xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26  * LLNL-CODE-403049.
27  *
28  * ZFS volume emulation driver.
29  *
30  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
31  * Volumes are accessed through the symbolic links named:
32  *
33  * /dev/<pool_name>/<dataset_name>
34  *
35  * Volumes are persistent through reboot and module load.  No user command
36  * needs to be run before opening and using a device.
37  *
38  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
39  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
40  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
41  * Copyright (c) 2024, 2025, Klara, Inc.
42  */
43 
44 /*
45  * Note on locking of zvol state structures.
46  *
47  * zvol_state_t represents the connection between a single dataset
48  * (DMU_OST_ZVOL) and the device "minor" (some OS-specific representation of a
49  * "disk" or "device" or "volume", eg, a /dev/zdXX node, a GEOM object, etc).
50  *
51  * The global zvol_state_lock is used to protect access to zvol_state_list and
52  * zvol_htable, which are the primary way to obtain a zvol_state_t from a name.
53  * It should not be used for anything not name-relateds, and you should avoid
54  * sleeping or waiting while its held. See zvol_find_by_name(), zvol_insert(),
55  * zvol_remove().
56  *
57  * The zv_state_lock is used to protect the contents of the associated
58  * zvol_state_t. Most of the zvol_state_t is dedicated to control and
59  * configuration; almost none of it is needed for data operations (that is,
60  * read, write, flush) so this lock is rarely taken during general IO. It
61  * should be released quickly; you should avoid sleeping or waiting while its
62  * held.
63  *
64  * zv_suspend_lock is used to suspend IO/data operations to a zvol. The read
65  * half should held for the duration of an IO operation. The write half should
66  * be taken when something to wait for IO to complete and the block further IO,
67  * eg for the duration of receive and rollback operations. This lock can be
68  * held for long periods of time.
69  *
70  * Thus, the following lock ordering appies.
71  * - take zvol_state_lock if necessary, to protect zvol_state_list
72  * - take zv_suspend_lock if necessary, by the code path in question
73  * - take zv_state_lock to protect zvol_state_t
74  *
75  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
76  * single-threaded (to preserve order of minor operations), and are executed
77  * through the zvol_task_cb that dispatches the specific operations. Therefore,
78  * these operations are serialized per pool. Consequently, we can be certain
79  * that for a given zvol, there is only one operation at a time in progress.
80  * That is why one can be sure that first, zvol_state_t for a given zvol is
81  * allocated and placed on zvol_state_list, and then other minor operations for
82  * this zvol are going to proceed in the order of issue.
83  */
84 
85 #include <sys/dataset_kstats.h>
86 #include <sys/dbuf.h>
87 #include <sys/dmu_traverse.h>
88 #include <sys/dsl_dataset.h>
89 #include <sys/dsl_prop.h>
90 #include <sys/dsl_dir.h>
91 #include <sys/zap.h>
92 #include <sys/zfeature.h>
93 #include <sys/zil_impl.h>
94 #include <sys/dmu_tx.h>
95 #include <sys/zio.h>
96 #include <sys/zfs_rlock.h>
97 #include <sys/spa_impl.h>
98 #include <sys/zvol.h>
99 #include <sys/zvol_impl.h>
100 
101 unsigned int zvol_inhibit_dev = 0;
102 unsigned int zvol_prefetch_bytes = (128 * 1024);
103 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
104 unsigned int zvol_threads = 0;
105 unsigned int zvol_num_taskqs = 0;
106 unsigned int zvol_request_sync = 0;
107 
108 struct hlist_head *zvol_htable;
109 static list_t zvol_state_list;
110 krwlock_t zvol_state_lock;
111 extern int zfs_bclone_wait_dirty;
112 zv_taskq_t zvol_taskqs;
113 
114 typedef enum {
115 	ZVOL_ASYNC_CREATE_MINORS,
116 	ZVOL_ASYNC_REMOVE_MINORS,
117 	ZVOL_ASYNC_RENAME_MINORS,
118 	ZVOL_ASYNC_SET_SNAPDEV,
119 	ZVOL_ASYNC_SET_VOLMODE,
120 	ZVOL_ASYNC_MAX
121 } zvol_async_op_t;
122 
123 typedef struct {
124 	zvol_async_op_t zt_op;
125 	char zt_name1[MAXNAMELEN];
126 	char zt_name2[MAXNAMELEN];
127 	uint64_t zt_value;
128 	uint32_t zt_total;
129 	uint32_t zt_done;
130 	int32_t zt_status;
131 	int zt_error;
132 } zvol_task_t;
133 
134 zv_request_task_t *
zv_request_task_create(zv_request_t zvr)135 zv_request_task_create(zv_request_t zvr)
136 {
137 	zv_request_task_t *task;
138 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
139 	taskq_init_ent(&task->ent);
140 	task->zvr = zvr;
141 	return (task);
142 }
143 
144 void
zv_request_task_free(zv_request_task_t * task)145 zv_request_task_free(zv_request_task_t *task)
146 {
147 	kmem_free(task, sizeof (*task));
148 }
149 
150 uint64_t
zvol_name_hash(const char * name)151 zvol_name_hash(const char *name)
152 {
153 	uint64_t crc = -1ULL;
154 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
155 	for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
156 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
157 	return (crc);
158 }
159 
160 /*
161  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
162  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
163  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
164  * before zv_state_lock. The mode argument indicates the mode (including none)
165  * for zv_suspend_lock to be taken.
166  */
167 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)168 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
169 {
170 	zvol_state_t *zv;
171 	struct hlist_node *p = NULL;
172 
173 	rw_enter(&zvol_state_lock, RW_READER);
174 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
175 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
176 		mutex_enter(&zv->zv_state_lock);
177 		if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
178 			/*
179 			 * this is the right zvol, take the locks in the
180 			 * right order
181 			 */
182 			if (mode != RW_NONE &&
183 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
184 				mutex_exit(&zv->zv_state_lock);
185 				rw_enter(&zv->zv_suspend_lock, mode);
186 				mutex_enter(&zv->zv_state_lock);
187 				/*
188 				 * zvol cannot be renamed as we continue
189 				 * to hold zvol_state_lock
190 				 */
191 				ASSERT(zv->zv_hash == hash &&
192 				    strcmp(zv->zv_name, name) == 0);
193 			}
194 			rw_exit(&zvol_state_lock);
195 			return (zv);
196 		}
197 		mutex_exit(&zv->zv_state_lock);
198 	}
199 	rw_exit(&zvol_state_lock);
200 
201 	return (NULL);
202 }
203 
204 /*
205  * Find a zvol_state_t given the name.
206  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
207  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
208  * before zv_state_lock. The mode argument indicates the mode (including none)
209  * for zv_suspend_lock to be taken.
210  */
211 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)212 zvol_find_by_name(const char *name, int mode)
213 {
214 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
215 }
216 
217 /*
218  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
219  */
220 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)221 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
222 {
223 	zfs_creat_t *zct = arg;
224 	nvlist_t *nvprops = zct->zct_props;
225 	int error;
226 	uint64_t volblocksize, volsize;
227 
228 	VERIFY0(nvlist_lookup_uint64(nvprops,
229 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize));
230 	if (nvlist_lookup_uint64(nvprops,
231 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
232 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
233 
234 	/*
235 	 * These properties must be removed from the list so the generic
236 	 * property setting step won't apply to them.
237 	 */
238 	VERIFY0(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)));
239 	(void) nvlist_remove_all(nvprops,
240 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
241 
242 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
243 	    DMU_OT_NONE, 0, tx);
244 	ASSERT0(error);
245 
246 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
247 	    DMU_OT_NONE, 0, tx);
248 	ASSERT0(error);
249 
250 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
251 	ASSERT0(error);
252 }
253 
254 /*
255  * ZFS_IOC_OBJSET_STATS entry point.
256  */
257 int
zvol_get_stats(objset_t * os,nvlist_t * nv)258 zvol_get_stats(objset_t *os, nvlist_t *nv)
259 {
260 	int error;
261 	dmu_object_info_t *doi;
262 	uint64_t val;
263 
264 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
265 	if (error)
266 		return (error);
267 
268 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
269 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
270 	error = dmu_object_info(os, ZVOL_OBJ, doi);
271 
272 	if (error == 0) {
273 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
274 		    doi->doi_data_block_size);
275 	}
276 
277 	kmem_free(doi, sizeof (dmu_object_info_t));
278 
279 	return (error);
280 }
281 
282 /*
283  * Sanity check volume size.
284  */
285 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)286 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
287 {
288 	if (volsize == 0)
289 		return (SET_ERROR(EINVAL));
290 
291 	if (volsize % blocksize != 0)
292 		return (SET_ERROR(EINVAL));
293 
294 #ifdef _ILP32
295 	if (volsize - 1 > SPEC_MAXOFFSET_T)
296 		return (SET_ERROR(EOVERFLOW));
297 #endif
298 	return (0);
299 }
300 
301 /*
302  * Ensure the zap is flushed then inform the VFS of the capacity change.
