1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
24  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
25  * Copyright (c) 2025, Klara, Inc.
26  * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
27  */
28 
29 
30 #ifdef CONFIG_COMPAT
31 #include <linux/compat.h>
32 #endif
33 #include <linux/fs.h>
34 #include <linux/migrate.h>
35 #include <sys/file.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vfsops.h>
39 #include <sys/zfs_vnops.h>
40 #include <sys/zfs_project.h>
41 #include <linux/pagemap_compat.h>
42 #include <linux/fadvise.h>
43 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
44 #include <linux/writeback.h>
45 #endif
46 
47 /*
48  * When using fallocate(2) to preallocate space, inflate the requested
49  * capacity check by 10% to account for the required metadata blocks.
50  */
51 static unsigned int zfs_fallocate_reserve_percent = 110;
52 
53 static int
zpl_open(struct inode * ip,struct file * filp)54 zpl_open(struct inode *ip, struct file *filp)
55 {
56 	cred_t *cr = CRED();
57 	int error;
58 	fstrans_cookie_t cookie;
59 
60 	error = generic_file_open(ip, filp);
61 	if (error)
62 		return (error);
63 
64 	crhold(cr);
65 	cookie = spl_fstrans_mark();
66 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
67 	spl_fstrans_unmark(cookie);
68 	crfree(cr);
69 	ASSERT3S(error, <=, 0);
70 
71 	return (error);
72 }
73 
74 static int
zpl_release(struct inode * ip,struct file * filp)75 zpl_release(struct inode *ip, struct file *filp)
76 {
77 	cred_t *cr = CRED();
78 	int error;
79 	fstrans_cookie_t cookie;
80 
81 	cookie = spl_fstrans_mark();
82 	if (ITOZ(ip)->z_atime_dirty)
83 		zfs_mark_inode_dirty(ip);
84 
85 	crhold(cr);
86 	error = -zfs_close(ip, filp->f_flags, cr);
87 	spl_fstrans_unmark(cookie);
88 	crfree(cr);
89 	ASSERT3S(error, <=, 0);
90 
91 	return (error);
92 }
93 
94 static int
zpl_iterate(struct file * filp,struct dir_context * ctx)95 zpl_iterate(struct file *filp, struct dir_context *ctx)
96 {
97 	cred_t *cr = CRED();
98 	int error;
99 	fstrans_cookie_t cookie;
100 
101 	crhold(cr);
102 	cookie = spl_fstrans_mark();
103 	error = -zfs_readdir(file_inode(filp), ctx, cr);
104 	spl_fstrans_unmark(cookie);
105 	crfree(cr);
106 	ASSERT3S(error, <=, 0);
107 
108 	return (error);
109 }
110 
111 static inline int
112 zpl_write_cache_pages(struct address_space *mapping,
113     struct writeback_control *wbc, void *data);
114 
115 static int
zpl_fsync(struct file * filp,loff_t start,loff_t end,int datasync)116 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
117 {
118 	struct inode *inode = filp->f_mapping->host;
119 	znode_t *zp = ITOZ(inode);
120 	cred_t *cr = CRED();
121 	int error;
122 	fstrans_cookie_t cookie;
123 
124 	/*
125 	 * Force dirty pages in the range out to the DMU and the log, ready
126 	 * for zil_commit() to write down.
127 	 *
128 	 * We call write_cache_pages() directly to ensure that zpl_putpage() is
129 	 * called with the flags we need. We need WB_SYNC_NONE to avoid a call
130 	 * to zil_commit() (since we're doing this as a kind of pre-sync); but
131 	 * we do need for_sync so that the pages remain in writeback until
132 	 * they're on disk, and so that we get an error if the DMU write fails.
133 	 */
134 	if (filemap_range_has_page(inode->i_mapping, start, end)) {
135 		int for_sync = 1;
136 		struct writeback_control wbc = {
137 			.sync_mode = WB_SYNC_NONE,
138 			.nr_to_write = LONG_MAX,
139 			.range_start = start,
140 			.range_end = end,
141 		};
142 		error =
143 		    zpl_write_cache_pages(inode->i_mapping, &wbc, &for_sync);
144 		if (error != 0) {
145 			/*
146 			 * Unclear what state things are in. zfs_putpage() will
147 			 * ensure the pages remain dirty if they haven't been
148 			 * written down to the DMU, but because there may be
149 			 * nothing logged, we can't assume that zfs_sync() ->
150 			 * zil_commit() will give us a useful error. It's
151 			 * safest if we just error out here.
