1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40 * Copyright (c) 2024, Klara, Inc.
41 */
42
43 /*
44 * Note on locking of zvol state structures.
45 *
46 * These structures are used to maintain internal state used to emulate block
47 * devices on top of zvols. In particular, management of device minor number
48 * operations - create, remove, rename, and set_snapdev - involves access to
49 * these structures. The zvol_state_lock is primarily used to protect the
50 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
51 * of the zvol_state_t structures, as well as to make sure that when the
52 * time comes to remove the structure from the list, it is not in use, and
53 * therefore, it can be taken off zvol_state_list and freed.
54 *
55 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
56 * e.g. for the duration of receive and rollback operations. This lock can be
57 * held for significant periods of time. Given that it is undesirable to hold
58 * mutexes for long periods of time, the following lock ordering applies:
59 * - take zvol_state_lock if necessary, to protect zvol_state_list
60 * - take zv_suspend_lock if necessary, by the code path in question
61 * - take zv_state_lock to protect zvol_state_t
62 *
63 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
64 * single-threaded (to preserve order of minor operations), and are executed
65 * through the zvol_task_cb that dispatches the specific operations. Therefore,
66 * these operations are serialized per pool. Consequently, we can be certain
67 * that for a given zvol, there is only one operation at a time in progress.
68 * That is why one can be sure that first, zvol_state_t for a given zvol is
69 * allocated and placed on zvol_state_list, and then other minor operations
70 * for this zvol are going to proceed in the order of issue.
71 *
72 */
73
74 #include <sys/dataset_kstats.h>
75 #include <sys/dbuf.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dsl_dataset.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_dir.h>
80 #include <sys/zap.h>
81 #include <sys/zfeature.h>
82 #include <sys/zil_impl.h>
83 #include <sys/dmu_tx.h>
84 #include <sys/zio.h>
85 #include <sys/zfs_rlock.h>
86 #include <sys/spa_impl.h>
87 #include <sys/zvol.h>
88 #include <sys/zvol_impl.h>
89
90 unsigned int zvol_inhibit_dev = 0;
91 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
92
93 struct hlist_head *zvol_htable;
94 static list_t zvol_state_list;
95 krwlock_t zvol_state_lock;
96 extern int zfs_bclone_wait_dirty;
97
98 typedef enum {
99 ZVOL_ASYNC_REMOVE_MINORS,
100 ZVOL_ASYNC_RENAME_MINORS,
101 ZVOL_ASYNC_SET_SNAPDEV,
102 ZVOL_ASYNC_SET_VOLMODE,
103 ZVOL_ASYNC_MAX
104 } zvol_async_op_t;
105
106 typedef struct {
107 zvol_async_op_t op;
108 char name1[MAXNAMELEN];
109 char name2[MAXNAMELEN];
110 uint64_t value;
111 } zvol_task_t;
112
113 uint64_t
zvol_name_hash(const char * name)114 zvol_name_hash(const char *name)
115 {
116 uint64_t crc = -1ULL;
117 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
119 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
120 return (crc);
121 }
122
123 /*
124 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
125 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
126 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
127 * before zv_state_lock. The mode argument indicates the mode (including none)
128 * for zv_suspend_lock to be taken.
129 */
130 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)131 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
132 {
133 zvol_state_t *zv;
134 struct hlist_node *p = NULL;
135
136 rw_enter(&zvol_state_lock, RW_READER);
137 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
138 zv = hlist_entry(p, zvol_state_t, zv_hlink);
139 mutex_enter(&zv->zv_state_lock);
140 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
141 /*
142 * this is the right zvol, take the locks in the
143 * right order
144 */
145 if (mode != RW_NONE &&
146 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
147 mutex_exit(&zv->zv_state_lock);
148 rw_enter(&zv->zv_suspend_lock, mode);
149 mutex_enter(&zv->zv_state_lock);
150 /*
151 * zvol cannot be renamed as we continue
152 * to hold zvol_state_lock
153 */
154 ASSERT(zv->zv_hash == hash &&
155 strcmp(zv->zv_name, name) == 0);
156 }
157 rw_exit(&zvol_state_lock);
158 return (zv);
159 }
160 mutex_exit(&zv->zv_state_lock);
161 }
162 rw_exit(&zvol_state_lock);
163
164 return (NULL);
165 }
166
167 /*
168 * Find a zvol_state_t given the name.
169 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
170 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
171 * before zv_state_lock. The mode argument indicates the mode (including none)
172 * for zv_suspend_lock to be taken.
173 */
174 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)175 zvol_find_by_name(const char *name, int mode)
176 {
177 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
178 }
179
180 /*
181 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
182 */
183 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)184 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
185 {
186 zfs_creat_t *zct = arg;
187 nvlist_t *nvprops = zct->zct_props;
188 int error;
189 uint64_t volblocksize, volsize;
190
191 VERIFY(nvlist_lookup_uint64(nvprops,
192 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
193 if (nvlist_lookup_uint64(nvprops,
194 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
195 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
196
197 /*
198 * These properties must be removed from the list so the generic
199 * property setting step won't apply to them.
200 */
201 VERIFY(nvlist_remove_all(nvprops,
202 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
203 (void) nvlist_remove_all(nvprops,
204 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
205
206 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
207 DMU_OT_NONE, 0, tx);
208 ASSERT(error == 0);
209
210 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
211 DMU_OT_NONE, 0, tx);
212 ASSERT(error == 0);
213
214 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
215 ASSERT(error == 0);
216 }
217
218 /*
219 * ZFS_IOC_OBJSET_STATS entry point.
220 */
221 int
zvol_get_stats(objset_t * os,nvlist_t * nv)222 zvol_get_stats(objset_t *os, nvlist_t *nv)
223 {
224 int error;
225 dmu_object_info_t *doi;
226 uint64_t val;
227
228 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
229 if (error)
230 return (SET_ERROR(error));
231
232 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
233 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
234 error = dmu_object_info(os, ZVOL_OBJ, doi);
235
236 if (error == 0) {
237 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
238 doi->doi_data_block_size);
239 }
240
241 kmem_free(doi, sizeof (dmu_object_info_t));
242
243 return (SET_ERROR(error));
244 }
245
246 /*
247 * Sanity check volume size.
248 */
249 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)250 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
251 {
252 if (volsize == 0)
253 return (SET_ERROR(EINVAL));
254
255 if (volsize % blocksize != 0)
256 return (SET_ERROR(EINVAL));
257
258 #ifdef _ILP32
259 if (volsize - 1 > SPEC_MAXOFFSET_T)
260 return (SET_ERROR(EOVERFLOW));
261 #endif
262 return (0);
263 }
264
265 /*
266 * Ensure the zap is flushed then inform the VFS of the capacity change.
267 */
268 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)269 zvol_update_volsize(uint64_t volsize, objset_t *os)
270 {
271 dmu_tx_t *tx;
272 int error;
273 uint64_t txg;
274
275 tx = dmu_tx_create(os);
276 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
277 dmu_tx_mark_netfree(tx);
278 error = dmu_tx_assign(tx, TXG_WAIT);
279 if (error) {
280 dmu_tx_abort(tx);
281 return (SET_ERROR(error));
282 }
283 txg = dmu_tx_get_txg(tx);
284
285 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
286 &volsize, tx);
287 dmu_tx_commit(tx);
288
289 txg_wait_synced(dmu_objset_pool(os), txg);
290
291 if (error == 0)
292 error = dmu_free_long_range(os,
293 ZVOL_OBJ, volsize, DMU_OBJECT_END);
294
295 return (error);
296 }
297
298 /*
299 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
300 * size will result in a udev "change" event being generated.