303  */
304 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)305 zvol_update_volsize(uint64_t volsize, objset_t *os)
306 {
307 	dmu_tx_t *tx;
308 	int error;
309 	uint64_t txg;
310 
311 	tx = dmu_tx_create(os);
312 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
313 	dmu_tx_mark_netfree(tx);
314 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
315 	if (error) {
316 		dmu_tx_abort(tx);
317 		return (error);
318 	}
319 	txg = dmu_tx_get_txg(tx);
320 
321 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
322 	    &volsize, tx);
323 	dmu_tx_commit(tx);
324 
325 	txg_wait_synced(dmu_objset_pool(os), txg);
326 
327 	if (error == 0)
328 		error = dmu_free_long_range(os,
329 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
330 
331 	return (error);
332 }
333 
334 /*
335  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
336  * size will result in a udev "change" event being generated.
337  */
338 int
zvol_set_volsize(const char * name,uint64_t volsize)339 zvol_set_volsize(const char *name, uint64_t volsize)
340 {
341 	objset_t *os = NULL;
342 	uint64_t readonly;
343 	int error;
344 	boolean_t owned = B_FALSE;
345 
346 	error = dsl_prop_get_integer(name,
347 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
348 	if (error != 0)
349 		return (error);
350 	if (readonly)
351 		return (SET_ERROR(EROFS));
352 
353 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
354 
355 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
356 	    RW_READ_HELD(&zv->zv_suspend_lock)));
357 
358 	if (zv == NULL || zv->zv_objset == NULL) {
359 		if (zv != NULL)
360 			rw_exit(&zv->zv_suspend_lock);
361 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
362 		    FTAG, &os)) != 0) {
363 			if (zv != NULL)
364 				mutex_exit(&zv->zv_state_lock);
365 			return (error);
366 		}
367 		owned = B_TRUE;
368 		if (zv != NULL)
369 			zv->zv_objset = os;
370 	} else {
371 		os = zv->zv_objset;
372 	}
373 
374 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
375 
376 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
377 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
378 		goto out;
379 
380 	error = zvol_update_volsize(volsize, os);
381 	if (error == 0 && zv != NULL) {
382 		zv->zv_volsize = volsize;
383 		zv->zv_changed = 1;
384 	}
385 out:
386 	kmem_free(doi, sizeof (dmu_object_info_t));
387 
388 	if (owned) {
389 		dmu_objset_disown(os, B_TRUE, FTAG);
390 		if (zv != NULL)
391 			zv->zv_objset = NULL;
392 	} else {
393 		rw_exit(&zv->zv_suspend_lock);
394 	}
395 
396 	if (zv != NULL)
397 		mutex_exit(&zv->zv_state_lock);
398 
399 	if (error == 0 && zv != NULL)
400 		zvol_os_update_volsize(zv, volsize);
401 
402 	return (error);
403 }
404 
405 /*
406  * Update volthreading.
407  */
408 int
zvol_set_volthreading(const char * name,boolean_t value)409 zvol_set_volthreading(const char *name, boolean_t value)
410 {
411 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
412 	if (zv == NULL)
413 		return (-1);
414 	zv->zv_threading = value;
415 	mutex_exit(&zv->zv_state_lock);
416 	return (0);
417 }
418 
419 /*
420  * Update zvol ro property.
421  */
422 int
zvol_set_ro(const char * name,boolean_t value)423 zvol_set_ro(const char *name, boolean_t value)
424 {
425 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
426 	if (zv == NULL)
427 		return (-1);
428 	if (value) {
429 		zvol_os_set_disk_ro(zv, 1);
430 		zv->zv_flags |= ZVOL_RDONLY;
431 	} else {
432 		zvol_os_set_disk_ro(zv, 0);
433 		zv->zv_flags &= ~ZVOL_RDONLY;
434 	}
435 	mutex_exit(&zv->zv_state_lock);
436 	return (0);
437 }
438 
439 /*
440  * Sanity check volume block size.
441  */
442 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)443 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
444 {
445 	/* Record sizes above 128k need the feature to be enabled */
446 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
447 		spa_t *spa;
448 		int error;
449 
450 		if ((error = spa_open(name, &spa, FTAG)) != 0)
451 			return (error);
452 
453 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
454 			spa_close(spa, FTAG);
455 			return (SET_ERROR(ENOTSUP));
456 		}
457 
458 		/*
459 		 * We don't allow setting the property above 1MB,
460 		 * unless the tunable has been changed.
461 		 */
462 		if (volblocksize > zfs_max_recordsize) {
463 			spa_close(spa, FTAG);
464 			return (SET_ERROR(EDOM));
465 		}
466 
467 		spa_close(spa, FTAG);
468 	}
469 
470 	if (volblocksize < SPA_MINBLOCKSIZE ||
471 	    volblocksize > SPA_MAXBLOCKSIZE ||
472 	    !ISP2(volblocksize))
473 		return (SET_ERROR(EDOM));
474 
475 	return (0);
476 }
477 
478 /*
479  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
480  * implement DKIOCFREE/free-long-range.
481  */
482 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)483 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
484 {
485 	zvol_state_t *zv = arg1;
486 	lr_truncate_t *lr = arg2;
487 	uint64_t offset, length;
488 
489 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
490 
491 	if (byteswap)
492 		byteswap_uint64_array(lr, sizeof (*lr));
493 
494 	offset = lr->lr_offset;
495 	length = lr->lr_length;
496 
497 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
498 	dmu_tx_mark_netfree(tx);
499 	int error = dmu_tx_assign(tx, DMU_TX_WAIT);
500 	if (error != 0) {
501 		dmu_tx_abort(tx);
502 	} else {
503 		(void) zil_replaying(zv->zv_zilog, tx);
504 		dmu_tx_commit(tx);
505 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
506 		    length);
507 	}
508 
509 	return (error);
510 }
511 
512 /*
513  * Replay a TX_WRITE ZIL transaction that didn't get committed
514  * after a system failure
515  */
516 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)517 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
518 {
519 	zvol_state_t *zv = arg1;
520 	lr_write_t *lr = arg2;
521 	objset_t *os = zv->zv_objset;
522 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
523 	uint64_t offset, length;
524 	dmu_tx_t *tx;
525 	int error;
526 
527 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
528 
529 	if (byteswap)
530 		byteswap_uint64_array(lr, sizeof (*lr));
531 
532 	offset = lr->lr_offset;
533 	length = lr->lr_length;
534 
535 	/* If it's a dmu_sync() block, write the whole block */
536 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
537 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
538 		if (length < blocksize) {
539 			offset -= offset % blocksize;
540 			length = blocksize;
541 		}
542 	}
543 
544 	tx = dmu_tx_create(os);
545 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
546 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
547 	if (error) {
548 		dmu_tx_abort(tx);
549 	} else {
550 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx,
551 		    DMU_READ_PREFETCH);
552 		(void) zil_replaying(zv->zv_zilog, tx);
553 		dmu_tx_commit(tx);
554 	}
555 
556 	return (error);
557 }
558 
559 /*
560  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
561  * after a system failure
562  */
563 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)564 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
565 {
566 	zvol_state_t *zv = arg1;
567 	lr_clone_range_t *lr = arg2;
568 	objset_t *os = zv->zv_objset;
569 	dmu_tx_t *tx;
570 	int error;
571 	uint64_t blksz;
572 	uint64_t off;
573 	uint64_t len;
574 
575 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
576 	ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
577 	    lr_bps[lr->lr_nbps]));
578 
579 	if (byteswap)
580 		byteswap_uint64_array(lr, sizeof (*lr));
581 
582 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
583 	    SPA_FEATURE_BLOCK_CLONING));
584 
585 	off = lr->lr_offset;
586 	len = lr->lr_length;
587 	blksz = lr->lr_blksz;
588 
589 	if ((off % blksz) != 0) {
590 		return (SET_ERROR(EINVAL));
591 	}
592 
593 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
594 	if (error != 0 || !zv->zv_dn)
595 		return (error);
596 	tx = dmu_tx_create(os);
597 	dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len, blksz);
598 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
599 	if (error != 0) {
600 		dmu_tx_abort(tx);
601 		goto out;
602 	}
603 	error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
604 	    tx, lr->lr_bps, lr->lr_nbps);
605 	if (error != 0) {
606 		dmu_tx_commit(tx);
607 		goto out;
608 	}
609 
610 	/*
611 	 * zil_replaying() not only check if we are replaying ZIL, but also
612 	 * updates the ZIL header to record replay progress.
