xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26  * LLNL-CODE-403049.
27  *
28  * ZFS volume emulation driver.
29  *
30  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
31  * Volumes are accessed through the symbolic links named:
32  *
33  * /dev/<pool_name>/<dataset_name>
34  *
35  * Volumes are persistent through reboot and module load.  No user command
36  * needs to be run before opening and using a device.
37  *
38  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
39  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
40  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
41  * Copyright (c) 2024, Klara, Inc.
42  */
43 
44 /*
45  * Note on locking of zvol state structures.
46  *
47  * These structures are used to maintain internal state used to emulate block
48  * devices on top of zvols. In particular, management of device minor number
49  * operations - create, remove, rename, and set_snapdev - involves access to
50  * these structures. The zvol_state_lock is primarily used to protect the
51  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
52  * of the zvol_state_t structures, as well as to make sure that when the
53  * time comes to remove the structure from the list, it is not in use, and
54  * therefore, it can be taken off zvol_state_list and freed.
55  *
56  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
57  * e.g. for the duration of receive and rollback operations. This lock can be
58  * held for significant periods of time. Given that it is undesirable to hold
59  * mutexes for long periods of time, the following lock ordering applies:
60  * - take zvol_state_lock if necessary, to protect zvol_state_list
61  * - take zv_suspend_lock if necessary, by the code path in question
62  * - take zv_state_lock to protect zvol_state_t
63  *
64  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
65  * single-threaded (to preserve order of minor operations), and are executed
66  * through the zvol_task_cb that dispatches the specific operations. Therefore,
67  * these operations are serialized per pool. Consequently, we can be certain
68  * that for a given zvol, there is only one operation at a time in progress.
69  * That is why one can be sure that first, zvol_state_t for a given zvol is
70  * allocated and placed on zvol_state_list, and then other minor operations
71  * for this zvol are going to proceed in the order of issue.
72  *
73  */
74 
75 #include <sys/dataset_kstats.h>
76 #include <sys/dbuf.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dsl_dataset.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/zap.h>
82 #include <sys/zfeature.h>
83 #include <sys/zil_impl.h>
84 #include <sys/dmu_tx.h>
85 #include <sys/zio.h>
86 #include <sys/zfs_rlock.h>
87 #include <sys/spa_impl.h>
88 #include <sys/zvol.h>
89 #include <sys/zvol_impl.h>
90 
91 unsigned int zvol_inhibit_dev = 0;
92 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
93 
94 struct hlist_head *zvol_htable;
95 static list_t zvol_state_list;
96 krwlock_t zvol_state_lock;
97 extern int zfs_bclone_wait_dirty;
98 
99 typedef enum {
100 	ZVOL_ASYNC_REMOVE_MINORS,
101 	ZVOL_ASYNC_RENAME_MINORS,
102 	ZVOL_ASYNC_SET_SNAPDEV,
103 	ZVOL_ASYNC_SET_VOLMODE,
104 	ZVOL_ASYNC_MAX
105 } zvol_async_op_t;
106 
107 typedef struct {
108 	zvol_async_op_t op;
109 	char name1[MAXNAMELEN];
110 	char name2[MAXNAMELEN];
111 	uint64_t value;
112 } zvol_task_t;
113 
114 uint64_t
zvol_name_hash(const char * name)115 zvol_name_hash(const char *name)
116 {
117 	uint64_t crc = -1ULL;
118 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
119 	for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
120 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
121 	return (crc);
122 }
123 
124 /*
125  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128  * before zv_state_lock. The mode argument indicates the mode (including none)
129  * for zv_suspend_lock to be taken.
130  */
131 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
133 {
134 	zvol_state_t *zv;
135 	struct hlist_node *p = NULL;
136 
137 	rw_enter(&zvol_state_lock, RW_READER);
138 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 		mutex_enter(&zv->zv_state_lock);
141 		if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
142 			/*
143 			 * this is the right zvol, take the locks in the
144 			 * right order
145 			 */
146 			if (mode != RW_NONE &&
147 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
148 				mutex_exit(&zv->zv_state_lock);
149 				rw_enter(&zv->zv_suspend_lock, mode);
150 				mutex_enter(&zv->zv_state_lock);
151 				/*
152 				 * zvol cannot be renamed as we continue
153 				 * to hold zvol_state_lock
154 				 */
155 				ASSERT(zv->zv_hash == hash &&
156 				    strcmp(zv->zv_name, name) == 0);
157 			}
158 			rw_exit(&zvol_state_lock);
159 			return (zv);
160 		}
161 		mutex_exit(&zv->zv_state_lock);
162 	}
163 	rw_exit(&zvol_state_lock);
164 
165 	return (NULL);
166 }
167 
168 /*
169  * Find a zvol_state_t given the name.
170  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
171  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
172  * before zv_state_lock. The mode argument indicates the mode (including none)
173  * for zv_suspend_lock to be taken.
174  */
175 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)176 zvol_find_by_name(const char *name, int mode)
177 {
178 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
179 }
180 
181 /*
182  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
183  */
184 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)185 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
186 {
187 	zfs_creat_t *zct = arg;
188 	nvlist_t *nvprops = zct->zct_props;
189 	int error;
190 	uint64_t volblocksize, volsize;
191 
192 	VERIFY(nvlist_lookup_uint64(nvprops,
193 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
194 	if (nvlist_lookup_uint64(nvprops,
195 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
196 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
197 
198 	/*
199 	 * These properties must be removed from the list so the generic
200 	 * property setting step won't apply to them.
201 	 */
202 	VERIFY(nvlist_remove_all(nvprops,
203 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
204 	(void) nvlist_remove_all(nvprops,
205 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
206 
207 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
208 	    DMU_OT_NONE, 0, tx);
209 	ASSERT(error == 0);
210 
211 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
212 	    DMU_OT_NONE, 0, tx);
213 	ASSERT(error == 0);
214 
215 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
216 	ASSERT(error == 0);
217 }
218 
219 /*
220  * ZFS_IOC_OBJSET_STATS entry point.
221  */
222 int
zvol_get_stats(objset_t * os,nvlist_t * nv)223 zvol_get_stats(objset_t *os, nvlist_t *nv)
224 {
225 	int error;
226 	dmu_object_info_t *doi;
227 	uint64_t val;
228 
229 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
230 	if (error)
231 		return (SET_ERROR(error));
232 
233 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
234 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
235 	error = dmu_object_info(os, ZVOL_OBJ, doi);
236 
237 	if (error == 0) {
238 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
239 		    doi->doi_data_block_size);
240 	}
241 
242 	kmem_free(doi, sizeof (dmu_object_info_t));
243 
244 	return (SET_ERROR(error));
245 }
246 
247 /*
248  * Sanity check volume size.
249  */
250 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)251 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
252 {
253 	if (volsize == 0)
254 		return (SET_ERROR(EINVAL));
255 
256 	if (volsize % blocksize != 0)
257 		return (SET_ERROR(EINVAL));
258 
259 #ifdef _ILP32
260 	if (volsize - 1 > SPEC_MAXOFFSET_T)
261 		return (SET_ERROR(EOVERFLOW));
262 #endif
263 	return (0);
264 }
265 
266 /*
267  * Ensure the zap is flushed then inform the VFS of the capacity change.
268  */
269 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)270 zvol_update_volsize(uint64_t volsize, objset_t *os)
271 {
272 	dmu_tx_t *tx;
273 	int error;
274 	uint64_t txg;
275 
276 	tx = dmu_tx_create(os);
277 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
278 	dmu_tx_mark_netfree(tx);
279 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
280 	if (error) {
281 		dmu_tx_abort(tx);
282 		return (SET_ERROR(error));
283 	}
284 	txg = dmu_tx_get_txg(tx);
285 
286 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
287 	    &volsize, tx);
288 	dmu_tx_commit(tx);
289 
290 	txg_wait_synced(dmu_objset_pool(os), txg);
291 
292 	if (error == 0)
293 		error = dmu_free_long_range(os,
294 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
295 
296 	return (error);
297 }
298 
299 /*
300  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
301  * size will result in a udev "change" event being generated.
