1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26 * LLNL-CODE-403049.
27 *
28 * ZFS volume emulation driver.
29 *
30 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
31 * Volumes are accessed through the symbolic links named:
32 *
33 * /dev/<pool_name>/<dataset_name>
34 *
35 * Volumes are persistent through reboot and module load. No user command
36 * needs to be run before opening and using a device.
37 *
38 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
39 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
40 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
41 * Copyright (c) 2024, 2025, Klara, Inc.
42 */
43
44 /*
45 * Note on locking of zvol state structures.
46 *
47 * zvol_state_t represents the connection between a single dataset
48 * (DMU_OST_ZVOL) and the device "minor" (some OS-specific representation of a
49 * "disk" or "device" or "volume", eg, a /dev/zdXX node, a GEOM object, etc).
50 *
51 * The global zvol_state_lock is used to protect access to zvol_state_list and
52 * zvol_htable, which are the primary way to obtain a zvol_state_t from a name.
53 * It should not be used for anything not name-relateds, and you should avoid
54 * sleeping or waiting while its held. See zvol_find_by_name(), zvol_insert(),
55 * zvol_remove().
56 *
57 * The zv_state_lock is used to protect the contents of the associated
58 * zvol_state_t. Most of the zvol_state_t is dedicated to control and
59 * configuration; almost none of it is needed for data operations (that is,
60 * read, write, flush) so this lock is rarely taken during general IO. It
61 * should be released quickly; you should avoid sleeping or waiting while its
62 * held.
63 *
64 * zv_suspend_lock is used to suspend IO/data operations to a zvol. The read
65 * half should held for the duration of an IO operation. The write half should
66 * be taken when something to wait for IO to complete and the block further IO,
67 * eg for the duration of receive and rollback operations. This lock can be
68 * held for long periods of time.
69 *
70 * Thus, the following lock ordering appies.
71 * - take zvol_state_lock if necessary, to protect zvol_state_list
72 * - take zv_suspend_lock if necessary, by the code path in question
73 * - take zv_state_lock to protect zvol_state_t
74 *
75 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
76 * single-threaded (to preserve order of minor operations), and are executed
77 * through the zvol_task_cb that dispatches the specific operations. Therefore,
78 * these operations are serialized per pool. Consequently, we can be certain
79 * that for a given zvol, there is only one operation at a time in progress.
80 * That is why one can be sure that first, zvol_state_t for a given zvol is
81 * allocated and placed on zvol_state_list, and then other minor operations for
82 * this zvol are going to proceed in the order of issue.
83 */
84
85 #include <sys/dataset_kstats.h>
86 #include <sys/dbuf.h>
87 #include <sys/dmu_traverse.h>
88 #include <sys/dsl_dataset.h>
89 #include <sys/dsl_prop.h>
90 #include <sys/dsl_dir.h>
91 #include <sys/zap.h>
92 #include <sys/zfeature.h>
93 #include <sys/zil_impl.h>
94 #include <sys/dmu_tx.h>
95 #include <sys/zio.h>
96 #include <sys/zfs_rlock.h>
97 #include <sys/spa_impl.h>
98 #include <sys/zvol.h>
99 #include <sys/zvol_impl.h>
100
101 unsigned int zvol_inhibit_dev = 0;
102 unsigned int zvol_prefetch_bytes = (128 * 1024);
103 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
104 unsigned int zvol_threads = 0;
105 unsigned int zvol_num_taskqs = 0;
106 unsigned int zvol_request_sync = 0;
107
108 struct hlist_head *zvol_htable;
109 static list_t zvol_state_list;
110 krwlock_t zvol_state_lock;
111 extern int zfs_bclone_wait_dirty;
112 zv_taskq_t zvol_taskqs;
113
114 typedef enum {
115 ZVOL_ASYNC_CREATE_MINORS,
116 ZVOL_ASYNC_REMOVE_MINORS,
117 ZVOL_ASYNC_RENAME_MINORS,
118 ZVOL_ASYNC_SET_SNAPDEV,
119 ZVOL_ASYNC_SET_VOLMODE,
120 ZVOL_ASYNC_MAX
121 } zvol_async_op_t;
122
123 typedef struct {
124 zvol_async_op_t zt_op;
125 char zt_name1[MAXNAMELEN];
126 char zt_name2[MAXNAMELEN];
127 uint64_t zt_value;
128 uint32_t zt_total;
129 uint32_t zt_done;
130 int32_t zt_status;
131 int zt_error;
132 } zvol_task_t;
133
134 zv_request_task_t *
zv_request_task_create(zv_request_t zvr)135 zv_request_task_create(zv_request_t zvr)
136 {
137 zv_request_task_t *task;
138 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
139 taskq_init_ent(&task->ent);
140 task->zvr = zvr;
141 return (task);
142 }
143
144 void
zv_request_task_free(zv_request_task_t * task)145 zv_request_task_free(zv_request_task_t *task)
146 {
147 kmem_free(task, sizeof (*task));
148 }
149
150 uint64_t
zvol_name_hash(const char * name)151 zvol_name_hash(const char *name)
152 {
153 uint64_t crc = -1ULL;
154 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
155 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
156 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
157 return (crc);
158 }
159
160 /*
161 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
162 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
163 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
164 * before zv_state_lock. The mode argument indicates the mode (including none)
165 * for zv_suspend_lock to be taken.
166 */
167 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)168 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
169 {
170 zvol_state_t *zv;
171 struct hlist_node *p = NULL;
172
173 rw_enter(&zvol_state_lock, RW_READER);
174 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
175 zv = hlist_entry(p, zvol_state_t, zv_hlink);
176 mutex_enter(&zv->zv_state_lock);
177 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
178 /*
179 * this is the right zvol, take the locks in the
180 * right order
181 */
182 if (mode != RW_NONE &&
183 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
184 mutex_exit(&zv->zv_state_lock);
185 rw_enter(&zv->zv_suspend_lock, mode);
186 mutex_enter(&zv->zv_state_lock);
187 /*
188 * zvol cannot be renamed as we continue
189 * to hold zvol_state_lock
190 */
191 ASSERT(zv->zv_hash == hash &&
192 strcmp(zv->zv_name, name) == 0);
193 }
194 rw_exit(&zvol_state_lock);
195 return (zv);
196 }
197 mutex_exit(&zv->zv_state_lock);
198 }
199 rw_exit(&zvol_state_lock);
200
201 return (NULL);
202 }
203
204 /*
205 * Find a zvol_state_t given the name.
206 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
207 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
208 * before zv_state_lock. The mode argument indicates the mode (including none)
209 * for zv_suspend_lock to be taken.
210 */
211 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)212 zvol_find_by_name(const char *name, int mode)
213 {
214 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
215 }
216
217 /*
218 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
219 */
220 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)221 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
222 {
223 zfs_creat_t *zct = arg;
224 nvlist_t *nvprops = zct->zct_props;
225 int error;
226 uint64_t volblocksize, volsize;
227
228 VERIFY0(nvlist_lookup_uint64(nvprops,
229 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize));
230 if (nvlist_lookup_uint64(nvprops,
231 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
232 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
233
234 /*
235 * These properties must be removed from the list so the generic
236 * property setting step won't apply to them.
237 */
238 VERIFY0(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)));
239 (void) nvlist_remove_all(nvprops,
240 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
241
242 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
243 DMU_OT_NONE, 0, tx);
244 ASSERT0(error);
245
246 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
247 DMU_OT_NONE, 0, tx);
248 ASSERT0(error);
249
250 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
251 ASSERT0(error);
252 }
253
254 /*
255 * ZFS_IOC_OBJSET_STATS entry point.
256 */
257 int
zvol_get_stats(objset_t * os,nvlist_t * nv)258 zvol_get_stats(objset_t *os, nvlist_t *nv)
259 {
260 int error;
261 dmu_object_info_t *doi;
262 uint64_t val;
263
264 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
265 if (error)
266 return (error);
267
268 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
269 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
270 error = dmu_object_info(os, ZVOL_OBJ, doi);
271
272 if (error == 0) {
273 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
274 doi->doi_data_block_size);
275 }
276
277 kmem_free(doi, sizeof (dmu_object_info_t));
278
279 return (error);
280 }
281
282 /*
283 * Sanity check volume size.
284 */
285 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)286 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
287 {
288 if (volsize == 0)
289 return (SET_ERROR(EINVAL));
290
291 if (volsize % blocksize != 0)
292 return (SET_ERROR(EINVAL));
293
294 #ifdef _ILP32
295 if (volsize - 1 > SPEC_MAXOFFSET_T)
296 return (SET_ERROR(EOVERFLOW));
297 #endif
298 return (0);
299 }
300
301 /*
302 * Ensure the zap is flushed then inform the VFS of the capacity change.