613 	 */
614 	VERIFY(zil_replaying(zv->zv_zilog, tx));
615 	dmu_tx_commit(tx);
616 
617 out:
618 	dnode_rele(zv->zv_dn, zv);
619 	zv->zv_dn = NULL;
620 	return (error);
621 }
622 
623 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)624 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
625     uint64_t outoff, uint64_t len)
626 {
627 	zilog_t	*zilog_dst;
628 	zfs_locked_range_t *inlr, *outlr;
629 	objset_t *inos, *outos;
630 	dmu_tx_t *tx;
631 	blkptr_t *bps;
632 	size_t maxblocks;
633 	int error = 0;
634 
635 	rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
636 	if (zv_dst->zv_zilog == NULL) {
637 		rw_exit(&zv_dst->zv_suspend_lock);
638 		rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
639 		if (zv_dst->zv_zilog == NULL) {
640 			zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
641 			    zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
642 			zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
643 			VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
644 			    ZIL_REPLAY_NEEDED));
645 		}
646 		rw_downgrade(&zv_dst->zv_suspend_lock);
647 	}
648 	if (zv_src != zv_dst)
649 		rw_enter(&zv_src->zv_suspend_lock, RW_READER);
650 
651 	inos = zv_src->zv_objset;
652 	outos = zv_dst->zv_objset;
653 
654 	/*
655 	 * Sanity checks
656 	 */
657 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
658 	    SPA_FEATURE_BLOCK_CLONING)) {
659 		error = SET_ERROR(EOPNOTSUPP);
660 		goto out;
661 	}
662 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
663 		error = SET_ERROR(EXDEV);
664 		goto out;
665 	}
666 	if (inos->os_encrypted != outos->os_encrypted) {
667 		error = SET_ERROR(EXDEV);
668 		goto out;
669 	}
670 	if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
671 		error = SET_ERROR(EINVAL);
672 		goto out;
673 	}
674 	if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
675 		goto out;
676 	}
677 
678 	/*
679 	 * Do not read beyond boundary
680 	 */
681 	if (len > zv_src->zv_volsize - inoff)
682 		len = zv_src->zv_volsize - inoff;
683 	if (len > zv_dst->zv_volsize - outoff)
684 		len = zv_dst->zv_volsize - outoff;
685 	if (len == 0)
686 		goto out;
687 
688 	/*
689 	 * No overlapping if we are cloning within the same file
690 	 */
691 	if (zv_src == zv_dst) {
692 		if (inoff < outoff + len && outoff < inoff + len) {
693 			error = SET_ERROR(EINVAL);
694 			goto out;
695 		}
696 	}
697 
698 	/*
699 	 * Offsets and length must be at block boundaries
700 	 */
701 	if ((inoff % zv_src->zv_volblocksize) != 0 ||
702 	    (outoff % zv_dst->zv_volblocksize) != 0) {
703 		error = SET_ERROR(EINVAL);
704 		goto out;
705 	}
706 
707 	/*
708 	 * Length must be multiple of block size
709 	 */
710 	if ((len % zv_src->zv_volblocksize) != 0) {
711 		error = SET_ERROR(EINVAL);
712 		goto out;
713 	}
714 
715 	zilog_dst = zv_dst->zv_zilog;
716 	maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
717 	    sizeof (bps[0]);
718 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
719 	/*
720 	 * Maintain predictable lock order.
721 	 */
722 	if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
723 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
724 		    RL_READER);
725 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
726 		    RL_WRITER);
727 	} else {
728 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
729 		    RL_WRITER);
730 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
731 		    RL_READER);
732 	}
733 
734 	while (len > 0) {
735 		uint64_t size, last_synced_txg;
736 		size_t nbps = maxblocks;
737 		size = MIN(zv_src->zv_volblocksize * maxblocks, len);
738 		last_synced_txg = spa_last_synced_txg(
739 		    dmu_objset_spa(zv_src->zv_objset));
740 		error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
741 		    size, bps, &nbps);
742 		if (error != 0) {
743 			/*
744 			 * If we are trying to clone a block that was created
745 			 * in the current transaction group, the error will be
746 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
747 			 * return a shortened range to the caller so it can
748 			 * fallback, or wait for the next TXG and check again.
749 			 */
750 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
751 				txg_wait_synced(dmu_objset_pool
752 				    (zv_src->zv_objset), last_synced_txg + 1);
753 					continue;
754 			}
755 			break;
756 		}
757 
758 		tx = dmu_tx_create(zv_dst->zv_objset);
759 		dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size,
760 		    zv_src->zv_volblocksize);
761 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
762 		if (error != 0) {
763 			dmu_tx_abort(tx);
764 			break;
765 		}
766 		error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
767 		    tx, bps, nbps);
768 		if (error != 0) {
769 			dmu_tx_commit(tx);
770 			break;
771 		}
772 		zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
773 		    size, zv_src->zv_volblocksize, bps, nbps);
774 		dmu_tx_commit(tx);
775 		inoff += size;
776 		outoff += size;
777 		len -= size;
778 	}
779 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
780 	zfs_rangelock_exit(outlr);
781 	zfs_rangelock_exit(inlr);
782 	if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
783 		error = zil_commit(zilog_dst, ZVOL_OBJ);
784 	}
785 out:
786 	if (zv_src != zv_dst)
787 		rw_exit(&zv_src->zv_suspend_lock);
788 	rw_exit(&zv_dst->zv_suspend_lock);
789 	return (error);
790 }
791 
792 /*
793  * Handles TX_CLONE_RANGE transactions.
794  */
795 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)796 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
797     uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
798 {
799 	itx_t *itx;
800 	lr_clone_range_t *lr;
801 	uint64_t partlen, max_log_data;
802 	size_t partnbps;
803 
804 	if (zil_replaying(zilog, tx))
805 		return;
806 
807 	max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
808 
809 	while (nbps > 0) {
810 		partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
811 		partlen = partnbps * blksz;
812 		ASSERT3U(partlen, <, len + blksz);
813 		partlen = MIN(partlen, len);
814 
815 		itx = zil_itx_create(txtype,
816 		    sizeof (*lr) + sizeof (bps[0]) * partnbps);
817 		lr = (lr_clone_range_t *)&itx->itx_lr;
818 		lr->lr_foid = ZVOL_OBJ;
819 		lr->lr_offset = off;
820 		lr->lr_length = partlen;
821 		lr->lr_blksz = blksz;
822 		lr->lr_nbps = partnbps;
823 		memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
824 
825 		zil_itx_assign(zilog, itx, tx);
826 
827 		bps += partnbps;
828 		ASSERT3U(nbps, >=, partnbps);
829 		nbps -= partnbps;
830 		off += partlen;
831 		ASSERT3U(len, >=, partlen);
832 		len -= partlen;
833 	}
834 }
835 
836 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)837 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
838 {
839 	(void) arg1, (void) arg2, (void) byteswap;
840 	return (SET_ERROR(ENOTSUP));
841 }
842 
843 /*
844  * Callback vectors for replaying records.
845  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
846  */
847 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
848 	zvol_replay_err,	/* no such transaction type */
849 	zvol_replay_err,	/* TX_CREATE */
850 	zvol_replay_err,	/* TX_MKDIR */
851 	zvol_replay_err,	/* TX_MKXATTR */
852 	zvol_replay_err,	/* TX_SYMLINK */
853 	zvol_replay_err,	/* TX_REMOVE */
854 	zvol_replay_err,	/* TX_RMDIR */
855 	zvol_replay_err,	/* TX_LINK */
856 	zvol_replay_err,	/* TX_RENAME */
857 	zvol_replay_write,	/* TX_WRITE */
858 	zvol_replay_truncate,	/* TX_TRUNCATE */
859 	zvol_replay_err,	/* TX_SETATTR */
860 	zvol_replay_err,	/* TX_ACL_V0 */
861 	zvol_replay_err,	/* TX_ACL */
862 	zvol_replay_err,	/* TX_CREATE_ACL */
863 	zvol_replay_err,	/* TX_CREATE_ATTR */
864 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
865 	zvol_replay_err,	/* TX_MKDIR_ACL */
866 	zvol_replay_err,	/* TX_MKDIR_ATTR */
867 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
868 	zvol_replay_err,	/* TX_WRITE2 */
869 	zvol_replay_err,	/* TX_SETSAXATTR */
870 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
871 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
872 	zvol_replay_clone_range,	/* TX_CLONE_RANGE */
873 };
874 
875 /*
876  * zvol_log_write() handles TX_WRITE transactions.
