1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent Inc. All rights reserved.
25 */
26
27 /*
28 * Zones
29 *
30 * A zone is a named collection of processes, namespace constraints,
31 * and other system resources which comprise a secure and manageable
32 * application containment facility.
33 *
34 * Zones (represented by the reference counted zone_t) are tracked in
35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
36 * (zoneid_t) are used to track zone association. Zone IDs are
37 * dynamically generated when the zone is created; if a persistent
38 * identifier is needed (core files, accounting logs, audit trail,
39 * etc.), the zone name should be used.
40 *
41 *
42 * Global Zone:
43 *
44 * The global zone (zoneid 0) is automatically associated with all
45 * system resources that have not been bound to a user-created zone.
46 * This means that even systems where zones are not in active use
47 * have a global zone, and all processes, mounts, etc. are
48 * associated with that zone. The global zone is generally
49 * unconstrained in terms of privileges and access, though the usual
50 * credential and privilege based restrictions apply.
51 *
52 *
53 * Zone States:
54 *
55 * The states in which a zone may be in and the transitions are as
56 * follows:
57 *
58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59 * initialized zone is added to the list of active zones on the system but
60 * isn't accessible.
61 *
62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63 * not yet completed. Not possible to enter the zone, but attributes can
64 * be retrieved.
65 *
66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67 * ready. The zone is made visible after the ZSD constructor callbacks are
68 * executed. A zone remains in this state until it transitions into
69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70 *
71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73 * state.
74 *
75 * ZONE_IS_RUNNING: The zone is open for business: zsched has
76 * successfully started init. A zone remains in this state until
77 * zone_shutdown() is called.
78 *
79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80 * killing all processes running in the zone. The zone remains
81 * in this state until there are no more user processes running in the zone.
82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83 * Since zone_shutdown() is restartable, it may be called successfully
84 * multiple times for the same zone_t. Setting of the zone's state to
85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86 * the zone's status without worrying about it being a moving target.
87 *
88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89 * are no more user processes in the zone. The zone remains in this
90 * state until there are no more kernel threads associated with the
91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
92 * fail.
93 *
94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95 * have exited. zone_shutdown() returns. Henceforth it is not possible to
96 * join the zone or create kernel threads therein.
97 *
98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99 * remains in this state until zsched exits. Calls to zone_find_by_*()
100 * return NULL from now on.
101 *
102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
103 * processes or threads doing work on behalf of the zone. The zone is
104 * removed from the list of active zones. zone_destroy() returns, and
105 * the zone can be recreated.
106 *
107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108 * callbacks are executed, and all memory associated with the zone is
109 * freed.
110 *
111 * Threads can wait for the zone to enter a requested state by using
112 * zone_status_wait() or zone_status_timedwait() with the desired
113 * state passed in as an argument. Zone state transitions are
114 * uni-directional; it is not possible to move back to an earlier state.
115 *
116 *
117 * Zone-Specific Data:
118 *
119 * Subsystems needing to maintain zone-specific data can store that
120 * data using the ZSD mechanism. This provides a zone-specific data
121 * store, similar to thread-specific data (see pthread_getspecific(3C)
122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
123 * to register callbacks to be invoked when a zone is created, shut
124 * down, or destroyed. This can be used to initialize zone-specific
125 * data for new zones and to clean up when zones go away.
126 *
127 *
128 * Data Structures:
129 *
130 * The per-zone structure (zone_t) is reference counted, and freed
131 * when all references are released. zone_hold and zone_rele can be
132 * used to adjust the reference count. In addition, reference counts
133 * associated with the cred_t structure are tracked separately using
134 * zone_cred_hold and zone_cred_rele.
135 *
136 * Pointers to active zone_t's are stored in two hash tables; one
137 * for searching by id, the other for searching by name. Lookups
138 * can be performed on either basis, using zone_find_by_id and
139 * zone_find_by_name. Both return zone_t pointers with the zone
140 * held, so zone_rele should be called when the pointer is no longer
141 * needed. Zones can also be searched by path; zone_find_by_path
142 * returns the zone with which a path name is associated (global
143 * zone if the path is not within some other zone's file system
144 * hierarchy). This currently requires iterating through each zone,
145 * so it is slower than an id or name search via a hash table.
146 *
147 *
148 * Locking:
149 *
150 * zonehash_lock: This is a top-level global lock used to protect the
151 * zone hash tables and lists. Zones cannot be created or destroyed
152 * while this lock is held.
153 * zone_status_lock: This is a global lock protecting zone state.
154 * Zones cannot change state while this lock is held. It also
155 * protects the list of kernel threads associated with a zone.
156 * zone_lock: This is a per-zone lock used to protect several fields of
157 * the zone_t (see <sys/zone.h> for details). In addition, holding
158 * this lock means that the zone cannot go away.
159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
160 * related to the zone.max-lwps rctl.
161 * zone_mem_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-locked-memory and zone.max-swap rctls.
163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164 * currently just max_lofi
165 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
166 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
167 * list (a list of zones in the ZONE_IS_DEAD state).
168 *
169 * Ordering requirements:
170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
172 *
173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176 *
177 * Blocking memory allocations are permitted while holding any of the
178 * zone locks.
179 *
180 *
181 * System Call Interface:
182 *
183 * The zone subsystem can be managed and queried from user level with
184 * the following system calls (all subcodes of the primary "zone"
185 * system call):
186 * - zone_create: creates a zone with selected attributes (name,
187 * root path, privileges, resource controls, ZFS datasets)
188 * - zone_enter: allows the current process to enter a zone
189 * - zone_getattr: reports attributes of a zone
190 * - zone_setattr: set attributes of a zone
191 * - zone_boot: set 'init' running for the zone
192 * - zone_list: lists all zones active in the system
193 * - zone_lookup: looks up zone id based on name
194 * - zone_shutdown: initiates shutdown process (see states above)
195 * - zone_destroy: completes shutdown process (see states above)
196 *
197 */
198
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253
254 /*
255 * This constant specifies the number of seconds that threads waiting for
256 * subsystems to release a zone's general-purpose references will wait before
257 * they log the zone's reference counts. The constant's value shouldn't
258 * be so small that reference counts are unnecessarily reported for zones
259 * whose references are slowly released. On the other hand, it shouldn't be so
260 * large that users reboot their systems out of frustration over hung zones
261 * before the system logs the zones' reference counts.