302  */
303 int
zvol_set_volsize(const char * name,uint64_t volsize)304 zvol_set_volsize(const char *name, uint64_t volsize)
305 {
306 	objset_t *os = NULL;
307 	uint64_t readonly;
308 	int error;
309 	boolean_t owned = B_FALSE;
310 
311 	error = dsl_prop_get_integer(name,
312 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
313 	if (error != 0)
314 		return (SET_ERROR(error));
315 	if (readonly)
316 		return (SET_ERROR(EROFS));
317 
318 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
319 
320 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
321 	    RW_READ_HELD(&zv->zv_suspend_lock)));
322 
323 	if (zv == NULL || zv->zv_objset == NULL) {
324 		if (zv != NULL)
325 			rw_exit(&zv->zv_suspend_lock);
326 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
327 		    FTAG, &os)) != 0) {
328 			if (zv != NULL)
329 				mutex_exit(&zv->zv_state_lock);
330 			return (SET_ERROR(error));
331 		}
332 		owned = B_TRUE;
333 		if (zv != NULL)
334 			zv->zv_objset = os;
335 	} else {
336 		os = zv->zv_objset;
337 	}
338 
339 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
340 
341 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
342 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
343 		goto out;
344 
345 	error = zvol_update_volsize(volsize, os);
346 	if (error == 0 && zv != NULL) {
347 		zv->zv_volsize = volsize;
348 		zv->zv_changed = 1;
349 	}
350 out:
351 	kmem_free(doi, sizeof (dmu_object_info_t));
352 
353 	if (owned) {
354 		dmu_objset_disown(os, B_TRUE, FTAG);
355 		if (zv != NULL)
356 			zv->zv_objset = NULL;
357 	} else {
358 		rw_exit(&zv->zv_suspend_lock);
359 	}
360 
361 	if (zv != NULL)
362 		mutex_exit(&zv->zv_state_lock);
363 
364 	if (error == 0 && zv != NULL)
365 		zvol_os_update_volsize(zv, volsize);
366 
367 	return (SET_ERROR(error));
368 }
369 
370 /*
371  * Update volthreading.
372  */
373 int
zvol_set_volthreading(const char * name,boolean_t value)374 zvol_set_volthreading(const char *name, boolean_t value)
375 {
376 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
377 	if (zv == NULL)
378 		return (ENOENT);
379 	zv->zv_threading = value;
380 	mutex_exit(&zv->zv_state_lock);
381 	return (0);
382 }
383 
384 /*
385  * Update zvol ro property.
386  */
387 int
zvol_set_ro(const char * name,boolean_t value)388 zvol_set_ro(const char *name, boolean_t value)
389 {
390 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
391 	if (zv == NULL)
392 		return (-1);
393 	if (value) {
394 		zvol_os_set_disk_ro(zv, 1);
395 		zv->zv_flags |= ZVOL_RDONLY;
396 	} else {
397 		zvol_os_set_disk_ro(zv, 0);
398 		zv->zv_flags &= ~ZVOL_RDONLY;
399 	}
400 	mutex_exit(&zv->zv_state_lock);
401 	return (0);
402 }
403 
404 /*
405  * Sanity check volume block size.
406  */
407 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)408 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
409 {
410 	/* Record sizes above 128k need the feature to be enabled */
411 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
412 		spa_t *spa;
413 		int error;
414 
415 		if ((error = spa_open(name, &spa, FTAG)) != 0)
416 			return (error);
417 
418 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
419 			spa_close(spa, FTAG);
420 			return (SET_ERROR(ENOTSUP));
421 		}
422 
423 		/*
424 		 * We don't allow setting the property above 1MB,
425 		 * unless the tunable has been changed.
426 		 */
427 		if (volblocksize > zfs_max_recordsize)
428 			return (SET_ERROR(EDOM));
429 
430 		spa_close(spa, FTAG);
431 	}
432 
433 	if (volblocksize < SPA_MINBLOCKSIZE ||
434 	    volblocksize > SPA_MAXBLOCKSIZE ||
435 	    !ISP2(volblocksize))
436 		return (SET_ERROR(EDOM));
437 
438 	return (0);
439 }
440 
441 /*
442  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
443  * implement DKIOCFREE/free-long-range.
444  */
445 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)446 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
447 {
448 	zvol_state_t *zv = arg1;
449 	lr_truncate_t *lr = arg2;
450 	uint64_t offset, length;
451 
452 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
453 
454 	if (byteswap)
455 		byteswap_uint64_array(lr, sizeof (*lr));
456 
457 	offset = lr->lr_offset;
458 	length = lr->lr_length;
459 
460 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
461 	dmu_tx_mark_netfree(tx);
462 	int error = dmu_tx_assign(tx, DMU_TX_WAIT);
463 	if (error != 0) {
464 		dmu_tx_abort(tx);
465 	} else {
466 		(void) zil_replaying(zv->zv_zilog, tx);
467 		dmu_tx_commit(tx);
468 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
469 		    length);
470 	}
471 
472 	return (error);
473 }
474 
475 /*
476  * Replay a TX_WRITE ZIL transaction that didn't get committed
477  * after a system failure
478  */
479 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)480 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
481 {
482 	zvol_state_t *zv = arg1;
483 	lr_write_t *lr = arg2;
484 	objset_t *os = zv->zv_objset;
485 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
486 	uint64_t offset, length;
487 	dmu_tx_t *tx;
488 	int error;
489 
490 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
491 
492 	if (byteswap)
493 		byteswap_uint64_array(lr, sizeof (*lr));
494 
495 	offset = lr->lr_offset;
496 	length = lr->lr_length;
497 
498 	/* If it's a dmu_sync() block, write the whole block */
499 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
500 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
501 		if (length < blocksize) {
502 			offset -= offset % blocksize;
503 			length = blocksize;
504 		}
505 	}
506 
507 	tx = dmu_tx_create(os);
508 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
509 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
510 	if (error) {
511 		dmu_tx_abort(tx);
512 	} else {
513 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
514 		(void) zil_replaying(zv->zv_zilog, tx);
515 		dmu_tx_commit(tx);
516 	}
517 
518 	return (error);
519 }
520 
521 /*
522  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
523  * after a system failure
524  */
525 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)526 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
527 {
528 	zvol_state_t *zv = arg1;
529 	lr_clone_range_t *lr = arg2;
530 	objset_t *os = zv->zv_objset;
531 	dmu_tx_t *tx;
532 	int error;
533 	uint64_t blksz;
534 	uint64_t off;
535 	uint64_t len;
536 
537 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
538 	ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
539 	    lr_bps[lr->lr_nbps]));
540 
541 	if (byteswap)
542 		byteswap_uint64_array(lr, sizeof (*lr));
543 
544 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
545 	    SPA_FEATURE_BLOCK_CLONING));
546 
547 	off = lr->lr_offset;
548 	len = lr->lr_length;
549 	blksz = lr->lr_blksz;
550 
551 	if ((off % blksz) != 0) {
552 		return (SET_ERROR(EINVAL));
553 	}
554 
555 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
556 	if (error != 0 || !zv->zv_dn)
557 		return (error);
558 	tx = dmu_tx_create(os);
559 	dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len);
560 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
561 	if (error != 0) {
562 		dmu_tx_abort(tx);
563 		goto out;
564 	}
565 	error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
566 	    tx, lr->lr_bps, lr->lr_nbps);
567 	if (error != 0) {
568 		dmu_tx_commit(tx);
569 		goto out;
570 	}
571 
572 	/*
573 	 * zil_replaying() not only check if we are replaying ZIL, but also
574 	 * updates the ZIL header to record replay progress.