301 */
302 int
zvol_set_volsize(const char * name,uint64_t volsize)303 zvol_set_volsize(const char *name, uint64_t volsize)
304 {
305 objset_t *os = NULL;
306 uint64_t readonly;
307 int error;
308 boolean_t owned = B_FALSE;
309
310 error = dsl_prop_get_integer(name,
311 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
312 if (error != 0)
313 return (SET_ERROR(error));
314 if (readonly)
315 return (SET_ERROR(EROFS));
316
317 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
318
319 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
320 RW_READ_HELD(&zv->zv_suspend_lock)));
321
322 if (zv == NULL || zv->zv_objset == NULL) {
323 if (zv != NULL)
324 rw_exit(&zv->zv_suspend_lock);
325 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
326 FTAG, &os)) != 0) {
327 if (zv != NULL)
328 mutex_exit(&zv->zv_state_lock);
329 return (SET_ERROR(error));
330 }
331 owned = B_TRUE;
332 if (zv != NULL)
333 zv->zv_objset = os;
334 } else {
335 os = zv->zv_objset;
336 }
337
338 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
339
340 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
341 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
342 goto out;
343
344 error = zvol_update_volsize(volsize, os);
345 if (error == 0 && zv != NULL) {
346 zv->zv_volsize = volsize;
347 zv->zv_changed = 1;
348 }
349 out:
350 kmem_free(doi, sizeof (dmu_object_info_t));
351
352 if (owned) {
353 dmu_objset_disown(os, B_TRUE, FTAG);
354 if (zv != NULL)
355 zv->zv_objset = NULL;
356 } else {
357 rw_exit(&zv->zv_suspend_lock);
358 }
359
360 if (zv != NULL)
361 mutex_exit(&zv->zv_state_lock);
362
363 if (error == 0 && zv != NULL)
364 zvol_os_update_volsize(zv, volsize);
365
366 return (SET_ERROR(error));
367 }
368
369 /*
370 * Update volthreading.
371 */
372 int
zvol_set_volthreading(const char * name,boolean_t value)373 zvol_set_volthreading(const char *name, boolean_t value)
374 {
375 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
376 if (zv == NULL)
377 return (ENOENT);
378 zv->zv_threading = value;
379 mutex_exit(&zv->zv_state_lock);
380 return (0);
381 }
382
383 /*
384 * Update zvol ro property.
385 */
386 int
zvol_set_ro(const char * name,boolean_t value)387 zvol_set_ro(const char *name, boolean_t value)
388 {
389 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
390 if (zv == NULL)
391 return (-1);
392 if (value) {
393 zvol_os_set_disk_ro(zv, 1);
394 zv->zv_flags |= ZVOL_RDONLY;
395 } else {
396 zvol_os_set_disk_ro(zv, 0);
397 zv->zv_flags &= ~ZVOL_RDONLY;
398 }
399 mutex_exit(&zv->zv_state_lock);
400 return (0);
401 }
402
403 /*
404 * Sanity check volume block size.
405 */
406 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)407 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
408 {
409 /* Record sizes above 128k need the feature to be enabled */
410 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
411 spa_t *spa;
412 int error;
413
414 if ((error = spa_open(name, &spa, FTAG)) != 0)
415 return (error);
416
417 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
418 spa_close(spa, FTAG);
419 return (SET_ERROR(ENOTSUP));
420 }
421
422 /*
423 * We don't allow setting the property above 1MB,
424 * unless the tunable has been changed.
425 */
426 if (volblocksize > zfs_max_recordsize)
427 return (SET_ERROR(EDOM));
428
429 spa_close(spa, FTAG);
430 }
431
432 if (volblocksize < SPA_MINBLOCKSIZE ||
433 volblocksize > SPA_MAXBLOCKSIZE ||
434 !ISP2(volblocksize))
435 return (SET_ERROR(EDOM));
436
437 return (0);
438 }
439
440 /*
441 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
442 * implement DKIOCFREE/free-long-range.
443 */
444 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)445 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
446 {
447 zvol_state_t *zv = arg1;
448 lr_truncate_t *lr = arg2;
449 uint64_t offset, length;
450
451 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
452
453 if (byteswap)
454 byteswap_uint64_array(lr, sizeof (*lr));
455
456 offset = lr->lr_offset;
457 length = lr->lr_length;
458
459 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
460 dmu_tx_mark_netfree(tx);
461 int error = dmu_tx_assign(tx, TXG_WAIT);
462 if (error != 0) {
463 dmu_tx_abort(tx);
464 } else {
465 (void) zil_replaying(zv->zv_zilog, tx);
466 dmu_tx_commit(tx);
467 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
468 length);
469 }
470
471 return (error);
472 }
473
474 /*
475 * Replay a TX_WRITE ZIL transaction that didn't get committed
476 * after a system failure
477 */
478 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)479 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
480 {
481 zvol_state_t *zv = arg1;
482 lr_write_t *lr = arg2;
483 objset_t *os = zv->zv_objset;
484 char *data = (char *)(lr + 1); /* data follows lr_write_t */
485 uint64_t offset, length;
486 dmu_tx_t *tx;
487 int error;
488
489 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
490
491 if (byteswap)
492 byteswap_uint64_array(lr, sizeof (*lr));
493
494 offset = lr->lr_offset;
495 length = lr->lr_length;
496
497 /* If it's a dmu_sync() block, write the whole block */
498 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
499 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
500 if (length < blocksize) {
501 offset -= offset % blocksize;
502 length = blocksize;
503 }
504 }
505
506 tx = dmu_tx_create(os);
507 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
508 error = dmu_tx_assign(tx, TXG_WAIT);
509 if (error) {
510 dmu_tx_abort(tx);
511 } else {
512 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
513 (void) zil_replaying(zv->zv_zilog, tx);
514 dmu_tx_commit(tx);
515 }
516
517 return (error);
518 }
519
520 /*
521 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
522 * after a system failure
523 */
524 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)525 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
526 {
527 zvol_state_t *zv = arg1;
528 lr_clone_range_t *lr = arg2;
529 objset_t *os = zv->zv_objset;
530 dmu_tx_t *tx;
531 int error;
532 uint64_t blksz;
533 uint64_t off;
534 uint64_t len;
535
536 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
537 ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
538 lr_bps[lr->lr_nbps]));
539
540 if (byteswap)
541 byteswap_uint64_array(lr, sizeof (*lr));
542
543 ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
544 SPA_FEATURE_BLOCK_CLONING));
545
546 off = lr->lr_offset;
547 len = lr->lr_length;
548 blksz = lr->lr_blksz;
549
550 if ((off % blksz) != 0) {
551 return (SET_ERROR(EINVAL));
552 }
553
554 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
555 if (error != 0 || !zv->zv_dn)
556 return (error);
557 tx = dmu_tx_create(os);
558 dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len);
559 error = dmu_tx_assign(tx, TXG_WAIT);
560 if (error != 0) {
561 dmu_tx_abort(tx);
562 goto out;
563 }
564 error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
565 tx, lr->lr_bps, lr->lr_nbps);
566 if (error != 0) {
567 dmu_tx_commit(tx);
568 goto out;
569 }
570
571 /*
572 * zil_replaying() not only check if we are replaying ZIL, but also
573 * updates the ZIL header to record replay progress.