262 */
263 #define ZONE_DESTROY_TIMEOUT_SECS 60
264
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 datalink_id_t zdl_id;
268 nvlist_t *zdl_net;
269 list_node_t zdl_linkage;
270 } zone_dl_t;
271
272 /*
273 * cv used to signal that all references to the zone have been released. This
274 * needs to be global since there may be multiple waiters, and the first to
275 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276 */
277 static kcondvar_t zone_destroy_cv;
278 /*
279 * Lock used to serialize access to zone_cv. This could have been per-zone,
280 * but then we'd need another lock for zone_destroy_cv, and why bother?
281 */
282 static kmutex_t zone_status_lock;
283
284 /*
285 * ZSD-related global variables.
286 */
287 static kmutex_t zsd_key_lock; /* protects the following two */
288 /*
289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290 */
291 static zone_key_t zsd_keyval = 0;
292 /*
293 * Global list of registered keys. We use this when a new zone is created.
294 */
295 static list_t zsd_registered_keys;
296
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302
303 /*
304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305 * kernel proper runs, and which manages all other zones.
306 *
307 * Although not declared as static, the variable "zone0" should not be used
308 * except for by code that needs to reference the global zone early on in boot,
309 * before it is fully initialized. All other consumers should use
310 * 'global_zone'.
311 */
312 zone_t zone0;
313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
314
315 /*
316 * List of active zones, protected by zonehash_lock.
317 */
318 static list_t zone_active;
319
320 /*
321 * List of destroyed zones that still have outstanding cred references.
322 * Used for debugging. Uses a separate lock to avoid lock ordering
323 * problems in zone_free.
324 */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333
334 /*
335 * This table holds the mapping from kernel zone states to
336 * states visible in the state notification API.
337 * The idea is that we only expose "obvious" states and
338 * do not expose states which are just implementation details.
339 */
340 const char *zone_status_table[] = {
341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
342 ZONE_EVENT_INITIALIZED, /* initialized */
343 ZONE_EVENT_READY, /* ready */
344 ZONE_EVENT_READY, /* booting */
345 ZONE_EVENT_RUNNING, /* running */
346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
347 ZONE_EVENT_SHUTTING_DOWN, /* empty */
348 ZONE_EVENT_SHUTTING_DOWN, /* down */
349 ZONE_EVENT_SHUTTING_DOWN, /* dying */
350 ZONE_EVENT_UNINITIALIZED, /* dead */
351 };
352
353 /*
354 * This array contains the names of the subsystems listed in zone_ref_subsys_t
355 * (see sys/zone.h).
356 */
357 static char *zone_ref_subsys_names[] = {
358 "NFS", /* ZONE_REF_NFS */
359 "NFSv4", /* ZONE_REF_NFSV4 */
360 "SMBFS", /* ZONE_REF_SMBFS */
361 "MNTFS", /* ZONE_REF_MNTFS */
362 "LOFI", /* ZONE_REF_LOFI */
363 "VFS", /* ZONE_REF_VFS */
364 "IPC" /* ZONE_REF_IPC */
365 };
366
367 /*
368 * This isn't static so lint doesn't complain.
369 */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397 zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400 kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402 kmutex_t *);
403
404 /*
405 * Bump this number when you alter the zone syscall interfaces; this is
406 * because we need to have support for previous API versions in libc
407 * to support patching; libc calls into the kernel to determine this number.
408 *
409 * Version 1 of the API is the version originally shipped with Solaris 10
410 * Version 2 alters the zone_create system call in order to support more
411 * arguments by moving the args into a structure; and to do better
412 * error reporting when zone_create() fails.
413 * Version 3 alters the zone_create system call in order to support the
414 * import of ZFS datasets to zones.
415 * Version 4 alters the zone_create system call in order to support
416 * Trusted Extensions.
417 * Version 5 alters the zone_boot system call, and converts its old
418 * bootargs parameter to be set by the zone_setattr API instead.
419 * Version 6 adds the flag argument to zone_create.
420 */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422
423 /*
424 * Certain filesystems (such as NFS and autofs) need to know which zone
425 * the mount is being placed in. Because of this, we need to be able to
426 * ensure that a zone isn't in the process of being created/destroyed such
427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428 * it gets added the list of mounted zones, it ends up on the wrong zone's
429 * mount list. Since a zone can't reside on an NFS file system, we don't
430 * have to worry about the zonepath itself.
431 *
432 * The following functions: block_mounts()/resume_mounts() and
433 * mount_in_progress()/mount_completed() are used by zones and the VFS
434 * layer (respectively) to synchronize zone state transitions and new
435 * mounts within a zone. This syncronization is on a per-zone basis, so
436 * activity for one zone will not interfere with activity for another zone.
437 *
438 * The semantics are like a reader-reader lock such that there may
439 * either be multiple mounts (or zone state transitions, if that weren't
440 * serialized by zonehash_lock) in progress at the same time, but not
441 * both.
442 *
443 * We use cv's so the user can ctrl-C out of the operation if it's
444 * taking too long.
445 *
446 * The semantics are such that there is unfair bias towards the
447 * "current" operation. This means that zone halt may starve if
448 * there is a rapid succession of new mounts coming in to the zone.
449 */
450 /*
451 * Prevent new mounts from progressing to the point of calling
452 * VFS_MOUNT(). If there are already mounts in this "region", wait for
453 * them to complete.
454 */
455 static int
block_mounts(zone_t * zp)456 block_mounts(zone_t *zp)
457 {
458 int retval = 0;
459
460 /*
461 * Since it may block for a long time, block_mounts() shouldn't be
462 * called with zonehash_lock held.
