xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 70999532eea52da609e90c003b583ee0bfa5246b)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26  * LLNL-CODE-403049.
27  *
28  * ZFS volume emulation driver.
29  *
30  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
31  * Volumes are accessed through the symbolic links named:
32  *
33  * /dev/<pool_name>/<dataset_name>
34  *
35  * Volumes are persistent through reboot and module load.  No user command
36  * needs to be run before opening and using a device.
37  *
38  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
39  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
40  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
41  * Copyright (c) 2024, 2025, Klara, Inc.
42  */
43 
44 /*
45  * Note on locking of zvol state structures.
46  *
47  * zvol_state_t represents the connection between a single dataset
48  * (DMU_OST_ZVOL) and the device "minor" (some OS-specific representation of a
49  * "disk" or "device" or "volume", eg, a /dev/zdXX node, a GEOM object, etc).
50  *
51  * The global zvol_state_lock is used to protect access to zvol_state_list and
52  * zvol_htable, which are the primary way to obtain a zvol_state_t from a name.
53  * It should not be used for anything not name-relateds, and you should avoid
54  * sleeping or waiting while its held. See zvol_find_by_name(), zvol_insert(),
55  * zvol_remove().
56  *
57  * The zv_state_lock is used to protect the contents of the associated
58  * zvol_state_t. Most of the zvol_state_t is dedicated to control and
59  * configuration; almost none of it is needed for data operations (that is,
60  * read, write, flush) so this lock is rarely taken during general IO. It
61  * should be released quickly; you should avoid sleeping or waiting while its
62  * held.
63  *
64  * zv_suspend_lock is used to suspend IO/data operations to a zvol. The read
65  * half should held for the duration of an IO operation. The write half should
66  * be taken when something to wait for IO to complete and the block further IO,
67  * eg for the duration of receive and rollback operations. This lock can be
68  * held for long periods of time.
69  *
70  * Thus, the following lock ordering appies.
71  * - take zvol_state_lock if necessary, to protect zvol_state_list
72  * - take zv_suspend_lock if necessary, by the code path in question
73  * - take zv_state_lock to protect zvol_state_t
74  *
75  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
76  * single-threaded (to preserve order of minor operations), and are executed
77  * through the zvol_task_cb that dispatches the specific operations. Therefore,
78  * these operations are serialized per pool. Consequently, we can be certain
79  * that for a given zvol, there is only one operation at a time in progress.
80  * That is why one can be sure that first, zvol_state_t for a given zvol is
81  * allocated and placed on zvol_state_list, and then other minor operations for
82  * this zvol are going to proceed in the order of issue.
83  */
84 
85 #include <sys/dataset_kstats.h>
86 #include <sys/dbuf.h>
87 #include <sys/dmu_traverse.h>
88 #include <sys/dsl_dataset.h>
89 #include <sys/dsl_prop.h>
90 #include <sys/dsl_dir.h>
91 #include <sys/zap.h>
92 #include <sys/zfeature.h>
93 #include <sys/zil_impl.h>
94 #include <sys/dmu_tx.h>
95 #include <sys/zio.h>
96 #include <sys/zfs_rlock.h>
97 #include <sys/spa_impl.h>
98 #include <sys/zvol.h>
99 #include <sys/zvol_impl.h>
100 
101 unsigned int zvol_inhibit_dev = 0;
102 unsigned int zvol_prefetch_bytes = (128 * 1024);
103 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
104 unsigned int zvol_threads = 0;
105 unsigned int zvol_num_taskqs = 0;
106 unsigned int zvol_request_sync = 0;
107 
108 struct hlist_head *zvol_htable;
109 static list_t zvol_state_list;
110 krwlock_t zvol_state_lock;
111 extern int zfs_bclone_wait_dirty;
112 zv_taskq_t zvol_taskqs;
113 
114 typedef enum {
115 	ZVOL_ASYNC_CREATE_MINORS,
116 	ZVOL_ASYNC_REMOVE_MINORS,
117 	ZVOL_ASYNC_RENAME_MINORS,
118 	ZVOL_ASYNC_SET_SNAPDEV,
119 	ZVOL_ASYNC_SET_VOLMODE,
120 	ZVOL_ASYNC_MAX
121 } zvol_async_op_t;
122 
123 typedef struct {
124 	zvol_async_op_t zt_op;
125 	char zt_name1[MAXNAMELEN];
126 	char zt_name2[MAXNAMELEN];
127 	uint64_t zt_value;
128 	uint32_t zt_total;
129 	uint32_t zt_done;
130 	int32_t zt_status;
131 	int zt_error;
132 } zvol_task_t;
133 
134 zv_request_task_t *
zv_request_task_create(zv_request_t zvr)135 zv_request_task_create(zv_request_t zvr)
136 {
137 	zv_request_task_t *task;
138 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
139 	taskq_init_ent(&task->ent);
140 	task->zvr = zvr;
141 	return (task);
142 }
143 
144 void
zv_request_task_free(zv_request_task_t * task)145 zv_request_task_free(zv_request_task_t *task)
146 {
147 	kmem_free(task, sizeof (*task));
148 }
149 
150 uint64_t
zvol_name_hash(const char * name)151 zvol_name_hash(const char *name)
152 {
153 	uint64_t crc = -1ULL;
154 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
155 	for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
156 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
157 	return (crc);
158 }
159 
160 /*
161  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
162  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
163  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
164  * before zv_state_lock. The mode argument indicates the mode (including none)
165  * for zv_suspend_lock to be taken.
166  */
167 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)168 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
169 {
170 	zvol_state_t *zv;
171 	struct hlist_node *p = NULL;
172 
173 	rw_enter(&zvol_state_lock, RW_READER);
174 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
175 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
176 		mutex_enter(&zv->zv_state_lock);
177 		if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
178 			/*
179 			 * this is the right zvol, take the locks in the
180 			 * right order
181 			 */
182 			if (mode != RW_NONE &&
183 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
184 				mutex_exit(&zv->zv_state_lock);
185 				rw_enter(&zv->zv_suspend_lock, mode);
186 				mutex_enter(&zv->zv_state_lock);
187 				/*
188 				 * zvol cannot be renamed as we continue
189 				 * to hold zvol_state_lock
190 				 */
191 				ASSERT(zv->zv_hash == hash &&
192 				    strcmp(zv->zv_name, name) == 0);
193 			}
194 			rw_exit(&zvol_state_lock);
195 			return (zv);
196 		}
197 		mutex_exit(&zv->zv_state_lock);
198 	}
199 	rw_exit(&zvol_state_lock);
200 
201 	return (NULL);
202 }
203 
204 /*
205  * Find a zvol_state_t given the name.
206  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
207  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
208  * before zv_state_lock. The mode argument indicates the mode (including none)
209  * for zv_suspend_lock to be taken.
210  */
211 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)212 zvol_find_by_name(const char *name, int mode)
213 {
214 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
215 }
216 
217 /*
218  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
219  */
220 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)221 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
222 {
223 	zfs_creat_t *zct = arg;
224 	nvlist_t *nvprops = zct->zct_props;
225 	int error;
226 	uint64_t volblocksize, volsize;
227 
228 	VERIFY0(nvlist_lookup_uint64(nvprops,
229 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize));
230 	if (nvlist_lookup_uint64(nvprops,
231 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
232 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
233 
234 	/*
235 	 * These properties must be removed from the list so the generic
236 	 * property setting step won't apply to them.
237 	 */
238 	VERIFY0(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)));
239 	(void) nvlist_remove_all(nvprops,
240 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
241 
242 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
243 	    DMU_OT_NONE, 0, tx);
244 	ASSERT0(error);
245 
246 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
247 	    DMU_OT_NONE, 0, tx);
248 	ASSERT0(error);
249 
250 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
251 	ASSERT0(error);
252 }
253 
254 /*
255  * ZFS_IOC_OBJSET_STATS entry point.
256  */
257 int
zvol_get_stats(objset_t * os,nvlist_t * nv)258 zvol_get_stats(objset_t *os, nvlist_t *nv)
259 {
260 	int error;
261 	dmu_object_info_t *doi;
262 	uint64_t val;
263 
264 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
265 	if (error)
266 		return (error);
267 
268 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
269 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
270 	error = dmu_object_info(os, ZVOL_OBJ, doi);
271 
272 	if (error == 0) {
273 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
274 		    doi->doi_data_block_size);
275 	}
276 
277 	kmem_free(doi, sizeof (dmu_object_info_t));
278 
279 	return (error);
280 }
281 
282 /*
283  * Sanity check volume size.
284  */
285 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)286 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
287 {
288 	if (volsize == 0)
289 		return (SET_ERROR(EINVAL));
290 
291 	if (volsize % blocksize != 0)
292 		return (SET_ERROR(EINVAL));
293 
294 #ifdef _ILP32
295 	if (volsize - 1 > SPEC_MAXOFFSET_T)
296 		return (SET_ERROR(EOVERFLOW));
297 #endif
298 	return (0);
299 }
300 
301 /*
302  * Ensure the zap is flushed then inform the VFS of the capacity change.
