1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char tuple_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 };
124
125 typedef unsigned int __bitwise blk_mode_t;
126
127 /* open for reading */
128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
141
142 struct gendisk {
143 /*
144 * major/first_minor/minors should not be set by any new driver, the
145 * block core will take care of allocating them automatically.
146 */
147 int major;
148 int first_minor;
149 int minors;
150
151 char disk_name[DISK_NAME_LEN]; /* name of major driver */
152
153 unsigned short events; /* supported events */
154 unsigned short event_flags; /* flags related to event processing */
155
156 struct xarray part_tbl;
157 struct block_device *part0;
158
159 const struct block_device_operations *fops;
160 struct request_queue *queue;
161 void *private_data;
162
163 struct bio_set bio_split;
164
165 int flags;
166 unsigned long state;
167 #define GD_NEED_PART_SCAN 0
168 #define GD_READ_ONLY 1
169 #define GD_DEAD 2
170 #define GD_NATIVE_CAPACITY 3
171 #define GD_ADDED 4
172 #define GD_SUPPRESS_PART_SCAN 5
173 #define GD_OWNS_QUEUE 6
174
175 struct mutex open_mutex; /* open/close mutex */
176 unsigned open_partitions; /* number of open partitions */
177
178 struct backing_dev_info *bdi;
179 struct kobject queue_kobj; /* the queue/ directory */
180 struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 struct list_head slave_bdevs;
183 #endif
184 struct timer_rand_state *random;
185 atomic_t sync_io; /* RAID */
186 struct disk_events *ev;
187
188 #ifdef CONFIG_BLK_DEV_ZONED
189 /*
190 * Zoned block device information. Reads of this information must be
191 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 * information is only allowed while no requests are being processed.
193 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 */
195 unsigned int nr_zones;
196 unsigned int zone_capacity;
197 unsigned int last_zone_capacity;
198 unsigned long __rcu *conv_zones_bitmap;
199 unsigned int zone_wplugs_hash_bits;
200 spinlock_t zone_wplugs_lock;
201 struct mempool_s *zone_wplugs_pool;
202 struct hlist_head *zone_wplugs_hash;
203 struct workqueue_struct *zone_wplugs_wq;
204 #endif /* CONFIG_BLK_DEV_ZONED */
205
206 #if IS_ENABLED(CONFIG_CDROM)
207 struct cdrom_device_info *cdi;
208 #endif
209 int node_id;
210 struct badblocks *bb;
211 struct lockdep_map lockdep_map;
212 u64 diskseq;
213 blk_mode_t open_mode;
214
215 /*
216 * Independent sector access ranges. This is always NULL for
217 * devices that do not have multiple independent access ranges.
218 */
219 struct blk_independent_access_ranges *ia_ranges;
220 };
221
222 /**
223 * disk_openers - returns how many openers are there for a disk
224 * @disk: disk to check
225 *
226 * This returns the number of openers for a disk. Note that this value is only
227 * stable if disk->open_mutex is held.
228 *
229 * Note: Due to a quirk in the block layer open code, each open partition is
230 * only counted once even if there are multiple openers.
231 */
disk_openers(struct gendisk * disk)232 static inline unsigned int disk_openers(struct gendisk *disk)
233 {
234 return atomic_read(&disk->part0->bd_openers);
235 }
236
237 /**
238 * disk_has_partscan - return %true if partition scanning is enabled on a disk
239 * @disk: disk to check
240 *
241 * Returns %true if partitions scanning is enabled for @disk, or %false if
242 * partition scanning is disabled either permanently or temporarily.
243 */
disk_has_partscan(struct gendisk * disk)244 static inline bool disk_has_partscan(struct gendisk *disk)
245 {
246 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
247 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
248 }
249
250 /*
251 * The gendisk is refcounted by the part0 block_device, and the bd_device
252 * therein is also used for device model presentation in sysfs.
253 */
254 #define dev_to_disk(device) \
255 (dev_to_bdev(device)->bd_disk)
256 #define disk_to_dev(disk) \
257 (&((disk)->part0->bd_device))
258
259 #if IS_REACHABLE(CONFIG_CDROM)
260 #define disk_to_cdi(disk) ((disk)->cdi)
261 #else
262 #define disk_to_cdi(disk) NULL
263 #endif
264
disk_devt(struct gendisk * disk)265 static inline dev_t disk_devt(struct gendisk *disk)
266 {
267 return MKDEV(disk->major, disk->first_minor);
268 }
269
270 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)271 static inline int blk_validate_block_size(unsigned long bsize)
272 {
273 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
274 return -EINVAL;
275
276 return 0;
277 }
278
blk_op_is_passthrough(blk_opf_t op)279 static inline bool blk_op_is_passthrough(blk_opf_t op)
280 {
281 op &= REQ_OP_MASK;
282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283 }
284
285 /* flags set by the driver in queue_limits.features */
286 typedef unsigned int __bitwise blk_features_t;
287
288 /* supports a volatile write cache */
289 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
290
291 /* supports passing on the FUA bit */
292 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
293
294 /* rotational device (hard drive or floppy) */
295 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
296
297 /* contributes to the random number pool */
298 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
299
300 /* do disk/partitions IO accounting */
301 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
302
303 /* don't modify data until writeback is done */
304 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
305
306 /* always completes in submit context */
307 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
308
309 /* supports REQ_NOWAIT */
310 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
311
312 /* supports DAX */
313 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
314
315 /* supports I/O polling */
316 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
317
318 /* is a zoned device */
319 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
320
321 /* supports PCI(e) p2p requests */
322 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
323
324 /* skip this queue in blk_mq_(un)quiesce_tagset */
325 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
326
327 /* bounce all highmem pages */
328 #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14))
329
330 /* undocumented magic for bcache */
331 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
332 ((__force blk_features_t)(1u << 15))
333
334 /* stacked device can/does support atomic writes */
335 #define BLK_FEAT_ATOMIC_WRITES_STACKED \
336 ((__force blk_features_t)(1u << 16))
337
338 /*
339 * Flags automatically inherited when stacking limits.
