xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c (revision 36c970ed985ff3dd5443db4bf2aa58799028512c)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
25  * Copyright (c) 2024, 2025, Klara, Inc.
26  */
27 
28 #include <sys/dataset_kstats.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_traverse.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/zap.h>
35 #include <sys/zfeature.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_rlock.h>
40 #include <sys/spa_impl.h>
41 #include <sys/zvol.h>
42 #include <sys/zvol_impl.h>
43 #include <cityhash.h>
44 
45 #include <linux/blkdev_compat.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/workqueue.h>
48 #include <linux/blk-mq.h>
49 
50 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
51     struct request *rq, boolean_t force_sync);
52 
53 static unsigned int zvol_major = ZVOL_MAJOR;
54 static unsigned long zvol_max_discard_blocks = 16384;
55 
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static unsigned int zvol_open_timeout_ms = 1000;
58 #endif
59 
60 static unsigned int zvol_blk_mq_threads = 0;
61 static unsigned int zvol_blk_mq_actual_threads;
62 static boolean_t zvol_use_blk_mq = B_FALSE;
63 
64 /*
65  * The maximum number of volblocksize blocks to process per thread.  Typically,
66  * write heavy workloads preform better with higher values here, and read
67  * heavy workloads preform better with lower values, but that's not a hard
68  * and fast rule.  It's basically a knob to tune between "less overhead with
69  * less parallelism" and "more overhead, but more parallelism".
70  *
71  * '8' was chosen as a reasonable, balanced, default based off of sequential
72  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
73  */
74 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
75 
76 #ifndef	BLKDEV_DEFAULT_RQ
77 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
78 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
79 #endif
80 
81 /*
82  * Finalize our BIO or request.
83  */
84 static inline void
zvol_end_io(struct bio * bio,struct request * rq,int error)85 zvol_end_io(struct bio *bio, struct request *rq, int error)
86 {
87 	ASSERT3U(error, >=, 0);
88 	if (bio) {
89 		bio->bi_status = errno_to_bi_status(error);
90 		bio_endio(bio);
91 	} else {
92 		blk_mq_end_request(rq, errno_to_bi_status(error));
93 	}
94 }
95 
96 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
97 static unsigned int zvol_actual_blk_mq_queue_depth;
98 
99 struct zvol_state_os {
100 	struct gendisk		*zvo_disk;	/* generic disk */
101 	struct request_queue	*zvo_queue;	/* request queue */
102 	dev_t			zvo_dev;	/* device id */
103 
104 	struct blk_mq_tag_set tag_set;
105 
106 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
107 	boolean_t use_blk_mq;
108 };
109 
110 static struct ida zvol_ida;
111 
112 /*
113  * This is called when a new block multiqueue request comes in.  A request
114  * contains one or more BIOs.
115  */
zvol_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)116 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
117     const struct blk_mq_queue_data *bd)
118 {
119 	struct request *rq = bd->rq;
120 	zvol_state_t *zv = rq->q->queuedata;
121 
122 	/* Tell the kernel that we are starting to process this request */
123 	blk_mq_start_request(rq);
124 
125 	if (blk_rq_is_passthrough(rq)) {
126 		/* Skip non filesystem request */
127 		blk_mq_end_request(rq, BLK_STS_IOERR);
128 		return (BLK_STS_IOERR);
129 	}
130 
131 	zvol_request_impl(zv, NULL, rq, 0);
132 
133 	/* Acknowledge to the kernel that we got this request */
134 	return (BLK_STS_OK);
135 }
136 
137 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
138 	.queue_rq = zvol_mq_queue_rq,
139 };
140 
141 /* Initialize our blk-mq struct */
zvol_blk_mq_alloc_tag_set(zvol_state_t * zv)142 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
143 {
144 	struct zvol_state_os *zso = zv->zv_zso;
145 
146 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
147 
148 	/* Initialize tag set. */
149 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
150 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
151 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
152 	zso->tag_set.numa_node = NUMA_NO_NODE;
153 	zso->tag_set.cmd_size = 0;
154 
155 	/*
156 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
157 	 * zvol_request_impl()
158 	 */
159 	zso->tag_set.flags = BLK_MQ_F_BLOCKING;
160 
161 #ifdef BLK_MQ_F_SHOULD_MERGE
162 	/*
163 	 * Linux 6.14 removed BLK_MQ_F_SHOULD_MERGE and made it implicit.
164 	 * For older kernels, we set it.
165 	 */
166 	zso->tag_set.flags |= BLK_MQ_F_SHOULD_MERGE;
167 #endif
168 
169 	zso->tag_set.driver_data = zv;
170 
171 	return (blk_mq_alloc_tag_set(&zso->tag_set));
172 }
173 
174 /*
175  * Given a path, return TRUE if path is a ZVOL.
176  */
177 boolean_t
zvol_os_is_zvol(const char * path)178 zvol_os_is_zvol(const char *path)
179 {
180 	dev_t dev = 0;
181 
182 	if (vdev_lookup_bdev(path, &dev) != 0)
183 		return (B_FALSE);
184 
185 	if (MAJOR(dev) == zvol_major)
186 		return (B_TRUE);
187 
188 	return (B_FALSE);
189 }
190 
191 static void
zvol_write(zv_request_t * zvr)192 zvol_write(zv_request_t *zvr)
193 {
194 	struct bio *bio = zvr->bio;
195 	struct request *rq = zvr->rq;
196 	int error = 0;
197 	zfs_uio_t uio;
198 	zvol_state_t *zv = zvr->zv;
199 	struct request_queue *q;
200 	struct gendisk *disk;
201 	unsigned long start_time = 0;
202 	boolean_t acct = B_FALSE;
203 
204 	ASSERT3P(zv, !=, NULL);
205 	ASSERT3U(zv->zv_open_count, >, 0);
206 	ASSERT3P(zv->zv_zilog, !=, NULL);
207 
208 	q = zv->zv_zso->zvo_queue;
209 	disk = zv->zv_zso->zvo_disk;
210 
211 	/* bio marked as FLUSH need to flush before write */
212 	if (io_is_flush(bio, rq)) {
213 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
214 		if (error != 0) {
215 			rw_exit(&zv->zv_suspend_lock);
216 			zvol_end_io(bio, rq, -error);
217 			return;
218 		}
219 	}
220 
221 	/* Some requests are just for flush and nothing else. */
222 	if (io_size(bio, rq) == 0) {
223 		rw_exit(&zv->zv_suspend_lock);
224 		zvol_end_io(bio, rq, 0);
225 		return;
226 	}
227 
228 	zfs_uio_bvec_init(&uio, bio, rq);
229 
230 	ssize_t start_resid = uio.uio_resid;
231 
232 	/*
233 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
234 	 * and blk_mq_end_request(), so we can skip it here.