877  */
878 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)879 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
880     uint64_t size, boolean_t commit)
881 {
882 	uint32_t blocksize = zv->zv_volblocksize;
883 	zilog_t *zilog = zv->zv_zilog;
884 	itx_wr_state_t write_state;
885 	uint64_t log_size = 0;
886 
887 	if (zil_replaying(zilog, tx))
888 		return;
889 
890 	write_state = zil_write_state(zilog, size, blocksize, B_FALSE, commit);
891 
892 	while (size) {
893 		itx_t *itx;
894 		lr_write_t *lr;
895 		itx_wr_state_t wr_state = write_state;
896 		ssize_t len = size;
897 
898 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
899 			wr_state = WR_NEED_COPY;
900 		else if (wr_state == WR_INDIRECT)
901 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
902 
903 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
904 		    (wr_state == WR_COPIED ? len : 0));
905 		lr = (lr_write_t *)&itx->itx_lr;
906 		if (wr_state == WR_COPIED &&
907 		    dmu_read_by_dnode(zv->zv_dn, offset, len, lr + 1,
908 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING) != 0) {
909 			zil_itx_destroy(itx, 0);
910 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
911 			lr = (lr_write_t *)&itx->itx_lr;
912 			wr_state = WR_NEED_COPY;
913 		}
914 
915 		log_size += itx->itx_size;
916 		if (wr_state == WR_NEED_COPY)
917 			log_size += len;
918 
919 		itx->itx_wr_state = wr_state;
920 		lr->lr_foid = ZVOL_OBJ;
921 		lr->lr_offset = offset;
922 		lr->lr_length = len;
923 		lr->lr_blkoff = 0;
924 		BP_ZERO(&lr->lr_blkptr);
925 
926 		itx->itx_private = zv;
927 
928 		zil_itx_assign(zilog, itx, tx);
929 
930 		offset += len;
931 		size -= len;
932 	}
933 
934 	dsl_pool_wrlog_count(zilog->zl_dmu_pool, log_size, tx->tx_txg);
935 }
936 
937 /*
938  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
939  */
940 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)941 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
942 {
943 	itx_t *itx;
944 	lr_truncate_t *lr;
945 	zilog_t *zilog = zv->zv_zilog;
946 
947 	if (zil_replaying(zilog, tx))
948 		return;
949 
950 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
951 	lr = (lr_truncate_t *)&itx->itx_lr;
952 	lr->lr_foid = ZVOL_OBJ;
953 	lr->lr_offset = off;
954 	lr->lr_length = len;
955 
956 	zil_itx_assign(zilog, itx, tx);
957 }
958 
959 
960 static void
zvol_get_done(zgd_t * zgd,int error)961 zvol_get_done(zgd_t *zgd, int error)
962 {
963 	(void) error;
964 	if (zgd->zgd_db)
965 		dmu_buf_rele(zgd->zgd_db, zgd);
966 
967 	zfs_rangelock_exit(zgd->zgd_lr);
968 
969 	kmem_free(zgd, sizeof (zgd_t));
970 }
971 
972 /*
973  * Get data to generate a TX_WRITE intent log record.
974  */
975 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)976 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
977     struct lwb *lwb, zio_t *zio)
978 {
979 	zvol_state_t *zv = arg;
980 	uint64_t offset = lr->lr_offset;
981 	uint64_t size = lr->lr_length;
982 	dmu_buf_t *db;
983 	zgd_t *zgd;
984 	int error;
985 
986 	ASSERT3P(lwb, !=, NULL);
987 	ASSERT3U(size, !=, 0);
988 
989 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
990 	zgd->zgd_lwb = lwb;
991 
992 	/*
993 	 * Write records come in two flavors: immediate and indirect.
994 	 * For small writes it's cheaper to store the data with the
995 	 * log record (immediate); for large writes it's cheaper to
996 	 * sync the data and get a pointer to it (indirect) so that
997 	 * we don't have to write the data twice.
998 	 */
999 	if (buf != NULL) { /* immediate write */
1000 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1001 		    size, RL_READER);
1002 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1003 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1004 	} else { /* indirect write */
1005 		ASSERT3P(zio, !=, NULL);
1006 		/*
1007 		 * Have to lock the whole block to ensure when it's written out
1008 		 * and its checksum is being calculated that no one can change
1009 		 * the data. Contrarily to zfs_get_data we need not re-check
1010 		 * blocksize after we get the lock because it cannot be changed.
1011 		 */
1012 		size = zv->zv_volblocksize;
1013 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
1014 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1015 		    size, RL_READER);
1016 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
1017 		    &db);
1018 		if (error == 0) {
1019 			blkptr_t *bp = &lr->lr_blkptr;
1020 
1021 			zgd->zgd_db = db;
1022 			zgd->zgd_bp = bp;
1023 
1024 			ASSERT(db != NULL);
1025 			ASSERT(db->db_offset == offset);
1026 			ASSERT(db->db_size == size);
1027 
1028 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1029 			    zvol_get_done, zgd);
1030 
1031 			if (error == 0)
1032 				return (0);
1033 		}
1034 	}
1035 
1036 	zvol_get_done(zgd, error);
1037 
1038 	return (error);
1039 }
1040 
1041 /*
1042  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1043  */
1044 
1045 void
zvol_insert(zvol_state_t * zv)1046 zvol_insert(zvol_state_t *zv)
1047 {
1048 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1049 	list_insert_head(&zvol_state_list, zv);
1050 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1051 }
1052 
1053 /*
1054  * Simply remove the zvol from to list of zvols.
1055  */
1056 static void
zvol_remove(zvol_state_t * zv)1057 zvol_remove(zvol_state_t *zv)
1058 {
1059 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1060 	list_remove(&zvol_state_list, zv);
1061 	hlist_del(&zv->zv_hlink);
1062 }
1063 
1064 /*
1065  * Setup zv after we just own the zv->objset
1066  */
1067 static int
zvol_setup_zv(zvol_state_t * zv)1068 zvol_setup_zv(zvol_state_t *zv)
1069 {
1070 	uint64_t volsize;
1071 	int error;
1072 	uint64_t ro;
1073 	objset_t *os = zv->zv_objset;
1074 
1075 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1076 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1077 
1078 	zv->zv_zilog = NULL;
1079 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1080 
1081 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1082 	if (error)
1083 		return (error);
1084 
1085 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1086 	if (error)
1087 		return (error);
1088 
1089 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1090 	if (error)
1091 		return (error);
1092 
1093 	zvol_os_set_capacity(zv, volsize >> 9);
1094 	zv->zv_volsize = volsize;
1095 
1096 	if (ro || dmu_objset_is_snapshot(os) ||
1097 	    !spa_writeable(dmu_objset_spa(os))) {
1098 		zvol_os_set_disk_ro(zv, 1);
1099 		zv->zv_flags |= ZVOL_RDONLY;
1100 	} else {
1101 		zvol_os_set_disk_ro(zv, 0);
1102 		zv->zv_flags &= ~ZVOL_RDONLY;
1103 	}
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Shutdown every zv_objset related stuff except zv_objset itself.
1109  * The is the reverse of zvol_setup_zv.
1110  */
1111 static void
zvol_shutdown_zv(zvol_state_t * zv)1112 zvol_shutdown_zv(zvol_state_t *zv)
1113 {
1114 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1115 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
1116 
1117 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1118 		ASSERT(zv->zv_zilog != NULL);
1119 		zil_close(zv->zv_zilog);
1120 	}
1121 
1122 	zv->zv_zilog = NULL;
1123 
1124 	dnode_rele(zv->zv_dn, zv);
1125 	zv->zv_dn = NULL;
1126 
1127 	/*
1128 	 * Evict cached data. We must write out any dirty data before
1129 	 * disowning the dataset.
1130 	 */
1131 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
1132 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1133 	dmu_objset_evict_dbufs(zv->zv_objset);
1134 }
1135 
1136 /*
1137  * return the proper tag for rollback and recv
1138  */
1139 void *
zvol_tag(zvol_state_t * zv)1140 zvol_tag(zvol_state_t *zv)
1141 {
1142 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1143 	return (zv->zv_open_count > 0 ? zv : NULL);
1144 }
1145 
1146 /*
1147  * Suspend the zvol for recv and rollback.
1148  */
1149 int
zvol_suspend(const char * name,zvol_state_t ** zvp)1150 zvol_suspend(const char *name, zvol_state_t **zvp)
1151 {
1152 	zvol_state_t *zv;
1153 
1154 	zv = zvol_find_by_name(name, RW_WRITER);
1155 
1156 	if (zv == NULL)
1157 		return (SET_ERROR(ENOENT));
1158 
1159 	/* block all I/O, release in zvol_resume. */
1160 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1161 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1162 
1163 	/*
1164 	 * If it's being removed, unlock and return error. It doesn't make any
1165 	 * sense to try to suspend a zvol being removed, but being here also
1166 	 * means that zvol_remove_minors_impl() is about to call zvol_remove()
1167 	 * and then destroy the zvol_state_t, so returning a pointer to it for
1168 	 * the caller to mess with would be a disaster anyway.
1169 	 */
1170 	if (zv->zv_flags & ZVOL_REMOVING) {
1171 		mutex_exit(&zv->zv_state_lock);
1172 		rw_exit(&zv->zv_suspend_lock);
1173 		/* NB: Returning EIO here to match zfsvfs_teardown() */
1174 		return (SET_ERROR(EIO));
1175 	}
1176 
1177 	atomic_inc(&zv->zv_suspend_ref);
1178 
1179 	if (zv->zv_open_count > 0)
1180 		zvol_shutdown_zv(zv);
1181 
1182 	/*
1183 	 * do not hold zv_state_lock across suspend/resume to
1184 	 * avoid locking up zvol lookups
1185 	 */
1186 	mutex_exit(&zv->zv_state_lock);
1187 
1188 	/* zv_suspend_lock is released in zvol_resume() */
1189 	*zvp = zv;
1190 	return (0);
1191 }
1192 
1193 int
zvol_resume(zvol_state_t * zv)1194 zvol_resume(zvol_state_t *zv)
1195 {
1196 	int error = 0;
1197 
1198 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1199 
1200 	mutex_enter(&zv->zv_state_lock);
1201 
1202 	if (zv->zv_open_count > 0) {
1203 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1204 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1205 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1206 		dmu_objset_rele(zv->zv_objset, zv);
1207 
1208 		error = zvol_setup_zv(zv);
1209 	}
1210 
1211 	mutex_exit(&zv->zv_state_lock);
1212 
1213 	rw_exit(&zv->zv_suspend_lock);
1214 	/*
1215 	 * We need this because we don't hold zvol_state_lock while releasing
1216 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1217 	 * zv_suspend_lock to determine it is safe to free because rwlock is
1218 	 * not inherent atomic.