303 */
304 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)305 zvol_update_volsize(uint64_t volsize, objset_t *os)
306 {
307 dmu_tx_t *tx;
308 int error;
309 uint64_t txg;
310
311 tx = dmu_tx_create(os);
312 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
313 dmu_tx_mark_netfree(tx);
314 error = dmu_tx_assign(tx, DMU_TX_WAIT);
315 if (error) {
316 dmu_tx_abort(tx);
317 return (error);
318 }
319 txg = dmu_tx_get_txg(tx);
320
321 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
322 &volsize, tx);
323 dmu_tx_commit(tx);
324
325 txg_wait_synced(dmu_objset_pool(os), txg);
326
327 if (error == 0)
328 error = dmu_free_long_range(os,
329 ZVOL_OBJ, volsize, DMU_OBJECT_END);
330
331 return (error);
332 }
333
334 /*
335 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
336 * size will result in a udev "change" event being generated.
337 */
338 int
zvol_set_volsize(const char * name,uint64_t volsize)339 zvol_set_volsize(const char *name, uint64_t volsize)
340 {
341 objset_t *os = NULL;
342 uint64_t readonly;
343 int error;
344 boolean_t owned = B_FALSE;
345
346 error = dsl_prop_get_integer(name,
347 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
348 if (error != 0)
349 return (error);
350 if (readonly)
351 return (SET_ERROR(EROFS));
352
353 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
354
355 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
356 RW_READ_HELD(&zv->zv_suspend_lock)));
357
358 if (zv == NULL || zv->zv_objset == NULL) {
359 if (zv != NULL)
360 rw_exit(&zv->zv_suspend_lock);
361 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
362 FTAG, &os)) != 0) {
363 if (zv != NULL)
364 mutex_exit(&zv->zv_state_lock);
365 return (error);
366 }
367 owned = B_TRUE;
368 if (zv != NULL)
369 zv->zv_objset = os;
370 } else {
371 os = zv->zv_objset;
372 }
373
374 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
375
376 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
377 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
378 goto out;
379
380 error = zvol_update_volsize(volsize, os);
381 if (error == 0 && zv != NULL) {
382 zv->zv_volsize = volsize;
383 zv->zv_changed = 1;
384 }
385 out:
386 kmem_free(doi, sizeof (dmu_object_info_t));
387
388 if (owned) {
389 dmu_objset_disown(os, B_TRUE, FTAG);
390 if (zv != NULL)
391 zv->zv_objset = NULL;
392 } else {
393 rw_exit(&zv->zv_suspend_lock);
394 }
395
396 if (zv != NULL)
397 mutex_exit(&zv->zv_state_lock);
398
399 if (error == 0 && zv != NULL)
400 zvol_os_update_volsize(zv, volsize);
401
402 return (error);
403 }
404
405 /*
406 * Update volthreading.
407 */
408 int
zvol_set_volthreading(const char * name,boolean_t value)409 zvol_set_volthreading(const char *name, boolean_t value)
410 {
411 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
412 if (zv == NULL)
413 return (-1);
414 zv->zv_threading = value;
415 mutex_exit(&zv->zv_state_lock);
416 return (0);
417 }
418
419 /*
420 * Update zvol ro property.
421 */
422 int
zvol_set_ro(const char * name,boolean_t value)423 zvol_set_ro(const char *name, boolean_t value)
424 {
425 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
426 if (zv == NULL)
427 return (-1);
428 if (value) {
429 zvol_os_set_disk_ro(zv, 1);
430 zv->zv_flags |= ZVOL_RDONLY;
431 } else {
432 zvol_os_set_disk_ro(zv, 0);
433 zv->zv_flags &= ~ZVOL_RDONLY;
434 }
435 mutex_exit(&zv->zv_state_lock);
436 return (0);
437 }
438
439 /*
440 * Sanity check volume block size.
441 */
442 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)443 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
444 {
445 /* Record sizes above 128k need the feature to be enabled */
446 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
447 spa_t *spa;
448 int error;
449
450 if ((error = spa_open(name, &spa, FTAG)) != 0)
451 return (error);
452
453 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
454 spa_close(spa, FTAG);
455 return (SET_ERROR(ENOTSUP));
456 }
457
458 /*
459 * We don't allow setting the property above 1MB,
460 * unless the tunable has been changed.
461 */
462 if (volblocksize > zfs_max_recordsize) {
463 spa_close(spa, FTAG);
464 return (SET_ERROR(EDOM));
465 }
466
467 spa_close(spa, FTAG);
468 }
469
470 if (volblocksize < SPA_MINBLOCKSIZE ||
471 volblocksize > SPA_MAXBLOCKSIZE ||
472 !ISP2(volblocksize))
473 return (SET_ERROR(EDOM));
474
475 return (0);
476 }
477
478 /*
479 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
480 * implement DKIOCFREE/free-long-range.
481 */
482 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)483 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
484 {
485 zvol_state_t *zv = arg1;
486 lr_truncate_t *lr = arg2;
487 uint64_t offset, length;
488
489 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
490
491 if (byteswap)
492 byteswap_uint64_array(lr, sizeof (*lr));
493
494 offset = lr->lr_offset;
495 length = lr->lr_length;
496
497 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
498 dmu_tx_mark_netfree(tx);
499 int error = dmu_tx_assign(tx, DMU_TX_WAIT);
500 if (error != 0) {
501 dmu_tx_abort(tx);
502 } else {
503 (void) zil_replaying(zv->zv_zilog, tx);
504 dmu_tx_commit(tx);
505 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
506 length);
507 }
508
509 return (error);
510 }
511
512 /*
513 * Replay a TX_WRITE ZIL transaction that didn't get committed
514 * after a system failure
515 */
516 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)517 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
518 {
519 zvol_state_t *zv = arg1;
520 lr_write_t *lr = arg2;
521 objset_t *os = zv->zv_objset;
522 char *data = (char *)(lr + 1); /* data follows lr_write_t */
523 uint64_t offset, length;
524 dmu_tx_t *tx;
525 int error;
526
527 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
528
529 if (byteswap)
530 byteswap_uint64_array(lr, sizeof (*lr));
531
532 offset = lr->lr_offset;
533 length = lr->lr_length;
534
535 /* If it's a dmu_sync() block, write the whole block */
536 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
537 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
538 if (length < blocksize) {
539 offset -= offset % blocksize;
540 length = blocksize;
541 }
542 }
543
544 tx = dmu_tx_create(os);
545 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
546 error = dmu_tx_assign(tx, DMU_TX_WAIT);
547 if (error) {
548 dmu_tx_abort(tx);
549 } else {
550 dmu_write(os, ZVOL_OBJ, offset, length, data, tx,
551 DMU_READ_PREFETCH);
552 (void) zil_replaying(zv->zv_zilog, tx);
553 dmu_tx_commit(tx);
554 }
555
556 return (error);
557 }
558
559 /*
560 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
561 * after a system failure
562 */
563 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)564 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
565 {
566 zvol_state_t *zv = arg1;
567 lr_clone_range_t *lr = arg2;
568 objset_t *os = zv->zv_objset;
569 dmu_tx_t *tx;
570 int error;
571 uint64_t blksz;
572 uint64_t off;
573 uint64_t len;
574
575 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
576 ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
577 lr_bps[lr->lr_nbps]));
578
579 if (byteswap)
580 byteswap_uint64_array(lr, sizeof (*lr));
581
582 ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
583 SPA_FEATURE_BLOCK_CLONING));
584
585 off = lr->lr_offset;
586 len = lr->lr_length;
587 blksz = lr->lr_blksz;
588
589 if ((off % blksz) != 0) {
590 return (SET_ERROR(EINVAL));
591 }
592
593 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
594 if (error != 0 || !zv->zv_dn)
595 return (error);
596 tx = dmu_tx_create(os);
597 dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len, blksz);
598 error = dmu_tx_assign(tx, DMU_TX_WAIT);
599 if (error != 0) {
600 dmu_tx_abort(tx);
601 goto out;
602 }
603 error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
604 tx, lr->lr_bps, lr->lr_nbps);
605 if (error != 0) {
606 dmu_tx_commit(tx);
607 goto out;
608 }
609
610 /*
611 * zil_replaying() not only check if we are replaying ZIL, but also
612 * updates the ZIL header to record replay progress.
