xref: /linux/mm/zsmalloc.c (revision 839c4f596f898edc424070dc8b517381572f8502)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: PG_zsmalloc, lower 16 bit locate the first object
24  *		offset in a subpage of a zspage
25  *
26  * Usage of struct page flags:
27  *	PG_private: identifies the first component page
28  *	PG_owner_priv_1: identifies the huge component page
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 /*
35  * lock ordering:
36  *	page_lock
37  *	pool->migrate_lock
38  *	class->lock
39  *	zspage->lock
40  */
41 
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/sprintf.h>
58 #include <linux/shrinker.h>
59 #include <linux/types.h>
60 #include <linux/debugfs.h>
61 #include <linux/zsmalloc.h>
62 #include <linux/zpool.h>
63 #include <linux/migrate.h>
64 #include <linux/wait.h>
65 #include <linux/pagemap.h>
66 #include <linux/fs.h>
67 #include <linux/local_lock.h>
68 
69 #define ZSPAGE_MAGIC	0x58
70 
71 /*
72  * This must be power of 2 and greater than or equal to sizeof(link_free).
73  * These two conditions ensure that any 'struct link_free' itself doesn't
74  * span more than 1 page which avoids complex case of mapping 2 pages simply
75  * to restore link_free pointer values.
76  */
77 #define ZS_ALIGN		8
78 
79 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
80 
81 /*
82  * Object location (<PFN>, <obj_idx>) is encoded as
83  * a single (unsigned long) handle value.
84  *
85  * Note that object index <obj_idx> starts from 0.
86  *
87  * This is made more complicated by various memory models and PAE.
88  */
89 
90 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
91 #ifdef MAX_PHYSMEM_BITS
92 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
93 #else
94 /*
95  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
96  * be PAGE_SHIFT
97  */
98 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #endif
100 #endif
101 
102 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
103 
104 /*
105  * Head in allocated object should have OBJ_ALLOCATED_TAG
106  * to identify the object was allocated or not.
107  * It's okay to add the status bit in the least bit because
108  * header keeps handle which is 4byte-aligned address so we
109  * have room for two bit at least.
110  */
111 #define OBJ_ALLOCATED_TAG 1
112 
113 #define OBJ_TAG_BITS	1
114 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
115 
116 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
117 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118 
119 #define HUGE_BITS	1
120 #define FULLNESS_BITS	4
121 #define CLASS_BITS	8
122 #define MAGIC_VAL_BITS	8
123 
124 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125 
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
131 
132 /*
133  * On systems with 4K page size, this gives 255 size classes! There is a
134  * trader-off here:
135  *  - Large number of size classes is potentially wasteful as free page are
136  *    spread across these classes
137  *  - Small number of size classes causes large internal fragmentation
138  *  - Probably its better to use specific size classes (empirically
139  *    determined). NOTE: all those class sizes must be set as multiple of
140  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141  *
142  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143  *  (reason above)
144  */
145 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 				      ZS_SIZE_CLASS_DELTA) + 1)
148 
149 /*
150  * Pages are distinguished by the ratio of used memory (that is the ratio
151  * of ->inuse objects to all objects that page can store). For example,
152  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153  *
154  * The number of fullness groups is not random. It allows us to keep
155  * difference between the least busy page in the group (minimum permitted
156  * number of ->inuse objects) and the most busy page (maximum permitted
157  * number of ->inuse objects) at a reasonable value.
158  */
159 enum fullness_group {
160 	ZS_INUSE_RATIO_0,
161 	ZS_INUSE_RATIO_10,
162 	/* NOTE: 8 more fullness groups here */
163 	ZS_INUSE_RATIO_99       = 10,
164 	ZS_INUSE_RATIO_100,
165 	NR_FULLNESS_GROUPS,
166 };
167 
168 enum class_stat_type {
169 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
171 	ZS_OBJS_INUSE,
172 	NR_CLASS_STAT_TYPES,
173 };
174 
175 struct zs_size_stat {
176 	unsigned long objs[NR_CLASS_STAT_TYPES];
177 };
178 
179 #ifdef CONFIG_ZSMALLOC_STAT
180 static struct dentry *zs_stat_root;
181 #endif
182 
183 static size_t huge_class_size;
184 
185 struct size_class {
186 	spinlock_t lock;
187 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
188 	/*
189 	 * Size of objects stored in this class. Must be multiple
190 	 * of ZS_ALIGN.
191 	 */
192 	int size;
193 	int objs_per_zspage;
194 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
195 	int pages_per_zspage;
196 
197 	unsigned int index;
198 	struct zs_size_stat stats;
199 };
200 
201 /*
202  * Placed within free objects to form a singly linked list.
203  * For every zspage, zspage->freeobj gives head of this list.
204  *
205  * This must be power of 2 and less than or equal to ZS_ALIGN
206  */
207 struct link_free {
208 	union {
209 		/*
210 		 * Free object index;
211 		 * It's valid for non-allocated object
212 		 */
213 		unsigned long next;
214 		/*
215 		 * Handle of allocated object.
216 		 */
217 		unsigned long handle;
218 	};
219 };
220 
221 struct zs_pool {
222 	const char *name;
223 
224 	struct size_class *size_class[ZS_SIZE_CLASSES];
225 	struct kmem_cache *handle_cachep;
226 	struct kmem_cache *zspage_cachep;
227 
228 	atomic_long_t pages_allocated;
229 
230 	struct zs_pool_stats stats;
231 
232 	/* Compact classes */
233 	struct shrinker *shrinker;
234 
235 #ifdef CONFIG_ZSMALLOC_STAT
236 	struct dentry *stat_dentry;
237 #endif
238 #ifdef CONFIG_COMPACTION
239 	struct work_struct free_work;
240 #endif
241 	/* protect page/zspage migration */
242 	rwlock_t migrate_lock;
243 	atomic_t compaction_in_progress;
244 };
245 
246 struct zspage {
247 	struct {
248 		unsigned int huge:HUGE_BITS;
249 		unsigned int fullness:FULLNESS_BITS;
250 		unsigned int class:CLASS_BITS + 1;
251 		unsigned int magic:MAGIC_VAL_BITS;
252 	};
253 	unsigned int inuse;
254 	unsigned int freeobj;
255 	struct page *first_page;
256 	struct list_head list; /* fullness list */
257 	struct zs_pool *pool;
258 	rwlock_t lock;
259 };
260 
261 struct mapping_area {
262 	local_lock_t lock;
263 	char *vm_buf; /* copy buffer for objects that span pages */
264 	char *vm_addr; /* address of kmap_atomic()'ed pages */
265 	enum zs_mapmode vm_mm; /* mapping mode */
266 };
267 
268 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
269 static void SetZsHugePage(struct zspage *zspage)
270 {
271 	zspage->huge = 1;
272 }
273 
274 static bool ZsHugePage(struct zspage *zspage)
275 {
276 	return zspage->huge;
277 }
278 
279 static void migrate_lock_init(struct zspage *zspage);
280 static void migrate_read_lock(struct zspage *zspage);
281 static void migrate_read_unlock(struct zspage *zspage);
282 static void migrate_write_lock(struct zspage *zspage);
283 static void migrate_write_unlock(struct zspage *zspage);
284 
285 #ifdef CONFIG_COMPACTION
286 static void kick_deferred_free(struct zs_pool *pool);
287 static void init_deferred_free(struct zs_pool *pool);
288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289 #else
290 static void kick_deferred_free(struct zs_pool *pool) {}
291 static void init_deferred_free(struct zs_pool *pool) {}
292 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
293 #endif
294 
295 static int create_cache(struct zs_pool *pool)
296 {
297 	char *name;
298 
299 	name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
300 	if (!name)
301 		return -ENOMEM;
302 	pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
303 						0, 0, NULL);
304 	kfree(name);
305 	if (!pool->handle_cachep)
306 		return -EINVAL;
307 
308 	name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
309 	if (!name)
310 		return -ENOMEM;
311 	pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
312 						0, 0, NULL);
313 	kfree(name);
314 	if (!pool->zspage_cachep) {
315 		kmem_cache_destroy(pool->handle_cachep);
316 		pool->handle_cachep = NULL;
317 		return -EINVAL;
318 	}
319 
320 	return 0;
321 }
322 
323 static void destroy_cache(struct zs_pool *pool)
324 {
325 	kmem_cache_destroy(pool->handle_cachep);
326 	kmem_cache_destroy(pool->zspage_cachep);
327 }
328 
329 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
330 {
331 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
332 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
333 }
334 
335 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
336 {
337 	kmem_cache_free(pool->handle_cachep, (void *)handle);
338 }
339 
340 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
341 {
342 	return kmem_cache_zalloc(pool->zspage_cachep,
343 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
344 }
345 
346 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
347 {
348 	kmem_cache_free(pool->zspage_cachep, zspage);
349 }
350 
351 /* class->lock(which owns the handle) synchronizes races */
352 static void record_obj(unsigned long handle, unsigned long obj)
353 {
354 	*(unsigned long *)handle = obj;
355 }
356 
357 /* zpool driver */
358 
359 #ifdef CONFIG_ZPOOL
360 
361 static void *zs_zpool_create(const char *name, gfp_t gfp)
362 {
363 	/*
364 	 * Ignore global gfp flags: zs_malloc() may be invoked from
365 	 * different contexts and its caller must provide a valid
366 	 * gfp mask.