574 */
575 VERIFY(zil_replaying(zv->zv_zilog, tx));
576 dmu_tx_commit(tx);
577
578 out:
579 dnode_rele(zv->zv_dn, zv);
580 zv->zv_dn = NULL;
581 return (error);
582 }
583
584 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)585 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
586 uint64_t outoff, uint64_t len)
587 {
588 zilog_t *zilog_dst;
589 zfs_locked_range_t *inlr, *outlr;
590 objset_t *inos, *outos;
591 dmu_tx_t *tx;
592 blkptr_t *bps;
593 size_t maxblocks;
594 int error = EINVAL;
595
596 rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
597 if (zv_dst->zv_zilog == NULL) {
598 rw_exit(&zv_dst->zv_suspend_lock);
599 rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
600 if (zv_dst->zv_zilog == NULL) {
601 zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
602 zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
603 zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
604 VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
605 ZIL_REPLAY_NEEDED));
606 }
607 rw_downgrade(&zv_dst->zv_suspend_lock);
608 }
609 if (zv_src != zv_dst)
610 rw_enter(&zv_src->zv_suspend_lock, RW_READER);
611
612 inos = zv_src->zv_objset;
613 outos = zv_dst->zv_objset;
614
615 /*
616 * Sanity checks
617 */
618 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
619 SPA_FEATURE_BLOCK_CLONING)) {
620 error = EOPNOTSUPP;
621 goto out;
622 }
623 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
624 error = EXDEV;
625 goto out;
626 }
627 if (inos->os_encrypted != outos->os_encrypted) {
628 error = EXDEV;
629 goto out;
630 }
631 if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
632 error = EINVAL;
633 goto out;
634 }
635 if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
636 error = 0;
637 goto out;
638 }
639
640 /*
641 * Do not read beyond boundary
642 */
643 if (len > zv_src->zv_volsize - inoff)
644 len = zv_src->zv_volsize - inoff;
645 if (len > zv_dst->zv_volsize - outoff)
646 len = zv_dst->zv_volsize - outoff;
647 if (len == 0) {
648 error = 0;
649 goto out;
650 }
651
652 /*
653 * No overlapping if we are cloning within the same file
654 */
655 if (zv_src == zv_dst) {
656 if (inoff < outoff + len && outoff < inoff + len) {
657 error = EINVAL;
658 goto out;
659 }
660 }
661
662 /*
663 * Offsets and length must be at block boundaries
664 */
665 if ((inoff % zv_src->zv_volblocksize) != 0 ||
666 (outoff % zv_dst->zv_volblocksize) != 0) {
667 error = EINVAL;
668 goto out;
669 }
670
671 /*
672 * Length must be multiple of block size
673 */
674 if ((len % zv_src->zv_volblocksize) != 0) {
675 error = EINVAL;
676 goto out;
677 }
678
679 zilog_dst = zv_dst->zv_zilog;
680 maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
681 sizeof (bps[0]);
682 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
683 /*
684 * Maintain predictable lock order.
685 */
686 if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
687 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
688 RL_READER);
689 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
690 RL_WRITER);
691 } else {
692 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
693 RL_WRITER);
694 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
695 RL_READER);
696 }
697
698 while (len > 0) {
699 uint64_t size, last_synced_txg;
700 size_t nbps = maxblocks;
701 size = MIN(zv_src->zv_volblocksize * maxblocks, len);
702 last_synced_txg = spa_last_synced_txg(
703 dmu_objset_spa(zv_src->zv_objset));
704 error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
705 size, bps, &nbps);
706 if (error != 0) {
707 /*
708 * If we are trying to clone a block that was created
709 * in the current transaction group, the error will be
710 * EAGAIN here. Based on zfs_bclone_wait_dirty either
711 * return a shortened range to the caller so it can
712 * fallback, or wait for the next TXG and check again.
713 */
714 if (error == EAGAIN && zfs_bclone_wait_dirty) {
715 txg_wait_synced(dmu_objset_pool
716 (zv_src->zv_objset), last_synced_txg + 1);
717 continue;
718 }
719 break;
720 }
721
722 tx = dmu_tx_create(zv_dst->zv_objset);
723 dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size);
724 error = dmu_tx_assign(tx, TXG_WAIT);
725 if (error != 0) {
726 dmu_tx_abort(tx);
727 break;
728 }
729 error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
730 tx, bps, nbps);
731 if (error != 0) {
732 dmu_tx_commit(tx);
733 break;
734 }
735 zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
736 size, zv_src->zv_volblocksize, bps, nbps);
737 dmu_tx_commit(tx);
738 inoff += size;
739 outoff += size;
740 len -= size;
741 }
742 vmem_free(bps, sizeof (bps[0]) * maxblocks);
743 zfs_rangelock_exit(outlr);
744 zfs_rangelock_exit(inlr);
745 if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
746 zil_commit(zilog_dst, ZVOL_OBJ);
747 }
748 out:
749 if (zv_src != zv_dst)
750 rw_exit(&zv_src->zv_suspend_lock);
751 rw_exit(&zv_dst->zv_suspend_lock);
752 return (SET_ERROR(error));
753 }
754
755 /*
756 * Handles TX_CLONE_RANGE transactions.
757 */
758 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)759 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
760 uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
761 {
762 itx_t *itx;
763 lr_clone_range_t *lr;
764 uint64_t partlen, max_log_data;
765 size_t partnbps;
766
767 if (zil_replaying(zilog, tx))
768 return;
769
770 max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
771
772 while (nbps > 0) {
773 partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
774 partlen = partnbps * blksz;
775 ASSERT3U(partlen, <, len + blksz);
776 partlen = MIN(partlen, len);
777
778 itx = zil_itx_create(txtype,
779 sizeof (*lr) + sizeof (bps[0]) * partnbps);
780 lr = (lr_clone_range_t *)&itx->itx_lr;
781 lr->lr_foid = ZVOL_OBJ;
782 lr->lr_offset = off;
783 lr->lr_length = partlen;
784 lr->lr_blksz = blksz;
785 lr->lr_nbps = partnbps;
786 memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
787
788 zil_itx_assign(zilog, itx, tx);
789
790 bps += partnbps;
791 ASSERT3U(nbps, >=, partnbps);
792 nbps -= partnbps;
793 off += partlen;
794 ASSERT3U(len, >=, partlen);
795 len -= partlen;
796 }
797 }
798
799 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)800 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
801 {
802 (void) arg1, (void) arg2, (void) byteswap;
803 return (SET_ERROR(ENOTSUP));
804 }
805
806 /*
807 * Callback vectors for replaying records.
808 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
809 */
810 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
811 zvol_replay_err, /* no such transaction type */
812 zvol_replay_err, /* TX_CREATE */
813 zvol_replay_err, /* TX_MKDIR */
814 zvol_replay_err, /* TX_MKXATTR */
815 zvol_replay_err, /* TX_SYMLINK */
816 zvol_replay_err, /* TX_REMOVE */
817 zvol_replay_err, /* TX_RMDIR */
818 zvol_replay_err, /* TX_LINK */
819 zvol_replay_err, /* TX_RENAME */
820 zvol_replay_write, /* TX_WRITE */
821 zvol_replay_truncate, /* TX_TRUNCATE */
822 zvol_replay_err, /* TX_SETATTR */
823 zvol_replay_err, /* TX_ACL_V0 */
824 zvol_replay_err, /* TX_ACL */
825 zvol_replay_err, /* TX_CREATE_ACL */
826 zvol_replay_err, /* TX_CREATE_ATTR */
827 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
828 zvol_replay_err, /* TX_MKDIR_ACL */
829 zvol_replay_err, /* TX_MKDIR_ATTR */
830 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
831 zvol_replay_err, /* TX_WRITE2 */
832 zvol_replay_err, /* TX_SETSAXATTR */
833 zvol_replay_err, /* TX_RENAME_EXCHANGE */
834 zvol_replay_err, /* TX_RENAME_WHITEOUT */
835 zvol_replay_clone_range, /* TX_CLONE_RANGE */
836 };
837
838 /*
839 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
840 *
841 * We store data in the log buffers if it's small enough.