235 	 */
236 	if (bio) {
237 		acct = blk_queue_io_stat(q);
238 		if (acct) {
239 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
240 			    bio);
241 		}
242 	}
243 
244 	boolean_t sync =
245 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
246 
247 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
248 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
249 
250 	uint64_t volsize = zv->zv_volsize;
251 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
252 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
253 		uint64_t off = uio.uio_loffset;
254 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
255 
256 		if (bytes > volsize - off)	/* don't write past the end */
257 			bytes = volsize - off;
258 
259 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
260 
261 		/* This will only fail for ENOSPC */
262 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
263 		if (error) {
264 			dmu_tx_abort(tx);
265 			break;
266 		}
267 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx,
268 		    DMU_READ_PREFETCH);
269 		if (error == 0) {
270 			zvol_log_write(zv, tx, off, bytes, sync);
271 		}
272 		dmu_tx_commit(tx);
273 
274 		if (error)
275 			break;
276 	}
277 	zfs_rangelock_exit(lr);
278 
279 	int64_t nwritten = start_resid - uio.uio_resid;
280 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
281 	task_io_account_write(nwritten);
282 
283 	if (error == 0 && sync)
284 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
285 
286 	rw_exit(&zv->zv_suspend_lock);
287 
288 	if (bio && acct) {
289 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
290 	}
291 
292 	zvol_end_io(bio, rq, error);
293 }
294 
295 static void
zvol_write_task(void * arg)296 zvol_write_task(void *arg)
297 {
298 	zv_request_task_t *task = arg;
299 	zvol_write(&task->zvr);
300 	zv_request_task_free(task);
301 }
302 
303 static void
zvol_discard(zv_request_t * zvr)304 zvol_discard(zv_request_t *zvr)
305 {
306 	struct bio *bio = zvr->bio;
307 	struct request *rq = zvr->rq;
308 	zvol_state_t *zv = zvr->zv;
309 	uint64_t start = io_offset(bio, rq);
310 	uint64_t size = io_size(bio, rq);
311 	uint64_t end = start + size;
312 	boolean_t sync;
313 	int error = 0;
314 	dmu_tx_t *tx;
315 	struct request_queue *q = zv->zv_zso->zvo_queue;
316 	struct gendisk *disk = zv->zv_zso->zvo_disk;
317 	unsigned long start_time = 0;
318 	boolean_t acct = B_FALSE;
319 
320 	ASSERT3P(zv, !=, NULL);
321 	ASSERT3U(zv->zv_open_count, >, 0);
322 	ASSERT3P(zv->zv_zilog, !=, NULL);
323 
324 	if (bio) {
325 		acct = blk_queue_io_stat(q);
326 		if (acct) {
327 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
328 			    bio);
329 		}
330 	}
331 
332 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
333 
334 	if (end > zv->zv_volsize) {
335 		error = SET_ERROR(EIO);
336 		goto unlock;
337 	}
338 
339 	/*
340 	 * Align the request to volume block boundaries when a secure erase is
341 	 * not required.  This will prevent dnode_free_range() from zeroing out
342 	 * the unaligned parts which is slow (read-modify-write) and useless
343 	 * since we are not freeing any space by doing so.
344 	 */
345 	if (!io_is_secure_erase(bio, rq)) {
346 		start = P2ROUNDUP(start, zv->zv_volblocksize);
347 		end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
348 		size = end - start;
349 	}
350 
351 	if (start >= end)
352 		goto unlock;
353 
354 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
355 	    start, size, RL_WRITER);
356 
357 	tx = dmu_tx_create(zv->zv_objset);
358 	dmu_tx_mark_netfree(tx);
359 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
360 	if (error != 0) {
361 		dmu_tx_abort(tx);
362 	} else {
363 		zvol_log_truncate(zv, tx, start, size);
364 		dmu_tx_commit(tx);
365 		error = dmu_free_long_range(zv->zv_objset,
366 		    ZVOL_OBJ, start, size);
367 	}
368 	zfs_rangelock_exit(lr);
369 
370 	if (error == 0 && sync)
371 		error = zil_commit(zv->zv_zilog, ZVOL_OBJ);
372 
373 unlock:
374 	rw_exit(&zv->zv_suspend_lock);
375 
376 	if (bio && acct) {
377 		blk_generic_end_io_acct(q, disk, WRITE, bio,
378 		    start_time);
379 	}
380 
381 	zvol_end_io(bio, rq, error);
382 }
383 
384 static void
zvol_discard_task(void * arg)385 zvol_discard_task(void *arg)
386 {
387 	zv_request_task_t *task = arg;
388 	zvol_discard(&task->zvr);
389 	zv_request_task_free(task);
390 }
391 
392 static void
zvol_read(zv_request_t * zvr)393 zvol_read(zv_request_t *zvr)
394 {
395 	struct bio *bio = zvr->bio;
396 	struct request *rq = zvr->rq;
397 	int error = 0;
398 	zfs_uio_t uio;
399 	boolean_t acct = B_FALSE;
400 	zvol_state_t *zv = zvr->zv;
401 	struct request_queue *q;
402 	struct gendisk *disk;
403 	unsigned long start_time = 0;
404 
405 	ASSERT3P(zv, !=, NULL);
406 	ASSERT3U(zv->zv_open_count, >, 0);
407 
408 	zfs_uio_bvec_init(&uio, bio, rq);
409 
410 	q = zv->zv_zso->zvo_queue;
411 	disk = zv->zv_zso->zvo_disk;
412 
413 	ssize_t start_resid = uio.uio_resid;
414 
415 	/*
416 	 * When blk-mq is being used, accounting is done by
417 	 * blk_mq_start_request() and blk_mq_end_request().
418 	 */
419 	if (bio) {
420 		acct = blk_queue_io_stat(q);
421 		if (acct)
422 			start_time = blk_generic_start_io_acct(q, disk, READ,
423 			    bio);
424 	}
425 
426 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
427 	    uio.uio_loffset, uio.uio_resid, RL_READER);
428 
429 	uint64_t volsize = zv->zv_volsize;
430 
431 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
432 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
433 
434 		/* don't read past the end */
435 		if (bytes > volsize - uio.uio_loffset)
436 			bytes = volsize - uio.uio_loffset;
437 
438 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes,
439 		    DMU_READ_PREFETCH);
440 		if (error) {
441 			/* convert checksum errors into IO errors */
442 			if (error == ECKSUM)
443 				error = SET_ERROR(EIO);
444 			break;
445 		}
446 	}
447 	zfs_rangelock_exit(lr);
448 
449 	int64_t nread = start_resid - uio.uio_resid;
450 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
451 	task_io_account_read(nread);
452 
453 	rw_exit(&zv->zv_suspend_lock);
454 
455 	if (bio && acct) {
456 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
457 	}
458 
459 	zvol_end_io(bio, rq, error);
460 }
461 
462 static void
zvol_read_task(void * arg)463 zvol_read_task(void *arg)
464 {
465 	zv_request_task_t *task = arg;
466 	zvol_read(&task->zvr);
467 	zv_request_task_free(task);
468 }
469 
470 
471 /*
472  * Process a BIO or request
473  *
474  * Either 'bio' or 'rq' should be set depending on if we are processing a
475  * bio or a request (both should not be set).
476  *
477  * force_sync:	Set to 0 to defer processing to a background taskq
478  *			Set to 1 to process data synchronously
479  */
480 static void
zvol_request_impl(zvol_state_t * zv,struct bio * bio,struct request * rq,boolean_t force_sync)481 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
482     boolean_t force_sync)
483 {
484 	fstrans_cookie_t cookie = spl_fstrans_mark();
485 	uint64_t offset = io_offset(bio, rq);
486 	uint64_t size = io_size(bio, rq);
487 	int rw;
488 
489 	if (rq != NULL) {
490 		/*
491 		 * Flush & trim requests go down the zvol_write codepath.  Or
492 		 * more specifically:
493 		 *
494 		 * If request is a write, or if it's op_is_sync() and not a
495 		 * read, or if it's a flush, or if it's a discard, then send the
496 		 * request down the write path.