303  */
304 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)305 zvol_update_volsize(uint64_t volsize, objset_t *os)
306 {
307 	dmu_tx_t *tx;
308 	int error;
309 	uint64_t txg;
310 
311 	tx = dmu_tx_create(os);
312 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
313 	dmu_tx_mark_netfree(tx);
314 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
315 	if (error) {
316 		dmu_tx_abort(tx);
317 		return (error);
318 	}
319 	txg = dmu_tx_get_txg(tx);
320 
321 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
322 	    &volsize, tx);
323 	dmu_tx_commit(tx);
324 
325 	txg_wait_synced(dmu_objset_pool(os), txg);
326 
327 	if (error == 0)
328 		error = dmu_free_long_range(os,
329 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
330 
331 	return (error);
332 }
333 
334 /*
335  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
336  * size will result in a udev "change" event being generated.
337  */
338 int
zvol_set_volsize(const char * name,uint64_t volsize)339 zvol_set_volsize(const char *name, uint64_t volsize)
340 {
341 	objset_t *os = NULL;
342 	uint64_t readonly;
343 	int error;
344 	boolean_t owned = B_FALSE;
345 
346 	error = dsl_prop_get_integer(name,
347 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
348 	if (error != 0)
349 		return (error);
350 	if (readonly)
351 		return (SET_ERROR(EROFS));
352 
353 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
354 
355 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
356 	    RW_READ_HELD(&zv->zv_suspend_lock)));
357 
358 	if (zv == NULL || zv->zv_objset == NULL) {
359 		if (zv != NULL)
360 			rw_exit(&zv->zv_suspend_lock);
361 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
362 		    FTAG, &os)) != 0) {
363 			if (zv != NULL)
364 				mutex_exit(&zv->zv_state_lock);
365 			return (error);
366 		}
367 		owned = B_TRUE;
368 		if (zv != NULL)
369 			zv->zv_objset = os;
370 	} else {
371 		os = zv->zv_objset;
372 	}
373 
374 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
375 
376 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
377 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
378 		goto out;
379 
380 	error = zvol_update_volsize(volsize, os);
381 	if (error == 0 && zv != NULL) {
382 		zv->zv_volsize = volsize;
383 		zv->zv_changed = 1;
384 	}
385 out:
386 	kmem_free(doi, sizeof (dmu_object_info_t));
387 
388 	if (owned) {
389 		dmu_objset_disown(os, B_TRUE, FTAG);
390 		if (zv != NULL)
391 			zv->zv_objset = NULL;
392 	} else {
393 		rw_exit(&zv->zv_suspend_lock);
394 	}
395 
396 	if (zv != NULL)
397 		mutex_exit(&zv->zv_state_lock);
398 
399 	if (error == 0 && zv != NULL)
400 		zvol_os_update_volsize(zv, volsize);
401 
402 	return (error);
403 }
404 
405 /*
406  * Update volthreading.
407  */
408 int
zvol_set_volthreading(const char * name,boolean_t value)409 zvol_set_volthreading(const char *name, boolean_t value)
410 {
411 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
412 	if (zv == NULL)
413 		return (SET_ERROR(ENOENT));
414 	zv->zv_threading = value;
415 	mutex_exit(&zv->zv_state_lock);
416 	return (0);
417 }
418 
419 /*
420  * Update zvol ro property.
421  */
422 int
zvol_set_ro(const char * name,boolean_t value)423 zvol_set_ro(const char *name, boolean_t value)
424 {
425 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
426 	if (zv == NULL)
427 		return (-1);
428 	if (value) {
429 		zvol_os_set_disk_ro(zv, 1);
430 		zv->zv_flags |= ZVOL_RDONLY;
431 	} else {
432 		zvol_os_set_disk_ro(zv, 0);
433 		zv->zv_flags &= ~ZVOL_RDONLY;
434 	}
435 	mutex_exit(&zv->zv_state_lock);
436 	return (0);
437 }
438 
439 /*
440  * Sanity check volume block size.
441  */
442 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)443 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
444 {
445 	/* Record sizes above 128k need the feature to be enabled */
446 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
447 		spa_t *spa;
448 		int error;
449 
450 		if ((error = spa_open(name, &spa, FTAG)) != 0)
451 			return (error);
452 
453 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
454 			spa_close(spa, FTAG);
455 			return (SET_ERROR(ENOTSUP));
456 		}
457 
458 		/*
459 		 * We don't allow setting the property above 1MB,
460 		 * unless the tunable has been changed.
461 		 */
462 		if (volblocksize > zfs_max_recordsize) {
463 			spa_close(spa, FTAG);
464 			return (SET_ERROR(EDOM));
465 		}
466 
467 		spa_close(spa, FTAG);
468 	}
469 
470 	if (volblocksize < SPA_MINBLOCKSIZE ||
471 	    volblocksize > SPA_MAXBLOCKSIZE ||
472 	    !ISP2(volblocksize))
473 		return (SET_ERROR(EDOM));
474 
475 	return (0);
476 }
477 
478 /*
479  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
480  * implement DKIOCFREE/free-long-range.
481  */
482 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)483 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
484 {
485 	zvol_state_t *zv = arg1;
486 	lr_truncate_t *lr = arg2;
487 	uint64_t offset, length;
488 
489 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
490 
491 	if (byteswap)
492 		byteswap_uint64_array(lr, sizeof (*lr));
493 
494 	offset = lr->lr_offset;
495 	length = lr->lr_length;
496 
497 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
498 	dmu_tx_mark_netfree(tx);
499 	int error = dmu_tx_assign(tx, DMU_TX_WAIT);
500 	if (error != 0) {
501 		dmu_tx_abort(tx);
502 	} else {
503 		(void) zil_replaying(zv->zv_zilog, tx);
504 		dmu_tx_commit(tx);
505 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
506 		    length);
507 	}
508 
509 	return (error);
510 }
511 
512 /*
513  * Replay a TX_WRITE ZIL transaction that didn't get committed
514  * after a system failure
515  */
516 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)517 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
518 {
519 	zvol_state_t *zv = arg1;
520 	lr_write_t *lr = arg2;
521 	objset_t *os = zv->zv_objset;
522 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
523 	uint64_t offset, length;
524 	dmu_tx_t *tx;
525 	int error;
526 
527 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
528 
529 	if (byteswap)
530 		byteswap_uint64_array(lr, sizeof (*lr));
531 
532 	offset = lr->lr_offset;
533 	length = lr->lr_length;
534 
535 	/* If it's a dmu_sync() block, write the whole block */
536 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
537 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
538 		if (length < blocksize) {
539 			offset -= offset % blocksize;
540 			length = blocksize;
541 		}
542 	}
543 
544 	tx = dmu_tx_create(os);
545 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
546 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
547 	if (error) {
548 		dmu_tx_abort(tx);
549 	} else {
550 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
551 		(void) zil_replaying(zv->zv_zilog, tx);
552 		dmu_tx_commit(tx);
553 	}
554 
555 	return (error);
556 }
557 
558 /*
559  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
560  * after a system failure
561  */
562 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)563 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
564 {
565 	zvol_state_t *zv = arg1;
566 	lr_clone_range_t *lr = arg2;
567 	objset_t *os = zv->zv_objset;
568 	dmu_tx_t *tx;
569 	int error;
570 	uint64_t blksz;
571 	uint64_t off;
572 	uint64_t len;
573 
574 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
575 	ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
576 	    lr_bps[lr->lr_nbps]));
577 
578 	if (byteswap)
579 		byteswap_uint64_array(lr, sizeof (*lr));
580 
581 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
582 	    SPA_FEATURE_BLOCK_CLONING));
583 
584 	off = lr->lr_offset;
585 	len = lr->lr_length;
586 	blksz = lr->lr_blksz;
587 
588 	if ((off % blksz) != 0) {
589 		return (SET_ERROR(EINVAL));
590 	}
591 
592 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
593 	if (error != 0 || !zv->zv_dn)
594 		return (error);
595 	tx = dmu_tx_create(os);
596 	dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len, blksz);
597 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
598 	if (error != 0) {
599 		dmu_tx_abort(tx);
600 		goto out;
601 	}
602 	error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
603 	    tx, lr->lr_bps, lr->lr_nbps);
604 	if (error != 0) {
605 		dmu_tx_commit(tx);
606 		goto out;
607 	}
608 
609 	/*
610 	 * zil_replaying() not only check if we are replaying ZIL, but also
611 	 * updates the ZIL header to record replay progress.