367 	 */
368 	return zs_create_pool(name);
369 }
370 
371 static void zs_zpool_destroy(void *pool)
372 {
373 	zs_destroy_pool(pool);
374 }
375 
376 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
377 			unsigned long *handle)
378 {
379 	*handle = zs_malloc(pool, size, gfp);
380 
381 	if (IS_ERR_VALUE(*handle))
382 		return PTR_ERR((void *)*handle);
383 	return 0;
384 }
385 static void zs_zpool_free(void *pool, unsigned long handle)
386 {
387 	zs_free(pool, handle);
388 }
389 
390 static void *zs_zpool_map(void *pool, unsigned long handle,
391 			enum zpool_mapmode mm)
392 {
393 	enum zs_mapmode zs_mm;
394 
395 	switch (mm) {
396 	case ZPOOL_MM_RO:
397 		zs_mm = ZS_MM_RO;
398 		break;
399 	case ZPOOL_MM_WO:
400 		zs_mm = ZS_MM_WO;
401 		break;
402 	case ZPOOL_MM_RW:
403 	default:
404 		zs_mm = ZS_MM_RW;
405 		break;
406 	}
407 
408 	return zs_map_object(pool, handle, zs_mm);
409 }
410 static void zs_zpool_unmap(void *pool, unsigned long handle)
411 {
412 	zs_unmap_object(pool, handle);
413 }
414 
415 static u64 zs_zpool_total_pages(void *pool)
416 {
417 	return zs_get_total_pages(pool);
418 }
419 
420 static struct zpool_driver zs_zpool_driver = {
421 	.type =			  "zsmalloc",
422 	.owner =		  THIS_MODULE,
423 	.create =		  zs_zpool_create,
424 	.destroy =		  zs_zpool_destroy,
425 	.malloc_support_movable = true,
426 	.malloc =		  zs_zpool_malloc,
427 	.free =			  zs_zpool_free,
428 	.map =			  zs_zpool_map,
429 	.unmap =		  zs_zpool_unmap,
430 	.total_pages =		  zs_zpool_total_pages,
431 };
432 
433 MODULE_ALIAS("zpool-zsmalloc");
434 #endif /* CONFIG_ZPOOL */
435 
436 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
437 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
438 	.lock	= INIT_LOCAL_LOCK(lock),
439 };
440 
441 static __maybe_unused int is_first_page(struct page *page)
442 {
443 	return PagePrivate(page);
444 }
445 
446 /* Protected by class->lock */
447 static inline int get_zspage_inuse(struct zspage *zspage)
448 {
449 	return zspage->inuse;
450 }
451 
452 
453 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
454 {
455 	zspage->inuse += val;
456 }
457 
458 static inline struct page *get_first_page(struct zspage *zspage)
459 {
460 	struct page *first_page = zspage->first_page;
461 
462 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
463 	return first_page;
464 }
465 
466 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffff
467 
468 static inline void reset_first_obj_offset(struct page *page)
469 {
470 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
471 	page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
472 }
473 
474 static inline unsigned int get_first_obj_offset(struct page *page)
475 {
476 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
477 	return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
478 }
479 
480 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
481 {
482 	/* With 16 bit available, we can support offsets into 64 KiB pages. */
483 	BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
484 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
485 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
486 	page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
487 	page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
488 }
489 
490 static inline unsigned int get_freeobj(struct zspage *zspage)
491 {
492 	return zspage->freeobj;
493 }
494 
495 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
496 {
497 	zspage->freeobj = obj;
498 }
499 
500 static struct size_class *zspage_class(struct zs_pool *pool,
501 				       struct zspage *zspage)
502 {
503 	return pool->size_class[zspage->class];
504 }
505 
506 /*
507  * zsmalloc divides the pool into various size classes where each
508  * class maintains a list of zspages where each zspage is divided
509  * into equal sized chunks. Each allocation falls into one of these
510  * classes depending on its size. This function returns index of the
511  * size class which has chunk size big enough to hold the given size.
512  */
513 static int get_size_class_index(int size)
514 {
515 	int idx = 0;
516 
517 	if (likely(size > ZS_MIN_ALLOC_SIZE))
518 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
519 				ZS_SIZE_CLASS_DELTA);
520 
521 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
522 }
523 
524 static inline void class_stat_add(struct size_class *class, int type,
525 				  unsigned long cnt)
526 {
527 	class->stats.objs[type] += cnt;
528 }
529 
530 static inline void class_stat_sub(struct size_class *class, int type,
531 				  unsigned long cnt)
532 {
533 	class->stats.objs[type] -= cnt;
534 }
535 
536 static inline unsigned long class_stat_read(struct size_class *class, int type)
537 {
538 	return class->stats.objs[type];
539 }
540 
541 #ifdef CONFIG_ZSMALLOC_STAT
542 
543 static void __init zs_stat_init(void)
544 {
545 	if (!debugfs_initialized()) {
546 		pr_warn("debugfs not available, stat dir not created\n");
547 		return;
548 	}
549 
550 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
551 }
552 
553 static void __exit zs_stat_exit(void)
554 {
555 	debugfs_remove_recursive(zs_stat_root);
556 }
557 
558 static unsigned long zs_can_compact(struct size_class *class);
559 
560 static int zs_stats_size_show(struct seq_file *s, void *v)
561 {
562 	int i, fg;
563 	struct zs_pool *pool = s->private;
564 	struct size_class *class;
565 	int objs_per_zspage;
566 	unsigned long obj_allocated, obj_used, pages_used, freeable;
567 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
568 	unsigned long total_freeable = 0;
569 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
570 
571 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
572 			"class", "size", "10%", "20%", "30%", "40%",
573 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
574 			"obj_allocated", "obj_used", "pages_used",
575 			"pages_per_zspage", "freeable");
576 
577 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
578 
579 		class = pool->size_class[i];
580 
581 		if (class->index != i)
582 			continue;
583 
584 		spin_lock(&class->lock);
585 
586 		seq_printf(s, " %5u %5u ", i, class->size);
587 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
588 			inuse_totals[fg] += class_stat_read(class, fg);
589 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
590 		}
591 
592 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
593 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
594 		freeable = zs_can_compact(class);
595 		spin_unlock(&class->lock);
596 
597 		objs_per_zspage = class->objs_per_zspage;
598 		pages_used = obj_allocated / objs_per_zspage *
599 				class->pages_per_zspage;
600 
601 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
602 			   obj_allocated, obj_used, pages_used,
603 			   class->pages_per_zspage, freeable);
604 
605 		total_objs += obj_allocated;
606 		total_used_objs += obj_used;
607 		total_pages += pages_used;
608 		total_freeable += freeable;
609 	}
610 
611 	seq_puts(s, "\n");
612 	seq_printf(s, " %5s %5s ", "Total", "");
613 
614 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
615 		seq_printf(s, "%9lu ", inuse_totals[fg]);
616 
617 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
618 		   total_objs, total_used_objs, total_pages, "",
619 		   total_freeable);
620 
621 	return 0;
622 }
623 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
624 
625 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
626 {
627 	if (!zs_stat_root) {
628 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
629 		return;
630 	}
631 
632 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
633 
634 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
635 			    &zs_stats_size_fops);
636 }
637 
638 static void zs_pool_stat_destroy(struct zs_pool *pool)
639 {
640 	debugfs_remove_recursive(pool->stat_dentry);
641 }
642 
643 #else /* CONFIG_ZSMALLOC_STAT */
644 static void __init zs_stat_init(void)
645 {
646 }
647 
648 static void __exit zs_stat_exit(void)
649 {
650 }
651 
652 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
653 {
654 }
655 
656 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
657 {
658 }
659 #endif
660 
661 
662 /*
663  * For each size class, zspages are divided into different groups
664  * depending on their usage ratio. This function returns fullness
665  * status of the given page.