497 		 */
498 		if (op_is_write(rq->cmd_flags) ||
499 		    (op_is_sync(rq->cmd_flags) && req_op(rq) != REQ_OP_READ) ||
500 		    req_op(rq) == REQ_OP_FLUSH ||
501 		    op_is_discard(rq->cmd_flags)) {
502 			rw = WRITE;
503 		} else {
504 			rw = READ;
505 		}
506 	} else {
507 		rw = bio_data_dir(bio);
508 	}
509 
510 	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
511 		zvol_end_io(bio, rq, SET_ERROR(ENXIO));
512 		goto out;
513 	}
514 
515 	if (zvol_request_sync || zv->zv_threading == B_FALSE)
516 		force_sync = 1;
517 
518 	zv_request_t zvr = {
519 		.zv = zv,
520 		.bio = bio,
521 		.rq = rq,
522 	};
523 
524 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
525 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
526 		    zv->zv_zso->zvo_disk->disk_name,
527 		    (long long unsigned)offset,
528 		    (long unsigned)size);
529 
530 		zvol_end_io(bio, rq, SET_ERROR(EIO));
531 		goto out;
532 	}
533 
534 	zv_request_task_t *task;
535 	zv_taskq_t *ztqs = &zvol_taskqs;
536 	uint_t blk_mq_hw_queue = 0;
537 	uint_t tq_idx;
538 	uint_t taskq_hash;
539 	if (rq)
540 #ifdef HAVE_BLK_MQ_RQ_HCTX
541 		blk_mq_hw_queue = rq->mq_hctx->queue_num;
542 #else
543 		blk_mq_hw_queue = rq->q->queue_hw_ctx[
544 		    rq->q->mq_map[raw_smp_processor_id()]]->queue_num;
545 #endif
546 	taskq_hash = cityhash3((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
547 	    blk_mq_hw_queue);
548 	tq_idx = taskq_hash % ztqs->tqs_cnt;
549 
550 	if (rw == WRITE) {
551 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
552 			zvol_end_io(bio, rq, SET_ERROR(EROFS));
553 			goto out;
554 		}
555 
556 		/*
557 		 * Prevents the zvol from being suspended, or the ZIL being
558 		 * concurrently opened.  Will be released after the i/o
559 		 * completes.
560 		 */
561 		rw_enter(&zv->zv_suspend_lock, RW_READER);
562 
563 		/*
564 		 * Open a ZIL if this is the first time we have written to this
565 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
566 		 * than zv_state_lock so that we don't need to acquire an
567 		 * additional lock in this path.
568 		 */
569 		if (zv->zv_zilog == NULL) {
570 			rw_exit(&zv->zv_suspend_lock);
571 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
572 			if (zv->zv_zilog == NULL) {
573 				zv->zv_zilog = zil_open(zv->zv_objset,
574 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
575 				zv->zv_flags |= ZVOL_WRITTEN_TO;
576 				/* replay / destroy done in zvol_create_minor */
577 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
578 				    ZIL_REPLAY_NEEDED));
579 			}
580 			rw_downgrade(&zv->zv_suspend_lock);
581 		}
582 
583 		/*
584 		 * We don't want this thread to be blocked waiting for i/o to
585 		 * complete, so we instead wait from a taskq callback. The
586 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
587 		 * indirect block, or a read of a data block (if this is a
588 		 * partial-block write).  We will indicate that the i/o is
589 		 * complete by calling END_IO() from the taskq callback.
590 		 *
591 		 * This design allows the calling thread to continue and
592 		 * initiate more concurrent operations by calling
593 		 * zvol_request() again. There are typically only a small
594 		 * number of threads available to call zvol_request() (e.g.
595 		 * one per iSCSI target), so keeping the latency of
596 		 * zvol_request() low is important for performance.
597 		 *
598 		 * The zvol_request_sync module parameter allows this
599 		 * behavior to be altered, for performance evaluation
600 		 * purposes.  If the callback blocks, setting
601 		 * zvol_request_sync=1 will result in much worse performance.
602 		 *
603 		 * We can have up to zvol_threads concurrent i/o's being
604 		 * processed for all zvols on the system.  This is typically
605 		 * a vast improvement over the zvol_request_sync=1 behavior
606 		 * of one i/o at a time per zvol.  However, an even better
607 		 * design would be for zvol_request() to initiate the zio
608 		 * directly, and then be notified by the zio_done callback,
609 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
610 		 * interfaces lack this functionality (they block waiting for
611 		 * the i/o to complete).
612 		 */
613 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
614 			if (force_sync) {
615 				zvol_discard(&zvr);
616 			} else {
617 				task = zv_request_task_create(zvr);
618 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
619 				    zvol_discard_task, task, 0, &task->ent);
620 			}
621 		} else {
622 			if (force_sync) {
623 				zvol_write(&zvr);
624 			} else {
625 				task = zv_request_task_create(zvr);
626 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
627 				    zvol_write_task, task, 0, &task->ent);
628 			}
629 		}
630 	} else {
631 		/*
632 		 * The SCST driver, and possibly others, may issue READ I/Os
633 		 * with a length of zero bytes.  These empty I/Os contain no
634 		 * data and require no additional handling.
635 		 */
636 		if (size == 0) {
637 			zvol_end_io(bio, rq, 0);
638 			goto out;
639 		}
640 
641 		rw_enter(&zv->zv_suspend_lock, RW_READER);
642 
643 		/* See comment in WRITE case above. */
644 		if (force_sync) {
645 			zvol_read(&zvr);
646 		} else {
647 			task = zv_request_task_create(zvr);
648 			taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
649 			    zvol_read_task, task, 0, &task->ent);
650 		}
651 	}
652 
653 out:
654 	spl_fstrans_unmark(cookie);
655 }
656 
657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
658 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
659 static void
zvol_submit_bio(struct bio * bio)660 zvol_submit_bio(struct bio *bio)
661 #else
662 static blk_qc_t
663 zvol_submit_bio(struct bio *bio)
664 #endif
665 #else
666 static MAKE_REQUEST_FN_RET
667 zvol_request(struct request_queue *q, struct bio *bio)
668 #endif
669 {
670 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
671 #if defined(HAVE_BIO_BDEV_DISK)
672 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
673 #else
674 	struct request_queue *q = bio->bi_disk->queue;
675 #endif
676 #endif
677 	zvol_state_t *zv = q->queuedata;
678 
679 	zvol_request_impl(zv, bio, NULL, 0);
680 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
681 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
682 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
683 	return (BLK_QC_T_NONE);
684 #endif
685 }
686 
687 static int
688 #ifdef HAVE_BLK_MODE_T
zvol_open(struct gendisk * disk,blk_mode_t flag)689 zvol_open(struct gendisk *disk, blk_mode_t flag)
690 #else
691 zvol_open(struct block_device *bdev, fmode_t flag)
692 #endif
693 {
694 	zvol_state_t *zv;
695 	int error = 0;
696 	boolean_t drop_suspend = B_FALSE;
697 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
698 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
699 	hrtime_t start = gethrtime();
700 
701 retry:
702 #endif
703 
704 #ifdef HAVE_BLK_MODE_T
705 	zv = atomic_load_ptr(&disk->private_data);
706 #else
707 	zv = atomic_load_ptr(&bdev->bd_disk->private_data);
708 #endif
709 	if (zv == NULL) {
710 		return (-SET_ERROR(ENXIO));
711 	}
712 
713 	mutex_enter(&zv->zv_state_lock);
714 	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
715 		mutex_exit(&zv->zv_state_lock);
716 		return (-SET_ERROR(ENXIO));
717 	}
718 
719 	/*
720 	 * Make sure zvol is not suspended during first open
721 	 * (hold zv_suspend_lock) and respect proper lock acquisition
722 	 * ordering - zv_suspend_lock before zv_state_lock
723 	 */
724 	if (zv->zv_open_count == 0) {
725 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
726 			mutex_exit(&zv->zv_state_lock);
727 
728 			/*
729 			 * Removal may happen while the locks are down, so
730 			 * we can't trust zv any longer; we have to start over.
731 			 */
732 #ifdef HAVE_BLK_MODE_T
733 			zv = atomic_load_ptr(&disk->private_data);
734 #else
735 			zv = atomic_load_ptr(&bdev->bd_disk->private_data);
736 #endif
737 			if (zv == NULL)
738 				return (-SET_ERROR(ENXIO));
739 
740 			rw_enter(&zv->zv_suspend_lock, RW_READER);
741 			mutex_enter(&zv->zv_state_lock);
742 
743 			if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
744 				mutex_exit(&zv->zv_state_lock);
745 				rw_exit(&zv->zv_suspend_lock);
746 				return (-SET_ERROR(ENXIO));
747 			}
748 
749 			/* check to see if zv_suspend_lock is needed */
750 			if (zv->zv_open_count != 0) {
751 				rw_exit(&zv->zv_suspend_lock);
752 			} else {
753 				drop_suspend = B_TRUE;
754 			}
755 		} else {
756 			drop_suspend = B_TRUE;
757 		}
758 	}
759 
760 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
761 
762 	if (zv->zv_open_count == 0) {
763 		boolean_t drop_namespace = B_FALSE;
764 
765 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
766 
767 		/*
768 		 * In all other call paths the spa_namespace_lock is taken
769 		 * before the bdev->bd_mutex lock.  However, on open(2)
770 		 * the __blkdev_get() function calls fops->open() with the
771 		 * bdev->bd_mutex lock held.  This can result in a deadlock
772 		 * when zvols from one pool are used as vdevs in another.
