xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zpl_file.c (revision 0df1ee76950fc28c3c90a8aa85534fd44641c425)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
24  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
25  */
26 
27 
28 #ifdef CONFIG_COMPAT
29 #include <linux/compat.h>
30 #endif
31 #include <linux/fs.h>
32 #include <linux/migrate.h>
33 #include <sys/file.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/zfs_znode.h>
36 #include <sys/zfs_vfsops.h>
37 #include <sys/zfs_vnops.h>
38 #include <sys/zfs_project.h>
39 #include <linux/pagemap_compat.h>
40 #include <linux/fadvise.h>
41 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
42 #include <linux/writeback.h>
43 #endif
44 
45 /*
46  * When using fallocate(2) to preallocate space, inflate the requested
47  * capacity check by 10% to account for the required metadata blocks.
48  */
49 static unsigned int zfs_fallocate_reserve_percent = 110;
50 
51 static int
zpl_open(struct inode * ip,struct file * filp)52 zpl_open(struct inode *ip, struct file *filp)
53 {
54 	cred_t *cr = CRED();
55 	int error;
56 	fstrans_cookie_t cookie;
57 
58 	error = generic_file_open(ip, filp);
59 	if (error)
60 		return (error);
61 
62 	crhold(cr);
63 	cookie = spl_fstrans_mark();
64 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
65 	spl_fstrans_unmark(cookie);
66 	crfree(cr);
67 	ASSERT3S(error, <=, 0);
68 
69 	return (error);
70 }
71 
72 static int
zpl_release(struct inode * ip,struct file * filp)73 zpl_release(struct inode *ip, struct file *filp)
74 {
75 	cred_t *cr = CRED();
76 	int error;
77 	fstrans_cookie_t cookie;
78 
79 	cookie = spl_fstrans_mark();
80 	if (ITOZ(ip)->z_atime_dirty)
81 		zfs_mark_inode_dirty(ip);
82 
83 	crhold(cr);
84 	error = -zfs_close(ip, filp->f_flags, cr);
85 	spl_fstrans_unmark(cookie);
86 	crfree(cr);
87 	ASSERT3S(error, <=, 0);
88 
89 	return (error);
90 }
91 
92 static int
zpl_iterate(struct file * filp,struct dir_context * ctx)93 zpl_iterate(struct file *filp, struct dir_context *ctx)
94 {
95 	cred_t *cr = CRED();
96 	int error;
97 	fstrans_cookie_t cookie;
98 
99 	crhold(cr);
100 	cookie = spl_fstrans_mark();
101 	error = -zfs_readdir(file_inode(filp), ctx, cr);
102 	spl_fstrans_unmark(cookie);
103 	crfree(cr);
104 	ASSERT3S(error, <=, 0);
105 
106 	return (error);
107 }
108 
109 static int
zpl_fsync(struct file * filp,loff_t start,loff_t end,int datasync)110 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
111 {
112 	struct inode *inode = filp->f_mapping->host;
113 	znode_t *zp = ITOZ(inode);
114 	zfsvfs_t *zfsvfs = ITOZSB(inode);
115 	cred_t *cr = CRED();
116 	int error;
117 	fstrans_cookie_t cookie;
118 
119 	/*
120 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
121 	 * tandem so that sync writes can detect if there are any non-sync
122 	 * writes going on and vice-versa. The "vice-versa" part to this logic
123 	 * is located in zfs_putpage() where non-sync writes check if there are
124 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
125 	 * we do a commit to complete the non-sync writes since the latter can
126 	 * potentially take several seconds to complete and thus block sync
127 	 * writes in the upcoming call to filemap_write_and_wait_range().
128 	 */
129 	atomic_inc_32(&zp->z_sync_writes_cnt);
130 	/*
131 	 * If the following check does not detect an overlapping non-sync write
132 	 * (say because it's just about to start), then it is guaranteed that
133 	 * the non-sync write will detect this sync write. This is because we
134 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
135 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
136 	 * zfs_putpage() respectively.
137 	 */
138 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
139 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
140 			atomic_dec_32(&zp->z_sync_writes_cnt);
141 			return (error);
142 		}
143 		zil_commit(zfsvfs->z_log, zp->z_id);
144 		zpl_exit(zfsvfs, FTAG);
145 	}
146 
147 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
148 
149 	/*
150 	 * The sync write is not complete yet but we decrement
151 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
152 	 * it internally. If a non-sync write starts just after the decrement
153 	 * operation but before we call zfs_fsync(), it may not detect this
154 	 * overlapping sync write but it does not matter since we have already
155 	 * gone past filemap_write_and_wait_range() and we won't block due to
156 	 * the non-sync write.