152 			 */
153 			return (error);
154 		}
155 	}
156 
157 	crhold(cr);
158 	cookie = spl_fstrans_mark();
159 	error = -zfs_fsync(zp, datasync, cr);
160 	spl_fstrans_unmark(cookie);
161 	crfree(cr);
162 	ASSERT3S(error, <=, 0);
163 
164 	return (error);
165 }
166 
167 static inline int
zfs_io_flags(struct kiocb * kiocb)168 zfs_io_flags(struct kiocb *kiocb)
169 {
170 	int flags = 0;
171 
172 #if defined(IOCB_DSYNC)
173 	if (kiocb->ki_flags & IOCB_DSYNC)
174 		flags |= O_DSYNC;
175 #endif
176 #if defined(IOCB_SYNC)
177 	if (kiocb->ki_flags & IOCB_SYNC)
178 		flags |= O_SYNC;
179 #endif
180 #if defined(IOCB_APPEND)
181 	if (kiocb->ki_flags & IOCB_APPEND)
182 		flags |= O_APPEND;
183 #endif
184 #if defined(IOCB_DIRECT)
185 	if (kiocb->ki_flags & IOCB_DIRECT)
186 		flags |= O_DIRECT;
187 #endif
188 	return (flags);
189 }
190 
191 /*
192  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
193  * is true.  This is needed since datasets with inherited "relatime" property
194  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
195  * `zfs set relatime=...`), which is what relatime test in VFS by
196  * relatime_need_update() is based on.
197  */
198 static inline void
zpl_file_accessed(struct file * filp)199 zpl_file_accessed(struct file *filp)
200 {
201 	struct inode *ip = filp->f_mapping->host;
202 
203 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
204 		if (zfs_relatime_need_update(ip))
205 			file_accessed(filp);
206 	} else {
207 		file_accessed(filp);
208 	}
209 }
210 
211 static ssize_t
zpl_iter_read(struct kiocb * kiocb,struct iov_iter * to)212 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
213 {
214 	cred_t *cr = CRED();
215 	fstrans_cookie_t cookie;
216 	struct file *filp = kiocb->ki_filp;
217 	ssize_t count = iov_iter_count(to);
218 	zfs_uio_t uio;
219 
220 	zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count);
221 
222 	crhold(cr);
223 	cookie = spl_fstrans_mark();
224 
225 	ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
226 	    filp->f_flags | zfs_io_flags(kiocb), cr);
227 
228 	spl_fstrans_unmark(cookie);
229 	crfree(cr);
230 
231 	if (ret < 0)
232 		return (ret);
233 
234 	ssize_t read = count - uio.uio_resid;
235 	kiocb->ki_pos += read;
236 
237 	zpl_file_accessed(filp);
238 
239 	return (read);
240 }
241 
242 static inline ssize_t
zpl_generic_write_checks(struct kiocb * kiocb,struct iov_iter * from,size_t * countp)243 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
244     size_t *countp)
245 {
246 	ssize_t ret = generic_write_checks(kiocb, from);
247 	if (ret <= 0)
248 		return (ret);
249 
250 	*countp = ret;
251 
252 	return (0);
253 }
254 
255 static ssize_t
zpl_iter_write(struct kiocb * kiocb,struct iov_iter * from)256 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
257 {
258 	cred_t *cr = CRED();
259 	fstrans_cookie_t cookie;
260 	struct file *filp = kiocb->ki_filp;
261 	struct inode *ip = filp->f_mapping->host;
262 	zfs_uio_t uio;
263 	size_t count = 0;
264 	ssize_t ret;
265 
266 	ret = zpl_generic_write_checks(kiocb, from, &count);
267 	if (ret)
268 		return (ret);
269 
270 	zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count);
271 
272 	crhold(cr);
273 	cookie = spl_fstrans_mark();
274 
275 	ret = -zfs_write(ITOZ(ip), &uio,
276 	    filp->f_flags | zfs_io_flags(kiocb), cr);
277 
278 	spl_fstrans_unmark(cookie);
279 	crfree(cr);
280 
281 	if (ret < 0)
282 		return (ret);
283 
284 	ssize_t wrote = count - uio.uio_resid;
285 	kiocb->ki_pos += wrote;
286 
287 	return (wrote);
288 }
289 
290 static ssize_t
zpl_direct_IO(struct kiocb * kiocb,struct iov_iter * iter)291 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
292 {
293 	/*
294 	 * All O_DIRECT requests should be handled by
295 	 * zpl_iter_write/read}(). There is no way kernel generic code should
296 	 * call the direct_IO address_space_operations function. We set this
297 	 * code path to be fatal if it is executed.
298 	 */
299 	PANIC(0);
300 	return (0);
301 }
302 
303 static loff_t
zpl_llseek(struct file * filp,loff_t offset,int whence)304 zpl_llseek(struct file *filp, loff_t offset, int whence)
305 {
306 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
307 	fstrans_cookie_t cookie;
308 
309 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
310 		struct inode *ip = filp->f_mapping->host;
311 		loff_t maxbytes = ip->i_sb->s_maxbytes;
312 		loff_t error;
313 
314 		spl_inode_lock_shared(ip);
315 		cookie = spl_fstrans_mark();
316 		error = -zfs_holey(ITOZ(ip), whence, &offset);
317 		spl_fstrans_unmark(cookie);
318 		if (error == 0)
319 			error = lseek_execute(filp, ip, offset, maxbytes);
320 		spl_inode_unlock_shared(ip);
321 
322 		return (error);
323 	}
324 #endif /* SEEK_HOLE && SEEK_DATA */
325 
326 	return (generic_file_llseek(filp, offset, whence));
327 }
328 
329 /*
330  * It's worth taking a moment to describe how mmap is implemented
331  * for zfs because it differs considerably from other Linux filesystems.
