xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32  * Copyright 2018 Joyent, Inc.
33  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34  * Copyright 2017 Joyent, Inc.
35  * Copyright (c) 2017, Intel Corporation.
36  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38  * Copyright (c) 2023, 2024, Klara Inc.
39  */
40 
41 /*
42  * SPA: Storage Pool Allocator
43  *
44  * This file contains all the routines used when modifying on-disk SPA state.
45  * This includes opening, importing, destroying, exporting a pool, and syncing a
46  * pool.
47  */
48 
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94 
95 #ifdef	_KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif	/* _KERNEL */
102 
103 #include "zfs_prop.h"
104 #include "zfs_comutil.h"
105 #include <cityhash.h>
106 
107 /*
108  * spa_thread() existed on Illumos as a parent thread for the various worker
109  * threads that actually run the pool, as a way to both reference the entire
110  * pool work as a single object, and to share properties like scheduling
111  * options. It has not yet been adapted to Linux or FreeBSD. This define is
112  * used to mark related parts of the code to make things easier for the reader,
113  * and to compile this code out. It can be removed when someone implements it,
114  * moves it to some Illumos-specific place, or removes it entirely.
115  */
116 #undef HAVE_SPA_THREAD
117 
118 /*
119  * The "System Duty Cycle" scheduling class is an Illumos feature to help
120  * prevent CPU-intensive kernel threads from affecting latency on interactive
121  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
122  * gated behind a define. On Illumos SDC depends on spa_thread(), but
123  * spa_thread() also has other uses, so this is a separate define.
124  */
125 #undef HAVE_SYSDC
126 
127 /*
128  * The interval, in seconds, at which failed configuration cache file writes
129  * should be retried.
130  */
131 int zfs_ccw_retry_interval = 300;
132 
133 typedef enum zti_modes {
134 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
135 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
136 	ZTI_MODE_SYNC,			/* sync thread assigned */
137 	ZTI_MODE_NULL,			/* don't create a taskq */
138 	ZTI_NMODES
139 } zti_modes_t;
140 
141 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
142 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
143 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
144 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
145 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
146 
147 #define	ZTI_N(n)	ZTI_P(n, 1)
148 #define	ZTI_ONE		ZTI_N(1)
149 
150 typedef struct zio_taskq_info {
151 	zti_modes_t zti_mode;
152 	uint_t zti_value;
153 	uint_t zti_count;
154 } zio_taskq_info_t;
155 
156 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
157 	"iss", "iss_h", "int", "int_h"
158 };
159 
160 /*
161  * This table defines the taskq settings for each ZFS I/O type. When
162  * initializing a pool, we use this table to create an appropriately sized
163  * taskq. Some operations are low volume and therefore have a small, static
164  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
165  * macros. Other operations process a large amount of data; the ZTI_SCALE
166  * macro causes us to create a taskq oriented for throughput. Some operations
167  * are so high frequency and short-lived that the taskq itself can become a
168  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
169  * additional degree of parallelism specified by the number of threads per-
170  * taskq and the number of taskqs; when dispatching an event in this case, the
171  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
172  * that scales with the number of CPUs.
173  *
174  * The different taskq priorities are to handle the different contexts (issue
175  * and interrupt) and then to reserve threads for high priority I/Os that
176  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
177  * implementation, so separate high priority threads are used there.
178  */
179 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
180 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
181 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
182 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
183 #ifdef illumos
184 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
185 #else
186 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
187 #endif
188 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
190 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
191 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
192 };
193 
194 static void spa_sync_version(void *arg, dmu_tx_t *tx);
195 static void spa_sync_props(void *arg, dmu_tx_t *tx);
196 static boolean_t spa_has_active_shared_spare(spa_t *spa);
197 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
198     const char **ereport);
199 static void spa_vdev_resilver_done(spa_t *spa);
200 
201 /*
202  * Percentage of all CPUs that can be used by the metaslab preload taskq.
203  */
204 static uint_t metaslab_preload_pct = 50;
205 
206 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
207 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
208 
209 #ifdef HAVE_SYSDC
210 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
211 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
212 #endif
213 
214 #ifdef HAVE_SPA_THREAD
215 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
216 #endif
217 
218 static uint_t	zio_taskq_write_tpq = 16;
219 
220 /*
221  * Report any spa_load_verify errors found, but do not fail spa_load.
222  * This is used by zdb to analyze non-idle pools.
223  */
224 boolean_t	spa_load_verify_dryrun = B_FALSE;
225 
226 /*
227  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
228  * This is used by zdb for spacemaps verification.
229  */
230 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
231 
232 /*
233  * This (illegal) pool name is used when temporarily importing a spa_t in order
234  * to get the vdev stats associated with the imported devices.
235  */
236 #define	TRYIMPORT_NAME	"$import"
237 
238 /*
239  * For debugging purposes: print out vdev tree during pool import.
240  */
241 static int		spa_load_print_vdev_tree = B_FALSE;
242 
243 /*
244  * A non-zero value for zfs_max_missing_tvds means that we allow importing
245  * pools with missing top-level vdevs. This is strictly intended for advanced
246  * pool recovery cases since missing data is almost inevitable. Pools with
247  * missing devices can only be imported read-only for safety reasons, and their
248  * fail-mode will be automatically set to "continue".
249  *
250  * With 1 missing vdev we should be able to import the pool and mount all
251  * datasets. User data that was not modified after the missing device has been
252  * added should be recoverable. This means that snapshots created prior to the
253  * addition of that device should be completely intact.
254  *
255  * With 2 missing vdevs, some datasets may fail to mount since there are
256  * dataset statistics that are stored as regular metadata. Some data might be
257  * recoverable if those vdevs were added recently.
258  *
259  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
260  * may be missing entirely. Chances of data recovery are very low. Note that
261  * there are also risks of performing an inadvertent rewind as we might be
262  * missing all the vdevs with the latest uberblocks.
263  */
264 uint64_t	zfs_max_missing_tvds = 0;
265 
266 /*
267  * The parameters below are similar to zfs_max_missing_tvds but are only
268  * intended for a preliminary open of the pool with an untrusted config which
269  * might be incomplete or out-dated.
270  *
271  * We are more tolerant for pools opened from a cachefile since we could have
272  * an out-dated cachefile where a device removal was not registered.
273  * We could have set the limit arbitrarily high but in the case where devices
274  * are really missing we would want to return the proper error codes; we chose
275  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
276  * and we get a chance to retrieve the trusted config.
277  */
278 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
279 
280 /*
281  * In the case where config was assembled by scanning device paths (/dev/dsks
282  * by default) we are less tolerant since all the existing devices should have
283  * been detected and we want spa_load to return the right error codes.
284  */
285 uint64_t	zfs_max_missing_tvds_scan = 0;
286 
287 /*
288  * Debugging aid that pauses spa_sync() towards the end.
289  */
290 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
291 
292 /*
293  * Variables to indicate the livelist condense zthr func should wait at certain
294  * points for the livelist to be removed - used to test condense/destroy races
295  */
296 static int zfs_livelist_condense_zthr_pause = 0;
297 static int zfs_livelist_condense_sync_pause = 0;
298 
299 /*
300  * Variables to track whether or not condense cancellation has been
301  * triggered in testing.
302  */
303 static int zfs_livelist_condense_sync_cancel = 0;
304 static int zfs_livelist_condense_zthr_cancel = 0;
305 
306 /*
307  * Variable to track whether or not extra ALLOC blkptrs were added to a
308  * livelist entry while it was being condensed (caused by the way we track
309  * remapped blkptrs in dbuf_remap_impl)
310  */
311 static int zfs_livelist_condense_new_alloc = 0;
312 
313 /*
314  * ==========================================================================
315  * SPA properties routines
316  * ==========================================================================
317  */
318 
319 /*
320  * Add a (source=src, propname=propval) list to an nvlist.
321  */
322 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)323 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
324     uint64_t intval, zprop_source_t src)
325 {
326 	const char *propname = zpool_prop_to_name(prop);
327 	nvlist_t *propval;
328 
329 	propval = fnvlist_alloc();
330 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
331 
332 	if (strval != NULL)
333 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
334 	else
335 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
336 
337 	fnvlist_add_nvlist(nvl, propname, propval);
338 	nvlist_free(propval);
339 }
340 
341 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)342 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
343 {
344 	zpool_prop_t prop = zpool_name_to_prop(propname);
345 	zprop_source_t src = ZPROP_SRC_NONE;
346 	uint64_t intval;
347 	int err;
348 
349 	/*
350 	 * NB: Not all properties lookups via this API require
351 	 * the spa props lock, so they must explicitly grab it here.
352 	 */
353 	switch (prop) {
354 	case ZPOOL_PROP_DEDUPCACHED:
355 		err = ddt_get_pool_dedup_cached(spa, &intval);
356 		if (err != 0)
357 			return (SET_ERROR(err));
358 		break;
359 	default:
360 		return (SET_ERROR(EINVAL));
361 	}
362 
363 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
364 
365 	return (0);
366 }
367 
368 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)369 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
370     nvlist_t *outnvl)
371 {
372 	int err = 0;
373 
374 	if (props == NULL)
375 		return (0);
376 
377 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
378 		err = spa_prop_add(spa, props[i], outnvl);
379 	}
380 
381 	return (err);
382 }
383 
384 /*
385  * Add a user property (source=src, propname=propval) to an nvlist.
386  */
387 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)388 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
389     zprop_source_t src)
390 {
391 	nvlist_t *propval;
392 
393 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
394 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
395 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
396 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
397 	nvlist_free(propval);
398 }
399 
400 /*
401  * Get property values from the spa configuration.
402  */
403 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)404 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
405 {
406 	vdev_t *rvd = spa->spa_root_vdev;
407 	dsl_pool_t *pool = spa->spa_dsl_pool;
408 	uint64_t size, alloc, cap, version;
409 	const zprop_source_t src = ZPROP_SRC_NONE;
410 	spa_config_dirent_t *dp;
411 	metaslab_class_t *mc = spa_normal_class(spa);
412 
413 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
414 
415 	if (rvd != NULL) {
416 		alloc = metaslab_class_get_alloc(mc);
417 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
419 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
420 
421 		size = metaslab_class_get_space(mc);
422 		size += metaslab_class_get_space(spa_special_class(spa));
423 		size += metaslab_class_get_space(spa_dedup_class(spa));
424 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
425 
426 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
429 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
430 		    size - alloc, src);
431 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
432 		    spa->spa_checkpoint_info.sci_dspace, src);
433 
434 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
435 		    metaslab_class_fragmentation(mc), src);
436 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
437 		    metaslab_class_expandable_space(mc), src);
438 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
439 		    (spa_mode(spa) == SPA_MODE_READ), src);
440 
441 		cap = (size == 0) ? 0 : (alloc * 100 / size);
442 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
443 
444 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
445 		    ddt_get_pool_dedup_ratio(spa), src);
446 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
447 		    brt_get_used(spa), src);
448 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
449 		    brt_get_saved(spa), src);
450 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
451 		    brt_get_ratio(spa), src);
452 
453 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
454 		    ddt_get_ddt_dsize(spa), src);
455 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 		    rvd->vdev_state, src);
457 		spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
458 		    spa_get_last_scrubbed_txg(spa), src);
459 
460 		version = spa_version(spa);
461 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
462 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
463 			    version, ZPROP_SRC_DEFAULT);
464 		} else {
465 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
466 			    version, ZPROP_SRC_LOCAL);
467 		}
468 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
469 		    NULL, spa_load_guid(spa), src);
470 	}
471 
472 	if (pool != NULL) {
473 		/*
474 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
475 		 * when opening pools before this version freedir will be NULL.
476 		 */
477 		if (pool->dp_free_dir != NULL) {
478 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
479 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
480 			    src);
481 		} else {
482 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
483 			    NULL, 0, src);
484 		}
485 
486 		if (pool->dp_leak_dir != NULL) {
487 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
488 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
489 			    src);
490 		} else {
491 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
492 			    NULL, 0, src);
493 		}
494 	}
495 
496 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
497 
498 	if (spa->spa_comment != NULL) {
499 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
500 		    0, ZPROP_SRC_LOCAL);
501 	}
502 
503 	if (spa->spa_compatibility != NULL) {
504 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
505 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
506 	}
507 
508 	if (spa->spa_root != NULL)
509 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
510 		    0, ZPROP_SRC_LOCAL);
511 
512 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
513 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
514 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
515 	} else {
516 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
517 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
518 	}
519 
520 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
521 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
522 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
523 	} else {
524 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
525 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
526 	}
527 
528 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
529 		if (dp->scd_path == NULL) {
530 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
531 			    "none", 0, ZPROP_SRC_LOCAL);
532 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
533 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
534 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
535 		}
536 	}
537 }
538 
539 /*
540  * Get zpool property values.
541  */
542 int
spa_prop_get(spa_t * spa,nvlist_t * nv)543 spa_prop_get(spa_t *spa, nvlist_t *nv)
544 {
545 	objset_t *mos = spa->spa_meta_objset;
546 	zap_cursor_t zc;
547 	zap_attribute_t *za;
548 	dsl_pool_t *dp;
549 	int err = 0;
550 
551 	dp = spa_get_dsl(spa);
552 	dsl_pool_config_enter(dp, FTAG);
553 	za = zap_attribute_alloc();
554 	mutex_enter(&spa->spa_props_lock);
555 
556 	/*
557 	 * Get properties from the spa config.
558 	 */
559 	spa_prop_get_config(spa, nv);
560 
561 	/* If no pool property object, no more prop to get. */
562 	if (mos == NULL || spa->spa_pool_props_object == 0)
563 		goto out;
564 
565 	/*
566 	 * Get properties from the MOS pool property object.
567 	 */
568 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
569 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
570 	    zap_cursor_advance(&zc)) {
571 		uint64_t intval = 0;
572 		char *strval = NULL;
573 		zprop_source_t src = ZPROP_SRC_DEFAULT;
574 		zpool_prop_t prop;
575 
576 		if ((prop = zpool_name_to_prop(za->za_name)) ==
577 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
578 			continue;
579 
580 		switch (za->za_integer_length) {
581 		case 8:
582 			/* integer property */
583 			if (za->za_first_integer !=
584 			    zpool_prop_default_numeric(prop))
585 				src = ZPROP_SRC_LOCAL;
586 
587 			if (prop == ZPOOL_PROP_BOOTFS) {
588 				dsl_dataset_t *ds = NULL;
589 
590 				err = dsl_dataset_hold_obj(dp,
591 				    za->za_first_integer, FTAG, &ds);
592 				if (err != 0)
593 					break;
594 
595 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
596 				    KM_SLEEP);
597 				dsl_dataset_name(ds, strval);
598 				dsl_dataset_rele(ds, FTAG);
599 			} else {
600 				strval = NULL;
601 				intval = za->za_first_integer;
602 			}
603 
604 			spa_prop_add_list(nv, prop, strval, intval, src);
605 
606 			if (strval != NULL)
607 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
608 
609 			break;
610 
611 		case 1:
612 			/* string property */
613 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
614 			err = zap_lookup(mos, spa->spa_pool_props_object,
615 			    za->za_name, 1, za->za_num_integers, strval);
616 			if (err) {
617 				kmem_free(strval, za->za_num_integers);
618 				break;
619 			}
620 			if (prop != ZPOOL_PROP_INVAL) {
621 				spa_prop_add_list(nv, prop, strval, 0, src);
622 			} else {
623 				src = ZPROP_SRC_LOCAL;
624 				spa_prop_add_user(nv, za->za_name, strval,
625 				    src);
626 			}
627 			kmem_free(strval, za->za_num_integers);
628 			break;
629 
630 		default:
631 			break;
632 		}
633 	}
634 	zap_cursor_fini(&zc);
635 out:
636 	mutex_exit(&spa->spa_props_lock);
637 	dsl_pool_config_exit(dp, FTAG);
638 	zap_attribute_free(za);
639 
640 	if (err && err != ENOENT)
641 		return (err);
642 
643 	return (0);
644 }
645 
646 /*
647  * Validate the given pool properties nvlist and modify the list
648  * for the property values to be set.
649  */
650 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)651 spa_prop_validate(spa_t *spa, nvlist_t *props)
652 {
653 	nvpair_t *elem;
654 	int error = 0, reset_bootfs = 0;
655 	uint64_t objnum = 0;
656 	boolean_t has_feature = B_FALSE;
657 
658 	elem = NULL;
659 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
660 		uint64_t intval;
661 		const char *strval, *slash, *check, *fname;
662 		const char *propname = nvpair_name(elem);
663 		zpool_prop_t prop = zpool_name_to_prop(propname);
664 
665 		switch (prop) {
666 		case ZPOOL_PROP_INVAL:
667 			/*
668 			 * Sanitize the input.
669 			 */
670 			if (zfs_prop_user(propname)) {
671 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
672 					error = SET_ERROR(ENAMETOOLONG);
673 					break;
674 				}
675 
676 				if (strlen(fnvpair_value_string(elem)) >=
677 				    ZAP_MAXVALUELEN) {
678 					error = SET_ERROR(E2BIG);
679 					break;
680 				}
681 			} else if (zpool_prop_feature(propname)) {
682 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
683 					error = SET_ERROR(EINVAL);
684 					break;
685 				}
686 
687 				if (nvpair_value_uint64(elem, &intval) != 0) {
688 					error = SET_ERROR(EINVAL);
689 					break;
690 				}
691 
692 				if (intval != 0) {
693 					error = SET_ERROR(EINVAL);
694 					break;
695 				}
696 
697 				fname = strchr(propname, '@') + 1;
698 				if (zfeature_lookup_name(fname, NULL) != 0) {
699 					error = SET_ERROR(EINVAL);
700 					break;
701 				}
702 
703 				has_feature = B_TRUE;
704 			} else {
705 				error = SET_ERROR(EINVAL);
706 				break;
707 			}
708 			break;
709 
710 		case ZPOOL_PROP_VERSION:
711 			error = nvpair_value_uint64(elem, &intval);
712 			if (!error &&
713 			    (intval < spa_version(spa) ||
714 			    intval > SPA_VERSION_BEFORE_FEATURES ||
715 			    has_feature))
716 				error = SET_ERROR(EINVAL);
717 			break;
718 
719 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
720 			error = nvpair_value_uint64(elem, &intval);
721 			break;
722 
723 		case ZPOOL_PROP_DELEGATION:
724 		case ZPOOL_PROP_AUTOREPLACE:
725 		case ZPOOL_PROP_LISTSNAPS:
726 		case ZPOOL_PROP_AUTOEXPAND:
727 		case ZPOOL_PROP_AUTOTRIM:
728 			error = nvpair_value_uint64(elem, &intval);
729 			if (!error && intval > 1)
730 				error = SET_ERROR(EINVAL);
731 			break;
732 
733 		case ZPOOL_PROP_MULTIHOST:
734 			error = nvpair_value_uint64(elem, &intval);
735 			if (!error && intval > 1)
736 				error = SET_ERROR(EINVAL);
737 
738 			if (!error) {
739 				uint32_t hostid = zone_get_hostid(NULL);
740 				if (hostid)
741 					spa->spa_hostid = hostid;
742 				else
743 					error = SET_ERROR(ENOTSUP);
744 			}
745 
746 			break;
747 
748 		case ZPOOL_PROP_BOOTFS:
749 			/*
750 			 * If the pool version is less than SPA_VERSION_BOOTFS,
751 			 * or the pool is still being created (version == 0),
752 			 * the bootfs property cannot be set.
753 			 */
754 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
755 				error = SET_ERROR(ENOTSUP);
756 				break;
757 			}
758 
759 			/*
760 			 * Make sure the vdev config is bootable
761 			 */
762 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
763 				error = SET_ERROR(ENOTSUP);
764 				break;
765 			}
766 
767 			reset_bootfs = 1;
768 
769 			error = nvpair_value_string(elem, &strval);
770 
771 			if (!error) {
772 				objset_t *os;
773 
774 				if (strval == NULL || strval[0] == '\0') {
775 					objnum = zpool_prop_default_numeric(
776 					    ZPOOL_PROP_BOOTFS);
777 					break;
778 				}
779 
780 				error = dmu_objset_hold(strval, FTAG, &os);
781 				if (error != 0)
782 					break;
783 
784 				/* Must be ZPL. */
785 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
786 					error = SET_ERROR(ENOTSUP);
787 				} else {
788 					objnum = dmu_objset_id(os);
789 				}
790 				dmu_objset_rele(os, FTAG);
791 			}
792 			break;
793 
794 		case ZPOOL_PROP_FAILUREMODE:
795 			error = nvpair_value_uint64(elem, &intval);
796 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
797 				error = SET_ERROR(EINVAL);
798 
799 			/*
800 			 * This is a special case which only occurs when
801 			 * the pool has completely failed. This allows
802 			 * the user to change the in-core failmode property
803 			 * without syncing it out to disk (I/Os might
804 			 * currently be blocked). We do this by returning
805 			 * EIO to the caller (spa_prop_set) to trick it
806 			 * into thinking we encountered a property validation
807 			 * error.
808 			 */
809 			if (!error && spa_suspended(spa)) {
810 				spa->spa_failmode = intval;
811 				error = SET_ERROR(EIO);
812 			}
813 			break;
814 
815 		case ZPOOL_PROP_CACHEFILE:
816 			if ((error = nvpair_value_string(elem, &strval)) != 0)
817 				break;
818 
819 			if (strval[0] == '\0')
820 				break;
821 
822 			if (strcmp(strval, "none") == 0)
823 				break;
824 
825 			if (strval[0] != '/') {
826 				error = SET_ERROR(EINVAL);
827 				break;
828 			}
829 
830 			slash = strrchr(strval, '/');
831 			ASSERT(slash != NULL);
832 
833 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
834 			    strcmp(slash, "/..") == 0)
835 				error = SET_ERROR(EINVAL);
836 			break;
837 
838 		case ZPOOL_PROP_COMMENT:
839 			if ((error = nvpair_value_string(elem, &strval)) != 0)
840 				break;
841 			for (check = strval; *check != '\0'; check++) {
842 				if (!isprint(*check)) {
843 					error = SET_ERROR(EINVAL);
844 					break;
845 				}
846 			}
847 			if (strlen(strval) > ZPROP_MAX_COMMENT)
848 				error = SET_ERROR(E2BIG);
849 			break;
850 
851 		default:
852 			break;
853 		}
854 
855 		if (error)
856 			break;
857 	}
858 
859 	(void) nvlist_remove_all(props,
860 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
861 
862 	if (!error && reset_bootfs) {
863 		error = nvlist_remove(props,
864 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
865 
866 		if (!error) {
867 			error = nvlist_add_uint64(props,
868 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
869 		}
870 	}
871 
872 	return (error);
873 }
874 
875 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)876 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
877 {
878 	const char *cachefile;
879 	spa_config_dirent_t *dp;
880 
881 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
882 	    &cachefile) != 0)
883 		return;
884 
885 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
886 	    KM_SLEEP);
887 
888 	if (cachefile[0] == '\0')
889 		dp->scd_path = spa_strdup(spa_config_path);
890 	else if (strcmp(cachefile, "none") == 0)
891 		dp->scd_path = NULL;
892 	else
893 		dp->scd_path = spa_strdup(cachefile);
894 
895 	list_insert_head(&spa->spa_config_list, dp);
896 	if (need_sync)
897 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
898 }
899 
900 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)901 spa_prop_set(spa_t *spa, nvlist_t *nvp)
902 {
903 	int error;
904 	nvpair_t *elem = NULL;
905 	boolean_t need_sync = B_FALSE;
906 
907 	if ((error = spa_prop_validate(spa, nvp)) != 0)
908 		return (error);
909 
910 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
911 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
912 
913 		if (prop == ZPOOL_PROP_CACHEFILE ||
914 		    prop == ZPOOL_PROP_ALTROOT ||
915 		    prop == ZPOOL_PROP_READONLY)
916 			continue;
917 
918 		if (prop == ZPOOL_PROP_INVAL &&
919 		    zfs_prop_user(nvpair_name(elem))) {
920 			need_sync = B_TRUE;
921 			break;
922 		}
923 
924 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
925 			uint64_t ver = 0;
926 
927 			if (prop == ZPOOL_PROP_VERSION) {
928 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
929 			} else {
930 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
931 				ver = SPA_VERSION_FEATURES;
932 				need_sync = B_TRUE;
933 			}
934 
935 			/* Save time if the version is already set. */
936 			if (ver == spa_version(spa))
937 				continue;
938 
939 			/*
940 			 * In addition to the pool directory object, we might
941 			 * create the pool properties object, the features for
942 			 * read object, the features for write object, or the
943 			 * feature descriptions object.
944 			 */
945 			error = dsl_sync_task(spa->spa_name, NULL,
946 			    spa_sync_version, &ver,
947 			    6, ZFS_SPACE_CHECK_RESERVED);
948 			if (error)
949 				return (error);
950 			continue;
951 		}
952 
953 		need_sync = B_TRUE;
954 		break;
955 	}
956 
957 	if (need_sync) {
958 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
959 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
960 	}
961 
962 	return (0);
963 }
964 
965 /*
966  * If the bootfs property value is dsobj, clear it.
967  */
968 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)969 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
970 {
971 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
972 		VERIFY(zap_remove(spa->spa_meta_objset,
973 		    spa->spa_pool_props_object,
974 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
975 		spa->spa_bootfs = 0;
976 	}
977 }
978 
979 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)980 spa_change_guid_check(void *arg, dmu_tx_t *tx)
981 {
982 	uint64_t *newguid __maybe_unused = arg;
983 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
984 	vdev_t *rvd = spa->spa_root_vdev;
985 	uint64_t vdev_state;
986 
987 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
988 		int error = (spa_has_checkpoint(spa)) ?
989 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
990 		return (SET_ERROR(error));
991 	}
992 
993 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
994 	vdev_state = rvd->vdev_state;
995 	spa_config_exit(spa, SCL_STATE, FTAG);
996 
997 	if (vdev_state != VDEV_STATE_HEALTHY)
998 		return (SET_ERROR(ENXIO));
999 
1000 	ASSERT3U(spa_guid(spa), !=, *newguid);
1001 
1002 	return (0);
1003 }
1004 
1005 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1006 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1007 {
1008 	uint64_t *newguid = arg;
1009 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1010 	uint64_t oldguid;
1011 	vdev_t *rvd = spa->spa_root_vdev;
1012 
1013 	oldguid = spa_guid(spa);
1014 
1015 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1016 	rvd->vdev_guid = *newguid;
1017 	rvd->vdev_guid_sum += (*newguid - oldguid);
1018 	vdev_config_dirty(rvd);
1019 	spa_config_exit(spa, SCL_STATE, FTAG);
1020 
1021 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1022 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1023 }
1024 
1025 /*
1026  * Change the GUID for the pool.  This is done so that we can later
1027  * re-import a pool built from a clone of our own vdevs.  We will modify
1028  * the root vdev's guid, our own pool guid, and then mark all of our
1029  * vdevs dirty.  Note that we must make sure that all our vdevs are
1030  * online when we do this, or else any vdevs that weren't present
1031  * would be orphaned from our pool.  We are also going to issue a
1032  * sysevent to update any watchers.
1033  *
1034  * The GUID of the pool will be changed to the value pointed to by guidp.
1035  * The GUID may not be set to the reserverd value of 0.
1036  * The new GUID will be generated if guidp is NULL.
1037  */
1038 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1039 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1040 {
1041 	uint64_t guid;
1042 	int error;
1043 
1044 	mutex_enter(&spa->spa_vdev_top_lock);
1045 	mutex_enter(&spa_namespace_lock);
1046 
1047 	if (guidp != NULL) {
1048 		guid = *guidp;
1049 		if (guid == 0) {
1050 			error = SET_ERROR(EINVAL);
1051 			goto out;
1052 		}
1053 
1054 		if (spa_guid_exists(guid, 0)) {
1055 			error = SET_ERROR(EEXIST);
1056 			goto out;
1057 		}
1058 	} else {
1059 		guid = spa_generate_guid(NULL);
1060 	}
1061 
1062 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1063 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1064 
1065 	if (error == 0) {
1066 		/*
1067 		 * Clear the kobj flag from all the vdevs to allow
1068 		 * vdev_cache_process_kobj_evt() to post events to all the
1069 		 * vdevs since GUID is updated.
1070 		 */
1071 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1072 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1073 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1074 
1075 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1076 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1077 	}
1078 
1079 out:
1080 	mutex_exit(&spa_namespace_lock);
1081 	mutex_exit(&spa->spa_vdev_top_lock);
1082 
1083 	return (error);
1084 }
1085 
1086 /*
1087  * ==========================================================================
1088  * SPA state manipulation (open/create/destroy/import/export)
1089  * ==========================================================================
1090  */
1091 
1092 static int
spa_error_entry_compare(const void * a,const void * b)1093 spa_error_entry_compare(const void *a, const void *b)
1094 {
1095 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1096 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1097 	int ret;
1098 
1099 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1100 	    sizeof (zbookmark_phys_t));
1101 
1102 	return (TREE_ISIGN(ret));
1103 }
1104 
1105 /*
1106  * Utility function which retrieves copies of the current logs and
1107  * re-initializes them in the process.
1108  */
1109 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1110 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1111 {
1112 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1113 
1114 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1115 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1116 
1117 	avl_create(&spa->spa_errlist_scrub,
1118 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1119 	    offsetof(spa_error_entry_t, se_avl));
1120 	avl_create(&spa->spa_errlist_last,
1121 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1122 	    offsetof(spa_error_entry_t, se_avl));
1123 }
1124 
1125 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1126 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1127 {
1128 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1129 	enum zti_modes mode = ztip->zti_mode;
1130 	uint_t value = ztip->zti_value;
1131 	uint_t count = ztip->zti_count;
1132 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1133 	uint_t cpus, flags = TASKQ_DYNAMIC;
1134 
1135 	switch (mode) {
1136 	case ZTI_MODE_FIXED:
1137 		ASSERT3U(value, >, 0);
1138 		break;
1139 
1140 	case ZTI_MODE_SYNC:
1141 
1142 		/*
1143 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1144 		 * not to exceed the number of spa allocators, and align to it.
1145 		 */
1146 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1147 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1148 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1149 		count = MIN(count, spa->spa_alloc_count);
1150 		while (spa->spa_alloc_count % count != 0 &&
1151 		    spa->spa_alloc_count < count * 2)
1152 			count--;
1153 
1154 		/*
1155 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1156 		 * single taskq may have more threads than 100% of online cpus.
1157 		 */
1158 		value = (zio_taskq_batch_pct + count / 2) / count;
1159 		value = MIN(value, 100);
1160 		flags |= TASKQ_THREADS_CPU_PCT;
1161 		break;
1162 
1163 	case ZTI_MODE_SCALE:
1164 		flags |= TASKQ_THREADS_CPU_PCT;
1165 		/*
1166 		 * We want more taskqs to reduce lock contention, but we want
1167 		 * less for better request ordering and CPU utilization.
1168 		 */
1169 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1170 		if (zio_taskq_batch_tpq > 0) {
1171 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1172 			    zio_taskq_batch_tpq);
1173 		} else {
1174 			/*
1175 			 * Prefer 6 threads per taskq, but no more taskqs
1176 			 * than threads in them on large systems. For 80%:
1177 			 *
1178 			 *                 taskq   taskq   total
1179 			 * cpus    taskqs  percent threads threads
1180 			 * ------- ------- ------- ------- -------
1181 			 * 1       1       80%     1       1
1182 			 * 2       1       80%     1       1
1183 			 * 4       1       80%     3       3
1184 			 * 8       2       40%     3       6
1185 			 * 16      3       27%     4       12
1186 			 * 32      5       16%     5       25
1187 			 * 64      7       11%     7       49
1188 			 * 128     10      8%      10      100
1189 			 * 256     14      6%      15      210
1190 			 */
1191 			count = 1 + cpus / 6;
1192 			while (count * count > cpus)
1193 				count--;
1194 		}
1195 		/* Limit each taskq within 100% to not trigger assertion. */
1196 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1197 		value = (zio_taskq_batch_pct + count / 2) / count;
1198 		break;
1199 
1200 	case ZTI_MODE_NULL:
1201 		tqs->stqs_count = 0;
1202 		tqs->stqs_taskq = NULL;
1203 		return;
1204 
1205 	default:
1206 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1207 		    "spa_taskqs_init()",
1208 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1209 		break;
1210 	}
1211 
1212 	ASSERT3U(count, >, 0);
1213 	tqs->stqs_count = count;
1214 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1215 
1216 	for (uint_t i = 0; i < count; i++) {
1217 		taskq_t *tq;
1218 		char name[32];
1219 
1220 		if (count > 1)
1221 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1222 			    zio_type_name[t], zio_taskq_types[q], i);
1223 		else
1224 			(void) snprintf(name, sizeof (name), "%s_%s",
1225 			    zio_type_name[t], zio_taskq_types[q]);
1226 
1227 #ifdef HAVE_SYSDC
1228 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1229 			(void) zio_taskq_basedc;
1230 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1231 			    spa->spa_proc, zio_taskq_basedc, flags);
1232 		} else {
1233 #endif
1234 			pri_t pri = maxclsyspri;
1235 			/*
1236 			 * The write issue taskq can be extremely CPU
1237 			 * intensive.  Run it at slightly less important
1238 			 * priority than the other taskqs.
1239 			 *
1240 			 * Under Linux and FreeBSD this means incrementing
1241 			 * the priority value as opposed to platforms like
1242 			 * illumos where it should be decremented.
1243 			 *
1244 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1245 			 * are equal then a difference between them is
1246 			 * insignificant.
1247 			 */
1248 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1249 #if defined(__linux__)
1250 				pri++;
1251 #elif defined(__FreeBSD__)
1252 				pri += 4;
1253 #else
1254 #error "unknown OS"
1255 #endif
1256 			}
1257 			tq = taskq_create_proc(name, value, pri, 50,
1258 			    INT_MAX, spa->spa_proc, flags);
1259 #ifdef HAVE_SYSDC
1260 		}
1261 #endif
1262 
1263 		tqs->stqs_taskq[i] = tq;
1264 	}
1265 }
1266 
1267 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1268 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1269 {
1270 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1271 
1272 	if (tqs->stqs_taskq == NULL) {
1273 		ASSERT3U(tqs->stqs_count, ==, 0);
1274 		return;
1275 	}
1276 
1277 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1278 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1279 		taskq_destroy(tqs->stqs_taskq[i]);
1280 	}
1281 
1282 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1283 	tqs->stqs_taskq = NULL;
1284 }
1285 
1286 #ifdef _KERNEL
1287 /*
1288  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1289  * by setting zio_taskq_read or zio_taskq_write.
1290  *
1291  * Example (the defaults for READ and WRITE)
1292  *   zio_taskq_read='fixed,1,8 null scale null'
1293  *   zio_taskq_write='sync null scale null'
1294  *
1295  * Each sets the entire row at a time.
1296  *
1297  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1298  * of threads per taskq.
1299  *
1300  * 'null' can only be set on the high-priority queues (queue selection for
1301  * high-priority queues will fall back to the regular queue if the high-pri
1302  * is NULL.
1303  */
1304 static const char *const modes[ZTI_NMODES] = {
1305 	"fixed", "scale", "sync", "null"
1306 };
1307 
1308 /* Parse the incoming config string. Modifies cfg */
1309 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1310 spa_taskq_param_set(zio_type_t t, char *cfg)
1311 {
1312 	int err = 0;
1313 
1314 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1315 
1316 	char *next = cfg, *tok, *c;
1317 
1318 	/*
1319 	 * Parse out each element from the string and fill `row`. The entire
1320 	 * row has to be set at once, so any errors are flagged by just
1321 	 * breaking out of this loop early.
1322 	 */
1323 	uint_t q;
1324 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1325 		/* `next` is the start of the config */
1326 		if (next == NULL)
1327 			break;
1328 
1329 		/* Eat up leading space */
1330 		while (isspace(*next))
1331 			next++;
1332 		if (*next == '\0')
1333 			break;
1334 
1335 		/* Mode ends at space or end of string */
1336 		tok = next;
1337 		next = strchr(tok, ' ');
1338 		if (next != NULL) *next++ = '\0';
1339 
1340 		/* Parameters start after a comma */
1341 		c = strchr(tok, ',');
1342 		if (c != NULL) *c++ = '\0';
1343 
1344 		/* Match mode string */
1345 		uint_t mode;
1346 		for (mode = 0; mode < ZTI_NMODES; mode++)
1347 			if (strcmp(tok, modes[mode]) == 0)
1348 				break;
1349 		if (mode == ZTI_NMODES)
1350 			break;
1351 
1352 		/* Invalid canary */
1353 		row[q].zti_mode = ZTI_NMODES;
1354 
1355 		/* Per-mode setup */
1356 		switch (mode) {
1357 
1358 		/*
1359 		 * FIXED is parameterised: number of queues, and number of
1360 		 * threads per queue.
1361 		 */
1362 		case ZTI_MODE_FIXED: {
1363 			/* No parameters? */
1364 			if (c == NULL || *c == '\0')
1365 				break;
1366 
1367 			/* Find next parameter */
1368 			tok = c;
1369 			c = strchr(tok, ',');
1370 			if (c == NULL)
1371 				break;
1372 
1373 			/* Take digits and convert */
1374 			unsigned long long nq;
1375 			if (!(isdigit(*tok)))
1376 				break;
1377 			err = ddi_strtoull(tok, &tok, 10, &nq);
1378 			/* Must succeed and also end at the next param sep */
1379 			if (err != 0 || tok != c)
1380 				break;
1381 
1382 			/* Move past the comma */
1383 			tok++;
1384 			/* Need another number */
1385 			if (!(isdigit(*tok)))
1386 				break;
1387 			/* Remember start to make sure we moved */
1388 			c = tok;
1389 
1390 			/* Take digits */
1391 			unsigned long long ntpq;
1392 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1393 			/* Must succeed, and moved forward */
1394 			if (err != 0 || tok == c || *tok != '\0')
1395 				break;
1396 
1397 			/*
1398 			 * sanity; zero queues/threads make no sense, and
1399 			 * 16K is almost certainly more than anyone will ever
1400 			 * need and avoids silly numbers like UINT32_MAX
1401 			 */
1402 			if (nq == 0 || nq >= 16384 ||
1403 			    ntpq == 0 || ntpq >= 16384)
1404 				break;
1405 
1406 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1407 			row[q] = zti;
1408 			break;
1409 		}
1410 
1411 		case ZTI_MODE_SCALE: {
1412 			const zio_taskq_info_t zti = ZTI_SCALE;
1413 			row[q] = zti;
1414 			break;
1415 		}
1416 
1417 		case ZTI_MODE_SYNC: {
1418 			const zio_taskq_info_t zti = ZTI_SYNC;
1419 			row[q] = zti;
1420 			break;
1421 		}
1422 
1423 		case ZTI_MODE_NULL: {
1424 			/*
1425 			 * Can only null the high-priority queues; the general-
1426 			 * purpose ones have to exist.
1427 			 */
1428 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1429 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1430 				break;
1431 
1432 			const zio_taskq_info_t zti = ZTI_NULL;
1433 			row[q] = zti;
1434 			break;
1435 		}
1436 
1437 		default:
1438 			break;
1439 		}
1440 
1441 		/* Ensure we set a mode */
1442 		if (row[q].zti_mode == ZTI_NMODES)
1443 			break;
1444 	}
1445 
1446 	/* Didn't get a full row, fail */
1447 	if (q < ZIO_TASKQ_TYPES)
1448 		return (SET_ERROR(EINVAL));
1449 
1450 	/* Eat trailing space */
1451 	if (next != NULL)
1452 		while (isspace(*next))
1453 			next++;
1454 
1455 	/* If there's anything left over then fail */
1456 	if (next != NULL && *next != '\0')
1457 		return (SET_ERROR(EINVAL));
1458 
1459 	/* Success! Copy it into the real config */
1460 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1461 		zio_taskqs[t][q] = row[q];
1462 
1463 	return (0);
1464 }
1465 
1466 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1467 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1468 {
1469 	int pos = 0;
1470 
1471 	/* Build paramater string from live config */
1472 	const char *sep = "";
1473 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1474 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1475 		if (zti->zti_mode == ZTI_MODE_FIXED)
1476 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1477 			    modes[zti->zti_mode], zti->zti_count,
1478 			    zti->zti_value);
1479 		else
1480 			pos += sprintf(&buf[pos], "%s%s", sep,
1481 			    modes[zti->zti_mode]);
1482 		sep = " ";
1483 	}
1484 
1485 	if (add_newline)
1486 		buf[pos++] = '\n';
1487 	buf[pos] = '\0';
1488 
1489 	return (pos);
1490 }
1491 
1492 #ifdef __linux__
1493 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1494 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1495 {
1496 	char *cfg = kmem_strdup(val);
1497 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1498 	kmem_free(cfg, strlen(val)+1);
1499 	return (-err);
1500 }
1501 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1502 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1503 {
1504 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1505 }
1506 
1507 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1508 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1509 {
1510 	char *cfg = kmem_strdup(val);
1511 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1512 	kmem_free(cfg, strlen(val)+1);
1513 	return (-err);
1514 }
1515 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1516 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1517 {
1518 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1519 }
1520 #else
1521 /*
1522  * On FreeBSD load-time parameters can be set up before malloc() is available,
1523  * so we have to do all the parsing work on the stack.
