_start);
3888 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3889 					   dma_sync_len, DMA_BIDIRECTIONAL);
3890 		frame_len = xdpb->data_end - xdpb->data;
3891 		txq->tx_buf[index].buf_p = page;
3892 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3893 	}
3894 
3895 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3896 	if (fep->bufdesc_ex)
3897 		estatus = BD_ENET_TX_INT;
3898 
3899 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3900 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3901 
3902 	if (fep->bufdesc_ex) {
3903 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3904 
3905 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3906 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3907 
3908 		ebdp->cbd_bdu = 0;
3909 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3910 	}
3911 
3912 	/* Make sure the updates to rest of the descriptor are performed before
3913 	 * transferring ownership.
3914 	 */
3915 	dma_wmb();
3916 
3917 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3918 	 * it's the last BD of the frame, and to put the CRC on the end.
3919 	 */
3920 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3921 	bdp->cbd_sc = cpu_to_fec16(status);
3922 
3923 	/* If this was the last BD in the ring, start at the beginning again. */
3924 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3925 
3926 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3927 	dma_wmb();
3928 
3929 	txq->bd.cur = bdp;
3930 
3931 	/* Trigger transmission start */
3932 	writel(0, txq->bd.reg_desc_active);
3933 
3934 	return 0;
3935 }
3936 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3937 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3938 				int cpu, struct xdp_buff *xdp,
3939 				u32 dma_sync_len)
3940 {
3941 	struct fec_enet_priv_tx_q *txq;
3942 	struct netdev_queue *nq;
3943 	int queue, ret;
3944 
3945 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3946 	txq = fep->tx_queue[queue];
3947 	nq = netdev_get_tx_queue(fep->netdev, queue);
3948 
3949 	__netif_tx_lock(nq, cpu);
3950 
3951 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3952 	txq_trans_cond_update(nq);
3953 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3954 
3955 	__netif_tx_unlock(nq);
3956 
3957 	return ret;
3958 }
3959 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3960 static int fec_enet_xdp_xmit(struct net_device *dev,
3961 			     int num_frames,
3962 			     struct xdp_frame **frames,
3963 			     u32 flags)
3964 {
3965 	struct fec_enet_private *fep = netdev_priv(dev);
3966 	struct fec_enet_priv_tx_q *txq;
3967 	int cpu = smp_processor_id();
3968 	unsigned int sent_frames = 0;
3969 	struct netdev_queue *nq;
3970 	unsigned int queue;
3971 	int i;
3972 
3973 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3974 	txq = fep->tx_queue[queue];
3975 	nq = netdev_get_tx_queue(fep->netdev, queue);
3976 
3977 	__netif_tx_lock(nq, cpu);
3978 
3979 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3980 	txq_trans_cond_update(nq);
3981 	for (i = 0; i < num_frames; i++) {
3982 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3983 			break;
3984 		sent_frames++;
3985 	}
3986 
3987 	__netif_tx_unlock(nq);
3988 
3989 	return sent_frames;
3990 }
3991 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3992 static int fec_hwtstamp_get(struct net_device *ndev,
3993 			    struct kernel_hwtstamp_config *config)
3994 {
3995 	struct fec_enet_private *fep = netdev_priv(ndev);
3996 
3997 	if (!netif_running(ndev))
3998 		return -EINVAL;
3999 
4000 	if (!fep->bufdesc_ex)
4001 		return -EOPNOTSUPP;
4002 
4003 	fec_ptp_get(ndev, config);
4004 
4005 	return 0;
4006 }
4007 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4008 static int fec_hwtstamp_set(struct net_device *ndev,
4009 			    struct kernel_hwtstamp_config *config,
4010 			    struct netlink_ext_ack *extack)
4011 {
4012 	struct fec_enet_private *fep = netdev_priv(ndev);
4013 
4014 	if (!netif_running(ndev))
4015 		return -EINVAL;
4016 
4017 	if (!fep->bufdesc_ex)
4018 		return -EOPNOTSUPP;
4019 
4020 	return fec_ptp_set(ndev, config, extack);
4021 }
4022 
4023 static const struct net_device_ops fec_netdev_ops = {
4024 	.ndo_open		= fec_enet_open,
4025 	.ndo_stop		= fec_enet_close,
4026 	.ndo_start_xmit		= fec_enet_start_xmit,
4027 	.ndo_select_queue       = fec_enet_select_queue,
4028 	.ndo_set_rx_mode	= set_multicast_list,
4029 	.ndo_validate_addr	= eth_validate_addr,
4030 	.ndo_tx_timeout		= fec_timeout,
4031 	.ndo_set_mac_address	= fec_set_mac_address,
4032 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4033 	.ndo_set_features	= fec_set_features,
4034 	.ndo_bpf		= fec_enet_bpf,
4035 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4036 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4037 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4038 };
4039 
4040 static const unsigned short offset_des_active_rxq[] = {
4041 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4042 };
4043 
4044 static const unsigned short offset_des_active_txq[] = {
4045 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4046 };
4047 
4048  /*
4049   * XXX:  We need to clean up on failure exits here.