463 */
464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 mutex_enter(&zp->zone_mount_lock);
466 while (zp->zone_mounts_in_progress > 0) {
467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 goto signaled;
469 }
470 /*
471 * A negative value of mounts_in_progress indicates that mounts
472 * have been blocked by (-mounts_in_progress) different callers
473 * (remotely possible if two threads enter zone_shutdown at the same
474 * time).
475 */
476 zp->zone_mounts_in_progress--;
477 retval = 1;
478 signaled:
479 mutex_exit(&zp->zone_mount_lock);
480 return (retval);
481 }
482
483 /*
484 * The VFS layer may progress with new mounts as far as we're concerned.
485 * Allow them to progress if we were the last obstacle.
486 */
487 static void
resume_mounts(zone_t * zp)488 resume_mounts(zone_t *zp)
489 {
490 mutex_enter(&zp->zone_mount_lock);
491 if (++zp->zone_mounts_in_progress == 0)
492 cv_broadcast(&zp->zone_mount_cv);
493 mutex_exit(&zp->zone_mount_lock);
494 }
495
496 /*
497 * The VFS layer is busy with a mount; this zone should wait until all
498 * of its mounts are completed to progress.
499 */
500 void
mount_in_progress(zone_t * zp)501 mount_in_progress(zone_t *zp)
502 {
503 mutex_enter(&zp->zone_mount_lock);
504 while (zp->zone_mounts_in_progress < 0)
505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 zp->zone_mounts_in_progress++;
507 mutex_exit(&zp->zone_mount_lock);
508 }
509
510 /*
511 * VFS is done with one mount; wake up any waiting block_mounts()
512 * callers if this is the last mount.
513 */
514 void
mount_completed(zone_t * zp)515 mount_completed(zone_t *zp)
516 {
517 mutex_enter(&zp->zone_mount_lock);
518 if (--zp->zone_mounts_in_progress == 0)
519 cv_broadcast(&zp->zone_mount_cv);
520 mutex_exit(&zp->zone_mount_lock);
521 }
522
523 /*
524 * ZSD routines.
525 *
526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527 * defined by the pthread_key_create() and related interfaces.
528 *
529 * Kernel subsystems may register one or more data items and/or
530 * callbacks to be executed when a zone is created, shutdown, or
531 * destroyed.
532 *
533 * Unlike the thread counterpart, destructor callbacks will be executed
534 * even if the data pointer is NULL and/or there are no constructor
535 * callbacks, so it is the responsibility of such callbacks to check for
536 * NULL data values if necessary.
537 *
538 * The locking strategy and overall picture is as follows:
539 *
540 * When someone calls zone_key_create(), a template ZSD entry is added to the
541 * global list "zsd_registered_keys", protected by zsd_key_lock. While
542 * holding that lock all the existing zones are marked as
543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544 * zone_zsd list (protected by zone_lock). The global list is updated first
545 * (under zone_key_lock) to make sure that newly created zones use the
546 * most recent list of keys. Then under zonehash_lock we walk the zones
547 * and mark them. Similar locking is used in zone_key_delete().
548 *
549 * The actual create, shutdown, and destroy callbacks are done without
550 * holding any lock. And zsd_flags are used to ensure that the operations
551 * completed so that when zone_key_create (and zone_create) is done, as well as
552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553 * are completed.
554 *
555 * When new zones are created constructor callbacks for all registered ZSD
556 * entries will be called. That also uses the above two phases of marking
557 * what needs to be done, and then running the callbacks without holding
558 * any locks.
559 *
560 * The framework does not provide any locking around zone_getspecific() and
561 * zone_setspecific() apart from that needed for internal consistency, so
562 * callers interested in atomic "test-and-set" semantics will need to provide
563 * their own locking.
564 */
565
566 /*
567 * Helper function to find the zsd_entry associated with the key in the
568 * given list.
569 */
570 static struct zsd_entry *
zsd_find(list_t * l,zone_key_t key)571 zsd_find(list_t *l, zone_key_t key)
572 {
573 struct zsd_entry *zsd;
574
575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 if (zsd->zsd_key == key) {
577 return (zsd);
578 }
579 }
580 return (NULL);
581 }
582
583 /*
584 * Helper function to find the zsd_entry associated with the key in the
585 * given list. Move it to the front of the list.
586 */
587 static struct zsd_entry *
zsd_find_mru(list_t * l,zone_key_t key)588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 struct zsd_entry *zsd;
591
592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 if (zsd->zsd_key == key) {
594 /*
595 * Move to head of list to keep list in MRU order.
596 */
597 if (zsd != list_head(l)) {
598 list_remove(l, zsd);
599 list_insert_head(l, zsd);
600 }
601 return (zsd);
602 }
603 }
604 return (NULL);
605 }
606
607 void
zone_key_create(zone_key_t * keyp,void * (* create)(zoneid_t),void (* shutdown)(zoneid_t,void *),void (* destroy)(zoneid_t,void *))608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 struct zsd_entry *zsdp;
612 struct zsd_entry *t;
613 struct zone *zone;
614 zone_key_t key;
615
616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 zsdp->zsd_data = NULL;
618 zsdp->zsd_create = create;
619 zsdp->zsd_shutdown = shutdown;
620 zsdp->zsd_destroy = destroy;
621
622 /*
623 * Insert in global list of callbacks. Makes future zone creations
624 * see it.
625 */
626 mutex_enter(&zsd_key_lock);
627 key = zsdp->zsd_key = ++zsd_keyval;
628 ASSERT(zsd_keyval != 0);
629 list_insert_tail(&zsd_registered_keys, zsdp);
630 mutex_exit(&zsd_key_lock);
631
632 /*
633 * Insert for all existing zones and mark them as needing
634 * a create callback.