157 	 */
158 	atomic_dec_32(&zp->z_sync_writes_cnt);
159 
160 	if (error)
161 		return (error);
162 
163 	crhold(cr);
164 	cookie = spl_fstrans_mark();
165 	error = -zfs_fsync(zp, datasync, cr);
166 	spl_fstrans_unmark(cookie);
167 	crfree(cr);
168 	ASSERT3S(error, <=, 0);
169 
170 	return (error);
171 }
172 
173 static inline int
zfs_io_flags(struct kiocb * kiocb)174 zfs_io_flags(struct kiocb *kiocb)
175 {
176 	int flags = 0;
177 
178 #if defined(IOCB_DSYNC)
179 	if (kiocb->ki_flags & IOCB_DSYNC)
180 		flags |= O_DSYNC;
181 #endif
182 #if defined(IOCB_SYNC)
183 	if (kiocb->ki_flags & IOCB_SYNC)
184 		flags |= O_SYNC;
185 #endif
186 #if defined(IOCB_APPEND)
187 	if (kiocb->ki_flags & IOCB_APPEND)
188 		flags |= O_APPEND;
189 #endif
190 #if defined(IOCB_DIRECT)
191 	if (kiocb->ki_flags & IOCB_DIRECT)
192 		flags |= O_DIRECT;
193 #endif
194 	return (flags);
195 }
196 
197 /*
198  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
199  * is true.  This is needed since datasets with inherited "relatime" property
200  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
201  * `zfs set relatime=...`), which is what relatime test in VFS by
202  * relatime_need_update() is based on.
203  */
204 static inline void
zpl_file_accessed(struct file * filp)205 zpl_file_accessed(struct file *filp)
206 {
207 	struct inode *ip = filp->f_mapping->host;
208 
209 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
210 		if (zfs_relatime_need_update(ip))
211 			file_accessed(filp);
212 	} else {
213 		file_accessed(filp);
214 	}
215 }
216 
217 static ssize_t
zpl_iter_read(struct kiocb * kiocb,struct iov_iter * to)218 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
219 {
220 	cred_t *cr = CRED();
221 	fstrans_cookie_t cookie;
222 	struct file *filp = kiocb->ki_filp;
223 	ssize_t count = iov_iter_count(to);
224 	zfs_uio_t uio;
225 
226 	zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count);
227 
228 	crhold(cr);
229 	cookie = spl_fstrans_mark();
230 
231 	ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
232 	    filp->f_flags | zfs_io_flags(kiocb), cr);
233 
234 	spl_fstrans_unmark(cookie);
235 	crfree(cr);
236 
237 	if (ret < 0)
238 		return (ret);
239 
240 	ssize_t read = count - uio.uio_resid;
241 	kiocb->ki_pos += read;
242 
243 	zpl_file_accessed(filp);
244 
245 	return (read);
246 }
247 
248 static inline ssize_t
zpl_generic_write_checks(struct kiocb * kiocb,struct iov_iter * from,size_t * countp)249 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
250     size_t *countp)
251 {
252 	ssize_t ret = generic_write_checks(kiocb, from);
253 	if (ret <= 0)
254 		return (ret);
255 
256 	*countp = ret;
257 
258 	return (0);
259 }
260 
261 static ssize_t
zpl_iter_write(struct kiocb * kiocb,struct iov_iter * from)262 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
263 {
264 	cred_t *cr = CRED();
265 	fstrans_cookie_t cookie;
266 	struct file *filp = kiocb->ki_filp;
267 	struct inode *ip = filp->f_mapping->host;
268 	zfs_uio_t uio;
269 	size_t count = 0;
270 	ssize_t ret;
271 
272 	ret = zpl_generic_write_checks(kiocb, from, &count);
273 	if (ret)
274 		return (ret);
275 
276 	zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count);
277 
278 	crhold(cr);
279 	cookie = spl_fstrans_mark();
280 
281 	ret = -zfs_write(ITOZ(ip), &uio,
282 	    filp->f_flags | zfs_io_flags(kiocb), cr);
283 
284 	spl_fstrans_unmark(cookie);
285 	crfree(cr);
286 
287 	if (ret < 0)
288 		return (ret);
289 
290 	ssize_t wrote = count - uio.uio_resid;
291 	kiocb->ki_pos += wrote;
292 
293 	return (wrote);
294 }
295 
296 static ssize_t
zpl_direct_IO(struct kiocb * kiocb,struct iov_iter * iter)297 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
298 {
299 	/*
300 	 * All O_DIRECT requests should be handled by
301 	 * zpl_iter_write/read}(). There is no way kernel generic code should
302 	 * call the direct_IO address_space_operations function. We set this
303 	 * code path to be fatal if it is executed.