4050   *
4051   */
fec_enet_init(struct net_device * ndev)4052 static int fec_enet_init(struct net_device *ndev)
4053 {
4054 	struct fec_enet_private *fep = netdev_priv(ndev);
4055 	struct bufdesc *cbd_base;
4056 	dma_addr_t bd_dma;
4057 	int bd_size;
4058 	unsigned int i;
4059 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4060 			sizeof(struct bufdesc);
4061 	unsigned dsize_log2 = __fls(dsize);
4062 	int ret;
4063 
4064 	WARN_ON(dsize != (1 << dsize_log2));
4065 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4066 	fep->rx_align = 0xf;
4067 	fep->tx_align = 0xf;
4068 #else
4069 	fep->rx_align = 0x3;
4070 	fep->tx_align = 0x3;
4071 #endif
4072 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4073 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4074 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4075 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4076 
4077 	/* Check mask of the streaming and coherent API */
4078 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4079 	if (ret < 0) {
4080 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4081 		return ret;
4082 	}
4083 
4084 	ret = fec_enet_alloc_queue(ndev);
4085 	if (ret)
4086 		return ret;
4087 
4088 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4089 
4090 	/* Allocate memory for buffer descriptors. */
4091 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4092 				  GFP_KERNEL);
4093 	if (!cbd_base) {
4094 		ret = -ENOMEM;
4095 		goto free_queue_mem;
4096 	}
4097 
4098 	/* Get the Ethernet address */
4099 	ret = fec_get_mac(ndev);
4100 	if (ret)
4101 		goto free_queue_mem;
4102 
4103 	/* Set receive and transmit descriptor base. */
4104 	for (i = 0; i < fep->num_rx_queues; i++) {
4105 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4106 		unsigned size = dsize * rxq->bd.ring_size;
4107 
4108 		rxq->bd.qid = i;
4109 		rxq->bd.base = cbd_base;
4110 		rxq->bd.cur = cbd_base;
4111 		rxq->bd.dma = bd_dma;
4112 		rxq->bd.dsize = dsize;
4113 		rxq->bd.dsize_log2 = dsize_log2;
4114 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4115 		bd_dma += size;
4116 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4117 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4118 	}
4119 
4120 	for (i = 0; i < fep->num_tx_queues; i++) {
4121 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4122 		unsigned size = dsize * txq->bd.ring_size;
4123 
4124 		txq->bd.qid = i;
4125 		txq->bd.base = cbd_base;
4126 		txq->bd.cur = cbd_base;
4127 		txq->bd.dma = bd_dma;
4128 		txq->bd.dsize = dsize;
4129 		txq->bd.dsize_log2 = dsize_log2;
4130 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4131 		bd_dma += size;
4132 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4133 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4134 	}
4135 
4136 
4137 	/* The FEC Ethernet specific entries in the device structure */
4138 	ndev->watchdog_timeo = TX_TIMEOUT;
4139 	ndev->netdev_ops = &fec_netdev_ops;
4140 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4141 
4142 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4143 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4144 
4145 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4146 		/* enable hw VLAN support */
4147 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4148 
4149 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4150 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4151 
4152 		/* enable hw accelerator */
4153 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4154 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4155 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4156 	}
4157 
4158 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4159 		fep->tx_align = 0;
4160 		fep->rx_align = 0x3f;
4161 	}
4162 