613 */
614 VERIFY(zil_replaying(zv->zv_zilog, tx));
615 dmu_tx_commit(tx);
616
617 out:
618 dnode_rele(zv->zv_dn, zv);
619 zv->zv_dn = NULL;
620 return (error);
621 }
622
623 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)624 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
625 uint64_t outoff, uint64_t len)
626 {
627 zilog_t *zilog_dst;
628 zfs_locked_range_t *inlr, *outlr;
629 objset_t *inos, *outos;
630 dmu_tx_t *tx;
631 blkptr_t *bps;
632 size_t maxblocks;
633 int error = 0;
634
635 rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
636 if (zv_dst->zv_zilog == NULL) {
637 rw_exit(&zv_dst->zv_suspend_lock);
638 rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
639 if (zv_dst->zv_zilog == NULL) {
640 zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
641 zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
642 zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
643 VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
644 ZIL_REPLAY_NEEDED));
645 }
646 rw_downgrade(&zv_dst->zv_suspend_lock);
647 }
648 if (zv_src != zv_dst)
649 rw_enter(&zv_src->zv_suspend_lock, RW_READER);
650
651 inos = zv_src->zv_objset;
652 outos = zv_dst->zv_objset;
653
654 /*
655 * Sanity checks
656 */
657 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
658 SPA_FEATURE_BLOCK_CLONING)) {
659 error = SET_ERROR(EOPNOTSUPP);
660 goto out;
661 }
662 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
663 error = SET_ERROR(EXDEV);
664 goto out;
665 }
666 if (inos->os_encrypted != outos->os_encrypted) {
667 error = SET_ERROR(EXDEV);
668 goto out;
669 }
670 if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
671 error = SET_ERROR(EINVAL);
672 goto out;
673 }
674 if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
675 goto out;
676 }
677
678 /*
679 * Do not read beyond boundary
680 */
681 if (len > zv_src->zv_volsize - inoff)
682 len = zv_src->zv_volsize - inoff;
683 if (len > zv_dst->zv_volsize - outoff)
684 len = zv_dst->zv_volsize - outoff;
685 if (len == 0)
686 goto out;
687
688 /*
689 * No overlapping if we are cloning within the same file
690 */
691 if (zv_src == zv_dst) {
692 if (inoff < outoff + len && outoff < inoff + len) {
693 error = SET_ERROR(EINVAL);
694 goto out;
695 }
696 }
697
698 /*
699 * Offsets and length must be at block boundaries
700 */
701 if ((inoff % zv_src->zv_volblocksize) != 0 ||
702 (outoff % zv_dst->zv_volblocksize) != 0) {
703 error = SET_ERROR(EINVAL);
704 goto out;
705 }
706
707 /*
708 * Length must be multiple of block size
709 */
710 if ((len % zv_src->zv_volblocksize) != 0) {
711 error = SET_ERROR(EINVAL);
712 goto out;
713 }
714
715 zilog_dst = zv_dst->zv_zilog;
716 maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
717 sizeof (bps[0]);
718 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
719 /*
720 * Maintain predictable lock order.
721 */
722 if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
723 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
724 RL_READER);
725 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
726 RL_WRITER);
727 } else {
728 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
729 RL_WRITER);
730 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
731 RL_READER);
732 }
733
734 while (len > 0) {
735 uint64_t size, last_synced_txg;
736 size_t nbps = maxblocks;
737 size = MIN(zv_src->zv_volblocksize * maxblocks, len);
738 last_synced_txg = spa_last_synced_txg(
739 dmu_objset_spa(zv_src->zv_objset));
740 error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
741 size, bps, &nbps);
742 if (error != 0) {
743 /*
744 * If we are trying to clone a block that was created
745 * in the current transaction group, the error will be
746 * EAGAIN here. Based on zfs_bclone_wait_dirty either
747 * return a shortened range to the caller so it can
748 * fallback, or wait for the next TXG and check again.
749 */
750 if (error == EAGAIN && zfs_bclone_wait_dirty) {
751 txg_wait_synced(dmu_objset_pool
752 (zv_src->zv_objset), last_synced_txg + 1);
753 continue;
754 }
755 break;
756 }
757
758 tx = dmu_tx_create(zv_dst->zv_objset);
759 dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size,
760 zv_src->zv_volblocksize);
761 error = dmu_tx_assign(tx, DMU_TX_WAIT);
762 if (error != 0) {
763 dmu_tx_abort(tx);
764 break;
765 }
766 error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
767 tx, bps, nbps);
768 if (error != 0) {
769 dmu_tx_commit(tx);
770 break;
771 }
772 zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
773 size, zv_src->zv_volblocksize, bps, nbps);
774 dmu_tx_commit(tx);
775 inoff += size;
776 outoff += size;
777 len -= size;
778 }
779 vmem_free(bps, sizeof (bps[0]) * maxblocks);
780 zfs_rangelock_exit(outlr);
781 zfs_rangelock_exit(inlr);
782 if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
783 error = zil_commit(zilog_dst, ZVOL_OBJ);
784 }
785 out:
786 if (zv_src != zv_dst)
787 rw_exit(&zv_src->zv_suspend_lock);
788 rw_exit(&zv_dst->zv_suspend_lock);
789 return (error);
790 }
791
792 /*
793 * Handles TX_CLONE_RANGE transactions.
794 */
795 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)796 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
797 uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
798 {
799 itx_t *itx;
800 lr_clone_range_t *lr;
801 uint64_t partlen, max_log_data;
802 size_t partnbps;
803
804 if (zil_replaying(zilog, tx))
805 return;
806
807 max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
808
809 while (nbps > 0) {
810 partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
811 partlen = partnbps * blksz;
812 ASSERT3U(partlen, <, len + blksz);
813 partlen = MIN(partlen, len);
814
815 itx = zil_itx_create(txtype,
816 sizeof (*lr) + sizeof (bps[0]) * partnbps);
817 lr = (lr_clone_range_t *)&itx->itx_lr;
818 lr->lr_foid = ZVOL_OBJ;
819 lr->lr_offset = off;
820 lr->lr_length = partlen;
821 lr->lr_blksz = blksz;
822 lr->lr_nbps = partnbps;
823 memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
824
825 zil_itx_assign(zilog, itx, tx);
826
827 bps += partnbps;
828 ASSERT3U(nbps, >=, partnbps);
829 nbps -= partnbps;
830 off += partlen;
831 ASSERT3U(len, >=, partlen);
832 len -= partlen;
833 }
834 }
835
836 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)837 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
838 {
839 (void) arg1, (void) arg2, (void) byteswap;
840 return (SET_ERROR(ENOTSUP));
841 }
842
843 /*
844 * Callback vectors for replaying records.
845 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
846 */
847 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
848 zvol_replay_err, /* no such transaction type */
849 zvol_replay_err, /* TX_CREATE */
850 zvol_replay_err, /* TX_MKDIR */
851 zvol_replay_err, /* TX_MKXATTR */
852 zvol_replay_err, /* TX_SYMLINK */
853 zvol_replay_err, /* TX_REMOVE */
854 zvol_replay_err, /* TX_RMDIR */
855 zvol_replay_err, /* TX_LINK */
856 zvol_replay_err, /* TX_RENAME */
857 zvol_replay_write, /* TX_WRITE */
858 zvol_replay_truncate, /* TX_TRUNCATE */
859 zvol_replay_err, /* TX_SETATTR */
860 zvol_replay_err, /* TX_ACL_V0 */
861 zvol_replay_err, /* TX_ACL */
862 zvol_replay_err, /* TX_CREATE_ACL */
863 zvol_replay_err, /* TX_CREATE_ATTR */
864 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
865 zvol_replay_err, /* TX_MKDIR_ACL */
866 zvol_replay_err, /* TX_MKDIR_ATTR */
867 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
868 zvol_replay_err, /* TX_WRITE2 */
869 zvol_replay_err, /* TX_SETSAXATTR */
870 zvol_replay_err, /* TX_RENAME_EXCHANGE */
871 zvol_replay_err, /* TX_RENAME_WHITEOUT */
872 zvol_replay_clone_range, /* TX_CLONE_RANGE */
873 };
874
875 /*
876 * zvol_log_write() handles TX_WRITE transactions.