575 	 */
576 	VERIFY(zil_replaying(zv->zv_zilog, tx));
577 	dmu_tx_commit(tx);
578 
579 out:
580 	dnode_rele(zv->zv_dn, zv);
581 	zv->zv_dn = NULL;
582 	return (error);
583 }
584 
585 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)586 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
587     uint64_t outoff, uint64_t len)
588 {
589 	zilog_t	*zilog_dst;
590 	zfs_locked_range_t *inlr, *outlr;
591 	objset_t *inos, *outos;
592 	dmu_tx_t *tx;
593 	blkptr_t *bps;
594 	size_t maxblocks;
595 	int error = EINVAL;
596 
597 	rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
598 	if (zv_dst->zv_zilog == NULL) {
599 		rw_exit(&zv_dst->zv_suspend_lock);
600 		rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
601 		if (zv_dst->zv_zilog == NULL) {
602 			zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
603 			    zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
604 			zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
605 			VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
606 			    ZIL_REPLAY_NEEDED));
607 		}
608 		rw_downgrade(&zv_dst->zv_suspend_lock);
609 	}
610 	if (zv_src != zv_dst)
611 		rw_enter(&zv_src->zv_suspend_lock, RW_READER);
612 
613 	inos = zv_src->zv_objset;
614 	outos = zv_dst->zv_objset;
615 
616 	/*
617 	 * Sanity checks
618 	 */
619 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
620 	    SPA_FEATURE_BLOCK_CLONING)) {
621 		error = EOPNOTSUPP;
622 		goto out;
623 	}
624 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
625 		error = EXDEV;
626 		goto out;
627 	}
628 	if (inos->os_encrypted != outos->os_encrypted) {
629 		error = EXDEV;
630 		goto out;
631 	}
632 	if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
633 		error = EINVAL;
634 		goto out;
635 	}
636 	if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
637 		error = 0;
638 		goto out;
639 	}
640 
641 	/*
642 	 * Do not read beyond boundary
643 	 */
644 	if (len > zv_src->zv_volsize - inoff)
645 		len = zv_src->zv_volsize - inoff;
646 	if (len > zv_dst->zv_volsize - outoff)
647 		len = zv_dst->zv_volsize - outoff;
648 	if (len == 0) {
649 		error = 0;
650 		goto out;
651 	}
652 
653 	/*
654 	 * No overlapping if we are cloning within the same file
655 	 */
656 	if (zv_src == zv_dst) {
657 		if (inoff < outoff + len && outoff < inoff + len) {
658 			error = EINVAL;
659 			goto out;
660 		}
661 	}
662 
663 	/*
664 	 * Offsets and length must be at block boundaries
665 	 */
666 	if ((inoff % zv_src->zv_volblocksize) != 0 ||
667 	    (outoff % zv_dst->zv_volblocksize) != 0) {
668 		error = EINVAL;
669 		goto out;
670 	}
671 
672 	/*
673 	 * Length must be multiple of block size
674 	 */
675 	if ((len % zv_src->zv_volblocksize) != 0) {
676 		error = EINVAL;
677 		goto out;
678 	}
679 
680 	zilog_dst = zv_dst->zv_zilog;
681 	maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
682 	    sizeof (bps[0]);
683 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
684 	/*
685 	 * Maintain predictable lock order.
686 	 */
687 	if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
688 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
689 		    RL_READER);
690 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
691 		    RL_WRITER);
692 	} else {
693 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
694 		    RL_WRITER);
695 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
696 		    RL_READER);
697 	}
698 
699 	while (len > 0) {
700 		uint64_t size, last_synced_txg;
701 		size_t nbps = maxblocks;
702 		size = MIN(zv_src->zv_volblocksize * maxblocks, len);
703 		last_synced_txg = spa_last_synced_txg(
704 		    dmu_objset_spa(zv_src->zv_objset));
705 		error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
706 		    size, bps, &nbps);
707 		if (error != 0) {
708 			/*
709 			 * If we are trying to clone a block that was created
710 			 * in the current transaction group, the error will be
711 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
712 			 * return a shortened range to the caller so it can
713 			 * fallback, or wait for the next TXG and check again.
714 			 */
715 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
716 				txg_wait_synced(dmu_objset_pool
717 				    (zv_src->zv_objset), last_synced_txg + 1);
718 					continue;
719 			}
720 			break;
721 		}
722 
723 		tx = dmu_tx_create(zv_dst->zv_objset);
724 		dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size);
725 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
726 		if (error != 0) {
727 			dmu_tx_abort(tx);
728 			break;
729 		}
730 		error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
731 		    tx, bps, nbps);
732 		if (error != 0) {
733 			dmu_tx_commit(tx);
734 			break;
735 		}
736 		zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
737 		    size, zv_src->zv_volblocksize, bps, nbps);
738 		dmu_tx_commit(tx);
739 		inoff += size;
740 		outoff += size;
741 		len -= size;
742 	}
743 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
744 	zfs_rangelock_exit(outlr);
745 	zfs_rangelock_exit(inlr);
746 	if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
747 		zil_commit(zilog_dst, ZVOL_OBJ);
748 	}
749 out:
750 	if (zv_src != zv_dst)
751 		rw_exit(&zv_src->zv_suspend_lock);
752 	rw_exit(&zv_dst->zv_suspend_lock);
753 	return (SET_ERROR(error));
754 }
755 
756 /*
757  * Handles TX_CLONE_RANGE transactions.
758  */
759 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)760 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
761     uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
762 {
763 	itx_t *itx;
764 	lr_clone_range_t *lr;
765 	uint64_t partlen, max_log_data;
766 	size_t partnbps;
767 
768 	if (zil_replaying(zilog, tx))
769 		return;
770 
771 	max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
772 
773 	while (nbps > 0) {
774 		partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
775 		partlen = partnbps * blksz;
776 		ASSERT3U(partlen, <, len + blksz);
777 		partlen = MIN(partlen, len);
778 
779 		itx = zil_itx_create(txtype,
780 		    sizeof (*lr) + sizeof (bps[0]) * partnbps);
781 		lr = (lr_clone_range_t *)&itx->itx_lr;
782 		lr->lr_foid = ZVOL_OBJ;
783 		lr->lr_offset = off;
784 		lr->lr_length = partlen;
785 		lr->lr_blksz = blksz;
786 		lr->lr_nbps = partnbps;
787 		memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
788 
789 		zil_itx_assign(zilog, itx, tx);
790 
791 		bps += partnbps;
792 		ASSERT3U(nbps, >=, partnbps);
793 		nbps -= partnbps;
794 		off += partlen;
795 		ASSERT3U(len, >=, partlen);
796 		len -= partlen;
797 	}
798 }
799 
800 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)801 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
802 {
803 	(void) arg1, (void) arg2, (void) byteswap;
804 	return (SET_ERROR(ENOTSUP));
805 }
806 
807 /*
808  * Callback vectors for replaying records.
809  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
810  */
811 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
812 	zvol_replay_err,	/* no such transaction type */
813 	zvol_replay_err,	/* TX_CREATE */
814 	zvol_replay_err,	/* TX_MKDIR */
815 	zvol_replay_err,	/* TX_MKXATTR */
816 	zvol_replay_err,	/* TX_SYMLINK */
817 	zvol_replay_err,	/* TX_REMOVE */
818 	zvol_replay_err,	/* TX_RMDIR */
819 	zvol_replay_err,	/* TX_LINK */
820 	zvol_replay_err,	/* TX_RENAME */
821 	zvol_replay_write,	/* TX_WRITE */
822 	zvol_replay_truncate,	/* TX_TRUNCATE */
823 	zvol_replay_err,	/* TX_SETATTR */
824 	zvol_replay_err,	/* TX_ACL_V0 */
825 	zvol_replay_err,	/* TX_ACL */
826 	zvol_replay_err,	/* TX_CREATE_ACL */
827 	zvol_replay_err,	/* TX_CREATE_ATTR */
828 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
829 	zvol_replay_err,	/* TX_MKDIR_ACL */
830 	zvol_replay_err,	/* TX_MKDIR_ATTR */
831 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
832 	zvol_replay_err,	/* TX_WRITE2 */
833 	zvol_replay_err,	/* TX_SETSAXATTR */
834 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
835 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
836 	zvol_replay_clone_range,	/* TX_CLONE_RANGE */
837 };
838 
839 /*
840  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
841  *
842  * We store data in the log buffers if it's small enough.