340 */
341 #define BLK_FEAT_INHERIT_MASK \
342 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
343 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
344 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
345
346 /* internal flags in queue_limits.flags */
347 typedef unsigned int __bitwise blk_flags_t;
348
349 /* do not send FLUSH/FUA commands despite advertising a write cache */
350 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
351
352 /* I/O topology is misaligned */
353 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
354
355 /* passthrough command IO accounting */
356 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
357
358 struct queue_limits {
359 blk_features_t features;
360 blk_flags_t flags;
361 unsigned long seg_boundary_mask;
362 unsigned long virt_boundary_mask;
363
364 unsigned int max_hw_sectors;
365 unsigned int max_dev_sectors;
366 unsigned int chunk_sectors;
367 unsigned int max_sectors;
368 unsigned int max_user_sectors;
369 unsigned int max_segment_size;
370 unsigned int physical_block_size;
371 unsigned int logical_block_size;
372 unsigned int alignment_offset;
373 unsigned int io_min;
374 unsigned int io_opt;
375 unsigned int max_discard_sectors;
376 unsigned int max_hw_discard_sectors;
377 unsigned int max_user_discard_sectors;
378 unsigned int max_secure_erase_sectors;
379 unsigned int max_write_zeroes_sectors;
380 unsigned int max_hw_zone_append_sectors;
381 unsigned int max_zone_append_sectors;
382 unsigned int discard_granularity;
383 unsigned int discard_alignment;
384 unsigned int zone_write_granularity;
385
386 /* atomic write limits */
387 unsigned int atomic_write_hw_max;
388 unsigned int atomic_write_max_sectors;
389 unsigned int atomic_write_hw_boundary;
390 unsigned int atomic_write_boundary_sectors;
391 unsigned int atomic_write_hw_unit_min;
392 unsigned int atomic_write_unit_min;
393 unsigned int atomic_write_hw_unit_max;
394 unsigned int atomic_write_unit_max;
395
396 unsigned short max_segments;
397 unsigned short max_integrity_segments;
398 unsigned short max_discard_segments;
399
400 unsigned int max_open_zones;
401 unsigned int max_active_zones;
402
403 /*
404 * Drivers that set dma_alignment to less than 511 must be prepared to
405 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
406 * due to possible offsets.
407 */
408 unsigned int dma_alignment;
409 unsigned int dma_pad_mask;
410
411 struct blk_integrity integrity;
412 };
413
414 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
415 void *data);
416
417 #define BLK_ALL_ZONES ((unsigned int)-1)
418 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
419 unsigned int nr_zones, report_zones_cb cb, void *data);
420 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
421 sector_t sectors, sector_t nr_sectors);
422 int blk_revalidate_disk_zones(struct gendisk *disk);
423
424 /*
425 * Independent access ranges: struct blk_independent_access_range describes
426 * a range of contiguous sectors that can be accessed using device command
427 * execution resources that are independent from the resources used for
428 * other access ranges. This is typically found with single-LUN multi-actuator
429 * HDDs where each access range is served by a different set of heads.
430 * The set of independent ranges supported by the device is defined using
431 * struct blk_independent_access_ranges. The independent ranges must not overlap
432 * and must include all sectors within the disk capacity (no sector holes
433 * allowed).
434 * For a device with multiple ranges, requests targeting sectors in different
435 * ranges can be executed in parallel. A request can straddle an access range
436 * boundary.
437 */
438 struct blk_independent_access_range {
439 struct kobject kobj;
440 sector_t sector;
441 sector_t nr_sectors;
442 };
443
444 struct blk_independent_access_ranges {
445 struct kobject kobj;
446 bool sysfs_registered;
447 unsigned int nr_ia_ranges;
448 struct blk_independent_access_range ia_range[];
449 };
450
451 struct request_queue {
452 /*
453 * The queue owner gets to use this for whatever they like.
454 * ll_rw_blk doesn't touch it.
455 */
456 void *queuedata;
457
458 struct elevator_queue *elevator;
459
460 const struct blk_mq_ops *mq_ops;
461
462 /* sw queues */
463 struct blk_mq_ctx __percpu *queue_ctx;
464
465 /*
466 * various queue flags, see QUEUE_* below
467 */
468 unsigned long queue_flags;
469
470 unsigned int rq_timeout;
471
472 unsigned int queue_depth;
473
474 refcount_t refs;
475
476 /* hw dispatch queues */
477 unsigned int nr_hw_queues;
478 struct xarray hctx_table;
479
480 struct percpu_ref q_usage_counter;
481 struct lock_class_key io_lock_cls_key;
482 struct lockdep_map io_lockdep_map;
483
484 struct lock_class_key q_lock_cls_key;
485 struct lockdep_map q_lockdep_map;
486
487 struct request *last_merge;
488
489 spinlock_t queue_lock;
490
491 int quiesce_depth;
492
493 struct gendisk *disk;
494
495 /*
496 * mq queue kobject
497 */
498 struct kobject *mq_kobj;
499
500 struct queue_limits limits;
501
502 #ifdef CONFIG_PM
503 struct device *dev;
504 enum rpm_status rpm_status;
505 #endif
506
507 /*
508 * Number of contexts that have called blk_set_pm_only(). If this
509 * counter is above zero then only RQF_PM requests are processed.
510 */
511 atomic_t pm_only;
512
513 struct blk_queue_stats *stats;
514 struct rq_qos *rq_qos;
515 struct mutex rq_qos_mutex;
516
517 /*
518 * ida allocated id for this queue. Used to index queues from
519 * ioctx.