1219 	 */
1220 	atomic_dec(&zv->zv_suspend_ref);
1221 
1222 	if (zv->zv_flags & ZVOL_REMOVING)
1223 		cv_broadcast(&zv->zv_removing_cv);
1224 
1225 	return (error);
1226 }
1227 
1228 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1229 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1230 {
1231 	objset_t *os;
1232 	int error;
1233 
1234 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1235 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1236 	ASSERT(spa_namespace_held());
1237 
1238 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1239 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1240 	if (error)
1241 		return (error);
1242 
1243 	zv->zv_objset = os;
1244 
1245 	error = zvol_setup_zv(zv);
1246 	if (error) {
1247 		dmu_objset_disown(os, 1, zv);
1248 		zv->zv_objset = NULL;
1249 	}
1250 
1251 	return (error);
1252 }
1253 
1254 void
zvol_last_close(zvol_state_t * zv)1255 zvol_last_close(zvol_state_t *zv)
1256 {
1257 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1258 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1259 
1260 	if (zv->zv_flags & ZVOL_REMOVING)
1261 		cv_broadcast(&zv->zv_removing_cv);
1262 
1263 	zvol_shutdown_zv(zv);
1264 
1265 	dmu_objset_disown(zv->zv_objset, 1, zv);
1266 	zv->zv_objset = NULL;
1267 }
1268 
1269 typedef struct minors_job {
1270 	list_t *list;
1271 	list_node_t link;
1272 	/* input */
1273 	char *name;
1274 	/* output */
1275 	int error;
1276 } minors_job_t;
1277 
1278 /*
1279  * Prefetch zvol dnodes for the minors_job
1280  */
1281 static void
zvol_prefetch_minors_impl(void * arg)1282 zvol_prefetch_minors_impl(void *arg)
1283 {
1284 	minors_job_t *job = arg;
1285 	char *dsname = job->name;
1286 	objset_t *os = NULL;
1287 
1288 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1289 	    FTAG, &os);
1290 	if (job->error == 0) {
1291 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1292 		dmu_objset_disown(os, B_TRUE, FTAG);
1293 	}
1294 }
1295 
1296 /*
1297  * Mask errors to continue dmu_objset_find() traversal
1298  */
1299 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1300 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1301 {
1302 	minors_job_t *j = arg;
1303 	list_t *minors_list = j->list;
1304 	const char *name = j->name;
1305 
1306 	ASSERT0(spa_namespace_held());
1307 
1308 	/* skip the designated dataset */
1309 	if (name && strcmp(dsname, name) == 0)
1310 		return (0);
1311 
1312 	/* at this point, the dsname should name a snapshot */
1313 	if (strchr(dsname, '@') == 0) {
1314 		dprintf("zvol_create_snap_minor_cb(): "
1315 		    "%s is not a snapshot name\n", dsname);
1316 	} else {
1317 		minors_job_t *job;
1318 		char *n = kmem_strdup(dsname);
1319 		if (n == NULL)
1320 			return (0);
1321 
1322 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1323 		job->name = n;
1324 		job->list = minors_list;
1325 		job->error = 0;
1326 		list_insert_tail(minors_list, job);
1327 		/* don't care if dispatch fails, because job->error is 0 */
1328 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1329 		    TQ_SLEEP);
1330 	}
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1337  * we need to look for any clones also using the key. This function
1338  * is "best effort" - so we just skip over it if there are failures.
1339  */
1340 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1341 zvol_add_clones(const char *dsname, list_t *minors_list)
1342 {
1343 	/* Also check if it has clones */
1344 	dsl_dir_t *dd = NULL;
1345 	dsl_pool_t *dp = NULL;
1346 
1347 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1348 		return;
1349 
1350 	if (!spa_feature_is_enabled(dp->dp_spa,
1351 	    SPA_FEATURE_ENCRYPTION))
1352 		goto out;
1353 
1354 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1355 		goto out;
1356 
1357 	if (dsl_dir_phys(dd)->dd_clones == 0)
1358 		goto out;
1359 
1360 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1361 	zap_attribute_t *za = zap_attribute_alloc();
1362 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1363 
1364 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1365 	    zap_cursor_retrieve(zc, za) == 0;
1366 	    zap_cursor_advance(zc)) {
1367 		dsl_dataset_t *clone;
1368 		minors_job_t *job;
1369 
1370 		if (dsl_dataset_hold_obj(dd->dd_pool,
1371 		    za->za_first_integer, FTAG, &clone) == 0) {
1372 
1373 			char name[ZFS_MAX_DATASET_NAME_LEN];
1374 			dsl_dataset_name(clone, name);
1375 
1376 			char *n = kmem_strdup(name);
1377 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1378 			job->name = n;
1379 			job->list = minors_list;
1380 			job->error = 0;
1381 			list_insert_tail(minors_list, job);
1382 
1383 			dsl_dataset_rele(clone, FTAG);
1384 		}
1385 	}
1386 	zap_cursor_fini(zc);
1387 	zap_attribute_free(za);
1388 	kmem_free(zc, sizeof (zap_cursor_t));
1389 
1390 out:
1391 	if (dd != NULL)
1392 		dsl_dir_rele(dd, FTAG);
1393 	dsl_pool_rele(dp, FTAG);
1394 }
1395 
1396 /*
1397  * Mask errors to continue dmu_objset_find() traversal
1398  */
1399 static int
zvol_create_minors_cb(const char * dsname,void * arg)1400 zvol_create_minors_cb(const char *dsname, void *arg)
1401 {
1402 	uint64_t snapdev;
1403 	int error;
1404 	list_t *minors_list = arg;
1405 
1406 	ASSERT0(spa_namespace_held());
1407 
1408 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1409 	if (error)
1410 		return (0);
1411 
1412 	/*
1413 	 * Given the name and the 'snapdev' property, create device minor nodes
1414 	 * with the linkages to zvols/snapshots as needed.
1415 	 * If the name represents a zvol, create a minor node for the zvol, then
1416 	 * check if its snapshots are 'visible', and if so, iterate over the
1417 	 * snapshots and create device minor nodes for those.
1418 	 */
1419 	if (strchr(dsname, '@') == 0) {
1420 		minors_job_t *job;
1421 		char *n = kmem_strdup(dsname);
1422 		if (n == NULL)
1423 			return (0);
1424 
1425 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1426 		job->name = n;
1427 		job->list = minors_list;
1428 		job->error = 0;
1429 		list_insert_tail(minors_list, job);
1430 		/* don't care if dispatch fails, because job->error is 0 */
1431 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1432 		    TQ_SLEEP);
1433 
1434 		zvol_add_clones(dsname, minors_list);
1435 
1436 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1437 			/*
1438 			 * traverse snapshots only, do not traverse children,
1439 			 * and skip the 'dsname'
1440 			 */
1441 			(void) dmu_objset_find(dsname,
1442 			    zvol_create_snap_minor_cb, (void *)job,
1443 			    DS_FIND_SNAPSHOTS);
1444 		}
1445 	} else {
1446 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1447 		    dsname);
1448 	}
1449 
1450 	return (0);
1451 }
1452 
1453 static void
zvol_task_update_status(zvol_task_t * task,uint64_t total,uint64_t done,int error)1454 zvol_task_update_status(zvol_task_t *task, uint64_t total, uint64_t done,
1455     int error)
1456 {
1457 
1458 	task->zt_total += total;
1459 	task->zt_done += done;
1460 	if (task->zt_total != task->zt_done) {
1461 		task->zt_status = -1;
1462 		if (error)
1463 			task->zt_error = error;
1464 	}
1465 }
1466 
1467 static void
zvol_task_report_status(zvol_task_t * task)1468 zvol_task_report_status(zvol_task_t *task)
1469 {
1470 #ifdef ZFS_DEBUG
1471 	static const char *const msg[] = {
1472 		"create",
1473 		"remove",
1474 		"rename",
1475 		"set snapdev",
1476 		"set volmode",
1477 		"unknown",
1478 	};
1479 
1480 	if (task->zt_status == 0)
1481 		return;
1482 
1483 	zvol_async_op_t op = MIN(task->zt_op, ZVOL_ASYNC_MAX);
1484 	if (task->zt_error) {
1485 		dprintf("The %s minors zvol task was not ok, last error %d\n",
1486 		    msg[op], task->zt_error);
1487 	} else {
1488 		dprintf("The %s minors zvol task was not ok\n", msg[op]);
1489 	}
1490 #else
1491 	(void) task;
1492 #endif
1493 }
1494 
1495 /*
1496  * Create minors for the specified dataset, including children and snapshots.