304 	 */
305 	PANIC(0);
306 	return (0);
307 }
308 
309 static loff_t
zpl_llseek(struct file * filp,loff_t offset,int whence)310 zpl_llseek(struct file *filp, loff_t offset, int whence)
311 {
312 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
313 	fstrans_cookie_t cookie;
314 
315 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
316 		struct inode *ip = filp->f_mapping->host;
317 		loff_t maxbytes = ip->i_sb->s_maxbytes;
318 		loff_t error;
319 
320 		spl_inode_lock_shared(ip);
321 		cookie = spl_fstrans_mark();
322 		error = -zfs_holey(ITOZ(ip), whence, &offset);
323 		spl_fstrans_unmark(cookie);
324 		if (error == 0)
325 			error = lseek_execute(filp, ip, offset, maxbytes);
326 		spl_inode_unlock_shared(ip);
327 
328 		return (error);
329 	}
330 #endif /* SEEK_HOLE && SEEK_DATA */
331 
332 	return (generic_file_llseek(filp, offset, whence));
333 }
334 
335 /*
336  * It's worth taking a moment to describe how mmap is implemented
337  * for zfs because it differs considerably from other Linux filesystems.
338  * However, this issue is handled the same way under OpenSolaris.
339  *
340  * The issue is that by design zfs bypasses the Linux page cache and
341  * leaves all caching up to the ARC.  This has been shown to work
342  * well for the common read(2)/write(2) case.  However, mmap(2)
343  * is problem because it relies on being tightly integrated with the
344  * page cache.  To handle this we cache mmap'ed files twice, once in
345  * the ARC and a second time in the page cache.  The code is careful
346  * to keep both copies synchronized.
347  *
348  * When a file with an mmap'ed region is written to using write(2)
349  * both the data in the ARC and existing pages in the page cache
350  * are updated.  For a read(2) data will be read first from the page
351  * cache then the ARC if needed.  Neither a write(2) or read(2) will
352  * will ever result in new pages being added to the page cache.
353  *
354  * New pages are added to the page cache only via .readpage() which
355  * is called when the vfs needs to read a page off disk to back the
356  * virtual memory region.  These pages may be modified without
357  * notifying the ARC and will be written out periodically via
358  * .writepage().  This will occur due to either a sync or the usual
359  * page aging behavior.  Note because a read(2) of a mmap'ed file
360  * will always check the page cache first even when the ARC is out
361  * of date correct data will still be returned.
362  *
363  * While this implementation ensures correct behavior it does have
364  * have some drawbacks.  The most obvious of which is that it
365  * increases the required memory footprint when access mmap'ed
366  * files.  It also adds additional complexity to the code keeping
367  * both caches synchronized.
368  *
369  * Longer term it may be possible to cleanly resolve this wart by
370  * mapping page cache pages directly on to the ARC buffers.  The
371  * Linux address space operations are flexible enough to allow
372  * selection of which pages back a particular index.  The trick
373  * would be working out the details of which subsystem is in
374  * charge, the ARC, the page cache, or both.  It may also prove
375  * helpful to move the ARC buffers to a scatter-gather lists
376  * rather than a vmalloc'ed region.
377  */
378 static int
zpl_mmap(struct file * filp,struct vm_area_struct * vma)379 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
380 {
381 	struct inode *ip = filp->f_mapping->host;
382 	int error;
383 	fstrans_cookie_t cookie;
384 
385 	cookie = spl_fstrans_mark();
386 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
387 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
388 	spl_fstrans_unmark(cookie);
389 
390 	if (error)
391 		return (error);
392 
393 	error = generic_file_mmap(filp, vma);
394 	if (error)
395 		return (error);
396 
397 	return (error);
398 }
399 
400 /*
401  * Populate a page with data for the Linux page cache.  This function is
402  * only used to support mmap(2).  There will be an identical copy of the
403  * data in the ARC which is kept up to date via .write() and .writepage().