520 */
521 int id;
522
523 /*
524 * queue settings
525 */
526 unsigned long nr_requests; /* Max # of requests */
527
528 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
529 struct blk_crypto_profile *crypto_profile;
530 struct kobject *crypto_kobject;
531 #endif
532
533 struct timer_list timeout;
534 struct work_struct timeout_work;
535
536 atomic_t nr_active_requests_shared_tags;
537
538 struct blk_mq_tags *sched_shared_tags;
539
540 struct list_head icq_list;
541 #ifdef CONFIG_BLK_CGROUP
542 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
543 struct blkcg_gq *root_blkg;
544 struct list_head blkg_list;
545 struct mutex blkcg_mutex;
546 #endif
547
548 int node;
549
550 spinlock_t requeue_lock;
551 struct list_head requeue_list;
552 struct delayed_work requeue_work;
553
554 #ifdef CONFIG_BLK_DEV_IO_TRACE
555 struct blk_trace __rcu *blk_trace;
556 #endif
557 /*
558 * for flush operations
559 */
560 struct blk_flush_queue *fq;
561 struct list_head flush_list;
562
563 struct mutex sysfs_lock;
564 struct mutex sysfs_dir_lock;
565 struct mutex limits_lock;
566
567 /*
568 * for reusing dead hctx instance in case of updating
569 * nr_hw_queues
570 */
571 struct list_head unused_hctx_list;
572 spinlock_t unused_hctx_lock;
573
574 int mq_freeze_depth;
575
576 #ifdef CONFIG_BLK_DEV_THROTTLING
577 /* Throttle data */
578 struct throtl_data *td;
579 #endif
580 struct rcu_head rcu_head;
581 #ifdef CONFIG_LOCKDEP
582 struct task_struct *mq_freeze_owner;
583 int mq_freeze_owner_depth;
584 #endif
585 wait_queue_head_t mq_freeze_wq;
586 /*
587 * Protect concurrent access to q_usage_counter by
588 * percpu_ref_kill() and percpu_ref_reinit().
589 */
590 struct mutex mq_freeze_lock;
591
592 struct blk_mq_tag_set *tag_set;
593 struct list_head tag_set_list;
594
595 struct dentry *debugfs_dir;
596 struct dentry *sched_debugfs_dir;
597 struct dentry *rqos_debugfs_dir;
598 /*
599 * Serializes all debugfs metadata operations using the above dentries.
600 */
601 struct mutex debugfs_mutex;
602
603 bool mq_sysfs_init_done;
604 };
605
606 /* Keep blk_queue_flag_name[] in sync with the definitions below */
607 enum {
608 QUEUE_FLAG_DYING, /* queue being torn down */
609 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
610 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
611 QUEUE_FLAG_FAIL_IO, /* fake timeout */
612 QUEUE_FLAG_NOXMERGES, /* No extended merges */
613 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
614 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
615 QUEUE_FLAG_STATS, /* track IO start and completion times */
616 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
617 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
618 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
619 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
620 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
621 QUEUE_FLAG_MAX
622 };
623
624 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
625
626 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
627 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
628
629 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
630 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
631 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
632 #define blk_queue_noxmerges(q) \
633 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
634 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
635 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
636 #define blk_queue_passthrough_stat(q) \
637 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
638 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
639 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
640 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
641 #define blk_queue_rq_alloc_time(q) \
642 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
643 #else
644 #define blk_queue_rq_alloc_time(q) false
645 #endif
646
647 #define blk_noretry_request(rq) \
648 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
649 REQ_FAILFAST_DRIVER))
650 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
651 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
652 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
653 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
654 #define blk_queue_skip_tagset_quiesce(q) \
655 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
656
657 extern void blk_set_pm_only(struct request_queue *q);
658 extern void blk_clear_pm_only(struct request_queue *q);
659
660 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
661
662 #define dma_map_bvec(dev, bv, dir, attrs) \
663 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
664 (dir), (attrs))
665
queue_is_mq(struct request_queue * q)666 static inline bool queue_is_mq(struct request_queue *q)
667 {
668 return q->mq_ops;
669 }
670
671 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)672 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
673 {
674 return q->rpm_status;
675 }
676 #else
queue_rpm_status(struct request_queue * q)677 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
678 {
679 return RPM_ACTIVE;
680 }
681 #endif
682
blk_queue_is_zoned(struct request_queue * q)683 static inline bool blk_queue_is_zoned(struct request_queue *q)
684 {
685 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
686 (q->limits.features & BLK_FEAT_ZONED);
687 }
688
689 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)690 static inline unsigned int disk_nr_zones(struct gendisk *disk)
691 {
692 return disk->nr_zones;
693 }
694 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
695 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)696 static inline unsigned int disk_nr_zones(struct gendisk *disk)
697 {
698 return 0;
699 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)700 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
701 {
702 return false;
703 }
704 #endif /* CONFIG_BLK_DEV_ZONED */
705
disk_zone_no(struct gendisk * disk,sector_t sector)706 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
707 {
708 if (!blk_queue_is_zoned(disk->queue))
709 return 0;
710 return sector >> ilog2(disk->queue->limits.chunk_sectors);
711 }
712
bdev_nr_zones(struct block_device * bdev)713 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
714 {
715 return disk_nr_zones(bdev->bd_disk);
716 }
717
bdev_max_open_zones(struct block_device * bdev)718 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
719 {
720 return bdev->bd_disk->queue->limits.max_open_zones;
721 }
722
bdev_max_active_zones(struct block_device * bdev)723 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
724 {
725 return bdev->bd_disk->queue->limits.max_active_zones;
726 }
727
blk_queue_depth(struct request_queue * q)728 static inline unsigned int blk_queue_depth(struct request_queue *q)
729 {
730 if (q->queue_depth)
731 return q->queue_depth;
732
733 return q->nr_requests;
734 }
735
736 /*
737 * default timeout for SG_IO if none specified
738 */
739 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
740 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
741
742 /* This should not be used directly - use rq_for_each_segment */
743 #define for_each_bio(_bio) \
744 for (; _bio; _bio = _bio->bi_next)
745
746 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