635 */
636 mutex_enter(&zonehash_lock); /* stop the world */
637 for (zone = list_head(&zone_active); zone != NULL;
638 zone = list_next(&zone_active, zone)) {
639 zone_status_t status;
640
641 mutex_enter(&zone->zone_lock);
642
643 /* Skip zones that are on the way down or not yet up */
644 status = zone_status_get(zone);
645 if (status >= ZONE_IS_DOWN ||
646 status == ZONE_IS_UNINITIALIZED) {
647 mutex_exit(&zone->zone_lock);
648 continue;
649 }
650
651 t = zsd_find_mru(&zone->zone_zsd, key);
652 if (t != NULL) {
653 /*
654 * A zsd_configure already inserted it after
655 * we dropped zsd_key_lock above.
656 */
657 mutex_exit(&zone->zone_lock);
658 continue;
659 }
660 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 t->zsd_key = key;
662 t->zsd_create = create;
663 t->zsd_shutdown = shutdown;
664 t->zsd_destroy = destroy;
665 if (create != NULL) {
666 t->zsd_flags = ZSD_CREATE_NEEDED;
667 DTRACE_PROBE2(zsd__create__needed,
668 zone_t *, zone, zone_key_t, key);
669 }
670 list_insert_tail(&zone->zone_zsd, t);
671 mutex_exit(&zone->zone_lock);
672 }
673 mutex_exit(&zonehash_lock);
674
675 if (create != NULL) {
676 /* Now call the create callback for this key */
677 zsd_apply_all_zones(zsd_apply_create, key);
678 }
679 /*
680 * It is safe for consumers to use the key now, make it
681 * globally visible. Specifically zone_getspecific() will
682 * always successfully return the zone specific data associated
683 * with the key.
684 */
685 *keyp = key;
686
687 }
688
689 /*
690 * Function called when a module is being unloaded, or otherwise wishes
691 * to unregister its ZSD key and callbacks.
692 *
693 * Remove from the global list and determine the functions that need to
694 * be called under a global lock. Then call the functions without
695 * holding any locks. Finally free up the zone_zsd entries. (The apply
696 * functions need to access the zone_zsd entries to find zsd_data etc.)
697 */
698 int
zone_key_delete(zone_key_t key)699 zone_key_delete(zone_key_t key)
700 {
701 struct zsd_entry *zsdp = NULL;
702 zone_t *zone;
703
704 mutex_enter(&zsd_key_lock);
705 zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 if (zsdp == NULL) {
707 mutex_exit(&zsd_key_lock);
708 return (-1);
709 }
710 list_remove(&zsd_registered_keys, zsdp);
711 mutex_exit(&zsd_key_lock);
712
713 mutex_enter(&zonehash_lock);
714 for (zone = list_head(&zone_active); zone != NULL;
715 zone = list_next(&zone_active, zone)) {
716 struct zsd_entry *del;
717
718 mutex_enter(&zone->zone_lock);
719 del = zsd_find_mru(&zone->zone_zsd, key);
720 if (del == NULL) {
721 /*
722 * Somebody else got here first e.g the zone going
723 * away.
724 */
725 mutex_exit(&zone->zone_lock);
726 continue;
727 }
728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 if (del->zsd_shutdown != NULL &&
731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 DTRACE_PROBE2(zsd__shutdown__needed,
734 zone_t *, zone, zone_key_t, key);
735 }
736 if (del->zsd_destroy != NULL &&
737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 DTRACE_PROBE2(zsd__destroy__needed,
740 zone_t *, zone, zone_key_t, key);
741 }
742 mutex_exit(&zone->zone_lock);
743 }
744 mutex_exit(&zonehash_lock);
745 kmem_free(zsdp, sizeof (*zsdp));
746
747 /* Now call the shutdown and destroy callback for this key */
748 zsd_apply_all_zones(zsd_apply_shutdown, key);
749 zsd_apply_all_zones(zsd_apply_destroy, key);
750
751 /* Now we can free up the zsdp structures in each zone */
752 mutex_enter(&zonehash_lock);
753 for (zone = list_head(&zone_active); zone != NULL;
754 zone = list_next(&zone_active, zone)) {
755 struct zsd_entry *del;
756
757 mutex_enter(&zone->zone_lock);
758 del = zsd_find(&zone->zone_zsd, key);
759 if (del != NULL) {
760 list_remove(&zone->zone_zsd, del);
761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 kmem_free(del, sizeof (*del));
763 }
764 mutex_exit(&zone->zone_lock);
765 }
766 mutex_exit(&zonehash_lock);
767
768 return (0);
769 }
770
771 /*
772 * ZSD counterpart of pthread_setspecific().
773 *
774 * Since all zsd callbacks, including those with no create function,
775 * have an entry in zone_zsd, if the key is registered it is part of
776 * the zone_zsd list.
777 * Return an error if the key wasn't registerd.
778 */
779 int
zone_setspecific(zone_key_t key,zone_t * zone,const void * data)780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 struct zsd_entry *t;
783
784 mutex_enter(&zone->zone_lock);
785 t = zsd_find_mru(&zone->zone_zsd, key);
786 if (t != NULL) {
787 /*
788 * Replace old value with new
789 */
790 t->zsd_data = (void *)data;
791 mutex_exit(&zone->zone_lock);
792 return (0);
793 }
794 mutex_exit(&zone->zone_lock);
795 return (-1);
796 }
797
798 /*
799 * ZSD counterpart of pthread_getspecific().
800 */
801 void *
zone_getspecific(zone_key_t key,zone_t * zone)802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 struct zsd_entry *t;
805 void *data;
806
807 mutex_enter(&zone->zone_lock);
808 t = zsd_find_mru(&zone->zone_zsd, key);
809 data = (t == NULL ? NULL : t->zsd_data);
810 mutex_exit(&zone->zone_lock);
811 return (data);
812 }
813
814 /*
815 * Function used to initialize a zone's list of ZSD callbacks and data
816 * when the zone is being created. The callbacks are initialized from
817 * the template list (zsd_registered_keys). The constructor callback is
818 * executed later (once the zone exists and with locks dropped).