843  * Otherwise we will later flush the data out via dmu_sync().
844  */
845 static const ssize_t zvol_immediate_write_sz = 32768;
846 
847 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)848 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
849     uint64_t size, boolean_t commit)
850 {
851 	uint32_t blocksize = zv->zv_volblocksize;
852 	zilog_t *zilog = zv->zv_zilog;
853 	itx_wr_state_t write_state;
854 	uint64_t sz = size;
855 
856 	if (zil_replaying(zilog, tx))
857 		return;
858 
859 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
860 		write_state = WR_INDIRECT;
861 	else if (!spa_has_slogs(zilog->zl_spa) &&
862 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
863 		write_state = WR_INDIRECT;
864 	else if (commit)
865 		write_state = WR_COPIED;
866 	else
867 		write_state = WR_NEED_COPY;
868 
869 	while (size) {
870 		itx_t *itx;
871 		lr_write_t *lr;
872 		itx_wr_state_t wr_state = write_state;
873 		ssize_t len = size;
874 
875 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
876 			wr_state = WR_NEED_COPY;
877 		else if (wr_state == WR_INDIRECT)
878 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
879 
880 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
881 		    (wr_state == WR_COPIED ? len : 0));
882 		lr = (lr_write_t *)&itx->itx_lr;
883 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
884 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
885 			zil_itx_destroy(itx);
886 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
887 			lr = (lr_write_t *)&itx->itx_lr;
888 			wr_state = WR_NEED_COPY;
889 		}
890 
891 		itx->itx_wr_state = wr_state;
892 		lr->lr_foid = ZVOL_OBJ;
893 		lr->lr_offset = offset;
894 		lr->lr_length = len;
895 		lr->lr_blkoff = 0;
896 		BP_ZERO(&lr->lr_blkptr);
897 
898 		itx->itx_private = zv;
899 
900 		(void) zil_itx_assign(zilog, itx, tx);
901 
902 		offset += len;
903 		size -= len;
904 	}
905 
906 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
907 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
908 	}
909 }
910 
911 /*
912  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
913  */
914 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)915 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
916 {
917 	itx_t *itx;
918 	lr_truncate_t *lr;
919 	zilog_t *zilog = zv->zv_zilog;
920 
921 	if (zil_replaying(zilog, tx))
922 		return;
923 
924 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
925 	lr = (lr_truncate_t *)&itx->itx_lr;
926 	lr->lr_foid = ZVOL_OBJ;
927 	lr->lr_offset = off;
928 	lr->lr_length = len;
929 
930 	zil_itx_assign(zilog, itx, tx);
931 }
932 
933 
934 static void
zvol_get_done(zgd_t * zgd,int error)935 zvol_get_done(zgd_t *zgd, int error)
936 {
937 	(void) error;
938 	if (zgd->zgd_db)
939 		dmu_buf_rele(zgd->zgd_db, zgd);
940 
941 	zfs_rangelock_exit(zgd->zgd_lr);
942 
943 	kmem_free(zgd, sizeof (zgd_t));
944 }
945 
946 /*
947  * Get data to generate a TX_WRITE intent log record.
948  */
949 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)950 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
951     struct lwb *lwb, zio_t *zio)
952 {
953 	zvol_state_t *zv = arg;
954 	uint64_t offset = lr->lr_offset;
955 	uint64_t size = lr->lr_length;
956 	dmu_buf_t *db;
957 	zgd_t *zgd;
958 	int error;
959 
960 	ASSERT3P(lwb, !=, NULL);
961 	ASSERT3U(size, !=, 0);
962 
963 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
964 	zgd->zgd_lwb = lwb;
965 
966 	/*
967 	 * Write records come in two flavors: immediate and indirect.
968 	 * For small writes it's cheaper to store the data with the
969 	 * log record (immediate); for large writes it's cheaper to
970 	 * sync the data and get a pointer to it (indirect) so that
971 	 * we don't have to write the data twice.
972 	 */
973 	if (buf != NULL) { /* immediate write */
974 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
975 		    size, RL_READER);
976 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
977 		    DMU_READ_NO_PREFETCH);
978 	} else { /* indirect write */
979 		ASSERT3P(zio, !=, NULL);
980 		/*
981 		 * Have to lock the whole block to ensure when it's written out
982 		 * and its checksum is being calculated that no one can change
983 		 * the data. Contrarily to zfs_get_data we need not re-check
984 		 * blocksize after we get the lock because it cannot be changed.
985 		 */
986 		size = zv->zv_volblocksize;
987 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
988 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
989 		    size, RL_READER);
990 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
991 		    &db);
992 		if (error == 0) {
993 			blkptr_t *bp = &lr->lr_blkptr;
994 
995 			zgd->zgd_db = db;
996 			zgd->zgd_bp = bp;
997 
998 			ASSERT(db != NULL);
999 			ASSERT(db->db_offset == offset);
1000 			ASSERT(db->db_size == size);
1001 
1002 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1003 			    zvol_get_done, zgd);
1004 
1005 			if (error == 0)
1006 				return (0);
1007 		}
1008 	}
1009 
1010 	zvol_get_done(zgd, error);
1011 
1012 	return (SET_ERROR(error));
1013 }
1014 
1015 /*
1016  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1017  */
1018 
1019 void
zvol_insert(zvol_state_t * zv)1020 zvol_insert(zvol_state_t *zv)
1021 {
1022 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1023 	list_insert_head(&zvol_state_list, zv);
1024 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1025 }
1026 
1027 /*
1028  * Simply remove the zvol from to list of zvols.
1029  */
1030 static void
zvol_remove(zvol_state_t * zv)1031 zvol_remove(zvol_state_t *zv)
1032 {
1033 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1034 	list_remove(&zvol_state_list, zv);
1035 	hlist_del(&zv->zv_hlink);
1036 }
1037 
1038 /*
1039  * Setup zv after we just own the zv->objset
1040  */
1041 static int
zvol_setup_zv(zvol_state_t * zv)1042 zvol_setup_zv(zvol_state_t *zv)
1043 {
1044 	uint64_t volsize;
1045 	int error;
1046 	uint64_t ro;
1047 	objset_t *os = zv->zv_objset;
1048 
1049 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1050 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1051 
1052 	zv->zv_zilog = NULL;
1053 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1054 
1055 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1056 	if (error)
1057 		return (SET_ERROR(error));
1058 
1059 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1060 	if (error)
1061 		return (SET_ERROR(error));
1062 
1063 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1064 	if (error)
1065 		return (SET_ERROR(error));
1066 
1067 	zvol_os_set_capacity(zv, volsize >> 9);
1068 	zv->zv_volsize = volsize;
1069 
1070 	if (ro || dmu_objset_is_snapshot(os) ||
1071 	    !spa_writeable(dmu_objset_spa(os))) {
1072 		zvol_os_set_disk_ro(zv, 1);
1073 		zv->zv_flags |= ZVOL_RDONLY;
1074 	} else {
1075 		zvol_os_set_disk_ro(zv, 0);
1076 		zv->zv_flags &= ~ZVOL_RDONLY;
1077 	}
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Shutdown every zv_objset related stuff except zv_objset itself.
1083  * The is the reverse of zvol_setup_zv.