747 const struct attribute_group **groups,
748 struct fwnode_handle *fwnode);
749 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
750 const struct attribute_group **groups);
add_disk(struct gendisk * disk)751 static inline int __must_check add_disk(struct gendisk *disk)
752 {
753 return device_add_disk(NULL, disk, NULL);
754 }
755 void del_gendisk(struct gendisk *gp);
756 void invalidate_disk(struct gendisk *disk);
757 void set_disk_ro(struct gendisk *disk, bool read_only);
758 void disk_uevent(struct gendisk *disk, enum kobject_action action);
759
bdev_partno(const struct block_device * bdev)760 static inline u8 bdev_partno(const struct block_device *bdev)
761 {
762 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
763 }
764
bdev_test_flag(const struct block_device * bdev,unsigned flag)765 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
766 {
767 return atomic_read(&bdev->__bd_flags) & flag;
768 }
769
bdev_set_flag(struct block_device * bdev,unsigned flag)770 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
771 {
772 atomic_or(flag, &bdev->__bd_flags);
773 }
774
bdev_clear_flag(struct block_device * bdev,unsigned flag)775 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
776 {
777 atomic_andnot(flag, &bdev->__bd_flags);
778 }
779
get_disk_ro(struct gendisk * disk)780 static inline bool get_disk_ro(struct gendisk *disk)
781 {
782 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
783 test_bit(GD_READ_ONLY, &disk->state);
784 }
785
bdev_read_only(struct block_device * bdev)786 static inline bool bdev_read_only(struct block_device *bdev)
787 {
788 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
789 }
790
791 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
792 void disk_force_media_change(struct gendisk *disk);
793 void bdev_mark_dead(struct block_device *bdev, bool surprise);
794
795 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
796 void rand_initialize_disk(struct gendisk *disk);
797
get_start_sect(struct block_device * bdev)798 static inline sector_t get_start_sect(struct block_device *bdev)
799 {
800 return bdev->bd_start_sect;
801 }
802
bdev_nr_sectors(struct block_device * bdev)803 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
804 {
805 return bdev->bd_nr_sectors;
806 }
807
bdev_nr_bytes(struct block_device * bdev)808 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
809 {
810 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
811 }
812
get_capacity(struct gendisk * disk)813 static inline sector_t get_capacity(struct gendisk *disk)
814 {
815 return bdev_nr_sectors(disk->part0);
816 }
817
sb_bdev_nr_blocks(struct super_block * sb)818 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
819 {
820 return bdev_nr_sectors(sb->s_bdev) >>
821 (sb->s_blocksize_bits - SECTOR_SHIFT);
822 }
823
824 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
825
826 void put_disk(struct gendisk *disk);
827 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
828 struct lock_class_key *lkclass);
829
830 /**
831 * blk_alloc_disk - allocate a gendisk structure
832 * @lim: queue limits to be used for this disk.
833 * @node_id: numa node to allocate on
834 *
835 * Allocate and pre-initialize a gendisk structure for use with BIO based
836 * drivers.
837 *
838 * Returns an ERR_PTR on error, else the allocated disk.
839 *
840 * Context: can sleep
841 */
842 #define blk_alloc_disk(lim, node_id) \
843 ({ \
844 static struct lock_class_key __key; \
845 \
846 __blk_alloc_disk(lim, node_id, &__key); \
847 })
848
849 int __register_blkdev(unsigned int major, const char *name,
850 void (*probe)(dev_t devt));
851 #define register_blkdev(major, name) \
852 __register_blkdev(major, name, NULL)
853 void unregister_blkdev(unsigned int major, const char *name);
854
855 bool disk_check_media_change(struct gendisk *disk);
856 void set_capacity(struct gendisk *disk, sector_t size);
857
858 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
859 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
860 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
861 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)862 static inline int bd_link_disk_holder(struct block_device *bdev,
863 struct gendisk *disk)
864 {
865 return 0;
866 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)867 static inline void bd_unlink_disk_holder(struct block_device *bdev,
868 struct gendisk *disk)
869 {
870 }
871 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
872
873 dev_t part_devt(struct gendisk *disk, u8 partno);
874 void inc_diskseq(struct gendisk *disk);
875 void blk_request_module(dev_t devt);
876
877 extern int blk_register_queue(struct gendisk *disk);
878 extern void blk_unregister_queue(struct gendisk *disk);
879 void submit_bio_noacct(struct bio *bio);
880 struct bio *bio_split_to_limits(struct bio *bio);
881
882 extern int blk_lld_busy(struct request_queue *q);
883 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
884 extern void blk_queue_exit(struct request_queue *q);
885 extern void blk_sync_queue(struct request_queue *q);
886
887 /* Helper to convert REQ_OP_XXX to its string format XXX */
888 extern const char *blk_op_str(enum req_op op);
889
890 int blk_status_to_errno(blk_status_t status);
891 blk_status_t errno_to_blk_status(int errno);
892 const char *blk_status_to_str(blk_status_t status);
893
894 /* only poll the hardware once, don't continue until a completion was found */
895 #define BLK_POLL_ONESHOT (1 << 0)
896 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
897 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
898 unsigned int flags);
899
bdev_get_queue(struct block_device * bdev)900 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
901 {
902 return bdev->bd_queue; /* this is never NULL */
903 }
904
905 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
906 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
907
bio_zone_no(struct bio * bio)908 static inline unsigned int bio_zone_no(struct bio *bio)
909 {
910 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
911 }
912
bio_straddles_zones(struct bio * bio)913 static inline bool bio_straddles_zones(struct bio *bio)
914 {
915 return bio_sectors(bio) &&
916 bio_zone_no(bio) !=
917 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
918 }
919
920 /*
921 * Return how much within the boundary is left to be used for I/O at a given
922 * offset.
923 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)924 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
925 unsigned int boundary_sectors)
926 {
927 if (unlikely(!is_power_of_2(boundary_sectors)))
928 return boundary_sectors - sector_div(offset, boundary_sectors);
929 return boundary_sectors - (offset & (boundary_sectors - 1));
930 }
931
932 /**
933 * queue_limits_start_update - start an atomic update of queue limits
934 * @q: queue to update
935 *
936 * This functions starts an atomic update of the queue limits. It takes a lock
937 * to prevent other updates and returns a snapshot of the current limits that
938 * the caller can modify. The caller must call queue_limits_commit_update()
939 * to finish the update.
940 *
941 * Context: process context. The caller must have frozen the queue or ensured
942 * that there is outstanding I/O by other means.