773 		 *
774 		 * To prevent a lock inversion deadlock we preemptively
775 		 * take the spa_namespace_lock.  Normally the lock will not
776 		 * be contended and this is safe because spa_open_common()
777 		 * handles the case where the caller already holds the
778 		 * spa_namespace_lock.
779 		 *
780 		 * When the lock cannot be aquired after multiple retries
781 		 * this must be the vdev on zvol deadlock case and we have
782 		 * no choice but to return an error.  For 5.12 and older
783 		 * kernels returning -ERESTARTSYS will result in the
784 		 * bdev->bd_mutex being dropped, then reacquired, and
785 		 * fops->open() being called again.  This process can be
786 		 * repeated safely until both locks are acquired.  For 5.13
787 		 * and newer the -ERESTARTSYS retry logic was removed from
788 		 * the kernel so the only option is to return the error for
789 		 * the caller to handle it.
790 		 */
791 		if (!mutex_owned(&spa_namespace_lock)) {
792 			if (!mutex_tryenter(&spa_namespace_lock)) {
793 				mutex_exit(&zv->zv_state_lock);
794 				rw_exit(&zv->zv_suspend_lock);
795 				drop_suspend = B_FALSE;
796 
797 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
798 				schedule();
799 				return (-SET_ERROR(ERESTARTSYS));
800 #else
801 				if ((gethrtime() - start) > timeout)
802 					return (-SET_ERROR(ERESTARTSYS));
803 
804 				schedule_timeout_interruptible(
805 					MSEC_TO_TICK(10));
806 				goto retry;
807 #endif
808 			} else {
809 				drop_namespace = B_TRUE;
810 			}
811 		}
812 
813 		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
814 
815 		if (drop_namespace)
816 			mutex_exit(&spa_namespace_lock);
817 	}
818 
819 	if (error == 0) {
820 		if ((blk_mode_is_open_write(flag)) &&
821 		    (zv->zv_flags & ZVOL_RDONLY)) {
822 			if (zv->zv_open_count == 0)
823 				zvol_last_close(zv);
824 
825 			error = -SET_ERROR(EROFS);
826 		} else {
827 			zv->zv_open_count++;
828 		}
829 	}
830 
831 	mutex_exit(&zv->zv_state_lock);
832 	if (drop_suspend)
833 		rw_exit(&zv->zv_suspend_lock);
834 
835 	if (error == 0)
836 #ifdef HAVE_BLK_MODE_T
837 		disk_check_media_change(disk);
838 #else
839 		zfs_check_media_change(bdev);
840 #endif
841 
842 	return (error);
843 }
844 
845 static void
846 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
zvol_release(struct gendisk * disk)847 zvol_release(struct gendisk *disk)
848 #else
849 zvol_release(struct gendisk *disk, fmode_t unused)
850 #endif
851 {
852 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
853 	(void) unused;
854 #endif
855 	boolean_t drop_suspend = B_TRUE;
856 
857 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
858 	if (zv == NULL)
859 		return;
860 
861 	mutex_enter(&zv->zv_state_lock);
862 	ASSERT3U(zv->zv_open_count, >, 0);
863 	/*
864 	 * make sure zvol is not suspended during last close
865 	 * (hold zv_suspend_lock) and respect proper lock acquisition
866 	 * ordering - zv_suspend_lock before zv_state_lock
867 	 */
868 	if (zv->zv_open_count == 1) {
869 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
870 			mutex_exit(&zv->zv_state_lock);
871 			rw_enter(&zv->zv_suspend_lock, RW_READER);
872 			mutex_enter(&zv->zv_state_lock);
873 
874 			/*
875 			 * Unlike in zvol_open(), we don't check if removal
876 			 * started here, because we might be one of the openers
877 			 * that needs to be thrown out! If we're the last, we
878 			 * need to call zvol_last_close() below to finish
879 			 * cleanup. So, no special treatment for us.
880 			 */
881 
882 			/* check to see if zv_suspend_lock is needed */
883 			if (zv->zv_open_count != 1) {
884 				rw_exit(&zv->zv_suspend_lock);
885 				drop_suspend = B_FALSE;
886 			}
887 		}
888 	} else {
889 		drop_suspend = B_FALSE;
890 	}
891 
892 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
893 
894 	zv->zv_open_count--;
895 	if (zv->zv_open_count == 0) {
896 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
897 		zvol_last_close(zv);
898 	}
899 
900 	mutex_exit(&zv->zv_state_lock);
901 
902 	if (drop_suspend)
903 		rw_exit(&zv->zv_suspend_lock);
904 }
905 
906 static int
zvol_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)907 zvol_ioctl(struct block_device *bdev, fmode_t mode,
908     unsigned int cmd, unsigned long arg)
909 {
910 	int error = 0;
911 
912 	zvol_state_t *zv = atomic_load_ptr(&bdev->bd_disk->private_data);
913 	ASSERT3P(zv, !=, NULL);
914 	ASSERT3U(zv->zv_open_count, >, 0);
915 
916 	switch (cmd) {
917 	case BLKFLSBUF:
918 #ifdef HAVE_FSYNC_BDEV
919 		fsync_bdev(bdev);
920 #elif defined(HAVE_SYNC_BLOCKDEV)
921 		sync_blockdev(bdev);
922 #else
923 #error "Neither fsync_bdev() nor sync_blockdev() found"
924 #endif
925 		invalidate_bdev(bdev);
926 		rw_enter(&zv->zv_suspend_lock, RW_READER);
927 
928 		if (!(zv->zv_flags & ZVOL_RDONLY))
929 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
930 
931 		rw_exit(&zv->zv_suspend_lock);
932 		break;
933 
934 	case BLKZNAME:
935 		mutex_enter(&zv->zv_state_lock);
936 		error = -copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
937 		mutex_exit(&zv->zv_state_lock);
938 		if (error)
939 			error = SET_ERROR(error);
940 		break;
941 
942 	default:
943 		error = SET_ERROR(ENOTTY);
944 		break;
945 	}
946 
947 	return (-error);
948 }
949 
950 #ifdef CONFIG_COMPAT
951 static int
zvol_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)952 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
953     unsigned cmd, unsigned long arg)
954 {
955 	return (zvol_ioctl(bdev, mode, cmd, arg));
956 }
957 #else
958 #define	zvol_compat_ioctl	NULL
959 #endif
960 
961 static unsigned int
zvol_check_events(struct gendisk * disk,unsigned int clearing)962 zvol_check_events(struct gendisk *disk, unsigned int clearing)
963 {
964 	unsigned int mask = 0;
965 
966 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
967 
968 	if (zv != NULL) {
969 		mutex_enter(&zv->zv_state_lock);
970 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
971 		zv->zv_changed = 0;
972 		mutex_exit(&zv->zv_state_lock);
973 	}
974 
975 	return (mask);
976 }
977 
978 static int
zvol_revalidate_disk(struct gendisk * disk)979 zvol_revalidate_disk(struct gendisk *disk)
980 {
981 	zvol_state_t *zv = atomic_load_ptr(&disk->private_data);
982 
983 	if (zv != NULL) {
984 		mutex_enter(&zv->zv_state_lock);
985 		set_capacity(zv->zv_zso->zvo_disk,
986 		    zv->zv_volsize >> SECTOR_BITS);
987 		mutex_exit(&zv->zv_state_lock);
988 	}
989 
990 	return (0);
991 }
992 
993 int
zvol_os_update_volsize(zvol_state_t * zv,uint64_t volsize)994 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
995 {
996 	struct gendisk *disk = zv->zv_zso->zvo_disk;
997 
998 #if defined(HAVE_REVALIDATE_DISK_SIZE)
999 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
1000 #elif defined(HAVE_REVALIDATE_DISK)
1001 	revalidate_disk(disk);
1002 #else
1003 	zvol_revalidate_disk(disk);
1004 #endif
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Provide a simple virtual geometry for legacy compatibility.  For devices
1010  * smaller than 1 MiB a small head and sector count is used to allow very
1011  * tiny devices.  For devices over 1 Mib a standard head and sector count
1012  * is used to keep the cylinders count reasonable.