1497  * Pay attention to the 'snapdev' property and iterate over the snapshots
1498  * only if they are 'visible'. This approach allows one to assure that the
1499  * snapshot metadata is read from disk only if it is needed.
1500  *
1501  * The name can represent a dataset to be recursively scanned for zvols and
1502  * their snapshots, or a single zvol snapshot. If the name represents a
1503  * dataset, the scan is performed in two nested stages:
1504  * - scan the dataset for zvols, and
1505  * - for each zvol, create a minor node, then check if the zvol's snapshots
1506  *   are 'visible', and only then iterate over the snapshots if needed
1507  *
1508  * If the name represents a snapshot, a check is performed if the snapshot is
1509  * 'visible' (which also verifies that the parent is a zvol), and if so,
1510  * a minor node for that snapshot is created.
1511  */
1512 static void
zvol_create_minors_impl(zvol_task_t * task)1513 zvol_create_minors_impl(zvol_task_t *task)
1514 {
1515 	const char *name = task->zt_name1;
1516 	list_t minors_list;
1517 	minors_job_t *job;
1518 	uint64_t snapdev;
1519 	int total = 0, done = 0, last_error, error;
1520 
1521 	/*
1522 	 * Note: the dsl_pool_config_lock must not be held.
1523 	 * Minor node creation needs to obtain the zvol_state_lock.
1524 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1525 	 * config lock.  Therefore, we can't have the config lock now if
1526 	 * we are going to wait for the zvol_state_lock, because it
1527 	 * would be a lock order inversion which could lead to deadlock.
1528 	 */
1529 
1530 	if (zvol_inhibit_dev) {
1531 		return;
1532 	}
1533 
1534 	/*
1535 	 * This is the list for prefetch jobs. Whenever we found a match
1536 	 * during dmu_objset_find, we insert a minors_job to the list and do
1537 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1538 	 * any lock because all list operation is done on the current thread.
1539 	 *
1540 	 * We will use this list to do zvol_os_create_minor after prefetch
1541 	 * so we don't have to traverse using dmu_objset_find again.
1542 	 */
1543 	list_create(&minors_list, sizeof (minors_job_t),
1544 	    offsetof(minors_job_t, link));
1545 
1546 
1547 	if (strchr(name, '@') != NULL) {
1548 		error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL);
1549 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) {
1550 			error = zvol_os_create_minor(name);
1551 			if (error == 0) {
1552 				done++;
1553 			} else {
1554 				last_error = error;
1555 			}
1556 			total++;
1557 		}
1558 	} else {
1559 		fstrans_cookie_t cookie = spl_fstrans_mark();
1560 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1561 		    &minors_list, DS_FIND_CHILDREN);
1562 		spl_fstrans_unmark(cookie);
1563 	}
1564 
1565 	taskq_wait_outstanding(system_taskq, 0);
1566 
1567 	/*
1568 	 * Prefetch is completed, we can do zvol_os_create_minor
1569 	 * sequentially.
1570 	 */
1571 	while ((job = list_remove_head(&minors_list)) != NULL) {
1572 		if (!job->error) {
1573 			error = zvol_os_create_minor(job->name);
1574 			if (error == 0) {
1575 				done++;
1576 			} else {
1577 				last_error = error;
1578 			}
1579 		} else if (job->error == EINVAL) {
1580 			/*
1581 			 * The objset, with the name requested by current job
1582 			 * exist, but have the type different from zvol.
1583 			 * Just ignore this sort of errors.
1584 			 */
1585 			done++;
1586 		} else {
1587 			last_error = job->error;
1588 		}
1589 		total++;
1590 		kmem_strfree(job->name);
1591 		kmem_free(job, sizeof (minors_job_t));
1592 	}
1593 
1594 	list_destroy(&minors_list);
1595 	zvol_task_update_status(task, total, done, last_error);
1596 }
1597 
1598 /*
1599  * Remove minors for specified dataset and, optionally, its children and
1600  * snapshots.
1601  */
1602 static void
zvol_remove_minors_impl(zvol_task_t * task)1603 zvol_remove_minors_impl(zvol_task_t *task)
1604 {
1605 	zvol_state_t *zv, *zv_next;
1606 	const char *name = task ? task->zt_name1 : NULL;
1607 	int namelen = ((name) ? strlen(name) : 0);
1608 	boolean_t children = task ? !!task->zt_value : B_TRUE;
1609 
1610 	if (zvol_inhibit_dev)
1611 		return;
1612 
1613 	/*
1614 	 * We collect up zvols that we want to remove on a separate list, so
1615 	 * that we don't have to hold zvol_state_lock for the whole time.
1616 	 *
1617 	 * We can't remove them from the global lists until we're completely
1618 	 * done with them, because that would make them appear to ZFS-side ops
1619 	 * that they don't exist, and the name might be reused, which can't be
1620 	 * good.
1621 	 */
1622 	list_t remove_list;
1623 	list_create(&remove_list, sizeof (zvol_state_t),
1624 	    offsetof(zvol_state_t, zv_remove_node));
1625 
1626 	rw_enter(&zvol_state_lock, RW_READER);
1627 
1628 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1629 		zv_next = list_next(&zvol_state_list, zv);
1630 
1631 		mutex_enter(&zv->zv_state_lock);
1632 		if (zv->zv_flags & ZVOL_REMOVING) {
1633 			/* Another thread is handling shutdown, skip it. */
1634 			mutex_exit(&zv->zv_state_lock);
1635 			continue;
1636 		}
1637 
1638 		/*
1639 		 * This zvol should be removed if:
1640 		 * - no name was offered (ie removing all at shutdown); or
1641 		 * - name matches exactly; or
1642 		 * - we were asked to remove children, and
1643 		 *   - the start of the name matches, and
1644 		 *   - there is a '/' immediately after the matched name; or
1645 		 *   - there is a '@' immediately after the matched name
1646 		 */
1647 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1648 		    (children && strncmp(zv->zv_name, name, namelen) == 0 &&
1649 		    (zv->zv_name[namelen] == '/' ||
1650 		    zv->zv_name[namelen] == '@'))) {
1651 
1652 			/*
1653 			 * Matched, so mark it removal. We want to take the
1654 			 * write half of the suspend lock to make sure that
1655 			 * the zvol is not suspended, and give any data ops
1656 			 * chance to finish.
1657 			 */
1658 			mutex_exit(&zv->zv_state_lock);
1659 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
1660 			mutex_enter(&zv->zv_state_lock);
1661 
1662 			if (zv->zv_flags & ZVOL_REMOVING) {
1663 				/* Another thread has taken it, let them. */
1664 				mutex_exit(&zv->zv_state_lock);
1665 				rw_exit(&zv->zv_suspend_lock);
1666 				continue;
1667 			}
1668 
1669 			/*
1670 			 * Mark it and unlock. New entries will see the flag
1671 			 * and return ENXIO.
1672 			 */
1673 			zv->zv_flags |= ZVOL_REMOVING;
1674 			mutex_exit(&zv->zv_state_lock);
1675 			rw_exit(&zv->zv_suspend_lock);
1676 
1677 			/* Put it on the list for the next stage. */
1678 			list_insert_head(&remove_list, zv);
1679 		} else
1680 			mutex_exit(&zv->zv_state_lock);
1681 	}
1682 
1683 	rw_exit(&zvol_state_lock);
1684 
1685 	/* Didn't match any, nothing to do! */
1686 	if (list_is_empty(&remove_list)) {
1687 		if (task)
1688 			task->zt_error = SET_ERROR(ENOENT);
1689 		return;
1690 	}
1691 
1692 	/* Actually shut them all down. */
1693 	for (zv = list_head(&remove_list); zv != NULL; zv = zv_next) {
1694 		zv_next = list_next(&remove_list, zv);
1695 
1696 		mutex_enter(&zv->zv_state_lock);
1697 
1698 		/*
1699 		 * Still open or suspended, just wait. This can happen if, for
1700 		 * example, we managed to acquire zv_state_lock in the moments
1701 		 * where zvol_open() or zvol_release() are trading locks to
1702 		 * call zvol_first_open() or zvol_last_close().
1703 		 */
1704 		while (zv->zv_open_count > 0 ||
1705 		    atomic_read(&zv->zv_suspend_ref))
1706 			cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1707 
1708 		/*
1709 		 * No users, shut down the OS side. This may not remove the
1710 		 * minor from view immediately, depending on the kernel
1711 		 * specifics, but it will ensure that it is unusable and that
1712 		 * this zvol_state_t can never again be reached from an OS-side
1713 		 * operation.