943 */
944 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)945 queue_limits_start_update(struct request_queue *q)
946 {
947 mutex_lock(&q->limits_lock);
948 return q->limits;
949 }
950 int queue_limits_commit_update(struct request_queue *q,
951 struct queue_limits *lim);
952 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
953 int blk_validate_limits(struct queue_limits *lim);
954
955 /**
956 * queue_limits_cancel_update - cancel an atomic update of queue limits
957 * @q: queue to update
958 *
959 * This functions cancels an atomic update of the queue limits started by
960 * queue_limits_start_update() and should be used when an error occurs after
961 * starting update.
962 */
queue_limits_cancel_update(struct request_queue * q)963 static inline void queue_limits_cancel_update(struct request_queue *q)
964 {
965 mutex_unlock(&q->limits_lock);
966 }
967
968 /*
969 * These helpers are for drivers that have sloppy feature negotiation and might
970 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
971 * completion handler when the device returned an indicator that the respective
972 * feature is not actually supported. They are racy and the driver needs to
973 * cope with that. Try to avoid this scheme if you can.
974 */
blk_queue_disable_discard(struct request_queue * q)975 static inline void blk_queue_disable_discard(struct request_queue *q)
976 {
977 q->limits.max_discard_sectors = 0;
978 }
979
blk_queue_disable_secure_erase(struct request_queue * q)980 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
981 {
982 q->limits.max_secure_erase_sectors = 0;
983 }
984
blk_queue_disable_write_zeroes(struct request_queue * q)985 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
986 {
987 q->limits.max_write_zeroes_sectors = 0;
988 }
989
990 /*
991 * Access functions for manipulating queue properties
992 */
993 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
994 extern void blk_set_stacking_limits(struct queue_limits *lim);
995 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
996 sector_t offset);
997 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
998 sector_t offset, const char *pfx);
999 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1000
1001 struct blk_independent_access_ranges *
1002 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1003 void disk_set_independent_access_ranges(struct gendisk *disk,
1004 struct blk_independent_access_ranges *iars);
1005
1006 bool __must_check blk_get_queue(struct request_queue *);
1007 extern void blk_put_queue(struct request_queue *);
1008
1009 void blk_mark_disk_dead(struct gendisk *disk);
1010
1011 struct rq_list {
1012 struct request *head;
1013 struct request *tail;
1014 };
1015
1016 #ifdef CONFIG_BLOCK
1017 /*
1018 * blk_plug permits building a queue of related requests by holding the I/O
1019 * fragments for a short period. This allows merging of sequential requests
1020 * into single larger request. As the requests are moved from a per-task list to
1021 * the device's request_queue in a batch, this results in improved scalability
1022 * as the lock contention for request_queue lock is reduced.
1023 *
1024 * It is ok not to disable preemption when adding the request to the plug list
1025 * or when attempting a merge. For details, please see schedule() where
1026 * blk_flush_plug() is called.
1027 */
1028 struct blk_plug {
1029 struct rq_list mq_list; /* blk-mq requests */
1030
1031 /* if ios_left is > 1, we can batch tag/rq allocations */
1032 struct rq_list cached_rqs;
1033 u64 cur_ktime;
1034 unsigned short nr_ios;
1035
1036 unsigned short rq_count;
1037
1038 bool multiple_queues;
1039 bool has_elevator;
1040
1041 struct list_head cb_list; /* md requires an unplug callback */
1042 };
1043
1044 struct blk_plug_cb;
1045 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1046 struct blk_plug_cb {
1047 struct list_head list;
1048 blk_plug_cb_fn callback;
1049 void *data;
1050 };
1051 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1052 void *data, int size);
1053 extern void blk_start_plug(struct blk_plug *);
1054 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1055 extern void blk_finish_plug(struct blk_plug *);
1056
1057 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1058 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1059 {
1060 if (plug)
1061 __blk_flush_plug(plug, async);
1062 }
1063
1064 /*
1065 * tsk == current here
1066 */
blk_plug_invalidate_ts(struct task_struct * tsk)1067 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1068 {
1069 struct blk_plug *plug = tsk->plug;
1070
1071 if (plug)
1072 plug->cur_ktime = 0;
1073 current->flags &= ~PF_BLOCK_TS;
1074 }
1075
1076 int blkdev_issue_flush(struct block_device *bdev);
1077 long nr_blockdev_pages(void);
1078 #else /* CONFIG_BLOCK */
1079 struct blk_plug {
1080 };
1081
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1082 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1083 unsigned short nr_ios)
1084 {
1085 }
1086
blk_start_plug(struct blk_plug * plug)1087 static inline void blk_start_plug(struct blk_plug *plug)
1088 {
1089 }
1090
blk_finish_plug(struct blk_plug * plug)1091 static inline void blk_finish_plug(struct blk_plug *plug)
1092 {
1093 }
1094
blk_flush_plug(struct blk_plug * plug,bool async)1095 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1096 {
1097 }
1098
blk_plug_invalidate_ts(struct task_struct * tsk)1099 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1100 {
1101 }
1102
blkdev_issue_flush(struct block_device * bdev)1103 static inline int blkdev_issue_flush(struct block_device *bdev)
1104 {
1105 return 0;
1106 }
1107
nr_blockdev_pages(void)1108 static inline long nr_blockdev_pages(void)
1109 {
1110 return 0;
1111 }
1112 #endif /* CONFIG_BLOCK */
1113
1114 extern void blk_io_schedule(void);
1115
1116 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1117 sector_t nr_sects, gfp_t gfp_mask);
1118 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1119 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1120 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1121 sector_t nr_sects, gfp_t gfp);
1122
1123 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1124 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1125 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1126
1127 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1128 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1129 unsigned flags);
1130 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1131 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1132
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1133 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1134 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1135 {
1136 return blkdev_issue_discard(sb->s_bdev,
1137 block << (sb->s_blocksize_bits -
1138 SECTOR_SHIFT),
1139 nr_blocks << (sb->s_blocksize_bits -
1140 SECTOR_SHIFT),
1141 gfp_mask);
1142 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1143 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1144 sector_t nr_blocks, gfp_t gfp_mask)
1145 {
1146 return blkdev_issue_zeroout(sb->s_bdev,
1147 block << (sb->s_blocksize_bits -
1148 SECTOR_SHIFT),
1149 nr_blocks << (sb->s_blocksize_bits -
1150 SECTOR_SHIFT),
1151 gfp_mask, 0);
1152 }
1153
bdev_is_partition(struct block_device * bdev)1154 static inline bool bdev_is_partition(struct block_device *bdev)
1155 {
1156 return bdev_partno(bdev) != 0;
1157 }
1158
1159 enum blk_default_limits {
1160 BLK_MAX_SEGMENTS = 128,
1161 BLK_SAFE_MAX_SECTORS = 255,
1162 BLK_MAX_SEGMENT_SIZE = 65536,
1163 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1164 };
1165
1166 /*
1167 * Default upper limit for the software max_sectors limit used for
1168 * regular file system I/O. This can be increased through sysfs.