1084  */
1085 static void
zvol_shutdown_zv(zvol_state_t * zv)1086 zvol_shutdown_zv(zvol_state_t *zv)
1087 {
1088 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1089 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
1090 
1091 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1092 		ASSERT(zv->zv_zilog != NULL);
1093 		zil_close(zv->zv_zilog);
1094 	}
1095 
1096 	zv->zv_zilog = NULL;
1097 
1098 	dnode_rele(zv->zv_dn, zv);
1099 	zv->zv_dn = NULL;
1100 
1101 	/*
1102 	 * Evict cached data. We must write out any dirty data before
1103 	 * disowning the dataset.
1104 	 */
1105 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
1106 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1107 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
1108 }
1109 
1110 /*
1111  * return the proper tag for rollback and recv
1112  */
1113 void *
zvol_tag(zvol_state_t * zv)1114 zvol_tag(zvol_state_t *zv)
1115 {
1116 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1117 	return (zv->zv_open_count > 0 ? zv : NULL);
1118 }
1119 
1120 /*
1121  * Suspend the zvol for recv and rollback.
1122  */
1123 zvol_state_t *
zvol_suspend(const char * name)1124 zvol_suspend(const char *name)
1125 {
1126 	zvol_state_t *zv;
1127 
1128 	zv = zvol_find_by_name(name, RW_WRITER);
1129 
1130 	if (zv == NULL)
1131 		return (NULL);
1132 
1133 	/* block all I/O, release in zvol_resume. */
1134 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1135 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1136 
1137 	atomic_inc(&zv->zv_suspend_ref);
1138 
1139 	if (zv->zv_open_count > 0)
1140 		zvol_shutdown_zv(zv);
1141 
1142 	/*
1143 	 * do not hold zv_state_lock across suspend/resume to
1144 	 * avoid locking up zvol lookups
1145 	 */
1146 	mutex_exit(&zv->zv_state_lock);
1147 
1148 	/* zv_suspend_lock is released in zvol_resume() */
1149 	return (zv);
1150 }
1151 
1152 int
zvol_resume(zvol_state_t * zv)1153 zvol_resume(zvol_state_t *zv)
1154 {
1155 	int error = 0;
1156 
1157 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1158 
1159 	mutex_enter(&zv->zv_state_lock);
1160 
1161 	if (zv->zv_open_count > 0) {
1162 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1163 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1164 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1165 		dmu_objset_rele(zv->zv_objset, zv);
1166 
1167 		error = zvol_setup_zv(zv);
1168 	}
1169 
1170 	mutex_exit(&zv->zv_state_lock);
1171 
1172 	rw_exit(&zv->zv_suspend_lock);
1173 	/*
1174 	 * We need this because we don't hold zvol_state_lock while releasing
1175 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1176 	 * zv_suspend_lock to determine it is safe to free because rwlock is
1177 	 * not inherent atomic.
1178 	 */
1179 	atomic_dec(&zv->zv_suspend_ref);
1180 
1181 	if (zv->zv_flags & ZVOL_REMOVING)
1182 		cv_broadcast(&zv->zv_removing_cv);
1183 
1184 	return (SET_ERROR(error));
1185 }
1186 
1187 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1188 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1189 {
1190 	objset_t *os;
1191 	int error;
1192 
1193 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1194 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1195 	ASSERT(mutex_owned(&spa_namespace_lock));
1196 
1197 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1198 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1199 	if (error)
1200 		return (SET_ERROR(error));
1201 
1202 	zv->zv_objset = os;
1203 
1204 	error = zvol_setup_zv(zv);
1205 	if (error) {
1206 		dmu_objset_disown(os, 1, zv);
1207 		zv->zv_objset = NULL;
1208 	}
1209 
1210 	return (error);
1211 }
1212 
1213 void
zvol_last_close(zvol_state_t * zv)1214 zvol_last_close(zvol_state_t *zv)
1215 {
1216 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1217 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1218 
1219 	if (zv->zv_flags & ZVOL_REMOVING)
1220 		cv_broadcast(&zv->zv_removing_cv);
1221 
1222 	zvol_shutdown_zv(zv);
1223 
1224 	dmu_objset_disown(zv->zv_objset, 1, zv);
1225 	zv->zv_objset = NULL;
1226 }
1227 
1228 typedef struct minors_job {
1229 	list_t *list;
1230 	list_node_t link;
1231 	/* input */
1232 	char *name;
1233 	/* output */
1234 	int error;
1235 } minors_job_t;
1236 
1237 /*
1238  * Prefetch zvol dnodes for the minors_job
1239  */
1240 static void
zvol_prefetch_minors_impl(void * arg)1241 zvol_prefetch_minors_impl(void *arg)
1242 {
1243 	minors_job_t *job = arg;
1244 	char *dsname = job->name;
1245 	objset_t *os = NULL;
1246 
1247 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1248 	    FTAG, &os);
1249 	if (job->error == 0) {
1250 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1251 		dmu_objset_disown(os, B_TRUE, FTAG);
1252 	}
1253 }
1254 
1255 /*
1256  * Mask errors to continue dmu_objset_find() traversal
1257  */
1258 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1259 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1260 {
1261 	minors_job_t *j = arg;
1262 	list_t *minors_list = j->list;
1263 	const char *name = j->name;
1264 
1265 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1266 
1267 	/* skip the designated dataset */
1268 	if (name && strcmp(dsname, name) == 0)
1269 		return (0);
1270 
1271 	/* at this point, the dsname should name a snapshot */
1272 	if (strchr(dsname, '@') == 0) {
1273 		dprintf("zvol_create_snap_minor_cb(): "
1274 		    "%s is not a snapshot name\n", dsname);
1275 	} else {
1276 		minors_job_t *job;
1277 		char *n = kmem_strdup(dsname);
1278 		if (n == NULL)
1279 			return (0);
1280 
1281 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1282 		job->name = n;
1283 		job->list = minors_list;
1284 		job->error = 0;
1285 		list_insert_tail(minors_list, job);
1286 		/* don't care if dispatch fails, because job->error is 0 */
1287 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1288 		    TQ_SLEEP);
1289 	}
1290 
1291 	return (0);
1292 }
1293 
1294 /*
1295  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1296  * we need to look for any clones also using the key. This function
1297  * is "best effort" - so we just skip over it if there are failures.
1298  */
1299 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1300 zvol_add_clones(const char *dsname, list_t *minors_list)
1301 {
1302 	/* Also check if it has clones */
1303 	dsl_dir_t *dd = NULL;
1304 	dsl_pool_t *dp = NULL;
1305 
1306 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1307 		return;
1308 
1309 	if (!spa_feature_is_enabled(dp->dp_spa,
1310 	    SPA_FEATURE_ENCRYPTION))
1311 		goto out;
1312 
1313 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1314 		goto out;
1315 
1316 	if (dsl_dir_phys(dd)->dd_clones == 0)
1317 		goto out;
1318 
1319 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1320 	zap_attribute_t *za = zap_attribute_alloc();
1321 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1322 
1323 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1324 	    zap_cursor_retrieve(zc, za) == 0;
1325 	    zap_cursor_advance(zc)) {
1326 		dsl_dataset_t *clone;
1327 		minors_job_t *job;
1328 
1329 		if (dsl_dataset_hold_obj(dd->dd_pool,
1330 		    za->za_first_integer, FTAG, &clone) == 0) {
1331 
1332 			char name[ZFS_MAX_DATASET_NAME_LEN];
1333 			dsl_dataset_name(clone, name);
1334 
1335 			char *n = kmem_strdup(name);
1336 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1337 			job->name = n;
1338 			job->list = minors_list;
1339 			job->error = 0;
1340 			list_insert_tail(minors_list, job);
1341 
1342 			dsl_dataset_rele(clone, FTAG);
1343 		}
1344 	}
1345 	zap_cursor_fini(zc);
1346 	zap_attribute_free(za);
1347 	kmem_free(zc, sizeof (zap_cursor_t));
1348 
1349 out:
1350 	if (dd != NULL)
1351 		dsl_dir_rele(dd, FTAG);
1352 	dsl_pool_rele(dp, FTAG);
1353 }
1354 
1355 /*
1356  * Mask errors to continue dmu_objset_find() traversal
1357  */
1358 static int
zvol_create_minors_cb(const char * dsname,void * arg)1359 zvol_create_minors_cb(const char *dsname, void *arg)
1360 {
1361 	uint64_t snapdev;
1362 	int error;
1363 	list_t *minors_list = arg;
1364 
1365 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1366 
1367 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1368 	if (error)
1369 		return (0);
1370 
1371 	/*
1372 	 * Given the name and the 'snapdev' property, create device minor nodes
1373 	 * with the linkages to zvols/snapshots as needed.