612 	 */
613 	VERIFY(zil_replaying(zv->zv_zilog, tx));
614 	dmu_tx_commit(tx);
615 
616 out:
617 	dnode_rele(zv->zv_dn, zv);
618 	zv->zv_dn = NULL;
619 	return (error);
620 }
621 
622 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)623 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
624     uint64_t outoff, uint64_t len)
625 {
626 	zilog_t	*zilog_dst;
627 	zfs_locked_range_t *inlr, *outlr;
628 	objset_t *inos, *outos;
629 	dmu_tx_t *tx;
630 	blkptr_t *bps;
631 	size_t maxblocks;
632 	int error = 0;
633 
634 	rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
635 	if (zv_dst->zv_zilog == NULL) {
636 		rw_exit(&zv_dst->zv_suspend_lock);
637 		rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
638 		if (zv_dst->zv_zilog == NULL) {
639 			zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
640 			    zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
641 			zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
642 			VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
643 			    ZIL_REPLAY_NEEDED));
644 		}
645 		rw_downgrade(&zv_dst->zv_suspend_lock);
646 	}
647 	if (zv_src != zv_dst)
648 		rw_enter(&zv_src->zv_suspend_lock, RW_READER);
649 
650 	inos = zv_src->zv_objset;
651 	outos = zv_dst->zv_objset;
652 
653 	/*
654 	 * Sanity checks
655 	 */
656 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
657 	    SPA_FEATURE_BLOCK_CLONING)) {
658 		error = SET_ERROR(EOPNOTSUPP);
659 		goto out;
660 	}
661 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
662 		error = SET_ERROR(EXDEV);
663 		goto out;
664 	}
665 	if (inos->os_encrypted != outos->os_encrypted) {
666 		error = SET_ERROR(EXDEV);
667 		goto out;
668 	}
669 	if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
670 		error = SET_ERROR(EINVAL);
671 		goto out;
672 	}
673 	if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
674 		goto out;
675 	}
676 
677 	/*
678 	 * Do not read beyond boundary
679 	 */
680 	if (len > zv_src->zv_volsize - inoff)
681 		len = zv_src->zv_volsize - inoff;
682 	if (len > zv_dst->zv_volsize - outoff)
683 		len = zv_dst->zv_volsize - outoff;
684 	if (len == 0)
685 		goto out;
686 
687 	/*
688 	 * No overlapping if we are cloning within the same file
689 	 */
690 	if (zv_src == zv_dst) {
691 		if (inoff < outoff + len && outoff < inoff + len) {
692 			error = SET_ERROR(EINVAL);
693 			goto out;
694 		}
695 	}
696 
697 	/*
698 	 * Offsets and length must be at block boundaries
699 	 */
700 	if ((inoff % zv_src->zv_volblocksize) != 0 ||
701 	    (outoff % zv_dst->zv_volblocksize) != 0) {
702 		error = SET_ERROR(EINVAL);
703 		goto out;
704 	}
705 
706 	/*
707 	 * Length must be multiple of block size
708 	 */
709 	if ((len % zv_src->zv_volblocksize) != 0) {
710 		error = SET_ERROR(EINVAL);
711 		goto out;
712 	}
713 
714 	zilog_dst = zv_dst->zv_zilog;
715 	maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
716 	    sizeof (bps[0]);
717 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
718 	/*
719 	 * Maintain predictable lock order.
720 	 */
721 	if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
722 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
723 		    RL_READER);
724 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
725 		    RL_WRITER);
726 	} else {
727 		outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
728 		    RL_WRITER);
729 		inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
730 		    RL_READER);
731 	}
732 
733 	while (len > 0) {
734 		uint64_t size, last_synced_txg;
735 		size_t nbps = maxblocks;
736 		size = MIN(zv_src->zv_volblocksize * maxblocks, len);
737 		last_synced_txg = spa_last_synced_txg(
738 		    dmu_objset_spa(zv_src->zv_objset));
739 		error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
740 		    size, bps, &nbps);
741 		if (error != 0) {
742 			/*
743 			 * If we are trying to clone a block that was created
744 			 * in the current transaction group, the error will be
745 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
746 			 * return a shortened range to the caller so it can
747 			 * fallback, or wait for the next TXG and check again.
748 			 */
749 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
750 				txg_wait_synced(dmu_objset_pool
751 				    (zv_src->zv_objset), last_synced_txg + 1);
752 					continue;
753 			}
754 			break;
755 		}
756 
757 		tx = dmu_tx_create(zv_dst->zv_objset);
758 		dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size,
759 		    zv_src->zv_volblocksize);
760 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
761 		if (error != 0) {
762 			dmu_tx_abort(tx);
763 			break;
764 		}
765 		error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
766 		    tx, bps, nbps);
767 		if (error != 0) {
768 			dmu_tx_commit(tx);
769 			break;
770 		}
771 		zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
772 		    size, zv_src->zv_volblocksize, bps, nbps);
773 		dmu_tx_commit(tx);
774 		inoff += size;
775 		outoff += size;
776 		len -= size;
777 	}
778 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
779 	zfs_rangelock_exit(outlr);
780 	zfs_rangelock_exit(inlr);
781 	if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
782 		error = zil_commit(zilog_dst, ZVOL_OBJ);
783 	}
784 out:
785 	if (zv_src != zv_dst)
786 		rw_exit(&zv_src->zv_suspend_lock);
787 	rw_exit(&zv_dst->zv_suspend_lock);
788 	return (error);
789 }
790 
791 /*
792  * Handles TX_CLONE_RANGE transactions.
793  */
794 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)795 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
796     uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
797 {
798 	itx_t *itx;
799 	lr_clone_range_t *lr;
800 	uint64_t partlen, max_log_data;
801 	size_t partnbps;
802 
803 	if (zil_replaying(zilog, tx))
804 		return;
805 
806 	max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
807 
808 	while (nbps > 0) {
809 		partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
810 		partlen = partnbps * blksz;
811 		ASSERT3U(partlen, <, len + blksz);
812 		partlen = MIN(partlen, len);
813 
814 		itx = zil_itx_create(txtype,
815 		    sizeof (*lr) + sizeof (bps[0]) * partnbps);
816 		lr = (lr_clone_range_t *)&itx->itx_lr;
817 		lr->lr_foid = ZVOL_OBJ;
818 		lr->lr_offset = off;
819 		lr->lr_length = partlen;
820 		lr->lr_blksz = blksz;
821 		lr->lr_nbps = partnbps;
822 		memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
823 
824 		zil_itx_assign(zilog, itx, tx);
825 
826 		bps += partnbps;
827 		ASSERT3U(nbps, >=, partnbps);
828 		nbps -= partnbps;
829 		off += partlen;
830 		ASSERT3U(len, >=, partlen);
831 		len -= partlen;
832 	}
833 }
834 
835 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)836 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
837 {
838 	(void) arg1, (void) arg2, (void) byteswap;
839 	return (SET_ERROR(ENOTSUP));
840 }
841 
842 /*
843  * Callback vectors for replaying records.
844  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
845  */
846 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
847 	zvol_replay_err,	/* no such transaction type */
848 	zvol_replay_err,	/* TX_CREATE */
849 	zvol_replay_err,	/* TX_MKDIR */
850 	zvol_replay_err,	/* TX_MKXATTR */
851 	zvol_replay_err,	/* TX_SYMLINK */
852 	zvol_replay_err,	/* TX_REMOVE */
853 	zvol_replay_err,	/* TX_RMDIR */
854 	zvol_replay_err,	/* TX_LINK */
855 	zvol_replay_err,	/* TX_RENAME */
856 	zvol_replay_write,	/* TX_WRITE */
857 	zvol_replay_truncate,	/* TX_TRUNCATE */
858 	zvol_replay_err,	/* TX_SETATTR */
859 	zvol_replay_err,	/* TX_ACL_V0 */
860 	zvol_replay_err,	/* TX_ACL */
861 	zvol_replay_err,	/* TX_CREATE_ACL */
862 	zvol_replay_err,	/* TX_CREATE_ATTR */
863 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
864 	zvol_replay_err,	/* TX_MKDIR_ACL */
865 	zvol_replay_err,	/* TX_MKDIR_ATTR */
866 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
867 	zvol_replay_err,	/* TX_WRITE2 */
868 	zvol_replay_err,	/* TX_SETSAXATTR */
869 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
870 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
871 	zvol_replay_clone_range,	/* TX_CLONE_RANGE */
872 };
873 
874 /*
875  * zvol_log_write() handles TX_WRITE transactions.