332  * However, this issue is handled the same way under OpenSolaris.
333  *
334  * The issue is that by design zfs bypasses the Linux page cache and
335  * leaves all caching up to the ARC.  This has been shown to work
336  * well for the common read(2)/write(2) case.  However, mmap(2)
337  * is problem because it relies on being tightly integrated with the
338  * page cache.  To handle this we cache mmap'ed files twice, once in
339  * the ARC and a second time in the page cache.  The code is careful
340  * to keep both copies synchronized.
341  *
342  * When a file with an mmap'ed region is written to using write(2)
343  * both the data in the ARC and existing pages in the page cache
344  * are updated.  For a read(2) data will be read first from the page
345  * cache then the ARC if needed.  Neither a write(2) or read(2) will
346  * will ever result in new pages being added to the page cache.
347  *
348  * New pages are added to the page cache only via .readpage() which
349  * is called when the vfs needs to read a page off disk to back the
350  * virtual memory region.  These pages may be modified without
351  * notifying the ARC and will be written out periodically via
352  * .writepage().  This will occur due to either a sync or the usual
353  * page aging behavior.  Note because a read(2) of a mmap'ed file
354  * will always check the page cache first even when the ARC is out
355  * of date correct data will still be returned.
356  *
357  * While this implementation ensures correct behavior it does have
358  * have some drawbacks.  The most obvious of which is that it
359  * increases the required memory footprint when access mmap'ed
360  * files.  It also adds additional complexity to the code keeping
361  * both caches synchronized.
362  *
363  * Longer term it may be possible to cleanly resolve this wart by
364  * mapping page cache pages directly on to the ARC buffers.  The
365  * Linux address space operations are flexible enough to allow
366  * selection of which pages back a particular index.  The trick
367  * would be working out the details of which subsystem is in
368  * charge, the ARC, the page cache, or both.  It may also prove
369  * helpful to move the ARC buffers to a scatter-gather lists
370  * rather than a vmalloc'ed region.
371  */
372 static int
zpl_mmap(struct file * filp,struct vm_area_struct * vma)373 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
374 {
375 	struct inode *ip = filp->f_mapping->host;
376 	int error;
377 	fstrans_cookie_t cookie;
378 
379 	cookie = spl_fstrans_mark();
380 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
381 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
382 	spl_fstrans_unmark(cookie);
383 
384 	if (error)
385 		return (error);
386 
387 	error = generic_file_mmap(filp, vma);
388 	if (error)
389 		return (error);
390 
391 	return (error);
392 }
393 
394 /*
395  * Populate a page with data for the Linux page cache.  This function is
396  * only used to support mmap(2).  There will be an identical copy of the
397  * data in the ARC which is kept up to date via .write() and .writepage().
398  */
399 static inline int
zpl_readpage_common(struct page * pp)400 zpl_readpage_common(struct page *pp)
401 {
402 	fstrans_cookie_t cookie;
403 
404 	ASSERT(PageLocked(pp));
405 
406 	cookie = spl_fstrans_mark();
407 	int error = -zfs_getpage(pp->mapping->host, pp);
408 	spl_fstrans_unmark(cookie);
409 
410 	unlock_page(pp);
411 
412 	return (error);
413 }
414 
415 #ifdef HAVE_VFS_READ_FOLIO
416 static int
zpl_read_folio(struct file * filp,struct folio * folio)417 zpl_read_folio(struct file *filp, struct folio *folio)
418 {
419 	return (zpl_readpage_common(&folio->page));
420 }
421 #else
422 static int
zpl_readpage(struct file * filp,struct page * pp)423 zpl_readpage(struct file *filp, struct page *pp)
424 {
425 	return (zpl_readpage_common(pp));
426 }
427 #endif
428 
429 static int
zpl_readpage_filler(void * data,struct page * pp)430 zpl_readpage_filler(void *data, struct page *pp)
431 {
432 	return (zpl_readpage_common(pp));
433 }
434 
435 /*
436  * Populate a set of pages with data for the Linux page cache.  This
437  * function will only be called for read ahead and never for demand
438  * paging.  For simplicity, the code relies on read_cache_pages() to
439  * correctly lock each page for IO and call zpl_readpage().