1374 	 * If the name represents a zvol, create a minor node for the zvol, then
1375 	 * check if its snapshots are 'visible', and if so, iterate over the
1376 	 * snapshots and create device minor nodes for those.
1377 	 */
1378 	if (strchr(dsname, '@') == 0) {
1379 		minors_job_t *job;
1380 		char *n = kmem_strdup(dsname);
1381 		if (n == NULL)
1382 			return (0);
1383 
1384 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1385 		job->name = n;
1386 		job->list = minors_list;
1387 		job->error = 0;
1388 		list_insert_tail(minors_list, job);
1389 		/* don't care if dispatch fails, because job->error is 0 */
1390 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1391 		    TQ_SLEEP);
1392 
1393 		zvol_add_clones(dsname, minors_list);
1394 
1395 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1396 			/*
1397 			 * traverse snapshots only, do not traverse children,
1398 			 * and skip the 'dsname'
1399 			 */
1400 			(void) dmu_objset_find(dsname,
1401 			    zvol_create_snap_minor_cb, (void *)job,
1402 			    DS_FIND_SNAPSHOTS);
1403 		}
1404 	} else {
1405 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1406 		    dsname);
1407 	}
1408 
1409 	return (0);
1410 }
1411 
1412 /*
1413  * Create minors for the specified dataset, including children and snapshots.
1414  * Pay attention to the 'snapdev' property and iterate over the snapshots
1415  * only if they are 'visible'. This approach allows one to assure that the
1416  * snapshot metadata is read from disk only if it is needed.
1417  *
1418  * The name can represent a dataset to be recursively scanned for zvols and
1419  * their snapshots, or a single zvol snapshot. If the name represents a
1420  * dataset, the scan is performed in two nested stages:
1421  * - scan the dataset for zvols, and
1422  * - for each zvol, create a minor node, then check if the zvol's snapshots
1423  *   are 'visible', and only then iterate over the snapshots if needed
1424  *
1425  * If the name represents a snapshot, a check is performed if the snapshot is
1426  * 'visible' (which also verifies that the parent is a zvol), and if so,
1427  * a minor node for that snapshot is created.
1428  */
1429 void
zvol_create_minors_recursive(const char * name)1430 zvol_create_minors_recursive(const char *name)
1431 {
1432 	list_t minors_list;
1433 	minors_job_t *job;
1434 
1435 	if (zvol_inhibit_dev)
1436 		return;
1437 
1438 	/*
1439 	 * This is the list for prefetch jobs. Whenever we found a match
1440 	 * during dmu_objset_find, we insert a minors_job to the list and do
1441 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1442 	 * any lock because all list operation is done on the current thread.
1443 	 *
1444 	 * We will use this list to do zvol_os_create_minor after prefetch
1445 	 * so we don't have to traverse using dmu_objset_find again.
1446 	 */
1447 	list_create(&minors_list, sizeof (minors_job_t),
1448 	    offsetof(minors_job_t, link));
1449 
1450 
1451 	if (strchr(name, '@') != NULL) {
1452 		uint64_t snapdev;
1453 
1454 		int error = dsl_prop_get_integer(name, "snapdev",
1455 		    &snapdev, NULL);
1456 
1457 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1458 			(void) zvol_os_create_minor(name);
1459 	} else {
1460 		fstrans_cookie_t cookie = spl_fstrans_mark();
1461 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1462 		    &minors_list, DS_FIND_CHILDREN);
1463 		spl_fstrans_unmark(cookie);
1464 	}
1465 
1466 	taskq_wait_outstanding(system_taskq, 0);
1467 
1468 	/*
1469 	 * Prefetch is completed, we can do zvol_os_create_minor
1470 	 * sequentially.
1471 	 */
1472 	while ((job = list_remove_head(&minors_list)) != NULL) {
1473 		if (!job->error)
1474 			(void) zvol_os_create_minor(job->name);
1475 		kmem_strfree(job->name);
1476 		kmem_free(job, sizeof (minors_job_t));
1477 	}
1478 
1479 	list_destroy(&minors_list);
1480 }
1481 
1482 void
zvol_create_minor(const char * name)1483 zvol_create_minor(const char *name)
1484 {
1485 	/*
1486 	 * Note: the dsl_pool_config_lock must not be held.
1487 	 * Minor node creation needs to obtain the zvol_state_lock.
1488 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1489 	 * config lock.  Therefore, we can't have the config lock now if
1490 	 * we are going to wait for the zvol_state_lock, because it
1491 	 * would be a lock order inversion which could lead to deadlock.
1492 	 */
1493 
1494 	if (zvol_inhibit_dev)
1495 		return;
1496 
1497 	if (strchr(name, '@') != NULL) {
1498 		uint64_t snapdev;
1499 
1500 		int error = dsl_prop_get_integer(name,
1501 		    "snapdev", &snapdev, NULL);
1502 
1503 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1504 			(void) zvol_os_create_minor(name);
1505 	} else {
1506 		(void) zvol_os_create_minor(name);
1507 	}
1508 }
1509 
1510 /*
1511  * Remove minors for specified dataset including children and snapshots.
1512  */
1513 
1514 /*
1515  * Remove the minor for a given zvol. This will do it all:
1516  *  - flag the zvol for removal, so new requests are rejected
1517  *  - wait until outstanding requests are completed
1518  *  - remove it from lists
1519  *  - free it
1520  * It's also usable as a taskq task, and smells nice too.
1521  */
1522 static void
zvol_remove_minor_task(void * arg)1523 zvol_remove_minor_task(void *arg)
1524 {
1525 	zvol_state_t *zv = (zvol_state_t *)arg;
1526 
1527 	ASSERT(!RW_LOCK_HELD(&zvol_state_lock));
1528 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1529 
1530 	mutex_enter(&zv->zv_state_lock);
1531 	while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1532 		zv->zv_flags |= ZVOL_REMOVING;
1533 		cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1534 	}
1535 	mutex_exit(&zv->zv_state_lock);
1536 
1537 	rw_enter(&zvol_state_lock, RW_WRITER);
1538 	mutex_enter(&zv->zv_state_lock);
1539 
1540 	zvol_remove(zv);
1541 	zvol_os_clear_private(zv);
1542 
1543 	mutex_exit(&zv->zv_state_lock);
1544 	rw_exit(&zvol_state_lock);
1545 
1546 	zvol_os_free(zv);
1547 }
1548 
1549 static void
zvol_free_task(void * arg)1550 zvol_free_task(void *arg)
1551 {
1552 	zvol_os_free(arg);
1553 }
1554 
1555 void
zvol_remove_minors_impl(const char * name)1556 zvol_remove_minors_impl(const char *name)
1557 {
1558 	zvol_state_t *zv, *zv_next;
1559 	int namelen = ((name) ? strlen(name) : 0);
1560 	taskqid_t t;
1561 	list_t delay_list, free_list;
1562 
1563 	if (zvol_inhibit_dev)
1564 		return;
1565 
1566 	list_create(&delay_list, sizeof (zvol_state_t),
1567 	    offsetof(zvol_state_t, zv_next));
1568 	list_create(&free_list, sizeof (zvol_state_t),
1569 	    offsetof(zvol_state_t, zv_next));
1570 
1571 	rw_enter(&zvol_state_lock, RW_WRITER);
1572 
1573 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1574 		zv_next = list_next(&zvol_state_list, zv);
1575 
1576 		mutex_enter(&zv->zv_state_lock);
1577 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1578 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1579 		    (zv->zv_name[namelen] == '/' ||
1580 		    zv->zv_name[namelen] == '@'))) {
1581 			/*
1582 			 * By holding zv_state_lock here, we guarantee that no
1583 			 * one is currently using this zv
1584 			 */
1585 
1586 			/*
1587 			 * If in use, try to throw everyone off and try again
1588 			 * later.