819 */
820 static void
zone_zsd_configure(zone_t * zone)821 zone_zsd_configure(zone_t *zone)
822 {
823 struct zsd_entry *zsdp;
824 struct zsd_entry *t;
825
826 ASSERT(MUTEX_HELD(&zonehash_lock));
827 ASSERT(list_head(&zone->zone_zsd) == NULL);
828 mutex_enter(&zone->zone_lock);
829 mutex_enter(&zsd_key_lock);
830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 /*
833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 * should not have added anything to it.
835 */
836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837
838 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 t->zsd_key = zsdp->zsd_key;
840 t->zsd_create = zsdp->zsd_create;
841 t->zsd_shutdown = zsdp->zsd_shutdown;
842 t->zsd_destroy = zsdp->zsd_destroy;
843 if (zsdp->zsd_create != NULL) {
844 t->zsd_flags = ZSD_CREATE_NEEDED;
845 DTRACE_PROBE2(zsd__create__needed,
846 zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 }
848 list_insert_tail(&zone->zone_zsd, t);
849 }
850 mutex_exit(&zsd_key_lock);
851 mutex_exit(&zone->zone_lock);
852 }
853
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855
856 /*
857 * Helper function to execute shutdown or destructor callbacks.
858 */
859 static void
zone_zsd_callbacks(zone_t * zone,enum zsd_callback_type ct)860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 struct zsd_entry *t;
863
864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867
868 /*
869 * Run the callback solely based on what is registered for the zone
870 * in zone_zsd. The global list can change independently of this
871 * as keys are registered and unregistered and we don't register new
872 * callbacks for a zone that is in the process of going away.
873 */
874 mutex_enter(&zone->zone_lock);
875 for (t = list_head(&zone->zone_zsd); t != NULL;
876 t = list_next(&zone->zone_zsd, t)) {
877 zone_key_t key = t->zsd_key;
878
879 /* Skip if no callbacks registered */
880
881 if (ct == ZSD_SHUTDOWN) {
882 if (t->zsd_shutdown != NULL &&
883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 DTRACE_PROBE2(zsd__shutdown__needed,
886 zone_t *, zone, zone_key_t, key);
887 }
888 } else {
889 if (t->zsd_destroy != NULL &&
890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 DTRACE_PROBE2(zsd__destroy__needed,
893 zone_t *, zone, zone_key_t, key);
894 }
895 }
896 }
897 mutex_exit(&zone->zone_lock);
898
899 /* Now call the shutdown and destroy callback for this key */
900 zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 zsd_apply_all_keys(zsd_apply_destroy, zone);
902
903 }
904
905 /*
906 * Called when the zone is going away; free ZSD-related memory, and
907 * destroy the zone_zsd list.
908 */
909 static void
zone_free_zsd(zone_t * zone)910 zone_free_zsd(zone_t *zone)
911 {
912 struct zsd_entry *t, *next;
913
914 /*
915 * Free all the zsd_entry's we had on this zone.
916 */
917 mutex_enter(&zone->zone_lock);
918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 next = list_next(&zone->zone_zsd, t);
920 list_remove(&zone->zone_zsd, t);
921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 kmem_free(t, sizeof (*t));
923 }
924 list_destroy(&zone->zone_zsd);
925 mutex_exit(&zone->zone_lock);
926
927 }
928
929 /*
930 * Apply a function to all zones for particular key value.
931 *
932 * The applyfn has to drop zonehash_lock if it does some work, and
933 * then reacquire it before it returns.
934 * When the lock is dropped we don't follow list_next even
935 * if it is possible to do so without any hazards. This is
936 * because we want the design to allow for the list of zones
937 * to change in any arbitrary way during the time the
938 * lock was dropped.
939 *
940 * It is safe to restart the loop at list_head since the applyfn
941 * changes the zsd_flags as it does work, so a subsequent
942 * pass through will have no effect in applyfn, hence the loop will terminate
943 * in at worst O(N^2).
944 */
945 static void
zsd_apply_all_zones(zsd_applyfn_t * applyfn,zone_key_t key)946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 zone_t *zone;
949
950 mutex_enter(&zonehash_lock);
951 zone = list_head(&zone_active);
952 while (zone != NULL) {
953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 /* Lock dropped - restart at head */
955 zone = list_head(&zone_active);
956 } else {
957 zone = list_next(&zone_active, zone);
958 }
959 }
960 mutex_exit(&zonehash_lock);
961 }
962
963 /*
964 * Apply a function to all keys for a particular zone.
965 *
966 * The applyfn has to drop zonehash_lock if it does some work, and
967 * then reacquire it before it returns.
968 * When the lock is dropped we don't follow list_next even
969 * if it is possible to do so without any hazards. This is
970 * because we want the design to allow for the list of zsd callbacks
971 * to change in any arbitrary way during the time the
972 * lock was dropped.
973 *
974 * It is safe to restart the loop at list_head since the applyfn
975 * changes the zsd_flags as it does work, so a subsequent
976 * pass through will have no effect in applyfn, hence the loop will terminate
977 * in at worst O(N^2).
978 */
979 static void
zsd_apply_all_keys(zsd_applyfn_t * applyfn,zone_t * zone)980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 struct zsd_entry *t;
983
984 mutex_enter(&zone->zone_lock);
985 t = list_head(&zone->zone_zsd);
986 while (t != NULL) {
987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 /* Lock dropped - restart at head */
989 t = list_head(&zone->zone_zsd);
990 } else {
991 t = list_next(&zone->zone_zsd, t);
992 }
993 }
994 mutex_exit(&zone->zone_lock);
995 }
996
997 /*
998 * Call the create function for the zone and key if CREATE_NEEDED
999 * is set.
1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001 * we wait for that thread to complete so that we can ensure that
1002 * all the callbacks are done when we've looped over all zones/keys.
1003 *
1004 * When we call the create function, we drop the global held by the
1005 * caller, and return true to tell the caller it needs to re-evalute the
1006 * state.
1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008 * remains held on exit.