876  */
877 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)878 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
879     uint64_t size, boolean_t commit)
880 {
881 	uint32_t blocksize = zv->zv_volblocksize;
882 	zilog_t *zilog = zv->zv_zilog;
883 	itx_wr_state_t write_state;
884 	uint64_t log_size = 0;
885 
886 	if (zil_replaying(zilog, tx))
887 		return;
888 
889 	write_state = zil_write_state(zilog, size, blocksize, B_FALSE, commit);
890 
891 	while (size) {
892 		itx_t *itx;
893 		lr_write_t *lr;
894 		itx_wr_state_t wr_state = write_state;
895 		ssize_t len = size;
896 
897 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
898 			wr_state = WR_NEED_COPY;
899 		else if (wr_state == WR_INDIRECT)
900 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
901 
902 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
903 		    (wr_state == WR_COPIED ? len : 0));
904 		lr = (lr_write_t *)&itx->itx_lr;
905 		if (wr_state == WR_COPIED &&
906 		    dmu_read_by_dnode(zv->zv_dn, offset, len, lr + 1,
907 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING) != 0) {
908 			zil_itx_destroy(itx, 0);
909 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
910 			lr = (lr_write_t *)&itx->itx_lr;
911 			wr_state = WR_NEED_COPY;
912 		}
913 
914 		log_size += itx->itx_size;
915 		if (wr_state == WR_NEED_COPY)
916 			log_size += len;
917 
918 		itx->itx_wr_state = wr_state;
919 		lr->lr_foid = ZVOL_OBJ;
920 		lr->lr_offset = offset;
921 		lr->lr_length = len;
922 		lr->lr_blkoff = 0;
923 		BP_ZERO(&lr->lr_blkptr);
924 
925 		itx->itx_private = zv;
926 
927 		zil_itx_assign(zilog, itx, tx);
928 
929 		offset += len;
930 		size -= len;
931 	}
932 
933 	dsl_pool_wrlog_count(zilog->zl_dmu_pool, log_size, tx->tx_txg);
934 }
935 
936 /*
937  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
938  */
939 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)940 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
941 {
942 	itx_t *itx;
943 	lr_truncate_t *lr;
944 	zilog_t *zilog = zv->zv_zilog;
945 
946 	if (zil_replaying(zilog, tx))
947 		return;
948 
949 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
950 	lr = (lr_truncate_t *)&itx->itx_lr;
951 	lr->lr_foid = ZVOL_OBJ;
952 	lr->lr_offset = off;
953 	lr->lr_length = len;
954 
955 	zil_itx_assign(zilog, itx, tx);
956 }
957 
958 
959 static void
zvol_get_done(zgd_t * zgd,int error)960 zvol_get_done(zgd_t *zgd, int error)
961 {
962 	(void) error;
963 	if (zgd->zgd_db)
964 		dmu_buf_rele(zgd->zgd_db, zgd);
965 
966 	zfs_rangelock_exit(zgd->zgd_lr);
967 
968 	kmem_free(zgd, sizeof (zgd_t));
969 }
970 
971 /*
972  * Get data to generate a TX_WRITE intent log record.
973  */
974 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)975 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
976     struct lwb *lwb, zio_t *zio)
977 {
978 	zvol_state_t *zv = arg;
979 	uint64_t offset = lr->lr_offset;
980 	uint64_t size = lr->lr_length;
981 	dmu_buf_t *db;
982 	zgd_t *zgd;
983 	int error;
984 
985 	ASSERT3P(lwb, !=, NULL);
986 	ASSERT3U(size, !=, 0);
987 
988 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
989 	zgd->zgd_lwb = lwb;
990 
991 	/*
992 	 * Write records come in two flavors: immediate and indirect.
993 	 * For small writes it's cheaper to store the data with the
994 	 * log record (immediate); for large writes it's cheaper to
995 	 * sync the data and get a pointer to it (indirect) so that
996 	 * we don't have to write the data twice.
997 	 */
998 	if (buf != NULL) { /* immediate write */
999 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1000 		    size, RL_READER);
1001 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1002 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1003 	} else { /* indirect write */
1004 		ASSERT3P(zio, !=, NULL);
1005 		/*
1006 		 * Have to lock the whole block to ensure when it's written out
1007 		 * and its checksum is being calculated that no one can change
1008 		 * the data. Contrarily to zfs_get_data we need not re-check
1009 		 * blocksize after we get the lock because it cannot be changed.
1010 		 */
1011 		size = zv->zv_volblocksize;
1012 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
1013 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1014 		    size, RL_READER);
1015 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
1016 		    &db);
1017 		if (error == 0) {
1018 			blkptr_t *bp = &lr->lr_blkptr;
1019 
1020 			zgd->zgd_db = db;
1021 			zgd->zgd_bp = bp;
1022 
1023 			ASSERT(db != NULL);
1024 			ASSERT(db->db_offset == offset);
1025 			ASSERT(db->db_size == size);
1026 
1027 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1028 			    zvol_get_done, zgd);
1029 
1030 			if (error == 0)
1031 				return (0);
1032 		}
1033 	}
1034 
1035 	zvol_get_done(zgd, error);
1036 
1037 	return (error);
1038 }
1039 
1040 /*
1041  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1042  */
1043 
1044 void
zvol_insert(zvol_state_t * zv)1045 zvol_insert(zvol_state_t *zv)
1046 {
1047 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1048 	list_insert_head(&zvol_state_list, zv);
1049 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1050 }
1051 
1052 /*
1053  * Simply remove the zvol from to list of zvols.
1054  */
1055 static void
zvol_remove(zvol_state_t * zv)1056 zvol_remove(zvol_state_t *zv)
1057 {
1058 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1059 	list_remove(&zvol_state_list, zv);
1060 	hlist_del(&zv->zv_hlink);
1061 }
1062 
1063 /*
1064  * Setup zv after we just own the zv->objset
1065  */
1066 static int
zvol_setup_zv(zvol_state_t * zv)1067 zvol_setup_zv(zvol_state_t *zv)
1068 {
1069 	uint64_t volsize;
1070 	int error;
1071 	uint64_t ro;
1072 	objset_t *os = zv->zv_objset;
1073 
1074 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1075 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1076 
1077 	zv->zv_zilog = NULL;
1078 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1079 
1080 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1081 	if (error)
1082 		return (error);
1083 
1084 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1085 	if (error)
1086 		return (error);
1087 
1088 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1089 	if (error)
1090 		return (error);
1091 
1092 	zvol_os_set_capacity(zv, volsize >> 9);
1093 	zv->zv_volsize = volsize;
1094 
1095 	if (ro || dmu_objset_is_snapshot(os) ||
1096 	    !spa_writeable(dmu_objset_spa(os))) {
1097 		zvol_os_set_disk_ro(zv, 1);
1098 		zv->zv_flags |= ZVOL_RDONLY;
1099 	} else {
1100 		zvol_os_set_disk_ro(zv, 0);
1101 		zv->zv_flags &= ~ZVOL_RDONLY;
1102 	}
1103 	return (0);
1104 }
1105 
1106 /*
1107  * Shutdown every zv_objset related stuff except zv_objset itself.
1108  * The is the reverse of zvol_setup_zv.
1109  */
1110 static void
zvol_shutdown_zv(zvol_state_t * zv)1111 zvol_shutdown_zv(zvol_state_t *zv)
1112 {
1113 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1114 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
1115 
1116 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1117 		ASSERT(zv->zv_zilog != NULL);
1118 		zil_close(zv->zv_zilog);
1119 	}
1120 
1121 	zv->zv_zilog = NULL;
1122 
1123 	dnode_rele(zv->zv_dn, zv);
1124 	zv->zv_dn = NULL;
1125 
1126 	/*
1127 	 * Evict cached data. We must write out any dirty data before
1128 	 * disowning the dataset.
1129 	 */
1130 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
1131 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1132 	dmu_objset_evict_dbufs(zv->zv_objset);
1133 }
1134 
1135 /*
1136  * return the proper tag for rollback and recv
1137  */
1138 void *
zvol_tag(zvol_state_t * zv)1139 zvol_tag(zvol_state_t *zv)
1140 {
1141 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1142 	return (zv->zv_open_count > 0 ? zv : NULL);
1143 }
1144 
1145 /*
1146  * Suspend the zvol for recv and rollback.
1147  */
1148 int
zvol_suspend(const char * name,zvol_state_t ** zvp)1149 zvol_suspend(const char *name, zvol_state_t **zvp)
1150 {
1151 	zvol_state_t *zv;
1152 
1153 	zv = zvol_find_by_name(name, RW_WRITER);
1154 
1155 	if (zv == NULL)
1156 		return (SET_ERROR(ENOENT));
1157 
1158 	/* block all I/O, release in zvol_resume. */
1159 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1160 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1161 
1162 	/*
1163 	 * If it's being removed, unlock and return error. It doesn't make any
1164 	 * sense to try to suspend a zvol being removed, but being here also
1165 	 * means that zvol_remove_minors_impl() is about to call zvol_remove()
1166 	 * and then destroy the zvol_state_t, so returning a pointer to it for
1167 	 * the caller to mess with would be a disaster anyway.
1168 	 */
1169 	if (zv->zv_flags & ZVOL_REMOVING) {
1170 		mutex_exit(&zv->zv_state_lock);
1171 		rw_exit(&zv->zv_suspend_lock);
1172 		/* NB: Returning EIO here to match zfsvfs_teardown() */
1173 		return (SET_ERROR(EIO));
1174 	}
1175 
1176 	atomic_inc(&zv->zv_suspend_ref);
1177 
1178 	if (zv->zv_open_count > 0)
1179 		zvol_shutdown_zv(zv);
1180 
1181 	/*
1182 	 * do not hold zv_state_lock across suspend/resume to
1183 	 * avoid locking up zvol lookups
1184 	 */
1185 	mutex_exit(&zv->zv_state_lock);
1186 
1187 	/* zv_suspend_lock is released in zvol_resume() */
1188 	*zvp = zv;
1189 	return (0);
1190 }
1191 
1192 int
zvol_resume(zvol_state_t * zv)1193 zvol_resume(zvol_state_t *zv)
1194 {
1195 	int error = 0;
1196 
1197 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1198 
1199 	mutex_enter(&zv->zv_state_lock);
1200 
1201 	if (zv->zv_open_count > 0) {
1202 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1203 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1204 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1205 		dmu_objset_rele(zv->zv_objset, zv);
1206 
1207 		error = zvol_setup_zv(zv);
1208 	}
1209 
1210 	mutex_exit(&zv->zv_state_lock);
1211 
1212 	rw_exit(&zv->zv_suspend_lock);
1213 	/*
1214 	 * We need this because we don't hold zvol_state_lock while releasing
1215 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1216 	 * zv_suspend_lock to determine it is safe to free because rwlock is
1217 	 * not inherent atomic.