404  */
405 static inline int
zpl_readpage_common(struct page * pp)406 zpl_readpage_common(struct page *pp)
407 {
408 	fstrans_cookie_t cookie;
409 
410 	ASSERT(PageLocked(pp));
411 
412 	cookie = spl_fstrans_mark();
413 	int error = -zfs_getpage(pp->mapping->host, pp);
414 	spl_fstrans_unmark(cookie);
415 
416 	unlock_page(pp);
417 
418 	return (error);
419 }
420 
421 #ifdef HAVE_VFS_READ_FOLIO
422 static int
zpl_read_folio(struct file * filp,struct folio * folio)423 zpl_read_folio(struct file *filp, struct folio *folio)
424 {
425 	return (zpl_readpage_common(&folio->page));
426 }
427 #else
428 static int
zpl_readpage(struct file * filp,struct page * pp)429 zpl_readpage(struct file *filp, struct page *pp)
430 {
431 	return (zpl_readpage_common(pp));
432 }
433 #endif
434 
435 static int
zpl_readpage_filler(void * data,struct page * pp)436 zpl_readpage_filler(void *data, struct page *pp)
437 {
438 	return (zpl_readpage_common(pp));
439 }
440 
441 /*
442  * Populate a set of pages with data for the Linux page cache.  This
443  * function will only be called for read ahead and never for demand
444  * paging.  For simplicity, the code relies on read_cache_pages() to
445  * correctly lock each page for IO and call zpl_readpage().
446  */
447 #ifdef HAVE_VFS_READPAGES
448 static int
zpl_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)449 zpl_readpages(struct file *filp, struct address_space *mapping,
450     struct list_head *pages, unsigned nr_pages)
451 {
452 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
453 }
454 #else
455 static void
zpl_readahead(struct readahead_control * ractl)456 zpl_readahead(struct readahead_control *ractl)
457 {
458 	struct page *page;
459 
460 	while ((page = readahead_page(ractl)) != NULL) {
461 		int ret;
462 
463 		ret = zpl_readpage_filler(NULL, page);
464 		put_page(page);
465 		if (ret)
466 			break;
467 	}
468 }
469 #endif
470 
471 static int
zpl_putpage(struct page * pp,struct writeback_control * wbc,void * data)472 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
473 {
474 	boolean_t *for_sync = data;
475 	fstrans_cookie_t cookie;
476 	int ret;
477 
478 	ASSERT(PageLocked(pp));
479 	ASSERT(!PageWriteback(pp));
480 
481 	cookie = spl_fstrans_mark();
482 	ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
483 	spl_fstrans_unmark(cookie);
484 
485 	return (ret);
486 }
487 
488 #ifdef HAVE_WRITEPAGE_T_FOLIO
489 static int
zpl_putfolio(struct folio * pp,struct writeback_control * wbc,void * data)490 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
491 {
492 	return (zpl_putpage(&pp->page, wbc, data));
493 }
494 #endif
495 
496 static inline int
zpl_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,void * data)497 zpl_write_cache_pages(struct address_space *mapping,
498     struct writeback_control *wbc, void *data)
499 {
500 	int result;
501 
502 #ifdef HAVE_WRITEPAGE_T_FOLIO
503 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
504 #else
505 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
506 #endif
507 	return (result);
508 }
509 
510 static int
zpl_writepages(struct address_space * mapping,struct writeback_control * wbc)511 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
512 {
513 	znode_t		*zp = ITOZ(mapping->host);
514 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
515 	enum writeback_sync_modes sync_mode;
516 	int result;
517 
518 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
519 		return (result);
520 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
521 		wbc->sync_mode = WB_SYNC_ALL;
522 	zpl_exit(zfsvfs, FTAG);
523 	sync_mode = wbc->sync_mode;
524 
525 	/*
526 	 * We don't want to run write_cache_pages() in SYNC mode here, because
527 	 * that would make putpage() wait for a single page to be committed to
528 	 * disk every single time, resulting in atrocious performance. Instead
529 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
530 	 * and then we commit it all in one go.
531 	 */
532 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
533 	wbc->sync_mode = WB_SYNC_NONE;
534 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
535 	if (sync_mode != wbc->sync_mode) {
536 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
537 			return (result);
538 		if (zfsvfs->z_log != NULL)
539 			zil_commit(zfsvfs->z_log, zp->z_id);
540 		zpl_exit(zfsvfs, FTAG);
541 
542 		/*
543 		 * We need to call write_cache_pages() again (we can't just
544 		 * return after the commit) because the previous call in
545 		 * non-SYNC mode does not guarantee that we got all the dirty
546 		 * pages (see the implementation of write_cache_pages() for
547 		 * details). That being said, this is a no-op in most cases.