1009 */
1010 static boolean_t
zsd_apply_create(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012 zone_t *zone, zone_key_t key)
1013 {
1014 void *result;
1015 struct zsd_entry *t;
1016 boolean_t dropped;
1017
1018 if (lockp != NULL) {
1019 ASSERT(MUTEX_HELD(lockp));
1020 }
1021 if (zone_lock_held) {
1022 ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 } else {
1024 mutex_enter(&zone->zone_lock);
1025 }
1026
1027 t = zsd_find(&zone->zone_zsd, key);
1028 if (t == NULL) {
1029 /*
1030 * Somebody else got here first e.g the zone going
1031 * away.
1032 */
1033 if (!zone_lock_held)
1034 mutex_exit(&zone->zone_lock);
1035 return (B_FALSE);
1036 }
1037 dropped = B_FALSE;
1038 if (zsd_wait_for_inprogress(zone, t, lockp))
1039 dropped = B_TRUE;
1040
1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 DTRACE_PROBE2(zsd__create__inprogress,
1045 zone_t *, zone, zone_key_t, key);
1046 mutex_exit(&zone->zone_lock);
1047 if (lockp != NULL)
1048 mutex_exit(lockp);
1049
1050 dropped = B_TRUE;
1051 ASSERT(t->zsd_create != NULL);
1052 DTRACE_PROBE2(zsd__create__start,
1053 zone_t *, zone, zone_key_t, key);
1054
1055 result = (*t->zsd_create)(zone->zone_id);
1056
1057 DTRACE_PROBE2(zsd__create__end,
1058 zone_t *, zone, voidn *, result);
1059
1060 ASSERT(result != NULL);
1061 if (lockp != NULL)
1062 mutex_enter(lockp);
1063 mutex_enter(&zone->zone_lock);
1064 t->zsd_data = result;
1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 cv_broadcast(&t->zsd_cv);
1068 DTRACE_PROBE2(zsd__create__completed,
1069 zone_t *, zone, zone_key_t, key);
1070 }
1071 if (!zone_lock_held)
1072 mutex_exit(&zone->zone_lock);
1073 return (dropped);
1074 }
1075
1076 /*
1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078 * is set.
1079 * If some other thread gets here first and sets *_INPROGRESS, then
1080 * we wait for that thread to complete so that we can ensure that
1081 * all the callbacks are done when we've looped over all zones/keys.
1082 *
1083 * When we call the shutdown function, we drop the global held by the
1084 * caller, and return true to tell the caller it needs to re-evalute the
1085 * state.
1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087 * remains held on exit.
1088 */
1089 static boolean_t
zsd_apply_shutdown(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091 zone_t *zone, zone_key_t key)
1092 {
1093 struct zsd_entry *t;
1094 void *data;
1095 boolean_t dropped;
1096
1097 if (lockp != NULL) {
1098 ASSERT(MUTEX_HELD(lockp));
1099 }
1100 if (zone_lock_held) {
1101 ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 } else {
1103 mutex_enter(&zone->zone_lock);
1104 }
1105
1106 t = zsd_find(&zone->zone_zsd, key);
1107 if (t == NULL) {
1108 /*
1109 * Somebody else got here first e.g the zone going
1110 * away.
1111 */
1112 if (!zone_lock_held)
1113 mutex_exit(&zone->zone_lock);
1114 return (B_FALSE);
1115 }
1116 dropped = B_FALSE;
1117 if (zsd_wait_for_creator(zone, t, lockp))
1118 dropped = B_TRUE;
1119
1120 if (zsd_wait_for_inprogress(zone, t, lockp))
1121 dropped = B_TRUE;
1122
1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 zone_t *, zone, zone_key_t, key);
1128 mutex_exit(&zone->zone_lock);
1129 if (lockp != NULL)
1130 mutex_exit(lockp);
1131 dropped = B_TRUE;
1132
1133 ASSERT(t->zsd_shutdown != NULL);
1134 data = t->zsd_data;
1135
1136 DTRACE_PROBE2(zsd__shutdown__start,
1137 zone_t *, zone, zone_key_t, key);
1138
1139 (t->zsd_shutdown)(zone->zone_id, data);
1140 DTRACE_PROBE2(zsd__shutdown__end,
1141 zone_t *, zone, zone_key_t, key);
1142
1143 if (lockp != NULL)
1144 mutex_enter(lockp);
1145 mutex_enter(&zone->zone_lock);
1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 cv_broadcast(&t->zsd_cv);
1149 DTRACE_PROBE2(zsd__shutdown__completed,
1150 zone_t *, zone, zone_key_t, key);
1151 }
1152 if (!zone_lock_held)
1153 mutex_exit(&zone->zone_lock);
1154 return (dropped);
1155 }
1156
1157 /*
1158 * Call the destroy function for the zone and key if DESTROY_NEEDED
1159 * is set.
1160 * If some other thread gets here first and sets *_INPROGRESS, then
1161 * we wait for that thread to complete so that we can ensure that
1162 * all the callbacks are done when we've looped over all zones/keys.
1163 *
1164 * When we call the destroy function, we drop the global held by the
1165 * caller, and return true to tell the caller it needs to re-evalute the
1166 * state.
1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168 * remains held on exit.
1169 */
1170 static boolean_t
zsd_apply_destroy(kmutex_t * lockp,boolean_t zone_lock_held,zone_t * zone,zone_key_t key)1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172 zone_t *zone, zone_key_t key)
1173 {
1174 struct zsd_entry *t;
1175 void *data;
1176 boolean_t dropped;
1177
1178 if (lockp != NULL) {
1179 ASSERT(MUTEX_HELD(lockp));
1180 }
1181 if (zone_lock_held) {
1182 ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 } else {
1184 mutex_enter(&zone->zone_lock);
1185 }
1186
1187 t = zsd_find(&zone->zone_zsd, key);
1188 if (t == NULL) {
1189 /*
1190 * Somebody else got here first e.g the zone going
1191 * away.