440  */
441 #ifdef HAVE_VFS_READPAGES
442 static int
zpl_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)443 zpl_readpages(struct file *filp, struct address_space *mapping,
444     struct list_head *pages, unsigned nr_pages)
445 {
446 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
447 }
448 #else
449 static void
zpl_readahead(struct readahead_control * ractl)450 zpl_readahead(struct readahead_control *ractl)
451 {
452 	struct page *page;
453 
454 	while ((page = readahead_page(ractl)) != NULL) {
455 		int ret;
456 
457 		ret = zpl_readpage_filler(NULL, page);
458 		put_page(page);
459 		if (ret)
460 			break;
461 	}
462 }
463 #endif
464 
465 static int
zpl_putpage(struct page * pp,struct writeback_control * wbc,void * data)466 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
467 {
468 	boolean_t *for_sync = data;
469 	fstrans_cookie_t cookie;
470 	int ret;
471 
472 	ASSERT(PageLocked(pp));
473 	ASSERT(!PageWriteback(pp));
474 
475 	cookie = spl_fstrans_mark();
476 	ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
477 	spl_fstrans_unmark(cookie);
478 
479 	return (ret);
480 }
481 
482 #ifdef HAVE_WRITE_CACHE_PAGES
483 #ifdef HAVE_WRITEPAGE_T_FOLIO
484 static int
zpl_putfolio(struct folio * pp,struct writeback_control * wbc,void * data)485 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
486 {
487 	return (zpl_putpage(&pp->page, wbc, data));
488 }
489 #endif
490 
491 static inline int
zpl_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,void * data)492 zpl_write_cache_pages(struct address_space *mapping,
493     struct writeback_control *wbc, void *data)
494 {
495 	int result;
496 
497 #ifdef HAVE_WRITEPAGE_T_FOLIO
498 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
499 #else
500 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
501 #endif
502 	return (result);
503 }
504 #else
505 static inline int
zpl_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,void * data)506 zpl_write_cache_pages(struct address_space *mapping,
507     struct writeback_control *wbc, void *data)
508 {
509 	pgoff_t start = wbc->range_start >> PAGE_SHIFT;
510 	pgoff_t end = wbc->range_end >> PAGE_SHIFT;
511 
512 	struct folio_batch fbatch;
513 	folio_batch_init(&fbatch);
514 
515 	/*
516 	 * This atomically (-ish) tags all DIRTY pages in the range with
517 	 * TOWRITE, allowing users to continue dirtying or undirtying pages
518 	 * while we get on with writeback, without us treading on each other.
519 	 */
520 	tag_pages_for_writeback(mapping, start, end);
521 
522 	int err = 0;
523 	unsigned int npages;
524 
525 	/*
526 	 * Grab references to the TOWRITE pages just flagged. This may not get
527 	 * all of them, so we do it in a loop until there are none left.
528 	 */
529 	while ((npages = filemap_get_folios_tag(mapping, &start, end,
530 	    PAGECACHE_TAG_TOWRITE, &fbatch)) != 0) {
531 
532 		/* Loop over each page and write it out. */
533 		struct folio *folio;
534 		while ((folio = folio_batch_next(&fbatch)) != NULL) {
535 			folio_lock(folio);
536 
537 			/*
538 			 * If the folio has been remapped, or is no longer
539 			 * dirty, then there's nothing to do.
540 			 */
541 			if (folio->mapping != mapping ||
542 			    !folio_test_dirty(folio)) {
543 				folio_unlock(folio);
544 				continue;
545 			}
546 
547 			/*
548 			 * If writeback is already in progress, wait for it to
549 			 * finish. We continue after this even if the page
550 			 * ends up clean; zfs_putpage() will skip it if no
551 			 * further work is required.
552 			 */
553 			while (folio_test_writeback(folio))
554 				folio_wait_bit(folio, PG_writeback);
555 
556 			/*
557 			 * Write it out and collect any error. zfs_putpage()
558 			 * will clear the TOWRITE and DIRTY flags, and return
559 			 * with the page unlocked.
560 			 */
561 			int ferr = zpl_putpage(&folio->page, wbc, data);
562 			if (err == 0 && ferr != 0)
563 				err = ferr;
564 
565 			/* Housekeeping for the caller. */
566 			wbc->nr_to_write -= folio_nr_pages(folio);
567 		}
568 
569 		/* Release any remaining references on the batch. */
570 		folio_batch_release(&fbatch);
571 	}
572 
573 	return (err);
574 }
575 #endif
576 
577 static int
zpl_writepages(struct address_space * mapping,struct writeback_control * wbc)578 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
579 {
580 	znode_t		*zp = ITOZ(mapping->host);
581 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
582 	enum writeback_sync_modes sync_mode;
583 	int result;
584 
585 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
586 		return (result);
587 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
588 		wbc->sync_mode = WB_SYNC_ALL;
589 	zpl_exit(zfsvfs, FTAG);
590 	sync_mode = wbc->sync_mode;
591 
592 	/*
593 	 * We don't want to run write_cache_pages() in SYNC mode here, because
594 	 * that would make putpage() wait for a single page to be committed to
595 	 * disk every single time, resulting in atrocious performance. Instead
596 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
597 	 * and then we commit it all in one go.