4163 	ndev->hw_features = ndev->features;
4164 
4165 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4166 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4167 				     NETDEV_XDP_ACT_REDIRECT;
4168 
4169 	fec_restart(ndev);
4170 
4171 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4172 		fec_enet_clear_ethtool_stats(ndev);
4173 	else
4174 		fec_enet_update_ethtool_stats(ndev);
4175 
4176 	return 0;
4177 
4178 free_queue_mem:
4179 	fec_enet_free_queue(ndev);
4180 	return ret;
4181 }
4182 
fec_enet_deinit(struct net_device * ndev)4183 static void fec_enet_deinit(struct net_device *ndev)
4184 {
4185 	struct fec_enet_private *fep = netdev_priv(ndev);
4186 
4187 	netif_napi_del(&fep->napi);
4188 	fec_enet_free_queue(ndev);
4189 }
4190 
4191 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4192 static int fec_reset_phy(struct platform_device *pdev)
4193 {
4194 	struct gpio_desc *phy_reset;
4195 	int msec = 1, phy_post_delay = 0;
4196 	struct device_node *np = pdev->dev.of_node;
4197 	int err;
4198 
4199 	if (!np)
4200 		return 0;
4201 
4202 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4203 	/* A sane reset duration should not be longer than 1s */
4204 	if (!err && msec > 1000)
4205 		msec = 1;
4206 
4207 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4208 	/* valid reset duration should be less than 1s */
4209 	if (!err && phy_post_delay > 1000)
4210 		return -EINVAL;
4211 
4212 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4213 					    GPIOD_OUT_HIGH);
4214 	if (IS_ERR(phy_reset))
4215 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4216 				     "failed to get phy-reset-gpios\n");
4217 
4218 	if (!phy_reset)
4219 		return 0;
4220 
4221 	if (msec > 20)
4222 		msleep(msec);
4223 	else
4224 		usleep_range(msec * 1000, msec * 1000 + 1000);
4225 
4226 	gpiod_set_value_cansleep(phy_reset, 0);
4227 
4228 	if (!phy_post_delay)
4229 		return 0;
4230 
4231 	if (phy_post_delay > 20)
4232 		msleep(phy_post_delay);
4233 	else
4234 		usleep_range(phy_post_delay * 1000,
4235 			     phy_post_delay * 1000 + 1000);
4236 
4237 	return 0;
4238 }
4239 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4240 static int fec_reset_phy(struct platform_device *pdev)
4241 {
4242 	/*
4243 	 * In case of platform probe, the reset has been done
4244 	 * by machine code.
4245 	 */
4246 	return 0;
4247 }
4248 #endif /* CONFIG_OF */
4249 
4250 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4251 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4252 {
4253 	struct device_node *np = pdev->dev.of_node;
4254 
4255 	*num_tx = *num_rx = 1;
4256 
4257 	if (!np || !of_device_is_available(np))
4258 		return;
4259 
4260 	/* parse the num of tx and rx queues */
4261 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4262 
4263 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4264 
4265 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4266 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4267 			 *num_tx);
4268 		*num_tx = 1;
4269 		return;
4270 	}
4271 
4272 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4273 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4274 			 *num_rx);
4275 		*num_rx = 1;
4276 		return;
4277 	}
4278 
4279 }
4280 
fec_enet_get_irq_cnt(struct platform_device * pdev)4281 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4282 {
4283 	int irq_cnt = platform_irq_count(pdev);
4284 
4285 	if (irq_cnt > FEC_IRQ_NUM)
4286 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4287 	else if (irq_cnt == 2)
4288 		irq_cnt = 1;	/* last for pps */
4289 	else if (irq_cnt <= 0)
4290 		irq_cnt = 1;	/* At least 1 irq is needed */
4291 	return irq_cnt;
4292 }
4293 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4294 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4295 {