1013  */
1014 static int
zvol_getgeo(struct block_device * bdev,struct hd_geometry * geo)1015 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1016 {
1017 	sector_t sectors;
1018 
1019 	zvol_state_t *zv = atomic_load_ptr(&bdev->bd_disk->private_data);
1020 	ASSERT3P(zv, !=, NULL);
1021 	ASSERT3U(zv->zv_open_count, >, 0);
1022 
1023 	sectors = get_capacity(zv->zv_zso->zvo_disk);
1024 
1025 	if (sectors > 2048) {
1026 		geo->heads = 16;
1027 		geo->sectors = 63;
1028 	} else {
1029 		geo->heads = 2;
1030 		geo->sectors = 4;
1031 	}
1032 
1033 	geo->start = 0;
1034 	geo->cylinders = sectors / (geo->heads * geo->sectors);
1035 
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Why have two separate block_device_operations structs?
1041  *
1042  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
1043  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1044  * can't just change submit_bio dynamically at runtime.  So just create two
1045  * separate structs to get around this.
1046  */
1047 static const struct block_device_operations zvol_ops_blk_mq = {
1048 	.open			= zvol_open,
1049 	.release		= zvol_release,
1050 	.ioctl			= zvol_ioctl,
1051 	.compat_ioctl		= zvol_compat_ioctl,
1052 	.check_events		= zvol_check_events,
1053 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1054 	.revalidate_disk	= zvol_revalidate_disk,
1055 #endif
1056 	.getgeo			= zvol_getgeo,
1057 	.owner			= THIS_MODULE,
1058 };
1059 
1060 static const struct block_device_operations zvol_ops = {
1061 	.open			= zvol_open,
1062 	.release		= zvol_release,
1063 	.ioctl			= zvol_ioctl,
1064 	.compat_ioctl		= zvol_compat_ioctl,
1065 	.check_events		= zvol_check_events,
1066 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1067 	.revalidate_disk	= zvol_revalidate_disk,
1068 #endif
1069 	.getgeo			= zvol_getgeo,
1070 	.owner			= THIS_MODULE,
1071 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1072 	.submit_bio		= zvol_submit_bio,
1073 #endif
1074 };
1075 
1076 /*
1077  * Since 6.9, Linux has been removing queue limit setters in favour of an
1078  * initial queue_limits struct applied when the device is open. Since 6.11,
1079  * queue_limits is being extended to allow more things to be applied when the
1080  * device is open. Setters are also being removed for this.
1081  *
1082  * For OpenZFS, this means that depending on kernel version, some options may
1083  * be set up before the device is open, and some applied to an open device
1084  * (queue) after the fact.
1085  *
1086  * We manage this complexity by having our own limits struct,
1087  * zvol_queue_limits_t, in which we carry any queue config that we're
1088  * interested in setting. This structure is the same on all kernels.
1089  *
1090  * These limits are then applied to the queue at device open time by the most
1091  * appropriate method for the kernel.
1092  *
1093  * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
1094  * blk_alloc_disk() exists). This converts our limits struct to a proper Linux
1095  * struct queue_limits, and passes it in. Any fields added in later kernels are
1096  * (obviously) not set up here.
1097  *
1098  * zvol_queue_limits_apply() is called on all kernel versions after the queue
1099  * is created, and applies any remaining config. Before 6.9 that will be
1100  * everything, via setter methods. After 6.9 that will be whatever couldn't be
1101  * put into struct queue_limits. (This implies that zvol_queue_limits_apply()
1102  * will always be a no-op on the latest kernel we support).
1103  */
1104 typedef struct zvol_queue_limits {
1105 	unsigned int	zql_max_hw_sectors;
1106 	unsigned short	zql_max_segments;
1107 	unsigned int	zql_max_segment_size;
1108 	unsigned int	zql_io_opt;
1109 	unsigned int	zql_physical_block_size;
1110 	unsigned int	zql_max_discard_sectors;
1111 	unsigned int	zql_discard_granularity;
1112 } zvol_queue_limits_t;
1113 
1114 static void
zvol_queue_limits_init(zvol_queue_limits_t * limits,zvol_state_t * zv,boolean_t use_blk_mq)1115 zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
1116     boolean_t use_blk_mq)
1117 {
1118 	limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;
1119 
1120 	if (use_blk_mq) {
1121 		/*
1122 		 * IO requests can be really big (1MB).  When an IO request
1123 		 * comes in, it is passed off to zvol_read() or zvol_write()
1124 		 * in a new thread, where it is chunked up into 'volblocksize'
1125 		 * sized pieces and processed.  So for example, if the request
1126 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
1127 		 * thread will take that request and sequentially do ten 128k
1128 		 * IOs.  This is due to the fact that the thread needs to lock
1129 		 * each volblocksize sized block.  So you might be wondering:
1130 		 * "instead of passing the whole 1MB request to one thread,
1131 		 * why not pass ten individual 128k chunks to ten threads and
1132 		 * process the whole write in parallel?"  The short answer is
1133 		 * that there's a sweet spot number of chunks that balances
1134 		 * the greater parallelism with the added overhead of more
1135 		 * threads. The sweet spot can be different depending on if you
1136 		 * have a read or write  heavy workload.  Writes typically want
1137 		 * high chunk counts while reads typically want lower ones.  On
1138 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1139 		 * configuration, with volblocksize=8k, the sweet spot for good
1140 		 * sequential reads and writes was at 8 chunks.
1141 		 */
1142 
1143 		/*
1144 		 * Below we tell the kernel how big we want our requests
1145 		 * to be.  You would think that blk_queue_io_opt() would be
1146 		 * used to do this since it is used to "set optimal request
1147 		 * size for the queue", but that doesn't seem to do
1148 		 * anything - the kernel still gives you huge requests
1149 		 * with tons of little PAGE_SIZE segments contained within it.
1150 		 *
1151 		 * Knowing that the kernel will just give you PAGE_SIZE segments
1152 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
1153 		 * segments, and I want 'N' of them per request", where N is
1154 		 * the correct number of segments for the volblocksize and
1155 		 * number of chunks you want.
1156 		 */
1157 		if (zvol_blk_mq_blocks_per_thread != 0) {
1158 			unsigned int chunks;
1159 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1160 
1161 			limits->zql_max_segment_size = PAGE_SIZE;
1162 			limits->zql_max_segments =
1163 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE;
1164 		} else {
1165 			/*
1166 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
1167 			 * Max everything out.