598 	 */
599 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
600 	wbc->sync_mode = WB_SYNC_NONE;
601 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
602 	if (sync_mode != wbc->sync_mode) {
603 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
604 			return (result);
605 
606 		if (zfsvfs->z_log != NULL) {
607 			/*
608 			 * We don't want to block here if the pool suspends,
609 			 * because this is not a syncing op by itself, but
610 			 * might be part of one that the caller will
611 			 * coordinate.
612 			 */
613 			result = -zil_commit_flags(zfsvfs->z_log, zp->z_id,
614 			    ZIL_COMMIT_NOW);
615 		}
616 
617 		zpl_exit(zfsvfs, FTAG);
618 
619 		/*
620 		 * If zil_commit_flags() failed, it's unclear what state things
621 		 * are currently in. putpage() has written back out what it can
622 		 * to the DMU, but it may not be on disk. We have little choice
623 		 * but to escape.
624 		 */
625 		if (result != 0)
626 			return (result);
627 
628 		/*
629 		 * We need to call write_cache_pages() again (we can't just
630 		 * return after the commit) because the previous call in
631 		 * non-SYNC mode does not guarantee that we got all the dirty
632 		 * pages (see the implementation of write_cache_pages() for
633 		 * details). That being said, this is a no-op in most cases.
634 		 */
635 		wbc->sync_mode = sync_mode;
636 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
637 	}
638 	return (result);
639 }
640 
641 #ifdef HAVE_VFS_WRITEPAGE
642 /*
643  * Write out dirty pages to the ARC, this function is only required to
644  * support mmap(2).  Mapped pages may be dirtied by memory operations
645  * which never call .write().  These dirty pages are kept in sync with
646  * the ARC buffers via this hook.
647  */
648 static int
zpl_writepage(struct page * pp,struct writeback_control * wbc)649 zpl_writepage(struct page *pp, struct writeback_control *wbc)
650 {
651 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
652 		wbc->sync_mode = WB_SYNC_ALL;
653 
654 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
655 
656 	return (zpl_putpage(pp, wbc, &for_sync));
657 }
658 #endif
659 
660 /*
661  * The flag combination which matches the behavior of zfs_space() is
662  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
663  * flag was introduced in the 2.6.38 kernel.
664  *
665  * The original mode=0 (allocate space) behavior can be reasonably emulated
666  * by checking if enough space exists and creating a sparse file, as real
667  * persistent space reservation is not possible due to COW, snapshots, etc.
668  */
669 static long
zpl_fallocate_common(struct inode * ip,int mode,loff_t offset,loff_t len)670 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
671 {
672 	cred_t *cr = CRED();
673 	loff_t olen;
674 	fstrans_cookie_t cookie;
675 	int error = 0;
676 
677 	int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
678 
679 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
680 		return (-EOPNOTSUPP);
681 
682 	if (offset < 0 || len <= 0)
683 		return (-EINVAL);
684 
685 	spl_inode_lock(ip);
686 	olen = i_size_read(ip);
687 
688 	crhold(cr);
689 	cookie = spl_fstrans_mark();
690 	if (mode & (test_mode)) {
691 		flock64_t bf;
692 
693 		if (mode & FALLOC_FL_KEEP_SIZE) {
694 			if (offset > olen)
695 				goto out_unmark;
696 
697 			if (offset + len > olen)
698 				len = olen - offset;
699 		}
700 		bf.l_type = F_WRLCK;
701 		bf.l_whence = SEEK_SET;
702 		bf.l_start = offset;
703 		bf.l_len = len;
704 		bf.l_pid = 0;
705 
706 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
707 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
708 		unsigned int percent = zfs_fallocate_reserve_percent;
709 		struct kstatfs statfs;
710 
711 		/* Legacy mode, disable fallocate compatibility. */
712 		if (percent == 0) {
713 			error = -EOPNOTSUPP;
714 			goto out_unmark;
715 		}
716 
717 		/*
718 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
719 		 * also checks project quota limits, which are relevant here.
720 		 */
721 		error = zfs_statvfs(ip, &statfs);
722 		if (error)
723 			goto out_unmark;
724 
725 		/*
726 		 * Shrink available space a bit to account for overhead/races.
727 		 * We know the product previously fit into availbytes from
728 		 * dmu_objset_space(), so the smaller product will also fit.