1218 	 */
1219 	atomic_dec(&zv->zv_suspend_ref);
1220 
1221 	if (zv->zv_flags & ZVOL_REMOVING)
1222 		cv_broadcast(&zv->zv_removing_cv);
1223 
1224 	return (error);
1225 }
1226 
1227 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1228 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1229 {
1230 	objset_t *os;
1231 	int error;
1232 
1233 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1234 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1235 	ASSERT(mutex_owned(&spa_namespace_lock));
1236 
1237 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1238 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1239 	if (error)
1240 		return (error);
1241 
1242 	zv->zv_objset = os;
1243 
1244 	error = zvol_setup_zv(zv);
1245 	if (error) {
1246 		dmu_objset_disown(os, 1, zv);
1247 		zv->zv_objset = NULL;
1248 	}
1249 
1250 	return (error);
1251 }
1252 
1253 void
zvol_last_close(zvol_state_t * zv)1254 zvol_last_close(zvol_state_t *zv)
1255 {
1256 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1257 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1258 
1259 	if (zv->zv_flags & ZVOL_REMOVING)
1260 		cv_broadcast(&zv->zv_removing_cv);
1261 
1262 	zvol_shutdown_zv(zv);
1263 
1264 	dmu_objset_disown(zv->zv_objset, 1, zv);
1265 	zv->zv_objset = NULL;
1266 }
1267 
1268 typedef struct minors_job {
1269 	list_t *list;
1270 	list_node_t link;
1271 	/* input */
1272 	char *name;
1273 	/* output */
1274 	int error;
1275 } minors_job_t;
1276 
1277 /*
1278  * Prefetch zvol dnodes for the minors_job
1279  */
1280 static void
zvol_prefetch_minors_impl(void * arg)1281 zvol_prefetch_minors_impl(void *arg)
1282 {
1283 	minors_job_t *job = arg;
1284 	char *dsname = job->name;
1285 	objset_t *os = NULL;
1286 
1287 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1288 	    FTAG, &os);
1289 	if (job->error == 0) {
1290 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1291 		dmu_objset_disown(os, B_TRUE, FTAG);
1292 	}
1293 }
1294 
1295 /*
1296  * Mask errors to continue dmu_objset_find() traversal
1297  */
1298 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1299 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1300 {
1301 	minors_job_t *j = arg;
1302 	list_t *minors_list = j->list;
1303 	const char *name = j->name;
1304 
1305 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1306 
1307 	/* skip the designated dataset */
1308 	if (name && strcmp(dsname, name) == 0)
1309 		return (0);
1310 
1311 	/* at this point, the dsname should name a snapshot */
1312 	if (strchr(dsname, '@') == 0) {
1313 		dprintf("zvol_create_snap_minor_cb(): "
1314 		    "%s is not a snapshot name\n", dsname);
1315 	} else {
1316 		minors_job_t *job;
1317 		char *n = kmem_strdup(dsname);
1318 		if (n == NULL)
1319 			return (0);
1320 
1321 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1322 		job->name = n;
1323 		job->list = minors_list;
1324 		job->error = 0;
1325 		list_insert_tail(minors_list, job);
1326 		/* don't care if dispatch fails, because job->error is 0 */
1327 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1328 		    TQ_SLEEP);
1329 	}
1330 
1331 	return (0);
1332 }
1333 
1334 /*
1335  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1336  * we need to look for any clones also using the key. This function
1337  * is "best effort" - so we just skip over it if there are failures.
1338  */
1339 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1340 zvol_add_clones(const char *dsname, list_t *minors_list)
1341 {
1342 	/* Also check if it has clones */
1343 	dsl_dir_t *dd = NULL;
1344 	dsl_pool_t *dp = NULL;
1345 
1346 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1347 		return;
1348 
1349 	if (!spa_feature_is_enabled(dp->dp_spa,
1350 	    SPA_FEATURE_ENCRYPTION))
1351 		goto out;
1352 
1353 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1354 		goto out;
1355 
1356 	if (dsl_dir_phys(dd)->dd_clones == 0)
1357 		goto out;
1358 
1359 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1360 	zap_attribute_t *za = zap_attribute_alloc();
1361 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1362 
1363 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1364 	    zap_cursor_retrieve(zc, za) == 0;
1365 	    zap_cursor_advance(zc)) {
1366 		dsl_dataset_t *clone;
1367 		minors_job_t *job;
1368 
1369 		if (dsl_dataset_hold_obj(dd->dd_pool,
1370 		    za->za_first_integer, FTAG, &clone) == 0) {
1371 
1372 			char name[ZFS_MAX_DATASET_NAME_LEN];
1373 			dsl_dataset_name(clone, name);
1374 
1375 			char *n = kmem_strdup(name);
1376 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1377 			job->name = n;
1378 			job->list = minors_list;
1379 			job->error = 0;
1380 			list_insert_tail(minors_list, job);
1381 
1382 			dsl_dataset_rele(clone, FTAG);
1383 		}
1384 	}
1385 	zap_cursor_fini(zc);
1386 	zap_attribute_free(za);
1387 	kmem_free(zc, sizeof (zap_cursor_t));
1388 
1389 out:
1390 	if (dd != NULL)
1391 		dsl_dir_rele(dd, FTAG);
1392 	dsl_pool_rele(dp, FTAG);
1393 }
1394 
1395 /*
1396  * Mask errors to continue dmu_objset_find() traversal
1397  */
1398 static int
zvol_create_minors_cb(const char * dsname,void * arg)1399 zvol_create_minors_cb(const char *dsname, void *arg)
1400 {
1401 	uint64_t snapdev;
1402 	int error;
1403 	list_t *minors_list = arg;
1404 
1405 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1406 
1407 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1408 	if (error)
1409 		return (0);
1410 
1411 	/*
1412 	 * Given the name and the 'snapdev' property, create device minor nodes
1413 	 * with the linkages to zvols/snapshots as needed.
1414 	 * If the name represents a zvol, create a minor node for the zvol, then
1415 	 * check if its snapshots are 'visible', and if so, iterate over the
1416 	 * snapshots and create device minor nodes for those.
1417 	 */
1418 	if (strchr(dsname, '@') == 0) {
1419 		minors_job_t *job;
1420 		char *n = kmem_strdup(dsname);
1421 		if (n == NULL)
1422 			return (0);
1423 
1424 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1425 		job->name = n;
1426 		job->list = minors_list;
1427 		job->error = 0;
1428 		list_insert_tail(minors_list, job);
1429 		/* don't care if dispatch fails, because job->error is 0 */
1430 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1431 		    TQ_SLEEP);
1432 
1433 		zvol_add_clones(dsname, minors_list);
1434 
1435 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1436 			/*
1437 			 * traverse snapshots only, do not traverse children,
1438 			 * and skip the 'dsname'
1439 			 */
1440 			(void) dmu_objset_find(dsname,
1441 			    zvol_create_snap_minor_cb, (void *)job,
1442 			    DS_FIND_SNAPSHOTS);
1443 		}
1444 	} else {
1445 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1446 		    dsname);
1447 	}
1448 
1449 	return (0);
1450 }
1451 
1452 static void
zvol_task_update_status(zvol_task_t * task,uint64_t total,uint64_t done,int error)1453 zvol_task_update_status(zvol_task_t *task, uint64_t total, uint64_t done,
1454     int error)
1455 {
1456 
1457 	task->zt_total += total;
1458 	task->zt_done += done;
1459 	if (task->zt_total != task->zt_done) {
1460 		task->zt_status = -1;
1461 		if (error)
1462 			task->zt_error = error;
1463 	}
1464 }
1465 
1466 static void
zvol_task_report_status(zvol_task_t * task)1467 zvol_task_report_status(zvol_task_t *task)
1468 {
1469 #ifdef ZFS_DEBUG
1470 	static const char *const msg[] = {
1471 		"create",
1472 		"remove",
1473 		"rename",
1474 		"set snapdev",
1475 		"set volmode",
1476 		"unknown",
1477 	};
1478 
1479 	if (task->zt_status == 0)
1480 		return;
1481 
1482 	zvol_async_op_t op = MIN(task->zt_op, ZVOL_ASYNC_MAX);
1483 	if (task->zt_error) {
1484 		dprintf("The %s minors zvol task was not ok, last error %d\n",
1485 		    msg[op], task->zt_error);
1486 	} else {
1487 		dprintf("The %s minors zvol task was not ok\n", msg[op]);
1488 	}
1489 #else
1490 	(void) task;
1491 #endif
1492 }
1493 
1494 /*
1495  * Create minors for the specified dataset, including children and snapshots.