4296 	struct net_device *ndev = platform_get_drvdata(pdev);
4297 	struct fec_enet_private *fep = netdev_priv(ndev);
4298 
4299 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4300 		fep->wake_irq = fep->irq[2];
4301 	else
4302 		fep->wake_irq = fep->irq[0];
4303 }
4304 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4305 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4306 				   struct device_node *np)
4307 {
4308 	struct device_node *gpr_np;
4309 	u32 out_val[3];
4310 	int ret = 0;
4311 
4312 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4313 	if (!gpr_np)
4314 		return 0;
4315 
4316 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4317 					 ARRAY_SIZE(out_val));
4318 	if (ret) {
4319 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4320 		goto out;
4321 	}
4322 
4323 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4324 	if (IS_ERR(fep->stop_gpr.gpr)) {
4325 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4326 		ret = PTR_ERR(fep->stop_gpr.gpr);
4327 		fep->stop_gpr.gpr = NULL;
4328 		goto out;
4329 	}
4330 
4331 	fep->stop_gpr.reg = out_val[1];
4332 	fep->stop_gpr.bit = out_val[2];
4333 
4334 out:
4335 	of_node_put(gpr_np);
4336 
4337 	return ret;
4338 }
4339 
4340 static int
fec_probe(struct platform_device * pdev)4341 fec_probe(struct platform_device *pdev)
4342 {
4343 	struct fec_enet_private *fep;
4344 	struct fec_platform_data *pdata;
4345 	phy_interface_t interface;
4346 	struct net_device *ndev;
4347 	int i, irq, ret = 0;
4348 	static int dev_id;
4349 	struct device_node *np = pdev->dev.of_node, *phy_node;
4350 	int num_tx_qs;
4351 	int num_rx_qs;
4352 	char irq_name[8];
4353 	int irq_cnt;
4354 	const struct fec_devinfo *dev_info;
4355 
4356 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4357 
4358 	/* Init network device */
4359 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4360 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4361 	if (!ndev)
4362 		return -ENOMEM;
4363 
4364 	SET_NETDEV_DEV(ndev, &pdev->dev);
4365 
4366 	/* setup board info structure */
4367 	fep = netdev_priv(ndev);
4368 
4369 	dev_info = device_get_match_data(&pdev->dev);
4370 	if (!dev_info)
4371 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4372 	if (dev_info)
4373 		fep->quirks = dev_info->quirks;
4374 
4375 	fep->netdev = ndev;
4376 	fep->num_rx_queues = num_rx_qs;
4377 	fep->num_tx_queues = num_tx_qs;
4378 
4379 #if !defined(CONFIG_M5272)
4380 	/* default enable pause frame auto negotiation */
4381 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4382 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4383 #endif
4384 
4385 	/* Select default pin state */
4386 	pinctrl_pm_select_default_state(&pdev->dev);
4387 
4388 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4389 	if (IS_ERR(fep->hwp)) {
4390 		ret = PTR_ERR(fep->hwp);
4391 		goto failed_ioremap;
4392 	}
4393 
4394 	fep->pdev = pdev;
4395 	fep->dev_id = dev_id++;
4396 
4397 	platform_set_drvdata(pdev, ndev);
4398 
4399 	if ((of_machine_is_compatible("fsl,imx6q") ||
4400 	     of_machine_is_compatible("fsl,imx6dl")) &&
4401 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4402 		fep->quirks |= FEC_QUIRK_ERR006687;
4403 
4404 	ret = fec_enet_ipc_handle_init(fep);
4405 	if (ret)
4406 		goto failed_ipc_init;
4407 
4408 	if (of_property_read_bool(np, "fsl,magic-packet"))
4409 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4410 
4411 	ret = fec_enet_init_stop_mode(fep, np);
4412 	if (ret)
4413 		goto failed_stop_mode;
4414 
4415 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4416 	if (!phy_node && of_phy_is_fixed_link(np)) {
4417 		ret = of_phy_register_fixed_link(np);
4418 		if (ret < 0) {
4419 			dev_err(&pdev->dev,
4420 				"broken fixed-link specification\n");
4421 			goto failed_phy;