666  */
667 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
668 {
669 	int inuse, objs_per_zspage, ratio;
670 
671 	inuse = get_zspage_inuse(zspage);
672 	objs_per_zspage = class->objs_per_zspage;
673 
674 	if (inuse == 0)
675 		return ZS_INUSE_RATIO_0;
676 	if (inuse == objs_per_zspage)
677 		return ZS_INUSE_RATIO_100;
678 
679 	ratio = 100 * inuse / objs_per_zspage;
680 	/*
681 	 * Take integer division into consideration: a page with one inuse
682 	 * object out of 127 possible, will end up having 0 usage ratio,
683 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
684 	 */
685 	return ratio / 10 + 1;
686 }
687 
688 /*
689  * Each size class maintains various freelists and zspages are assigned
690  * to one of these freelists based on the number of live objects they
691  * have. This functions inserts the given zspage into the freelist
692  * identified by <class, fullness_group>.
693  */
694 static void insert_zspage(struct size_class *class,
695 				struct zspage *zspage,
696 				int fullness)
697 {
698 	class_stat_add(class, fullness, 1);
699 	list_add(&zspage->list, &class->fullness_list[fullness]);
700 	zspage->fullness = fullness;
701 }
702 
703 /*
704  * This function removes the given zspage from the freelist identified
705  * by <class, fullness_group>.
706  */
707 static void remove_zspage(struct size_class *class, struct zspage *zspage)
708 {
709 	int fullness = zspage->fullness;
710 
711 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
712 
713 	list_del_init(&zspage->list);
714 	class_stat_sub(class, fullness, 1);
715 }
716 
717 /*
718  * Each size class maintains zspages in different fullness groups depending
719  * on the number of live objects they contain. When allocating or freeing
720  * objects, the fullness status of the page can change, for instance, from
721  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
722  * checks if such a status change has occurred for the given page and
723  * accordingly moves the page from the list of the old fullness group to that
724  * of the new fullness group.
725  */
726 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
727 {
728 	int newfg;
729 
730 	newfg = get_fullness_group(class, zspage);
731 	if (newfg == zspage->fullness)
732 		goto out;
733 
734 	remove_zspage(class, zspage);
735 	insert_zspage(class, zspage, newfg);
736 out:
737 	return newfg;
738 }
739 
740 static struct zspage *get_zspage(struct page *page)
741 {
742 	struct zspage *zspage = (struct zspage *)page_private(page);
743 
744 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
745 	return zspage;
746 }
747 
748 static struct page *get_next_page(struct page *page)
749 {
750 	struct zspage *zspage = get_zspage(page);
751 
752 	if (unlikely(ZsHugePage(zspage)))
753 		return NULL;
754 
755 	return (struct page *)page->index;
756 }
757 
758 /**
759  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
760  * @obj: the encoded object value
761  * @page: page object resides in zspage
762  * @obj_idx: object index
763  */
764 static void obj_to_location(unsigned long obj, struct page **page,
765 				unsigned int *obj_idx)
766 {
767 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 	*obj_idx = (obj & OBJ_INDEX_MASK);
769 }
770 
771 static void obj_to_page(unsigned long obj, struct page **page)
772 {
773 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
774 }
775 
776 /**
777  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
778  * @page: page object resides in zspage
779  * @obj_idx: object index
780  */
781 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
782 {
783 	unsigned long obj;
784 
785 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
786 	obj |= obj_idx & OBJ_INDEX_MASK;
787 
788 	return obj;
789 }
790 
791 static unsigned long handle_to_obj(unsigned long handle)
792 {
793 	return *(unsigned long *)handle;
794 }
795 
796 static inline bool obj_allocated(struct page *page, void *obj,
797 				 unsigned long *phandle)
798 {
799 	unsigned long handle;
800 	struct zspage *zspage = get_zspage(page);
801 
802 	if (unlikely(ZsHugePage(zspage))) {
803 		VM_BUG_ON_PAGE(!is_first_page(page), page);
804 		handle = page->index;
805 	} else
806 		handle = *(unsigned long *)obj;
807 
808 	if (!(handle & OBJ_ALLOCATED_TAG))
809 		return false;
810 
811 	/* Clear all tags before returning the handle */
812 	*phandle = handle & ~OBJ_TAG_MASK;
813 	return true;
814 }
815 
816 static void reset_page(struct page *page)
817 {
818 	__ClearPageMovable(page);
819 	ClearPagePrivate(page);
820 	set_page_private(page, 0);
821 	page->index = 0;
822 	reset_first_obj_offset(page);
823 	__ClearPageZsmalloc(page);
824 }
825 
826 static int trylock_zspage(struct zspage *zspage)
827 {
828 	struct page *cursor, *fail;
829 
830 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
831 					get_next_page(cursor)) {
832 		if (!trylock_page(cursor)) {
833 			fail = cursor;
834 			goto unlock;
835 		}
836 	}
837 
838 	return 1;
839 unlock:
840 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
841 					get_next_page(cursor))
842 		unlock_page(cursor);
843 
844 	return 0;
845 }
846 
847 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
848 				struct zspage *zspage)
849 {
850 	struct page *page, *next;
851 
852 	assert_spin_locked(&class->lock);
853 
854 	VM_BUG_ON(get_zspage_inuse(zspage));
855 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
856 
857 	next = page = get_first_page(zspage);
858 	do {
859 		VM_BUG_ON_PAGE(!PageLocked(page), page);
860 		next = get_next_page(page);
861 		reset_page(page);
862 		unlock_page(page);
863 		dec_zone_page_state(page, NR_ZSPAGES);
864 		put_page(page);
865 		page = next;
866 	} while (page != NULL);
867 
868 	cache_free_zspage(pool, zspage);
869 
870 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
871 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
872 }
873 
874 static void free_zspage(struct zs_pool *pool, struct size_class *class,
875 				struct zspage *zspage)
876 {
877 	VM_BUG_ON(get_zspage_inuse(zspage));
878 	VM_BUG_ON(list_empty(&zspage->list));
879 
880 	/*
881 	 * Since zs_free couldn't be sleepable, this function cannot call
882 	 * lock_page. The page locks trylock_zspage got will be released
883 	 * by __free_zspage.
884 	 */
885 	if (!trylock_zspage(zspage)) {
886 		kick_deferred_free(pool);
887 		return;
888 	}
889 
890 	remove_zspage(class, zspage);
891 	__free_zspage(pool, class, zspage);
892 }
893 
894 /* Initialize a newly allocated zspage */
895 static void init_zspage(struct size_class *class, struct zspage *zspage)
896 {
897 	unsigned int freeobj = 1;
898 	unsigned long off = 0;
899 	struct page *page = get_first_page(zspage);
900 
901 	while (page) {
902 		struct page *next_page;
903 		struct link_free *link;
904 		void *vaddr;
905 
906 		set_first_obj_offset(page, off);
907 
908 		vaddr = kmap_atomic(page);
909 		link = (struct link_free *)vaddr + off / sizeof(*link);
910 
911 		while ((off += class->size) < PAGE_SIZE) {
912 			link->next = freeobj++ << OBJ_TAG_BITS;
913 			link += class->size / sizeof(*link);
914 		}
915 
916 		/*
917 		 * We now come to the last (full or partial) object on this
918 		 * page, which must point to the first object on the next
919 		 * page (if present)
920 		 */
921 		next_page = get_next_page(page);
922 		if (next_page) {
923 			link->next = freeobj++ << OBJ_TAG_BITS;
924 		} else {
925 			/*
926 			 * Reset OBJ_TAG_BITS bit to last link to tell
927 			 * whether it's allocated object or not.
928 			 */
929 			link->next = -1UL << OBJ_TAG_BITS;
930 		}
931 		kunmap_atomic(vaddr);
932 		page = next_page;
933 		off %= PAGE_SIZE;
934 	}
935 
936 	set_freeobj(zspage, 0);
937 }
938 
939 static void create_page_chain(struct size_class *class, struct zspage *zspage,
940 				struct page *pages[])
941 {
942 	int i;
943 	struct page *page;
944 	struct page *prev_page = NULL;
945 	int nr_pages = class->pages_per_zspage;
946 
947 	/*
948 	 * Allocate individual pages and link them together as:
949 	 * 1. all pages are linked together using page->index
950 	 * 2. each sub-page point to zspage using page->private
951 	 *
952 	 * we set PG_private to identify the first page (i.e. no other sub-page
953 	 * has this flag set).