729 		 */
730 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
731 			error = -ENOSPC;
732 			goto out_unmark;
733 		}
734 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
735 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
736 	}
737 out_unmark:
738 	spl_fstrans_unmark(cookie);
739 	spl_inode_unlock(ip);
740 
741 	crfree(cr);
742 
743 	return (error);
744 }
745 
746 static long
zpl_fallocate(struct file * filp,int mode,loff_t offset,loff_t len)747 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
748 {
749 	return zpl_fallocate_common(file_inode(filp),
750 	    mode, offset, len);
751 }
752 
753 static int
zpl_ioctl_getversion(struct file * filp,void __user * arg)754 zpl_ioctl_getversion(struct file *filp, void __user *arg)
755 {
756 	uint32_t generation = file_inode(filp)->i_generation;
757 
758 	return (copy_to_user(arg, &generation, sizeof (generation)));
759 }
760 
761 static int
zpl_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)762 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
763 {
764 	struct inode *ip = file_inode(filp);
765 	znode_t *zp = ITOZ(ip);
766 	zfsvfs_t *zfsvfs = ITOZSB(ip);
767 	objset_t *os = zfsvfs->z_os;
768 	int error = 0;
769 
770 	if (S_ISFIFO(ip->i_mode))
771 		return (-ESPIPE);
772 
773 	if (offset < 0 || len < 0)
774 		return (-EINVAL);
775 
776 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
777 		return (error);
778 
779 	switch (advice) {
780 	case POSIX_FADV_SEQUENTIAL:
781 	case POSIX_FADV_WILLNEED:
782 #ifdef HAVE_GENERIC_FADVISE
783 		if (zn_has_cached_data(zp, offset, offset + len - 1))
784 			error = generic_fadvise(filp, offset, len, advice);
785 #endif
786 		/*
787 		 * Pass on the caller's size directly, but note that
788 		 * dmu_prefetch_max will effectively cap it.  If there
789 		 * really is a larger sequential access pattern, perhaps
790 		 * dmu_zfetch will detect it.
791 		 */
792 		if (len == 0)
793 			len = i_size_read(ip) - offset;
794 
795 		dmu_prefetch(os, zp->z_id, 0, offset, len,
796 		    ZIO_PRIORITY_ASYNC_READ);
797 		break;
798 	case POSIX_FADV_NORMAL:
799 	case POSIX_FADV_RANDOM:
800 	case POSIX_FADV_DONTNEED:
801 	case POSIX_FADV_NOREUSE:
802 		/* ignored for now */
803 		break;
804 	default:
805 		error = -EINVAL;
806 		break;
807 	}
808 
809 	zfs_exit(zfsvfs, FTAG);
810 
811 	return (error);
812 }
813 
814 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
815 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
816 
817 static uint32_t
__zpl_ioctl_getflags(struct inode * ip)818 __zpl_ioctl_getflags(struct inode *ip)
819 {
820 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
821 	uint32_t ioctl_flags = 0;
822 
823 	if (zfs_flags & ZFS_IMMUTABLE)
824 		ioctl_flags |= FS_IMMUTABLE_FL;
825 
826 	if (zfs_flags & ZFS_APPENDONLY)
827 		ioctl_flags |= FS_APPEND_FL;
828 
829 	if (zfs_flags & ZFS_NODUMP)
830 		ioctl_flags |= FS_NODUMP_FL;
831 
832 	if (zfs_flags & ZFS_PROJINHERIT)
833 		ioctl_flags |= ZFS_PROJINHERIT_FL;
834 
835 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
836 }
837 
838 /*
839  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
840  * attributes common to both Linux and Solaris are mapped.
841  */
842 static int
zpl_ioctl_getflags(struct file * filp,void __user * arg)843 zpl_ioctl_getflags(struct file *filp, void __user *arg)
844 {
845 	uint32_t flags;
846 	int err;
847 
848 	flags = __zpl_ioctl_getflags(file_inode(filp));
849 	err = copy_to_user(arg, &flags, sizeof (flags));
850 
851 	return (err);
852 }
853 
854 /*
855  * fchange() is a helper macro to detect if we have been asked to change a
856  * flag. This is ugly, but the requirement that we do this is a consequence of
857  * how the Linux file attribute interface was designed. Another consequence is
858  * that concurrent modification of files suffers from a TOCTOU race. Neither
859  * are things we can fix without modifying the kernel-userland interface, which
860  * is outside of our jurisdiction.