1524  */
1525 #define	SPA_TASKQ_PARAM_MAX	(128)
1526 
1527 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1528 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1529 {
1530 	char buf[SPA_TASKQ_PARAM_MAX];
1531 	int err;
1532 
1533 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1534 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1535 	if (err || req->newptr == NULL)
1536 		return (err);
1537 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1538 }
1539 
1540 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1541 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1542 {
1543 	char buf[SPA_TASKQ_PARAM_MAX];
1544 	int err;
1545 
1546 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1547 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1548 	if (err || req->newptr == NULL)
1549 		return (err);
1550 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1551 }
1552 #endif
1553 #endif /* _KERNEL */
1554 
1555 /*
1556  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1557  * Note that a type may have multiple discrete taskqs to avoid lock contention
1558  * on the taskq itself.
1559  */
1560 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1561 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1562     task_func_t *func, zio_t *zio, boolean_t cutinline)
1563 {
1564 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1565 	taskq_t *tq;
1566 
1567 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1568 	ASSERT3U(tqs->stqs_count, !=, 0);
1569 
1570 	/*
1571 	 * NB: We are assuming that the zio can only be dispatched
1572 	 * to a single taskq at a time.  It would be a grievous error
1573 	 * to dispatch the zio to another taskq at the same time.
1574 	 */
1575 	ASSERT(zio);
1576 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1577 
1578 	if (tqs->stqs_count == 1) {
1579 		tq = tqs->stqs_taskq[0];
1580 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1581 	    ZIO_HAS_ALLOCATOR(zio)) {
1582 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1583 	} else {
1584 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1585 	}
1586 
1587 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1588 	    &zio->io_tqent);
1589 }
1590 
1591 static void
spa_create_zio_taskqs(spa_t * spa)1592 spa_create_zio_taskqs(spa_t *spa)
1593 {
1594 	for (int t = 0; t < ZIO_TYPES; t++) {
1595 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1596 			spa_taskqs_init(spa, t, q);
1597 		}
1598 	}
1599 }
1600 
1601 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1602 static void
spa_thread(void * arg)1603 spa_thread(void *arg)
1604 {
1605 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1606 	callb_cpr_t cprinfo;
1607 
1608 	spa_t *spa = arg;
1609 	user_t *pu = PTOU(curproc);
1610 
1611 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1612 	    spa->spa_name);
1613 
1614 	ASSERT(curproc != &p0);
1615 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1616 	    "zpool-%s", spa->spa_name);
1617 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1618 
1619 	/* bind this thread to the requested psrset */
1620 	if (zio_taskq_psrset_bind != PS_NONE) {
1621 		pool_lock();
1622 		mutex_enter(&cpu_lock);
1623 		mutex_enter(&pidlock);
1624 		mutex_enter(&curproc->p_lock);
1625 
1626 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1627 		    0, NULL, NULL) == 0)  {
1628 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1629 		} else {
1630 			cmn_err(CE_WARN,
1631 			    "Couldn't bind process for zfs pool \"%s\" to "
1632 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1633 		}
1634 
1635 		mutex_exit(&curproc->p_lock);
1636 		mutex_exit(&pidlock);
1637 		mutex_exit(&cpu_lock);
1638 		pool_unlock();
1639 	}
1640 
1641 #ifdef HAVE_SYSDC
1642 	if (zio_taskq_sysdc) {
1643 		sysdc_thread_enter(curthread, 100, 0);
1644 	}
1645 #endif
1646 
1647 	spa->spa_proc = curproc;
1648 	spa->spa_did = curthread->t_did;
1649 
1650 	spa_create_zio_taskqs(spa);
1651 
1652 	mutex_enter(&spa->spa_proc_lock);
1653 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1654 
1655 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1656 	cv_broadcast(&spa->spa_proc_cv);
1657 
1658 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1659 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1660 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1661 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1662 
1663 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1664 	spa->spa_proc_state = SPA_PROC_GONE;
1665 	spa->spa_proc = &p0;
1666 	cv_broadcast(&spa->spa_proc_cv);
1667 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1668 
1669 	mutex_enter(&curproc->p_lock);
1670 	lwp_exit();
1671 }
1672 #endif
1673 
1674 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1675 
1676 /*
1677  * Activate an uninitialized pool.
1678  */
1679 static void
spa_activate(spa_t * spa,spa_mode_t mode)1680 spa_activate(spa_t *spa, spa_mode_t mode)
1681 {
1682 	metaslab_ops_t *msp = metaslab_allocator(spa);
1683 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1684 
1685 	spa->spa_state = POOL_STATE_ACTIVE;
1686 	spa->spa_mode = mode;
1687 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1688 
1689 	spa->spa_normal_class = metaslab_class_create(spa, msp, B_FALSE);
1690 	spa->spa_log_class = metaslab_class_create(spa, msp, B_TRUE);
1691 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp, B_TRUE);
1692 	spa->spa_special_class = metaslab_class_create(spa, msp, B_FALSE);
1693 	spa->spa_dedup_class = metaslab_class_create(spa, msp, B_FALSE);
1694 
1695 	/* Try to create a covering process */
1696 	mutex_enter(&spa->spa_proc_lock);
1697 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1698 	ASSERT(spa->spa_proc == &p0);
1699 	spa->spa_did = 0;
1700 
1701 #ifdef HAVE_SPA_THREAD
1702 	/* Only create a process if we're going to be around a while. */
1703 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1704 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1705 		    NULL, 0) == 0) {
1706 			spa->spa_proc_state = SPA_PROC_CREATED;
1707 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1708 				cv_wait(&spa->spa_proc_cv,
1709 				    &spa->spa_proc_lock);
1710 			}
1711 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1712 			ASSERT(spa->spa_proc != &p0);
1713 			ASSERT(spa->spa_did != 0);
1714 		} else {
1715 #ifdef _KERNEL
1716 			cmn_err(CE_WARN,
1717 			    "Couldn't create process for zfs pool \"%s\"\n",
1718 			    spa->spa_name);
1719 #endif
1720 		}
1721 	}
1722 #endif /* HAVE_SPA_THREAD */
1723 	mutex_exit(&spa->spa_proc_lock);
1724 
1725 	/* If we didn't create a process, we need to create our taskqs. */
1726 	if (spa->spa_proc == &p0) {
1727 		spa_create_zio_taskqs(spa);
1728 	}
1729 
1730 	for (size_t i = 0; i < TXG_SIZE; i++) {
1731 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1732 		    ZIO_FLAG_CANFAIL);
1733 	}
1734 
1735 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1736 	    offsetof(vdev_t, vdev_config_dirty_node));
1737 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1738 	    offsetof(objset_t, os_evicting_node));
1739 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1740 	    offsetof(vdev_t, vdev_state_dirty_node));
1741 
1742 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1743 	    offsetof(struct vdev, vdev_txg_node));
1744 
1745 	avl_create(&spa->spa_errlist_scrub,
1746 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1747 	    offsetof(spa_error_entry_t, se_avl));
1748 	avl_create(&spa->spa_errlist_last,
1749 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1750 	    offsetof(spa_error_entry_t, se_avl));
1751 	avl_create(&spa->spa_errlist_healed,
1752 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1753 	    offsetof(spa_error_entry_t, se_avl));
1754 
1755 	spa_activate_os(spa);
1756 
1757 	spa_keystore_init(&spa->spa_keystore);
1758 
1759 	/*
1760 	 * This taskq is used to perform zvol-minor-related tasks
1761 	 * asynchronously. This has several advantages, including easy
1762 	 * resolution of various deadlocks.
1763 	 *
1764 	 * The taskq must be single threaded to ensure tasks are always
1765 	 * processed in the order in which they were dispatched.
1766 	 *
1767 	 * A taskq per pool allows one to keep the pools independent.
1768 	 * This way if one pool is suspended, it will not impact another.
1769 	 *
1770 	 * The preferred location to dispatch a zvol minor task is a sync
1771 	 * task. In this context, there is easy access to the spa_t and minimal
1772 	 * error handling is required because the sync task must succeed.
1773 	 */
1774 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1775 	    1, INT_MAX, 0);
1776 
1777 	/*
1778 	 * The taskq to preload metaslabs.
1779 	 */
1780 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1781 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1782 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1783 
1784 	/*
1785 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1786 	 * pool traverse code from monopolizing the global (and limited)
1787 	 * system_taskq by inappropriately scheduling long running tasks on it.
1788 	 */
1789 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1790 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1791 
1792 	/*
1793 	 * The taskq to upgrade datasets in this pool. Currently used by
1794 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1795 	 */
1796 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1797 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1798 }
1799 
1800 /*
1801  * Opposite of spa_activate().
1802  */
1803 static void
spa_deactivate(spa_t * spa)1804 spa_deactivate(spa_t *spa)
1805 {
1806 	ASSERT(spa->spa_sync_on == B_FALSE);
1807 	ASSERT(spa->spa_dsl_pool == NULL);
1808 	ASSERT(spa->spa_root_vdev == NULL);
1809 	ASSERT(spa->spa_async_zio_root == NULL);
1810 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1811 
1812 	spa_evicting_os_wait(spa);
1813 
1814 	if (spa->spa_zvol_taskq) {
1815 		taskq_destroy(spa->spa_zvol_taskq);
1816 		spa->spa_zvol_taskq = NULL;
1817 	}
1818 
1819 	if (spa->spa_metaslab_taskq) {
1820 		taskq_destroy(spa->spa_metaslab_taskq);
1821 		spa->spa_metaslab_taskq = NULL;
1822 	}
1823 
1824 	if (spa->spa_prefetch_taskq) {
1825 		taskq_destroy(spa->spa_prefetch_taskq);
1826 		spa->spa_prefetch_taskq = NULL;
1827 	}
1828 
1829 	if (spa->spa_upgrade_taskq) {
1830 		taskq_destroy(spa->spa_upgrade_taskq);
1831 		spa->spa_upgrade_taskq = NULL;
1832 	}
1833 
1834 	txg_list_destroy(&spa->spa_vdev_txg_list);
1835 
1836 	list_destroy(&spa->spa_config_dirty_list);
1837 	list_destroy(&spa->spa_evicting_os_list);
1838 	list_destroy(&spa->spa_state_dirty_list);
1839 
1840 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1841 
1842 	for (int t = 0; t < ZIO_TYPES; t++) {
1843 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1844 			spa_taskqs_fini(spa, t, q);
1845 		}
1846 	}
1847 
1848 	for (size_t i = 0; i < TXG_SIZE; i++) {
1849 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1850 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1851 		spa->spa_txg_zio[i] = NULL;
1852 	}
1853 
1854 	metaslab_class_destroy(spa->spa_normal_class);
1855 	spa->spa_normal_class = NULL;
1856 
1857 	metaslab_class_destroy(spa->spa_log_class);
1858 	spa->spa_log_class = NULL;
1859 
1860 	metaslab_class_destroy(spa->spa_embedded_log_class);
1861 	spa->spa_embedded_log_class = NULL;
1862 
1863 	metaslab_class_destroy(spa->spa_special_class);
1864 	spa->spa_special_class = NULL;
1865 
1866 	metaslab_class_destroy(spa->spa_dedup_class);
1867 	spa->spa_dedup_class = NULL;
1868 
1869 	/*
1870 	 * If this was part of an import or the open otherwise failed, we may
1871 	 * still have errors left in the queues.  Empty them just in case.
1872 	 */
1873 	spa_errlog_drain(spa);
1874 	avl_destroy(&spa->spa_errlist_scrub);
1875 	avl_destroy(&spa->spa_errlist_last);
1876 	avl_destroy(&spa->spa_errlist_healed);
1877 
1878 	spa_keystore_fini(&spa->spa_keystore);
1879 
1880 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1881 
1882 	mutex_enter(&spa->spa_proc_lock);
1883 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1884 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1885 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1886 		cv_broadcast(&spa->spa_proc_cv);
1887 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1888 			ASSERT(spa->spa_proc != &p0);
1889 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1890 		}
1891 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1892 		spa->spa_proc_state = SPA_PROC_NONE;
1893 	}
1894 	ASSERT(spa->spa_proc == &p0);
1895 	mutex_exit(&spa->spa_proc_lock);
1896 
1897 	/*
1898 	 * We want to make sure spa_thread() has actually exited the ZFS
1899 	 * module, so that the module can't be unloaded out from underneath
1900 	 * it.
1901 	 */
1902 	if (spa->spa_did != 0) {
1903 		thread_join(spa->spa_did);
1904 		spa->spa_did = 0;
1905 	}
1906 
1907 	spa_deactivate_os(spa);
1908 
1909 }
1910 
1911 /*
1912  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1913  * will create all the necessary vdevs in the appropriate layout, with each vdev
1914  * in the CLOSED state.  This will prep the pool before open/creation/import.
1915  * All vdev validation is done by the vdev_alloc() routine.
1916  */
1917 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1918 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1919     uint_t id, int atype)
1920 {
1921 	nvlist_t **child;
1922 	uint_t children;
1923 	int error;
1924 
1925 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1926 		return (error);
1927 
1928 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1929 		return (0);
1930 
1931 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1932 	    &child, &children);
1933 
1934 	if (error == ENOENT)
1935 		return (0);
1936 
1937 	if (error) {
1938 		vdev_free(*vdp);
1939 		*vdp = NULL;
1940 		return (SET_ERROR(EINVAL));
1941 	}
1942 
1943 	for (int c = 0; c < children; c++) {
1944 		vdev_t *vd;
1945 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1946 		    atype)) != 0) {
1947 			vdev_free(*vdp);
1948 			*vdp = NULL;
1949 			return (error);
1950 		}
1951 	}
1952 
1953 	ASSERT(*vdp != NULL);
1954 
1955 	return (0);
1956 }
1957 
1958 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1959 spa_should_flush_logs_on_unload(spa_t *spa)
1960 {
1961 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1962 		return (B_FALSE);
1963 
1964 	if (!spa_writeable(spa))
1965 		return (B_FALSE);
1966 
1967 	if (!spa->spa_sync_on)
1968 		return (B_FALSE);
1969 
1970 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1971 		return (B_FALSE);
1972 
1973 	if (zfs_keep_log_spacemaps_at_export)
1974 		return (B_FALSE);
1975 
1976 	return (B_TRUE);
1977 }
1978 
1979 /*
1980  * Opens a transaction that will set the flag that will instruct
1981  * spa_sync to attempt to flush all the metaslabs for that txg.
1982  */
1983 static void
spa_unload_log_sm_flush_all(spa_t * spa)1984 spa_unload_log_sm_flush_all(spa_t *spa)
1985 {
1986 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1987 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
1988 
1989 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1990 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1991 
1992 	dmu_tx_commit(tx);
1993 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1994 }
1995 
1996 static void
spa_unload_log_sm_metadata(spa_t * spa)1997 spa_unload_log_sm_metadata(spa_t *spa)
1998 {
1999 	void *cookie = NULL;
2000 	spa_log_sm_t *sls;
2001 	log_summary_entry_t *e;
2002 
2003 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2004 	    &cookie)) != NULL) {
2005 		VERIFY0(sls->sls_mscount);
2006 		kmem_free(sls, sizeof (spa_log_sm_t));
2007 	}
2008 
2009 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2010 		VERIFY0(e->lse_mscount);
2011 		kmem_free(e, sizeof (log_summary_entry_t));
2012 	}
2013 
2014 	spa->spa_unflushed_stats.sus_nblocks = 0;
2015 	spa->spa_unflushed_stats.sus_memused = 0;
2016 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2017 }
2018 
2019 static void
spa_destroy_aux_threads(spa_t * spa)2020 spa_destroy_aux_threads(spa_t *spa)
2021 {
2022 	if (spa->spa_condense_zthr != NULL) {
2023 		zthr_destroy(spa->spa_condense_zthr);
2024 		spa->spa_condense_zthr = NULL;
2025 	}
2026 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2027 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2028 		spa->spa_checkpoint_discard_zthr = NULL;
2029 	}
2030 	if (spa->spa_livelist_delete_zthr != NULL) {
2031 		zthr_destroy(spa->spa_livelist_delete_zthr);
2032 		spa->spa_livelist_delete_zthr = NULL;
2033 	}
2034 	if (spa->spa_livelist_condense_zthr != NULL) {
2035 		zthr_destroy(spa->spa_livelist_condense_zthr);
2036 		spa->spa_livelist_condense_zthr = NULL;
2037 	}
2038 	if (spa->spa_raidz_expand_zthr != NULL) {
2039 		zthr_destroy(spa->spa_raidz_expand_zthr);
2040 		spa->spa_raidz_expand_zthr = NULL;
2041 	}
2042 }
2043 
2044 /*
2045  * Opposite of spa_load().
2046  */
2047 static void
spa_unload(spa_t * spa)2048 spa_unload(spa_t *spa)
2049 {
2050 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2051 	    spa->spa_export_thread == curthread);
2052 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2053 
2054 	spa_import_progress_remove(spa_guid(spa));
2055 	spa_load_note(spa, "UNLOADING");
2056 
2057 	spa_wake_waiters(spa);
2058 
2059 	/*
2060 	 * If we have set the spa_final_txg, we have already performed the
2061 	 * tasks below in spa_export_common(). We should not redo it here since
2062 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2063 	 */
2064 	if (spa->spa_final_txg == UINT64_MAX) {
2065 		/*
2066 		 * If the log space map feature is enabled and the pool is
2067 		 * getting exported (but not destroyed), we want to spend some
2068 		 * time flushing as many metaslabs as we can in an attempt to
2069 		 * destroy log space maps and save import time.
2070 		 */
2071 		if (spa_should_flush_logs_on_unload(spa))
2072 			spa_unload_log_sm_flush_all(spa);
2073 
2074 		/*
2075 		 * Stop async tasks.
2076 		 */
2077 		spa_async_suspend(spa);
2078 
2079 		if (spa->spa_root_vdev) {
2080 			vdev_t *root_vdev = spa->spa_root_vdev;
2081 			vdev_initialize_stop_all(root_vdev,
2082 			    VDEV_INITIALIZE_ACTIVE);
2083 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2084 			vdev_autotrim_stop_all(spa);
2085 			vdev_rebuild_stop_all(spa);
2086 			l2arc_spa_rebuild_stop(spa);
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * Stop syncing.
2092 	 */
2093 	if (spa->spa_sync_on) {
2094 		txg_sync_stop(spa->spa_dsl_pool);
2095 		spa->spa_sync_on = B_FALSE;
2096 	}
2097 
2098 	/*
2099 	 * This ensures that there is no async metaslab prefetching
2100 	 * while we attempt to unload the spa.
2101 	 */
2102 	taskq_wait(spa->spa_metaslab_taskq);
2103 
2104 	if (spa->spa_mmp.mmp_thread)
2105 		mmp_thread_stop(spa);
2106 
2107 	/*
2108 	 * Wait for any outstanding async I/O to complete.
2109 	 */
2110 	if (spa->spa_async_zio_root != NULL) {
2111 		for (int i = 0; i < max_ncpus; i++)
2112 			(void) zio_wait(spa->spa_async_zio_root[i]);
2113 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2114 		spa->spa_async_zio_root = NULL;
2115 	}
2116 
2117 	if (spa->spa_vdev_removal != NULL) {
2118 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2119 		spa->spa_vdev_removal = NULL;
2120 	}
2121 
2122 	spa_destroy_aux_threads(spa);
2123 
2124 	spa_condense_fini(spa);
2125 
2126 	bpobj_close(&spa->spa_deferred_bpobj);
2127 
2128 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2129 
2130 	/*
2131 	 * Close all vdevs.
2132 	 */
2133 	if (spa->spa_root_vdev)
2134 		vdev_free(spa->spa_root_vdev);
2135 	ASSERT(spa->spa_root_vdev == NULL);
2136 
2137 	/*
2138 	 * Close the dsl pool.
2139 	 */
2140 	if (spa->spa_dsl_pool) {
2141 		dsl_pool_close(spa->spa_dsl_pool);
2142 		spa->spa_dsl_pool = NULL;
2143 		spa->spa_meta_objset = NULL;
2144 	}
2145 
2146 	ddt_unload(spa);
2147 	brt_unload(spa);
2148 	spa_unload_log_sm_metadata(spa);
2149 
2150 	/*
2151 	 * Drop and purge level 2 cache
2152 	 */
2153 	spa_l2cache_drop(spa);
2154 
2155 	if (spa->spa_spares.sav_vdevs) {
2156 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2157 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2158 		kmem_free(spa->spa_spares.sav_vdevs,
2159 		    spa->spa_spares.sav_count * sizeof (void *));
2160 		spa->spa_spares.sav_vdevs = NULL;
2161 	}
2162 	if (spa->spa_spares.sav_config) {
2163 		nvlist_free(spa->spa_spares.sav_config);
2164 		spa->spa_spares.sav_config = NULL;
2165 	}
2166 	spa->spa_spares.sav_count = 0;
2167 
2168 	if (spa->spa_l2cache.sav_vdevs) {
2169 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2170 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2171 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2172 		}
2173 		kmem_free(spa->spa_l2cache.sav_vdevs,
2174 		    spa->spa_l2cache.sav_count * sizeof (void *));
2175 		spa->spa_l2cache.sav_vdevs = NULL;
2176 	}
2177 	if (spa->spa_l2cache.sav_config) {
2178 		nvlist_free(spa->spa_l2cache.sav_config);
2179 		spa->spa_l2cache.sav_config = NULL;
2180 	}
2181 	spa->spa_l2cache.sav_count = 0;
2182 
2183 	spa->spa_async_suspended = 0;
2184 
2185 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2186 
2187 	if (spa->spa_comment != NULL) {
2188 		spa_strfree(spa->spa_comment);
2189 		spa->spa_comment = NULL;
2190 	}
2191 	if (spa->spa_compatibility != NULL) {
2192 		spa_strfree(spa->spa_compatibility);
2193 		spa->spa_compatibility = NULL;
2194 	}
2195 
2196 	spa->spa_raidz_expand = NULL;
2197 
2198 	spa_config_exit(spa, SCL_ALL, spa);
2199 }
2200 
2201 /*
2202  * Load (or re-load) the current list of vdevs describing the active spares for
2203  * this pool.  When this is called, we have some form of basic information in
2204  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2205  * then re-generate a more complete list including status information.
2206  */
2207 void
spa_load_spares(spa_t * spa)2208 spa_load_spares(spa_t *spa)
2209 {
2210 	nvlist_t **spares;
2211 	uint_t nspares;
2212 	int i;
2213 	vdev_t *vd, *tvd;
2214 
2215 #ifndef _KERNEL
2216 	/*
2217 	 * zdb opens both the current state of the pool and the
2218 	 * checkpointed state (if present), with a different spa_t.
2219 	 *
2220 	 * As spare vdevs are shared among open pools, we skip loading
2221 	 * them when we load the checkpointed state of the pool.
2222 	 */
2223 	if (!spa_writeable(spa))
2224 		return;
2225 #endif
2226 
2227 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2228 
2229 	/*
2230 	 * First, close and free any existing spare vdevs.
2231 	 */
2232 	if (spa->spa_spares.sav_vdevs) {
2233 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2234 			vd = spa->spa_spares.sav_vdevs[i];
2235 
2236 			/* Undo the call to spa_activate() below */
2237 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2238 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2239 				spa_spare_remove(tvd);
2240 			vdev_close(vd);
2241 			vdev_free(vd);
2242 		}
2243 
2244 		kmem_free(spa->spa_spares.sav_vdevs,
2245 		    spa->spa_spares.sav_count * sizeof (void *));
2246 	}
2247 
2248 	if (spa->spa_spares.sav_config == NULL)
2249 		nspares = 0;
2250 	else
2251 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2252 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2253 
2254 	spa->spa_spares.sav_count = (int)nspares;
2255 	spa->spa_spares.sav_vdevs = NULL;
2256 
2257 	if (nspares == 0)
2258 		return;
2259 
2260 	/*
2261 	 * Construct the array of vdevs, opening them to get status in the
2262 	 * process.   For each spare, there is potentially two different vdev_t
2263 	 * structures associated with it: one in the list of spares (used only
2264 	 * for basic validation purposes) and one in the active vdev
2265 	 * configuration (if it's spared in).  During this phase we open and
2266 	 * validate each vdev on the spare list.  If the vdev also exists in the
2267 	 * active configuration, then we also mark this vdev as an active spare.
2268 	 */
2269 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2270 	    KM_SLEEP);
2271 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2272 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2273 		    VDEV_ALLOC_SPARE) == 0);
2274 		ASSERT(vd != NULL);
2275 
2276 		spa->spa_spares.sav_vdevs[i] = vd;
2277 
2278 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2279 		    B_FALSE)) != NULL) {
2280 			if (!tvd->vdev_isspare)
2281 				spa_spare_add(tvd);
2282 
2283 			/*
2284 			 * We only mark the spare active if we were successfully
2285 			 * able to load the vdev.  Otherwise, importing a pool
2286 			 * with a bad active spare would result in strange
2287 			 * behavior, because multiple pool would think the spare
2288 			 * is actively in use.
2289 			 *
2290 			 * There is a vulnerability here to an equally bizarre
2291 			 * circumstance, where a dead active spare is later
2292 			 * brought back to life (onlined or otherwise).  Given
2293 			 * the rarity of this scenario, and the extra complexity
2294 			 * it adds, we ignore the possibility.
2295 			 */
2296 			if (!vdev_is_dead(tvd))
2297 				spa_spare_activate(tvd);
2298 		}
2299 
2300 		vd->vdev_top = vd;
2301 		vd->vdev_aux = &spa->spa_spares;
2302 
2303 		if (vdev_open(vd) != 0)
2304 			continue;
2305 
2306 		if (vdev_validate_aux(vd) == 0)
2307 			spa_spare_add(vd);
2308 	}
2309 
2310 	/*
2311 	 * Recompute the stashed list of spares, with status information
2312 	 * this time.
2313 	 */
2314 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2315 
2316 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2317 	    KM_SLEEP);
2318 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2319 		spares[i] = vdev_config_generate(spa,
2320 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2321 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2322 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2323 	    spa->spa_spares.sav_count);
2324 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2325 		nvlist_free(spares[i]);
2326 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2327 }
2328 
2329 /*
2330  * Load (or re-load) the current list of vdevs describing the active l2cache for
2331  * this pool.  When this is called, we have some form of basic information in
2332  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2333  * then re-generate a more complete list including status information.
2334  * Devices which are already active have their details maintained, and are
2335  * not re-opened.
2336  */
2337 void
spa_load_l2cache(spa_t * spa)2338 spa_load_l2cache(spa_t *spa)
2339 {
2340 	nvlist_t **l2cache = NULL;
2341 	uint_t nl2cache;
2342 	int i, j, oldnvdevs;
2343 	uint64_t guid;
2344 	vdev_t *vd, **oldvdevs, **newvdevs;
2345 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2346 
2347 #ifndef _KERNEL
2348 	/*
2349 	 * zdb opens both the current state of the pool and the
2350 	 * checkpointed state (if present), with a different spa_t.
2351 	 *
2352 	 * As L2 caches are part of the ARC which is shared among open
2353 	 * pools, we skip loading them when we load the checkpointed
2354 	 * state of the pool.
2355 	 */
2356 	if (!spa_writeable(spa))
2357 		return;
2358 #endif
2359 
2360 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2361 
2362 	oldvdevs = sav->sav_vdevs;
2363 	oldnvdevs = sav->sav_count;
2364 	sav->sav_vdevs = NULL;
2365 	sav->sav_count = 0;
2366 
2367 	if (sav->sav_config == NULL) {
2368 		nl2cache = 0;
2369 		newvdevs = NULL;
2370 		goto out;
2371 	}
2372 
2373 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2374 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2375 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2376 
2377 	/*
2378 	 * Process new nvlist of vdevs.
2379 	 */
2380 	for (i = 0; i < nl2cache; i++) {
2381 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2382 
2383 		newvdevs[i] = NULL;
2384 		for (j = 0; j < oldnvdevs; j++) {
2385 			vd = oldvdevs[j];
2386 			if (vd != NULL && guid == vd->vdev_guid) {
2387 				/*
2388 				 * Retain previous vdev for add/remove ops.
2389 				 */
2390 				newvdevs[i] = vd;
2391 				oldvdevs[j] = NULL;
2392 				break;
2393 			}
2394 		}
2395 
2396 		if (newvdevs[i] == NULL) {
2397 			/*
2398 			 * Create new vdev
2399 			 */
2400 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2401 			    VDEV_ALLOC_L2CACHE) == 0);
2402 			ASSERT(vd != NULL);
2403 			newvdevs[i] = vd;
2404 
2405 			/*
2406 			 * Commit this vdev as an l2cache device,
2407 			 * even if it fails to open.
2408 			 */
2409 			spa_l2cache_add(vd);
2410 
2411 			vd->vdev_top = vd;
2412 			vd->vdev_aux = sav;
2413 
2414 			spa_l2cache_activate(vd);
2415 
2416 			if (vdev_open(vd) != 0)
2417 				continue;
2418 
2419 			(void) vdev_validate_aux(vd);
2420 
2421 			if (!vdev_is_dead(vd))
2422 				l2arc_add_vdev(spa, vd);
2423 
2424 			/*
2425 			 * Upon cache device addition to a pool or pool
2426 			 * creation with a cache device or if the header
2427 			 * of the device is invalid we issue an async
2428 			 * TRIM command for the whole device which will
2429 			 * execute if l2arc_trim_ahead > 0.
2430 			 */
2431 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2432 		}
2433 	}
2434 
2435 	sav->sav_vdevs = newvdevs;
2436 	sav->sav_count = (int)nl2cache;
2437 
2438 	/*
2439 	 * Recompute the stashed list of l2cache devices, with status
2440 	 * information this time.
2441 	 */
2442 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2443 
2444 	if (sav->sav_count > 0)
2445 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2446 		    KM_SLEEP);
2447 	for (i = 0; i < sav->sav_count; i++)
2448 		l2cache[i] = vdev_config_generate(spa,
2449 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2450 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2451 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2452 
2453 out:
2454 	/*
2455 	 * Purge vdevs that were dropped
2456 	 */
2457 	if (oldvdevs) {
2458 		for (i = 0; i < oldnvdevs; i++) {
2459 			uint64_t pool;
2460 
2461 			vd = oldvdevs[i];
2462 			if (vd != NULL) {
2463 				ASSERT(vd->vdev_isl2cache);
2464 
2465 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2466 				    pool != 0ULL && l2arc_vdev_present(vd))
2467 					l2arc_remove_vdev(vd);
2468 				vdev_clear_stats(vd);
2469 				vdev_free(vd);
2470 			}
2471 		}
2472 
2473 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2474 	}
2475 
2476 	for (i = 0; i < sav->sav_count; i++)
2477 		nvlist_free(l2cache[i]);
2478 	if (sav->sav_count)
2479 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2480 }
2481 
2482 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2483 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2484 {
2485 	dmu_buf_t *db;
2486 	char *packed = NULL;
2487 	size_t nvsize = 0;
2488 	int error;
2489 	*value = NULL;
2490 
2491 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2492 	if (error)
2493 		return (error);
2494 
2495 	nvsize = *(uint64_t *)db->db_data;
2496 	dmu_buf_rele(db, FTAG);
2497 
2498 	packed = vmem_alloc(nvsize, KM_SLEEP);
2499 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2500 	    DMU_READ_PREFETCH);
2501 	if (error == 0)
2502 		error = nvlist_unpack(packed, nvsize, value, 0);
2503 	vmem_free(packed, nvsize);
2504 
2505 	return (error);
2506 }
2507 
2508 /*
2509  * Concrete top-level vdevs that are not missing and are not logs. At every
2510  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2511  */
2512 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2513 spa_healthy_core_tvds(spa_t *spa)
2514 {
2515 	vdev_t *rvd = spa->spa_root_vdev;
2516 	uint64_t tvds = 0;
2517 
2518 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2519 		vdev_t *vd = rvd->vdev_child[i];
2520 		if (vd->vdev_islog)
2521 			continue;
2522 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2523 			tvds++;
2524 	}
2525 
2526 	return (tvds);
2527 }
2528 
2529 /*
2530  * Checks to see if the given vdev could not be opened, in which case we post a
2531  * sysevent to notify the autoreplace code that the device has been removed.
2532  */
2533 static void
spa_check_removed(vdev_t * vd)2534 spa_check_removed(vdev_t *vd)
2535 {
2536 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2537 		spa_check_removed(vd->vdev_child[c]);
2538 
2539 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2540 	    vdev_is_concrete(vd)) {
2541 		zfs_post_autoreplace(vd->vdev_spa, vd);
2542 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2543 	}
2544 }
2545 
2546 static int
spa_check_for_missing_logs(spa_t * spa)2547 spa_check_for_missing_logs(spa_t *spa)
2548 {
2549 	vdev_t *rvd = spa->spa_root_vdev;
2550 
2551 	/*
2552 	 * If we're doing a normal import, then build up any additional
2553 	 * diagnostic information about missing log devices.
2554 	 * We'll pass this up to the user for further processing.
2555 	 */
2556 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2557 		nvlist_t **child, *nv;
2558 		uint64_t idx = 0;
2559 
2560 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2561 		    KM_SLEEP);
2562 		nv = fnvlist_alloc();
2563 
2564 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2565 			vdev_t *tvd = rvd->vdev_child[c];
2566 
2567 			/*
2568 			 * We consider a device as missing only if it failed
2569 			 * to open (i.e. offline or faulted is not considered
2570 			 * as missing).
2571 			 */
2572 			if (tvd->vdev_islog &&
2573 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2574 				child[idx++] = vdev_config_generate(spa, tvd,
2575 				    B_FALSE, VDEV_CONFIG_MISSING);
2576 			}
2577 		}
2578 
2579 		if (idx > 0) {
2580 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2581 			    (const nvlist_t * const *)child, idx);
2582 			fnvlist_add_nvlist(spa->spa_load_info,
2583 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2584 
2585 			for (uint64_t i = 0; i < idx; i++)
2586 				nvlist_free(child[i]);
2587 		}
2588 		nvlist_free(nv);
2589 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2590 
2591 		if (idx > 0) {
2592 			spa_load_failed(spa, "some log devices are missing");
2593 			vdev_dbgmsg_print_tree(rvd, 2);
2594 			return (SET_ERROR(ENXIO));
2595 		}
2596 	} else {
2597 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2598 			vdev_t *tvd = rvd->vdev_child[c];
2599 
2600 			if (tvd->vdev_islog &&
2601 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2602 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2603 				spa_load_note(spa, "some log devices are "
2604 				    "missing, ZIL is dropped.");
2605 				vdev_dbgmsg_print_tree(rvd, 2);
2606 				break;
2607 			}
2608 		}
2609 	}
2610 
2611 	return (0);
2612 }
2613 
2614 /*
2615  * Check for missing log devices
2616  */
2617 static boolean_t
spa_check_logs(spa_t * spa)2618 spa_check_logs(spa_t *spa)
2619 {
2620 	boolean_t rv = B_FALSE;
2621 	dsl_pool_t *dp = spa_get_dsl(spa);
2622 
2623 	switch (spa->spa_log_state) {
2624 	default:
2625 		break;
2626 	case SPA_LOG_MISSING:
2627 		/* need to recheck in case slog has been restored */
2628 	case SPA_LOG_UNKNOWN:
2629 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2630 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2631 		if (rv)
2632 			spa_set_log_state(spa, SPA_LOG_MISSING);
2633 		break;
2634 	}
2635 	return (rv);
2636 }
2637 
2638 /*
2639  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2640  */
2641 static boolean_t
spa_passivate_log(spa_t * spa)2642 spa_passivate_log(spa_t *spa)
2643 {
2644 	vdev_t *rvd = spa->spa_root_vdev;
2645 	boolean_t slog_found = B_FALSE;
2646 
2647 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2648 
2649 	for (int c = 0; c < rvd->vdev_children; c++) {
2650 		vdev_t *tvd = rvd->vdev_child[c];
2651 
2652 		if (tvd->vdev_islog) {
2653 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2654 			metaslab_group_passivate(tvd->vdev_mg);
2655 			slog_found = B_TRUE;
2656 		}
2657 	}
2658 
2659 	return (slog_found);
2660 }
2661 
2662 /*
2663  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2664  */
2665 static void
spa_activate_log(spa_t * spa)2666 spa_activate_log(spa_t *spa)
2667 {
2668 	vdev_t *rvd = spa->spa_root_vdev;
2669 
2670 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2671 
2672 	for (int c = 0; c < rvd->vdev_children; c++) {
2673 		vdev_t *tvd = rvd->vdev_child[c];
2674 
2675 		if (tvd->vdev_islog) {
2676 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2677 			metaslab_group_activate(tvd->vdev_mg);
2678 		}
2679 	}
2680 }
2681 
2682 int
spa_reset_logs(spa_t * spa)2683 spa_reset_logs(spa_t *spa)
2684 {
2685 	int error;
2686 
2687 	error = dmu_objset_find(spa_name(spa), zil_reset,
2688 	    NULL, DS_FIND_CHILDREN);
2689 	if (error == 0) {
2690 		/*
2691 		 * We successfully offlined the log device, sync out the
2692 		 * current txg so that the "stubby" block can be removed
2693 		 * by zil_sync().
2694 		 */
2695 		txg_wait_synced(spa->spa_dsl_pool, 0);
2696 	}
2697 	return (error);
2698 }
2699 
2700 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2701 spa_aux_check_removed(spa_aux_vdev_t *sav)
2702 {
2703 	for (int i = 0; i < sav->sav_count; i++)
2704 		spa_check_removed(sav->sav_vdevs[i]);
2705 }
2706 
2707 void
spa_claim_notify(zio_t * zio)2708 spa_claim_notify(zio_t *zio)
2709 {
2710 	spa_t *spa = zio->io_spa;
2711 
2712 	if (zio->io_error)
2713 		return;
2714 
2715 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2716 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2717 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2718 	mutex_exit(&spa->spa_props_lock);
2719 }
2720 
2721 typedef struct spa_load_error {
2722 	boolean_t	sle_verify_data;
2723 	uint64_t	sle_meta_count;
2724 	uint64_t	sle_data_count;
2725 } spa_load_error_t;
2726 
2727 static void
spa_load_verify_done(zio_t * zio)2728 spa_load_verify_done(zio_t *zio)
2729 {
2730 	blkptr_t *bp = zio->io_bp;
2731 	spa_load_error_t *sle = zio->io_private;
2732 	dmu_object_type_t type = BP_GET_TYPE(bp);
2733 	int error = zio->io_error;
2734 	spa_t *spa = zio->io_spa;
2735 
2736 	abd_free(zio->io_abd);
2737 	if (error) {
2738 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2739 		    type != DMU_OT_INTENT_LOG)
2740 			atomic_inc_64(&sle->sle_meta_count);
2741 		else
2742 			atomic_inc_64(&sle->sle_data_count);
2743 	}
2744 
2745 	mutex_enter(&spa->spa_scrub_lock);
2746 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2747 	cv_broadcast(&spa->spa_scrub_io_cv);
2748 	mutex_exit(&spa->spa_scrub_lock);
2749 }
2750 
2751 /*
2752  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2753  * By default, we set it to 1/16th of the arc.
2754  */
2755 static uint_t spa_load_verify_shift = 4;
2756 static int spa_load_verify_metadata = B_TRUE;
2757 static int spa_load_verify_data = B_TRUE;
2758 
2759 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2760 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2761     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2762 {
2763 	zio_t *rio = arg;
2764 	spa_load_error_t *sle = rio->io_private;
2765 
2766 	(void) zilog, (void) dnp;
2767 
2768 	/*
2769 	 * Note: normally this routine will not be called if
2770 	 * spa_load_verify_metadata is not set.  However, it may be useful
2771 	 * to manually set the flag after the traversal has begun.
2772 	 */
2773 	if (!spa_load_verify_metadata)
2774 		return (0);
2775 
2776 	/*
2777 	 * Sanity check the block pointer in order to detect obvious damage
2778 	 * before using the contents in subsequent checks or in zio_read().
2779 	 * When damaged consider it to be a metadata error since we cannot
2780 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2781 	 */
2782 	if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2783 		atomic_inc_64(&sle->sle_meta_count);
2784 		return (0);
2785 	}
2786 
2787 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2788 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2789 		return (0);
2790 
2791 	if (!BP_IS_METADATA(bp) &&
2792 	    (!spa_load_verify_data || !sle->sle_verify_data))
2793 		return (0);
2794 
2795 	uint64_t maxinflight_bytes =
2796 	    arc_target_bytes() >> spa_load_verify_shift;
2797 	size_t size = BP_GET_PSIZE(bp);
2798 
2799 	mutex_enter(&spa->spa_scrub_lock);
2800 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2801 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2802 	spa->spa_load_verify_bytes += size;
2803 	mutex_exit(&spa->spa_scrub_lock);
2804 
2805 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2806 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2807 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2808 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2809 	return (0);
2810 }
2811 
2812 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2813 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2814 {
2815 	(void) dp, (void) arg;
2816 
2817 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2818 		return (SET_ERROR(ENAMETOOLONG));
2819 
2820 	return (0);
2821 }
2822 
2823 static int
spa_load_verify(spa_t * spa)2824 spa_load_verify(spa_t *spa)
2825 {
2826 	zio_t *rio;
2827 	spa_load_error_t sle = { 0 };
2828 	zpool_load_policy_t policy;
2829 	boolean_t verify_ok = B_FALSE;
2830 	int error = 0;
2831 
2832 	zpool_get_load_policy(spa->spa_config, &policy);
2833 
2834 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2835 	    policy.zlp_maxmeta == UINT64_MAX)
2836 		return (0);
2837 
2838 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2839 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2840 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2841 	    DS_FIND_CHILDREN);
2842 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2843 	if (error != 0)
2844 		return (error);
2845 
2846 	/*
2847 	 * Verify data only if we are rewinding or error limit was set.