954 	 */
955 	for (i = 0; i < nr_pages; i++) {
956 		page = pages[i];
957 		set_page_private(page, (unsigned long)zspage);
958 		page->index = 0;
959 		if (i == 0) {
960 			zspage->first_page = page;
961 			SetPagePrivate(page);
962 			if (unlikely(class->objs_per_zspage == 1 &&
963 					class->pages_per_zspage == 1))
964 				SetZsHugePage(zspage);
965 		} else {
966 			prev_page->index = (unsigned long)page;
967 		}
968 		prev_page = page;
969 	}
970 }
971 
972 /*
973  * Allocate a zspage for the given size class
974  */
975 static struct zspage *alloc_zspage(struct zs_pool *pool,
976 					struct size_class *class,
977 					gfp_t gfp)
978 {
979 	int i;
980 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
981 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
982 
983 	if (!zspage)
984 		return NULL;
985 
986 	zspage->magic = ZSPAGE_MAGIC;
987 	migrate_lock_init(zspage);
988 
989 	for (i = 0; i < class->pages_per_zspage; i++) {
990 		struct page *page;
991 
992 		page = alloc_page(gfp);
993 		if (!page) {
994 			while (--i >= 0) {
995 				dec_zone_page_state(pages[i], NR_ZSPAGES);
996 				__ClearPageZsmalloc(pages[i]);
997 				__free_page(pages[i]);
998 			}
999 			cache_free_zspage(pool, zspage);
1000 			return NULL;
1001 		}
1002 		__SetPageZsmalloc(page);
1003 
1004 		inc_zone_page_state(page, NR_ZSPAGES);
1005 		pages[i] = page;
1006 	}
1007 
1008 	create_page_chain(class, zspage, pages);
1009 	init_zspage(class, zspage);
1010 	zspage->pool = pool;
1011 	zspage->class = class->index;
1012 
1013 	return zspage;
1014 }
1015 
1016 static struct zspage *find_get_zspage(struct size_class *class)
1017 {
1018 	int i;
1019 	struct zspage *zspage;
1020 
1021 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1022 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1023 						  struct zspage, list);
1024 		if (zspage)
1025 			break;
1026 	}
1027 
1028 	return zspage;
1029 }
1030 
1031 static inline int __zs_cpu_up(struct mapping_area *area)
1032 {
1033 	/*
1034 	 * Make sure we don't leak memory if a cpu UP notification
1035 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1036 	 */
1037 	if (area->vm_buf)
1038 		return 0;
1039 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1040 	if (!area->vm_buf)
1041 		return -ENOMEM;
1042 	return 0;
1043 }
1044 
1045 static inline void __zs_cpu_down(struct mapping_area *area)
1046 {
1047 	kfree(area->vm_buf);
1048 	area->vm_buf = NULL;
1049 }
1050 
1051 static void *__zs_map_object(struct mapping_area *area,
1052 			struct page *pages[2], int off, int size)
1053 {
1054 	int sizes[2];
1055 	void *addr;
1056 	char *buf = area->vm_buf;
1057 
1058 	/* disable page faults to match kmap_atomic() return conditions */
1059 	pagefault_disable();
1060 
1061 	/* no read fastpath */
1062 	if (area->vm_mm == ZS_MM_WO)
1063 		goto out;
1064 
1065 	sizes[0] = PAGE_SIZE - off;
1066 	sizes[1] = size - sizes[0];
1067 
1068 	/* copy object to per-cpu buffer */
1069 	addr = kmap_atomic(pages[0]);
1070 	memcpy(buf, addr + off, sizes[0]);
1071 	kunmap_atomic(addr);
1072 	addr = kmap_atomic(pages[1]);
1073 	memcpy(buf + sizes[0], addr, sizes[1]);
1074 	kunmap_atomic(addr);
1075 out:
1076 	return area->vm_buf;
1077 }
1078 
1079 static void __zs_unmap_object(struct mapping_area *area,
1080 			struct page *pages[2], int off, int size)
1081 {
1082 	int sizes[2];
1083 	void *addr;
1084 	char *buf;
1085 
1086 	/* no write fastpath */
1087 	if (area->vm_mm == ZS_MM_RO)
1088 		goto out;
1089 
1090 	buf = area->vm_buf;
1091 	buf = buf + ZS_HANDLE_SIZE;
1092 	size -= ZS_HANDLE_SIZE;
1093 	off += ZS_HANDLE_SIZE;
1094 
1095 	sizes[0] = PAGE_SIZE - off;
1096 	sizes[1] = size - sizes[0];
1097 
1098 	/* copy per-cpu buffer to object */
1099 	addr = kmap_atomic(pages[0]);
1100 	memcpy(addr + off, buf, sizes[0]);
1101 	kunmap_atomic(addr);
1102 	addr = kmap_atomic(pages[1]);
1103 	memcpy(addr, buf + sizes[0], sizes[1]);
1104 	kunmap_atomic(addr);
1105 
1106 out:
1107 	/* enable page faults to match kunmap_atomic() return conditions */
1108 	pagefault_enable();
1109 }
1110 
1111 static int zs_cpu_prepare(unsigned int cpu)
1112 {
1113 	struct mapping_area *area;
1114 
1115 	area = &per_cpu(zs_map_area, cpu);
1116 	return __zs_cpu_up(area);
1117 }
1118 
1119 static int zs_cpu_dead(unsigned int cpu)
1120 {
1121 	struct mapping_area *area;
1122 
1123 	area = &per_cpu(zs_map_area, cpu);
1124 	__zs_cpu_down(area);
1125 	return 0;
1126 }
1127 
1128 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1129 					int objs_per_zspage)
1130 {
1131 	if (prev->pages_per_zspage == pages_per_zspage &&
1132 		prev->objs_per_zspage == objs_per_zspage)
1133 		return true;
1134 
1135 	return false;
1136 }
1137 
1138 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1139 {
1140 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1141 }
1142 
1143 static bool zspage_empty(struct zspage *zspage)
1144 {
1145 	return get_zspage_inuse(zspage) == 0;
1146 }
1147 
1148 /**
1149  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1150  * that hold objects of the provided size.
1151  * @pool: zsmalloc pool to use
1152  * @size: object size
1153  *
1154  * Context: Any context.
1155  *
1156  * Return: the index of the zsmalloc &size_class that hold objects of the
1157  * provided size.
1158  */
1159 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1160 {
1161 	struct size_class *class;
1162 
1163 	class = pool->size_class[get_size_class_index(size)];
1164 
1165 	return class->index;
1166 }
1167 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1168 
1169 unsigned long zs_get_total_pages(struct zs_pool *pool)
1170 {
1171 	return atomic_long_read(&pool->pages_allocated);
1172 }
1173 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1174 
1175 /**
1176  * zs_map_object - get address of allocated object from handle.
1177  * @pool: pool from which the object was allocated
1178  * @handle: handle returned from zs_malloc
1179  * @mm: mapping mode to use
1180  *
1181  * Before using an object allocated from zs_malloc, it must be mapped using
1182  * this function. When done with the object, it must be unmapped using
1183  * zs_unmap_object.
1184  *
1185  * Only one object can be mapped per cpu at a time. There is no protection
1186  * against nested mappings.
1187  *
1188  * This function returns with preemption and page faults disabled.
1189  */
1190 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1191 			enum zs_mapmode mm)
1192 {
1193 	struct zspage *zspage;
1194 	struct page *page;
1195 	unsigned long obj, off;
1196 	unsigned int obj_idx;
1197 
1198 	struct size_class *class;
1199 	struct mapping_area *area;
1200 	struct page *pages[2];
1201 	void *ret;
1202 
1203 	/*
1204 	 * Because we use per-cpu mapping areas shared among the
1205 	 * pools/users, we can't allow mapping in interrupt context
1206 	 * because it can corrupt another users mappings.
1207 	 */
1208 	BUG_ON(in_interrupt());
1209 
1210 	/* It guarantees it can get zspage from handle safely */
1211 	read_lock(&pool->migrate_lock);
1212 	obj = handle_to_obj(handle);
1213 	obj_to_location(obj, &page, &obj_idx);
1214 	zspage = get_zspage(page);
1215 
1216 	/*
1217 	 * migration cannot move any zpages in this zspage. Here, class->lock
1218 	 * is too heavy since callers would take some time until they calls
1219 	 * zs_unmap_object API so delegate the locking from class to zspage
1220 	 * which is smaller granularity.