877 */
878 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)879 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
880 uint64_t size, boolean_t commit)
881 {
882 uint32_t blocksize = zv->zv_volblocksize;
883 zilog_t *zilog = zv->zv_zilog;
884 itx_wr_state_t write_state;
885 uint64_t log_size = 0;
886
887 if (zil_replaying(zilog, tx))
888 return;
889
890 write_state = zil_write_state(zilog, size, blocksize, B_FALSE, commit);
891
892 while (size) {
893 itx_t *itx;
894 lr_write_t *lr;
895 itx_wr_state_t wr_state = write_state;
896 ssize_t len = size;
897
898 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
899 wr_state = WR_NEED_COPY;
900 else if (wr_state == WR_INDIRECT)
901 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
902
903 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
904 (wr_state == WR_COPIED ? len : 0));
905 lr = (lr_write_t *)&itx->itx_lr;
906 if (wr_state == WR_COPIED &&
907 dmu_read_by_dnode(zv->zv_dn, offset, len, lr + 1,
908 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING) != 0) {
909 zil_itx_destroy(itx, 0);
910 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
911 lr = (lr_write_t *)&itx->itx_lr;
912 wr_state = WR_NEED_COPY;
913 }
914
915 log_size += itx->itx_size;
916 if (wr_state == WR_NEED_COPY)
917 log_size += len;
918
919 itx->itx_wr_state = wr_state;
920 lr->lr_foid = ZVOL_OBJ;
921 lr->lr_offset = offset;
922 lr->lr_length = len;
923 lr->lr_blkoff = 0;
924 BP_ZERO(&lr->lr_blkptr);
925
926 itx->itx_private = zv;
927
928 zil_itx_assign(zilog, itx, tx);
929
930 offset += len;
931 size -= len;
932 }
933
934 dsl_pool_wrlog_count(zilog->zl_dmu_pool, log_size, tx->tx_txg);
935 }
936
937 /*
938 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
939 */
940 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)941 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
942 {
943 itx_t *itx;
944 lr_truncate_t *lr;
945 zilog_t *zilog = zv->zv_zilog;
946
947 if (zil_replaying(zilog, tx))
948 return;
949
950 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
951 lr = (lr_truncate_t *)&itx->itx_lr;
952 lr->lr_foid = ZVOL_OBJ;
953 lr->lr_offset = off;
954 lr->lr_length = len;
955
956 zil_itx_assign(zilog, itx, tx);
957 }
958
959
960 static void
zvol_get_done(zgd_t * zgd,int error)961 zvol_get_done(zgd_t *zgd, int error)
962 {
963 (void) error;
964 if (zgd->zgd_db)
965 dmu_buf_rele(zgd->zgd_db, zgd);
966
967 zfs_rangelock_exit(zgd->zgd_lr);
968
969 kmem_free(zgd, sizeof (zgd_t));
970 }
971
972 /*
973 * Get data to generate a TX_WRITE intent log record.
974 */
975 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)976 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
977 struct lwb *lwb, zio_t *zio)
978 {
979 zvol_state_t *zv = arg;
980 uint64_t offset = lr->lr_offset;
981 uint64_t size = lr->lr_length;
982 dmu_buf_t *db;
983 zgd_t *zgd;
984 int error;
985
986 ASSERT3P(lwb, !=, NULL);
987 ASSERT3U(size, !=, 0);
988
989 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
990 zgd->zgd_lwb = lwb;
991
992 /*
993 * Write records come in two flavors: immediate and indirect.
994 * For small writes it's cheaper to store the data with the
995 * log record (immediate); for large writes it's cheaper to
996 * sync the data and get a pointer to it (indirect) so that
997 * we don't have to write the data twice.
998 */
999 if (buf != NULL) { /* immediate write */
1000 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1001 size, RL_READER);
1002 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1003 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1004 } else { /* indirect write */
1005 ASSERT3P(zio, !=, NULL);
1006 /*
1007 * Have to lock the whole block to ensure when it's written out
1008 * and its checksum is being calculated that no one can change
1009 * the data. Contrarily to zfs_get_data we need not re-check
1010 * blocksize after we get the lock because it cannot be changed.
1011 */
1012 size = zv->zv_volblocksize;
1013 offset = P2ALIGN_TYPED(offset, size, uint64_t);
1014 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1015 size, RL_READER);
1016 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
1017 &db);
1018 if (error == 0) {
1019 blkptr_t *bp = &lr->lr_blkptr;
1020
1021 zgd->zgd_db = db;
1022 zgd->zgd_bp = bp;
1023
1024 ASSERT(db != NULL);
1025 ASSERT(db->db_offset == offset);
1026 ASSERT(db->db_size == size);
1027
1028 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1029 zvol_get_done, zgd);
1030
1031 if (error == 0)
1032 return (0);
1033 }
1034 }
1035
1036 zvol_get_done(zgd, error);
1037
1038 return (error);
1039 }
1040
1041 /*
1042 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1043 */
1044
1045 void
zvol_insert(zvol_state_t * zv)1046 zvol_insert(zvol_state_t *zv)
1047 {
1048 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1049 list_insert_head(&zvol_state_list, zv);
1050 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1051 }
1052
1053 /*
1054 * Simply remove the zvol from to list of zvols.
1055 */
1056 static void
zvol_remove(zvol_state_t * zv)1057 zvol_remove(zvol_state_t *zv)
1058 {
1059 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1060 list_remove(&zvol_state_list, zv);
1061 hlist_del(&zv->zv_hlink);
1062 }
1063
1064 /*
1065 * Setup zv after we just own the zv->objset
1066 */
1067 static int
zvol_setup_zv(zvol_state_t * zv)1068 zvol_setup_zv(zvol_state_t *zv)
1069 {
1070 uint64_t volsize;
1071 int error;
1072 uint64_t ro;
1073 objset_t *os = zv->zv_objset;
1074
1075 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1076 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1077
1078 zv->zv_zilog = NULL;
1079 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1080
1081 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1082 if (error)
1083 return (error);
1084
1085 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1086 if (error)
1087 return (error);
1088
1089 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1090 if (error)
1091 return (error);
1092
1093 zvol_os_set_capacity(zv, volsize >> 9);
1094 zv->zv_volsize = volsize;
1095
1096 if (ro || dmu_objset_is_snapshot(os) ||
1097 !spa_writeable(dmu_objset_spa(os))) {
1098 zvol_os_set_disk_ro(zv, 1);
1099 zv->zv_flags |= ZVOL_RDONLY;
1100 } else {
1101 zvol_os_set_disk_ro(zv, 0);
1102 zv->zv_flags &= ~ZVOL_RDONLY;
1103 }
1104 return (0);
1105 }
1106
1107 /*
1108 * Shutdown every zv_objset related stuff except zv_objset itself.
1109 * The is the reverse of zvol_setup_zv.
1110 */
1111 static void
zvol_shutdown_zv(zvol_state_t * zv)1112 zvol_shutdown_zv(zvol_state_t *zv)
1113 {
1114 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1115 RW_LOCK_HELD(&zv->zv_suspend_lock));
1116
1117 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1118 ASSERT(zv->zv_zilog != NULL);
1119 zil_close(zv->zv_zilog);
1120 }
1121
1122 zv->zv_zilog = NULL;
1123
1124 dnode_rele(zv->zv_dn, zv);
1125 zv->zv_dn = NULL;
1126
1127 /*
1128 * Evict cached data. We must write out any dirty data before
1129 * disowning the dataset.
1130 */
1131 if (zv->zv_flags & ZVOL_WRITTEN_TO)
1132 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1133 dmu_objset_evict_dbufs(zv->zv_objset);
1134 }
1135
1136 /*
1137 * return the proper tag for rollback and recv
1138 */
1139 void *
zvol_tag(zvol_state_t * zv)1140 zvol_tag(zvol_state_t *zv)
1141 {
1142 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1143 return (zv->zv_open_count > 0 ? zv : NULL);
1144 }
1145
1146 /*
1147 * Suspend the zvol for recv and rollback.
1148 */
1149 int
zvol_suspend(const char * name,zvol_state_t ** zvp)1150 zvol_suspend(const char *name, zvol_state_t **zvp)
1151 {
1152 zvol_state_t *zv;
1153
1154 zv = zvol_find_by_name(name, RW_WRITER);
1155
1156 if (zv == NULL)
1157 return (SET_ERROR(ENOENT));
1158
1159 /* block all I/O, release in zvol_resume. */
1160 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1161 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1162
1163 /*
1164 * If it's being removed, unlock and return error. It doesn't make any
1165 * sense to try to suspend a zvol being removed, but being here also
1166 * means that zvol_remove_minors_impl() is about to call zvol_remove()
1167 * and then destroy the zvol_state_t, so returning a pointer to it for
1168 * the caller to mess with would be a disaster anyway.