1192 */
1193 if (!zone_lock_held)
1194 mutex_exit(&zone->zone_lock);
1195 return (B_FALSE);
1196 }
1197 dropped = B_FALSE;
1198 if (zsd_wait_for_creator(zone, t, lockp))
1199 dropped = B_TRUE;
1200
1201 if (zsd_wait_for_inprogress(zone, t, lockp))
1202 dropped = B_TRUE;
1203
1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 DTRACE_PROBE2(zsd__destroy__inprogress,
1208 zone_t *, zone, zone_key_t, key);
1209 mutex_exit(&zone->zone_lock);
1210 if (lockp != NULL)
1211 mutex_exit(lockp);
1212 dropped = B_TRUE;
1213
1214 ASSERT(t->zsd_destroy != NULL);
1215 data = t->zsd_data;
1216 DTRACE_PROBE2(zsd__destroy__start,
1217 zone_t *, zone, zone_key_t, key);
1218
1219 (t->zsd_destroy)(zone->zone_id, data);
1220 DTRACE_PROBE2(zsd__destroy__end,
1221 zone_t *, zone, zone_key_t, key);
1222
1223 if (lockp != NULL)
1224 mutex_enter(lockp);
1225 mutex_enter(&zone->zone_lock);
1226 t->zsd_data = NULL;
1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 cv_broadcast(&t->zsd_cv);
1230 DTRACE_PROBE2(zsd__destroy__completed,
1231 zone_t *, zone, zone_key_t, key);
1232 }
1233 if (!zone_lock_held)
1234 mutex_exit(&zone->zone_lock);
1235 return (dropped);
1236 }
1237
1238 /*
1239 * Wait for any CREATE_NEEDED flag to be cleared.
1240 * Returns true if lockp was temporarily dropped while waiting.
1241 */
1242 static boolean_t
zsd_wait_for_creator(zone_t * zone,struct zsd_entry * t,kmutex_t * lockp)1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 boolean_t dropped = B_FALSE;
1246
1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 DTRACE_PROBE2(zsd__wait__for__creator,
1249 zone_t *, zone, struct zsd_entry *, t);
1250 if (lockp != NULL) {
1251 dropped = B_TRUE;
1252 mutex_exit(lockp);
1253 }
1254 cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 if (lockp != NULL) {
1256 /* First drop zone_lock to preserve order */
1257 mutex_exit(&zone->zone_lock);
1258 mutex_enter(lockp);
1259 mutex_enter(&zone->zone_lock);
1260 }
1261 }
1262 return (dropped);
1263 }
1264
1265 /*
1266 * Wait for any INPROGRESS flag to be cleared.
1267 * Returns true if lockp was temporarily dropped while waiting.
1268 */
1269 static boolean_t
zsd_wait_for_inprogress(zone_t * zone,struct zsd_entry * t,kmutex_t * lockp)1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 boolean_t dropped = B_FALSE;
1273
1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 zone_t *, zone, struct zsd_entry *, t);
1277 if (lockp != NULL) {
1278 dropped = B_TRUE;
1279 mutex_exit(lockp);
1280 }
1281 cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 if (lockp != NULL) {
1283 /* First drop zone_lock to preserve order */
1284 mutex_exit(&zone->zone_lock);
1285 mutex_enter(lockp);
1286 mutex_enter(&zone->zone_lock);
1287 }
1288 }
1289 return (dropped);
1290 }
1291
1292 /*
1293 * Frees memory associated with the zone dataset list.
1294 */
1295 static void
zone_free_datasets(zone_t * zone)1296 zone_free_datasets(zone_t *zone)
1297 {
1298 zone_dataset_t *t, *next;
1299
1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 next = list_next(&zone->zone_datasets, t);
1302 list_remove(&zone->zone_datasets, t);
1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 kmem_free(t, sizeof (*t));
1305 }
1306 list_destroy(&zone->zone_datasets);
1307 }
1308
1309 /*
1310 * zone.cpu-shares resource control support.
1311 */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
zone_cpu_shares_usage(rctl_t * rctl,struct proc * p)1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 ASSERT(MUTEX_HELD(&p->p_lock));
1317 return (p->p_zone->zone_shares);
1318 }
1319
1320 /*ARGSUSED*/
1321 static int
zone_cpu_shares_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323 rctl_qty_t nv)
1324 {
1325 ASSERT(MUTEX_HELD(&p->p_lock));
1326 ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 if (e->rcep_p.zone == NULL)
1328 return (0);
1329
1330 e->rcep_p.zone->zone_shares = nv;
1331 return (0);
1332 }
1333
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 rcop_no_action,
1336 zone_cpu_shares_usage,
1337 zone_cpu_shares_set,
1338 rcop_no_test
1339 };
1340
1341 /*
1342 * zone.cpu-cap resource control support.
1343 */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
zone_cpu_cap_get(rctl_t * rctl,struct proc * p)1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 ASSERT(MUTEX_HELD(&p->p_lock));
1349 return (cpucaps_zone_get(p->p_zone));
1350 }
1351
1352 /*ARGSUSED*/
1353 static int
zone_cpu_cap_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355 rctl_qty_t nv)
1356 {
1357 zone_t *zone = e->rcep_p.zone;
1358
1359 ASSERT(MUTEX_HELD(&p->p_lock));
1360 ASSERT(e->rcep_t == RCENTITY_ZONE);
1361
1362 if (zone == NULL)
1363 return (0);
1364
1365 /*
1366 * set cap to the new value.