1221 	 */
1222 	migrate_read_lock(zspage);
1223 	read_unlock(&pool->migrate_lock);
1224 
1225 	class = zspage_class(pool, zspage);
1226 	off = offset_in_page(class->size * obj_idx);
1227 
1228 	local_lock(&zs_map_area.lock);
1229 	area = this_cpu_ptr(&zs_map_area);
1230 	area->vm_mm = mm;
1231 	if (off + class->size <= PAGE_SIZE) {
1232 		/* this object is contained entirely within a page */
1233 		area->vm_addr = kmap_atomic(page);
1234 		ret = area->vm_addr + off;
1235 		goto out;
1236 	}
1237 
1238 	/* this object spans two pages */
1239 	pages[0] = page;
1240 	pages[1] = get_next_page(page);
1241 	BUG_ON(!pages[1]);
1242 
1243 	ret = __zs_map_object(area, pages, off, class->size);
1244 out:
1245 	if (likely(!ZsHugePage(zspage)))
1246 		ret += ZS_HANDLE_SIZE;
1247 
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(zs_map_object);
1251 
1252 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1253 {
1254 	struct zspage *zspage;
1255 	struct page *page;
1256 	unsigned long obj, off;
1257 	unsigned int obj_idx;
1258 
1259 	struct size_class *class;
1260 	struct mapping_area *area;
1261 
1262 	obj = handle_to_obj(handle);
1263 	obj_to_location(obj, &page, &obj_idx);
1264 	zspage = get_zspage(page);
1265 	class = zspage_class(pool, zspage);
1266 	off = offset_in_page(class->size * obj_idx);
1267 
1268 	area = this_cpu_ptr(&zs_map_area);
1269 	if (off + class->size <= PAGE_SIZE)
1270 		kunmap_atomic(area->vm_addr);
1271 	else {
1272 		struct page *pages[2];
1273 
1274 		pages[0] = page;
1275 		pages[1] = get_next_page(page);
1276 		BUG_ON(!pages[1]);
1277 
1278 		__zs_unmap_object(area, pages, off, class->size);
1279 	}
1280 	local_unlock(&zs_map_area.lock);
1281 
1282 	migrate_read_unlock(zspage);
1283 }
1284 EXPORT_SYMBOL_GPL(zs_unmap_object);
1285 
1286 /**
1287  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1288  *                        zsmalloc &size_class.
1289  * @pool: zsmalloc pool to use
1290  *
1291  * The function returns the size of the first huge class - any object of equal
1292  * or bigger size will be stored in zspage consisting of a single physical
1293  * page.
1294  *
1295  * Context: Any context.
1296  *
1297  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1298  */
1299 size_t zs_huge_class_size(struct zs_pool *pool)
1300 {
1301 	return huge_class_size;
1302 }
1303 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1304 
1305 static unsigned long obj_malloc(struct zs_pool *pool,
1306 				struct zspage *zspage, unsigned long handle)
1307 {
1308 	int i, nr_page, offset;
1309 	unsigned long obj;
1310 	struct link_free *link;
1311 	struct size_class *class;
1312 
1313 	struct page *m_page;
1314 	unsigned long m_offset;
1315 	void *vaddr;
1316 
1317 	class = pool->size_class[zspage->class];
1318 	obj = get_freeobj(zspage);
1319 
1320 	offset = obj * class->size;
1321 	nr_page = offset >> PAGE_SHIFT;
1322 	m_offset = offset_in_page(offset);
1323 	m_page = get_first_page(zspage);
1324 
1325 	for (i = 0; i < nr_page; i++)
1326 		m_page = get_next_page(m_page);
1327 
1328 	vaddr = kmap_atomic(m_page);
1329 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1330 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1331 	if (likely(!ZsHugePage(zspage)))
1332 		/* record handle in the header of allocated chunk */
1333 		link->handle = handle | OBJ_ALLOCATED_TAG;
1334 	else
1335 		/* record handle to page->index */
1336 		zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1337 
1338 	kunmap_atomic(vaddr);
1339 	mod_zspage_inuse(zspage, 1);
1340 
1341 	obj = location_to_obj(m_page, obj);
1342 	record_obj(handle, obj);
1343 
1344 	return obj;
1345 }
1346 
1347 
1348 /**
1349  * zs_malloc - Allocate block of given size from pool.
1350  * @pool: pool to allocate from
1351  * @size: size of block to allocate
1352  * @gfp: gfp flags when allocating object
1353  *
1354  * On success, handle to the allocated object is returned,
1355  * otherwise an ERR_PTR().
1356  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1357  */
1358 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1359 {
1360 	unsigned long handle;
1361 	struct size_class *class;
1362 	int newfg;
1363 	struct zspage *zspage;
1364 
1365 	if (unlikely(!size))
1366 		return (unsigned long)ERR_PTR(-EINVAL);
1367 
1368 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1369 		return (unsigned long)ERR_PTR(-ENOSPC);
1370 
1371 	handle = cache_alloc_handle(pool, gfp);
1372 	if (!handle)
1373 		return (unsigned long)ERR_PTR(-ENOMEM);
1374 
1375 	/* extra space in chunk to keep the handle */
1376 	size += ZS_HANDLE_SIZE;
1377 	class = pool->size_class[get_size_class_index(size)];
1378 
1379 	/* class->lock effectively protects the zpage migration */
1380 	spin_lock(&class->lock);
1381 	zspage = find_get_zspage(class);
1382 	if (likely(zspage)) {
1383 		obj_malloc(pool, zspage, handle);
1384 		/* Now move the zspage to another fullness group, if required */
1385 		fix_fullness_group(class, zspage);
1386 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1387 
1388 		goto out;
1389 	}
1390 
1391 	spin_unlock(&class->lock);
1392 
1393 	zspage = alloc_zspage(pool, class, gfp);
1394 	if (!zspage) {
1395 		cache_free_handle(pool, handle);
1396 		return (unsigned long)ERR_PTR(-ENOMEM);
1397 	}
1398 
1399 	spin_lock(&class->lock);
1400 	obj_malloc(pool, zspage, handle);
1401 	newfg = get_fullness_group(class, zspage);
1402 	insert_zspage(class, zspage, newfg);
1403 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1404 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1405 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1406 
1407 	/* We completely set up zspage so mark them as movable */
1408 	SetZsPageMovable(pool, zspage);
1409 out:
1410 	spin_unlock(&class->lock);
1411 
1412 	return handle;
1413 }
1414 EXPORT_SYMBOL_GPL(zs_malloc);
1415 
1416 static void obj_free(int class_size, unsigned long obj)
1417 {
1418 	struct link_free *link;
1419 	struct zspage *zspage;
1420 	struct page *f_page;
1421 	unsigned long f_offset;
1422 	unsigned int f_objidx;
1423 	void *vaddr;
1424 
1425 	obj_to_location(obj, &f_page, &f_objidx);
1426 	f_offset = offset_in_page(class_size * f_objidx);
1427 	zspage = get_zspage(f_page);
1428 
1429 	vaddr = kmap_atomic(f_page);
1430 	link = (struct link_free *)(vaddr + f_offset);
1431 
1432 	/* Insert this object in containing zspage's freelist */
1433 	if (likely(!ZsHugePage(zspage)))
1434 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1435 	else
1436 		f_page->index = 0;
1437 	set_freeobj(zspage, f_objidx);
1438 
1439 	kunmap_atomic(vaddr);
1440 	mod_zspage_inuse(zspage, -1);
1441 }
1442 
1443 void zs_free(struct zs_pool *pool, unsigned long handle)
1444 {
1445 	struct zspage *zspage;
1446 	struct page *f_page;
1447 	unsigned long obj;
1448 	struct size_class *class;
1449 	int fullness;
1450 
1451 	if (IS_ERR_OR_NULL((void *)handle))
1452 		return;
1453 
1454 	/*
1455 	 * The pool->migrate_lock protects the race with zpage's migration
1456 	 * so it's safe to get the page from handle.