1169 */
1170 if (zv->zv_flags & ZVOL_REMOVING) {
1171 mutex_exit(&zv->zv_state_lock);
1172 rw_exit(&zv->zv_suspend_lock);
1173 /* NB: Returning EIO here to match zfsvfs_teardown() */
1174 return (SET_ERROR(EIO));
1175 }
1176
1177 atomic_inc(&zv->zv_suspend_ref);
1178
1179 if (zv->zv_open_count > 0)
1180 zvol_shutdown_zv(zv);
1181
1182 /*
1183 * do not hold zv_state_lock across suspend/resume to
1184 * avoid locking up zvol lookups
1185 */
1186 mutex_exit(&zv->zv_state_lock);
1187
1188 /* zv_suspend_lock is released in zvol_resume() */
1189 *zvp = zv;
1190 return (0);
1191 }
1192
1193 int
zvol_resume(zvol_state_t * zv)1194 zvol_resume(zvol_state_t *zv)
1195 {
1196 int error = 0;
1197
1198 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1199
1200 mutex_enter(&zv->zv_state_lock);
1201
1202 if (zv->zv_open_count > 0) {
1203 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1204 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1205 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1206 dmu_objset_rele(zv->zv_objset, zv);
1207
1208 error = zvol_setup_zv(zv);
1209 }
1210
1211 mutex_exit(&zv->zv_state_lock);
1212
1213 rw_exit(&zv->zv_suspend_lock);
1214 /*
1215 * We need this because we don't hold zvol_state_lock while releasing
1216 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1217 * zv_suspend_lock to determine it is safe to free because rwlock is
1218 * not inherent atomic.
1219 */
1220 atomic_dec(&zv->zv_suspend_ref);
1221
1222 if (zv->zv_flags & ZVOL_REMOVING)
1223 cv_broadcast(&zv->zv_removing_cv);
1224
1225 return (error);
1226 }
1227
1228 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1229 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1230 {
1231 objset_t *os;
1232 int error;
1233
1234 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1235 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1236 ASSERT(spa_namespace_held());
1237
1238 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1239 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1240 if (error)
1241 return (error);
1242
1243 zv->zv_objset = os;
1244
1245 error = zvol_setup_zv(zv);
1246 if (error) {
1247 dmu_objset_disown(os, 1, zv);
1248 zv->zv_objset = NULL;
1249 }
1250
1251 return (error);
1252 }
1253
1254 void
zvol_last_close(zvol_state_t * zv)1255 zvol_last_close(zvol_state_t *zv)
1256 {
1257 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1258 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1259
1260 if (zv->zv_flags & ZVOL_REMOVING)
1261 cv_broadcast(&zv->zv_removing_cv);
1262
1263 zvol_shutdown_zv(zv);
1264
1265 dmu_objset_disown(zv->zv_objset, 1, zv);
1266 zv->zv_objset = NULL;
1267 }
1268
1269 typedef struct minors_job {
1270 list_t *list;
1271 list_node_t link;
1272 /* input */
1273 char *name;
1274 /* output */
1275 int error;
1276 } minors_job_t;
1277
1278 /*
1279 * Prefetch zvol dnodes for the minors_job
1280 */
1281 static void
zvol_prefetch_minors_impl(void * arg)1282 zvol_prefetch_minors_impl(void *arg)
1283 {
1284 minors_job_t *job = arg;
1285 char *dsname = job->name;
1286 objset_t *os = NULL;
1287
1288 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1289 FTAG, &os);
1290 if (job->error == 0) {
1291 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1292 dmu_objset_disown(os, B_TRUE, FTAG);
1293 }
1294 }
1295
1296 /*
1297 * Mask errors to continue dmu_objset_find() traversal
1298 */
1299 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1300 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1301 {
1302 minors_job_t *j = arg;
1303 list_t *minors_list = j->list;
1304 const char *name = j->name;
1305
1306 ASSERT0(spa_namespace_held());
1307
1308 /* skip the designated dataset */
1309 if (name && strcmp(dsname, name) == 0)
1310 return (0);
1311
1312 /* at this point, the dsname should name a snapshot */
1313 if (strchr(dsname, '@') == 0) {
1314 dprintf("zvol_create_snap_minor_cb(): "
1315 "%s is not a snapshot name\n", dsname);
1316 } else {
1317 minors_job_t *job;
1318 char *n = kmem_strdup(dsname);
1319 if (n == NULL)
1320 return (0);
1321
1322 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1323 job->name = n;
1324 job->list = minors_list;
1325 job->error = 0;
1326 list_insert_tail(minors_list, job);
1327 /* don't care if dispatch fails, because job->error is 0 */
1328 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1329 TQ_SLEEP);
1330 }
1331
1332 return (0);
1333 }
1334
1335 /*
1336 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1337 * we need to look for any clones also using the key. This function
1338 * is "best effort" - so we just skip over it if there are failures.
1339 */
1340 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1341 zvol_add_clones(const char *dsname, list_t *minors_list)
1342 {
1343 /* Also check if it has clones */
1344 dsl_dir_t *dd = NULL;
1345 dsl_pool_t *dp = NULL;
1346
1347 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1348 return;
1349
1350 if (!spa_feature_is_enabled(dp->dp_spa,
1351 SPA_FEATURE_ENCRYPTION))
1352 goto out;
1353
1354 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1355 goto out;
1356
1357 if (dsl_dir_phys(dd)->dd_clones == 0)
1358 goto out;
1359
1360 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1361 zap_attribute_t *za = zap_attribute_alloc();
1362 objset_t *mos = dd->dd_pool->dp_meta_objset;
1363
1364 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1365 zap_cursor_retrieve(zc, za) == 0;
1366 zap_cursor_advance(zc)) {
1367 dsl_dataset_t *clone;
1368 minors_job_t *job;
1369
1370 if (dsl_dataset_hold_obj(dd->dd_pool,
1371 za->za_first_integer, FTAG, &clone) == 0) {
1372
1373 char name[ZFS_MAX_DATASET_NAME_LEN];
1374 dsl_dataset_name(clone, name);
1375
1376 char *n = kmem_strdup(name);
1377 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1378 job->name = n;
1379 job->list = minors_list;
1380 job->error = 0;
1381 list_insert_tail(minors_list, job);
1382
1383 dsl_dataset_rele(clone, FTAG);
1384 }
1385 }
1386 zap_cursor_fini(zc);
1387 zap_attribute_free(za);
1388 kmem_free(zc, sizeof (zap_cursor_t));
1389
1390 out:
1391 if (dd != NULL)
1392 dsl_dir_rele(dd, FTAG);
1393 dsl_pool_rele(dp, FTAG);
1394 }
1395
1396 /*
1397 * Mask errors to continue dmu_objset_find() traversal
1398 */
1399 static int
zvol_create_minors_cb(const char * dsname,void * arg)1400 zvol_create_minors_cb(const char *dsname, void *arg)
1401 {
1402 uint64_t snapdev;
1403 int error;
1404 list_t *minors_list = arg;
1405
1406 ASSERT0(spa_namespace_held());
1407
1408 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1409 if (error)
1410 return (0);
1411
1412 /*
1413 * Given the name and the 'snapdev' property, create device minor nodes
1414 * with the linkages to zvols/snapshots as needed.
1415 * If the name represents a zvol, create a minor node for the zvol, then
1416 * check if its snapshots are 'visible', and if so, iterate over the
1417 * snapshots and create device minor nodes for those.
1418 */
1419 if (strchr(dsname, '@') == 0) {
1420 minors_job_t *job;
1421 char *n = kmem_strdup(dsname);
1422 if (n == NULL)
1423 return (0);
1424
1425 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1426 job->name = n;
1427 job->list = minors_list;
1428 job->error = 0;
1429 list_insert_tail(minors_list, job);
1430 /* don't care if dispatch fails, because job->error is 0 */
1431 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1432 TQ_SLEEP);
1433
1434 zvol_add_clones(dsname, minors_list);
1435
1436 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1437 /*
1438 * traverse snapshots only, do not traverse children,
1439 * and skip the 'dsname'
1440 */
1441 (void) dmu_objset_find(dsname,
1442 zvol_create_snap_minor_cb, (void *)job,
1443 DS_FIND_SNAPSHOTS);
1444 }
1445 } else {
1446 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1447 dsname);
1448 }
1449
1450 return (0);
1451 }
1452
1453 static void
zvol_task_update_status(zvol_task_t * task,uint64_t total,uint64_t done,int error)1454 zvol_task_update_status(zvol_task_t *task, uint64_t total, uint64_t done,
1455 int error)
1456 {
1457
1458 task->zt_total += total;
1459 task->zt_done += done;
1460 if (task->zt_total != task->zt_done) {
1461 task->zt_status = -1;
1462 if (error)
1463 task->zt_error = error;
1464 }
1465 }
1466
1467 static void
zvol_task_report_status(zvol_task_t * task)1468 zvol_task_report_status(zvol_task_t *task)
1469 {
1470 #ifdef ZFS_DEBUG
1471 static const char *const msg[] = {
1472 "create",
1473 "remove",
1474 "rename",
1475 "set snapdev",
1476 "set volmode",
1477 "unknown",
1478 };
1479
1480 if (task->zt_status == 0)
1481 return;
1482
1483 zvol_async_op_t op = MIN(task->zt_op, ZVOL_ASYNC_MAX);
1484 if (task->zt_error) {
1485 dprintf("The %s minors zvol task was not ok, last error %d\n",
1486 msg[op], task->zt_error);
1487 } else {
1488 dprintf("The %s minors zvol task was not ok\n", msg[op]);
1489 }
1490 #else
1491 (void) task;
1492 #endif
1493 }
1494
1495 /*
1496 * Create minors for the specified dataset, including children and snapshots.