861  */
862 
863 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
864 
865 static int
__zpl_ioctl_setflags(struct inode * ip,uint32_t ioctl_flags,xvattr_t * xva)866 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
867 {
868 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
869 	xoptattr_t *xoap;
870 
871 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
872 	    ZFS_PROJINHERIT_FL))
873 		return (-EOPNOTSUPP);
874 
875 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
876 		return (-EACCES);
877 
878 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
879 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
880 	    !capable(CAP_LINUX_IMMUTABLE))
881 		return (-EPERM);
882 
883 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
884 		return (-EACCES);
885 
886 	xva_init(xva);
887 	xoap = xva_getxoptattr(xva);
888 
889 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
890 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
891 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
892 		XVA_SET_REQ(xva, (xflag));	\
893 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
894 	}	\
895 } while (0)
896 
897 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
898 	    xoap->xoa_immutable);
899 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
900 	    xoap->xoa_appendonly);
901 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
902 	    xoap->xoa_nodump);
903 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
904 	    xoap->xoa_projinherit);
905 
906 #undef	FLAG_CHANGE
907 
908 	return (0);
909 }
910 
911 static int
zpl_ioctl_setflags(struct file * filp,void __user * arg)912 zpl_ioctl_setflags(struct file *filp, void __user *arg)
913 {
914 	struct inode *ip = file_inode(filp);
915 	uint32_t flags;
916 	cred_t *cr = CRED();
917 	xvattr_t xva;
918 	int err;
919 	fstrans_cookie_t cookie;
920 
921 	if (copy_from_user(&flags, arg, sizeof (flags)))
922 		return (-EFAULT);
923 
924 	err = __zpl_ioctl_setflags(ip, flags, &xva);
925 	if (err)
926 		return (err);
927 
928 	crhold(cr);
929 	cookie = spl_fstrans_mark();
930 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
931 	spl_fstrans_unmark(cookie);
932 	crfree(cr);
933 
934 	return (err);
935 }
936 
937 static int
zpl_ioctl_getxattr(struct file * filp,void __user * arg)938 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
939 {
940 	zfsxattr_t fsx = { 0 };
941 	struct inode *ip = file_inode(filp);
942 	int err;
943 
944 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
945 	fsx.fsx_projid = ITOZ(ip)->z_projid;
946 	err = copy_to_user(arg, &fsx, sizeof (fsx));
947 
948 	return (err);
949 }
950 
951 static int
zpl_ioctl_setxattr(struct file * filp,void __user * arg)952 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
953 {
954 	struct inode *ip = file_inode(filp);
955 	zfsxattr_t fsx;
956 	cred_t *cr = CRED();
957 	xvattr_t xva;
958 	xoptattr_t *xoap;
959 	int err;
960 	fstrans_cookie_t cookie;
961 
962 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
963 		return (-EFAULT);
964 
965 	if (!zpl_is_valid_projid(fsx.fsx_projid))
966 		return (-EINVAL);
967 
968 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
969 	if (err)
970 		return (err);
971 
972 	xoap = xva_getxoptattr(&xva);
973 	XVA_SET_REQ(&xva, XAT_PROJID);
974 	xoap->xoa_projid = fsx.fsx_projid;
975 
976 	crhold(cr);
977 	cookie = spl_fstrans_mark();
978 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
979 	spl_fstrans_unmark(cookie);
980 	crfree(cr);
981 
982 	return (err);
983 }
984 
985 /*
986  * Expose Additional File Level Attributes of ZFS.
987  */
988 static int
zpl_ioctl_getdosflags(struct file * filp,void __user * arg)989 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
990 {
991 	struct inode *ip = file_inode(filp);
992 	uint64_t dosflags = ITOZ(ip)->z_pflags;
993 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
994 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
995 
996 	return (err);
997 }
998 
999 static int
__zpl_ioctl_setdosflags(struct inode * ip,uint64_t ioctl_flags,xvattr_t * xva)1000 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1001 {
1002 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1003 	xoptattr_t *xoap;
1004 
1005 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1006 		return (-EOPNOTSUPP);
1007 
1008 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1009 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1010 	    !capable(CAP_LINUX_IMMUTABLE))
1011 		return (-EPERM);
1012 
1013 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1014 		return (-EACCES);
1015 
1016 	xva_init(xva);
1017 	xoap = xva_getxoptattr(xva);
1018 
1019 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1020 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1021 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1022 		XVA_SET_REQ(xva, (xflag));	\
1023 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1024 	}	\
1025 } while (0)
1026 
1027 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1028 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1029 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1030 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1031 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1032 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1033 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1034 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1035 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1036 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1037 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1038 
1039 #undef	FLAG_CHANGE
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Set Additional File Level Attributes of ZFS.