1457 	 */
1458 	read_lock(&pool->migrate_lock);
1459 	obj = handle_to_obj(handle);
1460 	obj_to_page(obj, &f_page);
1461 	zspage = get_zspage(f_page);
1462 	class = zspage_class(pool, zspage);
1463 	spin_lock(&class->lock);
1464 	read_unlock(&pool->migrate_lock);
1465 
1466 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1467 	obj_free(class->size, obj);
1468 
1469 	fullness = fix_fullness_group(class, zspage);
1470 	if (fullness == ZS_INUSE_RATIO_0)
1471 		free_zspage(pool, class, zspage);
1472 
1473 	spin_unlock(&class->lock);
1474 	cache_free_handle(pool, handle);
1475 }
1476 EXPORT_SYMBOL_GPL(zs_free);
1477 
1478 static void zs_object_copy(struct size_class *class, unsigned long dst,
1479 				unsigned long src)
1480 {
1481 	struct page *s_page, *d_page;
1482 	unsigned int s_objidx, d_objidx;
1483 	unsigned long s_off, d_off;
1484 	void *s_addr, *d_addr;
1485 	int s_size, d_size, size;
1486 	int written = 0;
1487 
1488 	s_size = d_size = class->size;
1489 
1490 	obj_to_location(src, &s_page, &s_objidx);
1491 	obj_to_location(dst, &d_page, &d_objidx);
1492 
1493 	s_off = offset_in_page(class->size * s_objidx);
1494 	d_off = offset_in_page(class->size * d_objidx);
1495 
1496 	if (s_off + class->size > PAGE_SIZE)
1497 		s_size = PAGE_SIZE - s_off;
1498 
1499 	if (d_off + class->size > PAGE_SIZE)
1500 		d_size = PAGE_SIZE - d_off;
1501 
1502 	s_addr = kmap_atomic(s_page);
1503 	d_addr = kmap_atomic(d_page);
1504 
1505 	while (1) {
1506 		size = min(s_size, d_size);
1507 		memcpy(d_addr + d_off, s_addr + s_off, size);
1508 		written += size;
1509 
1510 		if (written == class->size)
1511 			break;
1512 
1513 		s_off += size;
1514 		s_size -= size;
1515 		d_off += size;
1516 		d_size -= size;
1517 
1518 		/*
1519 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1520 		 * calls must occurs in reverse order of calls to kmap_atomic().
1521 		 * So, to call kunmap_atomic(s_addr) we should first call
1522 		 * kunmap_atomic(d_addr). For more details see
1523 		 * Documentation/mm/highmem.rst.
1524 		 */
1525 		if (s_off >= PAGE_SIZE) {
1526 			kunmap_atomic(d_addr);
1527 			kunmap_atomic(s_addr);
1528 			s_page = get_next_page(s_page);
1529 			s_addr = kmap_atomic(s_page);
1530 			d_addr = kmap_atomic(d_page);
1531 			s_size = class->size - written;
1532 			s_off = 0;
1533 		}
1534 
1535 		if (d_off >= PAGE_SIZE) {
1536 			kunmap_atomic(d_addr);
1537 			d_page = get_next_page(d_page);
1538 			d_addr = kmap_atomic(d_page);
1539 			d_size = class->size - written;
1540 			d_off = 0;
1541 		}
1542 	}
1543 
1544 	kunmap_atomic(d_addr);
1545 	kunmap_atomic(s_addr);
1546 }
1547 
1548 /*
1549  * Find alloced object in zspage from index object and
1550  * return handle.
1551  */
1552 static unsigned long find_alloced_obj(struct size_class *class,
1553 				      struct page *page, int *obj_idx)
1554 {
1555 	unsigned int offset;
1556 	int index = *obj_idx;
1557 	unsigned long handle = 0;
1558 	void *addr = kmap_atomic(page);
1559 
1560 	offset = get_first_obj_offset(page);
1561 	offset += class->size * index;
1562 
1563 	while (offset < PAGE_SIZE) {
1564 		if (obj_allocated(page, addr + offset, &handle))
1565 			break;
1566 
1567 		offset += class->size;
1568 		index++;
1569 	}
1570 
1571 	kunmap_atomic(addr);
1572 
1573 	*obj_idx = index;
1574 
1575 	return handle;
1576 }
1577 
1578 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1579 			   struct zspage *dst_zspage)
1580 {
1581 	unsigned long used_obj, free_obj;
1582 	unsigned long handle;
1583 	int obj_idx = 0;
1584 	struct page *s_page = get_first_page(src_zspage);
1585 	struct size_class *class = pool->size_class[src_zspage->class];
1586 
1587 	while (1) {
1588 		handle = find_alloced_obj(class, s_page, &obj_idx);
1589 		if (!handle) {
1590 			s_page = get_next_page(s_page);
1591 			if (!s_page)
1592 				break;
1593 			obj_idx = 0;
1594 			continue;
1595 		}
1596 
1597 		used_obj = handle_to_obj(handle);
1598 		free_obj = obj_malloc(pool, dst_zspage, handle);
1599 		zs_object_copy(class, free_obj, used_obj);
1600 		obj_idx++;
1601 		obj_free(class->size, used_obj);
1602 
1603 		/* Stop if there is no more space */
1604 		if (zspage_full(class, dst_zspage))
1605 			break;
1606 
1607 		/* Stop if there are no more objects to migrate */
1608 		if (zspage_empty(src_zspage))
1609 			break;
1610 	}
1611 }
1612 
1613 static struct zspage *isolate_src_zspage(struct size_class *class)
1614 {
1615 	struct zspage *zspage;
1616 	int fg;
1617 
1618 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1619 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1620 						  struct zspage, list);
1621 		if (zspage) {
1622 			remove_zspage(class, zspage);
1623 			return zspage;
1624 		}
1625 	}
1626 
1627 	return zspage;
1628 }
1629 
1630 static struct zspage *isolate_dst_zspage(struct size_class *class)
1631 {
1632 	struct zspage *zspage;
1633 	int fg;
1634 
1635 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1636 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1637 						  struct zspage, list);
1638 		if (zspage) {
1639 			remove_zspage(class, zspage);
1640 			return zspage;
1641 		}
1642 	}
1643 
1644 	return zspage;
1645 }
1646 
1647 /*
1648  * putback_zspage - add @zspage into right class's fullness list
1649  * @class: destination class
1650  * @zspage: target page
1651  *
1652  * Return @zspage's fullness status
1653  */
1654 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1655 {
1656 	int fullness;
1657 
1658 	fullness = get_fullness_group(class, zspage);
1659 	insert_zspage(class, zspage, fullness);
1660 
1661 	return fullness;
1662 }
1663 
1664 #ifdef CONFIG_COMPACTION
1665 /*
1666  * To prevent zspage destroy during migration, zspage freeing should
1667  * hold locks of all pages in the zspage.
1668  */
1669 static void lock_zspage(struct zspage *zspage)
1670 {
1671 	struct page *curr_page, *page;
1672 
1673 	/*
1674 	 * Pages we haven't locked yet can be migrated off the list while we're
1675 	 * trying to lock them, so we need to be careful and only attempt to
1676 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1677 	 * may no longer belong to the zspage. This means that we may wait for
1678 	 * the wrong page to unlock, so we must take a reference to the page
1679 	 * prior to waiting for it to unlock outside migrate_read_lock().
1680 	 */
1681 	while (1) {
1682 		migrate_read_lock(zspage);
1683 		page = get_first_page(zspage);
1684 		if (trylock_page(page))
1685 			break;
1686 		get_page(page);
1687 		migrate_read_unlock(zspage);
1688 		wait_on_page_locked(page);
1689 		put_page(page);
1690 	}
1691 
1692 	curr_page = page;
1693 	while ((page = get_next_page(curr_page))) {
1694 		if (trylock_page(page)) {
1695 			curr_page = page;
1696 		} else {
1697 			get_page(page);
1698 			migrate_read_unlock(zspage);
1699 			wait_on_page_locked(page);
1700 			put_page(page);
1701 			migrate_read_lock(zspage);
1702 		}
1703 	}
1704 	migrate_read_unlock(zspage);
1705 }
1706 #endif /* CONFIG_COMPACTION */
1707 
1708 static void migrate_lock_init(struct zspage *zspage)
1709 {
1710 	rwlock_init(&zspage->lock);
1711 }
1712 
1713 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1714 {
1715 	read_lock(&zspage->lock);
1716 }
1717 
1718 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1719 {
1720 	read_unlock(&zspage->lock);
1721 }
1722 
1723 static void migrate_write_lock(struct zspage *zspage)
1724 {
1725 	write_lock(&zspage->lock);
1726 }
1727 
1728 static void migrate_write_unlock(struct zspage *zspage)
1729 {
1730 	write_unlock(&zspage->lock);
1731 }
1732 
1733 #ifdef CONFIG_COMPACTION
1734 
1735 static const struct movable_operations zsmalloc_mops;
1736 
1737 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1738 				struct page *newpage, struct page *oldpage)
1739 {
1740 	struct page *page;
1741 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1742 	int idx = 0;
1743 
1744 	page = get_first_page(zspage);
1745 	do {
1746 		if (page == oldpage)
1747 			pages[idx] = newpage;
1748 		else
1749 			pages[idx] = page;
1750 		idx++;
1751 	} while ((page = get_next_page(page)) != NULL);
1752 
1753 	create_page_chain(class, zspage, pages);
1754 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1755 	if (unlikely(ZsHugePage(zspage)))
1756 		newpage->index = oldpage->index;
1757 	__SetPageMovable(newpage, &zsmalloc_mops);
1758 }
1759 
1760 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1761 {
1762 	/*
1763 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1764 	 * lock_zspage in free_zspage.