2848 	 * Otherwise nothing except dbgmsg care about it to waste time.
2849 	 */
2850 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2851 	    (policy.zlp_maxdata < UINT64_MAX);
2852 
2853 	rio = zio_root(spa, NULL, &sle,
2854 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2855 
2856 	if (spa_load_verify_metadata) {
2857 		if (spa->spa_extreme_rewind) {
2858 			spa_load_note(spa, "performing a complete scan of the "
2859 			    "pool since extreme rewind is on. This may take "
2860 			    "a very long time.\n  (spa_load_verify_data=%u, "
2861 			    "spa_load_verify_metadata=%u)",
2862 			    spa_load_verify_data, spa_load_verify_metadata);
2863 		}
2864 
2865 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2866 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2867 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2868 	}
2869 
2870 	(void) zio_wait(rio);
2871 	ASSERT0(spa->spa_load_verify_bytes);
2872 
2873 	spa->spa_load_meta_errors = sle.sle_meta_count;
2874 	spa->spa_load_data_errors = sle.sle_data_count;
2875 
2876 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2877 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2878 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2879 		    (u_longlong_t)sle.sle_data_count);
2880 	}
2881 
2882 	if (spa_load_verify_dryrun ||
2883 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2884 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2885 		int64_t loss = 0;
2886 
2887 		verify_ok = B_TRUE;
2888 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2889 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2890 
2891 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2892 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2893 		    spa->spa_load_txg_ts);
2894 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2895 		    loss);
2896 		fnvlist_add_uint64(spa->spa_load_info,
2897 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2898 		fnvlist_add_uint64(spa->spa_load_info,
2899 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2900 	} else {
2901 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2902 	}
2903 
2904 	if (spa_load_verify_dryrun)
2905 		return (0);
2906 
2907 	if (error) {
2908 		if (error != ENXIO && error != EIO)
2909 			error = SET_ERROR(EIO);
2910 		return (error);
2911 	}
2912 
2913 	return (verify_ok ? 0 : EIO);
2914 }
2915 
2916 /*
2917  * Find a value in the pool props object.
2918  */
2919 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2920 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2921 {
2922 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2923 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2924 }
2925 
2926 /*
2927  * Find a value in the pool directory object.
2928  */
2929 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2930 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2931 {
2932 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2933 	    name, sizeof (uint64_t), 1, val);
2934 
2935 	if (error != 0 && (error != ENOENT || log_enoent)) {
2936 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2937 		    "[error=%d]", name, error);
2938 	}
2939 
2940 	return (error);
2941 }
2942 
2943 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2944 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2945 {
2946 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2947 	return (SET_ERROR(err));
2948 }
2949 
2950 boolean_t
spa_livelist_delete_check(spa_t * spa)2951 spa_livelist_delete_check(spa_t *spa)
2952 {
2953 	return (spa->spa_livelists_to_delete != 0);
2954 }
2955 
2956 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2957 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2958 {
2959 	(void) z;
2960 	spa_t *spa = arg;
2961 	return (spa_livelist_delete_check(spa));
2962 }
2963 
2964 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2965 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2966 {
2967 	spa_t *spa = arg;
2968 	zio_free(spa, tx->tx_txg, bp);
2969 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2970 	    -bp_get_dsize_sync(spa, bp),
2971 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2972 	return (0);
2973 }
2974 
2975 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2976 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2977 {
2978 	int err;
2979 	zap_cursor_t zc;
2980 	zap_attribute_t *za = zap_attribute_alloc();
2981 	zap_cursor_init(&zc, os, zap_obj);
2982 	err = zap_cursor_retrieve(&zc, za);
2983 	zap_cursor_fini(&zc);
2984 	if (err == 0)
2985 		*llp = za->za_first_integer;
2986 	zap_attribute_free(za);
2987 	return (err);
2988 }
2989 
2990 /*
2991  * Components of livelist deletion that must be performed in syncing
2992  * context: freeing block pointers and updating the pool-wide data
2993  * structures to indicate how much work is left to do
2994  */
2995 typedef struct sublist_delete_arg {
2996 	spa_t *spa;
2997 	dsl_deadlist_t *ll;
2998 	uint64_t key;
2999 	bplist_t *to_free;
3000 } sublist_delete_arg_t;
3001 
3002 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3003 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3004 {
3005 	sublist_delete_arg_t *sda = arg;
3006 	spa_t *spa = sda->spa;
3007 	dsl_deadlist_t *ll = sda->ll;
3008 	uint64_t key = sda->key;
3009 	bplist_t *to_free = sda->to_free;
3010 
3011 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3012 	dsl_deadlist_remove_entry(ll, key, tx);
3013 }
3014 
3015 typedef struct livelist_delete_arg {
3016 	spa_t *spa;
3017 	uint64_t ll_obj;
3018 	uint64_t zap_obj;
3019 } livelist_delete_arg_t;
3020 
3021 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3022 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3023 {
3024 	livelist_delete_arg_t *lda = arg;
3025 	spa_t *spa = lda->spa;
3026 	uint64_t ll_obj = lda->ll_obj;
3027 	uint64_t zap_obj = lda->zap_obj;
3028 	objset_t *mos = spa->spa_meta_objset;
3029 	uint64_t count;
3030 
3031 	/* free the livelist and decrement the feature count */
3032 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3033 	dsl_deadlist_free(mos, ll_obj, tx);
3034 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3035 	VERIFY0(zap_count(mos, zap_obj, &count));
3036 	if (count == 0) {
3037 		/* no more livelists to delete */
3038 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3039 		    DMU_POOL_DELETED_CLONES, tx));
3040 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3041 		spa->spa_livelists_to_delete = 0;
3042 		spa_notify_waiters(spa);
3043 	}
3044 }
3045 
3046 /*
3047  * Load in the value for the livelist to be removed and open it. Then,
3048  * load its first sublist and determine which block pointers should actually
3049  * be freed. Then, call a synctask which performs the actual frees and updates
3050  * the pool-wide livelist data.
3051  */
3052 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3053 spa_livelist_delete_cb(void *arg, zthr_t *z)
3054 {
3055 	spa_t *spa = arg;
3056 	uint64_t ll_obj = 0, count;
3057 	objset_t *mos = spa->spa_meta_objset;
3058 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3059 	/*
3060 	 * Determine the next livelist to delete. This function should only
3061 	 * be called if there is at least one deleted clone.
3062 	 */
3063 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3064 	VERIFY0(zap_count(mos, ll_obj, &count));
3065 	if (count > 0) {
3066 		dsl_deadlist_t *ll;
3067 		dsl_deadlist_entry_t *dle;
3068 		bplist_t to_free;
3069 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3070 		VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3071 		dle = dsl_deadlist_first(ll);
3072 		ASSERT3P(dle, !=, NULL);
3073 		bplist_create(&to_free);
3074 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3075 		    z, NULL);
3076 		if (err == 0) {
3077 			sublist_delete_arg_t sync_arg = {
3078 			    .spa = spa,
3079 			    .ll = ll,
3080 			    .key = dle->dle_mintxg,
3081 			    .to_free = &to_free
3082 			};
3083 			zfs_dbgmsg("deleting sublist (id %llu) from"
3084 			    " livelist %llu, %lld remaining",
3085 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3086 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3087 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3088 			    sublist_delete_sync, &sync_arg, 0,
3089 			    ZFS_SPACE_CHECK_DESTROY));
3090 		} else {
3091 			VERIFY3U(err, ==, EINTR);
3092 		}
3093 		bplist_clear(&to_free);
3094 		bplist_destroy(&to_free);
3095 		dsl_deadlist_close(ll);
3096 		kmem_free(ll, sizeof (dsl_deadlist_t));
3097 	} else {
3098 		livelist_delete_arg_t sync_arg = {
3099 		    .spa = spa,
3100 		    .ll_obj = ll_obj,
3101 		    .zap_obj = zap_obj
3102 		};
3103 		zfs_dbgmsg("deletion of livelist %llu completed",
3104 		    (u_longlong_t)ll_obj);
3105 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3106 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3107 	}
3108 }
3109 
3110 static void
spa_start_livelist_destroy_thread(spa_t * spa)3111 spa_start_livelist_destroy_thread(spa_t *spa)
3112 {
3113 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3114 	spa->spa_livelist_delete_zthr =
3115 	    zthr_create("z_livelist_destroy",
3116 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3117 	    minclsyspri);
3118 }
3119 
3120 typedef struct livelist_new_arg {
3121 	bplist_t *allocs;
3122 	bplist_t *frees;
3123 } livelist_new_arg_t;
3124 
3125 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3126 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3127     dmu_tx_t *tx)
3128 {
3129 	ASSERT(tx == NULL);
3130 	livelist_new_arg_t *lna = arg;
3131 	if (bp_freed) {
3132 		bplist_append(lna->frees, bp);
3133 	} else {
3134 		bplist_append(lna->allocs, bp);
3135 		zfs_livelist_condense_new_alloc++;
3136 	}
3137 	return (0);
3138 }
3139 
3140 typedef struct livelist_condense_arg {
3141 	spa_t *spa;
3142 	bplist_t to_keep;
3143 	uint64_t first_size;
3144 	uint64_t next_size;
3145 } livelist_condense_arg_t;
3146 
3147 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3148 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3149 {
3150 	livelist_condense_arg_t *lca = arg;
3151 	spa_t *spa = lca->spa;
3152 	bplist_t new_frees;
3153 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3154 
3155 	/* Have we been cancelled? */
3156 	if (spa->spa_to_condense.cancelled) {
3157 		zfs_livelist_condense_sync_cancel++;
3158 		goto out;
3159 	}
3160 
3161 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3162 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3163 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3164 
3165 	/*
3166 	 * It's possible that the livelist was changed while the zthr was
3167 	 * running. Therefore, we need to check for new blkptrs in the two
3168 	 * entries being condensed and continue to track them in the livelist.
3169 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3170 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3171 	 * we need to sort them into two different bplists.
3172 	 */
3173 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3174 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3175 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3176 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3177 
3178 	bplist_create(&new_frees);
3179 	livelist_new_arg_t new_bps = {
3180 	    .allocs = &lca->to_keep,
3181 	    .frees = &new_frees,
3182 	};
3183 
3184 	if (cur_first_size > lca->first_size) {
3185 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3186 		    livelist_track_new_cb, &new_bps, lca->first_size));
3187 	}
3188 	if (cur_next_size > lca->next_size) {
3189 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3190 		    livelist_track_new_cb, &new_bps, lca->next_size));
3191 	}
3192 
3193 	dsl_deadlist_clear_entry(first, ll, tx);
3194 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3195 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3196 
3197 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3198 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3199 	bplist_destroy(&new_frees);
3200 
3201 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3202 	dsl_dataset_name(ds, dsname);
3203 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3204 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3205 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3206 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3207 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3208 	    (u_longlong_t)cur_next_size,
3209 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3210 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3211 out:
3212 	dmu_buf_rele(ds->ds_dbuf, spa);
3213 	spa->spa_to_condense.ds = NULL;
3214 	bplist_clear(&lca->to_keep);
3215 	bplist_destroy(&lca->to_keep);
3216 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3217 	spa->spa_to_condense.syncing = B_FALSE;
3218 }
3219 
3220 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3221 spa_livelist_condense_cb(void *arg, zthr_t *t)
3222 {
3223 	while (zfs_livelist_condense_zthr_pause &&
3224 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3225 		delay(1);
3226 
3227 	spa_t *spa = arg;
3228 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3229 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3230 	uint64_t first_size, next_size;
3231 
3232 	livelist_condense_arg_t *lca =
3233 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3234 	bplist_create(&lca->to_keep);
3235 
3236 	/*
3237 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3238 	 * so we have minimal work in syncing context to condense.
3239 	 *
3240 	 * We save bpobj sizes (first_size and next_size) to use later in
3241 	 * syncing context to determine if entries were added to these sublists
3242 	 * while in open context. This is possible because the clone is still
3243 	 * active and open for normal writes and we want to make sure the new,
3244 	 * unprocessed blockpointers are inserted into the livelist normally.
3245 	 *
3246 	 * Note that dsl_process_sub_livelist() both stores the size number of
3247 	 * blockpointers and iterates over them while the bpobj's lock held, so
3248 	 * the sizes returned to us are consistent which what was actually
3249 	 * processed.
3250 	 */
3251 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3252 	    &first_size);
3253 	if (err == 0)
3254 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3255 		    t, &next_size);
3256 
3257 	if (err == 0) {
3258 		while (zfs_livelist_condense_sync_pause &&
3259 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3260 			delay(1);
3261 
3262 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3263 		dmu_tx_mark_netfree(tx);
3264 		dmu_tx_hold_space(tx, 1);
3265 		err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3266 		if (err == 0) {
3267 			/*
3268 			 * Prevent the condense zthr restarting before
3269 			 * the synctask completes.
3270 			 */
3271 			spa->spa_to_condense.syncing = B_TRUE;
3272 			lca->spa = spa;
3273 			lca->first_size = first_size;
3274 			lca->next_size = next_size;
3275 			dsl_sync_task_nowait(spa_get_dsl(spa),
3276 			    spa_livelist_condense_sync, lca, tx);
3277 			dmu_tx_commit(tx);
3278 			return;
3279 		}
3280 	}
3281 	/*
3282 	 * Condensing can not continue: either it was externally stopped or
3283 	 * we were unable to assign to a tx because the pool has run out of
3284 	 * space. In the second case, we'll just end up trying to condense
3285 	 * again in a later txg.
3286 	 */
3287 	ASSERT(err != 0);
3288 	bplist_clear(&lca->to_keep);
3289 	bplist_destroy(&lca->to_keep);
3290 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3291 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3292 	spa->spa_to_condense.ds = NULL;
3293 	if (err == EINTR)
3294 		zfs_livelist_condense_zthr_cancel++;
3295 }
3296 
3297 /*
3298  * Check that there is something to condense but that a condense is not
3299  * already in progress and that condensing has not been cancelled.
3300  */
3301 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3302 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3303 {
3304 	(void) z;
3305 	spa_t *spa = arg;
3306 	if ((spa->spa_to_condense.ds != NULL) &&
3307 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3308 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3309 		return (B_TRUE);
3310 	}
3311 	return (B_FALSE);
3312 }
3313 
3314 static void
spa_start_livelist_condensing_thread(spa_t * spa)3315 spa_start_livelist_condensing_thread(spa_t *spa)
3316 {
3317 	spa->spa_to_condense.ds = NULL;
3318 	spa->spa_to_condense.first = NULL;
3319 	spa->spa_to_condense.next = NULL;
3320 	spa->spa_to_condense.syncing = B_FALSE;
3321 	spa->spa_to_condense.cancelled = B_FALSE;
3322 
3323 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3324 	spa->spa_livelist_condense_zthr =
3325 	    zthr_create("z_livelist_condense",
3326 	    spa_livelist_condense_cb_check,
3327 	    spa_livelist_condense_cb, spa, minclsyspri);
3328 }
3329 
3330 static void
spa_spawn_aux_threads(spa_t * spa)3331 spa_spawn_aux_threads(spa_t *spa)
3332 {
3333 	ASSERT(spa_writeable(spa));
3334 
3335 	spa_start_raidz_expansion_thread(spa);
3336 	spa_start_indirect_condensing_thread(spa);
3337 	spa_start_livelist_destroy_thread(spa);
3338 	spa_start_livelist_condensing_thread(spa);
3339 
3340 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3341 	spa->spa_checkpoint_discard_zthr =
3342 	    zthr_create("z_checkpoint_discard",
3343 	    spa_checkpoint_discard_thread_check,
3344 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3345 }
3346 
3347 /*
3348  * Fix up config after a partly-completed split.  This is done with the
3349  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3350  * pool have that entry in their config, but only the splitting one contains
3351  * a list of all the guids of the vdevs that are being split off.
3352  *
3353  * This function determines what to do with that list: either rejoin
3354  * all the disks to the pool, or complete the splitting process.  To attempt
3355  * the rejoin, each disk that is offlined is marked online again, and
3356  * we do a reopen() call.  If the vdev label for every disk that was
3357  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3358  * then we call vdev_split() on each disk, and complete the split.
3359  *
3360  * Otherwise we leave the config alone, with all the vdevs in place in
3361  * the original pool.
3362  */
3363 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3364 spa_try_repair(spa_t *spa, nvlist_t *config)
3365 {
3366 	uint_t extracted;
3367 	uint64_t *glist;
3368 	uint_t i, gcount;
3369 	nvlist_t *nvl;
3370 	vdev_t **vd;
3371 	boolean_t attempt_reopen;
3372 
3373 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3374 		return;
3375 
3376 	/* check that the config is complete */
3377 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3378 	    &glist, &gcount) != 0)
3379 		return;
3380 
3381 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3382 
3383 	/* attempt to online all the vdevs & validate */
3384 	attempt_reopen = B_TRUE;
3385 	for (i = 0; i < gcount; i++) {
3386 		if (glist[i] == 0)	/* vdev is hole */
3387 			continue;
3388 
3389 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3390 		if (vd[i] == NULL) {
3391 			/*
3392 			 * Don't bother attempting to reopen the disks;
3393 			 * just do the split.
3394 			 */
3395 			attempt_reopen = B_FALSE;
3396 		} else {
3397 			/* attempt to re-online it */
3398 			vd[i]->vdev_offline = B_FALSE;
3399 		}
3400 	}
3401 
3402 	if (attempt_reopen) {
3403 		vdev_reopen(spa->spa_root_vdev);
3404 
3405 		/* check each device to see what state it's in */
3406 		for (extracted = 0, i = 0; i < gcount; i++) {
3407 			if (vd[i] != NULL &&
3408 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3409 				break;
3410 			++extracted;
3411 		}
3412 	}
3413 
3414 	/*
3415 	 * If every disk has been moved to the new pool, or if we never
3416 	 * even attempted to look at them, then we split them off for
3417 	 * good.
3418 	 */
3419 	if (!attempt_reopen || gcount == extracted) {
3420 		for (i = 0; i < gcount; i++)
3421 			if (vd[i] != NULL)
3422 				vdev_split(vd[i]);
3423 		vdev_reopen(spa->spa_root_vdev);
3424 	}
3425 
3426 	kmem_free(vd, gcount * sizeof (vdev_t *));
3427 }
3428 
3429 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3430 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3431 {
3432 	const char *ereport = FM_EREPORT_ZFS_POOL;
3433 	int error;
3434 
3435 	spa->spa_load_state = state;
3436 	(void) spa_import_progress_set_state(spa_guid(spa),
3437 	    spa_load_state(spa));
3438 	spa_import_progress_set_notes(spa, "spa_load()");
3439 
3440 	gethrestime(&spa->spa_loaded_ts);
3441 	error = spa_load_impl(spa, type, &ereport);
3442 
3443 	/*
3444 	 * Don't count references from objsets that are already closed
3445 	 * and are making their way through the eviction process.
3446 	 */
3447 	spa_evicting_os_wait(spa);
3448 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3449 	if (error) {
3450 		if (error != EEXIST) {
3451 			spa->spa_loaded_ts.tv_sec = 0;
3452 			spa->spa_loaded_ts.tv_nsec = 0;
3453 		}
3454 		if (error != EBADF) {
3455 			(void) zfs_ereport_post(ereport, spa,
3456 			    NULL, NULL, NULL, 0);
3457 		}
3458 	}
3459 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3460 	spa->spa_ena = 0;
3461 
3462 	(void) spa_import_progress_set_state(spa_guid(spa),
3463 	    spa_load_state(spa));
3464 
3465 	return (error);
3466 }
3467 
3468 #ifdef ZFS_DEBUG
3469 /*
3470  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3471  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3472  * spa's per-vdev ZAP list.
3473  */
3474 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3475 vdev_count_verify_zaps(vdev_t *vd)
3476 {
3477 	spa_t *spa = vd->vdev_spa;
3478 	uint64_t total = 0;
3479 
3480 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3481 	    vd->vdev_root_zap != 0) {
3482 		total++;
3483 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3484 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3485 	}
3486 	if (vd->vdev_top_zap != 0) {
3487 		total++;
3488 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3489 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3490 	}
3491 	if (vd->vdev_leaf_zap != 0) {
3492 		total++;
3493 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3494 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3495 	}
3496 
3497 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3498 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3499 	}
3500 
3501 	return (total);
3502 }
3503 #else
3504 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3505 #endif
3506 
3507 /*
3508  * Determine whether the activity check is required.
3509  */
3510 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3511 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3512     nvlist_t *config)
3513 {
3514 	uint64_t state = 0;
3515 	uint64_t hostid = 0;
3516 	uint64_t tryconfig_txg = 0;
3517 	uint64_t tryconfig_timestamp = 0;
3518 	uint16_t tryconfig_mmp_seq = 0;
3519 	nvlist_t *nvinfo;
3520 
3521 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3522 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3523 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3524 		    &tryconfig_txg);
3525 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3526 		    &tryconfig_timestamp);
3527 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3528 		    &tryconfig_mmp_seq);
3529 	}
3530 
3531 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3532 
3533 	/*
3534 	 * Disable the MMP activity check - This is used by zdb which
3535 	 * is intended to be used on potentially active pools.
3536 	 */
3537 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3538 		return (B_FALSE);
3539 
3540 	/*
3541 	 * Skip the activity check when the MMP feature is disabled.
3542 	 */
3543 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3544 		return (B_FALSE);
3545 
3546 	/*
3547 	 * If the tryconfig_ values are nonzero, they are the results of an
3548 	 * earlier tryimport.  If they all match the uberblock we just found,
3549 	 * then the pool has not changed and we return false so we do not test
3550 	 * a second time.
3551 	 */
3552 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3553 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3554 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3555 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3556 		return (B_FALSE);
3557 
3558 	/*
3559 	 * Allow the activity check to be skipped when importing the pool
3560 	 * on the same host which last imported it.  Since the hostid from
3561 	 * configuration may be stale use the one read from the label.
3562 	 */
3563 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3564 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3565 
3566 	if (hostid == spa_get_hostid(spa))
3567 		return (B_FALSE);
3568 
3569 	/*
3570 	 * Skip the activity test when the pool was cleanly exported.
3571 	 */
3572 	if (state != POOL_STATE_ACTIVE)
3573 		return (B_FALSE);
3574 
3575 	return (B_TRUE);
3576 }
3577 
3578 /*
3579  * Nanoseconds the activity check must watch for changes on-disk.
3580  */
3581 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3582 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3583 {
3584 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3585 	uint64_t multihost_interval = MSEC2NSEC(
3586 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3587 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3588 	    multihost_interval);
3589 
3590 	/*
3591 	 * Local tunables determine a minimum duration except for the case
3592 	 * where we know when the remote host will suspend the pool if MMP
3593 	 * writes do not land.
3594 	 *
3595 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3596 	 * these cases and times.
3597 	 */
3598 
3599 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3600 
3601 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3602 	    MMP_FAIL_INT(ub) > 0) {
3603 
3604 		/* MMP on remote host will suspend pool after failed writes */
3605 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3606 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3607 
3608 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3609 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3610 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3611 		    (u_longlong_t)MMP_FAIL_INT(ub),
3612 		    (u_longlong_t)MMP_INTERVAL(ub),
3613 		    (u_longlong_t)import_intervals);
3614 
3615 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3616 	    MMP_FAIL_INT(ub) == 0) {
3617 
3618 		/* MMP on remote host will never suspend pool */
3619 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3620 		    ub->ub_mmp_delay) * import_intervals);
3621 
3622 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3623 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3624 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3625 		    (u_longlong_t)MMP_INTERVAL(ub),
3626 		    (u_longlong_t)ub->ub_mmp_delay,
3627 		    (u_longlong_t)import_intervals);
3628 
3629 	} else if (MMP_VALID(ub)) {
3630 		/*
3631 		 * zfs-0.7 compatibility case
3632 		 */
3633 
3634 		import_delay = MAX(import_delay, (multihost_interval +
3635 		    ub->ub_mmp_delay) * import_intervals);
3636 
3637 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3638 		    "import_intervals=%llu leaves=%u",
3639 		    (u_longlong_t)import_delay,
3640 		    (u_longlong_t)ub->ub_mmp_delay,
3641 		    (u_longlong_t)import_intervals,
3642 		    vdev_count_leaves(spa));
3643 	} else {
3644 		/* Using local tunings is the only reasonable option */
3645 		zfs_dbgmsg("pool last imported on non-MMP aware "
3646 		    "host using import_delay=%llu multihost_interval=%llu "
3647 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3648 		    (u_longlong_t)multihost_interval,
3649 		    (u_longlong_t)import_intervals);
3650 	}
3651 
3652 	return (import_delay);
3653 }
3654 
3655 /*
3656  * Remote host activity check.
3657  *
3658  * error results:
3659  *          0 - no activity detected
3660  *  EREMOTEIO - remote activity detected
3661  *      EINTR - user canceled the operation
3662  */
3663 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3664 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3665     boolean_t importing)
3666 {
3667 	uint64_t txg = ub->ub_txg;
3668 	uint64_t timestamp = ub->ub_timestamp;
3669 	uint64_t mmp_config = ub->ub_mmp_config;
3670 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3671 	uint64_t import_delay;
3672 	hrtime_t import_expire, now;
3673 	nvlist_t *mmp_label = NULL;
3674 	vdev_t *rvd = spa->spa_root_vdev;
3675 	kcondvar_t cv;
3676 	kmutex_t mtx;
3677 	int error = 0;
3678 
3679 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3680 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3681 	mutex_enter(&mtx);
3682 
3683 	/*
3684 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3685 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3686 	 * the pool is known to be active on another host.
3687 	 *
3688 	 * Otherwise, the pool might be in use on another host.  Check for
3689 	 * changes in the uberblocks on disk if necessary.
3690 	 */
3691 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3692 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3693 		    ZPOOL_CONFIG_LOAD_INFO);
3694 
3695 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3696 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3697 			vdev_uberblock_load(rvd, ub, &mmp_label);
3698 			error = SET_ERROR(EREMOTEIO);
3699 			goto out;
3700 		}
3701 	}
3702 
3703 	import_delay = spa_activity_check_duration(spa, ub);
3704 
3705 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3706 	import_delay += import_delay * random_in_range(250) / 1000;
3707 
3708 	import_expire = gethrtime() + import_delay;
3709 
3710 	if (importing) {
3711 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3712 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3713 	}
3714 
3715 	int iterations = 0;
3716 	while ((now = gethrtime()) < import_expire) {
3717 		if (importing && iterations++ % 30 == 0) {
3718 			spa_import_progress_set_notes(spa, "Checking MMP "
3719 			    "activity, %llu ms remaining",
3720 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3721 		}
3722 
3723 		if (importing) {
3724 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3725 			    NSEC2SEC(import_expire - gethrtime()));
3726 		}
3727 
3728 		vdev_uberblock_load(rvd, ub, &mmp_label);
3729 
3730 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3731 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3732 			zfs_dbgmsg("multihost activity detected "
3733 			    "txg %llu ub_txg  %llu "
3734 			    "timestamp %llu ub_timestamp  %llu "
3735 			    "mmp_config %#llx ub_mmp_config %#llx",
3736 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3737 			    (u_longlong_t)timestamp,
3738 			    (u_longlong_t)ub->ub_timestamp,
3739 			    (u_longlong_t)mmp_config,
3740 			    (u_longlong_t)ub->ub_mmp_config);
3741 
3742 			error = SET_ERROR(EREMOTEIO);
3743 			break;
3744 		}
3745 
3746 		if (mmp_label) {
3747 			nvlist_free(mmp_label);
3748 			mmp_label = NULL;
3749 		}
3750 
3751 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3752 		if (error != -1) {
3753 			error = SET_ERROR(EINTR);
3754 			break;
3755 		}
3756 		error = 0;
3757 	}
3758 
3759 out:
3760 	mutex_exit(&mtx);
3761 	mutex_destroy(&mtx);
3762 	cv_destroy(&cv);
3763 
3764 	/*
3765 	 * If the pool is determined to be active store the status in the
3766 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3767 	 * available from configuration read from disk store them as well.
3768 	 * This allows 'zpool import' to generate a more useful message.
3769 	 *
3770 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3771 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3772 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3773 	 */
3774 	if (error == EREMOTEIO) {
3775 		const char *hostname = "<unknown>";
3776 		uint64_t hostid = 0;
3777 
3778 		if (mmp_label) {
3779 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3780 				hostname = fnvlist_lookup_string(mmp_label,
3781 				    ZPOOL_CONFIG_HOSTNAME);
3782 				fnvlist_add_string(spa->spa_load_info,
3783 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3784 			}
3785 
3786 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3787 				hostid = fnvlist_lookup_uint64(mmp_label,
3788 				    ZPOOL_CONFIG_HOSTID);
3789 				fnvlist_add_uint64(spa->spa_load_info,
3790 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3791 			}
3792 		}
3793 
3794 		fnvlist_add_uint64(spa->spa_load_info,
3795 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3796 		fnvlist_add_uint64(spa->spa_load_info,
3797 		    ZPOOL_CONFIG_MMP_TXG, 0);
3798 
3799 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3800 	}
3801 
3802 	if (mmp_label)
3803 		nvlist_free(mmp_label);
3804 
3805 	return (error);
3806 }
3807 
3808 /*
3809  * Called from zfs_ioc_clear for a pool that was suspended
3810  * after failing mmp write checks.
3811  */
3812 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3813 spa_mmp_remote_host_activity(spa_t *spa)
3814 {
3815 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3816 
3817 	nvlist_t *best_label;
3818 	uberblock_t best_ub;
3819 
3820 	/*
3821 	 * Locate the best uberblock on disk
3822 	 */
3823 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3824 	if (best_label) {
3825 		/*
3826 		 * confirm that the best hostid matches our hostid
3827 		 */
3828 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3829 		    spa_get_hostid(spa) !=
3830 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3831 			nvlist_free(best_label);
3832 			return (B_TRUE);
3833 		}
3834 		nvlist_free(best_label);
3835 	} else {
3836 		return (B_TRUE);
3837 	}
3838 
3839 	if (!MMP_VALID(&best_ub) ||
3840 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3841 	    MMP_FAIL_INT(&best_ub) == 0) {
3842 		return (B_TRUE);
3843 	}
3844 
3845 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3846 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3847 		zfs_dbgmsg("txg mismatch detected during pool clear "
3848 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3849 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3850 		    (u_longlong_t)best_ub.ub_txg,
3851 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3852 		    (u_longlong_t)best_ub.ub_timestamp);
3853 		return (B_TRUE);
3854 	}
3855 
3856 	/*
3857 	 * Perform an activity check looking for any remote writer
3858 	 */
3859 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3860 	    B_FALSE) != 0);
3861 }
3862 
3863 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3864 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3865 {
3866 	uint64_t hostid;
3867 	const char *hostname;
3868 	uint64_t myhostid = 0;
3869 
3870 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3871 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3872 		hostname = fnvlist_lookup_string(mos_config,
3873 		    ZPOOL_CONFIG_HOSTNAME);
3874 
3875 		myhostid = zone_get_hostid(NULL);
3876 
3877 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3878 			cmn_err(CE_WARN, "pool '%s' could not be "
3879 			    "loaded as it was last accessed by "
3880 			    "another system (host: %s hostid: 0x%llx). "
3881 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3882 			    "ZFS-8000-EY",
3883 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3884 			spa_load_failed(spa, "hostid verification failed: pool "
3885 			    "last accessed by host: %s (hostid: 0x%llx)",
3886 			    hostname, (u_longlong_t)hostid);
3887 			return (SET_ERROR(EBADF));
3888 		}
3889 	}
3890 
3891 	return (0);
3892 }
3893 
3894 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3895 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3896 {
3897 	int error = 0;
3898 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3899 	int parse;
3900 	vdev_t *rvd;
3901 	uint64_t pool_guid;
3902 	const char *comment;
3903 	const char *compatibility;
3904 
3905 	/*
3906 	 * Versioning wasn't explicitly added to the label until later, so if
3907 	 * it's not present treat it as the initial version.
3908 	 */
3909 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3910 	    &spa->spa_ubsync.ub_version) != 0)
3911 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3912 
3913 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3914 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3915 		    ZPOOL_CONFIG_POOL_GUID);
3916 		return (SET_ERROR(EINVAL));
3917 	}
3918 
3919 	/*
3920 	 * If we are doing an import, ensure that the pool is not already
3921 	 * imported by checking if its pool guid already exists in the
3922 	 * spa namespace.
3923 	 *
3924 	 * The only case that we allow an already imported pool to be
3925 	 * imported again, is when the pool is checkpointed and we want to
3926 	 * look at its checkpointed state from userland tools like zdb.
3927 	 */
3928 #ifdef _KERNEL
3929 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3930 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3931 	    spa_guid_exists(pool_guid, 0)) {
3932 #else
3933 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3934 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3935 	    spa_guid_exists(pool_guid, 0) &&
3936 	    !spa_importing_readonly_checkpoint(spa)) {
3937 #endif
3938 		spa_load_failed(spa, "a pool with guid %llu is already open",
3939 		    (u_longlong_t)pool_guid);
3940 		return (SET_ERROR(EEXIST));
3941 	}
3942 
3943 	spa->spa_config_guid = pool_guid;
3944 
3945 	nvlist_free(spa->spa_load_info);
3946 	spa->spa_load_info = fnvlist_alloc();
3947 
3948 	ASSERT(spa->spa_comment == NULL);
3949 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3950 		spa->spa_comment = spa_strdup(comment);
3951 
3952 	ASSERT(spa->spa_compatibility == NULL);
3953 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3954 	    &compatibility) == 0)
3955 		spa->spa_compatibility = spa_strdup(compatibility);
3956 
3957 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3958 	    &spa->spa_config_txg);
3959 
3960 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3961 		spa->spa_config_splitting = fnvlist_dup(nvl);
3962 
3963 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3964 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3965 		    ZPOOL_CONFIG_VDEV_TREE);
3966 		return (SET_ERROR(EINVAL));
3967 	}
3968 
3969 	/*
3970 	 * Create "The Godfather" zio to hold all async IOs
3971 	 */
3972 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3973 	    KM_SLEEP);
3974 	for (int i = 0; i < max_ncpus; i++) {
3975 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3976 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3977 		    ZIO_FLAG_GODFATHER);
3978 	}
3979 
3980 	/*
3981 	 * Parse the configuration into a vdev tree.  We explicitly set the
3982 	 * value that will be returned by spa_version() since parsing the
3983 	 * configuration requires knowing the version number.
3984 	 */
3985 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3986 	parse = (type == SPA_IMPORT_EXISTING ?
3987 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3988 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3989 	spa_config_exit(spa, SCL_ALL, FTAG);
3990 
3991 	if (error != 0) {
3992 		spa_load_failed(spa, "unable to parse config [error=%d]",
3993 		    error);
3994 		return (error);
3995 	}
3996 
3997 	ASSERT(spa->spa_root_vdev == rvd);
3998 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3999 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4000 
4001 	if (type != SPA_IMPORT_ASSEMBLE) {
4002 		ASSERT(spa_guid(spa) == pool_guid);
4003 	}
4004 
4005 	return (0);
4006 }
4007 
4008 /*
4009  * Recursively open all vdevs in the vdev tree. This function is called twice:
4010  * first with the untrusted config, then with the trusted config.
4011  */
4012 static int
4013 spa_ld_open_vdevs(spa_t *spa)
4014 {
4015 	int error = 0;
4016 
4017 	/*
4018 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4019 	 * missing/unopenable for the root vdev to be still considered openable.
4020 	 */
4021 	if (spa->spa_trust_config) {
4022 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4023 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4024 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4025 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4026 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4027 	} else {
4028 		spa->spa_missing_tvds_allowed = 0;
4029 	}
4030 
4031 	spa->spa_missing_tvds_allowed =
4032 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4033 
4034 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4035 	error = vdev_open(spa->spa_root_vdev);
4036 	spa_config_exit(spa, SCL_ALL, FTAG);
4037 
4038 	if (spa->spa_missing_tvds != 0) {
4039 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4040 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4041 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4042 			/*
4043 			 * Although theoretically we could allow users to open
4044 			 * incomplete pools in RW mode, we'd need to add a lot
4045 			 * of extra logic (e.g. adjust pool space to account
4046 			 * for missing vdevs).
4047 			 * This limitation also prevents users from accidentally
4048 			 * opening the pool in RW mode during data recovery and
4049 			 * damaging it further.
4050 			 */
4051 			spa_load_note(spa, "pools with missing top-level "
4052 			    "vdevs can only be opened in read-only mode.");
4053 			error = SET_ERROR(ENXIO);
4054 		} else {
4055 			spa_load_note(spa, "current settings allow for maximum "
4056 			    "%lld missing top-level vdevs at this stage.",
4057 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4058 		}
4059 	}
4060 	if (error != 0) {
4061 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4062 		    error);
4063 	}
4064 	if (spa->spa_missing_tvds != 0 || error != 0)
4065 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4066 
4067 	return (error);
4068 }
4069 
4070 /*
4071  * We need to validate the vdev labels against the configuration that
4072  * we have in hand. This function is called twice: first with an untrusted
4073  * config, then with a trusted config. The validation is more strict when the
4074  * config is trusted.
4075  */
4076 static int
4077 spa_ld_validate_vdevs(spa_t *spa)
4078 {
4079 	int error = 0;
4080 	vdev_t *rvd = spa->spa_root_vdev;
4081 
4082 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4083 	error = vdev_validate(rvd);
4084 	spa_config_exit(spa, SCL_ALL, FTAG);
4085 
4086 	if (error != 0) {
4087 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4088 		return (error);
4089 	}
4090 
4091 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4092 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4093 		    "some vdevs");
4094 		vdev_dbgmsg_print_tree(rvd, 2);
4095 		return (SET_ERROR(ENXIO));
4096 	}
4097 
4098 	return (0);
4099 }
4100 
4101 static void
4102 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4103 {
4104 	spa->spa_state = POOL_STATE_ACTIVE;
4105 	spa->spa_ubsync = spa->spa_uberblock;
4106 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4107 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4108 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4109 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4110 	spa->spa_claim_max_txg = spa->spa_first_txg;
4111 	spa->spa_prev_software_version = ub->ub_software_version;
4112 }
4113 
4114 static int
4115 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4116 {
4117 	vdev_t *rvd = spa->spa_root_vdev;
4118 	nvlist_t *label;
4119 	uberblock_t *ub = &spa->spa_uberblock;
4120 	boolean_t activity_check = B_FALSE;
4121 
4122 	/*
4123 	 * If we are opening the checkpointed state of the pool by
4124 	 * rewinding to it, at this point we will have written the
4125 	 * checkpointed uberblock to the vdev labels, so searching
4126 	 * the labels will find the right uberblock.  However, if
4127 	 * we are opening the checkpointed state read-only, we have
4128 	 * not modified the labels. Therefore, we must ignore the
4129 	 * labels and continue using the spa_uberblock that was set
4130 	 * by spa_ld_checkpoint_rewind.
4131 	 *
4132 	 * Note that it would be fine to ignore the labels when
4133 	 * rewinding (opening writeable) as well. However, if we
4134 	 * crash just after writing the labels, we will end up
4135 	 * searching the labels. Doing so in the common case means
4136 	 * that this code path gets exercised normally, rather than
4137 	 * just in the edge case.
4138 	 */
4139 	if (ub->ub_checkpoint_txg != 0 &&
4140 	    spa_importing_readonly_checkpoint(spa)) {
4141 		spa_ld_select_uberblock_done(spa, ub);
4142 		return (0);
4143 	}
4144 
4145 	/*
4146 	 * Find the best uberblock.
4147 	 */
4148 	vdev_uberblock_load(rvd, ub, &label);
4149 
4150 	/*
4151 	 * If we weren't able to find a single valid uberblock, return failure.
4152 	 */
4153 	if (ub->ub_txg == 0) {
4154 		nvlist_free(label);
4155 		spa_load_failed(spa, "no valid uberblock found");
4156 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4157 	}
4158 
4159 	if (spa->spa_load_max_txg != UINT64_MAX) {
4160 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4161 		    (u_longlong_t)spa->spa_load_max_txg);
4162 	}
4163 	spa_load_note(spa, "using uberblock with txg=%llu",
4164 	    (u_longlong_t)ub->ub_txg);
4165 	if (ub->ub_raidz_reflow_info != 0) {
4166 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4167 		    "state=%u offset=%llu",
4168 		    (int)RRSS_GET_STATE(ub),
4169 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4170 	}
4171 
4172 
4173 	/*
4174 	 * For pools which have the multihost property on determine if the
4175 	 * pool is truly inactive and can be safely imported.  Prevent
4176 	 * hosts which don't have a hostid set from importing the pool.
4177 	 */
4178 	activity_check = spa_activity_check_required(spa, ub, label,
4179 	    spa->spa_config);
4180 	if (activity_check) {
4181 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4182 		    spa_get_hostid(spa) == 0) {
4183 			nvlist_free(label);
4184 			fnvlist_add_uint64(spa->spa_load_info,
4185 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4186 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4187 		}
4188 
4189 		int error =
4190 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4191 		if (error) {
4192 			nvlist_free(label);
4193 			return (error);
4194 		}
4195 
4196 		fnvlist_add_uint64(spa->spa_load_info,
4197 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4198 		fnvlist_add_uint64(spa->spa_load_info,
4199 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4200 		fnvlist_add_uint16(spa->spa_load_info,
4201 		    ZPOOL_CONFIG_MMP_SEQ,
4202 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4203 	}
4204 
4205 	/*
4206 	 * If the pool has an unsupported version we can't open it.