1714 		 */
1715 		zvol_os_remove_minor(zv);
1716 		mutex_exit(&zv->zv_state_lock);
1717 
1718 		/* Remove it from the name lookup lists */
1719 		rw_enter(&zvol_state_lock, RW_WRITER);
1720 		zvol_remove(zv);
1721 		rw_exit(&zvol_state_lock);
1722 	}
1723 
1724 	/*
1725 	 * Our own references on remove_list is the last one, free them and
1726 	 * we're done.
1727 	 */
1728 	while ((zv = list_remove_head(&remove_list)) != NULL)
1729 		zvol_os_free(zv);
1730 
1731 	list_destroy(&remove_list);
1732 }
1733 
1734 /* Remove minor for this specific volume only */
1735 static int
zvol_remove_minor_impl(const char * name)1736 zvol_remove_minor_impl(const char *name)
1737 {
1738 	if (zvol_inhibit_dev)
1739 		return (0);
1740 
1741 	zvol_task_t task;
1742 	memset(&task, 0, sizeof (zvol_task_t));
1743 	strlcpy(task.zt_name1, name, sizeof (task.zt_name1));
1744 	task.zt_value = B_FALSE;
1745 
1746 	zvol_remove_minors_impl(&task);
1747 
1748 	return (task.zt_error);
1749 }
1750 
1751 /*
1752  * Rename minors for specified dataset including children and snapshots.
1753  */
1754 static void
zvol_rename_minors_impl(zvol_task_t * task)1755 zvol_rename_minors_impl(zvol_task_t *task)
1756 {
1757 	zvol_state_t *zv, *zv_next;
1758 	const char *oldname = task->zt_name1;
1759 	const char *newname = task->zt_name2;
1760 	int total = 0, done = 0, last_error, error, oldnamelen;
1761 
1762 	if (zvol_inhibit_dev)
1763 		return;
1764 
1765 	oldnamelen = strlen(oldname);
1766 
1767 	rw_enter(&zvol_state_lock, RW_READER);
1768 
1769 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1770 		zv_next = list_next(&zvol_state_list, zv);
1771 
1772 		mutex_enter(&zv->zv_state_lock);
1773 
1774 		if (strcmp(zv->zv_name, oldname) == 0) {
1775 			error = zvol_os_rename_minor(zv, newname);
1776 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1777 		    (zv->zv_name[oldnamelen] == '/' ||
1778 		    zv->zv_name[oldnamelen] == '@')) {
1779 			char *name = kmem_asprintf("%s%c%s", newname,
1780 			    zv->zv_name[oldnamelen],
1781 			    zv->zv_name + oldnamelen + 1);
1782 			error = zvol_os_rename_minor(zv, name);
1783 			kmem_strfree(name);
1784 		}
1785 		if (error) {
1786 			last_error = error;
1787 		} else {
1788 			done++;
1789 		}
1790 		total++;
1791 		mutex_exit(&zv->zv_state_lock);
1792 	}
1793 
1794 	rw_exit(&zvol_state_lock);
1795 	zvol_task_update_status(task, total, done, last_error);
1796 }
1797 
1798 typedef struct zvol_snapdev_cb_arg {
1799 	zvol_task_t *task;
1800 	uint64_t snapdev;
1801 } zvol_snapdev_cb_arg_t;
1802 
1803 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1804 zvol_set_snapdev_cb(const char *dsname, void *param)
1805 {
1806 	zvol_snapdev_cb_arg_t *arg = param;
1807 	int error = 0;
1808 
1809 	if (strchr(dsname, '@') == NULL)
1810 		return (0);
1811 
1812 	switch (arg->snapdev) {
1813 		case ZFS_SNAPDEV_VISIBLE:
1814 			error = zvol_os_create_minor(dsname);
1815 			break;
1816 		case ZFS_SNAPDEV_HIDDEN:
1817 			error = zvol_remove_minor_impl(dsname);
1818 			break;
1819 	}
1820 
1821 	zvol_task_update_status(arg->task, 1, error == 0, error);
1822 	return (0);
1823 }
1824 
1825 static void
zvol_set_snapdev_impl(zvol_task_t * task)1826 zvol_set_snapdev_impl(zvol_task_t *task)
1827 {
1828 	const char *name = task->zt_name1;
1829 	uint64_t snapdev = task->zt_value;
1830 
1831 	zvol_snapdev_cb_arg_t arg = {task, snapdev};
1832 	fstrans_cookie_t cookie = spl_fstrans_mark();
1833 	/*
1834 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1835 	 * in the dataset hierarchy. Here, we only scan snapshots.
1836 	 */
1837 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1838 	spl_fstrans_unmark(cookie);
1839 }
1840 
1841 static void
zvol_set_volmode_impl(zvol_task_t * task)1842 zvol_set_volmode_impl(zvol_task_t *task)
1843 {
1844 	const char *name = task->zt_name1;
1845 	uint64_t volmode = task->zt_value;
1846 	fstrans_cookie_t cookie;
1847 	uint64_t old_volmode;
1848 	zvol_state_t *zv;
1849 	int error;
1850 
1851 	if (strchr(name, '@') != NULL)
1852 		return;
1853 
1854 	/*
1855 	 * It's unfortunate we need to remove minors before we create new ones:
1856 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1857 	 * could be different when we set, for instance, volmode from "geom"
1858 	 * to "dev" (or vice versa).
1859 	 */
1860 	zv = zvol_find_by_name(name, RW_NONE);
1861 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1862 		return;
1863 	if (zv != NULL) {
1864 		old_volmode = zv->zv_volmode;
1865 		mutex_exit(&zv->zv_state_lock);
1866 		if (old_volmode == volmode)
1867 			return;
1868 		zvol_wait_close(zv);
1869 	}
1870 	cookie = spl_fstrans_mark();
1871 	switch (volmode) {
1872 		case ZFS_VOLMODE_NONE:
1873 			error = zvol_remove_minor_impl(name);
1874 			break;
1875 		case ZFS_VOLMODE_GEOM:
1876 		case ZFS_VOLMODE_DEV:
1877 			error = zvol_remove_minor_impl(name);
1878 			/*
1879 			 * The remove minor function call above, might be not
1880 			 * needed, if volmode was switched from 'none' value.
1881 			 * Ignore error in this case.
1882 			 */
1883 			if (error == ENOENT)
1884 				error = 0;
1885 			else if (error)
1886 				break;
1887 			error = zvol_os_create_minor(name);
1888 			break;
1889 		case ZFS_VOLMODE_DEFAULT:
1890 			error = zvol_remove_minor_impl(name);
1891 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1892 				break;
1893 			else /* if zvol_volmode is invalid defaults to "geom" */
1894 				error = zvol_os_create_minor(name);
1895 			break;
1896 	}
1897 	zvol_task_update_status(task, 1, error == 0, error);
1898 	spl_fstrans_unmark(cookie);
1899 }
1900 
1901 /*
1902  * The worker thread function performed asynchronously.
1903  */
1904 static void
zvol_task_cb(void * arg)1905 zvol_task_cb(void *arg)
1906 {
1907 	zvol_task_t *task = arg;
1908 
1909 	switch (task->zt_op) {
1910 	case ZVOL_ASYNC_CREATE_MINORS:
1911 		zvol_create_minors_impl(task);
1912 		break;
1913 	case ZVOL_ASYNC_REMOVE_MINORS:
1914 		zvol_remove_minors_impl(task);
1915 		break;
1916 	case ZVOL_ASYNC_RENAME_MINORS:
1917 		zvol_rename_minors_impl(task);
1918 		break;
1919 	case ZVOL_ASYNC_SET_SNAPDEV:
1920 		zvol_set_snapdev_impl(task);
1921 		break;
1922 	case ZVOL_ASYNC_SET_VOLMODE:
1923 		zvol_set_volmode_impl(task);
1924 		break;
1925 	default:
1926 		VERIFY(0);
1927 		break;
1928 	}
1929 
1930 	zvol_task_report_status(task);
1931 	kmem_free(task, sizeof (zvol_task_t));
1932 }
1933 
1934 typedef struct zvol_set_prop_int_arg {
1935 	const char *zsda_name;
1936 	uint64_t zsda_value;
1937 	zprop_source_t zsda_source;
1938 	zfs_prop_t zsda_prop;
1939 } zvol_set_prop_int_arg_t;
1940 
1941 /*
1942  * Sanity check the dataset for safe use by the sync task.  No additional
1943  * conditions are imposed.