1169 *
1170 * Not to be confused with the max_hw_sector limit that is entirely
1171 * controlled by the driver, usually based on hardware limits.
1172 */
1173 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1174
bdev_limits(struct block_device * bdev)1175 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1176 {
1177 return &bdev_get_queue(bdev)->limits;
1178 }
1179
queue_segment_boundary(const struct request_queue * q)1180 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1181 {
1182 return q->limits.seg_boundary_mask;
1183 }
1184
queue_virt_boundary(const struct request_queue * q)1185 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1186 {
1187 return q->limits.virt_boundary_mask;
1188 }
1189
queue_max_sectors(const struct request_queue * q)1190 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1191 {
1192 return q->limits.max_sectors;
1193 }
1194
queue_max_bytes(struct request_queue * q)1195 static inline unsigned int queue_max_bytes(struct request_queue *q)
1196 {
1197 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1198 }
1199
queue_max_hw_sectors(const struct request_queue * q)1200 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1201 {
1202 return q->limits.max_hw_sectors;
1203 }
1204
queue_max_segments(const struct request_queue * q)1205 static inline unsigned short queue_max_segments(const struct request_queue *q)
1206 {
1207 return q->limits.max_segments;
1208 }
1209
queue_max_discard_segments(const struct request_queue * q)1210 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1211 {
1212 return q->limits.max_discard_segments;
1213 }
1214
queue_max_segment_size(const struct request_queue * q)1215 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1216 {
1217 return q->limits.max_segment_size;
1218 }
1219
queue_emulates_zone_append(struct request_queue * q)1220 static inline bool queue_emulates_zone_append(struct request_queue *q)
1221 {
1222 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1223 }
1224
bdev_emulates_zone_append(struct block_device * bdev)1225 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1226 {
1227 return queue_emulates_zone_append(bdev_get_queue(bdev));
1228 }
1229
1230 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1231 bdev_max_zone_append_sectors(struct block_device *bdev)
1232 {
1233 return bdev_limits(bdev)->max_zone_append_sectors;
1234 }
1235
bdev_max_segments(struct block_device * bdev)1236 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1237 {
1238 return queue_max_segments(bdev_get_queue(bdev));
1239 }
1240
queue_logical_block_size(const struct request_queue * q)1241 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1242 {
1243 return q->limits.logical_block_size;
1244 }
1245
bdev_logical_block_size(struct block_device * bdev)1246 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1247 {
1248 return queue_logical_block_size(bdev_get_queue(bdev));
1249 }
1250
queue_physical_block_size(const struct request_queue * q)1251 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1252 {
1253 return q->limits.physical_block_size;
1254 }
1255
bdev_physical_block_size(struct block_device * bdev)1256 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1257 {
1258 return queue_physical_block_size(bdev_get_queue(bdev));
1259 }
1260
queue_io_min(const struct request_queue * q)1261 static inline unsigned int queue_io_min(const struct request_queue *q)
1262 {
1263 return q->limits.io_min;
1264 }
1265
bdev_io_min(struct block_device * bdev)1266 static inline unsigned int bdev_io_min(struct block_device *bdev)
1267 {
1268 return queue_io_min(bdev_get_queue(bdev));
1269 }
1270
queue_io_opt(const struct request_queue * q)1271 static inline unsigned int queue_io_opt(const struct request_queue *q)
1272 {
1273 return q->limits.io_opt;
1274 }
1275
bdev_io_opt(struct block_device * bdev)1276 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1277 {
1278 return queue_io_opt(bdev_get_queue(bdev));
1279 }
1280
1281 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1282 queue_zone_write_granularity(const struct request_queue *q)
1283 {
1284 return q->limits.zone_write_granularity;
1285 }
1286
1287 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1288 bdev_zone_write_granularity(struct block_device *bdev)
1289 {
1290 return queue_zone_write_granularity(bdev_get_queue(bdev));
1291 }
1292
1293 int bdev_alignment_offset(struct block_device *bdev);
1294 unsigned int bdev_discard_alignment(struct block_device *bdev);
1295
bdev_max_discard_sectors(struct block_device * bdev)1296 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1297 {
1298 return bdev_limits(bdev)->max_discard_sectors;
1299 }
1300
bdev_discard_granularity(struct block_device * bdev)1301 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1302 {
1303 return bdev_limits(bdev)->discard_granularity;
1304 }
1305
1306 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1307 bdev_max_secure_erase_sectors(struct block_device *bdev)
1308 {
1309 return bdev_limits(bdev)->max_secure_erase_sectors;
1310 }
1311
bdev_write_zeroes_sectors(struct block_device * bdev)1312 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1313 {
1314 return bdev_limits(bdev)->max_write_zeroes_sectors;
1315 }
1316
bdev_nonrot(struct block_device * bdev)1317 static inline bool bdev_nonrot(struct block_device *bdev)
1318 {
1319 return blk_queue_nonrot(bdev_get_queue(bdev));
1320 }
1321
bdev_synchronous(struct block_device * bdev)1322 static inline bool bdev_synchronous(struct block_device *bdev)
1323 {
1324 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1325 }
1326
bdev_stable_writes(struct block_device * bdev)1327 static inline bool bdev_stable_writes(struct block_device *bdev)
1328 {
1329 struct request_queue *q = bdev_get_queue(bdev);
1330
1331 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1332 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1333 return true;
1334 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1335 }
1336
blk_queue_write_cache(struct request_queue * q)1337 static inline bool blk_queue_write_cache(struct request_queue *q)
1338 {
1339 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1340 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1341 }
1342
bdev_write_cache(struct block_device * bdev)1343 static inline bool bdev_write_cache(struct block_device *bdev)
1344 {
1345 return blk_queue_write_cache(bdev_get_queue(bdev));
1346 }
1347
bdev_fua(struct block_device * bdev)1348 static inline bool bdev_fua(struct block_device *bdev)
1349 {
1350 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1351 }
1352
bdev_nowait(struct block_device * bdev)1353 static inline bool bdev_nowait(struct block_device *bdev)
1354 {