4207 	 */
4208 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4209 		nvlist_free(label);
4210 		spa_load_failed(spa, "version %llu is not supported",
4211 		    (u_longlong_t)ub->ub_version);
4212 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4213 	}
4214 
4215 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4216 		nvlist_t *features;
4217 
4218 		/*
4219 		 * If we weren't able to find what's necessary for reading the
4220 		 * MOS in the label, return failure.
4221 		 */
4222 		if (label == NULL) {
4223 			spa_load_failed(spa, "label config unavailable");
4224 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4225 			    ENXIO));
4226 		}
4227 
4228 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4229 		    &features) != 0) {
4230 			nvlist_free(label);
4231 			spa_load_failed(spa, "invalid label: '%s' missing",
4232 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4233 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4234 			    ENXIO));
4235 		}
4236 
4237 		/*
4238 		 * Update our in-core representation with the definitive values
4239 		 * from the label.
4240 		 */
4241 		nvlist_free(spa->spa_label_features);
4242 		spa->spa_label_features = fnvlist_dup(features);
4243 	}
4244 
4245 	nvlist_free(label);
4246 
4247 	/*
4248 	 * Look through entries in the label nvlist's features_for_read. If
4249 	 * there is a feature listed there which we don't understand then we
4250 	 * cannot open a pool.
4251 	 */
4252 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4253 		nvlist_t *unsup_feat;
4254 
4255 		unsup_feat = fnvlist_alloc();
4256 
4257 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4258 		    NULL); nvp != NULL;
4259 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4260 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4261 				fnvlist_add_string(unsup_feat,
4262 				    nvpair_name(nvp), "");
4263 			}
4264 		}
4265 
4266 		if (!nvlist_empty(unsup_feat)) {
4267 			fnvlist_add_nvlist(spa->spa_load_info,
4268 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4269 			nvlist_free(unsup_feat);
4270 			spa_load_failed(spa, "some features are unsupported");
4271 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4272 			    ENOTSUP));
4273 		}
4274 
4275 		nvlist_free(unsup_feat);
4276 	}
4277 
4278 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4279 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4280 		spa_try_repair(spa, spa->spa_config);
4281 		spa_config_exit(spa, SCL_ALL, FTAG);
4282 		nvlist_free(spa->spa_config_splitting);
4283 		spa->spa_config_splitting = NULL;
4284 	}
4285 
4286 	/*
4287 	 * Initialize internal SPA structures.
4288 	 */
4289 	spa_ld_select_uberblock_done(spa, ub);
4290 
4291 	return (0);
4292 }
4293 
4294 static int
4295 spa_ld_open_rootbp(spa_t *spa)
4296 {
4297 	int error = 0;
4298 	vdev_t *rvd = spa->spa_root_vdev;
4299 
4300 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4301 	if (error != 0) {
4302 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4303 		    "[error=%d]", error);
4304 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4305 	}
4306 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4307 
4308 	return (0);
4309 }
4310 
4311 static int
4312 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4313     boolean_t reloading)
4314 {
4315 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4316 	nvlist_t *nv, *mos_config, *policy;
4317 	int error = 0, copy_error;
4318 	uint64_t healthy_tvds, healthy_tvds_mos;
4319 	uint64_t mos_config_txg;
4320 
4321 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4322 	    != 0)
4323 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4324 
4325 	/*
4326 	 * If we're assembling a pool from a split, the config provided is
4327 	 * already trusted so there is nothing to do.
4328 	 */
4329 	if (type == SPA_IMPORT_ASSEMBLE)
4330 		return (0);
4331 
4332 	healthy_tvds = spa_healthy_core_tvds(spa);
4333 
4334 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4335 	    != 0) {
4336 		spa_load_failed(spa, "unable to retrieve MOS config");
4337 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4338 	}
4339 
4340 	/*
4341 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4342 	 * the verification here.
4343 	 */
4344 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4345 		error = spa_verify_host(spa, mos_config);
4346 		if (error != 0) {
4347 			nvlist_free(mos_config);
4348 			return (error);
4349 		}
4350 	}
4351 
4352 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4353 
4354 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4355 
4356 	/*
4357 	 * Build a new vdev tree from the trusted config
4358 	 */
4359 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4360 	if (error != 0) {
4361 		nvlist_free(mos_config);
4362 		spa_config_exit(spa, SCL_ALL, FTAG);
4363 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4364 		    error);
4365 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4366 	}
4367 
4368 	/*
4369 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4370 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4371 	 * paths. We update the trusted MOS config with this information.
4372 	 * We first try to copy the paths with vdev_copy_path_strict, which
4373 	 * succeeds only when both configs have exactly the same vdev tree.
4374 	 * If that fails, we fall back to a more flexible method that has a
4375 	 * best effort policy.
4376 	 */
4377 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4378 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4379 		spa_load_note(spa, "provided vdev tree:");
4380 		vdev_dbgmsg_print_tree(rvd, 2);
4381 		spa_load_note(spa, "MOS vdev tree:");
4382 		vdev_dbgmsg_print_tree(mrvd, 2);
4383 	}
4384 	if (copy_error != 0) {
4385 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4386 		    "back to vdev_copy_path_relaxed");
4387 		vdev_copy_path_relaxed(rvd, mrvd);
4388 	}
4389 
4390 	vdev_close(rvd);
4391 	vdev_free(rvd);
4392 	spa->spa_root_vdev = mrvd;
4393 	rvd = mrvd;
4394 	spa_config_exit(spa, SCL_ALL, FTAG);
4395 
4396 	/*
4397 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4398 	 * hostname may be different to the cached config in ways that should
4399 	 * prevent import.  Userspace can't discover this without a scan, but
4400 	 * we know, so we add these values to LOAD_INFO so the caller can know
4401 	 * the difference.
4402 	 *
4403 	 * Note that we have to do this before the config is regenerated,
4404 	 * because the new config will have the hostid and hostname for this
4405 	 * host, in readiness for import.
4406 	 */
4407 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4408 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4409 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4410 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4411 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4412 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4413 
4414 	/*
4415 	 * We will use spa_config if we decide to reload the spa or if spa_load
4416 	 * fails and we rewind. We must thus regenerate the config using the
4417 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4418 	 * pass settings on how to load the pool and is not stored in the MOS.
4419 	 * We copy it over to our new, trusted config.
4420 	 */
4421 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4422 	    ZPOOL_CONFIG_POOL_TXG);
4423 	nvlist_free(mos_config);
4424 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4425 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4426 	    &policy) == 0)
4427 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4428 	spa_config_set(spa, mos_config);
4429 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4430 
4431 	/*
4432 	 * Now that we got the config from the MOS, we should be more strict
4433 	 * in checking blkptrs and can make assumptions about the consistency
4434 	 * of the vdev tree. spa_trust_config must be set to true before opening
4435 	 * vdevs in order for them to be writeable.
4436 	 */
4437 	spa->spa_trust_config = B_TRUE;
4438 
4439 	/*
4440 	 * Open and validate the new vdev tree
4441 	 */
4442 	error = spa_ld_open_vdevs(spa);
4443 	if (error != 0)
4444 		return (error);
4445 
4446 	error = spa_ld_validate_vdevs(spa);
4447 	if (error != 0)
4448 		return (error);
4449 
4450 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4451 		spa_load_note(spa, "final vdev tree:");
4452 		vdev_dbgmsg_print_tree(rvd, 2);
4453 	}
4454 
4455 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4456 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4457 		/*
4458 		 * Sanity check to make sure that we are indeed loading the
4459 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4460 		 * in the config provided and they happened to be the only ones
4461 		 * to have the latest uberblock, we could involuntarily perform
4462 		 * an extreme rewind.
4463 		 */
4464 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4465 		if (healthy_tvds_mos - healthy_tvds >=
4466 		    SPA_SYNC_MIN_VDEVS) {
4467 			spa_load_note(spa, "config provided misses too many "
4468 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4469 			    (u_longlong_t)healthy_tvds,
4470 			    (u_longlong_t)healthy_tvds_mos);
4471 			spa_load_note(spa, "vdev tree:");
4472 			vdev_dbgmsg_print_tree(rvd, 2);
4473 			if (reloading) {
4474 				spa_load_failed(spa, "config was already "
4475 				    "provided from MOS. Aborting.");
4476 				return (spa_vdev_err(rvd,
4477 				    VDEV_AUX_CORRUPT_DATA, EIO));
4478 			}
4479 			spa_load_note(spa, "spa must be reloaded using MOS "
4480 			    "config");
4481 			return (SET_ERROR(EAGAIN));
4482 		}
4483 	}
4484 
4485 	error = spa_check_for_missing_logs(spa);
4486 	if (error != 0)
4487 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4488 
4489 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4490 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4491 		    "guid sum (%llu != %llu)",
4492 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4493 		    (u_longlong_t)rvd->vdev_guid_sum);
4494 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4495 		    ENXIO));
4496 	}
4497 
4498 	return (0);
4499 }
4500 
4501 static int
4502 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4503 {
4504 	int error = 0;
4505 	vdev_t *rvd = spa->spa_root_vdev;
4506 
4507 	/*
4508 	 * Everything that we read before spa_remove_init() must be stored
4509 	 * on concreted vdevs.  Therefore we do this as early as possible.
4510 	 */
4511 	error = spa_remove_init(spa);
4512 	if (error != 0) {
4513 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4514 		    error);
4515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4516 	}
4517 
4518 	/*
4519 	 * Retrieve information needed to condense indirect vdev mappings.
4520 	 */
4521 	error = spa_condense_init(spa);
4522 	if (error != 0) {
4523 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4524 		    error);
4525 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4526 	}
4527 
4528 	return (0);
4529 }
4530 
4531 static int
4532 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4533 {
4534 	int error = 0;
4535 	vdev_t *rvd = spa->spa_root_vdev;
4536 
4537 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4538 		boolean_t missing_feat_read = B_FALSE;
4539 		nvlist_t *unsup_feat, *enabled_feat;
4540 
4541 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4542 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4543 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4544 		}
4545 
4546 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4547 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4548 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4549 		}
4550 
4551 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4552 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4553 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4554 		}
4555 
4556 		enabled_feat = fnvlist_alloc();
4557 		unsup_feat = fnvlist_alloc();
4558 
4559 		if (!spa_features_check(spa, B_FALSE,
4560 		    unsup_feat, enabled_feat))
4561 			missing_feat_read = B_TRUE;
4562 
4563 		if (spa_writeable(spa) ||
4564 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4565 			if (!spa_features_check(spa, B_TRUE,
4566 			    unsup_feat, enabled_feat)) {
4567 				*missing_feat_writep = B_TRUE;
4568 			}
4569 		}
4570 
4571 		fnvlist_add_nvlist(spa->spa_load_info,
4572 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4573 
4574 		if (!nvlist_empty(unsup_feat)) {
4575 			fnvlist_add_nvlist(spa->spa_load_info,
4576 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4577 		}
4578 
4579 		fnvlist_free(enabled_feat);
4580 		fnvlist_free(unsup_feat);
4581 
4582 		if (!missing_feat_read) {
4583 			fnvlist_add_boolean(spa->spa_load_info,
4584 			    ZPOOL_CONFIG_CAN_RDONLY);
4585 		}
4586 
4587 		/*
4588 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4589 		 * twofold: to determine whether the pool is available for
4590 		 * import in read-write mode and (if it is not) whether the
4591 		 * pool is available for import in read-only mode. If the pool
4592 		 * is available for import in read-write mode, it is displayed
4593 		 * as available in userland; if it is not available for import
4594 		 * in read-only mode, it is displayed as unavailable in
4595 		 * userland. If the pool is available for import in read-only
4596 		 * mode but not read-write mode, it is displayed as unavailable
4597 		 * in userland with a special note that the pool is actually
4598 		 * available for open in read-only mode.
4599 		 *
4600 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4601 		 * missing a feature for write, we must first determine whether
4602 		 * the pool can be opened read-only before returning to
4603 		 * userland in order to know whether to display the
4604 		 * abovementioned note.
4605 		 */
4606 		if (missing_feat_read || (*missing_feat_writep &&
4607 		    spa_writeable(spa))) {
4608 			spa_load_failed(spa, "pool uses unsupported features");
4609 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4610 			    ENOTSUP));
4611 		}
4612 
4613 		/*
4614 		 * Load refcounts for ZFS features from disk into an in-memory
4615 		 * cache during SPA initialization.
4616 		 */
4617 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4618 			uint64_t refcount;
4619 
4620 			error = feature_get_refcount_from_disk(spa,
4621 			    &spa_feature_table[i], &refcount);
4622 			if (error == 0) {
4623 				spa->spa_feat_refcount_cache[i] = refcount;
4624 			} else if (error == ENOTSUP) {
4625 				spa->spa_feat_refcount_cache[i] =
4626 				    SPA_FEATURE_DISABLED;
4627 			} else {
4628 				spa_load_failed(spa, "error getting refcount "
4629 				    "for feature %s [error=%d]",
4630 				    spa_feature_table[i].fi_guid, error);
4631 				return (spa_vdev_err(rvd,
4632 				    VDEV_AUX_CORRUPT_DATA, EIO));
4633 			}
4634 		}
4635 	}
4636 
4637 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4638 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4639 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4640 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4641 	}
4642 
4643 	/*
4644 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4645 	 * is now a dependency. If this pool has encryption enabled without
4646 	 * bookmark_v2, trigger an errata message.
4647 	 */
4648 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4649 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4650 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4651 	}
4652 
4653 	return (0);
4654 }
4655 
4656 static int
4657 spa_ld_load_special_directories(spa_t *spa)
4658 {
4659 	int error = 0;
4660 	vdev_t *rvd = spa->spa_root_vdev;
4661 
4662 	spa->spa_is_initializing = B_TRUE;
4663 	error = dsl_pool_open(spa->spa_dsl_pool);
4664 	spa->spa_is_initializing = B_FALSE;
4665 	if (error != 0) {
4666 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4667 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4668 	}
4669 
4670 	return (0);
4671 }
4672 
4673 static int
4674 spa_ld_get_props(spa_t *spa)
4675 {
4676 	int error = 0;
4677 	uint64_t obj;
4678 	vdev_t *rvd = spa->spa_root_vdev;
4679 
4680 	/* Grab the checksum salt from the MOS. */
4681 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4682 	    DMU_POOL_CHECKSUM_SALT, 1,
4683 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4684 	    spa->spa_cksum_salt.zcs_bytes);
4685 	if (error == ENOENT) {
4686 		/* Generate a new salt for subsequent use */
4687 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4688 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4689 	} else if (error != 0) {
4690 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4691 		    "MOS [error=%d]", error);
4692 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4693 	}
4694 
4695 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4696 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4697 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4698 	if (error != 0) {
4699 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4700 		    "[error=%d]", error);
4701 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4702 	}
4703 
4704 	/*
4705 	 * Load the bit that tells us to use the new accounting function
4706 	 * (raid-z deflation).  If we have an older pool, this will not
4707 	 * be present.
4708 	 */
4709 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4710 	if (error != 0 && error != ENOENT)
4711 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4712 
4713 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4714 	    &spa->spa_creation_version, B_FALSE);
4715 	if (error != 0 && error != ENOENT)
4716 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4717 
4718 	/*
4719 	 * Load the persistent error log.  If we have an older pool, this will
4720 	 * not be present.
4721 	 */
4722 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4723 	    B_FALSE);
4724 	if (error != 0 && error != ENOENT)
4725 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4726 
4727 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4728 	    &spa->spa_errlog_scrub, B_FALSE);
4729 	if (error != 0 && error != ENOENT)
4730 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4731 
4732 	/* Load the last scrubbed txg. */
4733 	error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4734 	    &spa->spa_scrubbed_last_txg, B_FALSE);
4735 	if (error != 0 && error != ENOENT)
4736 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4737 
4738 	/*
4739 	 * Load the livelist deletion field. If a livelist is queued for
4740 	 * deletion, indicate that in the spa
4741 	 */
4742 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4743 	    &spa->spa_livelists_to_delete, B_FALSE);
4744 	if (error != 0 && error != ENOENT)
4745 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4746 
4747 	/*
4748 	 * Load the history object.  If we have an older pool, this
4749 	 * will not be present.
4750 	 */
4751 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4752 	if (error != 0 && error != ENOENT)
4753 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4754 
4755 	/*
4756 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4757 	 * be present; in this case, defer its creation to a later time to
4758 	 * avoid dirtying the MOS this early / out of sync context. See
4759 	 * spa_sync_config_object.
4760 	 */
4761 
4762 	/* The sentinel is only available in the MOS config. */
4763 	nvlist_t *mos_config;
4764 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4765 		spa_load_failed(spa, "unable to retrieve MOS config");
4766 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4767 	}
4768 
4769 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4770 	    &spa->spa_all_vdev_zaps, B_FALSE);
4771 
4772 	if (error == ENOENT) {
4773 		VERIFY(!nvlist_exists(mos_config,
4774 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4775 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4776 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4777 	} else if (error != 0) {
4778 		nvlist_free(mos_config);
4779 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4780 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4781 		/*
4782 		 * An older version of ZFS overwrote the sentinel value, so
4783 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4784 		 * destruction to later; see spa_sync_config_object.
4785 		 */
4786 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4787 		/*
4788 		 * We're assuming that no vdevs have had their ZAPs created
4789 		 * before this. Better be sure of it.
4790 		 */
4791 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4792 	}
4793 	nvlist_free(mos_config);
4794 
4795 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4796 
4797 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4798 	    B_FALSE);
4799 	if (error && error != ENOENT)
4800 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4801 
4802 	if (error == 0) {
4803 		uint64_t autoreplace = 0;
4804 
4805 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4806 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4807 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4808 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4809 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4810 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4811 		    &spa->spa_dedup_table_quota);
4812 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4813 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4814 		spa->spa_autoreplace = (autoreplace != 0);
4815 	}
4816 
4817 	/*
4818 	 * If we are importing a pool with missing top-level vdevs,
4819 	 * we enforce that the pool doesn't panic or get suspended on
4820 	 * error since the likelihood of missing data is extremely high.
4821 	 */
4822 	if (spa->spa_missing_tvds > 0 &&
4823 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4824 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4825 		spa_load_note(spa, "forcing failmode to 'continue' "
4826 		    "as some top level vdevs are missing");
4827 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4828 	}
4829 
4830 	return (0);
4831 }
4832 
4833 static int
4834 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4835 {
4836 	int error = 0;
4837 	vdev_t *rvd = spa->spa_root_vdev;
4838 
4839 	/*
4840 	 * If we're assembling the pool from the split-off vdevs of
4841 	 * an existing pool, we don't want to attach the spares & cache
4842 	 * devices.
4843 	 */
4844 
4845 	/*
4846 	 * Load any hot spares for this pool.
4847 	 */
4848 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4849 	    B_FALSE);
4850 	if (error != 0 && error != ENOENT)
4851 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4852 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4853 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4854 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4855 		    &spa->spa_spares.sav_config) != 0) {
4856 			spa_load_failed(spa, "error loading spares nvlist");
4857 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4858 		}
4859 
4860 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4861 		spa_load_spares(spa);
4862 		spa_config_exit(spa, SCL_ALL, FTAG);
4863 	} else if (error == 0) {
4864 		spa->spa_spares.sav_sync = B_TRUE;
4865 	}
4866 
4867 	/*
4868 	 * Load any level 2 ARC devices for this pool.
4869 	 */
4870 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4871 	    &spa->spa_l2cache.sav_object, B_FALSE);
4872 	if (error != 0 && error != ENOENT)
4873 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4874 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4875 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4876 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4877 		    &spa->spa_l2cache.sav_config) != 0) {
4878 			spa_load_failed(spa, "error loading l2cache nvlist");
4879 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4880 		}
4881 
4882 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4883 		spa_load_l2cache(spa);
4884 		spa_config_exit(spa, SCL_ALL, FTAG);
4885 	} else if (error == 0) {
4886 		spa->spa_l2cache.sav_sync = B_TRUE;
4887 	}
4888 
4889 	return (0);
4890 }
4891 
4892 static int
4893 spa_ld_load_vdev_metadata(spa_t *spa)
4894 {
4895 	int error = 0;
4896 	vdev_t *rvd = spa->spa_root_vdev;
4897 
4898 	/*
4899 	 * If the 'multihost' property is set, then never allow a pool to
4900 	 * be imported when the system hostid is zero.  The exception to
4901 	 * this rule is zdb which is always allowed to access pools.
4902 	 */
4903 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4904 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4905 		fnvlist_add_uint64(spa->spa_load_info,
4906 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4907 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4908 	}
4909 
4910 	/*
4911 	 * If the 'autoreplace' property is set, then post a resource notifying
4912 	 * the ZFS DE that it should not issue any faults for unopenable
4913 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4914 	 * unopenable vdevs so that the normal autoreplace handler can take
4915 	 * over.
4916 	 */
4917 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4918 		spa_check_removed(spa->spa_root_vdev);
4919 		/*
4920 		 * For the import case, this is done in spa_import(), because
4921 		 * at this point we're using the spare definitions from
4922 		 * the MOS config, not necessarily from the userland config.
4923 		 */
4924 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4925 			spa_aux_check_removed(&spa->spa_spares);
4926 			spa_aux_check_removed(&spa->spa_l2cache);
4927 		}
4928 	}
4929 
4930 	/*
4931 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4932 	 */
4933 	error = vdev_load(rvd);
4934 	if (error != 0) {
4935 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4936 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4937 	}
4938 
4939 	error = spa_ld_log_spacemaps(spa);
4940 	if (error != 0) {
4941 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4942 		    error);
4943 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4944 	}
4945 
4946 	/*
4947 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4948 	 */
4949 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4950 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4951 	spa_config_exit(spa, SCL_ALL, FTAG);
4952 
4953 	return (0);
4954 }
4955 
4956 static int
4957 spa_ld_load_dedup_tables(spa_t *spa)
4958 {
4959 	int error = 0;
4960 	vdev_t *rvd = spa->spa_root_vdev;
4961 
4962 	error = ddt_load(spa);
4963 	if (error != 0) {
4964 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4965 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4966 	}
4967 
4968 	return (0);
4969 }
4970 
4971 static int
4972 spa_ld_load_brt(spa_t *spa)
4973 {
4974 	int error = 0;
4975 	vdev_t *rvd = spa->spa_root_vdev;
4976 
4977 	error = brt_load(spa);
4978 	if (error != 0) {
4979 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4980 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4981 	}
4982 
4983 	return (0);
4984 }
4985 
4986 static int
4987 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4988 {
4989 	vdev_t *rvd = spa->spa_root_vdev;
4990 
4991 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4992 		boolean_t missing = spa_check_logs(spa);
4993 		if (missing) {
4994 			if (spa->spa_missing_tvds != 0) {
4995 				spa_load_note(spa, "spa_check_logs failed "
4996 				    "so dropping the logs");
4997 			} else {
4998 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4999 				spa_load_failed(spa, "spa_check_logs failed");
5000 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5001 				    ENXIO));
5002 			}
5003 		}
5004 	}
5005 
5006 	return (0);
5007 }
5008 
5009 static int
5010 spa_ld_verify_pool_data(spa_t *spa)
5011 {
5012 	int error = 0;
5013 	vdev_t *rvd = spa->spa_root_vdev;
5014 
5015 	/*
5016 	 * We've successfully opened the pool, verify that we're ready
5017 	 * to start pushing transactions.
5018 	 */
5019 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5020 		error = spa_load_verify(spa);
5021 		if (error != 0) {
5022 			spa_load_failed(spa, "spa_load_verify failed "
5023 			    "[error=%d]", error);
5024 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5025 			    error));
5026 		}
5027 	}
5028 
5029 	return (0);
5030 }
5031 
5032 static void
5033 spa_ld_claim_log_blocks(spa_t *spa)
5034 {
5035 	dmu_tx_t *tx;
5036 	dsl_pool_t *dp = spa_get_dsl(spa);
5037 
5038 	/*
5039 	 * Claim log blocks that haven't been committed yet.
5040 	 * This must all happen in a single txg.
5041 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5042 	 * invoked from zil_claim_log_block()'s i/o done callback.
5043 	 * Price of rollback is that we abandon the log.
5044 	 */
5045 	spa->spa_claiming = B_TRUE;
5046 
5047 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5048 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5049 	    zil_claim, tx, DS_FIND_CHILDREN);
5050 	dmu_tx_commit(tx);
5051 
5052 	spa->spa_claiming = B_FALSE;
5053 
5054 	spa_set_log_state(spa, SPA_LOG_GOOD);
5055 }
5056 
5057 static void
5058 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5059     boolean_t update_config_cache)
5060 {
5061 	vdev_t *rvd = spa->spa_root_vdev;
5062 	int need_update = B_FALSE;
5063 
5064 	/*
5065 	 * If the config cache is stale, or we have uninitialized
5066 	 * metaslabs (see spa_vdev_add()), then update the config.
5067 	 *
5068 	 * If this is a verbatim import, trust the current
5069 	 * in-core spa_config and update the disk labels.
5070 	 */
5071 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5072 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5073 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5074 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5075 		need_update = B_TRUE;
5076 
5077 	for (int c = 0; c < rvd->vdev_children; c++)
5078 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5079 			need_update = B_TRUE;
5080 
5081 	/*
5082 	 * Update the config cache asynchronously in case we're the
5083 	 * root pool, in which case the config cache isn't writable yet.
5084 	 */
5085 	if (need_update)
5086 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5087 }
5088 
5089 static void
5090 spa_ld_prepare_for_reload(spa_t *spa)
5091 {
5092 	spa_mode_t mode = spa->spa_mode;
5093 	int async_suspended = spa->spa_async_suspended;
5094 
5095 	spa_unload(spa);
5096 	spa_deactivate(spa);
5097 	spa_activate(spa, mode);
5098 
5099 	/*
5100 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5101 	 * spa_unload(). We want to restore it back to the original value before
5102 	 * returning as we might be calling spa_async_resume() later.
5103 	 */
5104 	spa->spa_async_suspended = async_suspended;
5105 }
5106 
5107 static int
5108 spa_ld_read_checkpoint_txg(spa_t *spa)
5109 {
5110 	uberblock_t checkpoint;
5111 	int error = 0;
5112 
5113 	ASSERT0(spa->spa_checkpoint_txg);
5114 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5115 	    spa->spa_load_thread == curthread);
5116 
5117 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5118 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5119 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5120 
5121 	if (error == ENOENT)
5122 		return (0);
5123 
5124 	if (error != 0)
5125 		return (error);
5126 
5127 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5128 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5129 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5130 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5131 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5132 
5133 	return (0);
5134 }
5135 
5136 static int
5137 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5138 {
5139 	int error = 0;
5140 
5141 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5142 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5143 
5144 	/*
5145 	 * Never trust the config that is provided unless we are assembling
5146 	 * a pool following a split.
5147 	 * This means don't trust blkptrs and the vdev tree in general. This
5148 	 * also effectively puts the spa in read-only mode since
5149 	 * spa_writeable() checks for spa_trust_config to be true.
5150 	 * We will later load a trusted config from the MOS.
5151 	 */
5152 	if (type != SPA_IMPORT_ASSEMBLE)
5153 		spa->spa_trust_config = B_FALSE;
5154 
5155 	/*
5156 	 * Parse the config provided to create a vdev tree.
5157 	 */
5158 	error = spa_ld_parse_config(spa, type);
5159 	if (error != 0)
5160 		return (error);
5161 
5162 	spa_import_progress_add(spa);
5163 
5164 	/*
5165 	 * Now that we have the vdev tree, try to open each vdev. This involves
5166 	 * opening the underlying physical device, retrieving its geometry and
5167 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5168 	 * based on the success of those operations. After this we'll be ready
5169 	 * to read from the vdevs.
5170 	 */
5171 	error = spa_ld_open_vdevs(spa);
5172 	if (error != 0)
5173 		return (error);
5174 
5175 	/*
5176 	 * Read the label of each vdev and make sure that the GUIDs stored
5177 	 * there match the GUIDs in the config provided.
5178 	 * If we're assembling a new pool that's been split off from an
5179 	 * existing pool, the labels haven't yet been updated so we skip
5180 	 * validation for now.
5181 	 */
5182 	if (type != SPA_IMPORT_ASSEMBLE) {
5183 		error = spa_ld_validate_vdevs(spa);
5184 		if (error != 0)
5185 			return (error);
5186 	}
5187 
5188 	/*
5189 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5190 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5191 	 * get the list of features required to read blkptrs in the MOS from
5192 	 * the vdev label with the best uberblock and verify that our version
5193 	 * of zfs supports them all.
5194 	 */
5195 	error = spa_ld_select_uberblock(spa, type);
5196 	if (error != 0)
5197 		return (error);
5198 
5199 	/*
5200 	 * Pass that uberblock to the dsl_pool layer which will open the root
5201 	 * blkptr. This blkptr points to the latest version of the MOS and will
5202 	 * allow us to read its contents.
5203 	 */
5204 	error = spa_ld_open_rootbp(spa);
5205 	if (error != 0)
5206 		return (error);
5207 
5208 	return (0);
5209 }
5210 
5211 static int
5212 spa_ld_checkpoint_rewind(spa_t *spa)
5213 {
5214 	uberblock_t checkpoint;
5215 	int error = 0;
5216 
5217 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5218 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5219 
5220 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5221 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5222 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5223 
5224 	if (error != 0) {
5225 		spa_load_failed(spa, "unable to retrieve checkpointed "
5226 		    "uberblock from the MOS config [error=%d]", error);
5227 
5228 		if (error == ENOENT)
5229 			error = ZFS_ERR_NO_CHECKPOINT;
5230 
5231 		return (error);
5232 	}
5233 
5234 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5235 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5236 
5237 	/*
5238 	 * We need to update the txg and timestamp of the checkpointed
5239 	 * uberblock to be higher than the latest one. This ensures that
5240 	 * the checkpointed uberblock is selected if we were to close and
5241 	 * reopen the pool right after we've written it in the vdev labels.
5242 	 * (also see block comment in vdev_uberblock_compare)
5243 	 */
5244 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5245 	checkpoint.ub_timestamp = gethrestime_sec();
5246 
5247 	/*
5248 	 * Set current uberblock to be the checkpointed uberblock.
5249 	 */
5250 	spa->spa_uberblock = checkpoint;
5251 
5252 	/*
5253 	 * If we are doing a normal rewind, then the pool is open for
5254 	 * writing and we sync the "updated" checkpointed uberblock to
5255 	 * disk. Once this is done, we've basically rewound the whole
5256 	 * pool and there is no way back.
5257 	 *
5258 	 * There are cases when we don't want to attempt and sync the
5259 	 * checkpointed uberblock to disk because we are opening a
5260 	 * pool as read-only. Specifically, verifying the checkpointed
5261 	 * state with zdb, and importing the checkpointed state to get
5262 	 * a "preview" of its content.
5263 	 */
5264 	if (spa_writeable(spa)) {
5265 		vdev_t *rvd = spa->spa_root_vdev;
5266 
5267 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5268 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5269 		int svdcount = 0;
5270 		int children = rvd->vdev_children;
5271 		int c0 = random_in_range(children);
5272 
5273 		for (int c = 0; c < children; c++) {
5274 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5275 
5276 			/* Stop when revisiting the first vdev */
5277 			if (c > 0 && svd[0] == vd)
5278 				break;
5279 
5280 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5281 			    !vdev_is_concrete(vd))
5282 				continue;
5283 
5284 			svd[svdcount++] = vd;
5285 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5286 				break;
5287 		}
5288 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5289 		if (error == 0)
5290 			spa->spa_last_synced_guid = rvd->vdev_guid;
5291 		spa_config_exit(spa, SCL_ALL, FTAG);
5292 
5293 		if (error != 0) {
5294 			spa_load_failed(spa, "failed to write checkpointed "
5295 			    "uberblock to the vdev labels [error=%d]", error);
5296 			return (error);
5297 		}
5298 	}
5299 
5300 	return (0);
5301 }
5302 
5303 static int
5304 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5305     boolean_t *update_config_cache)
5306 {
5307 	int error;
5308 
5309 	/*
5310 	 * Parse the config for pool, open and validate vdevs,
5311 	 * select an uberblock, and use that uberblock to open
5312 	 * the MOS.
5313 	 */
5314 	error = spa_ld_mos_init(spa, type);
5315 	if (error != 0)
5316 		return (error);
5317 
5318 	/*
5319 	 * Retrieve the trusted config stored in the MOS and use it to create
5320 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5321 	 */
5322 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5323 	if (error == EAGAIN) {
5324 		if (update_config_cache != NULL)
5325 			*update_config_cache = B_TRUE;
5326 
5327 		/*
5328 		 * Redo the loading process with the trusted config if it is
5329 		 * too different from the untrusted config.
5330 		 */
5331 		spa_ld_prepare_for_reload(spa);
5332 		spa_load_note(spa, "RELOADING");
5333 		error = spa_ld_mos_init(spa, type);
5334 		if (error != 0)
5335 			return (error);
5336 
5337 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5338 		if (error != 0)
5339 			return (error);
5340 
5341 	} else if (error != 0) {
5342 		return (error);
5343 	}
5344 
5345 	return (0);
5346 }
5347 
5348 /*
5349  * Load an existing storage pool, using the config provided. This config
5350  * describes which vdevs are part of the pool and is later validated against
5351  * partial configs present in each vdev's label and an entire copy of the
5352  * config stored in the MOS.
5353  */
5354 static int
5355 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5356 {
5357 	int error = 0;
5358 	boolean_t missing_feat_write = B_FALSE;
5359 	boolean_t checkpoint_rewind =
5360 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5361 	boolean_t update_config_cache = B_FALSE;
5362 	hrtime_t load_start = gethrtime();
5363 
5364 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5365 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5366 
5367 	spa_load_note(spa, "LOADING");
5368 
5369 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5370 	if (error != 0)
5371 		return (error);
5372 
5373 	/*
5374 	 * If we are rewinding to the checkpoint then we need to repeat
5375 	 * everything we've done so far in this function but this time
5376 	 * selecting the checkpointed uberblock and using that to open
5377 	 * the MOS.
5378 	 */
5379 	if (checkpoint_rewind) {
5380 		/*
5381 		 * If we are rewinding to the checkpoint update config cache
5382 		 * anyway.
5383 		 */
5384 		update_config_cache = B_TRUE;
5385 
5386 		/*
5387 		 * Extract the checkpointed uberblock from the current MOS
5388 		 * and use this as the pool's uberblock from now on. If the
5389 		 * pool is imported as writeable we also write the checkpoint
5390 		 * uberblock to the labels, making the rewind permanent.
5391 		 */
5392 		error = spa_ld_checkpoint_rewind(spa);
5393 		if (error != 0)
5394 			return (error);
5395 
5396 		/*
5397 		 * Redo the loading process again with the
5398 		 * checkpointed uberblock.
5399 		 */
5400 		spa_ld_prepare_for_reload(spa);
5401 		spa_load_note(spa, "LOADING checkpointed uberblock");
5402 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5403 		if (error != 0)
5404 			return (error);
5405 	}
5406 
5407 	/*
5408 	 * Drop the namespace lock for the rest of the function.
5409 	 */
5410 	spa->spa_load_thread = curthread;
5411 	mutex_exit(&spa_namespace_lock);
5412 
5413 	/*
5414 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5415 	 */
5416 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5417 	error = spa_ld_read_checkpoint_txg(spa);
5418 	if (error != 0)
5419 		goto fail;
5420 
5421 	/*
5422 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5423 	 * from the pool and their contents were re-mapped to other vdevs. Note
5424 	 * that everything that we read before this step must have been
5425 	 * rewritten on concrete vdevs after the last device removal was
5426 	 * initiated. Otherwise we could be reading from indirect vdevs before
5427 	 * we have loaded their mappings.
5428 	 */
5429 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5430 	error = spa_ld_open_indirect_vdev_metadata(spa);
5431 	if (error != 0)
5432 		goto fail;
5433 
5434 	/*
5435 	 * Retrieve the full list of active features from the MOS and check if
5436 	 * they are all supported.
5437 	 */
5438 	spa_import_progress_set_notes(spa, "Checking feature flags");
5439 	error = spa_ld_check_features(spa, &missing_feat_write);
5440 	if (error != 0)
5441 		goto fail;
5442 
5443 	/*
5444 	 * Load several special directories from the MOS needed by the dsl_pool
5445 	 * layer.
5446 	 */
5447 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5448 	error = spa_ld_load_special_directories(spa);
5449 	if (error != 0)
5450 		goto fail;
5451 
5452 	/*
5453 	 * Retrieve pool properties from the MOS.
5454 	 */
5455 	spa_import_progress_set_notes(spa, "Loading properties");
5456 	error = spa_ld_get_props(spa);
5457 	if (error != 0)
5458 		goto fail;
5459 
5460 	/*
5461 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5462 	 * and open them.
5463 	 */
5464 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5465 	error = spa_ld_open_aux_vdevs(spa, type);
5466 	if (error != 0)
5467 		goto fail;
5468 
5469 	/*
5470 	 * Load the metadata for all vdevs. Also check if unopenable devices
5471 	 * should be autoreplaced.
5472 	 */
5473 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5474 	error = spa_ld_load_vdev_metadata(spa);
5475 	if (error != 0)
5476 		goto fail;
5477 
5478 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5479 	error = spa_ld_load_dedup_tables(spa);
5480 	if (error != 0)
5481 		goto fail;
5482 
5483 	spa_import_progress_set_notes(spa, "Loading BRT");
5484 	error = spa_ld_load_brt(spa);
5485 	if (error != 0)
5486 		goto fail;
5487 
5488 	/*
5489 	 * Verify the logs now to make sure we don't have any unexpected errors
5490 	 * when we claim log blocks later.
5491 	 */
5492 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5493 	error = spa_ld_verify_logs(spa, type, ereport);
5494 	if (error != 0)
5495 		goto fail;
5496 
5497 	if (missing_feat_write) {
5498 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5499 
5500 		/*
5501 		 * At this point, we know that we can open the pool in
5502 		 * read-only mode but not read-write mode. We now have enough
5503 		 * information and can return to userland.
5504 		 */
5505 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5506 		    ENOTSUP);
5507 		goto fail;
5508 	}
5509 
5510 	/*
5511 	 * Traverse the last txgs to make sure the pool was left off in a safe
5512 	 * state. When performing an extreme rewind, we verify the whole pool,
5513 	 * which can take a very long time.
5514 	 */
5515 	spa_import_progress_set_notes(spa, "Verifying pool data");
5516 	error = spa_ld_verify_pool_data(spa);
5517 	if (error != 0)
5518 		goto fail;
5519 
5520 	/*
5521 	 * Calculate the deflated space for the pool. This must be done before
5522 	 * we write anything to the pool because we'd need to update the space
5523 	 * accounting using the deflated sizes.
5524 	 */
5525 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5526 	spa_update_dspace(spa);
5527 
5528 	/*
5529 	 * We have now retrieved all the information we needed to open the
5530 	 * pool. If we are importing the pool in read-write mode, a few
5531 	 * additional steps must be performed to finish the import.
5532 	 */
5533 	spa_import_progress_set_notes(spa, "Starting import");
5534 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5535 	    spa->spa_load_max_txg == UINT64_MAX)) {
5536 		uint64_t config_cache_txg = spa->spa_config_txg;
5537 
5538 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5539 
5540 		/*
5541 		 * Before we do any zio_write's, complete the raidz expansion
5542 		 * scratch space copying, if necessary.
5543 		 */
5544 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5545 			vdev_raidz_reflow_copy_scratch(spa);
5546 
5547 		/*
5548 		 * In case of a checkpoint rewind, log the original txg
5549 		 * of the checkpointed uberblock.
5550 		 */
5551 		if (checkpoint_rewind) {
5552 			spa_history_log_internal(spa, "checkpoint rewind",
5553 			    NULL, "rewound state to txg=%llu",
5554 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5555 		}
5556 
5557 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5558 		/*
5559 		 * Traverse the ZIL and claim all blocks.
5560 		 */
5561 		spa_ld_claim_log_blocks(spa);
5562 
5563 		/*
5564 		 * Kick-off the syncing thread.
5565 		 */
5566 		spa->spa_sync_on = B_TRUE;
5567 		txg_sync_start(spa->spa_dsl_pool);
5568 		mmp_thread_start(spa);
5569 
5570 		/*
5571 		 * Wait for all claims to sync.  We sync up to the highest
5572 		 * claimed log block birth time so that claimed log blocks
5573 		 * don't appear to be from the future.  spa_claim_max_txg
5574 		 * will have been set for us by ZIL traversal operations
5575 		 * performed above.
5576 		 */
5577 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5578 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5579 
5580 		/*
5581 		 * Check if we need to request an update of the config. On the
5582 		 * next sync, we would update the config stored in vdev labels
5583 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5584 		 */
5585 		spa_import_progress_set_notes(spa, "Updating configs");
5586 		spa_ld_check_for_config_update(spa, config_cache_txg,
5587 		    update_config_cache);
5588 
5589 		/*
5590 		 * Check if a rebuild was in progress and if so resume it.
5591 		 * Then check all DTLs to see if anything needs resilvering.
5592 		 * The resilver will be deferred if a rebuild was started.
5593 		 */
5594 		spa_import_progress_set_notes(spa, "Starting resilvers");
5595 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5596 			vdev_rebuild_restart(spa);
5597 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5598 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5599 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5600 		}
5601 
5602 		/*
5603 		 * Log the fact that we booted up (so that we can detect if
5604 		 * we rebooted in the middle of an operation).
5605 		 */
5606 		spa_history_log_version(spa, "open", NULL);
5607 
5608 		spa_import_progress_set_notes(spa,
5609 		    "Restarting device removals");
5610 		spa_restart_removal(spa);
5611 		spa_spawn_aux_threads(spa);
5612 
5613 		/*
5614 		 * Delete any inconsistent datasets.