1168 			 */
1169 			limits->zql_max_segments = UINT16_MAX;
1170 			limits->zql_max_segment_size = UINT_MAX;
1171 		}
1172 	} else {
1173 		limits->zql_max_segments = UINT16_MAX;
1174 		limits->zql_max_segment_size = UINT_MAX;
1175 	}
1176 
1177 	limits->zql_io_opt = DMU_MAX_ACCESS / 2;
1178 
1179 	limits->zql_physical_block_size = zv->zv_volblocksize;
1180 	limits->zql_max_discard_sectors =
1181 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
1182 	limits->zql_discard_granularity = zv->zv_volblocksize;
1183 }
1184 
1185 #ifdef HAVE_BLK_ALLOC_DISK_2ARG
1186 static void
zvol_queue_limits_convert(zvol_queue_limits_t * limits,struct queue_limits * qlimits)1187 zvol_queue_limits_convert(zvol_queue_limits_t *limits,
1188     struct queue_limits *qlimits)
1189 {
1190 	memset(qlimits, 0, sizeof (struct queue_limits));
1191 	qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
1192 	qlimits->max_segments = limits->zql_max_segments;
1193 	qlimits->max_segment_size = limits->zql_max_segment_size;
1194 	qlimits->io_opt = limits->zql_io_opt;
1195 	qlimits->physical_block_size = limits->zql_physical_block_size;
1196 	qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
1197 	qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
1198 	qlimits->discard_granularity = limits->zql_discard_granularity;
1199 #ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1200 	qlimits->features =
1201 	    BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
1202 #endif
1203 }
1204 #endif
1205 
1206 static void
zvol_queue_limits_apply(zvol_queue_limits_t * limits,struct request_queue * queue)1207 zvol_queue_limits_apply(zvol_queue_limits_t *limits,
1208     struct request_queue *queue)
1209 {
1210 #ifndef HAVE_BLK_ALLOC_DISK_2ARG
1211 	blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
1212 	blk_queue_max_segments(queue, limits->zql_max_segments);
1213 	blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
1214 	blk_queue_io_opt(queue, limits->zql_io_opt);
1215 	blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
1216 	blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
1217 	blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
1218 #endif
1219 #ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1220 	blk_queue_set_write_cache(queue, B_TRUE);
1221 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
1222 #endif
1223 }
1224 
1225 static int
zvol_alloc_non_blk_mq(struct zvol_state_os * zso,zvol_queue_limits_t * limits)1226 zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
1227 {
1228 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1229 #if defined(HAVE_BLK_ALLOC_DISK)
1230 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1231 	if (zso->zvo_disk == NULL)
1232 		return (1);
1233 
1234 	zso->zvo_disk->minors = ZVOL_MINORS;
1235 	zso->zvo_queue = zso->zvo_disk->queue;
1236 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1237 	struct queue_limits qlimits;
1238 	zvol_queue_limits_convert(limits, &qlimits);
1239 	struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
1240 	if (IS_ERR(disk)) {
1241 		zso->zvo_disk = NULL;
1242 		return (1);
1243 	}
1244 
1245 	zso->zvo_disk = disk;
1246 	zso->zvo_disk->minors = ZVOL_MINORS;
1247 	zso->zvo_queue = zso->zvo_disk->queue;
1248 
1249 #else
1250 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1251 	if (zso->zvo_queue == NULL)
1252 		return (1);
1253 
1254 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1255 	if (zso->zvo_disk == NULL) {
1256 		blk_cleanup_queue(zso->zvo_queue);
1257 		return (1);
1258 	}
1259 
1260 	zso->zvo_disk->queue = zso->zvo_queue;
1261 #endif /* HAVE_BLK_ALLOC_DISK */
1262 #else
1263 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1264 	if (zso->zvo_queue == NULL)
1265 		return (1);
1266 
1267 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1268 	if (zso->zvo_disk == NULL) {
1269 		blk_cleanup_queue(zso->zvo_queue);
1270 		return (1);
1271 	}
1272 
1273 	zso->zvo_disk->queue = zso->zvo_queue;
1274 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1275 
1276 	zvol_queue_limits_apply(limits, zso->zvo_queue);
1277 
1278 	return (0);
1279 
1280 }
1281 
1282 static int
zvol_alloc_blk_mq(zvol_state_t * zv,zvol_queue_limits_t * limits)1283 zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
1284 {
1285 	struct zvol_state_os *zso = zv->zv_zso;
1286 
1287 	/* Allocate our blk-mq tag_set */
1288 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1289 		return (1);
1290 
1291 #if defined(HAVE_BLK_ALLOC_DISK)
1292 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1293 	if (zso->zvo_disk == NULL) {
1294 		blk_mq_free_tag_set(&zso->tag_set);
1295 		return (1);
1296 	}
1297 	zso->zvo_queue = zso->zvo_disk->queue;
1298 	zso->zvo_disk->minors = ZVOL_MINORS;
1299 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1300 	struct queue_limits qlimits;
1301 	zvol_queue_limits_convert(limits, &qlimits);
1302 	struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
1303 	if (IS_ERR(disk)) {
1304 		zso->zvo_disk = NULL;
1305 		blk_mq_free_tag_set(&zso->tag_set);
1306 		return (1);
1307 	}
1308 
1309 	zso->zvo_disk = disk;
1310 	zso->zvo_queue = zso->zvo_disk->queue;
1311 	zso->zvo_disk->minors = ZVOL_MINORS;
1312 #else
1313 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1314 	if (zso->zvo_disk == NULL) {
1315 		blk_cleanup_queue(zso->zvo_queue);
1316 		blk_mq_free_tag_set(&zso->tag_set);
1317 		return (1);
1318 	}
1319 	/* Allocate queue */
1320 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1321 	if (IS_ERR(zso->zvo_queue)) {
1322 		blk_mq_free_tag_set(&zso->tag_set);
1323 		return (1);
1324 	}
1325 
1326 	/* Our queue is now created, assign it to our disk */
1327 	zso->zvo_disk->queue = zso->zvo_queue;
1328 #endif
1329 
1330 	zvol_queue_limits_apply(limits, zso->zvo_queue);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * Allocate memory for a new zvol_state_t and setup the required
1337  * request queue and generic disk structures for the block device.
1338  */
1339 static int
zvol_alloc(dev_t dev,const char * name,uint64_t volsize,uint64_t volblocksize,zvol_state_t ** zvp)1340 zvol_alloc(dev_t dev, const char *name, uint64_t volsize, uint64_t volblocksize,
1341     zvol_state_t **zvp)
1342 {
1343 	zvol_state_t *zv;
1344 	struct zvol_state_os *zso;
1345 	uint64_t volmode;
1346 	int ret;
1347 
1348 	ret = dsl_prop_get_integer(name, "volmode", &volmode, NULL);
1349 	if (ret)
1350 		return (ret);
1351 
1352 	if (volmode == ZFS_VOLMODE_DEFAULT)
1353 		volmode = zvol_volmode;
1354 
1355 	if (volmode == ZFS_VOLMODE_NONE)
1356 		return (0);
1357 
1358 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1359 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1360 	zv->zv_zso = zso;
1361 	zv->zv_volmode = volmode;
1362 	zv->zv_volsize = volsize;
1363 	zv->zv_volblocksize = volblocksize;
1364 
1365 	list_link_init(&zv->zv_next);
1366 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1367 	cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);
1368 
1369 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1370 
1371 	zvol_queue_limits_t limits;
1372 	zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);
1373 
1374 	/*
1375 	 * The block layer has 3 interfaces for getting BIOs:
1376 	 *
1377 	 * 1. blk-mq request queues (new)
1378 	 * 2. submit_bio() (oldest)
1379 	 * 3. regular request queues (old).