1496  * Pay attention to the 'snapdev' property and iterate over the snapshots
1497  * only if they are 'visible'. This approach allows one to assure that the
1498  * snapshot metadata is read from disk only if it is needed.
1499  *
1500  * The name can represent a dataset to be recursively scanned for zvols and
1501  * their snapshots, or a single zvol snapshot. If the name represents a
1502  * dataset, the scan is performed in two nested stages:
1503  * - scan the dataset for zvols, and
1504  * - for each zvol, create a minor node, then check if the zvol's snapshots
1505  *   are 'visible', and only then iterate over the snapshots if needed
1506  *
1507  * If the name represents a snapshot, a check is performed if the snapshot is
1508  * 'visible' (which also verifies that the parent is a zvol), and if so,
1509  * a minor node for that snapshot is created.
1510  */
1511 static void
zvol_create_minors_impl(zvol_task_t * task)1512 zvol_create_minors_impl(zvol_task_t *task)
1513 {
1514 	const char *name = task->zt_name1;
1515 	list_t minors_list;
1516 	minors_job_t *job;
1517 	uint64_t snapdev;
1518 	int total = 0, done = 0, last_error, error;
1519 
1520 	/*
1521 	 * Note: the dsl_pool_config_lock must not be held.
1522 	 * Minor node creation needs to obtain the zvol_state_lock.
1523 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1524 	 * config lock.  Therefore, we can't have the config lock now if
1525 	 * we are going to wait for the zvol_state_lock, because it
1526 	 * would be a lock order inversion which could lead to deadlock.
1527 	 */
1528 
1529 	if (zvol_inhibit_dev) {
1530 		return;
1531 	}
1532 
1533 	/*
1534 	 * This is the list for prefetch jobs. Whenever we found a match
1535 	 * during dmu_objset_find, we insert a minors_job to the list and do
1536 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1537 	 * any lock because all list operation is done on the current thread.
1538 	 *
1539 	 * We will use this list to do zvol_os_create_minor after prefetch
1540 	 * so we don't have to traverse using dmu_objset_find again.
1541 	 */
1542 	list_create(&minors_list, sizeof (minors_job_t),
1543 	    offsetof(minors_job_t, link));
1544 
1545 
1546 	if (strchr(name, '@') != NULL) {
1547 		error = dsl_prop_get_integer(name, "snapdev", &snapdev, NULL);
1548 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) {
1549 			error = zvol_os_create_minor(name);
1550 			if (error == 0) {
1551 				done++;
1552 			} else {
1553 				last_error = error;
1554 			}
1555 			total++;
1556 		}
1557 	} else {
1558 		fstrans_cookie_t cookie = spl_fstrans_mark();
1559 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1560 		    &minors_list, DS_FIND_CHILDREN);
1561 		spl_fstrans_unmark(cookie);
1562 	}
1563 
1564 	taskq_wait_outstanding(system_taskq, 0);
1565 
1566 	/*
1567 	 * Prefetch is completed, we can do zvol_os_create_minor
1568 	 * sequentially.
1569 	 */
1570 	while ((job = list_remove_head(&minors_list)) != NULL) {
1571 		if (!job->error) {
1572 			error = zvol_os_create_minor(job->name);
1573 			if (error == 0) {
1574 				done++;
1575 			} else {
1576 				last_error = error;
1577 			}
1578 		} else if (job->error == EINVAL) {
1579 			/*
1580 			 * The objset, with the name requested by current job
1581 			 * exist, but have the type different from zvol.
1582 			 * Just ignore this sort of errors.
1583 			 */
1584 			done++;
1585 		} else {
1586 			last_error = job->error;
1587 		}
1588 		total++;
1589 		kmem_strfree(job->name);
1590 		kmem_free(job, sizeof (minors_job_t));
1591 	}
1592 
1593 	list_destroy(&minors_list);
1594 	zvol_task_update_status(task, total, done, last_error);
1595 }
1596 
1597 /*
1598  * Remove minors for specified dataset and, optionally, its children and
1599  * snapshots.
1600  */
1601 static void
zvol_remove_minors_impl(zvol_task_t * task)1602 zvol_remove_minors_impl(zvol_task_t *task)
1603 {
1604 	zvol_state_t *zv, *zv_next;
1605 	const char *name = task ? task->zt_name1 : NULL;
1606 	int namelen = ((name) ? strlen(name) : 0);
1607 	boolean_t children = task ? !!task->zt_value : B_TRUE;
1608 
1609 	if (zvol_inhibit_dev)
1610 		return;
1611 
1612 	/*
1613 	 * We collect up zvols that we want to remove on a separate list, so
1614 	 * that we don't have to hold zvol_state_lock for the whole time.
1615 	 *
1616 	 * We can't remove them from the global lists until we're completely
1617 	 * done with them, because that would make them appear to ZFS-side ops
1618 	 * that they don't exist, and the name might be reused, which can't be
1619 	 * good.
1620 	 */
1621 	list_t remove_list;
1622 	list_create(&remove_list, sizeof (zvol_state_t),
1623 	    offsetof(zvol_state_t, zv_remove_node));
1624 
1625 	rw_enter(&zvol_state_lock, RW_READER);
1626 
1627 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1628 		zv_next = list_next(&zvol_state_list, zv);
1629 
1630 		mutex_enter(&zv->zv_state_lock);
1631 		if (zv->zv_flags & ZVOL_REMOVING) {
1632 			/* Another thread is handling shutdown, skip it. */
1633 			mutex_exit(&zv->zv_state_lock);
1634 			continue;
1635 		}
1636 
1637 		/*
1638 		 * This zvol should be removed if:
1639 		 * - no name was offered (ie removing all at shutdown); or
1640 		 * - name matches exactly; or
1641 		 * - we were asked to remove children, and
1642 		 *   - the start of the name matches, and
1643 		 *   - there is a '/' immediately after the matched name; or
1644 		 *   - there is a '@' immediately after the matched name
1645 		 */
1646 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1647 		    (children && strncmp(zv->zv_name, name, namelen) == 0 &&
1648 		    (zv->zv_name[namelen] == '/' ||
1649 		    zv->zv_name[namelen] == '@'))) {
1650 
1651 			/*
1652 			 * Matched, so mark it removal. We want to take the
1653 			 * write half of the suspend lock to make sure that
1654 			 * the zvol is not suspended, and give any data ops
1655 			 * chance to finish.
1656 			 */
1657 			mutex_exit(&zv->zv_state_lock);
1658 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
1659 			mutex_enter(&zv->zv_state_lock);
1660 
1661 			if (zv->zv_flags & ZVOL_REMOVING) {
1662 				/* Another thread has taken it, let them. */
1663 				mutex_exit(&zv->zv_state_lock);
1664 				rw_exit(&zv->zv_suspend_lock);
1665 				continue;
1666 			}
1667 
1668 			/*
1669 			 * Mark it and unlock. New entries will see the flag
1670 			 * and return ENXIO.
1671 			 */
1672 			zv->zv_flags |= ZVOL_REMOVING;
1673 			mutex_exit(&zv->zv_state_lock);
1674 			rw_exit(&zv->zv_suspend_lock);
1675 
1676 			/* Put it on the list for the next stage. */
1677 			list_insert_head(&remove_list, zv);
1678 		} else
1679 			mutex_exit(&zv->zv_state_lock);
1680 	}
1681 
1682 	rw_exit(&zvol_state_lock);
1683 
1684 	/* Didn't match any, nothing to do! */
1685 	if (list_is_empty(&remove_list)) {
1686 		if (task)
1687 			task->zt_error = SET_ERROR(ENOENT);
1688 		return;
1689 	}
1690 
1691 	/* Actually shut them all down. */
1692 	for (zv = list_head(&remove_list); zv != NULL; zv = zv_next) {
1693 		zv_next = list_next(&remove_list, zv);
1694 
1695 		mutex_enter(&zv->zv_state_lock);
1696 
1697 		/*
1698 		 * Still open or suspended, just wait. This can happen if, for
1699 		 * example, we managed to acquire zv_state_lock in the moments
1700 		 * where zvol_open() or zvol_release() are trading locks to
1701 		 * call zvol_first_open() or zvol_last_close().
1702 		 */
1703 		while (zv->zv_open_count > 0 ||
1704 		    atomic_read(&zv->zv_suspend_ref))
1705 			cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1706 
1707 		/*
1708 		 * No users, shut down the OS side. This may not remove the
1709 		 * minor from view immediately, depending on the kernel
1710 		 * specifics, but it will ensure that it is unusable and that
1711 		 * this zvol_state_t can never again be reached from an OS-side
1712 		 * operation.