842 * Otherwise we will later flush the data out via dmu_sync().
843 */
844 static const ssize_t zvol_immediate_write_sz = 32768;
845
846 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)847 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
848 uint64_t size, boolean_t commit)
849 {
850 uint32_t blocksize = zv->zv_volblocksize;
851 zilog_t *zilog = zv->zv_zilog;
852 itx_wr_state_t write_state;
853 uint64_t sz = size;
854
855 if (zil_replaying(zilog, tx))
856 return;
857
858 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
859 write_state = WR_INDIRECT;
860 else if (!spa_has_slogs(zilog->zl_spa) &&
861 size >= blocksize && blocksize > zvol_immediate_write_sz)
862 write_state = WR_INDIRECT;
863 else if (commit)
864 write_state = WR_COPIED;
865 else
866 write_state = WR_NEED_COPY;
867
868 while (size) {
869 itx_t *itx;
870 lr_write_t *lr;
871 itx_wr_state_t wr_state = write_state;
872 ssize_t len = size;
873
874 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
875 wr_state = WR_NEED_COPY;
876 else if (wr_state == WR_INDIRECT)
877 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
878
879 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
880 (wr_state == WR_COPIED ? len : 0));
881 lr = (lr_write_t *)&itx->itx_lr;
882 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
883 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
884 zil_itx_destroy(itx);
885 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
886 lr = (lr_write_t *)&itx->itx_lr;
887 wr_state = WR_NEED_COPY;
888 }
889
890 itx->itx_wr_state = wr_state;
891 lr->lr_foid = ZVOL_OBJ;
892 lr->lr_offset = offset;
893 lr->lr_length = len;
894 lr->lr_blkoff = 0;
895 BP_ZERO(&lr->lr_blkptr);
896
897 itx->itx_private = zv;
898
899 (void) zil_itx_assign(zilog, itx, tx);
900
901 offset += len;
902 size -= len;
903 }
904
905 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
906 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
907 }
908 }
909
910 /*
911 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
912 */
913 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)914 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
915 {
916 itx_t *itx;
917 lr_truncate_t *lr;
918 zilog_t *zilog = zv->zv_zilog;
919
920 if (zil_replaying(zilog, tx))
921 return;
922
923 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
924 lr = (lr_truncate_t *)&itx->itx_lr;
925 lr->lr_foid = ZVOL_OBJ;
926 lr->lr_offset = off;
927 lr->lr_length = len;
928
929 zil_itx_assign(zilog, itx, tx);
930 }
931
932
933 static void
zvol_get_done(zgd_t * zgd,int error)934 zvol_get_done(zgd_t *zgd, int error)
935 {
936 (void) error;
937 if (zgd->zgd_db)
938 dmu_buf_rele(zgd->zgd_db, zgd);
939
940 zfs_rangelock_exit(zgd->zgd_lr);
941
942 kmem_free(zgd, sizeof (zgd_t));
943 }
944
945 /*
946 * Get data to generate a TX_WRITE intent log record.
947 */
948 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)949 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
950 struct lwb *lwb, zio_t *zio)
951 {
952 zvol_state_t *zv = arg;
953 uint64_t offset = lr->lr_offset;
954 uint64_t size = lr->lr_length;
955 dmu_buf_t *db;
956 zgd_t *zgd;
957 int error;
958
959 ASSERT3P(lwb, !=, NULL);
960 ASSERT3U(size, !=, 0);
961
962 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
963 zgd->zgd_lwb = lwb;
964
965 /*
966 * Write records come in two flavors: immediate and indirect.
967 * For small writes it's cheaper to store the data with the
968 * log record (immediate); for large writes it's cheaper to
969 * sync the data and get a pointer to it (indirect) so that
970 * we don't have to write the data twice.
971 */
972 if (buf != NULL) { /* immediate write */
973 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
974 size, RL_READER);
975 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
976 DMU_READ_NO_PREFETCH);
977 } else { /* indirect write */
978 ASSERT3P(zio, !=, NULL);
979 /*
980 * Have to lock the whole block to ensure when it's written out
981 * and its checksum is being calculated that no one can change
982 * the data. Contrarily to zfs_get_data we need not re-check
983 * blocksize after we get the lock because it cannot be changed.
984 */
985 size = zv->zv_volblocksize;
986 offset = P2ALIGN_TYPED(offset, size, uint64_t);
987 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
988 size, RL_READER);
989 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
990 &db);
991 if (error == 0) {
992 blkptr_t *bp = &lr->lr_blkptr;
993
994 zgd->zgd_db = db;
995 zgd->zgd_bp = bp;
996
997 ASSERT(db != NULL);
998 ASSERT(db->db_offset == offset);
999 ASSERT(db->db_size == size);
1000
1001 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1002 zvol_get_done, zgd);
1003
1004 if (error == 0)
1005 return (0);
1006 }
1007 }
1008
1009 zvol_get_done(zgd, error);
1010
1011 return (SET_ERROR(error));
1012 }
1013
1014 /*
1015 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1016 */
1017
1018 void
zvol_insert(zvol_state_t * zv)1019 zvol_insert(zvol_state_t *zv)
1020 {
1021 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1022 list_insert_head(&zvol_state_list, zv);
1023 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1024 }
1025
1026 /*
1027 * Simply remove the zvol from to list of zvols.
1028 */
1029 static void
zvol_remove(zvol_state_t * zv)1030 zvol_remove(zvol_state_t *zv)
1031 {
1032 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1033 list_remove(&zvol_state_list, zv);
1034 hlist_del(&zv->zv_hlink);
1035 }
1036
1037 /*
1038 * Setup zv after we just own the zv->objset
1039 */
1040 static int
zvol_setup_zv(zvol_state_t * zv)1041 zvol_setup_zv(zvol_state_t *zv)
1042 {
1043 uint64_t volsize;
1044 int error;
1045 uint64_t ro;
1046 objset_t *os = zv->zv_objset;
1047
1048 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1049 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1050
1051 zv->zv_zilog = NULL;
1052 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1053
1054 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1055 if (error)
1056 return (SET_ERROR(error));
1057
1058 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1059 if (error)
1060 return (SET_ERROR(error));
1061
1062 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1063 if (error)
1064 return (SET_ERROR(error));
1065
1066 zvol_os_set_capacity(zv, volsize >> 9);
1067 zv->zv_volsize = volsize;
1068
1069 if (ro || dmu_objset_is_snapshot(os) ||
1070 !spa_writeable(dmu_objset_spa(os))) {
1071 zvol_os_set_disk_ro(zv, 1);
1072 zv->zv_flags |= ZVOL_RDONLY;
1073 } else {
1074 zvol_os_set_disk_ro(zv, 0);
1075 zv->zv_flags &= ~ZVOL_RDONLY;
1076 }
1077 return (0);
1078 }
1079
1080 /*
1081 * Shutdown every zv_objset related stuff except zv_objset itself.
1082 * The is the reverse of zvol_setup_zv.