1380 	 *
1381 	 * Each of those interfaces has two permutations:
1382 	 *
1383 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1384 	 *    both the disk and its queue (5.14 kernel or newer)
1385 	 *
1386 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
1387 	 *    disk and the queue separately. (5.13 kernel or older)
1388 	 */
1389 	if (zv->zv_zso->use_blk_mq) {
1390 		ret = zvol_alloc_blk_mq(zv, &limits);
1391 		if (ret != 0)
1392 			goto out_kmem;
1393 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
1394 	} else {
1395 		ret = zvol_alloc_non_blk_mq(zso, &limits);
1396 		if (ret != 0)
1397 			goto out_kmem;
1398 		zso->zvo_disk->fops = &zvol_ops;
1399 	}
1400 
1401 	/* Limit read-ahead to a single page to prevent over-prefetching. */
1402 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
1403 
1404 	if (!zv->zv_zso->use_blk_mq) {
1405 		/* Disable write merging in favor of the ZIO pipeline. */
1406 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1407 	}
1408 
1409 	zso->zvo_queue->queuedata = zv;
1410 	zso->zvo_dev = dev;
1411 	zv->zv_open_count = 0;
1412 	strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
1413 
1414 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1415 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1416 
1417 	zso->zvo_disk->major = zvol_major;
1418 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1419 
1420 	/*
1421 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1422 	 * This is accomplished by limiting the number of minors for the
1423 	 * device to one and explicitly disabling partition scanning.
1424 	 */
1425 	if (volmode == ZFS_VOLMODE_DEV) {
1426 		zso->zvo_disk->minors = 1;
1427 		zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
1428 		zso->zvo_disk->flags |= GENHD_FL_NO_PART;
1429 	}
1430 
1431 	zso->zvo_disk->first_minor = (dev & MINORMASK);
1432 	zso->zvo_disk->private_data = zv;
1433 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1434 	    ZVOL_DEV_NAME, (dev & MINORMASK));
1435 
1436 	*zvp = zv;
1437 	return (ret);
1438 
1439 out_kmem:
1440 	kmem_free(zso, sizeof (struct zvol_state_os));
1441 	kmem_free(zv, sizeof (zvol_state_t));
1442 	return (ret);
1443 }
1444 
1445 void
zvol_os_remove_minor(zvol_state_t * zv)1446 zvol_os_remove_minor(zvol_state_t *zv)
1447 {
1448 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1449 	ASSERT0(zv->zv_open_count);
1450 	ASSERT0(atomic_read(&zv->zv_suspend_ref));
1451 	ASSERT(zv->zv_flags & ZVOL_REMOVING);
1452 
1453 	struct zvol_state_os *zso = zv->zv_zso;
1454 	zv->zv_zso = NULL;
1455 
1456 	/* Clearing private_data will make new callers return immediately. */
1457 	atomic_store_ptr(&zso->zvo_disk->private_data, NULL);
1458 
1459 	/*
1460 	 * Drop the state lock before calling del_gendisk(). There may be
1461 	 * callers waiting to acquire it, but del_gendisk() will block until
1462 	 * they exit, which would deadlock.
1463 	 */
1464 	mutex_exit(&zv->zv_state_lock);
1465 
1466 	del_gendisk(zso->zvo_disk);
1467 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1468 	(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
1469 #if defined(HAVE_BLK_CLEANUP_DISK)
1470 	blk_cleanup_disk(zso->zvo_disk);
1471 #else
1472 	put_disk(zso->zvo_disk);
1473 #endif
1474 #else
1475 	blk_cleanup_queue(zso->zvo_queue);
1476 	put_disk(zso->zvo_disk);
1477 #endif
1478 
1479 	if (zso->use_blk_mq)
1480 		blk_mq_free_tag_set(&zso->tag_set);
1481 
1482 	ida_simple_remove(&zvol_ida, MINOR(zso->zvo_dev) >> ZVOL_MINOR_BITS);
1483 
1484 	kmem_free(zso, sizeof (struct zvol_state_os));
1485 
1486 	mutex_enter(&zv->zv_state_lock);
1487 }
1488 
1489 void
zvol_os_free(zvol_state_t * zv)1490 zvol_os_free(zvol_state_t *zv)
1491 {
1492 
1493 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1494 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1495 	ASSERT0(zv->zv_open_count);
1496 	ASSERT0P(zv->zv_zso);
1497 
1498 	ASSERT0P(zv->zv_objset);
1499 	ASSERT0P(zv->zv_zilog);
1500 	ASSERT0P(zv->zv_dn);
1501 
1502 	rw_destroy(&zv->zv_suspend_lock);
1503 	zfs_rangelock_fini(&zv->zv_rangelock);
1504 
1505 	cv_destroy(&zv->zv_removing_cv);
1506 	mutex_destroy(&zv->zv_state_lock);
1507 	dataset_kstats_destroy(&zv->zv_kstat);
1508 
1509 	kmem_free(zv, sizeof (zvol_state_t));
1510 }
1511 
1512 void
zvol_wait_close(zvol_state_t * zv)1513 zvol_wait_close(zvol_state_t *zv)
1514 {
1515 }
1516 
1517 struct add_disk_work {
1518 	struct delayed_work work;
1519 	struct gendisk *disk;
1520 	int error;
1521 };
1522 
1523 static int
__zvol_os_add_disk(struct gendisk * disk)1524 __zvol_os_add_disk(struct gendisk *disk)
1525 {
1526 	int error = 0;
1527 #ifdef HAVE_ADD_DISK_RET
1528 	error = -add_disk(disk);
1529 	if (error)
1530 		error = SET_ERROR(error);
1531 #else
1532 	add_disk(disk);
1533 #endif
1534 	return (error);
1535 }
1536 
1537 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
1538 static void
zvol_os_add_disk_work(struct work_struct * work)1539 zvol_os_add_disk_work(struct work_struct *work)
1540 {
1541 	struct add_disk_work *add_disk_work;
1542 	add_disk_work = container_of(work, struct add_disk_work, work.work);
1543 	add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
1544 }
1545 #endif
1546 
1547 /*
1548  * SPECIAL CASE:
1549  *
1550  * This function basically calls add_disk() from a workqueue.   You may be
1551  * thinking: why not just call add_disk() directly?
1552  *
1553  * When you call add_disk(), the zvol appears to the world.  When this happens,
1554  * the kernel calls disk_scan_partitions() on the zvol, which behaves
1555  * differently on the 6.9+ kernels:
1556  *
1557  * - 6.8 and older kernels -
1558  * disk_scan_partitions()
1559  *	handle = bdev_open_by_dev(
1560  *		zvol_open()
1561  *	bdev_release(handle);
1562  *		zvol_release()
1563  *
1564  *
1565  * - 6.9+ kernels -
1566  * disk_scan_partitions()
1567  * 	file = bdev_file_open_by_dev()
1568  *		zvol_open()
1569  *	fput(file)
1570  *	< wait for return to userspace >
1571  *		zvol_release()
1572  *
1573  * The difference is that the bdev_release() from the 6.8 kernel is synchronous
1574  * while the fput() from the 6.9 kernel is async.  Or more specifically it's
1575  * async that has to wait until we return to userspace (since it adds the fput
1576  * into the caller's work queue with the TWA_RESUME flag set).  This is not the
1577  * behavior we want, since we want do things like create+destroy a zvol within
1578  * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
1579  * reference to the zvol while we're in the IOCTL, which can't wait until we
1580  * return to userspace.
1581  *
1582  * We can get around this since fput() has a special codepath for when it's
1583  * running in a kernel thread or interrupt.  In those cases, it just puts the
1584  * fput into the system workqueue, which we can force to run with
1585  * __flush_workqueue().  That is why we call add_disk() from a workqueue - so it
1586  * run from a kernel thread and "tricks" the fput() codepaths.
1587  *
1588  * Note that __flush_workqueue() is slowly getting deprecated.  This may be ok
1589  * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
1590  * fput) to happen, which it eventually, naturally, will from the system_wq
1591  * without us explicitly calling __flush_workqueue().
1592  */
1593 static int
zvol_os_add_disk(struct gendisk * disk)1594 zvol_os_add_disk(struct gendisk *disk)
1595 {
1596 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)	/* 6.9+ kernel */
1597 	struct add_disk_work add_disk_work;
1598 
1599 	INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
1600 	add_disk_work.disk = disk;
1601 	add_disk_work.error = 0;
1602 
1603 	/* Use *_delayed_work functions since they're not GPL'd */
1604 	schedule_delayed_work(&add_disk_work.work, 0);
1605 	flush_delayed_work(&add_disk_work.work);
1606 
1607 	__flush_workqueue(system_wq);
1608 	return (add_disk_work.error);
1609 #else	/* <= 6.8 kernel */
1610 	return (__zvol_os_add_disk(disk));
1611 #endif
1612 }
1613 
1614 /*
1615  * Create a block device minor node and setup the linkage between it
1616  * and the specified volume.  Once this function returns the block
1617  * device is live and ready for use.