1046  */
1047 static int
zpl_ioctl_setdosflags(struct file * filp,void __user * arg)1048 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1049 {
1050 	struct inode *ip = file_inode(filp);
1051 	uint64_t dosflags;
1052 	cred_t *cr = CRED();
1053 	xvattr_t xva;
1054 	int err;
1055 	fstrans_cookie_t cookie;
1056 
1057 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1058 		return (-EFAULT);
1059 
1060 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1061 	if (err)
1062 		return (err);
1063 
1064 	crhold(cr);
1065 	cookie = spl_fstrans_mark();
1066 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1067 	spl_fstrans_unmark(cookie);
1068 	crfree(cr);
1069 
1070 	return (err);
1071 }
1072 
1073 static int
zpl_ioctl_rewrite(struct file * filp,void __user * arg)1074 zpl_ioctl_rewrite(struct file *filp, void __user *arg)
1075 {
1076 	struct inode *ip = file_inode(filp);
1077 	zfs_rewrite_args_t args;
1078 	fstrans_cookie_t cookie;
1079 	int err;
1080 
1081 	if (copy_from_user(&args, arg, sizeof (args)))
1082 		return (-EFAULT);
1083 
1084 	if (unlikely(!(filp->f_mode & FMODE_WRITE)))
1085 		return (-EBADF);
1086 
1087 	cookie = spl_fstrans_mark();
1088 	err = -zfs_rewrite(ITOZ(ip), args.off, args.len, args.flags, args.arg);
1089 	spl_fstrans_unmark(cookie);
1090 
1091 	return (err);
1092 }
1093 
1094 static long
zpl_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1095 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1096 {
1097 	switch (cmd) {
1098 	case FS_IOC_GETVERSION:
1099 		return (zpl_ioctl_getversion(filp, (void *)arg));
1100 	case FS_IOC_GETFLAGS:
1101 		return (zpl_ioctl_getflags(filp, (void *)arg));
1102 	case FS_IOC_SETFLAGS:
1103 		return (zpl_ioctl_setflags(filp, (void *)arg));
1104 	case ZFS_IOC_FSGETXATTR:
1105 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1106 	case ZFS_IOC_FSSETXATTR:
1107 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1108 	case ZFS_IOC_GETDOSFLAGS:
1109 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1110 	case ZFS_IOC_SETDOSFLAGS:
1111 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1112 	case ZFS_IOC_REWRITE:
1113 		return (zpl_ioctl_rewrite(filp, (void *)arg));
1114 	default:
1115 		return (-ENOTTY);
1116 	}
1117 }
1118 
1119 #ifdef CONFIG_COMPAT
1120 static long
zpl_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1121 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1122 {
1123 	switch (cmd) {
1124 	case FS_IOC32_GETVERSION:
1125 		cmd = FS_IOC_GETVERSION;
1126 		break;
1127 	case FS_IOC32_GETFLAGS:
1128 		cmd = FS_IOC_GETFLAGS;
1129 		break;
1130 	case FS_IOC32_SETFLAGS:
1131 		cmd = FS_IOC_SETFLAGS;
1132 		break;
1133 	default:
1134 		return (-ENOTTY);
1135 	}
1136 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1137 }
1138 #endif /* CONFIG_COMPAT */
1139 
1140 const struct address_space_operations zpl_address_space_operations = {
1141 #ifdef HAVE_VFS_READPAGES
1142 	.readpages	= zpl_readpages,
1143 #else
1144 	.readahead	= zpl_readahead,
1145 #endif
1146 #ifdef HAVE_VFS_READ_FOLIO
1147 	.read_folio	= zpl_read_folio,
1148 #else
1149 	.readpage	= zpl_readpage,
1150 #endif
1151 #ifdef HAVE_VFS_WRITEPAGE
1152 	.writepage	= zpl_writepage,
1153 #endif
1154 	.writepages	= zpl_writepages,
1155 	.direct_IO	= zpl_direct_IO,
1156 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1157 	.set_page_dirty = __set_page_dirty_nobuffers,
1158 #endif
1159 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1160 	.dirty_folio	= filemap_dirty_folio,
1161 #endif
1162 #ifdef HAVE_VFS_MIGRATE_FOLIO
1163 	.migrate_folio	= migrate_folio,
1164 #elif defined(HAVE_VFS_MIGRATEPAGE)
1165 	.migratepage	= migrate_page,
1166 #endif
1167 };
1168 
1169 const struct file_operations zpl_file_operations = {
1170 	.open		= zpl_open,
1171 	.release	= zpl_release,
1172 	.llseek		= zpl_llseek,
1173 	.read_iter	= zpl_iter_read,
1174 	.write_iter	= zpl_iter_write,
1175 #ifdef HAVE_COPY_SPLICE_READ
1176 	.splice_read	= copy_splice_read,
1177 #else
1178 	.splice_read	= generic_file_splice_read,
1179 #endif
1180 	.splice_write	= iter_file_splice_write,
1181 	.mmap		= zpl_mmap,
1182 	.fsync		= zpl_fsync,
1183 	.fallocate	= zpl_fallocate,
1184 	.copy_file_range	= zpl_copy_file_range,
1185 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1186 	.clone_file_range	= zpl_clone_file_range,
1187 #endif
1188 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1189 	.remap_file_range	= zpl_remap_file_range,
1190 #endif
1191 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1192 	.dedupe_file_range	= zpl_dedupe_file_range,
1193 #endif
1194 	.fadvise	= zpl_fadvise,
1195 	.unlocked_ioctl	= zpl_ioctl,
1196 #ifdef CONFIG_COMPAT
1197 	.compat_ioctl	= zpl_compat_ioctl,
1198 #endif
1199 };
1200 
1201 const struct file_operations zpl_dir_file_operations = {
1202 	.llseek		= generic_file_llseek,
1203 	.read		= generic_read_dir,
1204 	.iterate_shared	= zpl_iterate,
1205 	.fsync		= zpl_fsync,
1206 	.unlocked_ioctl = zpl_ioctl,
1207 #ifdef CONFIG_COMPAT
1208 	.compat_ioctl   = zpl_compat_ioctl,
1209 #endif
1210 };
1211 
1212 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1213 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1214 	"Percentage of length to use for the available capacity check");
1215