548 		 */
549 		wbc->sync_mode = sync_mode;
550 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
551 	}
552 	return (result);
553 }
554 
555 #ifdef HAVE_VFS_WRITEPAGE
556 /*
557  * Write out dirty pages to the ARC, this function is only required to
558  * support mmap(2).  Mapped pages may be dirtied by memory operations
559  * which never call .write().  These dirty pages are kept in sync with
560  * the ARC buffers via this hook.
561  */
562 static int
zpl_writepage(struct page * pp,struct writeback_control * wbc)563 zpl_writepage(struct page *pp, struct writeback_control *wbc)
564 {
565 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
566 		wbc->sync_mode = WB_SYNC_ALL;
567 
568 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
569 
570 	return (zpl_putpage(pp, wbc, &for_sync));
571 }
572 #endif
573 
574 /*
575  * The flag combination which matches the behavior of zfs_space() is
576  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
577  * flag was introduced in the 2.6.38 kernel.
578  *
579  * The original mode=0 (allocate space) behavior can be reasonably emulated
580  * by checking if enough space exists and creating a sparse file, as real
581  * persistent space reservation is not possible due to COW, snapshots, etc.
582  */
583 static long
zpl_fallocate_common(struct inode * ip,int mode,loff_t offset,loff_t len)584 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
585 {
586 	cred_t *cr = CRED();
587 	loff_t olen;
588 	fstrans_cookie_t cookie;
589 	int error = 0;
590 
591 	int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
592 
593 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
594 		return (-EOPNOTSUPP);
595 
596 	if (offset < 0 || len <= 0)
597 		return (-EINVAL);
598 
599 	spl_inode_lock(ip);
600 	olen = i_size_read(ip);
601 
602 	crhold(cr);
603 	cookie = spl_fstrans_mark();
604 	if (mode & (test_mode)) {
605 		flock64_t bf;
606 
607 		if (mode & FALLOC_FL_KEEP_SIZE) {
608 			if (offset > olen)
609 				goto out_unmark;
610 
611 			if (offset + len > olen)
612 				len = olen - offset;
613 		}
614 		bf.l_type = F_WRLCK;
615 		bf.l_whence = SEEK_SET;
616 		bf.l_start = offset;
617 		bf.l_len = len;
618 		bf.l_pid = 0;
619 
620 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
621 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
622 		unsigned int percent = zfs_fallocate_reserve_percent;
623 		struct kstatfs statfs;
624 
625 		/* Legacy mode, disable fallocate compatibility. */
626 		if (percent == 0) {
627 			error = -EOPNOTSUPP;
628 			goto out_unmark;
629 		}
630 
631 		/*
632 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
633 		 * also checks project quota limits, which are relevant here.
634 		 */
635 		error = zfs_statvfs(ip, &statfs);
636 		if (error)
637 			goto out_unmark;
638 
639 		/*
640 		 * Shrink available space a bit to account for overhead/races.
641 		 * We know the product previously fit into availbytes from
642 		 * dmu_objset_space(), so the smaller product will also fit.
643 		 */
644 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
645 			error = -ENOSPC;
646 			goto out_unmark;
647 		}
648 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
649 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
650 	}
651 out_unmark:
652 	spl_fstrans_unmark(cookie);
653 	spl_inode_unlock(ip);
654 
655 	crfree(cr);
656 
657 	return (error);
658 }
659 
660 static long
zpl_fallocate(struct file * filp,int mode,loff_t offset,loff_t len)661 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
662 {
663 	return zpl_fallocate_common(file_inode(filp),
664 	    mode, offset, len);
665 }
666 
667 static int
zpl_ioctl_getversion(struct file * filp,void __user * arg)668 zpl_ioctl_getversion(struct file *filp, void __user *arg)
669 {
670 	uint32_t generation = file_inode(filp)->i_generation;
671 
672 	return (copy_to_user(arg, &generation, sizeof (generation)));
673 }
674 
675 static int
zpl_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)676 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
677 {
678 	struct inode *ip = file_inode(filp);
679 	znode_t *zp = ITOZ(ip);
680 	zfsvfs_t *zfsvfs = ITOZSB(ip);
681 	objset_t *os = zfsvfs->z_os;
682 	int error = 0;
683 
684 	if (S_ISFIFO(ip->i_mode))
685 		return (-ESPIPE);
686 
687 	if (offset < 0 || len < 0)
688 		return (-EINVAL);
689 
690 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
691 		return (error);
692 
693 	switch (advice) {
694 	case POSIX_FADV_SEQUENTIAL:
695 	case POSIX_FADV_WILLNEED:
696 #ifdef HAVE_GENERIC_FADVISE
697 		if (zn_has_cached_data(zp, offset, offset + len - 1))
698 			error = generic_fadvise(filp, offset, len, advice);
699 #endif
700 		/*
701 		 * Pass on the caller's size directly, but note that
702 		 * dmu_prefetch_max will effectively cap it.  If there
703 		 * really is a larger sequential access pattern, perhaps
704 		 * dmu_zfetch will detect it.