1589 			 */
1590 			if (zv->zv_open_count > 0 ||
1591 			    atomic_read(&zv->zv_suspend_ref)) {
1592 				zv->zv_flags |= ZVOL_REMOVING;
1593 				t = taskq_dispatch(
1594 				    zv->zv_objset->os_spa->spa_zvol_taskq,
1595 				    zvol_remove_minor_task, zv, TQ_SLEEP);
1596 				if (t == TASKQID_INVALID) {
1597 					/*
1598 					 * Couldn't create the task, so we'll
1599 					 * do it in place once the loop is
1600 					 * finished.
1601 					 */
1602 					list_insert_head(&delay_list, zv);
1603 				}
1604 				mutex_exit(&zv->zv_state_lock);
1605 				continue;
1606 			}
1607 
1608 			zvol_remove(zv);
1609 
1610 			/*
1611 			 * Cleared while holding zvol_state_lock as a writer
1612 			 * which will prevent zvol_open() from opening it.
1613 			 */
1614 			zvol_os_clear_private(zv);
1615 
1616 			/* Drop zv_state_lock before zvol_free() */
1617 			mutex_exit(&zv->zv_state_lock);
1618 
1619 			/* Try parallel zv_free, if failed do it in place */
1620 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1621 			    TQ_SLEEP);
1622 			if (t == TASKQID_INVALID)
1623 				list_insert_head(&free_list, zv);
1624 		} else {
1625 			mutex_exit(&zv->zv_state_lock);
1626 		}
1627 	}
1628 	rw_exit(&zvol_state_lock);
1629 
1630 	/* Wait for zvols that we couldn't create a remove task for */
1631 	while ((zv = list_remove_head(&delay_list)) != NULL)
1632 		zvol_remove_minor_task(zv);
1633 
1634 	/* Free any that we couldn't free in parallel earlier */
1635 	while ((zv = list_remove_head(&free_list)) != NULL)
1636 		zvol_os_free(zv);
1637 }
1638 
1639 /* Remove minor for this specific volume only */
1640 static void
zvol_remove_minor_impl(const char * name)1641 zvol_remove_minor_impl(const char *name)
1642 {
1643 	zvol_state_t *zv = NULL, *zv_next;
1644 
1645 	if (zvol_inhibit_dev)
1646 		return;
1647 
1648 	rw_enter(&zvol_state_lock, RW_WRITER);
1649 
1650 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1651 		zv_next = list_next(&zvol_state_list, zv);
1652 
1653 		mutex_enter(&zv->zv_state_lock);
1654 		if (strcmp(zv->zv_name, name) == 0)
1655 			/* Found, leave the the loop with zv_lock held */
1656 			break;
1657 		mutex_exit(&zv->zv_state_lock);
1658 	}
1659 
1660 	if (zv == NULL) {
1661 		rw_exit(&zvol_state_lock);
1662 		return;
1663 	}
1664 
1665 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1666 
1667 	if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1668 		/*
1669 		 * In use, so try to throw everyone off, then wait
1670 		 * until finished.
1671 		 */
1672 		zv->zv_flags |= ZVOL_REMOVING;
1673 		mutex_exit(&zv->zv_state_lock);
1674 		rw_exit(&zvol_state_lock);
1675 		zvol_remove_minor_task(zv);
1676 		return;
1677 	}
1678 
1679 	zvol_remove(zv);
1680 	zvol_os_clear_private(zv);
1681 
1682 	mutex_exit(&zv->zv_state_lock);
1683 	rw_exit(&zvol_state_lock);
1684 
1685 	zvol_os_free(zv);
1686 }
1687 
1688 /*
1689  * Rename minors for specified dataset including children and snapshots.
1690  */
1691 static void
zvol_rename_minors_impl(const char * oldname,const char * newname)1692 zvol_rename_minors_impl(const char *oldname, const char *newname)
1693 {
1694 	zvol_state_t *zv, *zv_next;
1695 	int oldnamelen;
1696 
1697 	if (zvol_inhibit_dev)
1698 		return;
1699 
1700 	oldnamelen = strlen(oldname);
1701 
1702 	rw_enter(&zvol_state_lock, RW_READER);
1703 
1704 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1705 		zv_next = list_next(&zvol_state_list, zv);
1706 
1707 		mutex_enter(&zv->zv_state_lock);
1708 
1709 		if (strcmp(zv->zv_name, oldname) == 0) {
1710 			zvol_os_rename_minor(zv, newname);
1711 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1712 		    (zv->zv_name[oldnamelen] == '/' ||
1713 		    zv->zv_name[oldnamelen] == '@')) {
1714 			char *name = kmem_asprintf("%s%c%s", newname,
1715 			    zv->zv_name[oldnamelen],
1716 			    zv->zv_name + oldnamelen + 1);
1717 			zvol_os_rename_minor(zv, name);
1718 			kmem_strfree(name);
1719 		}
1720 
1721 		mutex_exit(&zv->zv_state_lock);
1722 	}
1723 
1724 	rw_exit(&zvol_state_lock);
1725 }
1726 
1727 typedef struct zvol_snapdev_cb_arg {
1728 	uint64_t snapdev;
1729 } zvol_snapdev_cb_arg_t;
1730 
1731 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1732 zvol_set_snapdev_cb(const char *dsname, void *param)
1733 {
1734 	zvol_snapdev_cb_arg_t *arg = param;
1735 
1736 	if (strchr(dsname, '@') == NULL)
1737 		return (0);
1738 
1739 	switch (arg->snapdev) {
1740 		case ZFS_SNAPDEV_VISIBLE:
1741 			(void) zvol_os_create_minor(dsname);
1742 			break;
1743 		case ZFS_SNAPDEV_HIDDEN:
1744 			(void) zvol_remove_minor_impl(dsname);
1745 			break;
1746 	}
1747 
1748 	return (0);
1749 }
1750 
1751 static void
zvol_set_snapdev_impl(char * name,uint64_t snapdev)1752 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1753 {
1754 	zvol_snapdev_cb_arg_t arg = {snapdev};
1755 	fstrans_cookie_t cookie = spl_fstrans_mark();
1756 	/*
1757 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1758 	 * in the dataset hierarchy. Here, we only scan snapshots.
1759 	 */
1760 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1761 	spl_fstrans_unmark(cookie);
1762 }
1763 
1764 static void
zvol_set_volmode_impl(char * name,uint64_t volmode)1765 zvol_set_volmode_impl(char *name, uint64_t volmode)
1766 {
1767 	fstrans_cookie_t cookie;
1768 	uint64_t old_volmode;
1769 	zvol_state_t *zv;
1770 
1771 	if (strchr(name, '@') != NULL)
1772 		return;
1773 
1774 	/*
1775 	 * It's unfortunate we need to remove minors before we create new ones:
1776 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1777 	 * could be different when we set, for instance, volmode from "geom"
1778 	 * to "dev" (or vice versa).