1355 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1356 }
1357
bdev_is_zoned(struct block_device * bdev)1358 static inline bool bdev_is_zoned(struct block_device *bdev)
1359 {
1360 return blk_queue_is_zoned(bdev_get_queue(bdev));
1361 }
1362
bdev_zone_no(struct block_device * bdev,sector_t sec)1363 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1364 {
1365 return disk_zone_no(bdev->bd_disk, sec);
1366 }
1367
bdev_zone_sectors(struct block_device * bdev)1368 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1369 {
1370 struct request_queue *q = bdev_get_queue(bdev);
1371
1372 if (!blk_queue_is_zoned(q))
1373 return 0;
1374 return q->limits.chunk_sectors;
1375 }
1376
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1377 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1378 sector_t sector)
1379 {
1380 return sector & (bdev_zone_sectors(bdev) - 1);
1381 }
1382
bio_offset_from_zone_start(struct bio * bio)1383 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1384 {
1385 return bdev_offset_from_zone_start(bio->bi_bdev,
1386 bio->bi_iter.bi_sector);
1387 }
1388
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1389 static inline bool bdev_is_zone_start(struct block_device *bdev,
1390 sector_t sector)
1391 {
1392 return bdev_offset_from_zone_start(bdev, sector) == 0;
1393 }
1394
1395 /**
1396 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1397 * @bdev: block device to check
1398 * @sector: sector number
1399 *
1400 * Check if @sector on @bdev is contained in a sequential write required zone.
1401 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1402 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1403 {
1404 bool is_seq = false;
1405
1406 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1407 if (bdev_is_zoned(bdev)) {
1408 struct gendisk *disk = bdev->bd_disk;
1409 unsigned long *bitmap;
1410
1411 rcu_read_lock();
1412 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1413 is_seq = !bitmap ||
1414 !test_bit(disk_zone_no(disk, sector), bitmap);
1415 rcu_read_unlock();
1416 }
1417 #endif
1418
1419 return is_seq;
1420 }
1421
1422 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1423 sector_t nr_sects, gfp_t gfp_mask);
1424
queue_dma_alignment(const struct request_queue * q)1425 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1426 {
1427 return q->limits.dma_alignment;
1428 }
1429
1430 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1431 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1432 {
1433 return q->limits.atomic_write_unit_max;
1434 }
1435
1436 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1437 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1438 {
1439 return q->limits.atomic_write_unit_min;
1440 }
1441
1442 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1443 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1444 {
1445 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1446 }
1447
1448 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1449 queue_atomic_write_max_bytes(const struct request_queue *q)
1450 {
1451 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1452 }
1453
bdev_dma_alignment(struct block_device * bdev)1454 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1455 {
1456 return queue_dma_alignment(bdev_get_queue(bdev));
1457 }
1458
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1459 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1460 struct iov_iter *iter)
1461 {
1462 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1463 bdev_logical_block_size(bdev) - 1);
1464 }
1465
1466 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1467 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1468 {
1469 return lim->dma_alignment | lim->dma_pad_mask;
1470 }
1471
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1472 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1473 unsigned int len)
1474 {
1475 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1476
1477 return !(addr & alignment) && !(len & alignment);
1478 }
1479
1480 /* assumes size > 256 */
blksize_bits(unsigned int size)1481 static inline unsigned int blksize_bits(unsigned int size)
1482 {
1483 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1484 }
1485
1486 int kblockd_schedule_work(struct work_struct *work);
1487 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1488
1489 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1490 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1491 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1492 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1493
1494 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1495
1496 bool blk_crypto_register(struct blk_crypto_profile *profile,
1497 struct request_queue *q);
1498
1499 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1500
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1501 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1502 struct request_queue *q)
1503 {
1504 return true;
1505 }
1506
1507 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1508
1509 enum blk_unique_id {
1510 /* these match the Designator Types specified in SPC */
1511 BLK_UID_T10 = 1,
1512 BLK_UID_EUI64 = 2,
1513 BLK_UID_NAA = 3,
1514 };
1515
1516 struct block_device_operations {
1517 void (*submit_bio)(struct bio *bio);
1518 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1519 unsigned int flags);
1520 int (*open)(struct gendisk *disk, blk_mode_t mode);
1521 void (*release)(struct gendisk *disk);
1522 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1523 unsigned cmd, unsigned long arg);
1524 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1525 unsigned cmd, unsigned long arg);
1526 unsigned int (*check_events) (struct gendisk *disk,
1527 unsigned int clearing);
1528 void (*unlock_native_capacity) (struct gendisk *);
1529 int (*getgeo)(struct block_device *, struct hd_geometry *);
1530 int (*set_read_only)(struct block_device *bdev, bool ro);
1531 void (*free_disk)(struct gendisk *disk);
1532 /* this callback is with swap_lock and sometimes page table lock held */
1533 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1534 int (*report_zones)(struct gendisk *, sector_t sector,
1535 unsigned int nr_zones, report_zones_cb cb, void *data);
1536 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1537 /* returns the length of the identifier or a negative errno: */
1538 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1539 enum blk_unique_id id_type);
1540 struct module *owner;
1541 const struct pr_ops *pr_ops;
1542
1543 /*
1544 * Special callback for probing GPT entry at a given sector.
1545 * Needed by Android devices, used by GPT scanner and MMC blk
1546 * driver.