1497 * Pay attention to the 'snapdev' property and iterate over the snapshots
1498 * only if they are 'visible'. This approach allows one to assure that the
1499 * snapshot metadata is read from disk only if it is needed.
1500 *
1501 * The name can represent a dataset to be recursively scanned for zvols and
1502 * their snapshots, or a single zvol snapshot. If the name represents a
1503 * dataset, the scan is performed in two nested stages:
1504 * - scan the dataset for zvols, and
1505 * - for each zvol, create a minor node, then check if the zvol's snapshots
1506 * are 'visible', and only then iterate over the snapshots if needed
1507 *
1508 * If the name represents a snapshot, a check is performed if the snapshot is
1509 * 'visible' (which also verifies that the parent is a zvol), and if so,
1510 * a minor node for that snapshot is created.
1511 */
1512 static void
zvol_create_minors_impl(zvol_task_t * task)1513 zvol_create_minors_impl(zvol_task_t *task)
1514 {
1515 const char *name = task->zt_name1;
1516 list_t minors_list;
1517 minors_job_t *job;
1518 uint64_t snapdev;
1519 int total = 0, done = 0, last_error, error;
1520
1521 /*
1522 * Note: the dsl_pool_config_lock must not be held.
1523 * Minor node creation needs to obtain the zvol_state_lock.
1524 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1525 * config lock. Therefore, we can't have the config lock now if
1526 * we are going to wait for the zvol_state_lock, because it
1527 * would be a lock order inversion which could lead to deadlock.
1528 */
1529
1530 if (zvol_inhibit_dev) {
1531 return;
1532 }
1533
1534 /*
1535 * This is the list for prefetch jobs. Whenever we found a match
1536 * during dmu_objset_find, we insert a minors_job to the list and do
1537 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1538 * any lock because all list operation is done on the current thread.
1539 *
1540 * We will use this list to do zvol_os_create_minor after prefetch
1541 * so we don't have to traverse using dmu_objset_find again.
1542 */
1543 list_create(&minors_list, sizeof (minors_job_t),
1544 offsetof(minors_job_t, link));
1545
1546
1547 if (strchr(name, '@') != NULL) {
1548 error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL);
1549 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) {
1550 error = zvol_os_create_minor(name);
1551 if (error == 0) {
1552 done++;
1553 } else {
1554 last_error = error;
1555 }
1556 total++;
1557 }
1558 } else {
1559 fstrans_cookie_t cookie = spl_fstrans_mark();
1560 (void) dmu_objset_find(name, zvol_create_minors_cb,
1561 &minors_list, DS_FIND_CHILDREN);
1562 spl_fstrans_unmark(cookie);
1563 }
1564
1565 taskq_wait_outstanding(system_taskq, 0);
1566
1567 /*
1568 * Prefetch is completed, we can do zvol_os_create_minor
1569 * sequentially.
1570 */
1571 while ((job = list_remove_head(&minors_list)) != NULL) {
1572 if (!job->error) {
1573 error = zvol_os_create_minor(job->name);
1574 if (error == 0) {
1575 done++;
1576 } else {
1577 last_error = error;
1578 }
1579 } else if (job->error == EINVAL) {
1580 /*
1581 * The objset, with the name requested by current job
1582 * exist, but have the type different from zvol.
1583 * Just ignore this sort of errors.
1584 */
1585 done++;
1586 } else {
1587 last_error = job->error;
1588 }
1589 total++;
1590 kmem_strfree(job->name);
1591 kmem_free(job, sizeof (minors_job_t));
1592 }
1593
1594 list_destroy(&minors_list);
1595 zvol_task_update_status(task, total, done, last_error);
1596 }
1597
1598 /*
1599 * Remove minors for specified dataset and, optionally, its children and
1600 * snapshots.
1601 */
1602 static void
zvol_remove_minors_impl(zvol_task_t * task)1603 zvol_remove_minors_impl(zvol_task_t *task)
1604 {
1605 zvol_state_t *zv, *zv_next;
1606 const char *name = task ? task->zt_name1 : NULL;
1607 int namelen = ((name) ? strlen(name) : 0);
1608 boolean_t children = task ? !!task->zt_value : B_TRUE;
1609
1610 if (zvol_inhibit_dev)
1611 return;
1612
1613 /*
1614 * We collect up zvols that we want to remove on a separate list, so
1615 * that we don't have to hold zvol_state_lock for the whole time.
1616 *
1617 * We can't remove them from the global lists until we're completely
1618 * done with them, because that would make them appear to ZFS-side ops
1619 * that they don't exist, and the name might be reused, which can't be
1620 * good.
1621 */
1622 list_t remove_list;
1623 list_create(&remove_list, sizeof (zvol_state_t),
1624 offsetof(zvol_state_t, zv_remove_node));
1625
1626 rw_enter(&zvol_state_lock, RW_READER);
1627
1628 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1629 zv_next = list_next(&zvol_state_list, zv);
1630
1631 mutex_enter(&zv->zv_state_lock);
1632 if (zv->zv_flags & ZVOL_REMOVING) {
1633 /* Another thread is handling shutdown, skip it. */
1634 mutex_exit(&zv->zv_state_lock);
1635 continue;
1636 }
1637
1638 /*
1639 * This zvol should be removed if:
1640 * - no name was offered (ie removing all at shutdown); or
1641 * - name matches exactly; or
1642 * - we were asked to remove children, and
1643 * - the start of the name matches, and
1644 * - there is a '/' immediately after the matched name; or
1645 * - there is a '@' immediately after the matched name
1646 */
1647 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1648 (children && strncmp(zv->zv_name, name, namelen) == 0 &&
1649 (zv->zv_name[namelen] == '/' ||
1650 zv->zv_name[namelen] == '@'))) {
1651
1652 /*
1653 * Matched, so mark it removal. We want to take the
1654 * write half of the suspend lock to make sure that
1655 * the zvol is not suspended, and give any data ops
1656 * chance to finish.
1657 */
1658 mutex_exit(&zv->zv_state_lock);
1659 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
1660 mutex_enter(&zv->zv_state_lock);
1661
1662 if (zv->zv_flags & ZVOL_REMOVING) {
1663 /* Another thread has taken it, let them. */
1664 mutex_exit(&zv->zv_state_lock);
1665 rw_exit(&zv->zv_suspend_lock);
1666 continue;
1667 }
1668
1669 /*
1670 * Mark it and unlock. New entries will see the flag
1671 * and return ENXIO.
1672 */
1673 zv->zv_flags |= ZVOL_REMOVING;
1674 mutex_exit(&zv->zv_state_lock);
1675 rw_exit(&zv->zv_suspend_lock);
1676
1677 /* Put it on the list for the next stage. */
1678 list_insert_head(&remove_list, zv);
1679 } else
1680 mutex_exit(&zv->zv_state_lock);
1681 }
1682
1683 rw_exit(&zvol_state_lock);
1684
1685 /* Didn't match any, nothing to do! */
1686 if (list_is_empty(&remove_list)) {
1687 if (task)
1688 task->zt_error = SET_ERROR(ENOENT);
1689 return;
1690 }
1691
1692 /* Actually shut them all down. */
1693 for (zv = list_head(&remove_list); zv != NULL; zv = zv_next) {
1694 zv_next = list_next(&remove_list, zv);
1695
1696 mutex_enter(&zv->zv_state_lock);
1697
1698 /*
1699 * Still open or suspended, just wait. This can happen if, for
1700 * example, we managed to acquire zv_state_lock in the moments
1701 * where zvol_open() or zvol_release() are trading locks to
1702 * call zvol_first_open() or zvol_last_close().
1703 */
1704 while (zv->zv_open_count > 0 ||
1705 atomic_read(&zv->zv_suspend_ref))
1706 cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1707
1708 /*
1709 * No users, shut down the OS side. This may not remove the
1710 * minor from view immediately, depending on the kernel
1711 * specifics, but it will ensure that it is unusable and that
1712 * this zvol_state_t can never again be reached from an OS-side
1713 * operation.