1083 */
1084 static void
zvol_shutdown_zv(zvol_state_t * zv)1085 zvol_shutdown_zv(zvol_state_t *zv)
1086 {
1087 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1088 RW_LOCK_HELD(&zv->zv_suspend_lock));
1089
1090 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1091 ASSERT(zv->zv_zilog != NULL);
1092 zil_close(zv->zv_zilog);
1093 }
1094
1095 zv->zv_zilog = NULL;
1096
1097 dnode_rele(zv->zv_dn, zv);
1098 zv->zv_dn = NULL;
1099
1100 /*
1101 * Evict cached data. We must write out any dirty data before
1102 * disowning the dataset.
1103 */
1104 if (zv->zv_flags & ZVOL_WRITTEN_TO)
1105 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1106 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1107 }
1108
1109 /*
1110 * return the proper tag for rollback and recv
1111 */
1112 void *
zvol_tag(zvol_state_t * zv)1113 zvol_tag(zvol_state_t *zv)
1114 {
1115 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1116 return (zv->zv_open_count > 0 ? zv : NULL);
1117 }
1118
1119 /*
1120 * Suspend the zvol for recv and rollback.
1121 */
1122 zvol_state_t *
zvol_suspend(const char * name)1123 zvol_suspend(const char *name)
1124 {
1125 zvol_state_t *zv;
1126
1127 zv = zvol_find_by_name(name, RW_WRITER);
1128
1129 if (zv == NULL)
1130 return (NULL);
1131
1132 /* block all I/O, release in zvol_resume. */
1133 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1134 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1135
1136 atomic_inc(&zv->zv_suspend_ref);
1137
1138 if (zv->zv_open_count > 0)
1139 zvol_shutdown_zv(zv);
1140
1141 /*
1142 * do not hold zv_state_lock across suspend/resume to
1143 * avoid locking up zvol lookups
1144 */
1145 mutex_exit(&zv->zv_state_lock);
1146
1147 /* zv_suspend_lock is released in zvol_resume() */
1148 return (zv);
1149 }
1150
1151 int
zvol_resume(zvol_state_t * zv)1152 zvol_resume(zvol_state_t *zv)
1153 {
1154 int error = 0;
1155
1156 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1157
1158 mutex_enter(&zv->zv_state_lock);
1159
1160 if (zv->zv_open_count > 0) {
1161 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1162 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1163 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1164 dmu_objset_rele(zv->zv_objset, zv);
1165
1166 error = zvol_setup_zv(zv);
1167 }
1168
1169 mutex_exit(&zv->zv_state_lock);
1170
1171 rw_exit(&zv->zv_suspend_lock);
1172 /*
1173 * We need this because we don't hold zvol_state_lock while releasing
1174 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1175 * zv_suspend_lock to determine it is safe to free because rwlock is
1176 * not inherent atomic.
1177 */
1178 atomic_dec(&zv->zv_suspend_ref);
1179
1180 if (zv->zv_flags & ZVOL_REMOVING)
1181 cv_broadcast(&zv->zv_removing_cv);
1182
1183 return (SET_ERROR(error));
1184 }
1185
1186 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1187 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1188 {
1189 objset_t *os;
1190 int error;
1191
1192 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1193 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1194 ASSERT(mutex_owned(&spa_namespace_lock));
1195
1196 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1197 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1198 if (error)
1199 return (SET_ERROR(error));
1200
1201 zv->zv_objset = os;
1202
1203 error = zvol_setup_zv(zv);
1204 if (error) {
1205 dmu_objset_disown(os, 1, zv);
1206 zv->zv_objset = NULL;
1207 }
1208
1209 return (error);
1210 }
1211
1212 void
zvol_last_close(zvol_state_t * zv)1213 zvol_last_close(zvol_state_t *zv)
1214 {
1215 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1216 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1217
1218 if (zv->zv_flags & ZVOL_REMOVING)
1219 cv_broadcast(&zv->zv_removing_cv);
1220
1221 zvol_shutdown_zv(zv);
1222
1223 dmu_objset_disown(zv->zv_objset, 1, zv);
1224 zv->zv_objset = NULL;
1225 }
1226
1227 typedef struct minors_job {
1228 list_t *list;
1229 list_node_t link;
1230 /* input */
1231 char *name;
1232 /* output */
1233 int error;
1234 } minors_job_t;
1235
1236 /*
1237 * Prefetch zvol dnodes for the minors_job
1238 */
1239 static void
zvol_prefetch_minors_impl(void * arg)1240 zvol_prefetch_minors_impl(void *arg)
1241 {
1242 minors_job_t *job = arg;
1243 char *dsname = job->name;
1244 objset_t *os = NULL;
1245
1246 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1247 FTAG, &os);
1248 if (job->error == 0) {
1249 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1250 dmu_objset_disown(os, B_TRUE, FTAG);
1251 }
1252 }
1253
1254 /*
1255 * Mask errors to continue dmu_objset_find() traversal
1256 */
1257 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1258 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1259 {
1260 minors_job_t *j = arg;
1261 list_t *minors_list = j->list;
1262 const char *name = j->name;
1263
1264 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1265
1266 /* skip the designated dataset */
1267 if (name && strcmp(dsname, name) == 0)
1268 return (0);
1269
1270 /* at this point, the dsname should name a snapshot */
1271 if (strchr(dsname, '@') == 0) {
1272 dprintf("zvol_create_snap_minor_cb(): "
1273 "%s is not a snapshot name\n", dsname);
1274 } else {
1275 minors_job_t *job;
1276 char *n = kmem_strdup(dsname);
1277 if (n == NULL)
1278 return (0);
1279
1280 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1281 job->name = n;
1282 job->list = minors_list;
1283 job->error = 0;
1284 list_insert_tail(minors_list, job);
1285 /* don't care if dispatch fails, because job->error is 0 */
1286 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1287 TQ_SLEEP);
1288 }
1289
1290 return (0);
1291 }
1292
1293 /*
1294 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1295 * we need to look for any clones also using the key. This function
1296 * is "best effort" - so we just skip over it if there are failures.
1297 */
1298 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1299 zvol_add_clones(const char *dsname, list_t *minors_list)
1300 {
1301 /* Also check if it has clones */
1302 dsl_dir_t *dd = NULL;
1303 dsl_pool_t *dp = NULL;
1304
1305 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1306 return;
1307
1308 if (!spa_feature_is_enabled(dp->dp_spa,
1309 SPA_FEATURE_ENCRYPTION))
1310 goto out;
1311
1312 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1313 goto out;
1314
1315 if (dsl_dir_phys(dd)->dd_clones == 0)
1316 goto out;
1317
1318 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1319 zap_attribute_t *za = zap_attribute_alloc();
1320 objset_t *mos = dd->dd_pool->dp_meta_objset;
1321
1322 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1323 zap_cursor_retrieve(zc, za) == 0;
1324 zap_cursor_advance(zc)) {
1325 dsl_dataset_t *clone;
1326 minors_job_t *job;
1327
1328 if (dsl_dataset_hold_obj(dd->dd_pool,
1329 za->za_first_integer, FTAG, &clone) == 0) {
1330
1331 char name[ZFS_MAX_DATASET_NAME_LEN];
1332 dsl_dataset_name(clone, name);
1333
1334 char *n = kmem_strdup(name);
1335 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1336 job->name = n;
1337 job->list = minors_list;
1338 job->error = 0;
1339 list_insert_tail(minors_list, job);
1340
1341 dsl_dataset_rele(clone, FTAG);
1342 }
1343 }
1344 zap_cursor_fini(zc);
1345 zap_attribute_free(za);
1346 kmem_free(zc, sizeof (zap_cursor_t));
1347
1348 out:
1349 if (dd != NULL)
1350 dsl_dir_rele(dd, FTAG);
1351 dsl_pool_rele(dp, FTAG);
1352 }
1353
1354 /*
1355 * Mask errors to continue dmu_objset_find() traversal
1356 */
1357 static int
zvol_create_minors_cb(const char * dsname,void * arg)1358 zvol_create_minors_cb(const char *dsname, void *arg)
1359 {
1360 uint64_t snapdev;
1361 int error;
1362 list_t *minors_list = arg;
1363
1364 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1365
1366 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1367 if (error)
1368 return (0);
1369
1370 /*
1371 * Given the name and the 'snapdev' property, create device minor nodes
1372 * with the linkages to zvols/snapshots as needed.