5615 		 *
5616 		 * Note:
5617 		 * Since we may be issuing deletes for clones here,
5618 		 * we make sure to do so after we've spawned all the
5619 		 * auxiliary threads above (from which the livelist
5620 		 * deletion zthr is part of).
5621 		 */
5622 		spa_import_progress_set_notes(spa,
5623 		    "Cleaning up inconsistent objsets");
5624 		(void) dmu_objset_find(spa_name(spa),
5625 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5626 
5627 		/*
5628 		 * Clean up any stale temporary dataset userrefs.
5629 		 */
5630 		spa_import_progress_set_notes(spa,
5631 		    "Cleaning up temporary userrefs");
5632 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5633 
5634 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5635 		spa_import_progress_set_notes(spa, "Restarting initialize");
5636 		vdev_initialize_restart(spa->spa_root_vdev);
5637 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5638 		vdev_trim_restart(spa->spa_root_vdev);
5639 		vdev_autotrim_restart(spa);
5640 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5641 		spa_import_progress_set_notes(spa, "Finished importing");
5642 	}
5643 	zio_handle_import_delay(spa, gethrtime() - load_start);
5644 
5645 	spa_import_progress_remove(spa_guid(spa));
5646 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5647 
5648 	spa_load_note(spa, "LOADED");
5649 fail:
5650 	mutex_enter(&spa_namespace_lock);
5651 	spa->spa_load_thread = NULL;
5652 	cv_broadcast(&spa_namespace_cv);
5653 
5654 	return (error);
5655 
5656 }
5657 
5658 static int
5659 spa_load_retry(spa_t *spa, spa_load_state_t state)
5660 {
5661 	spa_mode_t mode = spa->spa_mode;
5662 
5663 	spa_unload(spa);
5664 	spa_deactivate(spa);
5665 
5666 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5667 
5668 	spa_activate(spa, mode);
5669 	spa_async_suspend(spa);
5670 
5671 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5672 	    (u_longlong_t)spa->spa_load_max_txg);
5673 
5674 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5675 }
5676 
5677 /*
5678  * If spa_load() fails this function will try loading prior txg's. If
5679  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5680  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5681  * function will not rewind the pool and will return the same error as
5682  * spa_load().
5683  */
5684 static int
5685 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5686     int rewind_flags)
5687 {
5688 	nvlist_t *loadinfo = NULL;
5689 	nvlist_t *config = NULL;
5690 	int load_error, rewind_error;
5691 	uint64_t safe_rewind_txg;
5692 	uint64_t min_txg;
5693 
5694 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5695 		spa->spa_load_max_txg = spa->spa_load_txg;
5696 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5697 	} else {
5698 		spa->spa_load_max_txg = max_request;
5699 		if (max_request != UINT64_MAX)
5700 			spa->spa_extreme_rewind = B_TRUE;
5701 	}
5702 
5703 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5704 	if (load_error == 0)
5705 		return (0);
5706 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5707 		/*
5708 		 * When attempting checkpoint-rewind on a pool with no
5709 		 * checkpoint, we should not attempt to load uberblocks
5710 		 * from previous txgs when spa_load fails.
5711 		 */
5712 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5713 		spa_import_progress_remove(spa_guid(spa));
5714 		return (load_error);
5715 	}
5716 
5717 	if (spa->spa_root_vdev != NULL)
5718 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5719 
5720 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5721 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5722 
5723 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5724 		nvlist_free(config);
5725 		spa_import_progress_remove(spa_guid(spa));
5726 		return (load_error);
5727 	}
5728 
5729 	if (state == SPA_LOAD_RECOVER) {
5730 		/* Price of rolling back is discarding txgs, including log */
5731 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5732 	} else {
5733 		/*
5734 		 * If we aren't rolling back save the load info from our first
5735 		 * import attempt so that we can restore it after attempting
5736 		 * to rewind.
5737 		 */
5738 		loadinfo = spa->spa_load_info;
5739 		spa->spa_load_info = fnvlist_alloc();
5740 	}
5741 
5742 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5743 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5744 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5745 	    TXG_INITIAL : safe_rewind_txg;
5746 
5747 	/*
5748 	 * Continue as long as we're finding errors, we're still within
5749 	 * the acceptable rewind range, and we're still finding uberblocks
5750 	 */
5751 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5752 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5753 		if (spa->spa_load_max_txg < safe_rewind_txg)
5754 			spa->spa_extreme_rewind = B_TRUE;
5755 		rewind_error = spa_load_retry(spa, state);
5756 	}
5757 
5758 	spa->spa_extreme_rewind = B_FALSE;
5759 	spa->spa_load_max_txg = UINT64_MAX;
5760 
5761 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5762 		spa_config_set(spa, config);
5763 	else
5764 		nvlist_free(config);
5765 
5766 	if (state == SPA_LOAD_RECOVER) {
5767 		ASSERT3P(loadinfo, ==, NULL);
5768 		spa_import_progress_remove(spa_guid(spa));
5769 		return (rewind_error);
5770 	} else {
5771 		/* Store the rewind info as part of the initial load info */
5772 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5773 		    spa->spa_load_info);
5774 
5775 		/* Restore the initial load info */
5776 		fnvlist_free(spa->spa_load_info);
5777 		spa->spa_load_info = loadinfo;
5778 
5779 		spa_import_progress_remove(spa_guid(spa));
5780 		return (load_error);
5781 	}
5782 }
5783 
5784 /*
5785  * Pool Open/Import
5786  *
5787  * The import case is identical to an open except that the configuration is sent
5788  * down from userland, instead of grabbed from the configuration cache.  For the
5789  * case of an open, the pool configuration will exist in the
5790  * POOL_STATE_UNINITIALIZED state.
5791  *
5792  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5793  * the same time open the pool, without having to keep around the spa_t in some
5794  * ambiguous state.
5795  */
5796 static int
5797 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5798     nvlist_t *nvpolicy, nvlist_t **config)
5799 {
5800 	spa_t *spa;
5801 	spa_load_state_t state = SPA_LOAD_OPEN;
5802 	int error;
5803 	int locked = B_FALSE;
5804 	int firstopen = B_FALSE;
5805 
5806 	*spapp = NULL;
5807 
5808 	/*
5809 	 * As disgusting as this is, we need to support recursive calls to this
5810 	 * function because dsl_dir_open() is called during spa_load(), and ends
5811 	 * up calling spa_open() again.  The real fix is to figure out how to
5812 	 * avoid dsl_dir_open() calling this in the first place.
5813 	 */
5814 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5815 		mutex_enter(&spa_namespace_lock);
5816 		locked = B_TRUE;
5817 	}
5818 
5819 	if ((spa = spa_lookup(pool)) == NULL) {
5820 		if (locked)
5821 			mutex_exit(&spa_namespace_lock);
5822 		return (SET_ERROR(ENOENT));
5823 	}
5824 
5825 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5826 		zpool_load_policy_t policy;
5827 
5828 		firstopen = B_TRUE;
5829 
5830 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5831 		    &policy);
5832 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5833 			state = SPA_LOAD_RECOVER;
5834 
5835 		spa_activate(spa, spa_mode_global);
5836 
5837 		if (state != SPA_LOAD_RECOVER)
5838 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5839 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5840 
5841 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5842 		error = spa_load_best(spa, state, policy.zlp_txg,
5843 		    policy.zlp_rewind);
5844 
5845 		if (error == EBADF) {
5846 			/*
5847 			 * If vdev_validate() returns failure (indicated by
5848 			 * EBADF), it indicates that one of the vdevs indicates
5849 			 * that the pool has been exported or destroyed.  If
5850 			 * this is the case, the config cache is out of sync and
5851 			 * we should remove the pool from the namespace.
5852 			 */
5853 			spa_unload(spa);
5854 			spa_deactivate(spa);
5855 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5856 			spa_remove(spa);
5857 			if (locked)
5858 				mutex_exit(&spa_namespace_lock);
5859 			return (SET_ERROR(ENOENT));
5860 		}
5861 
5862 		if (error) {
5863 			/*
5864 			 * We can't open the pool, but we still have useful
5865 			 * information: the state of each vdev after the
5866 			 * attempted vdev_open().  Return this to the user.
5867 			 */
5868 			if (config != NULL && spa->spa_config) {
5869 				*config = fnvlist_dup(spa->spa_config);
5870 				fnvlist_add_nvlist(*config,
5871 				    ZPOOL_CONFIG_LOAD_INFO,
5872 				    spa->spa_load_info);
5873 			}
5874 			spa_unload(spa);
5875 			spa_deactivate(spa);
5876 			spa->spa_last_open_failed = error;
5877 			if (locked)
5878 				mutex_exit(&spa_namespace_lock);
5879 			*spapp = NULL;
5880 			return (error);
5881 		}
5882 	}
5883 
5884 	spa_open_ref(spa, tag);
5885 
5886 	if (config != NULL)
5887 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5888 
5889 	/*
5890 	 * If we've recovered the pool, pass back any information we
5891 	 * gathered while doing the load.
5892 	 */
5893 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5894 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5895 		    spa->spa_load_info);
5896 	}
5897 
5898 	if (locked) {
5899 		spa->spa_last_open_failed = 0;
5900 		spa->spa_last_ubsync_txg = 0;
5901 		spa->spa_load_txg = 0;
5902 		mutex_exit(&spa_namespace_lock);
5903 	}
5904 
5905 	if (firstopen)
5906 		zvol_create_minors_recursive(spa_name(spa));
5907 
5908 	*spapp = spa;
5909 
5910 	return (0);
5911 }
5912 
5913 int
5914 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5915     nvlist_t *policy, nvlist_t **config)
5916 {
5917 	return (spa_open_common(name, spapp, tag, policy, config));
5918 }
5919 
5920 int
5921 spa_open(const char *name, spa_t **spapp, const void *tag)
5922 {
5923 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5924 }
5925 
5926 /*
5927  * Lookup the given spa_t, incrementing the inject count in the process,
5928  * preventing it from being exported or destroyed.
5929  */
5930 spa_t *
5931 spa_inject_addref(char *name)
5932 {
5933 	spa_t *spa;
5934 
5935 	mutex_enter(&spa_namespace_lock);
5936 	if ((spa = spa_lookup(name)) == NULL) {
5937 		mutex_exit(&spa_namespace_lock);
5938 		return (NULL);
5939 	}
5940 	spa->spa_inject_ref++;
5941 	mutex_exit(&spa_namespace_lock);
5942 
5943 	return (spa);
5944 }
5945 
5946 void
5947 spa_inject_delref(spa_t *spa)
5948 {
5949 	mutex_enter(&spa_namespace_lock);
5950 	spa->spa_inject_ref--;
5951 	mutex_exit(&spa_namespace_lock);
5952 }
5953 
5954 /*
5955  * Add spares device information to the nvlist.
5956  */
5957 static void
5958 spa_add_spares(spa_t *spa, nvlist_t *config)
5959 {
5960 	nvlist_t **spares;
5961 	uint_t i, nspares;
5962 	nvlist_t *nvroot;
5963 	uint64_t guid;
5964 	vdev_stat_t *vs;
5965 	uint_t vsc;
5966 	uint64_t pool;
5967 
5968 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5969 
5970 	if (spa->spa_spares.sav_count == 0)
5971 		return;
5972 
5973 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5974 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5975 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5976 	if (nspares != 0) {
5977 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5978 		    (const nvlist_t * const *)spares, nspares);
5979 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5980 		    &spares, &nspares));
5981 
5982 		/*
5983 		 * Go through and find any spares which have since been
5984 		 * repurposed as an active spare.  If this is the case, update
5985 		 * their status appropriately.
5986 		 */
5987 		for (i = 0; i < nspares; i++) {
5988 			guid = fnvlist_lookup_uint64(spares[i],
5989 			    ZPOOL_CONFIG_GUID);
5990 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5991 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5992 			if (spa_spare_exists(guid, &pool, NULL) &&
5993 			    pool != 0ULL) {
5994 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5995 				vs->vs_aux = VDEV_AUX_SPARED;
5996 			} else {
5997 				vs->vs_state =
5998 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5999 			}
6000 		}
6001 	}
6002 }
6003 
6004 /*
6005  * Add l2cache device information to the nvlist, including vdev stats.
6006  */
6007 static void
6008 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6009 {
6010 	nvlist_t **l2cache;
6011 	uint_t i, j, nl2cache;
6012 	nvlist_t *nvroot;
6013 	uint64_t guid;
6014 	vdev_t *vd;
6015 	vdev_stat_t *vs;
6016 	uint_t vsc;
6017 
6018 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6019 
6020 	if (spa->spa_l2cache.sav_count == 0)
6021 		return;
6022 
6023 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6024 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6025 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6026 	if (nl2cache != 0) {
6027 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6028 		    (const nvlist_t * const *)l2cache, nl2cache);
6029 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6030 		    &l2cache, &nl2cache));
6031 
6032 		/*
6033 		 * Update level 2 cache device stats.
6034 		 */
6035 
6036 		for (i = 0; i < nl2cache; i++) {
6037 			guid = fnvlist_lookup_uint64(l2cache[i],
6038 			    ZPOOL_CONFIG_GUID);
6039 
6040 			vd = NULL;
6041 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6042 				if (guid ==
6043 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6044 					vd = spa->spa_l2cache.sav_vdevs[j];
6045 					break;
6046 				}
6047 			}
6048 			ASSERT(vd != NULL);
6049 
6050 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6051 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6052 			vdev_get_stats(vd, vs);
6053 			vdev_config_generate_stats(vd, l2cache[i]);
6054 
6055 		}
6056 	}
6057 }
6058 
6059 static void
6060 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6061 {
6062 	zap_cursor_t zc;
6063 	zap_attribute_t *za = zap_attribute_alloc();
6064 
6065 	if (spa->spa_feat_for_read_obj != 0) {
6066 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6067 		    spa->spa_feat_for_read_obj);
6068 		    zap_cursor_retrieve(&zc, za) == 0;
6069 		    zap_cursor_advance(&zc)) {
6070 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6071 			    za->za_num_integers == 1);
6072 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6073 			    za->za_first_integer));
6074 		}
6075 		zap_cursor_fini(&zc);
6076 	}
6077 
6078 	if (spa->spa_feat_for_write_obj != 0) {
6079 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6080 		    spa->spa_feat_for_write_obj);
6081 		    zap_cursor_retrieve(&zc, za) == 0;
6082 		    zap_cursor_advance(&zc)) {
6083 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6084 			    za->za_num_integers == 1);
6085 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6086 			    za->za_first_integer));
6087 		}
6088 		zap_cursor_fini(&zc);
6089 	}
6090 	zap_attribute_free(za);
6091 }
6092 
6093 static void
6094 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6095 {
6096 	int i;
6097 
6098 	for (i = 0; i < SPA_FEATURES; i++) {
6099 		zfeature_info_t feature = spa_feature_table[i];
6100 		uint64_t refcount;
6101 
6102 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6103 			continue;
6104 
6105 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6106 	}
6107 }
6108 
6109 /*
6110  * Store a list of pool features and their reference counts in the
6111  * config.
6112  *
6113  * The first time this is called on a spa, allocate a new nvlist, fetch
6114  * the pool features and reference counts from disk, then save the list
6115  * in the spa. In subsequent calls on the same spa use the saved nvlist
6116  * and refresh its values from the cached reference counts.  This
6117  * ensures we don't block here on I/O on a suspended pool so 'zpool
6118  * clear' can resume the pool.
6119  */
6120 static void
6121 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6122 {
6123 	nvlist_t *features;
6124 
6125 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6126 
6127 	mutex_enter(&spa->spa_feat_stats_lock);
6128 	features = spa->spa_feat_stats;
6129 
6130 	if (features != NULL) {
6131 		spa_feature_stats_from_cache(spa, features);
6132 	} else {
6133 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6134 		spa->spa_feat_stats = features;
6135 		spa_feature_stats_from_disk(spa, features);
6136 	}
6137 
6138 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6139 	    features));
6140 
6141 	mutex_exit(&spa->spa_feat_stats_lock);
6142 }
6143 
6144 int
6145 spa_get_stats(const char *name, nvlist_t **config,
6146     char *altroot, size_t buflen)
6147 {
6148 	int error;
6149 	spa_t *spa;
6150 
6151 	*config = NULL;
6152 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6153 
6154 	if (spa != NULL) {
6155 		/*
6156 		 * This still leaves a window of inconsistency where the spares
6157 		 * or l2cache devices could change and the config would be
6158 		 * self-inconsistent.
6159 		 */
6160 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6161 
6162 		if (*config != NULL) {
6163 			uint64_t loadtimes[2];
6164 
6165 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6166 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6167 			fnvlist_add_uint64_array(*config,
6168 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6169 
6170 			fnvlist_add_uint64(*config,
6171 			    ZPOOL_CONFIG_ERRCOUNT,
6172 			    spa_approx_errlog_size(spa));
6173 
6174 			if (spa_suspended(spa)) {
6175 				fnvlist_add_uint64(*config,
6176 				    ZPOOL_CONFIG_SUSPENDED,
6177 				    spa->spa_failmode);
6178 				fnvlist_add_uint64(*config,
6179 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6180 				    spa->spa_suspended);
6181 			}
6182 
6183 			spa_add_spares(spa, *config);
6184 			spa_add_l2cache(spa, *config);
6185 			spa_add_feature_stats(spa, *config);
6186 		}
6187 	}
6188 
6189 	/*
6190 	 * We want to get the alternate root even for faulted pools, so we cheat
6191 	 * and call spa_lookup() directly.
6192 	 */
6193 	if (altroot) {
6194 		if (spa == NULL) {
6195 			mutex_enter(&spa_namespace_lock);
6196 			spa = spa_lookup(name);
6197 			if (spa)
6198 				spa_altroot(spa, altroot, buflen);
6199 			else
6200 				altroot[0] = '\0';
6201 			spa = NULL;
6202 			mutex_exit(&spa_namespace_lock);
6203 		} else {
6204 			spa_altroot(spa, altroot, buflen);
6205 		}
6206 	}
6207 
6208 	if (spa != NULL) {
6209 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6210 		spa_close(spa, FTAG);
6211 	}
6212 
6213 	return (error);
6214 }
6215 
6216 /*
6217  * Validate that the auxiliary device array is well formed.  We must have an
6218  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6219  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6220  * specified, as long as they are well-formed.
6221  */
6222 static int
6223 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6224     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6225     vdev_labeltype_t label)
6226 {
6227 	nvlist_t **dev;
6228 	uint_t i, ndev;
6229 	vdev_t *vd;
6230 	int error;
6231 
6232 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6233 
6234 	/*
6235 	 * It's acceptable to have no devs specified.
6236 	 */
6237 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6238 		return (0);
6239 
6240 	if (ndev == 0)
6241 		return (SET_ERROR(EINVAL));
6242 
6243 	/*
6244 	 * Make sure the pool is formatted with a version that supports this
6245 	 * device type.
6246 	 */
6247 	if (spa_version(spa) < version)
6248 		return (SET_ERROR(ENOTSUP));
6249 
6250 	/*
6251 	 * Set the pending device list so we correctly handle device in-use
6252 	 * checking.
6253 	 */
6254 	sav->sav_pending = dev;
6255 	sav->sav_npending = ndev;
6256 
6257 	for (i = 0; i < ndev; i++) {
6258 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6259 		    mode)) != 0)
6260 			goto out;
6261 
6262 		if (!vd->vdev_ops->vdev_op_leaf) {
6263 			vdev_free(vd);
6264 			error = SET_ERROR(EINVAL);
6265 			goto out;
6266 		}
6267 
6268 		vd->vdev_top = vd;
6269 
6270 		if ((error = vdev_open(vd)) == 0 &&
6271 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6272 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6273 			    vd->vdev_guid);
6274 		}
6275 
6276 		vdev_free(vd);
6277 
6278 		if (error &&
6279 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6280 			goto out;
6281 		else
6282 			error = 0;
6283 	}
6284 
6285 out:
6286 	sav->sav_pending = NULL;
6287 	sav->sav_npending = 0;
6288 	return (error);
6289 }
6290 
6291 static int
6292 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6293 {
6294 	int error;
6295 
6296 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6297 
6298 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6299 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6300 	    VDEV_LABEL_SPARE)) != 0) {
6301 		return (error);
6302 	}
6303 
6304 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6305 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6306 	    VDEV_LABEL_L2CACHE));
6307 }
6308 
6309 static void
6310 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6311     const char *config)
6312 {
6313 	int i;
6314 
6315 	if (sav->sav_config != NULL) {
6316 		nvlist_t **olddevs;
6317 		uint_t oldndevs;
6318 		nvlist_t **newdevs;
6319 
6320 		/*
6321 		 * Generate new dev list by concatenating with the
6322 		 * current dev list.
6323 		 */
6324 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6325 		    &olddevs, &oldndevs));
6326 
6327 		newdevs = kmem_alloc(sizeof (void *) *
6328 		    (ndevs + oldndevs), KM_SLEEP);
6329 		for (i = 0; i < oldndevs; i++)
6330 			newdevs[i] = fnvlist_dup(olddevs[i]);
6331 		for (i = 0; i < ndevs; i++)
6332 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6333 
6334 		fnvlist_remove(sav->sav_config, config);
6335 
6336 		fnvlist_add_nvlist_array(sav->sav_config, config,
6337 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6338 		for (i = 0; i < oldndevs + ndevs; i++)
6339 			nvlist_free(newdevs[i]);
6340 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6341 	} else {
6342 		/*
6343 		 * Generate a new dev list.
6344 		 */
6345 		sav->sav_config = fnvlist_alloc();
6346 		fnvlist_add_nvlist_array(sav->sav_config, config,
6347 		    (const nvlist_t * const *)devs, ndevs);
6348 	}
6349 }
6350 
6351 /*
6352  * Stop and drop level 2 ARC devices
6353  */
6354 void
6355 spa_l2cache_drop(spa_t *spa)
6356 {
6357 	vdev_t *vd;
6358 	int i;
6359 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6360 
6361 	for (i = 0; i < sav->sav_count; i++) {
6362 		uint64_t pool;
6363 
6364 		vd = sav->sav_vdevs[i];
6365 		ASSERT(vd != NULL);
6366 
6367 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6368 		    pool != 0ULL && l2arc_vdev_present(vd))
6369 			l2arc_remove_vdev(vd);
6370 	}
6371 }
6372 
6373 /*
6374  * Verify encryption parameters for spa creation. If we are encrypting, we must
6375  * have the encryption feature flag enabled.
6376  */
6377 static int
6378 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6379     boolean_t has_encryption)
6380 {
6381 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6382 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6383 	    !has_encryption)
6384 		return (SET_ERROR(ENOTSUP));
6385 
6386 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6387 }
6388 
6389 /*
6390  * Pool Creation
6391  */
6392 int
6393 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6394     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6395 {
6396 	spa_t *spa;
6397 	const char *altroot = NULL;
6398 	vdev_t *rvd;
6399 	dsl_pool_t *dp;
6400 	dmu_tx_t *tx;
6401 	int error = 0;
6402 	uint64_t txg = TXG_INITIAL;
6403 	nvlist_t **spares, **l2cache;
6404 	uint_t nspares, nl2cache;
6405 	uint64_t version, obj, ndraid = 0;
6406 	boolean_t has_features;
6407 	boolean_t has_encryption;
6408 	boolean_t has_allocclass;
6409 	spa_feature_t feat;
6410 	const char *feat_name;
6411 	const char *poolname;
6412 	nvlist_t *nvl;
6413 
6414 	if (props == NULL ||
6415 	    nvlist_lookup_string(props,
6416 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6417 		poolname = (char *)pool;
6418 
6419 	/*
6420 	 * If this pool already exists, return failure.
6421 	 */
6422 	mutex_enter(&spa_namespace_lock);
6423 	if (spa_lookup(poolname) != NULL) {
6424 		mutex_exit(&spa_namespace_lock);
6425 		return (SET_ERROR(EEXIST));
6426 	}
6427 
6428 	/*
6429 	 * Allocate a new spa_t structure.
6430 	 */
6431 	nvl = fnvlist_alloc();
6432 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6433 	(void) nvlist_lookup_string(props,
6434 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6435 	spa = spa_add(poolname, nvl, altroot);
6436 	fnvlist_free(nvl);
6437 	spa_activate(spa, spa_mode_global);
6438 
6439 	if (props && (error = spa_prop_validate(spa, props))) {
6440 		spa_deactivate(spa);
6441 		spa_remove(spa);
6442 		mutex_exit(&spa_namespace_lock);
6443 		return (error);
6444 	}
6445 
6446 	/*
6447 	 * Temporary pool names should never be written to disk.
6448 	 */
6449 	if (poolname != pool)
6450 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6451 
6452 	has_features = B_FALSE;
6453 	has_encryption = B_FALSE;
6454 	has_allocclass = B_FALSE;
6455 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6456 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6457 		if (zpool_prop_feature(nvpair_name(elem))) {
6458 			has_features = B_TRUE;
6459 
6460 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6461 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6462 			if (feat == SPA_FEATURE_ENCRYPTION)
6463 				has_encryption = B_TRUE;
6464 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6465 				has_allocclass = B_TRUE;
6466 		}
6467 	}
6468 
6469 	/* verify encryption params, if they were provided */
6470 	if (dcp != NULL) {
6471 		error = spa_create_check_encryption_params(dcp, has_encryption);
6472 		if (error != 0) {
6473 			spa_deactivate(spa);
6474 			spa_remove(spa);
6475 			mutex_exit(&spa_namespace_lock);
6476 			return (error);
6477 		}
6478 	}
6479 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6480 		spa_deactivate(spa);
6481 		spa_remove(spa);
6482 		mutex_exit(&spa_namespace_lock);
6483 		return (ENOTSUP);
6484 	}
6485 
6486 	if (has_features || nvlist_lookup_uint64(props,
6487 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6488 		version = SPA_VERSION;
6489 	}
6490 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6491 
6492 	spa->spa_first_txg = txg;
6493 	spa->spa_uberblock.ub_txg = txg - 1;
6494 	spa->spa_uberblock.ub_version = version;
6495 	spa->spa_ubsync = spa->spa_uberblock;
6496 	spa->spa_load_state = SPA_LOAD_CREATE;
6497 	spa->spa_removing_phys.sr_state = DSS_NONE;
6498 	spa->spa_removing_phys.sr_removing_vdev = -1;
6499 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6500 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6501 
6502 	/*
6503 	 * Create "The Godfather" zio to hold all async IOs
6504 	 */
6505 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6506 	    KM_SLEEP);
6507 	for (int i = 0; i < max_ncpus; i++) {
6508 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6509 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6510 		    ZIO_FLAG_GODFATHER);
6511 	}
6512 
6513 	/*
6514 	 * Create the root vdev.
6515 	 */
6516 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6517 
6518 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6519 
6520 	ASSERT(error != 0 || rvd != NULL);
6521 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6522 
6523 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6524 		error = SET_ERROR(EINVAL);
6525 
6526 	if (error == 0 &&
6527 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6528 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6529 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6530 		/*
6531 		 * instantiate the metaslab groups (this will dirty the vdevs)
6532 		 * we can no longer error exit past this point
6533 		 */
6534 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6535 			vdev_t *vd = rvd->vdev_child[c];
6536 
6537 			vdev_metaslab_set_size(vd);
6538 			vdev_expand(vd, txg);
6539 		}
6540 	}
6541 
6542 	spa_config_exit(spa, SCL_ALL, FTAG);
6543 
6544 	if (error != 0) {
6545 		spa_unload(spa);
6546 		spa_deactivate(spa);
6547 		spa_remove(spa);
6548 		mutex_exit(&spa_namespace_lock);
6549 		return (error);
6550 	}
6551 
6552 	/*
6553 	 * Get the list of spares, if specified.
6554 	 */
6555 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6556 	    &spares, &nspares) == 0) {
6557 		spa->spa_spares.sav_config = fnvlist_alloc();
6558 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6559 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6560 		    nspares);
6561 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6562 		spa_load_spares(spa);
6563 		spa_config_exit(spa, SCL_ALL, FTAG);
6564 		spa->spa_spares.sav_sync = B_TRUE;
6565 	}
6566 
6567 	/*
6568 	 * Get the list of level 2 cache devices, if specified.
6569 	 */
6570 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6571 	    &l2cache, &nl2cache) == 0) {
6572 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6573 		    NV_UNIQUE_NAME, KM_SLEEP));
6574 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6575 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6576 		    nl2cache);
6577 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6578 		spa_load_l2cache(spa);
6579 		spa_config_exit(spa, SCL_ALL, FTAG);
6580 		spa->spa_l2cache.sav_sync = B_TRUE;
6581 	}
6582 
6583 	spa->spa_is_initializing = B_TRUE;
6584 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6585 	spa->spa_is_initializing = B_FALSE;
6586 
6587 	/*
6588 	 * Create DDTs (dedup tables).
6589 	 */
6590 	ddt_create(spa);
6591 	/*
6592 	 * Create BRT table and BRT table object.
6593 	 */
6594 	brt_create(spa);
6595 
6596 	spa_update_dspace(spa);
6597 
6598 	tx = dmu_tx_create_assigned(dp, txg);
6599 
6600 	/*
6601 	 * Create the pool's history object.
6602 	 */
6603 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6604 		spa_history_create_obj(spa, tx);
6605 
6606 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6607 	spa_history_log_version(spa, "create", tx);
6608 
6609 	/*
6610 	 * Create the pool config object.
6611 	 */
6612 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6613 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6614 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6615 
6616 	if (zap_add(spa->spa_meta_objset,
6617 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6618 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6619 		cmn_err(CE_PANIC, "failed to add pool config");
6620 	}
6621 
6622 	if (zap_add(spa->spa_meta_objset,
6623 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6624 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6625 		cmn_err(CE_PANIC, "failed to add pool version");
6626 	}
6627 
6628 	/* Newly created pools with the right version are always deflated. */
6629 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6630 		spa->spa_deflate = TRUE;
6631 		if (zap_add(spa->spa_meta_objset,
6632 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6633 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6634 			cmn_err(CE_PANIC, "failed to add deflate");
6635 		}
6636 	}
6637 
6638 	/*
6639 	 * Create the deferred-free bpobj.  Turn off compression
6640 	 * because sync-to-convergence takes longer if the blocksize
6641 	 * keeps changing.
6642 	 */
6643 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6644 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6645 	    ZIO_COMPRESS_OFF, tx);
6646 	if (zap_add(spa->spa_meta_objset,
6647 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6648 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6649 		cmn_err(CE_PANIC, "failed to add bpobj");
6650 	}
6651 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6652 	    spa->spa_meta_objset, obj));
6653 
6654 	/*
6655 	 * Generate some random noise for salted checksums to operate on.
6656 	 */
6657 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6658 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6659 
6660 	/*
6661 	 * Set pool properties.
6662 	 */
6663 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6664 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6665 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6666 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6667 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6668 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6669 	spa->spa_dedup_table_quota =
6670 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6671 
6672 	if (props != NULL) {
6673 		spa_configfile_set(spa, props, B_FALSE);
6674 		spa_sync_props(props, tx);
6675 	}
6676 
6677 	for (int i = 0; i < ndraid; i++)
6678 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6679 
6680 	dmu_tx_commit(tx);
6681 
6682 	spa->spa_sync_on = B_TRUE;
6683 	txg_sync_start(dp);
6684 	mmp_thread_start(spa);
6685 	txg_wait_synced(dp, txg);
6686 
6687 	spa_spawn_aux_threads(spa);
6688 
6689 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6690 
6691 	/*
6692 	 * Don't count references from objsets that are already closed
6693 	 * and are making their way through the eviction process.
6694 	 */
6695 	spa_evicting_os_wait(spa);
6696 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6697 	spa->spa_load_state = SPA_LOAD_NONE;
6698 
6699 	spa_import_os(spa);
6700 
6701 	mutex_exit(&spa_namespace_lock);
6702 
6703 	return (0);
6704 }
6705 
6706 /*
6707  * Import a non-root pool into the system.
6708  */
6709 int
6710 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6711 {
6712 	spa_t *spa;
6713 	const char *altroot = NULL;
6714 	spa_load_state_t state = SPA_LOAD_IMPORT;
6715 	zpool_load_policy_t policy;
6716 	spa_mode_t mode = spa_mode_global;
6717 	uint64_t readonly = B_FALSE;
6718 	int error;
6719 	nvlist_t *nvroot;
6720 	nvlist_t **spares, **l2cache;
6721 	uint_t nspares, nl2cache;
6722 
6723 	/*
6724 	 * If a pool with this name exists, return failure.
6725 	 */
6726 	mutex_enter(&spa_namespace_lock);
6727 	if (spa_lookup(pool) != NULL) {
6728 		mutex_exit(&spa_namespace_lock);
6729 		return (SET_ERROR(EEXIST));
6730 	}
6731 
6732 	/*
6733 	 * Create and initialize the spa structure.
6734 	 */
6735 	(void) nvlist_lookup_string(props,
6736 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6737 	(void) nvlist_lookup_uint64(props,
6738 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6739 	if (readonly)
6740 		mode = SPA_MODE_READ;
6741 	spa = spa_add(pool, config, altroot);
6742 	spa->spa_import_flags = flags;
6743 
6744 	/*
6745 	 * Verbatim import - Take a pool and insert it into the namespace
6746 	 * as if it had been loaded at boot.
6747 	 */
6748 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6749 		if (props != NULL)
6750 			spa_configfile_set(spa, props, B_FALSE);
6751 
6752 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6753 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6754 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6755 		mutex_exit(&spa_namespace_lock);
6756 		return (0);
6757 	}
6758 
6759 	spa_activate(spa, mode);
6760 
6761 	/*
6762 	 * Don't start async tasks until we know everything is healthy.
6763 	 */
6764 	spa_async_suspend(spa);
6765 
6766 	zpool_get_load_policy(config, &policy);
6767 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6768 		state = SPA_LOAD_RECOVER;
6769 
6770 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6771 
6772 	if (state != SPA_LOAD_RECOVER) {
6773 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6774 		zfs_dbgmsg("spa_import: importing %s", pool);
6775 	} else {
6776 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6777 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6778 	}
6779 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6780 
6781 	/*
6782 	 * Propagate anything learned while loading the pool and pass it
6783 	 * back to caller (i.e. rewind info, missing devices, etc).
6784 	 */
6785 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6786 
6787 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6788 	/*
6789 	 * Toss any existing sparelist, as it doesn't have any validity
6790 	 * anymore, and conflicts with spa_has_spare().
6791 	 */
6792 	if (spa->spa_spares.sav_config) {
6793 		nvlist_free(spa->spa_spares.sav_config);
6794 		spa->spa_spares.sav_config = NULL;
6795 		spa_load_spares(spa);
6796 	}
6797 	if (spa->spa_l2cache.sav_config) {
6798 		nvlist_free(spa->spa_l2cache.sav_config);
6799 		spa->spa_l2cache.sav_config = NULL;
6800 		spa_load_l2cache(spa);
6801 	}
6802 
6803 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6804 	spa_config_exit(spa, SCL_ALL, FTAG);
6805 
6806 	if (props != NULL)
6807 		spa_configfile_set(spa, props, B_FALSE);
6808 
6809 	if (error != 0 || (props && spa_writeable(spa) &&
6810 	    (error = spa_prop_set(spa, props)))) {
6811 		spa_unload(spa);
6812 		spa_deactivate(spa);
6813 		spa_remove(spa);
6814 		mutex_exit(&spa_namespace_lock);
6815 		return (error);
6816 	}
6817 
6818 	spa_async_resume(spa);
6819 
6820 	/*
6821 	 * Override any spares and level 2 cache devices as specified by
6822 	 * the user, as these may have correct device names/devids, etc.
6823 	 */
6824 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6825 	    &spares, &nspares) == 0) {
6826 		if (spa->spa_spares.sav_config)
6827 			fnvlist_remove(spa->spa_spares.sav_config,
6828 			    ZPOOL_CONFIG_SPARES);
6829 		else
6830 			spa->spa_spares.sav_config = fnvlist_alloc();
6831 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6832 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6833 		    nspares);
6834 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6835 		spa_load_spares(spa);
6836 		spa_config_exit(spa, SCL_ALL, FTAG);
6837 		spa->spa_spares.sav_sync = B_TRUE;
6838 		spa->spa_spares.sav_label_sync = B_TRUE;
6839 	}
6840 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6841 	    &l2cache, &nl2cache) == 0) {
6842 		if (spa->spa_l2cache.sav_config)
6843 			fnvlist_remove(spa->spa_l2cache.sav_config,
6844 			    ZPOOL_CONFIG_L2CACHE);
6845 		else
6846 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6847 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6848 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6849 		    nl2cache);
6850 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6851 		spa_load_l2cache(spa);
6852 		spa_config_exit(spa, SCL_ALL, FTAG);
6853 		spa->spa_l2cache.sav_sync = B_TRUE;
6854 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6855 	}
6856 
6857 	/*
6858 	 * Check for any removed devices.
6859 	 */
6860 	if (spa->spa_autoreplace) {
6861 		spa_aux_check_removed(&spa->spa_spares);
6862 		spa_aux_check_removed(&spa->spa_l2cache);
6863 	}
6864 
6865 	if (spa_writeable(spa)) {
6866 		/*
6867 		 * Update the config cache to include the newly-imported pool.
6868 		 */
6869 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6870 	}
6871 
6872 	/*
6873 	 * It's possible that the pool was expanded while it was exported.
6874 	 * We kick off an async task to handle this for us.
6875 	 */
6876 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6877 
6878 	spa_history_log_version(spa, "import", NULL);
6879 
6880 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6881 
6882 	mutex_exit(&spa_namespace_lock);
6883 
6884 	zvol_create_minors_recursive(pool);
6885 
6886 	spa_import_os(spa);
6887 
6888 	return (0);
6889 }
6890 
6891 nvlist_t *
6892 spa_tryimport(nvlist_t *tryconfig)
6893 {
6894 	nvlist_t *config = NULL;
6895 	const char *poolname, *cachefile;
6896 	spa_t *spa;
6897 	uint64_t state;
6898 	int error;
6899 	zpool_load_policy_t policy;
6900 
6901 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6902 		return (NULL);
6903 
6904 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6905 		return (NULL);
6906 
6907 	/*
6908 	 * Create and initialize the spa structure.
6909 	 */
6910 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6911 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6912 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6913 
6914 	mutex_enter(&spa_namespace_lock);
6915 	spa = spa_add(name, tryconfig, NULL);
6916 	spa_activate(spa, SPA_MODE_READ);
6917 	kmem_free(name, MAXPATHLEN);
6918 
6919 	/*
6920 	 * Rewind pool if a max txg was provided.
6921 	 */
6922 	zpool_get_load_policy(spa->spa_config, &policy);
6923 	if (policy.zlp_txg != UINT64_MAX) {
6924 		spa->spa_load_max_txg = policy.zlp_txg;
6925 		spa->spa_extreme_rewind = B_TRUE;
6926 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6927 		    poolname, (longlong_t)policy.zlp_txg);
6928 	} else {
6929 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6930 	}
6931 
6932 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6933 	    == 0) {
6934 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6935 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6936 	} else {
6937 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6938 	}
6939 
6940 	/*
6941 	 * spa_import() relies on a pool config fetched by spa_try_import()
6942 	 * for spare/cache devices. Import flags are not passed to
6943 	 * spa_tryimport(), which makes it return early due to a missing log
6944 	 * device and missing retrieving the cache device and spare eventually.
6945 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6946 	 * the correct configuration regardless of the missing log device.
6947 	 */
6948 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6949 
6950 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6951 
6952 	/*
6953 	 * If 'tryconfig' was at least parsable, return the current config.
6954 	 */
6955 	if (spa->spa_root_vdev != NULL) {
6956 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6957 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6958 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6959 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6960 		    spa->spa_uberblock.ub_timestamp);
6961 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6962 		    spa->spa_load_info);
6963 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6964 		    spa->spa_errata);
6965 
6966 		/*
6967 		 * If the bootfs property exists on this pool then we
6968 		 * copy it out so that external consumers can tell which
6969 		 * pools are bootable.
6970 		 */
6971 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6972 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6973 
6974 			/*
6975 			 * We have to play games with the name since the
6976 			 * pool was opened as TRYIMPORT_NAME.
6977 			 */
6978 			if (dsl_dsobj_to_dsname(spa_name(spa),
6979 			    spa->spa_bootfs, tmpname) == 0) {
6980 				char *cp;
6981 				char *dsname;
6982 
6983 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6984 
6985 				cp = strchr(tmpname, '/');
6986 				if (cp == NULL) {
6987 					(void) strlcpy(dsname, tmpname,
6988 					    MAXPATHLEN);
6989 				} else {
6990 					(void) snprintf(dsname, MAXPATHLEN,
6991 					    "%s/%s", poolname, ++cp);
6992 				}
6993 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6994 				    dsname);
6995 				kmem_free(dsname, MAXPATHLEN);
6996 			}
6997 			kmem_free(tmpname, MAXPATHLEN);
6998 		}
6999 
7000 		/*
7001 		 * Add the list of hot spares and level 2 cache devices.
7002 		 */
7003 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7004 		spa_add_spares(spa, config);
7005 		spa_add_l2cache(spa, config);
7006 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7007 	}
7008 
7009 	spa_unload(spa);
7010 	spa_deactivate(spa);
7011 	spa_remove(spa);
7012 	mutex_exit(&spa_namespace_lock);
7013 
7014 	return (config);
7015 }
7016 
7017 /*
7018  * Pool export/destroy
7019  *
7020  * The act of destroying or exporting a pool is very simple.  We make sure there
7021  * is no more pending I/O and any references to the pool are gone.  Then, we
7022  * update the pool state and sync all the labels to disk, removing the
7023  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7024  * we don't sync the labels or remove the configuration cache.