4422 		}
4423 		phy_node = of_node_get(np);
4424 	}
4425 	fep->phy_node = phy_node;
4426 
4427 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4428 	if (ret) {
4429 		pdata = dev_get_platdata(&pdev->dev);
4430 		if (pdata)
4431 			fep->phy_interface = pdata->phy;
4432 		else
4433 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4434 	} else {
4435 		fep->phy_interface = interface;
4436 	}
4437 
4438 	ret = fec_enet_parse_rgmii_delay(fep, np);
4439 	if (ret)
4440 		goto failed_rgmii_delay;
4441 
4442 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4443 	if (IS_ERR(fep->clk_ipg)) {
4444 		ret = PTR_ERR(fep->clk_ipg);
4445 		goto failed_clk;
4446 	}
4447 
4448 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4449 	if (IS_ERR(fep->clk_ahb)) {
4450 		ret = PTR_ERR(fep->clk_ahb);
4451 		goto failed_clk;
4452 	}
4453 
4454 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4455 
4456 	/* enet_out is optional, depends on board */
4457 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4458 	if (IS_ERR(fep->clk_enet_out)) {
4459 		ret = PTR_ERR(fep->clk_enet_out);
4460 		goto failed_clk;
4461 	}
4462 
4463 	fep->ptp_clk_on = false;
4464 	mutex_init(&fep->ptp_clk_mutex);
4465 
4466 	/* clk_ref is optional, depends on board */
4467 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4468 	if (IS_ERR(fep->clk_ref)) {
4469 		ret = PTR_ERR(fep->clk_ref);
4470 		goto failed_clk;
4471 	}
4472 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4473 
4474 	/* clk_2x_txclk is optional, depends on board */
4475 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4476 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4477 		if (IS_ERR(fep->clk_2x_txclk))
4478 			fep->clk_2x_txclk = NULL;
4479 	}
4480 
4481 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4482 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4483 	if (IS_ERR(fep->clk_ptp)) {
4484 		fep->clk_ptp = NULL;
4485 		fep->bufdesc_ex = false;
4486 	}
4487 
4488 	ret = fec_enet_clk_enable(ndev, true);
4489 	if (ret)
4490 		goto failed_clk;
4491 
4492 	ret = clk_prepare_enable(fep->clk_ipg);
4493 	if (ret)
4494 		goto failed_clk_ipg;
4495 	ret = clk_prepare_enable(fep->clk_ahb);
4496 	if (ret)
4497 		goto failed_clk_ahb;
4498 
4499 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4500 	if (!IS_ERR(fep->reg_phy)) {
4501 		ret = regulator_enable(fep->reg_phy);
4502 		if (ret) {
4503 			dev_err(&pdev->dev,
4504 				"Failed to enable phy regulator: %d\n", ret);
4505 			goto failed_regulator;
4506 		}
4507 	} else {
4508 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4509 			ret = -EPROBE_DEFER;
4510 			goto failed_regulator;
4511 		}
4512 		fep->reg_phy = NULL;
4513 	}
4514 
4515 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4516 	pm_runtime_use_autosuspend(&pdev->dev);
4517 	pm_runtime_get_noresume(&pdev->dev);
4518 	pm_runtime_set_active(&pdev->dev);
4519 	pm_runtime_enable(&pdev->dev);
4520 
4521 	ret = fec_reset_phy(pdev);
4522 	if (ret)
4523 		goto failed_reset;
4524 
4525 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4526 	if (fep->bufdesc_ex)
4527 		fec_ptp_init(pdev, irq_cnt);
4528 
4529 	ret = fec_enet_init(ndev);
4530 	if (ret)
4531 		goto failed_init;
4532 
4533 	for (i = 0; i < irq_cnt; i++) {
4534 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4535 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4536 		if (irq < 0)
4537 			irq = platform_get_irq(pdev, i);
4538 		if (irq < 0) {
4539 			ret = irq;
4540 			goto failed_irq;
4541 		}
4542 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4543 				       0, pdev->name, ndev);
4544 		if (ret)
4545 			goto failed_irq;
4546 
4547 		fep->irq[i] = irq;
4548 	}
4549 
4550 	/* Decide which interrupt line is wakeup capable */
4551 	fec_enet_get_wakeup_irq(pdev);