705 		 */
706 		if (len == 0)
707 			len = i_size_read(ip) - offset;
708 
709 		dmu_prefetch(os, zp->z_id, 0, offset, len,
710 		    ZIO_PRIORITY_ASYNC_READ);
711 		break;
712 	case POSIX_FADV_NORMAL:
713 	case POSIX_FADV_RANDOM:
714 	case POSIX_FADV_DONTNEED:
715 	case POSIX_FADV_NOREUSE:
716 		/* ignored for now */
717 		break;
718 	default:
719 		error = -EINVAL;
720 		break;
721 	}
722 
723 	zfs_exit(zfsvfs, FTAG);
724 
725 	return (error);
726 }
727 
728 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
729 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
730 
731 static uint32_t
__zpl_ioctl_getflags(struct inode * ip)732 __zpl_ioctl_getflags(struct inode *ip)
733 {
734 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
735 	uint32_t ioctl_flags = 0;
736 
737 	if (zfs_flags & ZFS_IMMUTABLE)
738 		ioctl_flags |= FS_IMMUTABLE_FL;
739 
740 	if (zfs_flags & ZFS_APPENDONLY)
741 		ioctl_flags |= FS_APPEND_FL;
742 
743 	if (zfs_flags & ZFS_NODUMP)
744 		ioctl_flags |= FS_NODUMP_FL;
745 
746 	if (zfs_flags & ZFS_PROJINHERIT)
747 		ioctl_flags |= ZFS_PROJINHERIT_FL;
748 
749 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
750 }
751 
752 /*
753  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
754  * attributes common to both Linux and Solaris are mapped.
755  */
756 static int
zpl_ioctl_getflags(struct file * filp,void __user * arg)757 zpl_ioctl_getflags(struct file *filp, void __user *arg)
758 {
759 	uint32_t flags;
760 	int err;
761 
762 	flags = __zpl_ioctl_getflags(file_inode(filp));
763 	err = copy_to_user(arg, &flags, sizeof (flags));
764 
765 	return (err);
766 }
767 
768 /*
769  * fchange() is a helper macro to detect if we have been asked to change a
770  * flag. This is ugly, but the requirement that we do this is a consequence of
771  * how the Linux file attribute interface was designed. Another consequence is
772  * that concurrent modification of files suffers from a TOCTOU race. Neither
773  * are things we can fix without modifying the kernel-userland interface, which
774  * is outside of our jurisdiction.
775  */
776 
777 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
778 
779 static int
__zpl_ioctl_setflags(struct inode * ip,uint32_t ioctl_flags,xvattr_t * xva)780 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
781 {
782 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
783 	xoptattr_t *xoap;
784 
785 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
786 	    ZFS_PROJINHERIT_FL))
787 		return (-EOPNOTSUPP);
788 
789 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
790 		return (-EACCES);
791 
792 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
793 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
794 	    !capable(CAP_LINUX_IMMUTABLE))
795 		return (-EPERM);
796 
797 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
798 		return (-EACCES);
799 
800 	xva_init(xva);
801 	xoap = xva_getxoptattr(xva);
802 
803 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
804 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
805 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
806 		XVA_SET_REQ(xva, (xflag));	\
807 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
808 	}	\
809 } while (0)
810 
811 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
812 	    xoap->xoa_immutable);
813 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
814 	    xoap->xoa_appendonly);
815 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
816 	    xoap->xoa_nodump);
817 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
818 	    xoap->xoa_projinherit);
819 
820 #undef	FLAG_CHANGE
821 
822 	return (0);
823 }
824 
825 static int
zpl_ioctl_setflags(struct file * filp,void __user * arg)826 zpl_ioctl_setflags(struct file *filp, void __user *arg)
827 {
828 	struct inode *ip = file_inode(filp);
829 	uint32_t flags;
830 	cred_t *cr = CRED();
831 	xvattr_t xva;
832 	int err;
833 	fstrans_cookie_t cookie;
834 
835 	if (copy_from_user(&flags, arg, sizeof (flags)))
836 		return (-EFAULT);
837 
838 	err = __zpl_ioctl_setflags(ip, flags, &xva);
839 	if (err)
840 		return (err);
841 
842 	crhold(cr);
843 	cookie = spl_fstrans_mark();
844 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
845 	spl_fstrans_unmark(cookie);
846 	crfree(cr);
847 
848 	return (err);
849 }
850 
851 static int