7025  */
7026 static int
7027 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7028     boolean_t force, boolean_t hardforce)
7029 {
7030 	int error = 0;
7031 	spa_t *spa;
7032 	hrtime_t export_start = gethrtime();
7033 
7034 	if (oldconfig)
7035 		*oldconfig = NULL;
7036 
7037 	if (!(spa_mode_global & SPA_MODE_WRITE))
7038 		return (SET_ERROR(EROFS));
7039 
7040 	mutex_enter(&spa_namespace_lock);
7041 	if ((spa = spa_lookup(pool)) == NULL) {
7042 		mutex_exit(&spa_namespace_lock);
7043 		return (SET_ERROR(ENOENT));
7044 	}
7045 
7046 	if (spa->spa_is_exporting) {
7047 		/* the pool is being exported by another thread */
7048 		mutex_exit(&spa_namespace_lock);
7049 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7050 	}
7051 	spa->spa_is_exporting = B_TRUE;
7052 
7053 	/*
7054 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7055 	 * and see if we can export.
7056 	 */
7057 	spa_open_ref(spa, FTAG);
7058 	mutex_exit(&spa_namespace_lock);
7059 	spa_async_suspend(spa);
7060 	if (spa->spa_zvol_taskq) {
7061 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7062 		taskq_wait(spa->spa_zvol_taskq);
7063 	}
7064 	mutex_enter(&spa_namespace_lock);
7065 	spa->spa_export_thread = curthread;
7066 	spa_close(spa, FTAG);
7067 
7068 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7069 		mutex_exit(&spa_namespace_lock);
7070 		goto export_spa;
7071 	}
7072 
7073 	/*
7074 	 * The pool will be in core if it's openable, in which case we can
7075 	 * modify its state.  Objsets may be open only because they're dirty,
7076 	 * so we have to force it to sync before checking spa_refcnt.
7077 	 */
7078 	if (spa->spa_sync_on) {
7079 		txg_wait_synced(spa->spa_dsl_pool, 0);
7080 		spa_evicting_os_wait(spa);
7081 	}
7082 
7083 	/*
7084 	 * A pool cannot be exported or destroyed if there are active
7085 	 * references.  If we are resetting a pool, allow references by
7086 	 * fault injection handlers.
7087 	 */
7088 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7089 		error = SET_ERROR(EBUSY);
7090 		goto fail;
7091 	}
7092 
7093 	mutex_exit(&spa_namespace_lock);
7094 	/*
7095 	 * At this point we no longer hold the spa_namespace_lock and
7096 	 * there were no references on the spa. Future spa_lookups will
7097 	 * notice the spa->spa_export_thread and wait until we signal
7098 	 * that we are finshed.
7099 	 */
7100 
7101 	if (spa->spa_sync_on) {
7102 		vdev_t *rvd = spa->spa_root_vdev;
7103 		/*
7104 		 * A pool cannot be exported if it has an active shared spare.
7105 		 * This is to prevent other pools stealing the active spare
7106 		 * from an exported pool. At user's own will, such pool can
7107 		 * be forcedly exported.
7108 		 */
7109 		if (!force && new_state == POOL_STATE_EXPORTED &&
7110 		    spa_has_active_shared_spare(spa)) {
7111 			error = SET_ERROR(EXDEV);
7112 			mutex_enter(&spa_namespace_lock);
7113 			goto fail;
7114 		}
7115 
7116 		/*
7117 		 * We're about to export or destroy this pool. Make sure
7118 		 * we stop all initialization and trim activity here before
7119 		 * we set the spa_final_txg. This will ensure that all
7120 		 * dirty data resulting from the initialization is
7121 		 * committed to disk before we unload the pool.
7122 		 */
7123 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7124 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7125 		vdev_autotrim_stop_all(spa);
7126 		vdev_rebuild_stop_all(spa);
7127 		l2arc_spa_rebuild_stop(spa);
7128 
7129 		/*
7130 		 * We want this to be reflected on every label,
7131 		 * so mark them all dirty.  spa_unload() will do the
7132 		 * final sync that pushes these changes out.
7133 		 */
7134 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7135 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7136 			spa->spa_state = new_state;
7137 			vdev_config_dirty(rvd);
7138 			spa_config_exit(spa, SCL_ALL, FTAG);
7139 		}
7140 
7141 		/*
7142 		 * If the log space map feature is enabled and the pool is
7143 		 * getting exported (but not destroyed), we want to spend some
7144 		 * time flushing as many metaslabs as we can in an attempt to
7145 		 * destroy log space maps and save import time. This has to be
7146 		 * done before we set the spa_final_txg, otherwise
7147 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7148 		 * spa_should_flush_logs_on_unload() should be called after
7149 		 * spa_state has been set to the new_state.
7150 		 */
7151 		if (spa_should_flush_logs_on_unload(spa))
7152 			spa_unload_log_sm_flush_all(spa);
7153 
7154 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7155 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7156 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7157 			    TXG_DEFER_SIZE + 1;
7158 			spa_config_exit(spa, SCL_ALL, FTAG);
7159 		}
7160 	}
7161 
7162 export_spa:
7163 	spa_export_os(spa);
7164 
7165 	if (new_state == POOL_STATE_DESTROYED)
7166 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7167 	else if (new_state == POOL_STATE_EXPORTED)
7168 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7169 
7170 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7171 		spa_unload(spa);
7172 		spa_deactivate(spa);
7173 	}
7174 
7175 	if (oldconfig && spa->spa_config)
7176 		*oldconfig = fnvlist_dup(spa->spa_config);
7177 
7178 	if (new_state == POOL_STATE_EXPORTED)
7179 		zio_handle_export_delay(spa, gethrtime() - export_start);
7180 
7181 	/*
7182 	 * Take the namespace lock for the actual spa_t removal
7183 	 */
7184 	mutex_enter(&spa_namespace_lock);
7185 	if (new_state != POOL_STATE_UNINITIALIZED) {
7186 		if (!hardforce)
7187 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7188 		spa_remove(spa);
7189 	} else {
7190 		/*
7191 		 * If spa_remove() is not called for this spa_t and
7192 		 * there is any possibility that it can be reused,
7193 		 * we make sure to reset the exporting flag.
7194 		 */
7195 		spa->spa_is_exporting = B_FALSE;
7196 		spa->spa_export_thread = NULL;
7197 	}
7198 
7199 	/*
7200 	 * Wake up any waiters in spa_lookup()
7201 	 */
7202 	cv_broadcast(&spa_namespace_cv);
7203 	mutex_exit(&spa_namespace_lock);
7204 	return (0);
7205 
7206 fail:
7207 	spa->spa_is_exporting = B_FALSE;
7208 	spa->spa_export_thread = NULL;
7209 
7210 	spa_async_resume(spa);
7211 	/*
7212 	 * Wake up any waiters in spa_lookup()
7213 	 */
7214 	cv_broadcast(&spa_namespace_cv);
7215 	mutex_exit(&spa_namespace_lock);
7216 	return (error);
7217 }
7218 
7219 /*
7220  * Destroy a storage pool.
7221  */
7222 int
7223 spa_destroy(const char *pool)
7224 {
7225 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7226 	    B_FALSE, B_FALSE));
7227 }
7228 
7229 /*
7230  * Export a storage pool.
7231  */
7232 int
7233 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7234     boolean_t hardforce)
7235 {
7236 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7237 	    force, hardforce));
7238 }
7239 
7240 /*
7241  * Similar to spa_export(), this unloads the spa_t without actually removing it
7242  * from the namespace in any way.
7243  */
7244 int
7245 spa_reset(const char *pool)
7246 {
7247 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7248 	    B_FALSE, B_FALSE));
7249 }
7250 
7251 /*
7252  * ==========================================================================
7253  * Device manipulation
7254  * ==========================================================================
7255  */
7256 
7257 /*
7258  * This is called as a synctask to increment the draid feature flag
7259  */
7260 static void
7261 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7262 {
7263 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7264 	int draid = (int)(uintptr_t)arg;
7265 
7266 	for (int c = 0; c < draid; c++)
7267 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7268 }
7269 
7270 /*
7271  * Add a device to a storage pool.
7272  */
7273 int
7274 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7275 {
7276 	uint64_t txg, ndraid = 0;
7277 	int error;
7278 	vdev_t *rvd = spa->spa_root_vdev;
7279 	vdev_t *vd, *tvd;
7280 	nvlist_t **spares, **l2cache;
7281 	uint_t nspares, nl2cache;
7282 
7283 	ASSERT(spa_writeable(spa));
7284 
7285 	txg = spa_vdev_enter(spa);
7286 
7287 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7288 	    VDEV_ALLOC_ADD)) != 0)
7289 		return (spa_vdev_exit(spa, NULL, txg, error));
7290 
7291 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7292 
7293 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7294 	    &nspares) != 0)
7295 		nspares = 0;
7296 
7297 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7298 	    &nl2cache) != 0)
7299 		nl2cache = 0;
7300 
7301 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7302 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7303 
7304 	if (vd->vdev_children != 0 &&
7305 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7306 		return (spa_vdev_exit(spa, vd, txg, error));
7307 	}
7308 
7309 	/*
7310 	 * The virtual dRAID spares must be added after vdev tree is created
7311 	 * and the vdev guids are generated.  The guid of their associated
7312 	 * dRAID is stored in the config and used when opening the spare.
7313 	 */
7314 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7315 	    rvd->vdev_children)) == 0) {
7316 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7317 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7318 			nspares = 0;
7319 	} else {
7320 		return (spa_vdev_exit(spa, vd, txg, error));
7321 	}
7322 
7323 	/*
7324 	 * We must validate the spares and l2cache devices after checking the
7325 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7326 	 */
7327 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7328 		return (spa_vdev_exit(spa, vd, txg, error));
7329 
7330 	/*
7331 	 * If we are in the middle of a device removal, we can only add
7332 	 * devices which match the existing devices in the pool.
7333 	 * If we are in the middle of a removal, or have some indirect
7334 	 * vdevs, we can not add raidz or dRAID top levels.
7335 	 */
7336 	if (spa->spa_vdev_removal != NULL ||
7337 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7338 		for (int c = 0; c < vd->vdev_children; c++) {
7339 			tvd = vd->vdev_child[c];
7340 			if (spa->spa_vdev_removal != NULL &&
7341 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7342 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7343 			}
7344 			/* Fail if top level vdev is raidz or a dRAID */
7345 			if (vdev_get_nparity(tvd) != 0)
7346 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7347 
7348 			/*
7349 			 * Need the top level mirror to be
7350 			 * a mirror of leaf vdevs only
7351 			 */
7352 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7353 				for (uint64_t cid = 0;
7354 				    cid < tvd->vdev_children; cid++) {
7355 					vdev_t *cvd = tvd->vdev_child[cid];
7356 					if (!cvd->vdev_ops->vdev_op_leaf) {
7357 						return (spa_vdev_exit(spa, vd,
7358 						    txg, EINVAL));
7359 					}
7360 				}
7361 			}
7362 		}
7363 	}
7364 
7365 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7366 		for (int c = 0; c < vd->vdev_children; c++) {
7367 			tvd = vd->vdev_child[c];
7368 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7369 				return (spa_vdev_exit(spa, vd, txg,
7370 				    ZFS_ERR_ASHIFT_MISMATCH));
7371 			}
7372 		}
7373 	}
7374 
7375 	for (int c = 0; c < vd->vdev_children; c++) {
7376 		tvd = vd->vdev_child[c];
7377 		vdev_remove_child(vd, tvd);
7378 		tvd->vdev_id = rvd->vdev_children;
7379 		vdev_add_child(rvd, tvd);
7380 		vdev_config_dirty(tvd);
7381 	}
7382 
7383 	if (nspares != 0) {
7384 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7385 		    ZPOOL_CONFIG_SPARES);
7386 		spa_load_spares(spa);
7387 		spa->spa_spares.sav_sync = B_TRUE;
7388 	}
7389 
7390 	if (nl2cache != 0) {
7391 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7392 		    ZPOOL_CONFIG_L2CACHE);
7393 		spa_load_l2cache(spa);
7394 		spa->spa_l2cache.sav_sync = B_TRUE;
7395 	}
7396 
7397 	/*
7398 	 * We can't increment a feature while holding spa_vdev so we
7399 	 * have to do it in a synctask.
7400 	 */
7401 	if (ndraid != 0) {
7402 		dmu_tx_t *tx;
7403 
7404 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7405 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7406 		    (void *)(uintptr_t)ndraid, tx);
7407 		dmu_tx_commit(tx);
7408 	}
7409 
7410 	/*
7411 	 * We have to be careful when adding new vdevs to an existing pool.
7412 	 * If other threads start allocating from these vdevs before we
7413 	 * sync the config cache, and we lose power, then upon reboot we may
7414 	 * fail to open the pool because there are DVAs that the config cache
7415 	 * can't translate.  Therefore, we first add the vdevs without
7416 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7417 	 * and then let spa_config_update() initialize the new metaslabs.
7418 	 *
7419 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7420 	 * if we lose power at any point in this sequence, the remaining
7421 	 * steps will be completed the next time we load the pool.
7422 	 */
7423 	(void) spa_vdev_exit(spa, vd, txg, 0);
7424 
7425 	mutex_enter(&spa_namespace_lock);
7426 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7427 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7428 	mutex_exit(&spa_namespace_lock);
7429 
7430 	return (0);
7431 }
7432 
7433 /*
7434  * Attach a device to a vdev specified by its guid.  The vdev type can be
7435  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7436  * single device). When the vdev is a single device, a mirror vdev will be
7437  * automatically inserted.
7438  *
7439  * If 'replacing' is specified, the new device is intended to replace the
7440  * existing device; in this case the two devices are made into their own
7441  * mirror using the 'replacing' vdev, which is functionally identical to
7442  * the mirror vdev (it actually reuses all the same ops) but has a few
7443  * extra rules: you can't attach to it after it's been created, and upon
7444  * completion of resilvering, the first disk (the one being replaced)
7445  * is automatically detached.
7446  *
7447  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7448  * should be performed instead of traditional healing reconstruction.  From
7449  * an administrators perspective these are both resilver operations.
7450  */
7451 int
7452 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7453     int rebuild)
7454 {
7455 	uint64_t txg, dtl_max_txg;
7456 	vdev_t *rvd = spa->spa_root_vdev;
7457 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7458 	vdev_ops_t *pvops;
7459 	char *oldvdpath, *newvdpath;
7460 	int newvd_isspare = B_FALSE;
7461 	int error;
7462 
7463 	ASSERT(spa_writeable(spa));
7464 
7465 	txg = spa_vdev_enter(spa);
7466 
7467 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7468 
7469 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7470 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7471 		error = (spa_has_checkpoint(spa)) ?
7472 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7473 		return (spa_vdev_exit(spa, NULL, txg, error));
7474 	}
7475 
7476 	if (rebuild) {
7477 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7478 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7479 
7480 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7481 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7482 			return (spa_vdev_exit(spa, NULL, txg,
7483 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7484 		}
7485 	} else {
7486 		if (vdev_rebuild_active(rvd))
7487 			return (spa_vdev_exit(spa, NULL, txg,
7488 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7489 	}
7490 
7491 	if (spa->spa_vdev_removal != NULL) {
7492 		return (spa_vdev_exit(spa, NULL, txg,
7493 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7494 	}
7495 
7496 	if (oldvd == NULL)
7497 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7498 
7499 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7500 
7501 	if (raidz) {
7502 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7503 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7504 
7505 		/*
7506 		 * Can't expand a raidz while prior expand is in progress.
7507 		 */
7508 		if (spa->spa_raidz_expand != NULL) {
7509 			return (spa_vdev_exit(spa, NULL, txg,
7510 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7511 		}
7512 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7513 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7514 	}
7515 
7516 	if (raidz)
7517 		pvd = oldvd;
7518 	else
7519 		pvd = oldvd->vdev_parent;
7520 
7521 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7522 	    VDEV_ALLOC_ATTACH) != 0)
7523 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7524 
7525 	if (newrootvd->vdev_children != 1)
7526 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7527 
7528 	newvd = newrootvd->vdev_child[0];
7529 
7530 	if (!newvd->vdev_ops->vdev_op_leaf)
7531 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7532 
7533 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7534 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7535 
7536 	/*
7537 	 * log, dedup and special vdevs should not be replaced by spares.
7538 	 */
7539 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7540 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7541 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7542 	}
7543 
7544 	/*
7545 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7546 	 */
7547 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7548 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7549 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7550 	}
7551 
7552 	if (rebuild) {
7553 		/*
7554 		 * For rebuilds, the top vdev must support reconstruction
7555 		 * using only space maps.  This means the only allowable
7556 		 * vdevs types are the root vdev, a mirror, or dRAID.
7557 		 */
7558 		tvd = pvd;
7559 		if (pvd->vdev_top != NULL)
7560 			tvd = pvd->vdev_top;
7561 
7562 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7563 		    tvd->vdev_ops != &vdev_root_ops &&
7564 		    tvd->vdev_ops != &vdev_draid_ops) {
7565 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7566 		}
7567 	}
7568 
7569 	if (!replacing) {
7570 		/*
7571 		 * For attach, the only allowable parent is a mirror or
7572 		 * the root vdev. A raidz vdev can be attached to, but
7573 		 * you cannot attach to a raidz child.
7574 		 */
7575 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7576 		    pvd->vdev_ops != &vdev_root_ops &&
7577 		    !raidz)
7578 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7579 
7580 		pvops = &vdev_mirror_ops;
7581 	} else {
7582 		/*
7583 		 * Active hot spares can only be replaced by inactive hot
7584 		 * spares.
7585 		 */
7586 		if (pvd->vdev_ops == &vdev_spare_ops &&
7587 		    oldvd->vdev_isspare &&
7588 		    !spa_has_spare(spa, newvd->vdev_guid))
7589 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7590 
7591 		/*
7592 		 * If the source is a hot spare, and the parent isn't already a
7593 		 * spare, then we want to create a new hot spare.  Otherwise, we
7594 		 * want to create a replacing vdev.  The user is not allowed to
7595 		 * attach to a spared vdev child unless the 'isspare' state is
7596 		 * the same (spare replaces spare, non-spare replaces
7597 		 * non-spare).
7598 		 */
7599 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7600 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7601 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7602 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7603 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7604 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7605 		}
7606 
7607 		if (newvd->vdev_isspare)
7608 			pvops = &vdev_spare_ops;
7609 		else
7610 			pvops = &vdev_replacing_ops;
7611 	}
7612 
7613 	/*
7614 	 * Make sure the new device is big enough.
7615 	 */
7616 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7617 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7618 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7619 
7620 	/*
7621 	 * The new device cannot have a higher alignment requirement
7622 	 * than the top-level vdev.
7623 	 */
7624 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7625 		return (spa_vdev_exit(spa, newrootvd, txg,
7626 		    ZFS_ERR_ASHIFT_MISMATCH));
7627 	}
7628 
7629 	/*
7630 	 * RAIDZ-expansion-specific checks.
7631 	 */
7632 	if (raidz) {
7633 		if (vdev_raidz_attach_check(newvd) != 0)
7634 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7635 
7636 		/*
7637 		 * Fail early if a child is not healthy or being replaced
7638 		 */
7639 		for (int i = 0; i < oldvd->vdev_children; i++) {
7640 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7641 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7642 				return (spa_vdev_exit(spa, newrootvd, txg,
7643 				    ENXIO));
7644 			}
7645 			/* Also fail if reserved boot area is in-use */
7646 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7647 			    != 0) {
7648 				return (spa_vdev_exit(spa, newrootvd, txg,
7649 				    EADDRINUSE));
7650 			}
7651 		}
7652 	}
7653 
7654 	if (raidz) {
7655 		/*
7656 		 * Note: oldvdpath is freed by spa_strfree(),  but
7657 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7658 		 * move it to a spa_strdup-ed string.
7659 		 */
7660 		char *tmp = kmem_asprintf("raidz%u-%u",
7661 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7662 		oldvdpath = spa_strdup(tmp);
7663 		kmem_strfree(tmp);
7664 	} else {
7665 		oldvdpath = spa_strdup(oldvd->vdev_path);
7666 	}
7667 	newvdpath = spa_strdup(newvd->vdev_path);
7668 
7669 	/*
7670 	 * If this is an in-place replacement, update oldvd's path and devid
7671 	 * to make it distinguishable from newvd, and unopenable from now on.
7672 	 */
7673 	if (strcmp(oldvdpath, newvdpath) == 0) {
7674 		spa_strfree(oldvd->vdev_path);
7675 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7676 		    KM_SLEEP);
7677 		(void) sprintf(oldvd->vdev_path, "%s/old",
7678 		    newvdpath);
7679 		if (oldvd->vdev_devid != NULL) {
7680 			spa_strfree(oldvd->vdev_devid);
7681 			oldvd->vdev_devid = NULL;
7682 		}
7683 		spa_strfree(oldvdpath);
7684 		oldvdpath = spa_strdup(oldvd->vdev_path);
7685 	}
7686 
7687 	/*
7688 	 * If the parent is not a mirror, or if we're replacing, insert the new
7689 	 * mirror/replacing/spare vdev above oldvd.
7690 	 */
7691 	if (!raidz && pvd->vdev_ops != pvops) {
7692 		pvd = vdev_add_parent(oldvd, pvops);
7693 		ASSERT(pvd->vdev_ops == pvops);
7694 		ASSERT(oldvd->vdev_parent == pvd);
7695 	}
7696 
7697 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7698 
7699 	/*
7700 	 * Extract the new device from its root and add it to pvd.
7701 	 */
7702 	vdev_remove_child(newrootvd, newvd);
7703 	newvd->vdev_id = pvd->vdev_children;
7704 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7705 	vdev_add_child(pvd, newvd);
7706 
7707 	/*
7708 	 * Reevaluate the parent vdev state.
7709 	 */
7710 	vdev_propagate_state(pvd);
7711 
7712 	tvd = newvd->vdev_top;
7713 	ASSERT(pvd->vdev_top == tvd);
7714 	ASSERT(tvd->vdev_parent == rvd);
7715 
7716 	vdev_config_dirty(tvd);
7717 
7718 	/*
7719 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7720 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7721 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7722 	 */
7723 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7724 
7725 	if (raidz) {
7726 		/*
7727 		 * Wait for the youngest allocations and frees to sync,
7728 		 * and then wait for the deferral of those frees to finish.
7729 		 */
7730 		spa_vdev_config_exit(spa, NULL,
7731 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7732 
7733 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7734 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7735 		vdev_autotrim_stop_wait(tvd);
7736 
7737 		dtl_max_txg = spa_vdev_config_enter(spa);
7738 
7739 		tvd->vdev_rz_expanding = B_TRUE;
7740 
7741 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7742 		vdev_config_dirty(tvd);
7743 
7744 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7745 		    dtl_max_txg);
7746 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7747 		    newvd, tx);
7748 		dmu_tx_commit(tx);
7749 	} else {
7750 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7751 		    dtl_max_txg - TXG_INITIAL);
7752 
7753 		if (newvd->vdev_isspare) {
7754 			spa_spare_activate(newvd);
7755 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7756 		}
7757 
7758 		newvd_isspare = newvd->vdev_isspare;
7759 
7760 		/*
7761 		 * Mark newvd's DTL dirty in this txg.
7762 		 */
7763 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7764 
7765 		/*
7766 		 * Schedule the resilver or rebuild to restart in the future.
7767 		 * We do this to ensure that dmu_sync-ed blocks have been
7768 		 * stitched into the respective datasets.
7769 		 */
7770 		if (rebuild) {
7771 			newvd->vdev_rebuild_txg = txg;
7772 
7773 			vdev_rebuild(tvd);
7774 		} else {
7775 			newvd->vdev_resilver_txg = txg;
7776 
7777 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7778 			    spa_feature_is_enabled(spa,
7779 			    SPA_FEATURE_RESILVER_DEFER)) {
7780 				vdev_defer_resilver(newvd);
7781 			} else {
7782 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7783 				    dtl_max_txg);
7784 			}
7785 		}
7786 	}
7787 
7788 	if (spa->spa_bootfs)
7789 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7790 
7791 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7792 
7793 	/*
7794 	 * Commit the config
7795 	 */
7796 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7797 
7798 	spa_history_log_internal(spa, "vdev attach", NULL,
7799 	    "%s vdev=%s %s vdev=%s",
7800 	    replacing && newvd_isspare ? "spare in" :
7801 	    replacing ? "replace" : "attach", newvdpath,
7802 	    replacing ? "for" : "to", oldvdpath);
7803 
7804 	spa_strfree(oldvdpath);
7805 	spa_strfree(newvdpath);
7806 
7807 	return (0);
7808 }
7809 
7810 /*
7811  * Detach a device from a mirror or replacing vdev.
7812  *
7813  * If 'replace_done' is specified, only detach if the parent
7814  * is a replacing or a spare vdev.
7815  */
7816 int
7817 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7818 {
7819 	uint64_t txg;
7820 	int error;
7821 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7822 	vdev_t *vd, *pvd, *cvd, *tvd;
7823 	boolean_t unspare = B_FALSE;
7824 	uint64_t unspare_guid = 0;
7825 	char *vdpath;
7826 
7827 	ASSERT(spa_writeable(spa));
7828 
7829 	txg = spa_vdev_detach_enter(spa, guid);
7830 
7831 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7832 
7833 	/*
7834 	 * Besides being called directly from the userland through the
7835 	 * ioctl interface, spa_vdev_detach() can be potentially called
7836 	 * at the end of spa_vdev_resilver_done().
7837 	 *
7838 	 * In the regular case, when we have a checkpoint this shouldn't
7839 	 * happen as we never empty the DTLs of a vdev during the scrub
7840 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7841 	 * should never get here when we have a checkpoint.
7842 	 *
7843 	 * That said, even in a case when we checkpoint the pool exactly
7844 	 * as spa_vdev_resilver_done() calls this function everything
7845 	 * should be fine as the resilver will return right away.
7846 	 */
7847 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7848 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7849 		error = (spa_has_checkpoint(spa)) ?
7850 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7851 		return (spa_vdev_exit(spa, NULL, txg, error));
7852 	}
7853 
7854 	if (vd == NULL)
7855 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7856 
7857 	if (!vd->vdev_ops->vdev_op_leaf)
7858 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7859 
7860 	pvd = vd->vdev_parent;
7861 
7862 	/*
7863 	 * If the parent/child relationship is not as expected, don't do it.
7864 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7865 	 * vdev that's replacing B with C.  The user's intent in replacing
7866 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7867 	 * the replace by detaching C, the expected behavior is to end up
7868 	 * M(A,B).  But suppose that right after deciding to detach C,
7869 	 * the replacement of B completes.  We would have M(A,C), and then
7870 	 * ask to detach C, which would leave us with just A -- not what
7871 	 * the user wanted.  To prevent this, we make sure that the
7872 	 * parent/child relationship hasn't changed -- in this example,
7873 	 * that C's parent is still the replacing vdev R.
7874 	 */
7875 	if (pvd->vdev_guid != pguid && pguid != 0)
7876 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7877 
7878 	/*
7879 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7880 	 */
7881 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7882 	    pvd->vdev_ops != &vdev_spare_ops)
7883 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7884 
7885 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7886 	    spa_version(spa) >= SPA_VERSION_SPARES);
7887 
7888 	/*
7889 	 * Only mirror, replacing, and spare vdevs support detach.
7890 	 */
7891 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7892 	    pvd->vdev_ops != &vdev_mirror_ops &&
7893 	    pvd->vdev_ops != &vdev_spare_ops)
7894 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7895 
7896 	/*
7897 	 * If this device has the only valid copy of some data,
7898 	 * we cannot safely detach it.
7899 	 */
7900 	if (vdev_dtl_required(vd))
7901 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7902 
7903 	ASSERT(pvd->vdev_children >= 2);
7904 
7905 	/*
7906 	 * If we are detaching the second disk from a replacing vdev, then
7907 	 * check to see if we changed the original vdev's path to have "/old"
7908 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7909 	 */
7910 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7911 	    vd->vdev_path != NULL) {
7912 		size_t len = strlen(vd->vdev_path);
7913 
7914 		for (int c = 0; c < pvd->vdev_children; c++) {
7915 			cvd = pvd->vdev_child[c];
7916 
7917 			if (cvd == vd || cvd->vdev_path == NULL)
7918 				continue;
7919 
7920 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7921 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7922 				spa_strfree(cvd->vdev_path);
7923 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7924 				break;
7925 			}
7926 		}
7927 	}
7928 
7929 	/*
7930 	 * If we are detaching the original disk from a normal spare, then it
7931 	 * implies that the spare should become a real disk, and be removed
7932 	 * from the active spare list for the pool.  dRAID spares on the
7933 	 * other hand are coupled to the pool and thus should never be removed
7934 	 * from the spares list.
7935 	 */
7936 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7937 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7938 
7939 		if (last_cvd->vdev_isspare &&
7940 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7941 			unspare = B_TRUE;
7942 		}
7943 	}
7944 
7945 	/*
7946 	 * Erase the disk labels so the disk can be used for other things.
7947 	 * This must be done after all other error cases are handled,
7948 	 * but before we disembowel vd (so we can still do I/O to it).
7949 	 * But if we can't do it, don't treat the error as fatal --
7950 	 * it may be that the unwritability of the disk is the reason
7951 	 * it's being detached!
7952 	 */
7953 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7954 
7955 	/*
7956 	 * Remove vd from its parent and compact the parent's children.
7957 	 */
7958 	vdev_remove_child(pvd, vd);
7959 	vdev_compact_children(pvd);
7960 
7961 	/*
7962 	 * Remember one of the remaining children so we can get tvd below.
7963 	 */
7964 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7965 
7966 	/*
7967 	 * If we need to remove the remaining child from the list of hot spares,
7968 	 * do it now, marking the vdev as no longer a spare in the process.
7969 	 * We must do this before vdev_remove_parent(), because that can
7970 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7971 	 * reason, we must remove the spare now, in the same txg as the detach;
7972 	 * otherwise someone could attach a new sibling, change the GUID, and
7973 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7974 	 */
7975 	if (unspare) {
7976 		ASSERT(cvd->vdev_isspare);
7977 		spa_spare_remove(cvd);
7978 		unspare_guid = cvd->vdev_guid;
7979 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7980 		cvd->vdev_unspare = B_TRUE;
7981 	}
7982 
7983 	/*
7984 	 * If the parent mirror/replacing vdev only has one child,
7985 	 * the parent is no longer needed.  Remove it from the tree.
7986 	 */
7987 	if (pvd->vdev_children == 1) {
7988 		if (pvd->vdev_ops == &vdev_spare_ops)
7989 			cvd->vdev_unspare = B_FALSE;
7990 		vdev_remove_parent(cvd);
7991 	}
7992 
7993 	/*
7994 	 * We don't set tvd until now because the parent we just removed
7995 	 * may have been the previous top-level vdev.
7996 	 */
7997 	tvd = cvd->vdev_top;
7998 	ASSERT(tvd->vdev_parent == rvd);
7999 
8000 	/*
8001 	 * Reevaluate the parent vdev state.
8002 	 */
8003 	vdev_propagate_state(cvd);
8004 
8005 	/*
8006 	 * If the 'autoexpand' property is set on the pool then automatically
8007 	 * try to expand the size of the pool. For example if the device we
8008 	 * just detached was smaller than the others, it may be possible to
8009 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8010 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8011 	 */
8012 	if (spa->spa_autoexpand) {
8013 		vdev_reopen(tvd);
8014 		vdev_expand(tvd, txg);
8015 	}
8016 
8017 	vdev_config_dirty(tvd);
8018 
8019 	/*
8020 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8021 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8022 	 * But first make sure we're not on any *other* txg's DTL list, to
8023 	 * prevent vd from being accessed after it's freed.
8024 	 */
8025 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8026 	for (int t = 0; t < TXG_SIZE; t++)
8027 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8028 	vd->vdev_detached = B_TRUE;
8029 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8030 
8031 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8032 	spa_notify_waiters(spa);
8033 
8034 	/* hang on to the spa before we release the lock */
8035 	spa_open_ref(spa, FTAG);
8036 
8037 	error = spa_vdev_exit(spa, vd, txg, 0);
8038 
8039 	spa_history_log_internal(spa, "detach", NULL,
8040 	    "vdev=%s", vdpath);
8041 	spa_strfree(vdpath);
8042 
8043 	/*
8044 	 * If this was the removal of the original device in a hot spare vdev,
8045 	 * then we want to go through and remove the device from the hot spare
8046 	 * list of every other pool.
8047 	 */
8048 	if (unspare) {
8049 		spa_t *altspa = NULL;
8050 
8051 		mutex_enter(&spa_namespace_lock);
8052 		while ((altspa = spa_next(altspa)) != NULL) {
8053 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8054 			    altspa == spa)
8055 				continue;
8056 
8057 			spa_open_ref(altspa, FTAG);
8058 			mutex_exit(&spa_namespace_lock);
8059 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8060 			mutex_enter(&spa_namespace_lock);
8061 			spa_close(altspa, FTAG);
8062 		}
8063 		mutex_exit(&spa_namespace_lock);
8064 
8065 		/* search the rest of the vdevs for spares to remove */
8066 		spa_vdev_resilver_done(spa);
8067 	}
8068 
8069 	/* all done with the spa; OK to release */
8070 	mutex_enter(&spa_namespace_lock);
8071 	spa_close(spa, FTAG);
8072 	mutex_exit(&spa_namespace_lock);
8073 
8074 	return (error);
8075 }
8076 
8077 static int
8078 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8079     list_t *vd_list)
8080 {
8081 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8082 
8083 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8084 
8085 	/* Look up vdev and ensure it's a leaf. */
8086 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8087 	if (vd == NULL || vd->vdev_detached) {
8088 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8089 		return (SET_ERROR(ENODEV));
8090 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8091 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8092 		return (SET_ERROR(EINVAL));
8093 	} else if (!vdev_writeable(vd)) {
8094 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8095 		return (SET_ERROR(EROFS));
8096 	}
8097 	mutex_enter(&vd->vdev_initialize_lock);
8098 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8099 
8100 	/*
8101 	 * When we activate an initialize action we check to see
8102 	 * if the vdev_initialize_thread is NULL. We do this instead
8103 	 * of using the vdev_initialize_state since there might be
8104 	 * a previous initialization process which has completed but
8105 	 * the thread is not exited.
8106 	 */
8107 	if (cmd_type == POOL_INITIALIZE_START &&
8108 	    (vd->vdev_initialize_thread != NULL ||
8109 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8110 		mutex_exit(&vd->vdev_initialize_lock);
8111 		return (SET_ERROR(EBUSY));
8112 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8113 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8114 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8115 		mutex_exit(&vd->vdev_initialize_lock);
8116 		return (SET_ERROR(ESRCH));
8117 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8118 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8119 		mutex_exit(&vd->vdev_initialize_lock);
8120 		return (SET_ERROR(ESRCH));
8121 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8122 	    vd->vdev_initialize_thread != NULL) {
8123 		mutex_exit(&vd->vdev_initialize_lock);
8124 		return (SET_ERROR(EBUSY));
8125 	}
8126 
8127 	switch (cmd_type) {
8128 	case POOL_INITIALIZE_START:
8129 		vdev_initialize(vd);
8130 		break;
8131 	case POOL_INITIALIZE_CANCEL:
8132 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8133 		break;
8134 	case POOL_INITIALIZE_SUSPEND:
8135 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8136 		break;
8137 	case POOL_INITIALIZE_UNINIT:
8138 		vdev_uninitialize(vd);
8139 		break;
8140 	default:
8141 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8142 	}
8143 	mutex_exit(&vd->vdev_initialize_lock);
8144 
8145 	return (0);
8146 }
8147 
8148 int
8149 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8150     nvlist_t *vdev_errlist)
8151 {
8152 	int total_errors = 0;
8153 	list_t vd_list;
8154 
8155 	list_create(&vd_list, sizeof (vdev_t),
8156 	    offsetof(vdev_t, vdev_initialize_node));
8157 
8158 	/*
8159 	 * We hold the namespace lock through the whole function
8160 	 * to prevent any changes to the pool while we're starting or
8161 	 * stopping initialization. The config and state locks are held so that
8162 	 * we can properly assess the vdev state before we commit to
8163 	 * the initializing operation.
8164 	 */
8165 	mutex_enter(&spa_namespace_lock);
8166 
8167 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8168 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8169 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8170 
8171 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8172 		    &vd_list);
8173 		if (error != 0) {
8174 			char guid_as_str[MAXNAMELEN];
8175 
8176 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8177 			    "%llu", (unsigned long long)vdev_guid);
8178 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8179 			total_errors++;
8180 		}
8181 	}
8182 
8183 	/* Wait for all initialize threads to stop. */
8184 	vdev_initialize_stop_wait(spa, &vd_list);
8185 
8186 	/* Sync out the initializing state */
8187 	txg_wait_synced(spa->spa_dsl_pool, 0);
8188 	mutex_exit(&spa_namespace_lock);
8189 
8190 	list_destroy(&vd_list);
8191 
8192 	return (total_errors);
8193 }
8194 
8195 static int
8196 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8197     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8198 {
8199 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8200 
8201 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8202 
8203 	/* Look up vdev and ensure it's a leaf. */
8204 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8205 	if (vd == NULL || vd->vdev_detached) {
8206 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8207 		return (SET_ERROR(ENODEV));
8208 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8209 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8210 		return (SET_ERROR(EINVAL));
8211 	} else if (!vdev_writeable(vd)) {
8212 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8213 		return (SET_ERROR(EROFS));
8214 	} else if (!vd->vdev_has_trim) {
8215 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8216 		return (SET_ERROR(EOPNOTSUPP));
8217 	} else if (secure && !vd->vdev_has_securetrim) {
8218 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8219 		return (SET_ERROR(EOPNOTSUPP));
8220 	}
8221 	mutex_enter(&vd->vdev_trim_lock);
8222 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8223 
8224 	/*
8225 	 * When we activate a TRIM action we check to see if the
8226 	 * vdev_trim_thread is NULL. We do this instead of using the
8227 	 * vdev_trim_state since there might be a previous TRIM process
8228 	 * which has completed but the thread is not exited.
8229 	 */
8230 	if (cmd_type == POOL_TRIM_START &&
8231 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8232 	    vd->vdev_top->vdev_rz_expanding)) {
8233 		mutex_exit(&vd->vdev_trim_lock);
8234 		return (SET_ERROR(EBUSY));
8235 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8236 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8237 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8238 		mutex_exit(&vd->vdev_trim_lock);
8239 		return (SET_ERROR(ESRCH));
8240 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8241 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8242 		mutex_exit(&vd->vdev_trim_lock);
8243 		return (SET_ERROR(ESRCH));
8244 	}
8245 
8246 	switch (cmd_type) {
8247 	case POOL_TRIM_START:
8248 		vdev_trim(vd, rate, partial, secure);
8249 		break;
8250 	case POOL_TRIM_CANCEL:
8251 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8252 		break;
8253 	case POOL_TRIM_SUSPEND:
8254 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8255 		break;
8256 	default:
8257 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8258 	}
8259 	mutex_exit(&vd->vdev_trim_lock);
8260 
8261 	return (0);
8262 }
8263 
8264 /*
8265  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8266  * TRIM threads for each child vdev.  These threads pass over all of the free
8267  * space in the vdev's metaslabs and issues TRIM commands for that space.
8268  */
8269 int
8270 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8271     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8272 {
8273 	int total_errors = 0;
8274 	list_t vd_list;
8275 
8276 	list_create(&vd_list, sizeof (vdev_t),
8277 	    offsetof(vdev_t, vdev_trim_node));
8278 
8279 	/*
8280 	 * We hold the namespace lock through the whole function
8281 	 * to prevent any changes to the pool while we're starting or
8282 	 * stopping TRIM. The config and state locks are held so that
8283 	 * we can properly assess the vdev state before we commit to
8284 	 * the TRIM operation.
8285 	 */
8286 	mutex_enter(&spa_namespace_lock);
8287 
8288 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8289 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8290 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8291 
8292 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8293 		    rate, partial, secure, &vd_list);
8294 		if (error != 0) {
8295 			char guid_as_str[MAXNAMELEN];
8296 
8297 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8298 			    "%llu", (unsigned long long)vdev_guid);
8299 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8300 			total_errors++;
8301 		}
8302 	}
8303 
8304 	/* Wait for all TRIM threads to stop. */
8305 	vdev_trim_stop_wait(spa, &vd_list);
8306 
8307 	/* Sync out the TRIM state */
8308 	txg_wait_synced(spa->spa_dsl_pool, 0);
8309 	mutex_exit(&spa_namespace_lock);
8310 
8311 	list_destroy(&vd_list);
8312 
8313 	return (total_errors);
8314 }
8315 
8316 /*
8317  * Split a set of devices from their mirrors, and create a new pool from them.
8318  */
8319 int
8320 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8321     nvlist_t *props, boolean_t exp)
8322 {
8323 	int error = 0;
8324 	uint64_t txg, *glist;
8325 	spa_t *newspa;
8326 	uint_t c, children, lastlog;
8327 	nvlist_t **child, *nvl, *tmp;
8328 	dmu_tx_t *tx;
8329 	const char *altroot = NULL;
8330 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8331 	boolean_t activate_slog;
8332 
8333 	ASSERT(spa_writeable(spa));
8334 
8335 	txg = spa_vdev_enter(spa);
8336 
8337 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8338 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8339 		error = (spa_has_checkpoint(spa)) ?