4552 
4553 	ret = fec_enet_mii_init(pdev);
4554 	if (ret)
4555 		goto failed_mii_init;
4556 
4557 	/* Carrier starts down, phylib will bring it up */
4558 	netif_carrier_off(ndev);
4559 	fec_enet_clk_enable(ndev, false);
4560 	pinctrl_pm_select_sleep_state(&pdev->dev);
4561 
4562 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4563 
4564 	ret = register_netdev(ndev);
4565 	if (ret)
4566 		goto failed_register;
4567 
4568 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4569 			   FEC_WOL_HAS_MAGIC_PACKET);
4570 
4571 	if (fep->bufdesc_ex && fep->ptp_clock)
4572 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4573 
4574 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4575 
4576 	pm_runtime_mark_last_busy(&pdev->dev);
4577 	pm_runtime_put_autosuspend(&pdev->dev);
4578 
4579 	return 0;
4580 
4581 failed_register:
4582 	fec_enet_mii_remove(fep);
4583 failed_mii_init:
4584 failed_irq:
4585 	fec_enet_deinit(ndev);
4586 failed_init:
4587 	fec_ptp_stop(pdev);
4588 failed_reset:
4589 	pm_runtime_put_noidle(&pdev->dev);
4590 	pm_runtime_disable(&pdev->dev);
4591 	if (fep->reg_phy)
4592 		regulator_disable(fep->reg_phy);
4593 failed_regulator:
4594 	clk_disable_unprepare(fep->clk_ahb);
4595 failed_clk_ahb:
4596 	clk_disable_unprepare(fep->clk_ipg);
4597 failed_clk_ipg:
4598 	fec_enet_clk_enable(ndev, false);
4599 failed_clk:
4600 failed_rgmii_delay:
4601 	if (of_phy_is_fixed_link(np))
4602 		of_phy_deregister_fixed_link(np);
4603 	of_node_put(phy_node);
4604 failed_stop_mode:
4605 failed_ipc_init:
4606 failed_phy:
4607 	dev_id--;
4608 failed_ioremap:
4609 	free_netdev(ndev);
4610 
4611 	return ret;
4612 }
4613 
4614 static void
fec_drv_remove(struct platform_device * pdev)4615 fec_drv_remove(struct platform_device *pdev)
4616 {
4617 	struct net_device *ndev = platform_get_drvdata(pdev);
4618 	struct fec_enet_private *fep = netdev_priv(ndev);
4619 	struct device_node *np = pdev->dev.of_node;
4620 	int ret;
4621 
4622 	ret = pm_runtime_get_sync(&pdev->dev);
4623 	if (ret < 0)
4624 		dev_err(&pdev->dev,
4625 			"Failed to resume device in remove callback (%pe)\n",
4626 			ERR_PTR(ret));
4627 
4628 	cancel_work_sync(&fep->tx_timeout_work);
4629 	fec_ptp_stop(pdev);
4630 	unregister_netdev(ndev);
4631 	fec_enet_mii_remove(fep);
4632 	if (fep->reg_phy)
4633 		regulator_disable(fep->reg_phy);
4634 
4635 	if (of_phy_is_fixed_link(np))
4636 		of_phy_deregister_fixed_link(np);
4637 	of_node_put(fep->phy_node);
4638 
4639 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4640 	 * disabling them again.
4641 	 */
4642 	if (ret >= 0) {
4643 		clk_disable_unprepare(fep->clk_ahb);
4644 		clk_disable_unprepare(fep->clk_ipg);
4645 	}
4646 	pm_runtime_put_noidle(&pdev->dev);
4647 	pm_runtime_disable(&pdev->dev);
4648 
4649 	fec_enet_deinit(ndev);
4650 	free_netdev(ndev);
4651 }
4652 
fec_suspend(struct device * dev)4653 static int fec_suspend(struct device *dev)
4654 {
4655 	struct net_device *ndev = dev_get_drvdata(dev);
4656 	struct fec_enet_private *fep = netdev_priv(ndev);
4657 	int ret;
4658 
4659 	rtnl_lock();
4660 	if (netif_running(ndev)) {
4661 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4662 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4663 		phy_stop(ndev->phydev);
4664 		napi_disable(&fep->napi);
4665 		netif_tx_lock_bh(ndev);
4666 		netif_device_detach(ndev);
4667 		netif_tx_unlock_bh(ndev);
4668 		fec_stop(ndev);
4669 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4670 			fec_irqs_disable(ndev);
4671 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4672 		} else {
4673 			fec_irqs_disable_except_wakeup(ndev);
4674 			if (fep->wake_irq > 0) {
4675 				disable_irq(fep->wake_irq);
4676 				enable_irq_wake(fep->wake_irq);
4677 			}
4678 			fec_enet_stop_mode(fep, true);