1373 * If the name represents a zvol, create a minor node for the zvol, then
1374 * check if its snapshots are 'visible', and if so, iterate over the
1375 * snapshots and create device minor nodes for those.
1376 */
1377 if (strchr(dsname, '@') == 0) {
1378 minors_job_t *job;
1379 char *n = kmem_strdup(dsname);
1380 if (n == NULL)
1381 return (0);
1382
1383 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1384 job->name = n;
1385 job->list = minors_list;
1386 job->error = 0;
1387 list_insert_tail(minors_list, job);
1388 /* don't care if dispatch fails, because job->error is 0 */
1389 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1390 TQ_SLEEP);
1391
1392 zvol_add_clones(dsname, minors_list);
1393
1394 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1395 /*
1396 * traverse snapshots only, do not traverse children,
1397 * and skip the 'dsname'
1398 */
1399 (void) dmu_objset_find(dsname,
1400 zvol_create_snap_minor_cb, (void *)job,
1401 DS_FIND_SNAPSHOTS);
1402 }
1403 } else {
1404 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1405 dsname);
1406 }
1407
1408 return (0);
1409 }
1410
1411 /*
1412 * Create minors for the specified dataset, including children and snapshots.
1413 * Pay attention to the 'snapdev' property and iterate over the snapshots
1414 * only if they are 'visible'. This approach allows one to assure that the
1415 * snapshot metadata is read from disk only if it is needed.
1416 *
1417 * The name can represent a dataset to be recursively scanned for zvols and
1418 * their snapshots, or a single zvol snapshot. If the name represents a
1419 * dataset, the scan is performed in two nested stages:
1420 * - scan the dataset for zvols, and
1421 * - for each zvol, create a minor node, then check if the zvol's snapshots
1422 * are 'visible', and only then iterate over the snapshots if needed
1423 *
1424 * If the name represents a snapshot, a check is performed if the snapshot is
1425 * 'visible' (which also verifies that the parent is a zvol), and if so,
1426 * a minor node for that snapshot is created.
1427 */
1428 void
zvol_create_minors_recursive(const char * name)1429 zvol_create_minors_recursive(const char *name)
1430 {
1431 list_t minors_list;
1432 minors_job_t *job;
1433
1434 if (zvol_inhibit_dev)
1435 return;
1436
1437 /*
1438 * This is the list for prefetch jobs. Whenever we found a match
1439 * during dmu_objset_find, we insert a minors_job to the list and do
1440 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1441 * any lock because all list operation is done on the current thread.
1442 *
1443 * We will use this list to do zvol_os_create_minor after prefetch
1444 * so we don't have to traverse using dmu_objset_find again.
1445 */
1446 list_create(&minors_list, sizeof (minors_job_t),
1447 offsetof(minors_job_t, link));
1448
1449
1450 if (strchr(name, '@') != NULL) {
1451 uint64_t snapdev;
1452
1453 int error = dsl_prop_get_integer(name, "snapdev",
1454 &snapdev, NULL);
1455
1456 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1457 (void) zvol_os_create_minor(name);
1458 } else {
1459 fstrans_cookie_t cookie = spl_fstrans_mark();
1460 (void) dmu_objset_find(name, zvol_create_minors_cb,
1461 &minors_list, DS_FIND_CHILDREN);
1462 spl_fstrans_unmark(cookie);
1463 }
1464
1465 taskq_wait_outstanding(system_taskq, 0);
1466
1467 /*
1468 * Prefetch is completed, we can do zvol_os_create_minor
1469 * sequentially.
1470 */
1471 while ((job = list_remove_head(&minors_list)) != NULL) {
1472 if (!job->error)
1473 (void) zvol_os_create_minor(job->name);
1474 kmem_strfree(job->name);
1475 kmem_free(job, sizeof (minors_job_t));
1476 }
1477
1478 list_destroy(&minors_list);
1479 }
1480
1481 void
zvol_create_minor(const char * name)1482 zvol_create_minor(const char *name)
1483 {
1484 /*
1485 * Note: the dsl_pool_config_lock must not be held.
1486 * Minor node creation needs to obtain the zvol_state_lock.
1487 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1488 * config lock. Therefore, we can't have the config lock now if
1489 * we are going to wait for the zvol_state_lock, because it
1490 * would be a lock order inversion which could lead to deadlock.
1491 */
1492
1493 if (zvol_inhibit_dev)
1494 return;
1495
1496 if (strchr(name, '@') != NULL) {
1497 uint64_t snapdev;
1498
1499 int error = dsl_prop_get_integer(name,
1500 "snapdev", &snapdev, NULL);
1501
1502 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1503 (void) zvol_os_create_minor(name);
1504 } else {
1505 (void) zvol_os_create_minor(name);
1506 }
1507 }
1508
1509 /*
1510 * Remove minors for specified dataset including children and snapshots.
1511 */
1512
1513 /*
1514 * Remove the minor for a given zvol. This will do it all:
1515 * - flag the zvol for removal, so new requests are rejected
1516 * - wait until outstanding requests are completed
1517 * - remove it from lists
1518 * - free it
1519 * It's also usable as a taskq task, and smells nice too.
1520 */
1521 static void
zvol_remove_minor_task(void * arg)1522 zvol_remove_minor_task(void *arg)
1523 {
1524 zvol_state_t *zv = (zvol_state_t *)arg;
1525
1526 ASSERT(!RW_LOCK_HELD(&zvol_state_lock));
1527 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1528
1529 mutex_enter(&zv->zv_state_lock);
1530 while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1531 zv->zv_flags |= ZVOL_REMOVING;
1532 cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1533 }
1534 mutex_exit(&zv->zv_state_lock);
1535
1536 rw_enter(&zvol_state_lock, RW_WRITER);
1537 mutex_enter(&zv->zv_state_lock);
1538
1539 zvol_remove(zv);
1540 zvol_os_clear_private(zv);
1541
1542 mutex_exit(&zv->zv_state_lock);
1543 rw_exit(&zvol_state_lock);
1544
1545 zvol_os_free(zv);
1546 }
1547
1548 static void
zvol_free_task(void * arg)1549 zvol_free_task(void *arg)
1550 {
1551 zvol_os_free(arg);
1552 }
1553
1554 void
zvol_remove_minors_impl(const char * name)1555 zvol_remove_minors_impl(const char *name)
1556 {
1557 zvol_state_t *zv, *zv_next;
1558 int namelen = ((name) ? strlen(name) : 0);
1559 taskqid_t t;
1560 list_t delay_list, free_list;
1561
1562 if (zvol_inhibit_dev)
1563 return;
1564
1565 list_create(&delay_list, sizeof (zvol_state_t),
1566 offsetof(zvol_state_t, zv_next));
1567 list_create(&free_list, sizeof (zvol_state_t),
1568 offsetof(zvol_state_t, zv_next));
1569
1570 rw_enter(&zvol_state_lock, RW_WRITER);
1571
1572 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1573 zv_next = list_next(&zvol_state_list, zv);
1574
1575 mutex_enter(&zv->zv_state_lock);
1576 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1577 (strncmp(zv->zv_name, name, namelen) == 0 &&
1578 (zv->zv_name[namelen] == '/' ||
1579 zv->zv_name[namelen] == '@'))) {
1580 /*
1581 * By holding zv_state_lock here, we guarantee that no
1582 * one is currently using this zv
1583 */
1584
1585 /*
1586 * If in use, try to throw everyone off and try again
1587 * later.