8340 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8341 		return (spa_vdev_exit(spa, NULL, txg, error));
8342 	}
8343 
8344 	/* clear the log and flush everything up to now */
8345 	activate_slog = spa_passivate_log(spa);
8346 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8347 	error = spa_reset_logs(spa);
8348 	txg = spa_vdev_config_enter(spa);
8349 
8350 	if (activate_slog)
8351 		spa_activate_log(spa);
8352 
8353 	if (error != 0)
8354 		return (spa_vdev_exit(spa, NULL, txg, error));
8355 
8356 	/* check new spa name before going any further */
8357 	if (spa_lookup(newname) != NULL)
8358 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8359 
8360 	/*
8361 	 * scan through all the children to ensure they're all mirrors
8362 	 */
8363 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8364 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8365 	    &children) != 0)
8366 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8367 
8368 	/* first, check to ensure we've got the right child count */
8369 	rvd = spa->spa_root_vdev;
8370 	lastlog = 0;
8371 	for (c = 0; c < rvd->vdev_children; c++) {
8372 		vdev_t *vd = rvd->vdev_child[c];
8373 
8374 		/* don't count the holes & logs as children */
8375 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8376 		    !vdev_is_concrete(vd))) {
8377 			if (lastlog == 0)
8378 				lastlog = c;
8379 			continue;
8380 		}
8381 
8382 		lastlog = 0;
8383 	}
8384 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8385 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8386 
8387 	/* next, ensure no spare or cache devices are part of the split */
8388 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8389 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8390 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8391 
8392 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8393 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8394 
8395 	/* then, loop over each vdev and validate it */
8396 	for (c = 0; c < children; c++) {
8397 		uint64_t is_hole = 0;
8398 
8399 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8400 		    &is_hole);
8401 
8402 		if (is_hole != 0) {
8403 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8404 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8405 				continue;
8406 			} else {
8407 				error = SET_ERROR(EINVAL);
8408 				break;
8409 			}
8410 		}
8411 
8412 		/* deal with indirect vdevs */
8413 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8414 		    &vdev_indirect_ops)
8415 			continue;
8416 
8417 		/* which disk is going to be split? */
8418 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8419 		    &glist[c]) != 0) {
8420 			error = SET_ERROR(EINVAL);
8421 			break;
8422 		}
8423 
8424 		/* look it up in the spa */
8425 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8426 		if (vml[c] == NULL) {
8427 			error = SET_ERROR(ENODEV);
8428 			break;
8429 		}
8430 
8431 		/* make sure there's nothing stopping the split */
8432 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8433 		    vml[c]->vdev_islog ||
8434 		    !vdev_is_concrete(vml[c]) ||
8435 		    vml[c]->vdev_isspare ||
8436 		    vml[c]->vdev_isl2cache ||
8437 		    !vdev_writeable(vml[c]) ||
8438 		    vml[c]->vdev_children != 0 ||
8439 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8440 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8441 			error = SET_ERROR(EINVAL);
8442 			break;
8443 		}
8444 
8445 		if (vdev_dtl_required(vml[c]) ||
8446 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8447 			error = SET_ERROR(EBUSY);
8448 			break;
8449 		}
8450 
8451 		/* we need certain info from the top level */
8452 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8453 		    vml[c]->vdev_top->vdev_ms_array);
8454 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8455 		    vml[c]->vdev_top->vdev_ms_shift);
8456 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8457 		    vml[c]->vdev_top->vdev_asize);
8458 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8459 		    vml[c]->vdev_top->vdev_ashift);
8460 
8461 		/* transfer per-vdev ZAPs */
8462 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8463 		VERIFY0(nvlist_add_uint64(child[c],
8464 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8465 
8466 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8467 		VERIFY0(nvlist_add_uint64(child[c],
8468 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8469 		    vml[c]->vdev_parent->vdev_top_zap));
8470 	}
8471 
8472 	if (error != 0) {
8473 		kmem_free(vml, children * sizeof (vdev_t *));
8474 		kmem_free(glist, children * sizeof (uint64_t));
8475 		return (spa_vdev_exit(spa, NULL, txg, error));
8476 	}
8477 
8478 	/* stop writers from using the disks */
8479 	for (c = 0; c < children; c++) {
8480 		if (vml[c] != NULL)
8481 			vml[c]->vdev_offline = B_TRUE;
8482 	}
8483 	vdev_reopen(spa->spa_root_vdev);
8484 
8485 	/*
8486 	 * Temporarily record the splitting vdevs in the spa config.  This
8487 	 * will disappear once the config is regenerated.
8488 	 */
8489 	nvl = fnvlist_alloc();
8490 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8491 	kmem_free(glist, children * sizeof (uint64_t));
8492 
8493 	mutex_enter(&spa->spa_props_lock);
8494 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8495 	mutex_exit(&spa->spa_props_lock);
8496 	spa->spa_config_splitting = nvl;
8497 	vdev_config_dirty(spa->spa_root_vdev);
8498 
8499 	/* configure and create the new pool */
8500 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8501 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8502 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8503 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8504 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8505 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8506 	    spa_generate_guid(NULL));
8507 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8508 	(void) nvlist_lookup_string(props,
8509 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8510 
8511 	/* add the new pool to the namespace */
8512 	newspa = spa_add(newname, config, altroot);
8513 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8514 	newspa->spa_config_txg = spa->spa_config_txg;
8515 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8516 
8517 	/* release the spa config lock, retaining the namespace lock */
8518 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8519 
8520 	if (zio_injection_enabled)
8521 		zio_handle_panic_injection(spa, FTAG, 1);
8522 
8523 	spa_activate(newspa, spa_mode_global);
8524 	spa_async_suspend(newspa);
8525 
8526 	/*
8527 	 * Temporarily stop the initializing and TRIM activity.  We set the
8528 	 * state to ACTIVE so that we know to resume initializing or TRIM
8529 	 * once the split has completed.
8530 	 */
8531 	list_t vd_initialize_list;
8532 	list_create(&vd_initialize_list, sizeof (vdev_t),
8533 	    offsetof(vdev_t, vdev_initialize_node));
8534 
8535 	list_t vd_trim_list;
8536 	list_create(&vd_trim_list, sizeof (vdev_t),
8537 	    offsetof(vdev_t, vdev_trim_node));
8538 
8539 	for (c = 0; c < children; c++) {
8540 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8541 			mutex_enter(&vml[c]->vdev_initialize_lock);
8542 			vdev_initialize_stop(vml[c],
8543 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8544 			mutex_exit(&vml[c]->vdev_initialize_lock);
8545 
8546 			mutex_enter(&vml[c]->vdev_trim_lock);
8547 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8548 			mutex_exit(&vml[c]->vdev_trim_lock);
8549 		}
8550 	}
8551 
8552 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8553 	vdev_trim_stop_wait(spa, &vd_trim_list);
8554 
8555 	list_destroy(&vd_initialize_list);
8556 	list_destroy(&vd_trim_list);
8557 
8558 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8559 	newspa->spa_is_splitting = B_TRUE;
8560 
8561 	/* create the new pool from the disks of the original pool */
8562 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8563 	if (error)
8564 		goto out;
8565 
8566 	/* if that worked, generate a real config for the new pool */
8567 	if (newspa->spa_root_vdev != NULL) {
8568 		newspa->spa_config_splitting = fnvlist_alloc();
8569 		fnvlist_add_uint64(newspa->spa_config_splitting,
8570 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8571 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8572 		    B_TRUE));
8573 	}
8574 
8575 	/* set the props */
8576 	if (props != NULL) {
8577 		spa_configfile_set(newspa, props, B_FALSE);
8578 		error = spa_prop_set(newspa, props);
8579 		if (error)
8580 			goto out;
8581 	}
8582 
8583 	/* flush everything */
8584 	txg = spa_vdev_config_enter(newspa);
8585 	vdev_config_dirty(newspa->spa_root_vdev);
8586 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8587 
8588 	if (zio_injection_enabled)
8589 		zio_handle_panic_injection(spa, FTAG, 2);
8590 
8591 	spa_async_resume(newspa);
8592 
8593 	/* finally, update the original pool's config */
8594 	txg = spa_vdev_config_enter(spa);
8595 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8596 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
8597 	if (error != 0)
8598 		dmu_tx_abort(tx);
8599 	for (c = 0; c < children; c++) {
8600 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8601 			vdev_t *tvd = vml[c]->vdev_top;
8602 
8603 			/*
8604 			 * Need to be sure the detachable VDEV is not
8605 			 * on any *other* txg's DTL list to prevent it
8606 			 * from being accessed after it's freed.
8607 			 */
8608 			for (int t = 0; t < TXG_SIZE; t++) {
8609 				(void) txg_list_remove_this(
8610 				    &tvd->vdev_dtl_list, vml[c], t);
8611 			}
8612 
8613 			vdev_split(vml[c]);
8614 			if (error == 0)
8615 				spa_history_log_internal(spa, "detach", tx,
8616 				    "vdev=%s", vml[c]->vdev_path);
8617 
8618 			vdev_free(vml[c]);
8619 		}
8620 	}
8621 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8622 	vdev_config_dirty(spa->spa_root_vdev);
8623 	spa->spa_config_splitting = NULL;
8624 	nvlist_free(nvl);
8625 	if (error == 0)
8626 		dmu_tx_commit(tx);
8627 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8628 
8629 	if (zio_injection_enabled)
8630 		zio_handle_panic_injection(spa, FTAG, 3);
8631 
8632 	/* split is complete; log a history record */
8633 	spa_history_log_internal(newspa, "split", NULL,
8634 	    "from pool %s", spa_name(spa));
8635 
8636 	newspa->spa_is_splitting = B_FALSE;
8637 	kmem_free(vml, children * sizeof (vdev_t *));
8638 
8639 	/* if we're not going to mount the filesystems in userland, export */
8640 	if (exp)
8641 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8642 		    B_FALSE, B_FALSE);
8643 
8644 	return (error);
8645 
8646 out:
8647 	spa_unload(newspa);
8648 	spa_deactivate(newspa);
8649 	spa_remove(newspa);
8650 
8651 	txg = spa_vdev_config_enter(spa);
8652 
8653 	/* re-online all offlined disks */
8654 	for (c = 0; c < children; c++) {
8655 		if (vml[c] != NULL)
8656 			vml[c]->vdev_offline = B_FALSE;
8657 	}
8658 
8659 	/* restart initializing or trimming disks as necessary */
8660 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8661 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8662 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8663 
8664 	vdev_reopen(spa->spa_root_vdev);
8665 
8666 	nvlist_free(spa->spa_config_splitting);
8667 	spa->spa_config_splitting = NULL;
8668 	(void) spa_vdev_exit(spa, NULL, txg, error);
8669 
8670 	kmem_free(vml, children * sizeof (vdev_t *));
8671 	return (error);
8672 }
8673 
8674 /*
8675  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8676  * currently spared, so we can detach it.
8677  */
8678 static vdev_t *
8679 spa_vdev_resilver_done_hunt(vdev_t *vd)
8680 {
8681 	vdev_t *newvd, *oldvd;
8682 
8683 	for (int c = 0; c < vd->vdev_children; c++) {
8684 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8685 		if (oldvd != NULL)
8686 			return (oldvd);
8687 	}
8688 
8689 	/*
8690 	 * Check for a completed replacement.  We always consider the first
8691 	 * vdev in the list to be the oldest vdev, and the last one to be
8692 	 * the newest (see spa_vdev_attach() for how that works).  In
8693 	 * the case where the newest vdev is faulted, we will not automatically
8694 	 * remove it after a resilver completes.  This is OK as it will require
8695 	 * user intervention to determine which disk the admin wishes to keep.
8696 	 */
8697 	if (vd->vdev_ops == &vdev_replacing_ops) {
8698 		ASSERT(vd->vdev_children > 1);
8699 
8700 		newvd = vd->vdev_child[vd->vdev_children - 1];
8701 		oldvd = vd->vdev_child[0];
8702 
8703 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8704 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8705 		    !vdev_dtl_required(oldvd))
8706 			return (oldvd);
8707 	}
8708 
8709 	/*
8710 	 * Check for a completed resilver with the 'unspare' flag set.
8711 	 * Also potentially update faulted state.
8712 	 */
8713 	if (vd->vdev_ops == &vdev_spare_ops) {
8714 		vdev_t *first = vd->vdev_child[0];
8715 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8716 
8717 		if (last->vdev_unspare) {
8718 			oldvd = first;
8719 			newvd = last;
8720 		} else if (first->vdev_unspare) {
8721 			oldvd = last;
8722 			newvd = first;
8723 		} else {
8724 			oldvd = NULL;
8725 		}
8726 
8727 		if (oldvd != NULL &&
8728 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8729 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8730 		    !vdev_dtl_required(oldvd))
8731 			return (oldvd);
8732 
8733 		vdev_propagate_state(vd);
8734 
8735 		/*
8736 		 * If there are more than two spares attached to a disk,
8737 		 * and those spares are not required, then we want to
8738 		 * attempt to free them up now so that they can be used
8739 		 * by other pools.  Once we're back down to a single
8740 		 * disk+spare, we stop removing them.
8741 		 */
8742 		if (vd->vdev_children > 2) {
8743 			newvd = vd->vdev_child[1];
8744 
8745 			if (newvd->vdev_isspare && last->vdev_isspare &&
8746 			    vdev_dtl_empty(last, DTL_MISSING) &&
8747 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8748 			    !vdev_dtl_required(newvd))
8749 				return (newvd);
8750 		}
8751 	}
8752 
8753 	return (NULL);
8754 }
8755 
8756 static void
8757 spa_vdev_resilver_done(spa_t *spa)
8758 {
8759 	vdev_t *vd, *pvd, *ppvd;
8760 	uint64_t guid, sguid, pguid, ppguid;
8761 
8762 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8763 
8764 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8765 		pvd = vd->vdev_parent;
8766 		ppvd = pvd->vdev_parent;
8767 		guid = vd->vdev_guid;
8768 		pguid = pvd->vdev_guid;
8769 		ppguid = ppvd->vdev_guid;
8770 		sguid = 0;
8771 		/*
8772 		 * If we have just finished replacing a hot spared device, then
8773 		 * we need to detach the parent's first child (the original hot
8774 		 * spare) as well.
8775 		 */
8776 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8777 		    ppvd->vdev_children == 2) {
8778 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8779 			sguid = ppvd->vdev_child[1]->vdev_guid;
8780 		}
8781 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8782 
8783 		spa_config_exit(spa, SCL_ALL, FTAG);
8784 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8785 			return;
8786 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8787 			return;
8788 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8789 	}
8790 
8791 	spa_config_exit(spa, SCL_ALL, FTAG);
8792 
8793 	/*
8794 	 * If a detach was not performed above replace waiters will not have
8795 	 * been notified.  In which case we must do so now.
8796 	 */
8797 	spa_notify_waiters(spa);
8798 }
8799 
8800 /*
8801  * Update the stored path or FRU for this vdev.
8802  */
8803 static int
8804 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8805     boolean_t ispath)
8806 {
8807 	vdev_t *vd;
8808 	boolean_t sync = B_FALSE;
8809 
8810 	ASSERT(spa_writeable(spa));
8811 
8812 	spa_vdev_state_enter(spa, SCL_ALL);
8813 
8814 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8815 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8816 
8817 	if (!vd->vdev_ops->vdev_op_leaf)
8818 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8819 
8820 	if (ispath) {
8821 		if (strcmp(value, vd->vdev_path) != 0) {
8822 			spa_strfree(vd->vdev_path);
8823 			vd->vdev_path = spa_strdup(value);
8824 			sync = B_TRUE;
8825 		}
8826 	} else {
8827 		if (vd->vdev_fru == NULL) {
8828 			vd->vdev_fru = spa_strdup(value);
8829 			sync = B_TRUE;
8830 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8831 			spa_strfree(vd->vdev_fru);
8832 			vd->vdev_fru = spa_strdup(value);
8833 			sync = B_TRUE;
8834 		}
8835 	}
8836 
8837 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8838 }
8839 
8840 int
8841 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8842 {
8843 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8844 }
8845 
8846 int
8847 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8848 {
8849 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8850 }
8851 
8852 /*
8853  * ==========================================================================
8854  * SPA Scanning
8855  * ==========================================================================
8856  */
8857 int
8858 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8859 {
8860 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8861 
8862 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8863 		return (SET_ERROR(EBUSY));
8864 
8865 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8866 }
8867 
8868 int
8869 spa_scan_stop(spa_t *spa)
8870 {
8871 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8872 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8873 		return (SET_ERROR(EBUSY));
8874 
8875 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8876 }
8877 
8878 int
8879 spa_scan(spa_t *spa, pool_scan_func_t func)
8880 {
8881 	return (spa_scan_range(spa, func, 0, 0));
8882 }
8883 
8884 int
8885 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
8886     uint64_t txgend)
8887 {
8888 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8889 
8890 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8891 		return (SET_ERROR(ENOTSUP));
8892 
8893 	if (func == POOL_SCAN_RESILVER &&
8894 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8895 		return (SET_ERROR(ENOTSUP));
8896 
8897 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
8898 		return (SET_ERROR(ENOTSUP));
8899 
8900 	/*
8901 	 * If a resilver was requested, but there is no DTL on a
8902 	 * writeable leaf device, we have nothing to do.
8903 	 */
8904 	if (func == POOL_SCAN_RESILVER &&
8905 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8906 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8907 		return (0);
8908 	}
8909 
8910 	if (func == POOL_SCAN_ERRORSCRUB &&
8911 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8912 		return (SET_ERROR(ENOTSUP));
8913 
8914 	return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
8915 }
8916 
8917 /*
8918  * ==========================================================================
8919  * SPA async task processing
8920  * ==========================================================================
8921  */
8922 
8923 static void
8924 spa_async_remove(spa_t *spa, vdev_t *vd)
8925 {
8926 	if (vd->vdev_remove_wanted) {
8927 		vd->vdev_remove_wanted = B_FALSE;
8928 		vd->vdev_delayed_close = B_FALSE;
8929 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8930 
8931 		/*
8932 		 * We want to clear the stats, but we don't want to do a full
8933 		 * vdev_clear() as that will cause us to throw away
8934 		 * degraded/faulted state as well as attempt to reopen the
8935 		 * device, all of which is a waste.
8936 		 */
8937 		vd->vdev_stat.vs_read_errors = 0;
8938 		vd->vdev_stat.vs_write_errors = 0;
8939 		vd->vdev_stat.vs_checksum_errors = 0;
8940 
8941 		vdev_state_dirty(vd->vdev_top);
8942 
8943 		/* Tell userspace that the vdev is gone. */
8944 		zfs_post_remove(spa, vd);
8945 	}
8946 
8947 	for (int c = 0; c < vd->vdev_children; c++)
8948 		spa_async_remove(spa, vd->vdev_child[c]);
8949 }
8950 
8951 static void
8952 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
8953 {
8954 	if (vd->vdev_fault_wanted) {
8955 		vdev_state_t newstate = VDEV_STATE_FAULTED;
8956 		vd->vdev_fault_wanted = B_FALSE;
8957 
8958 		/*
8959 		 * If this device has the only valid copy of the data, then
8960 		 * back off and simply mark the vdev as degraded instead.
8961 		 */
8962 		if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
8963 		    vdev_dtl_required(vd)) {
8964 			newstate = VDEV_STATE_DEGRADED;
8965 			/* A required disk is missing so suspend the pool */
8966 			*suspend = B_TRUE;
8967 		}
8968 		vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
8969 	}
8970 	for (int c = 0; c < vd->vdev_children; c++)
8971 		spa_async_fault_vdev(vd->vdev_child[c], suspend);
8972 }
8973 
8974 static void
8975 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8976 {
8977 	if (!spa->spa_autoexpand)
8978 		return;
8979 
8980 	for (int c = 0; c < vd->vdev_children; c++) {
8981 		vdev_t *cvd = vd->vdev_child[c];
8982 		spa_async_autoexpand(spa, cvd);
8983 	}
8984 
8985 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8986 		return;
8987 
8988 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8989 }
8990 
8991 static __attribute__((noreturn)) void
8992 spa_async_thread(void *arg)
8993 {
8994 	spa_t *spa = (spa_t *)arg;
8995 	dsl_pool_t *dp = spa->spa_dsl_pool;
8996 	int tasks;
8997 
8998 	ASSERT(spa->spa_sync_on);
8999 
9000 	mutex_enter(&spa->spa_async_lock);
9001 	tasks = spa->spa_async_tasks;
9002 	spa->spa_async_tasks = 0;
9003 	mutex_exit(&spa->spa_async_lock);
9004 
9005 	/*
9006 	 * See if the config needs to be updated.
9007 	 */
9008 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9009 		uint64_t old_space, new_space;
9010 
9011 		mutex_enter(&spa_namespace_lock);
9012 		old_space = metaslab_class_get_space(spa_normal_class(spa));
9013 		old_space += metaslab_class_get_space(spa_special_class(spa));
9014 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
9015 		old_space += metaslab_class_get_space(
9016 		    spa_embedded_log_class(spa));
9017 
9018 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9019 
9020 		new_space = metaslab_class_get_space(spa_normal_class(spa));
9021 		new_space += metaslab_class_get_space(spa_special_class(spa));
9022 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
9023 		new_space += metaslab_class_get_space(
9024 		    spa_embedded_log_class(spa));
9025 		mutex_exit(&spa_namespace_lock);
9026 
9027 		/*
9028 		 * If the pool grew as a result of the config update,
9029 		 * then log an internal history event.
9030 		 */
9031 		if (new_space != old_space) {
9032 			spa_history_log_internal(spa, "vdev online", NULL,
9033 			    "pool '%s' size: %llu(+%llu)",
9034 			    spa_name(spa), (u_longlong_t)new_space,
9035 			    (u_longlong_t)(new_space - old_space));
9036 		}
9037 	}
9038 
9039 	/*
9040 	 * See if any devices need to be marked REMOVED.
9041 	 */
9042 	if (tasks & SPA_ASYNC_REMOVE) {
9043 		spa_vdev_state_enter(spa, SCL_NONE);
9044 		spa_async_remove(spa, spa->spa_root_vdev);
9045 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9046 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9047 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9048 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9049 		(void) spa_vdev_state_exit(spa, NULL, 0);
9050 	}
9051 
9052 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9053 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9054 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9055 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9056 	}
9057 
9058 	/*
9059 	 * See if any devices need to be marked faulted.
9060 	 */
9061 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9062 		spa_vdev_state_enter(spa, SCL_NONE);
9063 		boolean_t suspend = B_FALSE;
9064 		spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9065 		(void) spa_vdev_state_exit(spa, NULL, 0);
9066 		if (suspend)
9067 			zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9068 	}
9069 
9070 	/*
9071 	 * If any devices are done replacing, detach them.
9072 	 */
9073 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9074 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9075 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9076 		spa_vdev_resilver_done(spa);
9077 	}
9078 
9079 	/*
9080 	 * Kick off a resilver.
9081 	 */
9082 	if (tasks & SPA_ASYNC_RESILVER &&
9083 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9084 	    (!dsl_scan_resilvering(dp) ||
9085 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9086 		dsl_scan_restart_resilver(dp, 0);
9087 
9088 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9089 		mutex_enter(&spa_namespace_lock);
9090 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9091 		vdev_initialize_restart(spa->spa_root_vdev);
9092 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9093 		mutex_exit(&spa_namespace_lock);
9094 	}
9095 
9096 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9097 		mutex_enter(&spa_namespace_lock);
9098 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9099 		vdev_trim_restart(spa->spa_root_vdev);
9100 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9101 		mutex_exit(&spa_namespace_lock);
9102 	}
9103 
9104 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9105 		mutex_enter(&spa_namespace_lock);
9106 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9107 		vdev_autotrim_restart(spa);
9108 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9109 		mutex_exit(&spa_namespace_lock);
9110 	}
9111 
9112 	/*
9113 	 * Kick off L2 cache whole device TRIM.
9114 	 */
9115 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9116 		mutex_enter(&spa_namespace_lock);
9117 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9118 		vdev_trim_l2arc(spa);
9119 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9120 		mutex_exit(&spa_namespace_lock);
9121 	}
9122 
9123 	/*
9124 	 * Kick off L2 cache rebuilding.
9125 	 */
9126 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9127 		mutex_enter(&spa_namespace_lock);
9128 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9129 		l2arc_spa_rebuild_start(spa);
9130 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9131 		mutex_exit(&spa_namespace_lock);
9132 	}
9133 
9134 	/*
9135 	 * Let the world know that we're done.
9136 	 */
9137 	mutex_enter(&spa->spa_async_lock);
9138 	spa->spa_async_thread = NULL;
9139 	cv_broadcast(&spa->spa_async_cv);
9140 	mutex_exit(&spa->spa_async_lock);
9141 	thread_exit();
9142 }
9143 
9144 void
9145 spa_async_suspend(spa_t *spa)
9146 {
9147 	mutex_enter(&spa->spa_async_lock);
9148 	spa->spa_async_suspended++;
9149 	while (spa->spa_async_thread != NULL)
9150 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9151 	mutex_exit(&spa->spa_async_lock);
9152 
9153 	spa_vdev_remove_suspend(spa);
9154 
9155 	zthr_t *condense_thread = spa->spa_condense_zthr;
9156 	if (condense_thread != NULL)
9157 		zthr_cancel(condense_thread);
9158 
9159 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9160 	if (raidz_expand_thread != NULL)
9161 		zthr_cancel(raidz_expand_thread);
9162 
9163 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9164 	if (discard_thread != NULL)
9165 		zthr_cancel(discard_thread);
9166 
9167 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9168 	if (ll_delete_thread != NULL)
9169 		zthr_cancel(ll_delete_thread);
9170 
9171 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9172 	if (ll_condense_thread != NULL)
9173 		zthr_cancel(ll_condense_thread);
9174 }
9175 
9176 void
9177 spa_async_resume(spa_t *spa)
9178 {
9179 	mutex_enter(&spa->spa_async_lock);
9180 	ASSERT(spa->spa_async_suspended != 0);
9181 	spa->spa_async_suspended--;
9182 	mutex_exit(&spa->spa_async_lock);
9183 	spa_restart_removal(spa);
9184 
9185 	zthr_t *condense_thread = spa->spa_condense_zthr;
9186 	if (condense_thread != NULL)
9187 		zthr_resume(condense_thread);
9188 
9189 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9190 	if (raidz_expand_thread != NULL)
9191 		zthr_resume(raidz_expand_thread);
9192 
9193 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9194 	if (discard_thread != NULL)
9195 		zthr_resume(discard_thread);
9196 
9197 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9198 	if (ll_delete_thread != NULL)
9199 		zthr_resume(ll_delete_thread);
9200 
9201 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9202 	if (ll_condense_thread != NULL)
9203 		zthr_resume(ll_condense_thread);
9204 }
9205 
9206 static boolean_t
9207 spa_async_tasks_pending(spa_t *spa)
9208 {
9209 	uint_t non_config_tasks;
9210 	uint_t config_task;
9211 	boolean_t config_task_suspended;
9212 
9213 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9214 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9215 	if (spa->spa_ccw_fail_time == 0) {
9216 		config_task_suspended = B_FALSE;
9217 	} else {
9218 		config_task_suspended =
9219 		    (gethrtime() - spa->spa_ccw_fail_time) <
9220 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9221 	}
9222 
9223 	return (non_config_tasks || (config_task && !config_task_suspended));
9224 }
9225 
9226 static void
9227 spa_async_dispatch(spa_t *spa)
9228 {
9229 	mutex_enter(&spa->spa_async_lock);
9230 	if (spa_async_tasks_pending(spa) &&
9231 	    !spa->spa_async_suspended &&
9232 	    spa->spa_async_thread == NULL)
9233 		spa->spa_async_thread = thread_create(NULL, 0,
9234 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9235 	mutex_exit(&spa->spa_async_lock);
9236 }
9237 
9238 void
9239 spa_async_request(spa_t *spa, int task)
9240 {
9241 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9242 	mutex_enter(&spa->spa_async_lock);
9243 	spa->spa_async_tasks |= task;
9244 	mutex_exit(&spa->spa_async_lock);
9245 }
9246 
9247 int
9248 spa_async_tasks(spa_t *spa)
9249 {
9250 	return (spa->spa_async_tasks);
9251 }
9252 
9253 /*
9254  * ==========================================================================
9255  * SPA syncing routines
9256  * ==========================================================================
9257  */
9258 
9259 
9260 static int
9261 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9262     dmu_tx_t *tx)
9263 {
9264 	bpobj_t *bpo = arg;
9265 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9266 	return (0);
9267 }
9268 
9269 int
9270 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9271 {
9272 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9273 }
9274 
9275 int
9276 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9277 {
9278 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9279 }
9280 
9281 static int
9282 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9283 {
9284 	zio_t *pio = arg;
9285 
9286 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9287 	    pio->io_flags));
9288 	return (0);
9289 }
9290 
9291 static int
9292 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9293     dmu_tx_t *tx)
9294 {
9295 	ASSERT(!bp_freed);
9296 	return (spa_free_sync_cb(arg, bp, tx));
9297 }
9298 
9299 /*
9300  * Note: this simple function is not inlined to make it easier to dtrace the
9301  * amount of time spent syncing frees.
9302  */
9303 static void
9304 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9305 {
9306 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9307 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9308 	VERIFY(zio_wait(zio) == 0);
9309 }
9310 
9311 /*
9312  * Note: this simple function is not inlined to make it easier to dtrace the
9313  * amount of time spent syncing deferred frees.
9314  */
9315 static void
9316 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9317 {
9318 	if (spa_sync_pass(spa) != 1)
9319 		return;
9320 
9321 	/*
9322 	 * Note:
9323 	 * If the log space map feature is active, we stop deferring
9324 	 * frees to the next TXG and therefore running this function
9325 	 * would be considered a no-op as spa_deferred_bpobj should
9326 	 * not have any entries.
9327 	 *
9328 	 * That said we run this function anyway (instead of returning
9329 	 * immediately) for the edge-case scenario where we just
9330 	 * activated the log space map feature in this TXG but we have
9331 	 * deferred frees from the previous TXG.
9332 	 */
9333 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9334 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9335 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9336 	VERIFY0(zio_wait(zio));
9337 }
9338 
9339 static void
9340 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9341 {
9342 	char *packed = NULL;
9343 	size_t bufsize;
9344 	size_t nvsize = 0;
9345 	dmu_buf_t *db;
9346 
9347 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9348 
9349 	/*
9350 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9351 	 * information.  This avoids the dmu_buf_will_dirty() path and
9352 	 * saves us a pre-read to get data we don't actually care about.
9353 	 */
9354 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9355 	packed = vmem_alloc(bufsize, KM_SLEEP);
9356 
9357 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9358 	    KM_SLEEP) == 0);
9359 	memset(packed + nvsize, 0, bufsize - nvsize);
9360 
9361 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9362 
9363 	vmem_free(packed, bufsize);
9364 
9365 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9366 	dmu_buf_will_dirty(db, tx);
9367 	*(uint64_t *)db->db_data = nvsize;
9368 	dmu_buf_rele(db, FTAG);
9369 }
9370 
9371 static void
9372 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9373     const char *config, const char *entry)
9374 {
9375 	nvlist_t *nvroot;
9376 	nvlist_t **list;
9377 	int i;
9378 
9379 	if (!sav->sav_sync)
9380 		return;
9381 
9382 	/*
9383 	 * Update the MOS nvlist describing the list of available devices.
9384 	 * spa_validate_aux() will have already made sure this nvlist is
9385 	 * valid and the vdevs are labeled appropriately.
9386 	 */
9387 	if (sav->sav_object == 0) {
9388 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9389 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9390 		    sizeof (uint64_t), tx);
9391 		VERIFY(zap_update(spa->spa_meta_objset,
9392 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9393 		    &sav->sav_object, tx) == 0);
9394 	}
9395 
9396 	nvroot = fnvlist_alloc();
9397 	if (sav->sav_count == 0) {
9398 		fnvlist_add_nvlist_array(nvroot, config,
9399 		    (const nvlist_t * const *)NULL, 0);
9400 	} else {
9401 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9402 		for (i = 0; i < sav->sav_count; i++)
9403 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9404 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9405 		fnvlist_add_nvlist_array(nvroot, config,
9406 		    (const nvlist_t * const *)list, sav->sav_count);
9407 		for (i = 0; i < sav->sav_count; i++)
9408 			nvlist_free(list[i]);
9409 		kmem_free(list, sav->sav_count * sizeof (void *));
9410 	}
9411 
9412 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9413 	nvlist_free(nvroot);
9414 
9415 	sav->sav_sync = B_FALSE;
9416 }
9417 
9418 /*
9419  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9420  * The all-vdev ZAP must be empty.
9421  */
9422 static void
9423 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9424 {
9425 	spa_t *spa = vd->vdev_spa;
9426 
9427 	if (vd->vdev_root_zap != 0 &&
9428 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9429 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9430 		    vd->vdev_root_zap, tx));
9431 	}
9432 	if (vd->vdev_top_zap != 0) {
9433 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9434 		    vd->vdev_top_zap, tx));
9435 	}
9436 	if (vd->vdev_leaf_zap != 0) {
9437 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9438 		    vd->vdev_leaf_zap, tx));
9439 	}
9440 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9441 		spa_avz_build(vd->vdev_child[i], avz, tx);
9442 	}
9443 }
9444 
9445 static void
9446 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9447 {
9448 	nvlist_t *config;
9449 
9450 	/*
9451 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9452 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9453 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9454 	 * need to rebuild the AVZ although the config may not be dirty.
9455 	 */
9456 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9457 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9458 		return;
9459 
9460 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9461 
9462 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9463 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9464 	    spa->spa_all_vdev_zaps != 0);
9465 
9466 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9467 		/* Make and build the new AVZ */
9468 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9469 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9470 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9471 
9472 		/* Diff old AVZ with new one */
9473 		zap_cursor_t zc;
9474 		zap_attribute_t *za = zap_attribute_alloc();
9475 
9476 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9477 		    spa->spa_all_vdev_zaps);
9478 		    zap_cursor_retrieve(&zc, za) == 0;
9479 		    zap_cursor_advance(&zc)) {
9480 			uint64_t vdzap = za->za_first_integer;
9481 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9482 			    vdzap) == ENOENT) {
9483 				/*
9484 				 * ZAP is listed in old AVZ but not in new one;
9485 				 * destroy it
9486 				 */
9487 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9488 				    tx));
9489 			}
9490 		}
9491 
9492 		zap_cursor_fini(&zc);
9493 		zap_attribute_free(za);
9494 
9495 		/* Destroy the old AVZ */
9496 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9497 		    spa->spa_all_vdev_zaps, tx));
9498 
9499 		/* Replace the old AVZ in the dir obj with the new one */
9500 		VERIFY0(zap_update(spa->spa_meta_objset,
9501 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9502 		    sizeof (new_avz), 1, &new_avz, tx));
9503 
9504 		spa->spa_all_vdev_zaps = new_avz;
9505 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9506 		zap_cursor_t zc;
9507 		zap_attribute_t *za = zap_attribute_alloc();
9508 
9509 		/* Walk through the AVZ and destroy all listed ZAPs */
9510 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9511 		    spa->spa_all_vdev_zaps);
9512 		    zap_cursor_retrieve(&zc, za) == 0;
9513 		    zap_cursor_advance(&zc)) {
9514 			uint64_t zap = za->za_first_integer;
9515 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9516 		}
9517 
9518 		zap_cursor_fini(&zc);
9519 		zap_attribute_free(za);
9520 
9521 		/* Destroy and unlink the AVZ itself */
9522 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9523 		    spa->spa_all_vdev_zaps, tx));
9524 		VERIFY0(zap_remove(spa->spa_meta_objset,
9525 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9526 		spa->spa_all_vdev_zaps = 0;
9527 	}
9528 
9529 	if (spa->spa_all_vdev_zaps == 0) {
9530 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9531 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9532 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9533 	}
9534 	spa->spa_avz_action = AVZ_ACTION_NONE;
9535 
9536 	/* Create ZAPs for vdevs that don't have them. */
9537 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9538 
9539 	config = spa_config_generate(spa, spa->spa_root_vdev,
9540 	    dmu_tx_get_txg(tx), B_FALSE);
9541 
9542 	/*
9543 	 * If we're upgrading the spa version then make sure that
9544 	 * the config object gets updated with the correct version.
9545 	 */
9546 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9547 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9548 		    spa->spa_uberblock.ub_version);
9549 
9550 	spa_config_exit(spa, SCL_STATE, FTAG);
9551 
9552 	nvlist_free(spa->spa_config_syncing);
9553 	spa->spa_config_syncing = config;
9554 
9555 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9556 }
9557 
9558 static void
9559 spa_sync_version(void *arg, dmu_tx_t *tx)
9560 {
9561 	uint64_t *versionp = arg;
9562 	uint64_t version = *versionp;
9563 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9564 
9565 	/*
9566 	 * Setting the version is special cased when first creating the pool.
9567 	 */
9568 	ASSERT(tx->tx_txg != TXG_INITIAL);
9569 
9570 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9571 	ASSERT(version >= spa_version(spa));
9572 
9573 	spa->spa_uberblock.ub_version = version;
9574 	vdev_config_dirty(spa->spa_root_vdev);
9575 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9576 	    (longlong_t)version);
9577 }
9578 
9579 /*
9580  * Set zpool properties.
9581  */
9582 static void
9583 spa_sync_props(void *arg, dmu_tx_t *tx)
9584 {
9585 	nvlist_t *nvp = arg;
9586 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9587 	objset_t *mos = spa->spa_meta_objset;
9588 	nvpair_t *elem = NULL;
9589 
9590 	mutex_enter(&spa->spa_props_lock);
9591 
9592 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9593 		uint64_t intval;
9594 		const char *strval, *fname;
9595 		zpool_prop_t prop;
9596 		const char *propname;
9597 		const char *elemname = nvpair_name(elem);
9598 		zprop_type_t proptype;
9599 		spa_feature_t fid;
9600 
9601 		switch (prop = zpool_name_to_prop(elemname)) {
9602 		case ZPOOL_PROP_VERSION:
9603 			intval = fnvpair_value_uint64(elem);
9604 			/*
9605 			 * The version is synced separately before other
9606 			 * properties and should be correct by now.
9607 			 */
9608 			ASSERT3U(spa_version(spa), >=, intval);
9609 			break;
9610 
9611 		case ZPOOL_PROP_ALTROOT:
9612 			/*
9613 			 * 'altroot' is a non-persistent property. It should
9614 			 * have been set temporarily at creation or import time.
9615 			 */
9616 			ASSERT(spa->spa_root != NULL);
9617 			break;
9618 
9619 		case ZPOOL_PROP_READONLY:
9620 		case ZPOOL_PROP_CACHEFILE:
9621 			/*
9622 			 * 'readonly' and 'cachefile' are also non-persistent
9623 			 * properties.
9624 			 */
9625 			break;
9626 		case ZPOOL_PROP_COMMENT:
9627 			strval = fnvpair_value_string(elem);
9628 			if (spa->spa_comment != NULL)
9629 				spa_strfree(spa->spa_comment);
9630 			spa->spa_comment = spa_strdup(strval);
9631 			/*
9632 			 * We need to dirty the configuration on all the vdevs
9633 			 * so that their labels get updated.  We also need to
9634 			 * update the cache file to keep it in sync with the
9635 			 * MOS version. It's unnecessary to do this for pool
9636 			 * creation since the vdev's configuration has already
9637 			 * been dirtied.
9638 			 */
9639 			if (tx->tx_txg != TXG_INITIAL) {
9640 				vdev_config_dirty(spa->spa_root_vdev);
9641 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9642 			}
9643 			spa_history_log_internal(spa, "set", tx,
9644 			    "%s=%s", elemname, strval);
9645 			break;
9646 		case ZPOOL_PROP_COMPATIBILITY:
9647 			strval = fnvpair_value_string(elem);
9648 			if (spa->spa_compatibility != NULL)
9649 				spa_strfree(spa->spa_compatibility);
9650 			spa->spa_compatibility = spa_strdup(strval);
9651 			/*
9652 			 * Dirty the configuration on vdevs as above.
9653 			 */
9654 			if (tx->tx_txg != TXG_INITIAL) {
9655 				vdev_config_dirty(spa->spa_root_vdev);
9656 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9657 			}
9658 
9659 			spa_history_log_internal(spa, "set", tx,
9660 			    "%s=%s", nvpair_name(elem), strval);
9661 			break;
9662 
9663 		case ZPOOL_PROP_INVAL:
9664 			if (zpool_prop_feature(elemname)) {
9665 				fname = strchr(elemname, '@') + 1;
9666 				VERIFY0(zfeature_lookup_name(fname, &fid));
9667 
9668 				spa_feature_enable(spa, fid, tx);
9669 				spa_history_log_internal(spa, "set", tx,
9670 				    "%s=enabled", elemname);
9671 				break;
9672 			} else if (!zfs_prop_user(elemname)) {
9673 				ASSERT(zpool_prop_feature(elemname));
9674 				break;
9675 			}
9676 			zfs_fallthrough;
9677 		default:
9678 			/*
9679 			 * Set pool property values in the poolprops mos object.