1618  */
1619 int
zvol_os_create_minor(const char * name)1620 zvol_os_create_minor(const char *name)
1621 {
1622 	zvol_state_t *zv = NULL;
1623 	objset_t *os;
1624 	dmu_object_info_t *doi;
1625 	uint64_t volsize;
1626 	uint64_t len;
1627 	unsigned minor = 0;
1628 	int error = 0;
1629 	int idx;
1630 	uint64_t hash = zvol_name_hash(name);
1631 	uint64_t volthreading;
1632 	bool replayed_zil = B_FALSE;
1633 
1634 	if (zvol_inhibit_dev)
1635 		return (0);
1636 
1637 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1638 	if (idx < 0)
1639 		return (SET_ERROR(-idx));
1640 	minor = idx << ZVOL_MINOR_BITS;
1641 	if (MINOR(minor) != minor) {
1642 		/* too many partitions can cause an overflow */
1643 		zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1644 		    name, minor, MINOR(minor));
1645 		ida_simple_remove(&zvol_ida, idx);
1646 		return (SET_ERROR(EINVAL));
1647 	}
1648 
1649 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1650 	if (zv) {
1651 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1652 		mutex_exit(&zv->zv_state_lock);
1653 		ida_simple_remove(&zvol_ida, idx);
1654 		return (SET_ERROR(EEXIST));
1655 	}
1656 
1657 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1658 
1659 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1660 	if (error)
1661 		goto out_doi;
1662 
1663 	error = dmu_object_info(os, ZVOL_OBJ, doi);
1664 	if (error)
1665 		goto out_dmu_objset_disown;
1666 
1667 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1668 	if (error)
1669 		goto out_dmu_objset_disown;
1670 
1671 	error = zvol_alloc(MKDEV(zvol_major, minor), name,
1672 	    volsize, doi->doi_data_block_size, &zv);
1673 	if (error || zv == NULL)
1674 		goto out_dmu_objset_disown;
1675 
1676 	zv->zv_hash = hash;
1677 
1678 	if (dmu_objset_is_snapshot(os))
1679 		zv->zv_flags |= ZVOL_RDONLY;
1680 
1681 	zv->zv_objset = os;
1682 
1683 	/* Default */
1684 	zv->zv_threading = B_TRUE;
1685 	if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1686 	    == 0)
1687 		zv->zv_threading = volthreading;
1688 
1689 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1690 
1691 #ifdef QUEUE_FLAG_DISCARD
1692 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1693 #endif
1694 #ifdef QUEUE_FLAG_NONROT
1695 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1696 #endif
1697 #ifdef QUEUE_FLAG_ADD_RANDOM
1698 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1699 #endif
1700 	/* This flag was introduced in kernel version 4.12. */
1701 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1702 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1703 #endif
1704 
1705 	ASSERT0P(zv->zv_kstat.dk_kstats);
1706 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1707 	if (error)
1708 		goto out_dmu_objset_disown;
1709 	ASSERT0P(zv->zv_zilog);
1710 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1711 	if (spa_writeable(dmu_objset_spa(os))) {
1712 		if (zil_replay_disable)
1713 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1714 		else
1715 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1716 	}
1717 	if (replayed_zil)
1718 		zil_close(zv->zv_zilog);
1719 	zv->zv_zilog = NULL;
1720 
1721 	/*
1722 	 * When udev detects the addition of the device it will immediately
1723 	 * invoke blkid(8) to determine the type of content on the device.
1724 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
1725 	 * up this process.
1726 	 */
1727 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1728 	if (len > 0) {
1729 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1730 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1731 		    ZIO_PRIORITY_SYNC_READ);
1732 	}
1733 
1734 	zv->zv_objset = NULL;
1735 out_dmu_objset_disown:
1736 	dmu_objset_disown(os, B_TRUE, FTAG);
1737 out_doi:
1738 	kmem_free(doi, sizeof (dmu_object_info_t));
1739 
1740 	/*
1741 	 * Keep in mind that once add_disk() is called, the zvol is
1742 	 * announced to the world, and zvol_open()/zvol_release() can
1743 	 * be called at any time. Incidentally, add_disk() itself calls
1744 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1745 	 * directly as well.
1746 	 */
1747 	if (error == 0 && zv) {
1748 		rw_enter(&zvol_state_lock, RW_WRITER);
1749 		zvol_insert(zv);
1750 		rw_exit(&zvol_state_lock);
1751 		error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
1752 	} else {
1753 		ida_simple_remove(&zvol_ida, idx);
1754 	}
1755 
1756 	return (error);
1757 }
1758 
1759 int
zvol_os_rename_minor(zvol_state_t * zv,const char * newname)1760 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1761 {
1762 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1763 
1764 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1765 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1766 
1767 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1768 
1769 	/* move to new hashtable entry  */
1770 	zv->zv_hash = zvol_name_hash(newname);
1771 	hlist_del(&zv->zv_hlink);
1772 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1773 
1774 	/*
1775 	 * The block device's read-only state is briefly changed causing
1776 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
1777 	 * the name change and fixes the symlinks.  This does not change
1778 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1779 	 * changes.  This would normally be done using kobject_uevent() but
1780 	 * that is a GPL-only symbol which is why we need this workaround.
1781 	 */
1782 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1783 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1784 
1785 	dataset_kstats_rename(&zv->zv_kstat, newname);
1786 
1787 	return (0);
1788 }
1789 
1790 void
zvol_os_set_disk_ro(zvol_state_t * zv,int flags)1791 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1792 {
1793 
1794 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
1795 }
1796 
1797 void
zvol_os_set_capacity(zvol_state_t * zv,uint64_t capacity)1798 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1799 {
1800 
1801 	set_capacity(zv->zv_zso->zvo_disk, capacity);
1802 }
1803 
1804 int
zvol_init(void)1805 zvol_init(void)
1806 {
1807 	int error;
1808 
1809 	error = zvol_init_impl();
1810 	if (error) {
1811 		printk(KERN_INFO "ZFS: zvol_init_impl() failed %d\n", error);
1812 		return (error);
1813 	}
1814 
1815 	error = -register_blkdev(zvol_major, ZVOL_DRIVER);
1816 	if (error) {
1817 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1818 		return (SET_ERROR(error));
1819 	}
1820 
1821 	if (zvol_blk_mq_queue_depth == 0) {
1822 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1823 	} else {
1824 		zvol_actual_blk_mq_queue_depth =
1825 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1826 	}
1827 
1828 	if (zvol_blk_mq_threads == 0) {
1829 		zvol_blk_mq_actual_threads = num_online_cpus();
1830 	} else {
1831 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1832 		    1024);
1833 	}
1834 
1835 	ida_init(&zvol_ida);
1836 	return (0);
1837 }
1838 
1839 void
zvol_fini(void)1840 zvol_fini(void)
1841 {
1842 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
1843 
1844 	zvol_fini_impl();
1845 
1846 	ida_destroy(&zvol_ida);
1847 }
1848 
1849 module_param(zvol_major, uint, 0444);
1850 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1851 
1852 module_param(zvol_max_discard_blocks, ulong, 0444);
1853 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1854 
1855 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1856 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1857 
1858 module_param(zvol_use_blk_mq, uint, 0644);
1859 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1860 
1861 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1862 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1863 	"Process volblocksize blocks per thread");
1864 
1865 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1866 module_param(zvol_open_timeout_ms, uint, 0644);
1867 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1868 #endif
1869