1588 */
1589 if (zv->zv_open_count > 0 ||
1590 atomic_read(&zv->zv_suspend_ref)) {
1591 zv->zv_flags |= ZVOL_REMOVING;
1592 t = taskq_dispatch(
1593 zv->zv_objset->os_spa->spa_zvol_taskq,
1594 zvol_remove_minor_task, zv, TQ_SLEEP);
1595 if (t == TASKQID_INVALID) {
1596 /*
1597 * Couldn't create the task, so we'll
1598 * do it in place once the loop is
1599 * finished.
1600 */
1601 list_insert_head(&delay_list, zv);
1602 }
1603 mutex_exit(&zv->zv_state_lock);
1604 continue;
1605 }
1606
1607 zvol_remove(zv);
1608
1609 /*
1610 * Cleared while holding zvol_state_lock as a writer
1611 * which will prevent zvol_open() from opening it.
1612 */
1613 zvol_os_clear_private(zv);
1614
1615 /* Drop zv_state_lock before zvol_free() */
1616 mutex_exit(&zv->zv_state_lock);
1617
1618 /* Try parallel zv_free, if failed do it in place */
1619 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1620 TQ_SLEEP);
1621 if (t == TASKQID_INVALID)
1622 list_insert_head(&free_list, zv);
1623 } else {
1624 mutex_exit(&zv->zv_state_lock);
1625 }
1626 }
1627 rw_exit(&zvol_state_lock);
1628
1629 /* Wait for zvols that we couldn't create a remove task for */
1630 while ((zv = list_remove_head(&delay_list)) != NULL)
1631 zvol_remove_minor_task(zv);
1632
1633 /* Free any that we couldn't free in parallel earlier */
1634 while ((zv = list_remove_head(&free_list)) != NULL)
1635 zvol_os_free(zv);
1636 }
1637
1638 /* Remove minor for this specific volume only */
1639 static void
zvol_remove_minor_impl(const char * name)1640 zvol_remove_minor_impl(const char *name)
1641 {
1642 zvol_state_t *zv = NULL, *zv_next;
1643
1644 if (zvol_inhibit_dev)
1645 return;
1646
1647 rw_enter(&zvol_state_lock, RW_WRITER);
1648
1649 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1650 zv_next = list_next(&zvol_state_list, zv);
1651
1652 mutex_enter(&zv->zv_state_lock);
1653 if (strcmp(zv->zv_name, name) == 0)
1654 /* Found, leave the the loop with zv_lock held */
1655 break;
1656 mutex_exit(&zv->zv_state_lock);
1657 }
1658
1659 if (zv == NULL) {
1660 rw_exit(&zvol_state_lock);
1661 return;
1662 }
1663
1664 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1665
1666 if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1667 /*
1668 * In use, so try to throw everyone off, then wait
1669 * until finished.
1670 */
1671 zv->zv_flags |= ZVOL_REMOVING;
1672 mutex_exit(&zv->zv_state_lock);
1673 rw_exit(&zvol_state_lock);
1674 zvol_remove_minor_task(zv);
1675 return;
1676 }
1677
1678 zvol_remove(zv);
1679 zvol_os_clear_private(zv);
1680
1681 mutex_exit(&zv->zv_state_lock);
1682 rw_exit(&zvol_state_lock);
1683
1684 zvol_os_free(zv);
1685 }
1686
1687 /*
1688 * Rename minors for specified dataset including children and snapshots.
1689 */
1690 static void
zvol_rename_minors_impl(const char * oldname,const char * newname)1691 zvol_rename_minors_impl(const char *oldname, const char *newname)
1692 {
1693 zvol_state_t *zv, *zv_next;
1694 int oldnamelen;
1695
1696 if (zvol_inhibit_dev)
1697 return;
1698
1699 oldnamelen = strlen(oldname);
1700
1701 rw_enter(&zvol_state_lock, RW_READER);
1702
1703 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1704 zv_next = list_next(&zvol_state_list, zv);
1705
1706 mutex_enter(&zv->zv_state_lock);
1707
1708 if (strcmp(zv->zv_name, oldname) == 0) {
1709 zvol_os_rename_minor(zv, newname);
1710 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1711 (zv->zv_name[oldnamelen] == '/' ||
1712 zv->zv_name[oldnamelen] == '@')) {
1713 char *name = kmem_asprintf("%s%c%s", newname,
1714 zv->zv_name[oldnamelen],
1715 zv->zv_name + oldnamelen + 1);
1716 zvol_os_rename_minor(zv, name);
1717 kmem_strfree(name);
1718 }
1719
1720 mutex_exit(&zv->zv_state_lock);
1721 }
1722
1723 rw_exit(&zvol_state_lock);
1724 }
1725
1726 typedef struct zvol_snapdev_cb_arg {
1727 uint64_t snapdev;
1728 } zvol_snapdev_cb_arg_t;
1729
1730 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1731 zvol_set_snapdev_cb(const char *dsname, void *param)
1732 {
1733 zvol_snapdev_cb_arg_t *arg = param;
1734
1735 if (strchr(dsname, '@') == NULL)
1736 return (0);
1737
1738 switch (arg->snapdev) {
1739 case ZFS_SNAPDEV_VISIBLE:
1740 (void) zvol_os_create_minor(dsname);
1741 break;
1742 case ZFS_SNAPDEV_HIDDEN:
1743 (void) zvol_remove_minor_impl(dsname);
1744 break;
1745 }
1746
1747 return (0);
1748 }
1749
1750 static void
zvol_set_snapdev_impl(char * name,uint64_t snapdev)1751 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1752 {
1753 zvol_snapdev_cb_arg_t arg = {snapdev};
1754 fstrans_cookie_t cookie = spl_fstrans_mark();
1755 /*
1756 * The zvol_set_snapdev_sync() sets snapdev appropriately
1757 * in the dataset hierarchy. Here, we only scan snapshots.
1758 */
1759 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1760 spl_fstrans_unmark(cookie);
1761 }
1762
1763 static void
zvol_set_volmode_impl(char * name,uint64_t volmode)1764 zvol_set_volmode_impl(char *name, uint64_t volmode)
1765 {
1766 fstrans_cookie_t cookie;
1767 uint64_t old_volmode;
1768 zvol_state_t *zv;
1769
1770 if (strchr(name, '@') != NULL)
1771 return;
1772
1773 /*
1774 * It's unfortunate we need to remove minors before we create new ones:
1775 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1776 * could be different when we set, for instance, volmode from "geom"
1777 * to "dev" (or vice versa).