9680 			 */
9681 			if (spa->spa_pool_props_object == 0) {
9682 				spa->spa_pool_props_object =
9683 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9684 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9685 				    tx);
9686 			}
9687 
9688 			/* normalize the property name */
9689 			if (prop == ZPOOL_PROP_INVAL) {
9690 				propname = elemname;
9691 				proptype = PROP_TYPE_STRING;
9692 			} else {
9693 				propname = zpool_prop_to_name(prop);
9694 				proptype = zpool_prop_get_type(prop);
9695 			}
9696 
9697 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9698 				ASSERT(proptype == PROP_TYPE_STRING);
9699 				strval = fnvpair_value_string(elem);
9700 				if (strlen(strval) == 0) {
9701 					/* remove the property if value == "" */
9702 					(void) zap_remove(mos,
9703 					    spa->spa_pool_props_object,
9704 					    propname, tx);
9705 				} else {
9706 					VERIFY0(zap_update(mos,
9707 					    spa->spa_pool_props_object,
9708 					    propname, 1, strlen(strval) + 1,
9709 					    strval, tx));
9710 				}
9711 				spa_history_log_internal(spa, "set", tx,
9712 				    "%s=%s", elemname, strval);
9713 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9714 				intval = fnvpair_value_uint64(elem);
9715 
9716 				if (proptype == PROP_TYPE_INDEX) {
9717 					const char *unused;
9718 					VERIFY0(zpool_prop_index_to_string(
9719 					    prop, intval, &unused));
9720 				}
9721 				VERIFY0(zap_update(mos,
9722 				    spa->spa_pool_props_object, propname,
9723 				    8, 1, &intval, tx));
9724 				spa_history_log_internal(spa, "set", tx,
9725 				    "%s=%lld", elemname,
9726 				    (longlong_t)intval);
9727 
9728 				switch (prop) {
9729 				case ZPOOL_PROP_DELEGATION:
9730 					spa->spa_delegation = intval;
9731 					break;
9732 				case ZPOOL_PROP_BOOTFS:
9733 					spa->spa_bootfs = intval;
9734 					break;
9735 				case ZPOOL_PROP_FAILUREMODE:
9736 					spa->spa_failmode = intval;
9737 					break;
9738 				case ZPOOL_PROP_AUTOTRIM:
9739 					spa->spa_autotrim = intval;
9740 					spa_async_request(spa,
9741 					    SPA_ASYNC_AUTOTRIM_RESTART);
9742 					break;
9743 				case ZPOOL_PROP_AUTOEXPAND:
9744 					spa->spa_autoexpand = intval;
9745 					if (tx->tx_txg != TXG_INITIAL)
9746 						spa_async_request(spa,
9747 						    SPA_ASYNC_AUTOEXPAND);
9748 					break;
9749 				case ZPOOL_PROP_MULTIHOST:
9750 					spa->spa_multihost = intval;
9751 					break;
9752 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9753 					spa->spa_dedup_table_quota = intval;
9754 					break;
9755 				default:
9756 					break;
9757 				}
9758 			} else {
9759 				ASSERT(0); /* not allowed */
9760 			}
9761 		}
9762 
9763 	}
9764 
9765 	mutex_exit(&spa->spa_props_lock);
9766 }
9767 
9768 /*
9769  * Perform one-time upgrade on-disk changes.  spa_version() does not
9770  * reflect the new version this txg, so there must be no changes this
9771  * txg to anything that the upgrade code depends on after it executes.
9772  * Therefore this must be called after dsl_pool_sync() does the sync
9773  * tasks.
9774  */
9775 static void
9776 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9777 {
9778 	if (spa_sync_pass(spa) != 1)
9779 		return;
9780 
9781 	dsl_pool_t *dp = spa->spa_dsl_pool;
9782 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9783 
9784 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9785 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9786 		dsl_pool_create_origin(dp, tx);
9787 
9788 		/* Keeping the origin open increases spa_minref */
9789 		spa->spa_minref += 3;
9790 	}
9791 
9792 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9793 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9794 		dsl_pool_upgrade_clones(dp, tx);
9795 	}
9796 
9797 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9798 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9799 		dsl_pool_upgrade_dir_clones(dp, tx);
9800 
9801 		/* Keeping the freedir open increases spa_minref */
9802 		spa->spa_minref += 3;
9803 	}
9804 
9805 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9806 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9807 		spa_feature_create_zap_objects(spa, tx);
9808 	}
9809 
9810 	/*
9811 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9812 	 * when possibility to use lz4 compression for metadata was added
9813 	 * Old pools that have this feature enabled must be upgraded to have
9814 	 * this feature active
9815 	 */
9816 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9817 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9818 		    SPA_FEATURE_LZ4_COMPRESS);
9819 		boolean_t lz4_ac = spa_feature_is_active(spa,
9820 		    SPA_FEATURE_LZ4_COMPRESS);
9821 
9822 		if (lz4_en && !lz4_ac)
9823 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9824 	}
9825 
9826 	/*
9827 	 * If we haven't written the salt, do so now.  Note that the
9828 	 * feature may not be activated yet, but that's fine since
9829 	 * the presence of this ZAP entry is backwards compatible.
9830 	 */
9831 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9832 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9833 		VERIFY0(zap_add(spa->spa_meta_objset,
9834 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9835 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9836 		    spa->spa_cksum_salt.zcs_bytes, tx));
9837 	}
9838 
9839 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9840 }
9841 
9842 static void
9843 vdev_indirect_state_sync_verify(vdev_t *vd)
9844 {
9845 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9846 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9847 
9848 	if (vd->vdev_ops == &vdev_indirect_ops) {
9849 		ASSERT(vim != NULL);
9850 		ASSERT(vib != NULL);
9851 	}
9852 
9853 	uint64_t obsolete_sm_object = 0;
9854 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9855 	if (obsolete_sm_object != 0) {
9856 		ASSERT(vd->vdev_obsolete_sm != NULL);
9857 		ASSERT(vd->vdev_removing ||
9858 		    vd->vdev_ops == &vdev_indirect_ops);
9859 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9860 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9861 		ASSERT3U(obsolete_sm_object, ==,
9862 		    space_map_object(vd->vdev_obsolete_sm));
9863 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9864 		    space_map_allocated(vd->vdev_obsolete_sm));
9865 	}
9866 	ASSERT(vd->vdev_obsolete_segments != NULL);
9867 
9868 	/*
9869 	 * Since frees / remaps to an indirect vdev can only
9870 	 * happen in syncing context, the obsolete segments
9871 	 * tree must be empty when we start syncing.
9872 	 */
9873 	ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
9874 }
9875 
9876 /*
9877  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9878  * async write queue depth in case it changed. The max queue depth will
9879  * not change in the middle of syncing out this txg.
9880  */
9881 static void
9882 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9883 {
9884 	ASSERT(spa_writeable(spa));
9885 
9886 	metaslab_class_balance(spa_normal_class(spa), B_TRUE);
9887 	metaslab_class_balance(spa_special_class(spa), B_TRUE);
9888 	metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
9889 }
9890 
9891 static void
9892 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9893 {
9894 	ASSERT(spa_writeable(spa));
9895 
9896 	vdev_t *rvd = spa->spa_root_vdev;
9897 	for (int c = 0; c < rvd->vdev_children; c++) {
9898 		vdev_t *vd = rvd->vdev_child[c];
9899 		vdev_indirect_state_sync_verify(vd);
9900 
9901 		if (vdev_indirect_should_condense(vd)) {
9902 			spa_condense_indirect_start_sync(vd, tx);
9903 			break;
9904 		}
9905 	}
9906 }
9907 
9908 static void
9909 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9910 {
9911 	objset_t *mos = spa->spa_meta_objset;
9912 	dsl_pool_t *dp = spa->spa_dsl_pool;
9913 	uint64_t txg = tx->tx_txg;
9914 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9915 
9916 	do {
9917 		int pass = ++spa->spa_sync_pass;
9918 
9919 		spa_sync_config_object(spa, tx);
9920 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9921 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9922 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9923 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9924 		spa_errlog_sync(spa, txg);
9925 		dsl_pool_sync(dp, txg);
9926 
9927 		if (pass < zfs_sync_pass_deferred_free ||
9928 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9929 			/*
9930 			 * If the log space map feature is active we don't
9931 			 * care about deferred frees and the deferred bpobj
9932 			 * as the log space map should effectively have the
9933 			 * same results (i.e. appending only to one object).
9934 			 */
9935 			spa_sync_frees(spa, free_bpl, tx);
9936 		} else {
9937 			/*
9938 			 * We can not defer frees in pass 1, because
9939 			 * we sync the deferred frees later in pass 1.
9940 			 */
9941 			ASSERT3U(pass, >, 1);
9942 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9943 			    &spa->spa_deferred_bpobj, tx);
9944 		}
9945 
9946 		brt_sync(spa, txg);
9947 		ddt_sync(spa, txg);
9948 		dsl_scan_sync(dp, tx);
9949 		dsl_errorscrub_sync(dp, tx);
9950 		svr_sync(spa, tx);
9951 		spa_sync_upgrades(spa, tx);
9952 
9953 		spa_flush_metaslabs(spa, tx);
9954 
9955 		vdev_t *vd = NULL;
9956 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9957 		    != NULL)
9958 			vdev_sync(vd, txg);
9959 
9960 		if (pass == 1) {
9961 			/*
9962 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9963 			 * the config. If that happens, this txg should not
9964 			 * be a no-op. So we must sync the config to the MOS
9965 			 * before checking for no-op.
9966 			 *
9967 			 * Note that when the config is dirty, it will
9968 			 * be written to the MOS (i.e. the MOS will be
9969 			 * dirtied) every time we call spa_sync_config_object()
9970 			 * in this txg.  Therefore we can't call this after
9971 			 * dsl_pool_sync() every pass, because it would
9972 			 * prevent us from converging, since we'd dirty
9973 			 * the MOS every pass.
9974 			 *
9975 			 * Sync tasks can only be processed in pass 1, so
9976 			 * there's no need to do this in later passes.
9977 			 */
9978 			spa_sync_config_object(spa, tx);
9979 		}
9980 
9981 		/*
9982 		 * Note: We need to check if the MOS is dirty because we could
9983 		 * have marked the MOS dirty without updating the uberblock
9984 		 * (e.g. if we have sync tasks but no dirty user data). We need
9985 		 * to check the uberblock's rootbp because it is updated if we
9986 		 * have synced out dirty data (though in this case the MOS will
9987 		 * most likely also be dirty due to second order effects, we
9988 		 * don't want to rely on that here).
9989 		 */
9990 		if (pass == 1 &&
9991 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9992 		    !dmu_objset_is_dirty(mos, txg)) {
9993 			/*
9994 			 * Nothing changed on the first pass, therefore this
9995 			 * TXG is a no-op. Avoid syncing deferred frees, so
9996 			 * that we can keep this TXG as a no-op.
9997 			 */
9998 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9999 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10000 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10001 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10002 			break;
10003 		}
10004 
10005 		spa_sync_deferred_frees(spa, tx);
10006 	} while (dmu_objset_is_dirty(mos, txg));
10007 }
10008 
10009 /*
10010  * Rewrite the vdev configuration (which includes the uberblock) to
10011  * commit the transaction group.
10012  *
10013  * If there are no dirty vdevs, we sync the uberblock to a few random
10014  * top-level vdevs that are known to be visible in the config cache
10015  * (see spa_vdev_add() for a complete description). If there *are* dirty
10016  * vdevs, sync the uberblock to all vdevs.
10017  */
10018 static void
10019 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10020 {
10021 	vdev_t *rvd = spa->spa_root_vdev;
10022 	uint64_t txg = tx->tx_txg;
10023 
10024 	for (;;) {
10025 		int error = 0;
10026 
10027 		/*
10028 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10029 		 * while we're attempting to write the vdev labels.
10030 		 */
10031 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10032 
10033 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10034 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10035 			int svdcount = 0;
10036 			int children = rvd->vdev_children;
10037 			int c0 = random_in_range(children);
10038 
10039 			for (int c = 0; c < children; c++) {
10040 				vdev_t *vd =
10041 				    rvd->vdev_child[(c0 + c) % children];
10042 
10043 				/* Stop when revisiting the first vdev */
10044 				if (c > 0 && svd[0] == vd)
10045 					break;
10046 
10047 				if (vd->vdev_ms_array == 0 ||
10048 				    vd->vdev_islog ||
10049 				    !vdev_is_concrete(vd))
10050 					continue;
10051 
10052 				svd[svdcount++] = vd;
10053 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10054 					break;
10055 			}
10056 			error = vdev_config_sync(svd, svdcount, txg);
10057 		} else {
10058 			error = vdev_config_sync(rvd->vdev_child,
10059 			    rvd->vdev_children, txg);
10060 		}
10061 
10062 		if (error == 0)
10063 			spa->spa_last_synced_guid = rvd->vdev_guid;
10064 
10065 		spa_config_exit(spa, SCL_STATE, FTAG);
10066 
10067 		if (error == 0)
10068 			break;
10069 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10070 		zio_resume_wait(spa);
10071 	}
10072 }
10073 
10074 /*
10075  * Sync the specified transaction group.  New blocks may be dirtied as
10076  * part of the process, so we iterate until it converges.
10077  */
10078 void
10079 spa_sync(spa_t *spa, uint64_t txg)
10080 {
10081 	vdev_t *vd = NULL;
10082 
10083 	VERIFY(spa_writeable(spa));
10084 
10085 	/*
10086 	 * Wait for i/os issued in open context that need to complete
10087 	 * before this txg syncs.
10088 	 */
10089 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10090 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10091 	    ZIO_FLAG_CANFAIL);
10092 
10093 	/*
10094 	 * Now that there can be no more cloning in this transaction group,
10095 	 * but we are still before issuing frees, we can process pending BRT
10096 	 * updates.
10097 	 */
10098 	brt_pending_apply(spa, txg);
10099 
10100 	/*
10101 	 * Lock out configuration changes.
10102 	 */
10103 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10104 
10105 	spa->spa_syncing_txg = txg;
10106 	spa->spa_sync_pass = 0;
10107 
10108 	/*
10109 	 * If there are any pending vdev state changes, convert them
10110 	 * into config changes that go out with this transaction group.
10111 	 */
10112 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10113 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10114 		/* Avoid holding the write lock unless actually necessary */
10115 		if (vd->vdev_aux == NULL) {
10116 			vdev_state_clean(vd);
10117 			vdev_config_dirty(vd);
10118 			continue;
10119 		}
10120 		/*
10121 		 * We need the write lock here because, for aux vdevs,
10122 		 * calling vdev_config_dirty() modifies sav_config.
10123 		 * This is ugly and will become unnecessary when we
10124 		 * eliminate the aux vdev wart by integrating all vdevs
10125 		 * into the root vdev tree.
10126 		 */
10127 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10128 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10129 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10130 			vdev_state_clean(vd);
10131 			vdev_config_dirty(vd);
10132 		}
10133 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10134 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10135 	}
10136 	spa_config_exit(spa, SCL_STATE, FTAG);
10137 
10138 	dsl_pool_t *dp = spa->spa_dsl_pool;
10139 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10140 
10141 	spa->spa_sync_starttime = gethrtime();
10142 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10143 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10144 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10145 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10146 
10147 	/*
10148 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10149 	 * set spa_deflate if we have no raid-z vdevs.
10150 	 */
10151 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10152 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10153 		vdev_t *rvd = spa->spa_root_vdev;
10154 
10155 		int i;
10156 		for (i = 0; i < rvd->vdev_children; i++) {
10157 			vd = rvd->vdev_child[i];
10158 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10159 				break;
10160 		}
10161 		if (i == rvd->vdev_children) {
10162 			spa->spa_deflate = TRUE;
10163 			VERIFY0(zap_add(spa->spa_meta_objset,
10164 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10165 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10166 		}
10167 	}
10168 
10169 	spa_sync_adjust_vdev_max_queue_depth(spa);
10170 
10171 	spa_sync_condense_indirect(spa, tx);
10172 
10173 	spa_sync_iterate_to_convergence(spa, tx);
10174 
10175 #ifdef ZFS_DEBUG
10176 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10177 	/*
10178 	 * Make sure that the number of ZAPs for all the vdevs matches
10179 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10180 	 * called if the config is dirty; otherwise there may be
10181 	 * outstanding AVZ operations that weren't completed in
10182 	 * spa_sync_config_object.
10183 	 */
10184 		uint64_t all_vdev_zap_entry_count;
10185 		ASSERT0(zap_count(spa->spa_meta_objset,
10186 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10187 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10188 		    all_vdev_zap_entry_count);
10189 	}
10190 #endif
10191 
10192 	if (spa->spa_vdev_removal != NULL) {
10193 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10194 	}
10195 
10196 	spa_sync_rewrite_vdev_config(spa, tx);
10197 	dmu_tx_commit(tx);
10198 
10199 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10200 	spa->spa_deadman_tqid = 0;
10201 
10202 	/*
10203 	 * Clear the dirty config list.
10204 	 */
10205 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10206 		vdev_config_clean(vd);
10207 
10208 	/*
10209 	 * Now that the new config has synced transactionally,
10210 	 * let it become visible to the config cache.
10211 	 */
10212 	if (spa->spa_config_syncing != NULL) {
10213 		spa_config_set(spa, spa->spa_config_syncing);
10214 		spa->spa_config_txg = txg;
10215 		spa->spa_config_syncing = NULL;
10216 	}
10217 
10218 	dsl_pool_sync_done(dp, txg);
10219 
10220 	/*
10221 	 * Update usable space statistics.
10222 	 */
10223 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10224 	    != NULL)
10225 		vdev_sync_done(vd, txg);
10226 
10227 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10228 	metaslab_class_evict_old(spa->spa_log_class, txg);
10229 	/* spa_embedded_log_class has only one metaslab per vdev. */
10230 	metaslab_class_evict_old(spa->spa_special_class, txg);
10231 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10232 
10233 	spa_sync_close_syncing_log_sm(spa);
10234 
10235 	spa_update_dspace(spa);
10236 
10237 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10238 		vdev_autotrim_kick(spa);
10239 
10240 	/*
10241 	 * It had better be the case that we didn't dirty anything
10242 	 * since vdev_config_sync().
10243 	 */
10244 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10245 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10246 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10247 
10248 	while (zfs_pause_spa_sync)
10249 		delay(1);
10250 
10251 	spa->spa_sync_pass = 0;
10252 
10253 	/*
10254 	 * Update the last synced uberblock here. We want to do this at
10255 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10256 	 * will be guaranteed that all the processing associated with
10257 	 * that txg has been completed.
10258 	 */
10259 	spa->spa_ubsync = spa->spa_uberblock;
10260 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10261 
10262 	spa_handle_ignored_writes(spa);
10263 
10264 	/*
10265 	 * If any async tasks have been requested, kick them off.
10266 	 */
10267 	spa_async_dispatch(spa);
10268 }
10269 
10270 /*
10271  * Sync all pools.  We don't want to hold the namespace lock across these
10272  * operations, so we take a reference on the spa_t and drop the lock during the
10273  * sync.
10274  */
10275 void
10276 spa_sync_allpools(void)
10277 {
10278 	spa_t *spa = NULL;
10279 	mutex_enter(&spa_namespace_lock);
10280 	while ((spa = spa_next(spa)) != NULL) {
10281 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10282 		    !spa_writeable(spa) || spa_suspended(spa))
10283 			continue;
10284 		spa_open_ref(spa, FTAG);
10285 		mutex_exit(&spa_namespace_lock);
10286 		txg_wait_synced(spa_get_dsl(spa), 0);
10287 		mutex_enter(&spa_namespace_lock);
10288 		spa_close(spa, FTAG);
10289 	}
10290 	mutex_exit(&spa_namespace_lock);
10291 }
10292 
10293 taskq_t *
10294 spa_sync_tq_create(spa_t *spa, const char *name)
10295 {
10296 	kthread_t **kthreads;
10297 
10298 	ASSERT(spa->spa_sync_tq == NULL);
10299 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10300 
10301 	/*
10302 	 * - do not allow more allocators than cpus.
10303 	 * - there may be more cpus than allocators.
10304 	 * - do not allow more sync taskq threads than allocators or cpus.
10305 	 */
10306 	int nthreads = spa->spa_alloc_count;
10307 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10308 	    nthreads, KM_SLEEP);
10309 
10310 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10311 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10312 	VERIFY(spa->spa_sync_tq != NULL);
10313 	VERIFY(kthreads != NULL);
10314 
10315 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10316 	for (int i = 0; i < nthreads; i++, ti++) {
10317 		ti->sti_thread = kthreads[i];
10318 		ti->sti_allocator = i;
10319 	}
10320 
10321 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10322 	return (spa->spa_sync_tq);
10323 }
10324 
10325 void
10326 spa_sync_tq_destroy(spa_t *spa)
10327 {
10328 	ASSERT(spa->spa_sync_tq != NULL);
10329 
10330 	taskq_wait(spa->spa_sync_tq);
10331 	taskq_destroy(spa->spa_sync_tq);
10332 	kmem_free(spa->spa_syncthreads,
10333 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10334 	spa->spa_sync_tq = NULL;
10335 }
10336 
10337 uint_t
10338 spa_acq_allocator(spa_t *spa)
10339 {
10340 	int i;
10341 
10342 	if (spa->spa_alloc_count == 1)
10343 		return (0);
10344 
10345 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10346 	uint_t r = spa->spa_allocs_use->sau_rotor;
10347 	do {
10348 		if (++r == spa->spa_alloc_count)
10349 			r = 0;
10350 	} while (spa->spa_allocs_use->sau_inuse[r]);
10351 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10352 	spa->spa_allocs_use->sau_rotor = r;
10353 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10354 
10355 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10356 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10357 		if (ti->sti_thread == curthread) {
10358 			ti->sti_allocator = r;
10359 			break;
10360 		}
10361 	}
10362 	ASSERT3S(i, <, spa->spa_alloc_count);
10363 	return (r);
10364 }
10365 
10366 void
10367 spa_rel_allocator(spa_t *spa, uint_t allocator)
10368 {
10369 	if (spa->spa_alloc_count > 1)
10370 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10371 }
10372 
10373 void
10374 spa_select_allocator(zio_t *zio)
10375 {
10376 	zbookmark_phys_t *bm = &zio->io_bookmark;
10377 	spa_t *spa = zio->io_spa;
10378 
10379 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10380 
10381 	/*
10382 	 * A gang block (for example) may have inherited its parent's
10383 	 * allocator, in which case there is nothing further to do here.
10384 	 */
10385 	if (ZIO_HAS_ALLOCATOR(zio))
10386 		return;
10387 
10388 	ASSERT(spa != NULL);
10389 	ASSERT(bm != NULL);
10390 
10391 	/*
10392 	 * First try to use an allocator assigned to the syncthread, and set
10393 	 * the corresponding write issue taskq for the allocator.
10394 	 * Note, we must have an open pool to do this.
10395 	 */
10396 	if (spa->spa_sync_tq != NULL) {
10397 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10398 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10399 			if (ti->sti_thread == curthread) {
10400 				zio->io_allocator = ti->sti_allocator;
10401 				return;
10402 			}
10403 		}
10404 	}
10405 
10406 	/*
10407 	 * We want to try to use as many allocators as possible to help improve
10408 	 * performance, but we also want logically adjacent IOs to be physically
10409 	 * adjacent to improve sequential read performance. We chunk each object
10410 	 * into 2^20 block regions, and then hash based on the objset, object,
10411 	 * level, and region to accomplish both of these goals.
10412 	 */
10413 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10414 	    bm->zb_blkid >> 20);
10415 
10416 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10417 }
10418 
10419 /*
10420  * ==========================================================================
10421  * Miscellaneous routines
10422  * ==========================================================================
10423  */
10424 
10425 /*
10426  * Remove all pools in the system.
10427  */
10428 void
10429 spa_evict_all(void)
10430 {
10431 	spa_t *spa;
10432 
10433 	/*
10434 	 * Remove all cached state.  All pools should be closed now,
10435 	 * so every spa in the AVL tree should be unreferenced.
10436 	 */
10437 	mutex_enter(&spa_namespace_lock);
10438 	while ((spa = spa_next(NULL)) != NULL) {
10439 		/*
10440 		 * Stop async tasks.  The async thread may need to detach
10441 		 * a device that's been replaced, which requires grabbing
10442 		 * spa_namespace_lock, so we must drop it here.
10443 		 */
10444 		spa_open_ref(spa, FTAG);
10445 		mutex_exit(&spa_namespace_lock);
10446 		spa_async_suspend(spa);
10447 		mutex_enter(&spa_namespace_lock);
10448 		spa_close(spa, FTAG);
10449 
10450 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10451 			spa_unload(spa);
10452 			spa_deactivate(spa);
10453 		}
10454 		spa_remove(spa);
10455 	}
10456 	mutex_exit(&spa_namespace_lock);
10457 }
10458 
10459 vdev_t *
10460 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10461 {
10462 	vdev_t *vd;
10463 	int i;
10464 
10465 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10466 		return (vd);
10467 
10468 	if (aux) {
10469 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10470 			vd = spa->spa_l2cache.sav_vdevs[i];
10471 			if (vd->vdev_guid == guid)
10472 				return (vd);
10473 		}
10474 
10475 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10476 			vd = spa->spa_spares.sav_vdevs[i];
10477 			if (vd->vdev_guid == guid)
10478 				return (vd);
10479 		}
10480 	}
10481 
10482 	return (NULL);
10483 }
10484 
10485 void
10486 spa_upgrade(spa_t *spa, uint64_t version)
10487 {
10488 	ASSERT(spa_writeable(spa));
10489 
10490 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10491 
10492 	/*
10493 	 * This should only be called for a non-faulted pool, and since a
10494 	 * future version would result in an unopenable pool, this shouldn't be
10495 	 * possible.
10496 	 */
10497 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10498 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10499 
10500 	spa->spa_uberblock.ub_version = version;
10501 	vdev_config_dirty(spa->spa_root_vdev);
10502 
10503 	spa_config_exit(spa, SCL_ALL, FTAG);
10504 
10505 	txg_wait_synced(spa_get_dsl(spa), 0);
10506 }
10507 
10508 static boolean_t
10509 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10510 {
10511 	(void) spa;
10512 	int i;
10513 	uint64_t vdev_guid;
10514 
10515 	for (i = 0; i < sav->sav_count; i++)
10516 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10517 			return (B_TRUE);
10518 
10519 	for (i = 0; i < sav->sav_npending; i++) {
10520 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10521 		    &vdev_guid) == 0 && vdev_guid == guid)
10522 			return (B_TRUE);
10523 	}
10524 
10525 	return (B_FALSE);
10526 }
10527 
10528 boolean_t
10529 spa_has_l2cache(spa_t *spa, uint64_t guid)
10530 {
10531 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10532 }
10533 
10534 boolean_t
10535 spa_has_spare(spa_t *spa, uint64_t guid)
10536 {
10537 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10538 }
10539 
10540 /*
10541  * Check if a pool has an active shared spare device.
10542  * Note: reference count of an active spare is 2, as a spare and as a replace
10543  */
10544 static boolean_t
10545 spa_has_active_shared_spare(spa_t *spa)
10546 {
10547 	int i, refcnt;
10548 	uint64_t pool;
10549 	spa_aux_vdev_t *sav = &spa->spa_spares;
10550 
10551 	for (i = 0; i < sav->sav_count; i++) {
10552 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10553 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10554 		    refcnt > 2)
10555 			return (B_TRUE);
10556 	}
10557 
10558 	return (B_FALSE);
10559 }
10560 
10561 uint64_t
10562 spa_total_metaslabs(spa_t *spa)
10563 {
10564 	vdev_t *rvd = spa->spa_root_vdev;
10565 
10566 	uint64_t m = 0;
10567 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10568 		vdev_t *vd = rvd->vdev_child[c];
10569 		if (!vdev_is_concrete(vd))
10570 			continue;
10571 		m += vd->vdev_ms_count;
10572 	}
10573 	return (m);
10574 }
10575 
10576 /*
10577  * Notify any waiting threads that some activity has switched from being in-
10578  * progress to not-in-progress so that the thread can wake up and determine
10579  * whether it is finished waiting.
10580  */
10581 void
10582 spa_notify_waiters(spa_t *spa)
10583 {
10584 	/*
10585 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10586 	 * happening between the waiting thread's check and cv_wait.
10587 	 */
10588 	mutex_enter(&spa->spa_activities_lock);
10589 	cv_broadcast(&spa->spa_activities_cv);
10590 	mutex_exit(&spa->spa_activities_lock);
10591 }
10592 
10593 /*
10594  * Notify any waiting threads that the pool is exporting, and then block until
10595  * they are finished using the spa_t.
10596  */
10597 void
10598 spa_wake_waiters(spa_t *spa)
10599 {
10600 	mutex_enter(&spa->spa_activities_lock);
10601 	spa->spa_waiters_cancel = B_TRUE;
10602 	cv_broadcast(&spa->spa_activities_cv);
10603 	while (spa->spa_waiters != 0)
10604 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10605 	spa->spa_waiters_cancel = B_FALSE;
10606 	mutex_exit(&spa->spa_activities_lock);
10607 }
10608 
10609 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10610 static boolean_t
10611 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10612 {
10613 	spa_t *spa = vd->vdev_spa;
10614 
10615 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10616 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10617 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10618 	    activity == ZPOOL_WAIT_TRIM);
10619 
10620 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10621 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10622 
10623 	mutex_exit(&spa->spa_activities_lock);
10624 	mutex_enter(lock);
10625 	mutex_enter(&spa->spa_activities_lock);
10626 
10627 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10628 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10629 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10630 	mutex_exit(lock);
10631 
10632 	if (in_progress)
10633 		return (B_TRUE);
10634 
10635 	for (int i = 0; i < vd->vdev_children; i++) {
10636 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10637 		    activity))
10638 			return (B_TRUE);
10639 	}
10640 
10641 	return (B_FALSE);
10642 }
10643 
10644 /*
10645  * If use_guid is true, this checks whether the vdev specified by guid is
10646  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10647  * is being initialized/trimmed. The caller must hold the config lock and
10648  * spa_activities_lock.
10649  */
10650 static int
10651 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10652     zpool_wait_activity_t activity, boolean_t *in_progress)
10653 {
10654 	mutex_exit(&spa->spa_activities_lock);
10655 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10656 	mutex_enter(&spa->spa_activities_lock);
10657 
10658 	vdev_t *vd;
10659 	if (use_guid) {
10660 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10661 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10662 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10663 			return (EINVAL);
10664 		}
10665 	} else {
10666 		vd = spa->spa_root_vdev;
10667 	}
10668 
10669 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10670 
10671 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10672 	return (0);
10673 }
10674 
10675 /*
10676  * Locking for waiting threads
10677  * ---------------------------
10678  *
10679  * Waiting threads need a way to check whether a given activity is in progress,
10680  * and then, if it is, wait for it to complete. Each activity will have some
10681  * in-memory representation of the relevant on-disk state which can be used to
10682  * determine whether or not the activity is in progress. The in-memory state and
10683  * the locking used to protect it will be different for each activity, and may
10684  * not be suitable for use with a cvar (e.g., some state is protected by the
10685  * config lock). To allow waiting threads to wait without any races, another
10686  * lock, spa_activities_lock, is used.
10687  *
10688  * When the state is checked, both the activity-specific lock (if there is one)
10689  * and spa_activities_lock are held. In some cases, the activity-specific lock
10690  * is acquired explicitly (e.g. the config lock). In others, the locking is
10691  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10692  * thread releases the activity-specific lock and, if the activity is in
10693  * progress, then cv_waits using spa_activities_lock.
10694  *
10695  * The waiting thread is woken when another thread, one completing some
10696  * activity, updates the state of the activity and then calls
10697  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10698  * needs to hold its activity-specific lock when updating the state, and this
10699  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10700  *
10701  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10702  * and because it is held when the waiting thread checks the state of the
10703  * activity, it can never be the case that the completing thread both updates
10704  * the activity state and cv_broadcasts in between the waiting thread's check
10705  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10706  *
10707  * In order to prevent deadlock, when the waiting thread does its check, in some
10708  * cases it will temporarily drop spa_activities_lock in order to acquire the
10709  * activity-specific lock. The order in which spa_activities_lock and the
10710  * activity specific lock are acquired in the waiting thread is determined by
10711  * the order in which they are acquired in the completing thread; if the
10712  * completing thread calls spa_notify_waiters with the activity-specific lock
10713  * held, then the waiting thread must also acquire the activity-specific lock
10714  * first.
10715  */
10716 
10717 static int
10718 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10719     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10720 {
10721 	int error = 0;
10722 
10723 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10724 
10725 	switch (activity) {
10726 	case ZPOOL_WAIT_CKPT_DISCARD:
10727 		*in_progress =
10728 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10729 		    zap_contains(spa_meta_objset(spa),
10730 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10731 		    ENOENT);
10732 		break;
10733 	case ZPOOL_WAIT_FREE:
10734 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10735 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10736 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10737 		    spa_livelist_delete_check(spa));
10738 		break;
10739 	case ZPOOL_WAIT_INITIALIZE:
10740 	case ZPOOL_WAIT_TRIM:
10741 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10742 		    activity, in_progress);
10743 		break;
10744 	case ZPOOL_WAIT_REPLACE:
10745 		mutex_exit(&spa->spa_activities_lock);
10746 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10747 		mutex_enter(&spa->spa_activities_lock);
10748 
10749 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10750 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10751 		break;
10752 	case ZPOOL_WAIT_REMOVE:
10753 		*in_progress = (spa->spa_removing_phys.sr_state ==
10754 		    DSS_SCANNING);
10755 		break;
10756 	case ZPOOL_WAIT_RESILVER:
10757 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10758 		if (*in_progress)
10759 			break;
10760 		zfs_fallthrough;
10761 	case ZPOOL_WAIT_SCRUB:
10762 	{
10763 		boolean_t scanning, paused, is_scrub;
10764 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10765 
10766 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10767 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10768 		paused = dsl_scan_is_paused_scrub(scn);
10769 		*in_progress = (scanning && !paused &&
10770 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10771 		break;
10772 	}
10773 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10774 	{
10775 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10776 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10777 		break;
10778 	}
10779 	default:
10780 		panic("unrecognized value for activity %d", activity);
10781 	}
10782 
10783 	return (error);
10784 }
10785 
10786 static int
10787 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10788     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10789 {
10790 	/*
10791 	 * The tag is used to distinguish between instances of an activity.
10792 	 * 'initialize' and 'trim' are the only activities that we use this for.
10793 	 * The other activities can only have a single instance in progress in a
10794 	 * pool at one time, making the tag unnecessary.
10795 	 *
10796 	 * There can be multiple devices being replaced at once, but since they
10797 	 * all finish once resilvering finishes, we don't bother keeping track
10798 	 * of them individually, we just wait for them all to finish.
10799 	 */
10800 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10801 	    activity != ZPOOL_WAIT_TRIM)
10802 		return (EINVAL);
10803 
10804 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10805 		return (EINVAL);
10806 
10807 	spa_t *spa;
10808 	int error = spa_open(pool, &spa, FTAG);
10809 	if (error != 0)
10810 		return (error);
10811 
10812 	/*
10813 	 * Increment the spa's waiter count so that we can call spa_close and
10814 	 * still ensure that the spa_t doesn't get freed before this thread is
10815 	 * finished with it when the pool is exported. We want to call spa_close
10816 	 * before we start waiting because otherwise the additional ref would
10817 	 * prevent the pool from being exported or destroyed throughout the
10818 	 * potentially long wait.
10819 	 */
10820 	mutex_enter(&spa->spa_activities_lock);
10821 	spa->spa_waiters++;
10822 	spa_close(spa, FTAG);
10823 
10824 	*waited = B_FALSE;
10825 	for (;;) {
10826 		boolean_t in_progress;
10827 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10828 		    &in_progress);
10829 
10830 		if (error || !in_progress || spa->spa_waiters_cancel)
10831 			break;
10832 
10833 		*waited = B_TRUE;
10834 
10835 		if (cv_wait_sig(&spa->spa_activities_cv,
10836 		    &spa->spa_activities_lock) == 0) {
10837 			error = EINTR;
10838 			break;
10839 		}
10840 	}
10841 
10842 	spa->spa_waiters--;
10843 	cv_signal(&spa->spa_waiters_cv);
10844 	mutex_exit(&spa->spa_activities_lock);
10845 
10846 	return (error);
10847 }
10848 
10849 /*
10850  * Wait for a particular instance of the specified activity to complete, where
10851  * the instance is identified by 'tag'
10852  */
10853 int
10854 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10855     boolean_t *waited)
10856 {
10857 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10858 }
10859 
10860 /*
10861  * Wait for all instances of the specified activity complete
10862  */
10863 int
10864 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10865 {
10866 
10867 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10868 }
10869 
10870 sysevent_t *
10871 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10872 {
10873 	sysevent_t *ev = NULL;
10874 #ifdef _KERNEL
10875 	nvlist_t *resource;
10876 
10877 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10878 	if (resource) {
10879 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10880 		ev->resource = resource;
10881 	}
10882 #else
10883 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10884 #endif
10885 	return (ev);
10886 }
10887 
10888 void
10889 spa_event_post(sysevent_t *ev)
10890 {
10891 #ifdef _KERNEL
10892 	if (ev) {
10893 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10894 		kmem_free(ev, sizeof (*ev));
10895 	}
10896 #else
10897 	(void) ev;
10898 #endif
10899 }
10900 
10901 /*
10902  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10903  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10904  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10905  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10906  * or zdb as real changes.
10907  */
10908 void
10909 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10910 {
10911 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10912 }
10913 
10914 /* state manipulation functions */
10915 EXPORT_SYMBOL(spa_open);
10916 EXPORT_SYMBOL(spa_open_rewind);
10917 EXPORT_SYMBOL(spa_get_stats);
10918 EXPORT_SYMBOL(spa_create);
10919 EXPORT_SYMBOL(spa_import);
10920 EXPORT_SYMBOL(spa_tryimport);
10921 EXPORT_SYMBOL(spa_destroy);
10922 EXPORT_SYMBOL(spa_export);
10923 EXPORT_SYMBOL(spa_reset);
10924 EXPORT_SYMBOL(spa_async_request);
10925 EXPORT_SYMBOL(spa_async_suspend);
10926 EXPORT_SYMBOL(spa_async_resume);
10927 EXPORT_SYMBOL(spa_inject_addref);
10928 EXPORT_SYMBOL(spa_inject_delref);
10929 EXPORT_SYMBOL(spa_scan_stat_init);
10930 EXPORT_SYMBOL(spa_scan_get_stats);
10931 
10932 /* device manipulation */
10933 EXPORT_SYMBOL(spa_vdev_add);
10934 EXPORT_SYMBOL(spa_vdev_attach);
10935 EXPORT_SYMBOL(spa_vdev_detach);
10936 EXPORT_SYMBOL(spa_vdev_setpath);
10937 EXPORT_SYMBOL(spa_vdev_setfru);
10938 EXPORT_SYMBOL(spa_vdev_split_mirror);
10939 
10940 /* spare statech is global across all pools) */
10941 EXPORT_SYMBOL(spa_spare_add);
10942 EXPORT_SYMBOL(spa_spare_remove);
10943 EXPORT_SYMBOL(spa_spare_exists);
10944 EXPORT_SYMBOL(spa_spare_activate);
10945 
10946 /* L2ARC statech is global across all pools) */
10947 EXPORT_SYMBOL(spa_l2cache_add);
10948 EXPORT_SYMBOL(spa_l2cache_remove);
10949 EXPORT_SYMBOL(spa_l2cache_exists);
10950 EXPORT_SYMBOL(spa_l2cache_activate);
10951 EXPORT_SYMBOL(spa_l2cache_drop);
10952 
10953 /* scanning */
10954 EXPORT_SYMBOL(spa_scan);
10955 EXPORT_SYMBOL(spa_scan_range);
10956 EXPORT_SYMBOL(spa_scan_stop);
10957 
10958 /* spa syncing */
10959 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10960 EXPORT_SYMBOL(spa_sync_allpools);
10961 
10962 /* properties */
10963 EXPORT_SYMBOL(spa_prop_set);
10964 EXPORT_SYMBOL(spa_prop_get);
10965 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10966 
10967 /* asynchronous event notification */
10968 EXPORT_SYMBOL(spa_event_notify);
10969 
10970 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10971 	"Percentage of CPUs to run a metaslab preload taskq");
10972 
10973 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10974 	"log2 fraction of arc that can be used by inflight I/Os when "
10975 	"verifying pool during import");
10976 
10977 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10978 	"Set to traverse metadata on pool import");
10979 
10980 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10981 	"Set to traverse data on pool import");
10982 
10983 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10984 	"Print vdev tree to zfs_dbgmsg during pool import");
10985 
10986 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
10987 	"Percentage of CPUs to run an IO worker thread");
10988 
10989 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
10990 	"Number of threads per IO worker taskqueue");
10991 
10992 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10993 	"Allow importing pool with up to this number of missing top-level "
10994 	"vdevs (in read-only mode)");
10995 
10996 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10997 	ZMOD_RW, "Set the livelist condense zthr to pause");
10998 
10999 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11000 	ZMOD_RW, "Set the livelist condense synctask to pause");
11001 
11002 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11003 	INT, ZMOD_RW,
11004 	"Whether livelist condensing was canceled in the synctask");
11005 
11006 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11007 	INT, ZMOD_RW,
11008 	"Whether livelist condensing was canceled in the zthr function");
11009 
11010 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11011 	ZMOD_RW,
11012 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11013 	"was being condensed");
11014 
11015 #ifdef _KERNEL
11016 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11017 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11018 	"Configure IO queues for read IO");
11019 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11020 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11021 	"Configure IO queues for write IO");
11022 #endif
11023 
11024 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11025 	"Number of CPUs per write issue taskq");
11026