4679 		}
4680 		/* It's safe to disable clocks since interrupts are masked */
4681 		fec_enet_clk_enable(ndev, false);
4682 
4683 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4684 		if (fep->rpm_active) {
4685 			ret = pm_runtime_force_suspend(dev);
4686 			if (ret < 0) {
4687 				rtnl_unlock();
4688 				return ret;
4689 			}
4690 		}
4691 	}
4692 	rtnl_unlock();
4693 
4694 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4695 		regulator_disable(fep->reg_phy);
4696 
4697 	/* SOC supply clock to phy, when clock is disabled, phy link down
4698 	 * SOC control phy regulator, when regulator is disabled, phy link down
4699 	 */
4700 	if (fep->clk_enet_out || fep->reg_phy)
4701 		fep->link = 0;
4702 
4703 	return 0;
4704 }
4705 
fec_resume(struct device * dev)4706 static int fec_resume(struct device *dev)
4707 {
4708 	struct net_device *ndev = dev_get_drvdata(dev);
4709 	struct fec_enet_private *fep = netdev_priv(ndev);
4710 	int ret;
4711 	int val;
4712 
4713 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4714 		ret = regulator_enable(fep->reg_phy);
4715 		if (ret)
4716 			return ret;
4717 	}
4718 
4719 	rtnl_lock();
4720 	if (netif_running(ndev)) {
4721 		if (fep->rpm_active)
4722 			pm_runtime_force_resume(dev);
4723 
4724 		ret = fec_enet_clk_enable(ndev, true);
4725 		if (ret) {
4726 			rtnl_unlock();
4727 			goto failed_clk;
4728 		}
4729 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4730 			fec_enet_stop_mode(fep, false);
4731 			if (fep->wake_irq) {
4732 				disable_irq_wake(fep->wake_irq);
4733 				enable_irq(fep->wake_irq);
4734 			}
4735 
4736 			val = readl(fep->hwp + FEC_ECNTRL);
4737 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4738 			writel(val, fep->hwp + FEC_ECNTRL);
4739 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4740 		} else {
4741 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4742 		}
4743 		fec_restart(ndev);
4744 		netif_tx_lock_bh(ndev);
4745 		netif_device_attach(ndev);
4746 		netif_tx_unlock_bh(ndev);
4747 		napi_enable(&fep->napi);
4748 		phy_init_hw(ndev->phydev);
4749 		phy_start(ndev->phydev);
4750 	}
4751 	rtnl_unlock();
4752 
4753 	return 0;
4754 
4755 failed_clk:
4756 	if (fep->reg_phy)
4757 		regulator_disable(fep->reg_phy);
4758 	return ret;
4759 }
4760 
fec_runtime_suspend(struct device * dev)4761 static int fec_runtime_suspend(struct device *dev)
4762 {
4763 	struct net_device *ndev = dev_get_drvdata(dev);
4764 	struct fec_enet_private *fep = netdev_priv(ndev);
4765 
4766 	clk_disable_unprepare(fep->clk_ahb);
4767 	clk_disable_unprepare(fep->clk_ipg);
4768 
4769 	return 0;
4770 }
4771 
fec_runtime_resume(struct device * dev)4772 static int fec_runtime_resume(struct device *dev)
4773 {
4774 	struct net_device *ndev = dev_get_drvdata(dev);
4775 	struct fec_enet_private *fep = netdev_priv(ndev);
4776 	int ret;
4777 
4778 	ret = clk_prepare_enable(fep->clk_ahb);
4779 	if (ret)
4780 		return ret;
4781 	ret = clk_prepare_enable(fep->clk_ipg);
4782 	if (ret)
4783 		goto failed_clk_ipg;
4784 
4785 	return 0;
4786 
4787 failed_clk_ipg:
4788 	clk_disable_unprepare(fep->clk_ahb);
4789 	return ret;
4790 }
4791 
4792 static const struct dev_pm_ops fec_pm_ops = {
4793 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4794 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4795 };
4796 
4797 static struct platform_driver fec_driver = {
4798 	.driver	= {
4799 		.name	= DRIVER_NAME,
4800 		.pm	= pm_ptr(&fec_pm_ops),
4801 		.of_match_table = fec_dt_ids,
4802 		.suppress_bind_attrs = true,
4803 	},
4804 	.id_table = fec_devtype,
4805 	.probe	= fec_probe,
4806 	.remove = fec_drv_remove,
4807 };
4808 
4809 module_platform_driver(fec_driver);
4810 
4811 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4812 MODULE_LICENSE("GPL");
4813