1779 	 */
1780 	zv = zvol_find_by_name(name, RW_NONE);
1781 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1782 			return;
1783 	if (zv != NULL) {
1784 		old_volmode = zv->zv_volmode;
1785 		mutex_exit(&zv->zv_state_lock);
1786 		if (old_volmode == volmode)
1787 			return;
1788 		zvol_wait_close(zv);
1789 	}
1790 	cookie = spl_fstrans_mark();
1791 	switch (volmode) {
1792 		case ZFS_VOLMODE_NONE:
1793 			(void) zvol_remove_minor_impl(name);
1794 			break;
1795 		case ZFS_VOLMODE_GEOM:
1796 		case ZFS_VOLMODE_DEV:
1797 			(void) zvol_remove_minor_impl(name);
1798 			(void) zvol_os_create_minor(name);
1799 			break;
1800 		case ZFS_VOLMODE_DEFAULT:
1801 			(void) zvol_remove_minor_impl(name);
1802 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1803 				break;
1804 			else /* if zvol_volmode is invalid defaults to "geom" */
1805 				(void) zvol_os_create_minor(name);
1806 			break;
1807 	}
1808 	spl_fstrans_unmark(cookie);
1809 }
1810 
1811 static zvol_task_t *
zvol_task_alloc(zvol_async_op_t op,const char * name1,const char * name2,uint64_t value)1812 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1813     uint64_t value)
1814 {
1815 	zvol_task_t *task;
1816 
1817 	/* Never allow tasks on hidden names. */
1818 	if (name1[0] == '$')
1819 		return (NULL);
1820 
1821 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1822 	task->op = op;
1823 	task->value = value;
1824 
1825 	strlcpy(task->name1, name1, sizeof (task->name1));
1826 	if (name2 != NULL)
1827 		strlcpy(task->name2, name2, sizeof (task->name2));
1828 
1829 	return (task);
1830 }
1831 
1832 static void
zvol_task_free(zvol_task_t * task)1833 zvol_task_free(zvol_task_t *task)
1834 {
1835 	kmem_free(task, sizeof (zvol_task_t));
1836 }
1837 
1838 /*
1839  * The worker thread function performed asynchronously.
1840  */
1841 static void
zvol_task_cb(void * arg)1842 zvol_task_cb(void *arg)
1843 {
1844 	zvol_task_t *task = arg;
1845 
1846 	switch (task->op) {
1847 	case ZVOL_ASYNC_REMOVE_MINORS:
1848 		zvol_remove_minors_impl(task->name1);
1849 		break;
1850 	case ZVOL_ASYNC_RENAME_MINORS:
1851 		zvol_rename_minors_impl(task->name1, task->name2);
1852 		break;
1853 	case ZVOL_ASYNC_SET_SNAPDEV:
1854 		zvol_set_snapdev_impl(task->name1, task->value);
1855 		break;
1856 	case ZVOL_ASYNC_SET_VOLMODE:
1857 		zvol_set_volmode_impl(task->name1, task->value);
1858 		break;
1859 	default:
1860 		VERIFY(0);
1861 		break;
1862 	}
1863 
1864 	zvol_task_free(task);
1865 }
1866 
1867 typedef struct zvol_set_prop_int_arg {
1868 	const char *zsda_name;
1869 	uint64_t zsda_value;
1870 	zprop_source_t zsda_source;
1871 	zfs_prop_t zsda_prop;
1872 } zvol_set_prop_int_arg_t;
1873 
1874 /*
1875  * Sanity check the dataset for safe use by the sync task.  No additional
1876  * conditions are imposed.
1877  */
1878 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1879 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1880 {
1881 	zvol_set_prop_int_arg_t *zsda = arg;
1882 	dsl_pool_t *dp = dmu_tx_pool(tx);
1883 	dsl_dir_t *dd;
1884 	int error;
1885 
1886 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1887 	if (error != 0)
1888 		return (error);
1889 
1890 	dsl_dir_rele(dd, FTAG);
1891 
1892 	return (error);
1893 }
1894 
1895 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1896 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1897 {
1898 	zvol_set_prop_int_arg_t *zsda = arg;
1899 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
1900 	zvol_task_t *task;
1901 	uint64_t prop;
1902 
1903 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1904 	dsl_dataset_name(ds, dsname);
1905 
1906 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1907 		return (0);
1908 
1909 	switch (zsda->zsda_prop) {
1910 		case ZFS_PROP_VOLMODE:
1911 			task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1912 			    NULL, prop);
1913 			break;
1914 		case ZFS_PROP_SNAPDEV:
1915 			task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1916 			    NULL, prop);
1917 			break;
1918 		default:
1919 			task = NULL;
1920 			break;
1921 	}
1922 
1923 	if (task == NULL)
1924 		return (0);
1925 
1926 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1927 	    task, TQ_SLEEP);
1928 	return (0);
1929 }
1930 
1931 /*
1932  * Traverse all child datasets and apply the property appropriately.
1933  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1934  * dataset and read the effective "property" on every child in the callback
1935  * function: this is because the value is not guaranteed to be the same in the
1936  * whole dataset hierarchy.
1937  */
1938 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)1939 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1940 {
1941 	zvol_set_prop_int_arg_t *zsda = arg;
1942 	dsl_pool_t *dp = dmu_tx_pool(tx);
1943 	dsl_dir_t *dd;
1944 	dsl_dataset_t *ds;
1945 	int error;
1946 
1947 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1948 
1949 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1950 	if (error == 0) {
1951 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1952 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1953 		    &zsda->zsda_value, tx);
1954 		dsl_dataset_rele(ds, FTAG);
1955 	}
1956 
1957 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1958 	    zsda, DS_FIND_CHILDREN);
1959 
1960 	dsl_dir_rele(dd, FTAG);
1961 }
1962 
1963 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)1964 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1965     uint64_t val)
1966 {
1967 	zvol_set_prop_int_arg_t zsda;
1968 
1969 	zsda.zsda_name = ddname;
1970 	zsda.zsda_source = source;
1971 	zsda.zsda_value = val;
1972 	zsda.zsda_prop = prop;
1973 
1974 	return (dsl_sync_task(ddname, zvol_set_common_check,
1975 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1976 }
1977 
1978 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)1979 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1980 {
1981 	zvol_task_t *task;
1982 	taskqid_t id;
1983 
1984 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1985 	if (task == NULL)
1986 		return;
1987 
1988 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1989 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1990 		taskq_wait_id(spa->spa_zvol_taskq, id);
1991 }
1992 
1993 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)1994 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1995     boolean_t async)
1996 {
1997 	zvol_task_t *task;
1998 	taskqid_t id;
1999 
2000 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2001 	if (task == NULL)
2002 		return;
2003 
2004 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2005 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
2006 		taskq_wait_id(spa->spa_zvol_taskq, id);
2007 }
2008 
2009 boolean_t
zvol_is_zvol(const char * name)2010 zvol_is_zvol(const char *name)
2011 {
2012 
2013 	return (zvol_os_is_zvol(name));
2014 }
2015 
2016 int
zvol_init_impl(void)2017 zvol_init_impl(void)
2018 {
2019 	int i;
2020 
2021 	list_create(&zvol_state_list, sizeof (zvol_state_t),
2022 	    offsetof(zvol_state_t, zv_next));
2023 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2024 
2025 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2026 	    KM_SLEEP);
2027 	for (i = 0; i < ZVOL_HT_SIZE; i++)
2028 		INIT_HLIST_HEAD(&zvol_htable[i]);
2029 
2030 	return (0);
2031 }
2032 
2033 void
zvol_fini_impl(void)2034 zvol_fini_impl(void)
2035 {
2036 	zvol_remove_minors_impl(NULL);
2037 
2038 	/*
2039 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
2040 	 * the system_taskq, but it doesn't wait for those entries to
2041 	 * complete before it returns. Thus, we must wait for all of the
2042 	 * removals to finish, before we can continue.
2043 	 */
2044 	taskq_wait_outstanding(system_taskq, 0);
2045 
2046 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2047 	list_destroy(&zvol_state_list);
2048 	rw_destroy(&zvol_state_lock);
2049 }
2050