1714 */
1715 zvol_os_remove_minor(zv);
1716 mutex_exit(&zv->zv_state_lock);
1717
1718 /* Remove it from the name lookup lists */
1719 rw_enter(&zvol_state_lock, RW_WRITER);
1720 zvol_remove(zv);
1721 rw_exit(&zvol_state_lock);
1722 }
1723
1724 /*
1725 * Our own references on remove_list is the last one, free them and
1726 * we're done.
1727 */
1728 while ((zv = list_remove_head(&remove_list)) != NULL)
1729 zvol_os_free(zv);
1730
1731 list_destroy(&remove_list);
1732 }
1733
1734 /* Remove minor for this specific volume only */
1735 static int
zvol_remove_minor_impl(const char * name)1736 zvol_remove_minor_impl(const char *name)
1737 {
1738 if (zvol_inhibit_dev)
1739 return (0);
1740
1741 zvol_task_t task;
1742 memset(&task, 0, sizeof (zvol_task_t));
1743 strlcpy(task.zt_name1, name, sizeof (task.zt_name1));
1744 task.zt_value = B_FALSE;
1745
1746 zvol_remove_minors_impl(&task);
1747
1748 return (task.zt_error);
1749 }
1750
1751 /*
1752 * Rename minors for specified dataset including children and snapshots.
1753 */
1754 static void
zvol_rename_minors_impl(zvol_task_t * task)1755 zvol_rename_minors_impl(zvol_task_t *task)
1756 {
1757 zvol_state_t *zv, *zv_next;
1758 const char *oldname = task->zt_name1;
1759 const char *newname = task->zt_name2;
1760 int total = 0, done = 0, last_error, error, oldnamelen;
1761
1762 if (zvol_inhibit_dev)
1763 return;
1764
1765 oldnamelen = strlen(oldname);
1766
1767 rw_enter(&zvol_state_lock, RW_READER);
1768
1769 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1770 zv_next = list_next(&zvol_state_list, zv);
1771
1772 mutex_enter(&zv->zv_state_lock);
1773
1774 if (strcmp(zv->zv_name, oldname) == 0) {
1775 error = zvol_os_rename_minor(zv, newname);
1776 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1777 (zv->zv_name[oldnamelen] == '/' ||
1778 zv->zv_name[oldnamelen] == '@')) {
1779 char *name = kmem_asprintf("%s%c%s", newname,
1780 zv->zv_name[oldnamelen],
1781 zv->zv_name + oldnamelen + 1);
1782 error = zvol_os_rename_minor(zv, name);
1783 kmem_strfree(name);
1784 }
1785 if (error) {
1786 last_error = error;
1787 } else {
1788 done++;
1789 }
1790 total++;
1791 mutex_exit(&zv->zv_state_lock);
1792 }
1793
1794 rw_exit(&zvol_state_lock);
1795 zvol_task_update_status(task, total, done, last_error);
1796 }
1797
1798 typedef struct zvol_snapdev_cb_arg {
1799 zvol_task_t *task;
1800 uint64_t snapdev;
1801 } zvol_snapdev_cb_arg_t;
1802
1803 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1804 zvol_set_snapdev_cb(const char *dsname, void *param)
1805 {
1806 zvol_snapdev_cb_arg_t *arg = param;
1807 int error = 0;
1808
1809 if (strchr(dsname, '@') == NULL)
1810 return (0);
1811
1812 switch (arg->snapdev) {
1813 case ZFS_SNAPDEV_VISIBLE:
1814 error = zvol_os_create_minor(dsname);
1815 break;
1816 case ZFS_SNAPDEV_HIDDEN:
1817 error = zvol_remove_minor_impl(dsname);
1818 break;
1819 }
1820
1821 zvol_task_update_status(arg->task, 1, error == 0, error);
1822 return (0);
1823 }
1824
1825 static void
zvol_set_snapdev_impl(zvol_task_t * task)1826 zvol_set_snapdev_impl(zvol_task_t *task)
1827 {
1828 const char *name = task->zt_name1;
1829 uint64_t snapdev = task->zt_value;
1830
1831 zvol_snapdev_cb_arg_t arg = {task, snapdev};
1832 fstrans_cookie_t cookie = spl_fstrans_mark();
1833 /*
1834 * The zvol_set_snapdev_sync() sets snapdev appropriately
1835 * in the dataset hierarchy. Here, we only scan snapshots.
1836 */
1837 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1838 spl_fstrans_unmark(cookie);
1839 }
1840
1841 static void
zvol_set_volmode_impl(zvol_task_t * task)1842 zvol_set_volmode_impl(zvol_task_t *task)
1843 {
1844 const char *name = task->zt_name1;
1845 uint64_t volmode = task->zt_value;
1846 fstrans_cookie_t cookie;
1847 uint64_t old_volmode;
1848 zvol_state_t *zv;
1849 int error;
1850
1851 if (strchr(name, '@') != NULL)
1852 return;
1853
1854 /*
1855 * It's unfortunate we need to remove minors before we create new ones:
1856 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1857 * could be different when we set, for instance, volmode from "geom"
1858 * to "dev" (or vice versa).
1859 */
1860 zv = zvol_find_by_name(name, RW_NONE);
1861 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1862 return;
1863 if (zv != NULL) {
1864 old_volmode = zv->zv_volmode;
1865 mutex_exit(&zv->zv_state_lock);
1866 if (old_volmode == volmode)
1867 return;
1868 zvol_wait_close(zv);
1869 }
1870 cookie = spl_fstrans_mark();
1871 switch (volmode) {
1872 case ZFS_VOLMODE_NONE:
1873 error = zvol_remove_minor_impl(name);
1874 break;
1875 case ZFS_VOLMODE_GEOM:
1876 case ZFS_VOLMODE_DEV:
1877 error = zvol_remove_minor_impl(name);
1878 /*
1879 * The remove minor function call above, might be not
1880 * needed, if volmode was switched from 'none' value.
1881 * Ignore error in this case.
1882 */
1883 if (error == ENOENT)
1884 error = 0;
1885 else if (error)
1886 break;
1887 error = zvol_os_create_minor(name);
1888 break;
1889 case ZFS_VOLMODE_DEFAULT:
1890 error = zvol_remove_minor_impl(name);
1891 if (zvol_volmode == ZFS_VOLMODE_NONE)
1892 break;
1893 else /* if zvol_volmode is invalid defaults to "geom" */
1894 error = zvol_os_create_minor(name);
1895 break;
1896 }
1897 zvol_task_update_status(task, 1, error == 0, error);
1898 spl_fstrans_unmark(cookie);
1899 }
1900
1901 /*
1902 * The worker thread function performed asynchronously.
1903 */
1904 static void
zvol_task_cb(void * arg)1905 zvol_task_cb(void *arg)
1906 {
1907 zvol_task_t *task = arg;
1908
1909 switch (task->zt_op) {
1910 case ZVOL_ASYNC_CREATE_MINORS:
1911 zvol_create_minors_impl(task);
1912 break;
1913 case ZVOL_ASYNC_REMOVE_MINORS:
1914 zvol_remove_minors_impl(task);
1915 break;
1916 case ZVOL_ASYNC_RENAME_MINORS:
1917 zvol_rename_minors_impl(task);
1918 break;
1919 case ZVOL_ASYNC_SET_SNAPDEV:
1920 zvol_set_snapdev_impl(task);
1921 break;
1922 case ZVOL_ASYNC_SET_VOLMODE:
1923 zvol_set_volmode_impl(task);
1924 break;
1925 default:
1926 VERIFY(0);
1927 break;
1928 }
1929
1930 zvol_task_report_status(task);
1931 kmem_free(task, sizeof (zvol_task_t));
1932 }
1933
1934 typedef struct zvol_set_prop_int_arg {
1935 const char *zsda_name;
1936 uint64_t zsda_value;
1937 zprop_source_t zsda_source;
1938 zfs_prop_t zsda_prop;
1939 } zvol_set_prop_int_arg_t;
1940
1941 /*
1942 * Sanity check the dataset for safe use by the sync task. No additional
1943 * conditions are imposed.