1765 	 */
1766 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1767 
1768 	return true;
1769 }
1770 
1771 static int zs_page_migrate(struct page *newpage, struct page *page,
1772 		enum migrate_mode mode)
1773 {
1774 	struct zs_pool *pool;
1775 	struct size_class *class;
1776 	struct zspage *zspage;
1777 	struct page *dummy;
1778 	void *s_addr, *d_addr, *addr;
1779 	unsigned int offset;
1780 	unsigned long handle;
1781 	unsigned long old_obj, new_obj;
1782 	unsigned int obj_idx;
1783 
1784 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1785 
1786 	/* We're committed, tell the world that this is a Zsmalloc page. */
1787 	__SetPageZsmalloc(newpage);
1788 
1789 	/* The page is locked, so this pointer must remain valid */
1790 	zspage = get_zspage(page);
1791 	pool = zspage->pool;
1792 
1793 	/*
1794 	 * The pool migrate_lock protects the race between zpage migration
1795 	 * and zs_free.
1796 	 */
1797 	write_lock(&pool->migrate_lock);
1798 	class = zspage_class(pool, zspage);
1799 
1800 	/*
1801 	 * the class lock protects zpage alloc/free in the zspage.
1802 	 */
1803 	spin_lock(&class->lock);
1804 	/* the migrate_write_lock protects zpage access via zs_map_object */
1805 	migrate_write_lock(zspage);
1806 
1807 	offset = get_first_obj_offset(page);
1808 	s_addr = kmap_atomic(page);
1809 
1810 	/*
1811 	 * Here, any user cannot access all objects in the zspage so let's move.
1812 	 */
1813 	d_addr = kmap_atomic(newpage);
1814 	copy_page(d_addr, s_addr);
1815 	kunmap_atomic(d_addr);
1816 
1817 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1818 					addr += class->size) {
1819 		if (obj_allocated(page, addr, &handle)) {
1820 
1821 			old_obj = handle_to_obj(handle);
1822 			obj_to_location(old_obj, &dummy, &obj_idx);
1823 			new_obj = (unsigned long)location_to_obj(newpage,
1824 								obj_idx);
1825 			record_obj(handle, new_obj);
1826 		}
1827 	}
1828 	kunmap_atomic(s_addr);
1829 
1830 	replace_sub_page(class, zspage, newpage, page);
1831 	/*
1832 	 * Since we complete the data copy and set up new zspage structure,
1833 	 * it's okay to release migration_lock.
1834 	 */
1835 	write_unlock(&pool->migrate_lock);
1836 	spin_unlock(&class->lock);
1837 	migrate_write_unlock(zspage);
1838 
1839 	get_page(newpage);
1840 	if (page_zone(newpage) != page_zone(page)) {
1841 		dec_zone_page_state(page, NR_ZSPAGES);
1842 		inc_zone_page_state(newpage, NR_ZSPAGES);
1843 	}
1844 
1845 	reset_page(page);
1846 	put_page(page);
1847 
1848 	return MIGRATEPAGE_SUCCESS;
1849 }
1850 
1851 static void zs_page_putback(struct page *page)
1852 {
1853 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1854 }
1855 
1856 static const struct movable_operations zsmalloc_mops = {
1857 	.isolate_page = zs_page_isolate,
1858 	.migrate_page = zs_page_migrate,
1859 	.putback_page = zs_page_putback,
1860 };
1861 
1862 /*
1863  * Caller should hold page_lock of all pages in the zspage
1864  * In here, we cannot use zspage meta data.
1865  */
1866 static void async_free_zspage(struct work_struct *work)
1867 {
1868 	int i;
1869 	struct size_class *class;
1870 	struct zspage *zspage, *tmp;
1871 	LIST_HEAD(free_pages);
1872 	struct zs_pool *pool = container_of(work, struct zs_pool,
1873 					free_work);
1874 
1875 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1876 		class = pool->size_class[i];
1877 		if (class->index != i)
1878 			continue;
1879 
1880 		spin_lock(&class->lock);
1881 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1882 				 &free_pages);
1883 		spin_unlock(&class->lock);
1884 	}
1885 
1886 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1887 		list_del(&zspage->list);
1888 		lock_zspage(zspage);
1889 
1890 		class = zspage_class(pool, zspage);
1891 		spin_lock(&class->lock);
1892 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1893 		__free_zspage(pool, class, zspage);
1894 		spin_unlock(&class->lock);
1895 	}
1896 };
1897 
1898 static void kick_deferred_free(struct zs_pool *pool)
1899 {
1900 	schedule_work(&pool->free_work);
1901 }
1902 
1903 static void zs_flush_migration(struct zs_pool *pool)
1904 {
1905 	flush_work(&pool->free_work);
1906 }
1907 
1908 static void init_deferred_free(struct zs_pool *pool)
1909 {
1910 	INIT_WORK(&pool->free_work, async_free_zspage);
1911 }
1912 
1913 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1914 {
1915 	struct page *page = get_first_page(zspage);
1916 
1917 	do {
1918 		WARN_ON(!trylock_page(page));
1919 		__SetPageMovable(page, &zsmalloc_mops);
1920 		unlock_page(page);
1921 	} while ((page = get_next_page(page)) != NULL);
1922 }
1923 #else
1924 static inline void zs_flush_migration(struct zs_pool *pool) { }
1925 #endif
1926 
1927 /*
1928  *
1929  * Based on the number of unused allocated objects calculate
1930  * and return the number of pages that we can free.
1931  */
1932 static unsigned long zs_can_compact(struct size_class *class)
1933 {
1934 	unsigned long obj_wasted;
1935 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1936 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1937 
1938 	if (obj_allocated <= obj_used)
1939 		return 0;
1940 
1941 	obj_wasted = obj_allocated - obj_used;
1942 	obj_wasted /= class->objs_per_zspage;
1943 
1944 	return obj_wasted * class->pages_per_zspage;
1945 }
1946 
1947 static unsigned long __zs_compact(struct zs_pool *pool,
1948 				  struct size_class *class)
1949 {
1950 	struct zspage *src_zspage = NULL;
1951 	struct zspage *dst_zspage = NULL;
1952 	unsigned long pages_freed = 0;
1953 
1954 	/*
1955 	 * protect the race between zpage migration and zs_free
1956 	 * as well as zpage allocation/free
1957 	 */
1958 	write_lock(&pool->migrate_lock);
1959 	spin_lock(&class->lock);
1960 	while (zs_can_compact(class)) {
1961 		int fg;
1962 
1963 		if (!dst_zspage) {
1964 			dst_zspage = isolate_dst_zspage(class);
1965 			if (!dst_zspage)
1966 				break;
1967 		}
1968 
1969 		src_zspage = isolate_src_zspage(class);
1970 		if (!src_zspage)
1971 			break;
1972 
1973 		migrate_write_lock(src_zspage);
1974 		migrate_zspage(pool, src_zspage, dst_zspage);
1975 		migrate_write_unlock(src_zspage);
1976 
1977 		fg = putback_zspage(class, src_zspage);
1978 		if (fg == ZS_INUSE_RATIO_0) {
1979 			free_zspage(pool, class, src_zspage);
1980 			pages_freed += class->pages_per_zspage;
1981 		}
1982 		src_zspage = NULL;
1983 
1984 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1985 		    || rwlock_is_contended(&pool->migrate_lock)) {
1986 			putback_zspage(class, dst_zspage);
1987 			dst_zspage = NULL;
1988 
1989 			spin_unlock(&class->lock);
1990 			write_unlock(&pool->migrate_lock);
1991 			cond_resched();
1992 			write_lock(&pool->migrate_lock);
1993 			spin_lock(&class->lock);
1994 		}
1995 	}
1996 
1997 	if (src_zspage)
1998 		putback_zspage(class, src_zspage);
1999 
2000 	if (dst_zspage)
2001 		putback_zspage(class, dst_zspage);
2002 
2003 	spin_unlock(&class->lock);
2004 	write_unlock(&pool->migrate_lock);
2005 
2006 	return pages_freed;
2007 }
2008 
2009 unsigned long zs_compact(struct zs_pool *pool)
2010 {
2011 	int i;
2012 	struct size_class *class;
2013 	unsigned long pages_freed = 0;
2014 
2015 	/*
2016 	 * Pool compaction is performed under pool->migrate_lock so it is basically
2017 	 * single-threaded. Having more than one thread in __zs_compact()
2018 	 * will increase pool->migrate_lock contention, which will impact other
2019 	 * zsmalloc operations that need pool->migrate_lock.