1713 		 */
1714 		zvol_os_remove_minor(zv);
1715 		mutex_exit(&zv->zv_state_lock);
1716 
1717 		/* Remove it from the name lookup lists */
1718 		rw_enter(&zvol_state_lock, RW_WRITER);
1719 		zvol_remove(zv);
1720 		rw_exit(&zvol_state_lock);
1721 	}
1722 
1723 	/*
1724 	 * Our own references on remove_list is the last one, free them and
1725 	 * we're done.
1726 	 */
1727 	while ((zv = list_remove_head(&remove_list)) != NULL)
1728 		zvol_os_free(zv);
1729 
1730 	list_destroy(&remove_list);
1731 }
1732 
1733 /* Remove minor for this specific volume only */
1734 static int
zvol_remove_minor_impl(const char * name)1735 zvol_remove_minor_impl(const char *name)
1736 {
1737 	if (zvol_inhibit_dev)
1738 		return (0);
1739 
1740 	zvol_task_t task;
1741 	memset(&task, 0, sizeof (zvol_task_t));
1742 	strlcpy(task.zt_name1, name, sizeof (task.zt_name1));
1743 	task.zt_value = B_FALSE;
1744 
1745 	zvol_remove_minors_impl(&task);
1746 
1747 	return (task.zt_error);
1748 }
1749 
1750 /*
1751  * Rename minors for specified dataset including children and snapshots.
1752  */
1753 static void
zvol_rename_minors_impl(zvol_task_t * task)1754 zvol_rename_minors_impl(zvol_task_t *task)
1755 {
1756 	zvol_state_t *zv, *zv_next;
1757 	const char *oldname = task->zt_name1;
1758 	const char *newname = task->zt_name2;
1759 	int total = 0, done = 0, last_error, error, oldnamelen;
1760 
1761 	if (zvol_inhibit_dev)
1762 		return;
1763 
1764 	oldnamelen = strlen(oldname);
1765 
1766 	rw_enter(&zvol_state_lock, RW_READER);
1767 
1768 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1769 		zv_next = list_next(&zvol_state_list, zv);
1770 
1771 		mutex_enter(&zv->zv_state_lock);
1772 
1773 		if (strcmp(zv->zv_name, oldname) == 0) {
1774 			error = zvol_os_rename_minor(zv, newname);
1775 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1776 		    (zv->zv_name[oldnamelen] == '/' ||
1777 		    zv->zv_name[oldnamelen] == '@')) {
1778 			char *name = kmem_asprintf("%s%c%s", newname,
1779 			    zv->zv_name[oldnamelen],
1780 			    zv->zv_name + oldnamelen + 1);
1781 			error = zvol_os_rename_minor(zv, name);
1782 			kmem_strfree(name);
1783 		}
1784 		if (error) {
1785 			last_error = error;
1786 		} else {
1787 			done++;
1788 		}
1789 		total++;
1790 		mutex_exit(&zv->zv_state_lock);
1791 	}
1792 
1793 	rw_exit(&zvol_state_lock);
1794 	zvol_task_update_status(task, total, done, last_error);
1795 }
1796 
1797 typedef struct zvol_snapdev_cb_arg {
1798 	zvol_task_t *task;
1799 	uint64_t snapdev;
1800 } zvol_snapdev_cb_arg_t;
1801 
1802 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1803 zvol_set_snapdev_cb(const char *dsname, void *param)
1804 {
1805 	zvol_snapdev_cb_arg_t *arg = param;
1806 	int error = 0;
1807 
1808 	if (strchr(dsname, '@') == NULL)
1809 		return (0);
1810 
1811 	switch (arg->snapdev) {
1812 		case ZFS_SNAPDEV_VISIBLE:
1813 			error = zvol_os_create_minor(dsname);
1814 			break;
1815 		case ZFS_SNAPDEV_HIDDEN:
1816 			error = zvol_remove_minor_impl(dsname);
1817 			break;
1818 	}
1819 
1820 	zvol_task_update_status(arg->task, 1, error == 0, error);
1821 	return (0);
1822 }
1823 
1824 static void
zvol_set_snapdev_impl(zvol_task_t * task)1825 zvol_set_snapdev_impl(zvol_task_t *task)
1826 {
1827 	const char *name = task->zt_name1;
1828 	uint64_t snapdev = task->zt_value;
1829 
1830 	zvol_snapdev_cb_arg_t arg = {task, snapdev};
1831 	fstrans_cookie_t cookie = spl_fstrans_mark();
1832 	/*
1833 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1834 	 * in the dataset hierarchy. Here, we only scan snapshots.
1835 	 */
1836 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1837 	spl_fstrans_unmark(cookie);
1838 }
1839 
1840 static void
zvol_set_volmode_impl(zvol_task_t * task)1841 zvol_set_volmode_impl(zvol_task_t *task)
1842 {
1843 	const char *name = task->zt_name1;
1844 	uint64_t volmode = task->zt_value;
1845 	fstrans_cookie_t cookie;
1846 	uint64_t old_volmode;
1847 	zvol_state_t *zv;
1848 	int error;
1849 
1850 	if (strchr(name, '@') != NULL)
1851 		return;
1852 
1853 	/*
1854 	 * It's unfortunate we need to remove minors before we create new ones:
1855 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1856 	 * could be different when we set, for instance, volmode from "geom"
1857 	 * to "dev" (or vice versa).
1858 	 */
1859 	zv = zvol_find_by_name(name, RW_NONE);
1860 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1861 		return;
1862 	if (zv != NULL) {
1863 		old_volmode = zv->zv_volmode;
1864 		mutex_exit(&zv->zv_state_lock);
1865 		if (old_volmode == volmode)
1866 			return;
1867 		zvol_wait_close(zv);
1868 	}
1869 	cookie = spl_fstrans_mark();
1870 	switch (volmode) {
1871 		case ZFS_VOLMODE_NONE:
1872 			error = zvol_remove_minor_impl(name);
1873 			break;
1874 		case ZFS_VOLMODE_GEOM:
1875 		case ZFS_VOLMODE_DEV:
1876 			error = zvol_remove_minor_impl(name);
1877 			/*
1878 			 * The remove minor function call above, might be not
1879 			 * needed, if volmode was switched from 'none' value.
1880 			 * Ignore error in this case.
1881 			 */
1882 			if (error == ENOENT)
1883 				error = 0;
1884 			else if (error)
1885 				break;
1886 			error = zvol_os_create_minor(name);
1887 			break;
1888 		case ZFS_VOLMODE_DEFAULT:
1889 			error = zvol_remove_minor_impl(name);
1890 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1891 				break;
1892 			else /* if zvol_volmode is invalid defaults to "geom" */
1893 				error = zvol_os_create_minor(name);
1894 			break;
1895 	}
1896 	zvol_task_update_status(task, 1, error == 0, error);
1897 	spl_fstrans_unmark(cookie);
1898 }
1899 
1900 /*
1901  * The worker thread function performed asynchronously.
1902  */
1903 static void
zvol_task_cb(void * arg)1904 zvol_task_cb(void *arg)
1905 {
1906 	zvol_task_t *task = arg;
1907 
1908 	switch (task->zt_op) {
1909 	case ZVOL_ASYNC_CREATE_MINORS:
1910 		zvol_create_minors_impl(task);
1911 		break;
1912 	case ZVOL_ASYNC_REMOVE_MINORS:
1913 		zvol_remove_minors_impl(task);
1914 		break;
1915 	case ZVOL_ASYNC_RENAME_MINORS:
1916 		zvol_rename_minors_impl(task);
1917 		break;
1918 	case ZVOL_ASYNC_SET_SNAPDEV:
1919 		zvol_set_snapdev_impl(task);
1920 		break;
1921 	case ZVOL_ASYNC_SET_VOLMODE:
1922 		zvol_set_volmode_impl(task);
1923 		break;
1924 	default:
1925 		VERIFY(0);
1926 		break;
1927 	}
1928 
1929 	zvol_task_report_status(task);
1930 	kmem_free(task, sizeof (zvol_task_t));
1931 }
1932 
1933 typedef struct zvol_set_prop_int_arg {
1934 	const char *zsda_name;
1935 	uint64_t zsda_value;
1936 	zprop_source_t zsda_source;
1937 	zfs_prop_t zsda_prop;
1938 } zvol_set_prop_int_arg_t;
1939 
1940 /*
1941  * Sanity check the dataset for safe use by the sync task.  No additional
1942  * conditions are imposed.