1944  */
1945 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1946 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1947 {
1948 	zvol_set_prop_int_arg_t *zsda = arg;
1949 	dsl_pool_t *dp = dmu_tx_pool(tx);
1950 	dsl_dir_t *dd;
1951 	int error;
1952 
1953 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1954 	if (error != 0)
1955 		return (error);
1956 
1957 	dsl_dir_rele(dd, FTAG);
1958 
1959 	return (error);
1960 }
1961 
1962 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1963 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1964 {
1965 	zvol_set_prop_int_arg_t *zsda = arg;
1966 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
1967 	zvol_task_t *task;
1968 	uint64_t prop;
1969 
1970 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1971 	dsl_dataset_name(ds, dsname);
1972 
1973 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1974 		return (0);
1975 
1976 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1977 	if (zsda->zsda_prop == ZFS_PROP_VOLMODE) {
1978 		task->zt_op = ZVOL_ASYNC_SET_VOLMODE;
1979 	} else if (zsda->zsda_prop == ZFS_PROP_SNAPDEV) {
1980 		task->zt_op = ZVOL_ASYNC_SET_SNAPDEV;
1981 	} else {
1982 		kmem_free(task, sizeof (zvol_task_t));
1983 		return (0);
1984 	}
1985 	task->zt_value = prop;
1986 	strlcpy(task->zt_name1, dsname, sizeof (task->zt_name1));
1987 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1988 	    task, TQ_SLEEP);
1989 	return (0);
1990 }
1991 
1992 /*
1993  * Traverse all child datasets and apply the property appropriately.
1994  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1995  * dataset and read the effective "property" on every child in the callback
1996  * function: this is because the value is not guaranteed to be the same in the
1997  * whole dataset hierarchy.
1998  */
1999 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)2000 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
2001 {
2002 	zvol_set_prop_int_arg_t *zsda = arg;
2003 	dsl_pool_t *dp = dmu_tx_pool(tx);
2004 	dsl_dir_t *dd;
2005 	dsl_dataset_t *ds;
2006 	int error;
2007 
2008 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2009 
2010 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2011 	if (error == 0) {
2012 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
2013 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2014 		    &zsda->zsda_value, tx);
2015 		dsl_dataset_rele(ds, FTAG);
2016 	}
2017 
2018 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
2019 	    zsda, DS_FIND_CHILDREN);
2020 
2021 	dsl_dir_rele(dd, FTAG);
2022 }
2023 
2024 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)2025 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
2026     uint64_t val)
2027 {
2028 	zvol_set_prop_int_arg_t zsda;
2029 
2030 	zsda.zsda_name = ddname;
2031 	zsda.zsda_source = source;
2032 	zsda.zsda_value = val;
2033 	zsda.zsda_prop = prop;
2034 
2035 	return (dsl_sync_task(ddname, zvol_set_common_check,
2036 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2037 }
2038 
2039 void
zvol_create_minors(const char * name)2040 zvol_create_minors(const char *name)
2041 {
2042 	spa_t *spa;
2043 	zvol_task_t *task;
2044 	taskqid_t id;
2045 
2046 	if (spa_open(name, &spa, FTAG) != 0)
2047 		return;
2048 
2049 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2050 	task->zt_op = ZVOL_ASYNC_CREATE_MINORS;
2051 	strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2052 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2053 	if (id != TASKQID_INVALID)
2054 		taskq_wait_id(spa->spa_zvol_taskq, id);
2055 
2056 	spa_close(spa, FTAG);
2057 }
2058 
2059 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)2060 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2061 {
2062 	zvol_task_t *task;
2063 	taskqid_t id;
2064 
2065 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2066 	task->zt_op = ZVOL_ASYNC_REMOVE_MINORS;
2067 	strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2068 	task->zt_value = B_TRUE;
2069 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2070 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
2071 		taskq_wait_id(spa->spa_zvol_taskq, id);
2072 }
2073 
2074 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)2075 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2076     boolean_t async)
2077 {
2078 	zvol_task_t *task;
2079 	taskqid_t id;
2080 
2081 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2082 	task->zt_op = ZVOL_ASYNC_RENAME_MINORS;
2083 	strlcpy(task->zt_name1, name1, sizeof (task->zt_name1));
2084 	strlcpy(task->zt_name2, name2, sizeof (task->zt_name2));
2085 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2086 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
2087 		taskq_wait_id(spa->spa_zvol_taskq, id);
2088 }
2089 
2090 boolean_t
zvol_is_zvol(const char * name)2091 zvol_is_zvol(const char *name)
2092 {
2093 
2094 	return (zvol_os_is_zvol(name));
2095 }
2096 
2097 int
zvol_init_impl(void)2098 zvol_init_impl(void)
2099 {
2100 	int i;
2101 
2102 	/*
2103 	 * zvol_threads is the module param the user passes in.
2104 	 *
2105 	 * zvol_actual_threads is what we use internally, since the user can
2106 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
2107 	 */
2108 	static unsigned int zvol_actual_threads;
2109 
2110 	if (zvol_threads == 0) {
2111 		/*
2112 		 * See dde9380a1 for why 32 was chosen here.  This should
2113 		 * probably be refined to be some multiple of the number
2114 		 * of CPUs.
2115 		 */
2116 		zvol_actual_threads = MAX(max_ncpus, 32);
2117 	} else {
2118 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
2119 	}
2120 
2121 	/*
2122 	 * Use at least 32 zvol_threads but for many core system,
2123 	 * prefer 6 threads per taskq, but no more taskqs
2124 	 * than threads in them on large systems.
2125 	 *
2126 	 *                 taskq   total
2127 	 * cpus    taskqs  threads threads
2128 	 * ------- ------- ------- -------
2129 	 * 1       1       32       32
2130 	 * 2       1       32       32
2131 	 * 4       1       32       32
2132 	 * 8       2       16       32
2133 	 * 16      3       11       33
2134 	 * 32      5       7        35
2135 	 * 64      8       8        64
2136 	 * 128     11      12       132
2137 	 * 256     16      16       256
2138 	 */
2139 	zv_taskq_t *ztqs = &zvol_taskqs;
2140 	int num_tqs = MIN(max_ncpus, zvol_num_taskqs);
2141 	if (num_tqs == 0) {
2142 		num_tqs = 1 + max_ncpus / 6;
2143 		while (num_tqs * num_tqs > zvol_actual_threads)
2144 			num_tqs--;
2145 	}
2146 
2147 	int per_tq_thread = zvol_actual_threads / num_tqs;
2148 	if (per_tq_thread * num_tqs < zvol_actual_threads)
2149 		per_tq_thread++;
2150 
2151 	ztqs->tqs_cnt = num_tqs;
2152 	ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
2153 
2154 	for (uint_t i = 0; i < num_tqs; i++) {
2155 		char name[32];
2156 		(void) snprintf(name, sizeof (name), "%s_tq-%u",
2157 		    ZVOL_DRIVER, i);
2158 		ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
2159 		    maxclsyspri, per_tq_thread, INT_MAX,
2160 		    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2161 		if (ztqs->tqs_taskq[i] == NULL) {
2162 			for (int j = i - 1; j >= 0; j--)
2163 				taskq_destroy(ztqs->tqs_taskq[j]);
2164 			kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2165 			    sizeof (taskq_t *));
2166 			ztqs->tqs_taskq = NULL;
2167 			return (SET_ERROR(ENOMEM));
2168 		}
2169 	}
2170 
2171 	list_create(&zvol_state_list, sizeof (zvol_state_t),
2172 	    offsetof(zvol_state_t, zv_next));
2173 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2174 
2175 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2176 	    KM_SLEEP);
2177 	for (i = 0; i < ZVOL_HT_SIZE; i++)
2178 		INIT_HLIST_HEAD(&zvol_htable[i]);
2179 
2180 	return (0);
2181 }
2182 
2183 void
zvol_fini_impl(void)2184 zvol_fini_impl(void)
2185 {
2186 	zv_taskq_t *ztqs = &zvol_taskqs;
2187 
2188 	zvol_remove_minors_impl(NULL);
2189 
2190 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2191 	list_destroy(&zvol_state_list);
2192 	rw_destroy(&zvol_state_lock);
2193 
2194 	if (ztqs->tqs_taskq == NULL) {
2195 		ASSERT0(ztqs->tqs_cnt);
2196 	} else {
2197 		for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
2198 			ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
2199 			taskq_destroy(ztqs->tqs_taskq[i]);
2200 		}
2201 		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2202 		    sizeof (taskq_t *));
2203 		ztqs->tqs_taskq = NULL;
2204 	}
2205 }
2206 
2207 ZFS_MODULE_PARAM(zfs_vol, zvol_, inhibit_dev, UINT, ZMOD_RW,
2208 	"Do not create zvol device nodes");
2209 ZFS_MODULE_PARAM(zfs_vol, zvol_, prefetch_bytes, UINT, ZMOD_RW,
2210 	"Prefetch N bytes at zvol start+end");
2211 ZFS_MODULE_PARAM(zfs_vol, zvol_vol, mode, UINT, ZMOD_RW,
2212 	"Default volmode property value");
2213 ZFS_MODULE_PARAM(zfs_vol, zvol_, threads, UINT, ZMOD_RW,
2214 	"Number of threads for I/O requests. Set to 0 to use all active CPUs");
2215 ZFS_MODULE_PARAM(zfs_vol, zvol_, num_taskqs, UINT, ZMOD_RW,
2216 	"Number of zvol taskqs");
2217 ZFS_MODULE_PARAM(zfs_vol, zvol_, request_sync, UINT, ZMOD_RW,
2218 	"Synchronously handle bio requests");
2219