2020 	 */
2021 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2022 		return 0;
2023 
2024 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2025 		class = pool->size_class[i];
2026 		if (class->index != i)
2027 			continue;
2028 		pages_freed += __zs_compact(pool, class);
2029 	}
2030 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2031 	atomic_set(&pool->compaction_in_progress, 0);
2032 
2033 	return pages_freed;
2034 }
2035 EXPORT_SYMBOL_GPL(zs_compact);
2036 
2037 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2038 {
2039 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2040 }
2041 EXPORT_SYMBOL_GPL(zs_pool_stats);
2042 
2043 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2044 		struct shrink_control *sc)
2045 {
2046 	unsigned long pages_freed;
2047 	struct zs_pool *pool = shrinker->private_data;
2048 
2049 	/*
2050 	 * Compact classes and calculate compaction delta.
2051 	 * Can run concurrently with a manually triggered
2052 	 * (by user) compaction.
2053 	 */
2054 	pages_freed = zs_compact(pool);
2055 
2056 	return pages_freed ? pages_freed : SHRINK_STOP;
2057 }
2058 
2059 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2060 		struct shrink_control *sc)
2061 {
2062 	int i;
2063 	struct size_class *class;
2064 	unsigned long pages_to_free = 0;
2065 	struct zs_pool *pool = shrinker->private_data;
2066 
2067 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2068 		class = pool->size_class[i];
2069 		if (class->index != i)
2070 			continue;
2071 
2072 		pages_to_free += zs_can_compact(class);
2073 	}
2074 
2075 	return pages_to_free;
2076 }
2077 
2078 static void zs_unregister_shrinker(struct zs_pool *pool)
2079 {
2080 	shrinker_free(pool->shrinker);
2081 }
2082 
2083 static int zs_register_shrinker(struct zs_pool *pool)
2084 {
2085 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2086 	if (!pool->shrinker)
2087 		return -ENOMEM;
2088 
2089 	pool->shrinker->scan_objects = zs_shrinker_scan;
2090 	pool->shrinker->count_objects = zs_shrinker_count;
2091 	pool->shrinker->batch = 0;
2092 	pool->shrinker->private_data = pool;
2093 
2094 	shrinker_register(pool->shrinker);
2095 
2096 	return 0;
2097 }
2098 
2099 static int calculate_zspage_chain_size(int class_size)
2100 {
2101 	int i, min_waste = INT_MAX;
2102 	int chain_size = 1;
2103 
2104 	if (is_power_of_2(class_size))
2105 		return chain_size;
2106 
2107 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2108 		int waste;
2109 
2110 		waste = (i * PAGE_SIZE) % class_size;
2111 		if (waste < min_waste) {
2112 			min_waste = waste;
2113 			chain_size = i;
2114 		}
2115 	}
2116 
2117 	return chain_size;
2118 }
2119 
2120 /**
2121  * zs_create_pool - Creates an allocation pool to work from.
2122  * @name: pool name to be created
2123  *
2124  * This function must be called before anything when using
2125  * the zsmalloc allocator.
2126  *
2127  * On success, a pointer to the newly created pool is returned,
2128  * otherwise NULL.
2129  */
2130 struct zs_pool *zs_create_pool(const char *name)
2131 {
2132 	int i;
2133 	struct zs_pool *pool;
2134 	struct size_class *prev_class = NULL;
2135 
2136 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2137 	if (!pool)
2138 		return NULL;
2139 
2140 	init_deferred_free(pool);
2141 	rwlock_init(&pool->migrate_lock);
2142 	atomic_set(&pool->compaction_in_progress, 0);
2143 
2144 	pool->name = kstrdup(name, GFP_KERNEL);
2145 	if (!pool->name)
2146 		goto err;
2147 
2148 	if (create_cache(pool))
2149 		goto err;
2150 
2151 	/*
2152 	 * Iterate reversely, because, size of size_class that we want to use
2153 	 * for merging should be larger or equal to current size.
2154 	 */
2155 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2156 		int size;
2157 		int pages_per_zspage;
2158 		int objs_per_zspage;
2159 		struct size_class *class;
2160 		int fullness;
2161 
2162 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2163 		if (size > ZS_MAX_ALLOC_SIZE)
2164 			size = ZS_MAX_ALLOC_SIZE;
2165 		pages_per_zspage = calculate_zspage_chain_size(size);
2166 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2167 
2168 		/*
2169 		 * We iterate from biggest down to smallest classes,
2170 		 * so huge_class_size holds the size of the first huge
2171 		 * class. Any object bigger than or equal to that will
2172 		 * endup in the huge class.
2173 		 */
2174 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2175 				!huge_class_size) {
2176 			huge_class_size = size;
2177 			/*
2178 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2179 			 * handle. We need to subtract it, because zs_malloc()
2180 			 * unconditionally adds handle size before it performs
2181 			 * size class search - so object may be smaller than
2182 			 * huge class size, yet it still can end up in the huge
2183 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2184 			 * right before class lookup.
2185 			 */
2186 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2187 		}
2188 
2189 		/*
2190 		 * size_class is used for normal zsmalloc operation such
2191 		 * as alloc/free for that size. Although it is natural that we
2192 		 * have one size_class for each size, there is a chance that we
2193 		 * can get more memory utilization if we use one size_class for
2194 		 * many different sizes whose size_class have same
2195 		 * characteristics. So, we makes size_class point to
2196 		 * previous size_class if possible.
2197 		 */
2198 		if (prev_class) {
2199 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2200 				pool->size_class[i] = prev_class;
2201 				continue;
2202 			}
2203 		}
2204 
2205 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2206 		if (!class)
2207 			goto err;
2208 
2209 		class->size = size;
2210 		class->index = i;
2211 		class->pages_per_zspage = pages_per_zspage;
2212 		class->objs_per_zspage = objs_per_zspage;
2213 		spin_lock_init(&class->lock);
2214 		pool->size_class[i] = class;
2215 
2216 		fullness = ZS_INUSE_RATIO_0;
2217 		while (fullness < NR_FULLNESS_GROUPS) {
2218 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2219 			fullness++;
2220 		}
2221 
2222 		prev_class = class;
2223 	}
2224 
2225 	/* debug only, don't abort if it fails */
2226 	zs_pool_stat_create(pool, name);
2227 
2228 	/*
2229 	 * Not critical since shrinker is only used to trigger internal
2230 	 * defragmentation of the pool which is pretty optional thing.  If
2231 	 * registration fails we still can use the pool normally and user can
2232 	 * trigger compaction manually. Thus, ignore return code.
2233 	 */
2234 	zs_register_shrinker(pool);
2235 
2236 	return pool;
2237 
2238 err:
2239 	zs_destroy_pool(pool);
2240 	return NULL;
2241 }
2242 EXPORT_SYMBOL_GPL(zs_create_pool);
2243 
2244 void zs_destroy_pool(struct zs_pool *pool)
2245 {
2246 	int i;
2247 
2248 	zs_unregister_shrinker(pool);
2249 	zs_flush_migration(pool);
2250 	zs_pool_stat_destroy(pool);
2251 
2252 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2253 		int fg;
2254 		struct size_class *class = pool->size_class[i];
2255 
2256 		if (!class)
2257 			continue;
2258 
2259 		if (class->index != i)
2260 			continue;
2261 
2262 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2263 			if (list_empty(&class->fullness_list[fg]))
2264 				continue;
2265 
2266 			pr_err("Class-%d fullness group %d is not empty\n",
2267 			       class->size, fg);
2268 		}
2269 		kfree(class);
2270 	}
2271 
2272 	destroy_cache(pool);
2273 	kfree(pool->name);
2274 	kfree(pool);
2275 }
2276 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2277 
2278 static int __init zs_init(void)
2279 {
2280 	int ret;
2281 
2282 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2283 				zs_cpu_prepare, zs_cpu_dead);
2284 	if (ret)
2285 		goto out;
2286 
2287 #ifdef CONFIG_ZPOOL
2288 	zpool_register_driver(&zs_zpool_driver);
2289 #endif
2290 
2291 	zs_stat_init();
2292 
2293 	return 0;
2294 
2295 out:
2296 	return ret;
2297 }
2298 
2299 static void __exit zs_exit(void)
2300 {
2301 #ifdef CONFIG_ZPOOL
2302 	zpool_unregister_driver(&zs_zpool_driver);
2303 #endif
2304 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2305 
2306 	zs_stat_exit();
2307 }
2308 
2309 module_init(zs_init);
2310 module_exit(zs_exit);
2311 
2312 MODULE_LICENSE("Dual BSD/GPL");
2313 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2314 MODULE_DESCRIPTION("zsmalloc memory allocator");
2315