1547 */
1548 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1549 };
1550
1551 #ifdef CONFIG_COMPAT
1552 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1553 unsigned int, unsigned long);
1554 #else
1555 #define blkdev_compat_ptr_ioctl NULL
1556 #endif
1557
blk_wake_io_task(struct task_struct * waiter)1558 static inline void blk_wake_io_task(struct task_struct *waiter)
1559 {
1560 /*
1561 * If we're polling, the task itself is doing the completions. For
1562 * that case, we don't need to signal a wakeup, it's enough to just
1563 * mark us as RUNNING.
1564 */
1565 if (waiter == current)
1566 __set_current_state(TASK_RUNNING);
1567 else
1568 wake_up_process(waiter);
1569 }
1570
1571 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1572 unsigned long start_time);
1573 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1574 unsigned int sectors, unsigned long start_time);
1575
1576 unsigned long bio_start_io_acct(struct bio *bio);
1577 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1578 struct block_device *orig_bdev);
1579
1580 /**
1581 * bio_end_io_acct - end I/O accounting for bio based drivers
1582 * @bio: bio to end account for
1583 * @start_time: start time returned by bio_start_io_acct()
1584 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1585 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1586 {
1587 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1588 }
1589
1590 int set_blocksize(struct file *file, int size);
1591
1592 int lookup_bdev(const char *pathname, dev_t *dev);
1593
1594 void blkdev_show(struct seq_file *seqf, off_t offset);
1595
1596 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1597 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1598 #ifdef CONFIG_BLOCK
1599 #define BLKDEV_MAJOR_MAX 512
1600 #else
1601 #define BLKDEV_MAJOR_MAX 0
1602 #endif
1603
1604 struct blk_holder_ops {
1605 void (*mark_dead)(struct block_device *bdev, bool surprise);
1606
1607 /*
1608 * Sync the file system mounted on the block device.
1609 */
1610 void (*sync)(struct block_device *bdev);
1611
1612 /*
1613 * Freeze the file system mounted on the block device.
1614 */
1615 int (*freeze)(struct block_device *bdev);
1616
1617 /*
1618 * Thaw the file system mounted on the block device.
1619 */
1620 int (*thaw)(struct block_device *bdev);
1621 };
1622
1623 /*
1624 * For filesystems using @fs_holder_ops, the @holder argument passed to
1625 * helpers used to open and claim block devices via
1626 * bd_prepare_to_claim() must point to a superblock.
1627 */
1628 extern const struct blk_holder_ops fs_holder_ops;
1629
1630 /*
1631 * Return the correct open flags for blkdev_get_by_* for super block flags
1632 * as stored in sb->s_flags.
1633 */
1634 #define sb_open_mode(flags) \
1635 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1636 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1637
1638 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1639 const struct blk_holder_ops *hops);
1640 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1641 void *holder, const struct blk_holder_ops *hops);
1642 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1643 const struct blk_holder_ops *hops);
1644 void bd_abort_claiming(struct block_device *bdev, void *holder);
1645
1646 /* just for blk-cgroup, don't use elsewhere */
1647 struct block_device *blkdev_get_no_open(dev_t dev);
1648 void blkdev_put_no_open(struct block_device *bdev);
1649
1650 struct block_device *I_BDEV(struct inode *inode);
1651 struct block_device *file_bdev(struct file *bdev_file);
1652 bool disk_live(struct gendisk *disk);
1653 unsigned int block_size(struct block_device *bdev);
1654
1655 #ifdef CONFIG_BLOCK
1656 void invalidate_bdev(struct block_device *bdev);
1657 int sync_blockdev(struct block_device *bdev);
1658 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1659 int sync_blockdev_nowait(struct block_device *bdev);
1660 void sync_bdevs(bool wait);
1661 void bdev_statx(struct path *, struct kstat *, u32);
1662 void printk_all_partitions(void);
1663 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1664 #else
invalidate_bdev(struct block_device * bdev)1665 static inline void invalidate_bdev(struct block_device *bdev)
1666 {
1667 }
sync_blockdev(struct block_device * bdev)1668 static inline int sync_blockdev(struct block_device *bdev)
1669 {
1670 return 0;
1671 }
sync_blockdev_nowait(struct block_device * bdev)1672 static inline int sync_blockdev_nowait(struct block_device *bdev)
1673 {
1674 return 0;
1675 }
sync_bdevs(bool wait)1676 static inline void sync_bdevs(bool wait)
1677 {
1678 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1679 static inline void bdev_statx(struct path *path, struct kstat *stat,
1680 u32 request_mask)
1681 {
1682 }
printk_all_partitions(void)1683 static inline void printk_all_partitions(void)
1684 {
1685 }
early_lookup_bdev(const char * pathname,dev_t * dev)1686 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1687 {
1688 return -EINVAL;
1689 }
1690 #endif /* CONFIG_BLOCK */
1691
1692 int bdev_freeze(struct block_device *bdev);
1693 int bdev_thaw(struct block_device *bdev);
1694 void bdev_fput(struct file *bdev_file);
1695
1696 struct io_comp_batch {
1697 struct rq_list req_list;
1698 bool need_ts;
1699 void (*complete)(struct io_comp_batch *);
1700 };
1701
bdev_can_atomic_write(struct block_device * bdev)1702 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1703 {
1704 struct request_queue *bd_queue = bdev->bd_queue;
1705 struct queue_limits *limits = &bd_queue->limits;
1706
1707 if (!limits->atomic_write_unit_min)
1708 return false;
1709
1710 if (bdev_is_partition(bdev)) {
1711 sector_t bd_start_sect = bdev->bd_start_sect;
1712 unsigned int alignment =
1713 max(limits->atomic_write_unit_min,
1714 limits->atomic_write_hw_boundary);
1715
1716 if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT))
1717 return false;
1718 }
1719
1720 return true;
1721 }
1722
1723 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1724 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1725 {
1726 if (!bdev_can_atomic_write(bdev))
1727 return 0;
1728 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1729 }
1730
1731 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1732 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1733 {
1734 if (!bdev_can_atomic_write(bdev))
1735 return 0;
1736 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1737 }
1738
1739 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1740
1741 #endif /* _LINUX_BLKDEV_H */
1742