1943  */
1944 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1945 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1946 {
1947 	zvol_set_prop_int_arg_t *zsda = arg;
1948 	dsl_pool_t *dp = dmu_tx_pool(tx);
1949 	dsl_dir_t *dd;
1950 	int error;
1951 
1952 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1953 	if (error != 0)
1954 		return (error);
1955 
1956 	dsl_dir_rele(dd, FTAG);
1957 
1958 	return (error);
1959 }
1960 
1961 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1962 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1963 {
1964 	zvol_set_prop_int_arg_t *zsda = arg;
1965 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
1966 	zvol_task_t *task;
1967 	uint64_t prop;
1968 
1969 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1970 	dsl_dataset_name(ds, dsname);
1971 
1972 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1973 		return (0);
1974 
1975 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1976 	if (zsda->zsda_prop == ZFS_PROP_VOLMODE) {
1977 		task->zt_op = ZVOL_ASYNC_SET_VOLMODE;
1978 	} else if (zsda->zsda_prop == ZFS_PROP_SNAPDEV) {
1979 		task->zt_op = ZVOL_ASYNC_SET_SNAPDEV;
1980 	} else {
1981 		kmem_free(task, sizeof (zvol_task_t));
1982 		return (0);
1983 	}
1984 	task->zt_value = prop;
1985 	strlcpy(task->zt_name1, dsname, sizeof (task->zt_name1));
1986 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1987 	    task, TQ_SLEEP);
1988 	return (0);
1989 }
1990 
1991 /*
1992  * Traverse all child datasets and apply the property appropriately.
1993  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1994  * dataset and read the effective "property" on every child in the callback
1995  * function: this is because the value is not guaranteed to be the same in the
1996  * whole dataset hierarchy.
1997  */
1998 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)1999 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
2000 {
2001 	zvol_set_prop_int_arg_t *zsda = arg;
2002 	dsl_pool_t *dp = dmu_tx_pool(tx);
2003 	dsl_dir_t *dd;
2004 	dsl_dataset_t *ds;
2005 	int error;
2006 
2007 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2008 
2009 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2010 	if (error == 0) {
2011 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
2012 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2013 		    &zsda->zsda_value, tx);
2014 		dsl_dataset_rele(ds, FTAG);
2015 	}
2016 
2017 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
2018 	    zsda, DS_FIND_CHILDREN);
2019 
2020 	dsl_dir_rele(dd, FTAG);
2021 }
2022 
2023 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)2024 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
2025     uint64_t val)
2026 {
2027 	zvol_set_prop_int_arg_t zsda;
2028 
2029 	zsda.zsda_name = ddname;
2030 	zsda.zsda_source = source;
2031 	zsda.zsda_value = val;
2032 	zsda.zsda_prop = prop;
2033 
2034 	return (dsl_sync_task(ddname, zvol_set_common_check,
2035 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2036 }
2037 
2038 void
zvol_create_minors(const char * name)2039 zvol_create_minors(const char *name)
2040 {
2041 	spa_t *spa;
2042 	zvol_task_t *task;
2043 	taskqid_t id;
2044 
2045 	if (spa_open(name, &spa, FTAG) != 0)
2046 		return;
2047 
2048 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2049 	task->zt_op = ZVOL_ASYNC_CREATE_MINORS;
2050 	strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2051 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2052 	if (id != TASKQID_INVALID)
2053 		taskq_wait_id(spa->spa_zvol_taskq, id);
2054 
2055 	spa_close(spa, FTAG);
2056 }
2057 
2058 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)2059 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2060 {
2061 	zvol_task_t *task;
2062 	taskqid_t id;
2063 
2064 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2065 	task->zt_op = ZVOL_ASYNC_REMOVE_MINORS;
2066 	strlcpy(task->zt_name1, name, sizeof (task->zt_name1));
2067 	task->zt_value = B_TRUE;
2068 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2069 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
2070 		taskq_wait_id(spa->spa_zvol_taskq, id);
2071 }
2072 
2073 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)2074 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2075     boolean_t async)
2076 {
2077 	zvol_task_t *task;
2078 	taskqid_t id;
2079 
2080 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2081 	task->zt_op = ZVOL_ASYNC_RENAME_MINORS;
2082 	strlcpy(task->zt_name1, name1, sizeof (task->zt_name1));
2083 	strlcpy(task->zt_name2, name2, sizeof (task->zt_name2));
2084 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2085 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
2086 		taskq_wait_id(spa->spa_zvol_taskq, id);
2087 }
2088 
2089 boolean_t
zvol_is_zvol(const char * name)2090 zvol_is_zvol(const char *name)
2091 {
2092 
2093 	return (zvol_os_is_zvol(name));
2094 }
2095 
2096 int
zvol_init_impl(void)2097 zvol_init_impl(void)
2098 {
2099 	int i;
2100 
2101 	/*
2102 	 * zvol_threads is the module param the user passes in.
2103 	 *
2104 	 * zvol_actual_threads is what we use internally, since the user can
2105 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
2106 	 */
2107 	static unsigned int zvol_actual_threads;
2108 
2109 	if (zvol_threads == 0) {
2110 		/*
2111 		 * See dde9380a1 for why 32 was chosen here.  This should
2112 		 * probably be refined to be some multiple of the number
2113 		 * of CPUs.
2114 		 */
2115 		zvol_actual_threads = MAX(max_ncpus, 32);
2116 	} else {
2117 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
2118 	}
2119 
2120 	/*
2121 	 * Use at least 32 zvol_threads but for many core system,
2122 	 * prefer 6 threads per taskq, but no more taskqs
2123 	 * than threads in them on large systems.
2124 	 *
2125 	 *                 taskq   total
2126 	 * cpus    taskqs  threads threads
2127 	 * ------- ------- ------- -------
2128 	 * 1       1       32       32
2129 	 * 2       1       32       32
2130 	 * 4       1       32       32
2131 	 * 8       2       16       32
2132 	 * 16      3       11       33
2133 	 * 32      5       7        35
2134 	 * 64      8       8        64
2135 	 * 128     11      12       132
2136 	 * 256     16      16       256
2137 	 */
2138 	zv_taskq_t *ztqs = &zvol_taskqs;
2139 	int num_tqs = MIN(max_ncpus, zvol_num_taskqs);
2140 	if (num_tqs == 0) {
2141 		num_tqs = 1 + max_ncpus / 6;
2142 		while (num_tqs * num_tqs > zvol_actual_threads)
2143 			num_tqs--;
2144 	}
2145 
2146 	int per_tq_thread = zvol_actual_threads / num_tqs;
2147 	if (per_tq_thread * num_tqs < zvol_actual_threads)
2148 		per_tq_thread++;
2149 
2150 	ztqs->tqs_cnt = num_tqs;
2151 	ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
2152 
2153 	for (uint_t i = 0; i < num_tqs; i++) {
2154 		char name[32];
2155 		(void) snprintf(name, sizeof (name), "%s_tq-%u",
2156 		    ZVOL_DRIVER, i);
2157 		ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
2158 		    maxclsyspri, per_tq_thread, INT_MAX,
2159 		    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2160 		if (ztqs->tqs_taskq[i] == NULL) {
2161 			for (int j = i - 1; j >= 0; j--)
2162 				taskq_destroy(ztqs->tqs_taskq[j]);
2163 			kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2164 			    sizeof (taskq_t *));
2165 			ztqs->tqs_taskq = NULL;
2166 			return (SET_ERROR(ENOMEM));
2167 		}
2168 	}
2169 
2170 	list_create(&zvol_state_list, sizeof (zvol_state_t),
2171 	    offsetof(zvol_state_t, zv_next));
2172 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2173 
2174 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2175 	    KM_SLEEP);
2176 	for (i = 0; i < ZVOL_HT_SIZE; i++)
2177 		INIT_HLIST_HEAD(&zvol_htable[i]);
2178 
2179 	return (0);
2180 }
2181 
2182 void
zvol_fini_impl(void)2183 zvol_fini_impl(void)
2184 {
2185 	zv_taskq_t *ztqs = &zvol_taskqs;
2186 
2187 	zvol_remove_minors_impl(NULL);
2188 
2189 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2190 	list_destroy(&zvol_state_list);
2191 	rw_destroy(&zvol_state_lock);
2192 
2193 	if (ztqs->tqs_taskq == NULL) {
2194 		ASSERT0(ztqs->tqs_cnt);
2195 	} else {
2196 		for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
2197 			ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
2198 			taskq_destroy(ztqs->tqs_taskq[i]);
2199 		}
2200 		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2201 		    sizeof (taskq_t *));
2202 		ztqs->tqs_taskq = NULL;
2203 	}
2204 }
2205 
2206 ZFS_MODULE_PARAM(zfs_vol, zvol_, inhibit_dev, UINT, ZMOD_RW,
2207 	"Do not create zvol device nodes");
2208 ZFS_MODULE_PARAM(zfs_vol, zvol_, prefetch_bytes, UINT, ZMOD_RW,
2209 	"Prefetch N bytes at zvol start+end");
2210 ZFS_MODULE_PARAM(zfs_vol, zvol_vol, mode, UINT, ZMOD_RW,
2211 	"Default volmode property value");
2212 ZFS_MODULE_PARAM(zfs_vol, zvol_, threads, UINT, ZMOD_RW,
2213 	"Number of threads for I/O requests. Set to 0 to use all active CPUs");
2214 ZFS_MODULE_PARAM(zfs_vol, zvol_, num_taskqs, UINT, ZMOD_RW,
2215 	"Number of zvol taskqs");
2216 ZFS_MODULE_PARAM(zfs_vol, zvol_, request_sync, UINT, ZMOD_RW,
2217 	"Synchronously handle bio requests");
2218