zpl_ioctl_getxattr(struct file * filp,void __user * arg)852 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
853 {
854 	zfsxattr_t fsx = { 0 };
855 	struct inode *ip = file_inode(filp);
856 	int err;
857 
858 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
859 	fsx.fsx_projid = ITOZ(ip)->z_projid;
860 	err = copy_to_user(arg, &fsx, sizeof (fsx));
861 
862 	return (err);
863 }
864 
865 static int
zpl_ioctl_setxattr(struct file * filp,void __user * arg)866 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
867 {
868 	struct inode *ip = file_inode(filp);
869 	zfsxattr_t fsx;
870 	cred_t *cr = CRED();
871 	xvattr_t xva;
872 	xoptattr_t *xoap;
873 	int err;
874 	fstrans_cookie_t cookie;
875 
876 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
877 		return (-EFAULT);
878 
879 	if (!zpl_is_valid_projid(fsx.fsx_projid))
880 		return (-EINVAL);
881 
882 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
883 	if (err)
884 		return (err);
885 
886 	xoap = xva_getxoptattr(&xva);
887 	XVA_SET_REQ(&xva, XAT_PROJID);
888 	xoap->xoa_projid = fsx.fsx_projid;
889 
890 	crhold(cr);
891 	cookie = spl_fstrans_mark();
892 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
893 	spl_fstrans_unmark(cookie);
894 	crfree(cr);
895 
896 	return (err);
897 }
898 
899 /*
900  * Expose Additional File Level Attributes of ZFS.
901  */
902 static int
zpl_ioctl_getdosflags(struct file * filp,void __user * arg)903 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
904 {
905 	struct inode *ip = file_inode(filp);
906 	uint64_t dosflags = ITOZ(ip)->z_pflags;
907 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
908 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
909 
910 	return (err);
911 }
912 
913 static int
__zpl_ioctl_setdosflags(struct inode * ip,uint64_t ioctl_flags,xvattr_t * xva)914 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
915 {
916 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
917 	xoptattr_t *xoap;
918 
919 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
920 		return (-EOPNOTSUPP);
921 
922 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
923 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
924 	    !capable(CAP_LINUX_IMMUTABLE))
925 		return (-EPERM);
926 
927 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
928 		return (-EACCES);
929 
930 	xva_init(xva);
931 	xoap = xva_getxoptattr(xva);
932 
933 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
934 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
935 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
936 		XVA_SET_REQ(xva, (xflag));	\
937 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
938 	}	\
939 } while (0)
940 
941 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
942 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
943 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
944 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
945 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
946 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
947 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
948 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
949 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
950 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
951 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
952 
953 #undef	FLAG_CHANGE
954 
955 	return (0);
956 }
957 
958 /*
959  * Set Additional File Level Attributes of ZFS.
960  */
961 static int
zpl_ioctl_setdosflags(struct file * filp,void __user * arg)962 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
963 {
964 	struct inode *ip = file_inode(filp);
965 	uint64_t dosflags;
966 	cred_t *cr = CRED();
967 	xvattr_t xva;
968 	int err;
969 	fstrans_cookie_t cookie;
970 
971 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
972 		return (-EFAULT);
973 
974 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
975 	if (err)
976 		return (err);
977 
978 	crhold(cr);
979 	cookie = spl_fstrans_mark();
980 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
981 	spl_fstrans_unmark(cookie);
982 	crfree(cr);
983 
984 	return (err);
985 }
986 
987 static int
zpl_ioctl_rewrite(struct file * filp,void __user * arg)988 zpl_ioctl_rewrite(struct file *filp, void __user *arg)
989 {
990 	struct inode *ip = file_inode(filp);
991 	zfs_rewrite_args_t args;