1944 */
1945 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1946 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1947 {
1948 zvol_set_prop_int_arg_t *zsda = arg;
1949 dsl_pool_t *dp = dmu_tx_pool(tx);
1950 dsl_dir_t *dd;
1951 int error;
1952
1953 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1954 if (error != 0)
1955 return (error);
1956
1957 dsl_dir_rele(dd, FTAG);
1958
1959 return (error);
1960 }
1961
1962 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1963 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1964 {
1965 zvol_set_prop_int_arg_t *zsda = arg;
1966 char dsname[ZFS_MAX_DATASET_NAME_LEN];
1967 zvol_task_t *task;
1968 uint64_t prop;
1969
1970 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1971 dsl_dataset_name(ds, dsname);
1972
1973 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1974 return (0);
1975
1976 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1977 if (zsda->zsda_prop == ZFS_PROP_VOLMODE) {
1978 task->zt_op = ZVOL_ASYNC_SET_VOLMODE;
1979 } else if (zsda->zsda_prop == ZFS_PROP_SNAPDEV) {
1980 task->zt_op = ZVOL_ASYNC_SET_SNAPDEV;
1981 } else {
1982 kmem_free(task, sizeof (zvol_task_t));
1983 return (0);
1984 }
1985 task->zt_value = prop;
1986 strlcpy(task->zt_name1, dsname, sizeof (task->zt_name1));
1987 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1988 task, TQ_SLEEP);
1989 return (0);
1990 }
1991
1992 /*
1993 * Traverse all child datasets and apply the property appropriately.
1994 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1995 * dataset and read the effective "property" on every child in the callback
1996 * function: this is because the value is not guaranteed to be the same in the
1997 * whole dataset hierarchy.
1998 */
1999 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)2000 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
2001 {
2002 zvol_set_prop_int_arg_t *zsda = arg;
2003 dsl_pool_t *dp = dmu_tx_pool(tx);
2004 dsl_dir_t *dd;
2005 dsl_dataset_t *ds;
2006 int error;
2007
2008 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2009
2010 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2011 if (error == 0) {
2012 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
2013 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2014 &zsda->zsda_value, tx);
2015 dsl_dataset_rele(ds, FTAG);
2016 }
2017
2018 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
2019 zsda, DS_FIND_CHILDREN);
2020
2021 dsl_dir_rele(dd, FTAG);
2022 }
2023
2024 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)2025 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
2026 uint64_t val)
2027 {
2028 zvol_set_prop_int_arg_t zsda;
2029
2030 zsda.zsda_name = ddname;
2031 zsda.zsda_source = source;
2032 zsda.zsda_value = val;
2033 zsda.zsda_prop = prop;
2034
2035 return (dsl_sync_task(ddname, zvol_set_common_check,
2036 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2037 }
2038
2039 void
zvol_create_minors(const char * name)2040 zvol_create_minors(const char *name)
2041 {
2042 spa_t *spa;
2043 zvol_task_t *task;
2044 taskqid_t id;
2045
2046 if (spa_open(name, &spa, FTAG) != 0)
2047 return;
2048
2049 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2050 task->zt_op = ZVOL_ASYNC_CREATE_MINORS;
2051 strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2052 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2053 if (id != TASKQID_INVALID)
2054 taskq_wait_id(spa->spa_zvol_taskq, id);
2055
2056 spa_close(spa, FTAG);
2057 }
2058
2059 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)2060 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2061 {
2062 zvol_task_t *task;
2063 taskqid_t id;
2064
2065 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2066 task->zt_op = ZVOL_ASYNC_REMOVE_MINORS;
2067 strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2068 task->zt_value = B_TRUE;
2069 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2070 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2071 taskq_wait_id(spa->spa_zvol_taskq, id);
2072 }
2073
2074 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)2075 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2076 boolean_t async)
2077 {
2078 zvol_task_t *task;
2079 taskqid_t id;
2080
2081 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2082 task->zt_op = ZVOL_ASYNC_RENAME_MINORS;
2083 strlcpy(task->zt_name1, name1, sizeof (task->zt_name1));
2084 strlcpy(task->zt_name2, name2, sizeof (task->zt_name2));
2085 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2086 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2087 taskq_wait_id(spa->spa_zvol_taskq, id);
2088 }
2089
2090 boolean_t
zvol_is_zvol(const char * name)2091 zvol_is_zvol(const char *name)
2092 {
2093
2094 return (zvol_os_is_zvol(name));
2095 }
2096
2097 int
zvol_init_impl(void)2098 zvol_init_impl(void)
2099 {
2100 int i;
2101
2102 /*
2103 * zvol_threads is the module param the user passes in.
2104 *
2105 * zvol_actual_threads is what we use internally, since the user can
2106 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
2107 */
2108 static unsigned int zvol_actual_threads;
2109
2110 if (zvol_threads == 0) {
2111 /*
2112 * See dde9380a1 for why 32 was chosen here. This should
2113 * probably be refined to be some multiple of the number
2114 * of CPUs.
2115 */
2116 zvol_actual_threads = MAX(max_ncpus, 32);
2117 } else {
2118 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
2119 }
2120
2121 /*
2122 * Use at least 32 zvol_threads but for many core system,
2123 * prefer 6 threads per taskq, but no more taskqs
2124 * than threads in them on large systems.
2125 *
2126 * taskq total
2127 * cpus taskqs threads threads
2128 * ------- ------- ------- -------
2129 * 1 1 32 32
2130 * 2 1 32 32
2131 * 4 1 32 32
2132 * 8 2 16 32
2133 * 16 3 11 33
2134 * 32 5 7 35
2135 * 64 8 8 64
2136 * 128 11 12 132
2137 * 256 16 16 256
2138 */
2139 zv_taskq_t *ztqs = &zvol_taskqs;
2140 int num_tqs = MIN(max_ncpus, zvol_num_taskqs);
2141 if (num_tqs == 0) {
2142 num_tqs = 1 + max_ncpus / 6;
2143 while (num_tqs * num_tqs > zvol_actual_threads)
2144 num_tqs--;
2145 }
2146
2147 int per_tq_thread = zvol_actual_threads / num_tqs;
2148 if (per_tq_thread * num_tqs < zvol_actual_threads)
2149 per_tq_thread++;
2150
2151 ztqs->tqs_cnt = num_tqs;
2152 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
2153
2154 for (uint_t i = 0; i < num_tqs; i++) {
2155 char name[32];
2156 (void) snprintf(name, sizeof (name), "%s_tq-%u",
2157 ZVOL_DRIVER, i);
2158 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
2159 maxclsyspri, per_tq_thread, INT_MAX,
2160 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2161 if (ztqs->tqs_taskq[i] == NULL) {
2162 for (int j = i - 1; j >= 0; j--)
2163 taskq_destroy(ztqs->tqs_taskq[j]);
2164 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2165 sizeof (taskq_t *));
2166 ztqs->tqs_taskq = NULL;
2167 return (SET_ERROR(ENOMEM));
2168 }
2169 }
2170
2171 list_create(&zvol_state_list, sizeof (zvol_state_t),
2172 offsetof(zvol_state_t, zv_next));
2173 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2174
2175 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2176 KM_SLEEP);
2177 for (i = 0; i < ZVOL_HT_SIZE; i++)
2178 INIT_HLIST_HEAD(&zvol_htable[i]);
2179
2180 return (0);
2181 }
2182
2183 void
zvol_fini_impl(void)2184 zvol_fini_impl(void)
2185 {
2186 zv_taskq_t *ztqs = &zvol_taskqs;
2187
2188 zvol_remove_minors_impl(NULL);
2189
2190 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2191 list_destroy(&zvol_state_list);
2192 rw_destroy(&zvol_state_lock);
2193
2194 if (ztqs->tqs_taskq == NULL) {
2195 ASSERT0(ztqs->tqs_cnt);
2196 } else {
2197 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
2198 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
2199 taskq_destroy(ztqs->tqs_taskq[i]);
2200 }
2201 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2202 sizeof (taskq_t *));
2203 ztqs->tqs_taskq = NULL;
2204 }
2205 }
2206
2207 ZFS_MODULE_PARAM(zfs_vol, zvol_, inhibit_dev, UINT, ZMOD_RW,
2208 "Do not create zvol device nodes");
2209 ZFS_MODULE_PARAM(zfs_vol, zvol_, prefetch_bytes, UINT, ZMOD_RW,
2210 "Prefetch N bytes at zvol start+end");
2211 ZFS_MODULE_PARAM(zfs_vol, zvol_vol, mode, UINT, ZMOD_RW,
2212 "Default volmode property value");
2213 ZFS_MODULE_PARAM(zfs_vol, zvol_, threads, UINT, ZMOD_RW,
2214 "Number of threads for I/O requests. Set to 0 to use all active CPUs");
2215 ZFS_MODULE_PARAM(zfs_vol, zvol_, num_taskqs, UINT, ZMOD_RW,
2216 "Number of zvol taskqs");
2217 ZFS_MODULE_PARAM(zfs_vol, zvol_, request_sync, UINT, ZMOD_RW,
2218 "Synchronously handle bio requests");
2219