1778 */
1779 zv = zvol_find_by_name(name, RW_NONE);
1780 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1781 return;
1782 if (zv != NULL) {
1783 old_volmode = zv->zv_volmode;
1784 mutex_exit(&zv->zv_state_lock);
1785 if (old_volmode == volmode)
1786 return;
1787 zvol_wait_close(zv);
1788 }
1789 cookie = spl_fstrans_mark();
1790 switch (volmode) {
1791 case ZFS_VOLMODE_NONE:
1792 (void) zvol_remove_minor_impl(name);
1793 break;
1794 case ZFS_VOLMODE_GEOM:
1795 case ZFS_VOLMODE_DEV:
1796 (void) zvol_remove_minor_impl(name);
1797 (void) zvol_os_create_minor(name);
1798 break;
1799 case ZFS_VOLMODE_DEFAULT:
1800 (void) zvol_remove_minor_impl(name);
1801 if (zvol_volmode == ZFS_VOLMODE_NONE)
1802 break;
1803 else /* if zvol_volmode is invalid defaults to "geom" */
1804 (void) zvol_os_create_minor(name);
1805 break;
1806 }
1807 spl_fstrans_unmark(cookie);
1808 }
1809
1810 static zvol_task_t *
zvol_task_alloc(zvol_async_op_t op,const char * name1,const char * name2,uint64_t value)1811 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1812 uint64_t value)
1813 {
1814 zvol_task_t *task;
1815
1816 /* Never allow tasks on hidden names. */
1817 if (name1[0] == '$')
1818 return (NULL);
1819
1820 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1821 task->op = op;
1822 task->value = value;
1823
1824 strlcpy(task->name1, name1, sizeof (task->name1));
1825 if (name2 != NULL)
1826 strlcpy(task->name2, name2, sizeof (task->name2));
1827
1828 return (task);
1829 }
1830
1831 static void
zvol_task_free(zvol_task_t * task)1832 zvol_task_free(zvol_task_t *task)
1833 {
1834 kmem_free(task, sizeof (zvol_task_t));
1835 }
1836
1837 /*
1838 * The worker thread function performed asynchronously.
1839 */
1840 static void
zvol_task_cb(void * arg)1841 zvol_task_cb(void *arg)
1842 {
1843 zvol_task_t *task = arg;
1844
1845 switch (task->op) {
1846 case ZVOL_ASYNC_REMOVE_MINORS:
1847 zvol_remove_minors_impl(task->name1);
1848 break;
1849 case ZVOL_ASYNC_RENAME_MINORS:
1850 zvol_rename_minors_impl(task->name1, task->name2);
1851 break;
1852 case ZVOL_ASYNC_SET_SNAPDEV:
1853 zvol_set_snapdev_impl(task->name1, task->value);
1854 break;
1855 case ZVOL_ASYNC_SET_VOLMODE:
1856 zvol_set_volmode_impl(task->name1, task->value);
1857 break;
1858 default:
1859 VERIFY(0);
1860 break;
1861 }
1862
1863 zvol_task_free(task);
1864 }
1865
1866 typedef struct zvol_set_prop_int_arg {
1867 const char *zsda_name;
1868 uint64_t zsda_value;
1869 zprop_source_t zsda_source;
1870 zfs_prop_t zsda_prop;
1871 } zvol_set_prop_int_arg_t;
1872
1873 /*
1874 * Sanity check the dataset for safe use by the sync task. No additional
1875 * conditions are imposed.
1876 */
1877 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1878 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1879 {
1880 zvol_set_prop_int_arg_t *zsda = arg;
1881 dsl_pool_t *dp = dmu_tx_pool(tx);
1882 dsl_dir_t *dd;
1883 int error;
1884
1885 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1886 if (error != 0)
1887 return (error);
1888
1889 dsl_dir_rele(dd, FTAG);
1890
1891 return (error);
1892 }
1893
1894 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1895 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1896 {
1897 zvol_set_prop_int_arg_t *zsda = arg;
1898 char dsname[ZFS_MAX_DATASET_NAME_LEN];
1899 zvol_task_t *task;
1900 uint64_t prop;
1901
1902 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1903 dsl_dataset_name(ds, dsname);
1904
1905 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1906 return (0);
1907
1908 switch (zsda->zsda_prop) {
1909 case ZFS_PROP_VOLMODE:
1910 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1911 NULL, prop);
1912 break;
1913 case ZFS_PROP_SNAPDEV:
1914 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1915 NULL, prop);
1916 break;
1917 default:
1918 task = NULL;
1919 break;
1920 }
1921
1922 if (task == NULL)
1923 return (0);
1924
1925 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1926 task, TQ_SLEEP);
1927 return (0);
1928 }
1929
1930 /*
1931 * Traverse all child datasets and apply the property appropriately.
1932 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1933 * dataset and read the effective "property" on every child in the callback
1934 * function: this is because the value is not guaranteed to be the same in the
1935 * whole dataset hierarchy.
1936 */
1937 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)1938 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1939 {
1940 zvol_set_prop_int_arg_t *zsda = arg;
1941 dsl_pool_t *dp = dmu_tx_pool(tx);
1942 dsl_dir_t *dd;
1943 dsl_dataset_t *ds;
1944 int error;
1945
1946 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1947
1948 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1949 if (error == 0) {
1950 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1951 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1952 &zsda->zsda_value, tx);
1953 dsl_dataset_rele(ds, FTAG);
1954 }
1955
1956 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1957 zsda, DS_FIND_CHILDREN);
1958
1959 dsl_dir_rele(dd, FTAG);
1960 }
1961
1962 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)1963 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1964 uint64_t val)
1965 {
1966 zvol_set_prop_int_arg_t zsda;
1967
1968 zsda.zsda_name = ddname;
1969 zsda.zsda_source = source;
1970 zsda.zsda_value = val;
1971 zsda.zsda_prop = prop;
1972
1973 return (dsl_sync_task(ddname, zvol_set_common_check,
1974 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1975 }
1976
1977 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)1978 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1979 {
1980 zvol_task_t *task;
1981 taskqid_t id;
1982
1983 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1984 if (task == NULL)
1985 return;
1986
1987 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1988 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1989 taskq_wait_id(spa->spa_zvol_taskq, id);
1990 }
1991
1992 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)1993 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1994 boolean_t async)
1995 {
1996 zvol_task_t *task;
1997 taskqid_t id;
1998
1999 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2000 if (task == NULL)
2001 return;
2002
2003 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2004 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2005 taskq_wait_id(spa->spa_zvol_taskq, id);
2006 }
2007
2008 boolean_t
zvol_is_zvol(const char * name)2009 zvol_is_zvol(const char *name)
2010 {
2011
2012 return (zvol_os_is_zvol(name));
2013 }
2014
2015 int
zvol_init_impl(void)2016 zvol_init_impl(void)
2017 {
2018 int i;
2019
2020 list_create(&zvol_state_list, sizeof (zvol_state_t),
2021 offsetof(zvol_state_t, zv_next));
2022 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2023
2024 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2025 KM_SLEEP);
2026 for (i = 0; i < ZVOL_HT_SIZE; i++)
2027 INIT_HLIST_HEAD(&zvol_htable[i]);
2028
2029 return (0);
2030 }
2031
2032 void
zvol_fini_impl(void)2033 zvol_fini_impl(void)
2034 {
2035 zvol_remove_minors_impl(NULL);
2036
2037 /*
2038 * The call to "zvol_remove_minors_impl" may dispatch entries to
2039 * the system_taskq, but it doesn't wait for those entries to
2040 * complete before it returns. Thus, we must wait for all of the
2041 * removals to finish, before we can continue.
2042 */
2043 taskq_wait_outstanding(system_taskq, 0);
2044
2045 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2046 list_destroy(&zvol_state_list);
2047 rw_destroy(&zvol_state_lock);
2048 }
2049