992 	fstrans_cookie_t cookie;
993 	int err;
994 
995 	if (copy_from_user(&args, arg, sizeof (args)))
996 		return (-EFAULT);
997 
998 	if (unlikely(!(filp->f_mode & FMODE_WRITE)))
999 		return (-EBADF);
1000 
1001 	cookie = spl_fstrans_mark();
1002 	err = -zfs_rewrite(ITOZ(ip), args.off, args.len, args.flags, args.arg);
1003 	spl_fstrans_unmark(cookie);
1004 
1005 	return (err);
1006 }
1007 
1008 static long
zpl_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1009 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1010 {
1011 	switch (cmd) {
1012 	case FS_IOC_GETVERSION:
1013 		return (zpl_ioctl_getversion(filp, (void *)arg));
1014 	case FS_IOC_GETFLAGS:
1015 		return (zpl_ioctl_getflags(filp, (void *)arg));
1016 	case FS_IOC_SETFLAGS:
1017 		return (zpl_ioctl_setflags(filp, (void *)arg));
1018 	case ZFS_IOC_FSGETXATTR:
1019 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1020 	case ZFS_IOC_FSSETXATTR:
1021 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1022 	case ZFS_IOC_GETDOSFLAGS:
1023 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1024 	case ZFS_IOC_SETDOSFLAGS:
1025 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1026 	case ZFS_IOC_REWRITE:
1027 		return (zpl_ioctl_rewrite(filp, (void *)arg));
1028 	default:
1029 		return (-ENOTTY);
1030 	}
1031 }
1032 
1033 #ifdef CONFIG_COMPAT
1034 static long
zpl_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1035 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1036 {
1037 	switch (cmd) {
1038 	case FS_IOC32_GETVERSION:
1039 		cmd = FS_IOC_GETVERSION;
1040 		break;
1041 	case FS_IOC32_GETFLAGS:
1042 		cmd = FS_IOC_GETFLAGS;
1043 		break;
1044 	case FS_IOC32_SETFLAGS:
1045 		cmd = FS_IOC_SETFLAGS;
1046 		break;
1047 	default:
1048 		return (-ENOTTY);
1049 	}
1050 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1051 }
1052 #endif /* CONFIG_COMPAT */
1053 
1054 const struct address_space_operations zpl_address_space_operations = {
1055 #ifdef HAVE_VFS_READPAGES
1056 	.readpages	= zpl_readpages,
1057 #else
1058 	.readahead	= zpl_readahead,
1059 #endif
1060 #ifdef HAVE_VFS_READ_FOLIO
1061 	.read_folio	= zpl_read_folio,
1062 #else
1063 	.readpage	= zpl_readpage,
1064 #endif
1065 #ifdef HAVE_VFS_WRITEPAGE
1066 	.writepage	= zpl_writepage,
1067 #endif
1068 	.writepages	= zpl_writepages,
1069 	.direct_IO	= zpl_direct_IO,
1070 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1071 	.set_page_dirty = __set_page_dirty_nobuffers,
1072 #endif
1073 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1074 	.dirty_folio	= filemap_dirty_folio,
1075 #endif
1076 #ifdef HAVE_VFS_MIGRATE_FOLIO
1077 	.migrate_folio	= migrate_folio,
1078 #elif defined(HAVE_VFS_MIGRATEPAGE)
1079 	.migratepage	= migrate_page,
1080 #endif
1081 };
1082 
1083 const struct file_operations zpl_file_operations = {
1084 	.open		= zpl_open,
1085 	.release	= zpl_release,
1086 	.llseek		= zpl_llseek,
1087 	.read_iter	= zpl_iter_read,
1088 	.write_iter	= zpl_iter_write,
1089 #ifdef HAVE_COPY_SPLICE_READ
1090 	.splice_read	= copy_splice_read,
1091 #else
1092 	.splice_read	= generic_file_splice_read,
1093 #endif
1094 	.splice_write	= iter_file_splice_write,
1095 	.mmap		= zpl_mmap,
1096 	.fsync		= zpl_fsync,
1097 	.fallocate	= zpl_fallocate,
1098 	.copy_file_range	= zpl_copy_file_range,
1099 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1100 	.clone_file_range	= zpl_clone_file_range,
1101 #endif
1102 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1103 	.remap_file_range	= zpl_remap_file_range,
1104 #endif
1105 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1106 	.dedupe_file_range	= zpl_dedupe_file_range,
1107 #endif
1108 	.fadvise	= zpl_fadvise,
1109 	.unlocked_ioctl	= zpl_ioctl,
1110 #ifdef CONFIG_COMPAT
1111 	.compat_ioctl	= zpl_compat_ioctl,
1112 #endif
1113 };
1114 
1115 const struct file_operations zpl_dir_file_operations = {
1116 	.llseek		= generic_file_llseek,
1117 	.read		= generic_read_dir,
1118 	.iterate_shared	= zpl_iterate,
1119 	.fsync		= zpl_fsync,
1120 	.unlocked_ioctl = zpl_ioctl,
1121 #ifdef CONFIG_COMPAT
1122 	.compat_ioctl   = zpl_compat_ioctl,
1123 #endif
1124 };
1125 
1126 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1127 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1128 	"Percentage of length to use for the available capacity check");
1129