1367 */
1368 return (cpucaps_zone_set(zone, nv));
1369 }
1370
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 rcop_no_action,
1373 zone_cpu_cap_get,
1374 zone_cpu_cap_set,
1375 rcop_no_test
1376 };
1377
1378 /*ARGSUSED*/
1379 static rctl_qty_t
zone_lwps_usage(rctl_t * r,proc_t * p)1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 rctl_qty_t nlwps;
1383 zone_t *zone = p->p_zone;
1384
1385 ASSERT(MUTEX_HELD(&p->p_lock));
1386
1387 mutex_enter(&zone->zone_nlwps_lock);
1388 nlwps = zone->zone_nlwps;
1389 mutex_exit(&zone->zone_nlwps_lock);
1390
1391 return (nlwps);
1392 }
1393
1394 /*ARGSUSED*/
1395 static int
zone_lwps_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397 rctl_qty_t incr, uint_t flags)
1398 {
1399 rctl_qty_t nlwps;
1400
1401 ASSERT(MUTEX_HELD(&p->p_lock));
1402 ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 if (e->rcep_p.zone == NULL)
1404 return (0);
1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 nlwps = e->rcep_p.zone->zone_nlwps;
1407
1408 if (nlwps + incr > rcntl->rcv_value)
1409 return (1);
1410
1411 return (0);
1412 }
1413
1414 /*ARGSUSED*/
1415 static int
zone_lwps_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 ASSERT(MUTEX_HELD(&p->p_lock));
1419 ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 if (e->rcep_p.zone == NULL)
1421 return (0);
1422 e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 return (0);
1424 }
1425
1426 static rctl_ops_t zone_lwps_ops = {
1427 rcop_no_action,
1428 zone_lwps_usage,
1429 zone_lwps_set,
1430 zone_lwps_test,
1431 };
1432
1433 /*ARGSUSED*/
1434 static rctl_qty_t
zone_procs_usage(rctl_t * r,proc_t * p)1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 rctl_qty_t nprocs;
1438 zone_t *zone = p->p_zone;
1439
1440 ASSERT(MUTEX_HELD(&p->p_lock));
1441
1442 mutex_enter(&zone->zone_nlwps_lock);
1443 nprocs = zone->zone_nprocs;
1444 mutex_exit(&zone->zone_nlwps_lock);
1445
1446 return (nprocs);
1447 }
1448
1449 /*ARGSUSED*/
1450 static int
zone_procs_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452 rctl_qty_t incr, uint_t flags)
1453 {
1454 rctl_qty_t nprocs;
1455
1456 ASSERT(MUTEX_HELD(&p->p_lock));
1457 ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 if (e->rcep_p.zone == NULL)
1459 return (0);
1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 nprocs = e->rcep_p.zone->zone_nprocs;
1462
1463 if (nprocs + incr > rcntl->rcv_value)
1464 return (1);
1465
1466 return (0);
1467 }
1468
1469 /*ARGSUSED*/
1470 static int
zone_procs_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 ASSERT(MUTEX_HELD(&p->p_lock));
1474 ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 if (e->rcep_p.zone == NULL)
1476 return (0);
1477 e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 return (0);
1479 }
1480
1481 static rctl_ops_t zone_procs_ops = {
1482 rcop_no_action,
1483 zone_procs_usage,
1484 zone_procs_set,
1485 zone_procs_test,
1486 };
1487
1488 /*ARGSUSED*/
1489 static int
zone_shmmax_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491 rctl_qty_t incr, uint_t flags)
1492 {
1493 rctl_qty_t v;
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 v = e->rcep_p.zone->zone_shmmax + incr;
1497 if (v > rval->rcv_value)
1498 return (1);
1499 return (0);
1500 }
1501
1502 static rctl_ops_t zone_shmmax_ops = {
1503 rcop_no_action,
1504 rcop_no_usage,
1505 rcop_no_set,
1506 zone_shmmax_test
1507 };
1508
1509 /*ARGSUSED*/
1510 static int
zone_shmmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512 rctl_qty_t incr, uint_t flags)
1513 {
1514 rctl_qty_t v;
1515 ASSERT(MUTEX_HELD(&p->p_lock));
1516 ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 if (v > rval->rcv_value)
1519 return (1);
1520 return (0);
1521 }
1522
1523 static rctl_ops_t zone_shmmni_ops = {
1524 rcop_no_action,
1525 rcop_no_usage,
1526 rcop_no_set,
1527 zone_shmmni_test
1528 };
1529
1530 /*ARGSUSED*/
1531 static int
zone_semmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533 rctl_qty_t incr, uint_t flags)
1534 {
1535 rctl_qty_t v;
1536 ASSERT(MUTEX_HELD(&p->p_lock));
1537 ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 if (v > rval->rcv_value)
1540 return (1);
1541 return (0);
1542 }
1543
1544 static rctl_ops_t zone_semmni_ops = {
1545 rcop_no_action,
1546 rcop_no_usage,
1547 rcop_no_set,
1548 zone_semmni_test
1549 };
1550
1551 /*ARGSUSED*/
1552 static int
zone_msgmni_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rval,rctl_qty_t incr,uint_t flags)1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554 rctl_qty_t incr, uint_t flags)
1555 {
1556 rctl_qty_t v;
1557 ASSERT(MUTEX_HELD(&p->p_lock));
1558 ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 if (v > rval->rcv_value)
1561 return (1);
1562 return (0);
1563 }
1564
1565 static rctl_ops_t zone_msgmni_ops = {
1566 rcop_no_action,
1567 rcop_no_usage,
1568 rcop_no_set,
1569 zone_msgmni_test
1570 };
1571
1572 /*ARGSUSED*/
1573 static rctl_qty_t
zone_locked_mem_usage(rctl_t * rctl,struct proc * p)1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 {
1576 rctl_qty_t q;
1577 ASSERT(MUTEX_HELD(&p->p_lock));
1578 mutex_enter(&p->p_zone->zone_mem_lock);
1579 q = p->p_zone->zone_locked_mem;
1580 mutex_exit(&p->p_zone->zone_mem_lock);
1581 return (q);
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
zone_locked_mem_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 {
1589 rctl_qty_t q;
1590 zone_t *z;
1591
1592 z = e->rcep_p.zone;
1593 ASSERT(MUTEX_HELD(&p->p_lock));
1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 q = z->zone_locked_mem;
1596 if (q + incr > rcntl->rcv_value)
1597 return (1);
1598 return (0);
1599 }
1600
1601 /*ARGSUSED*/
1602 static int
zone_locked_mem_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604 rctl_qty_t nv)
1605 {
1606 ASSERT(MUTEX_HELD(&p->p_lock));
1607 ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 if (e->rcep_p.zone == NULL)
1609 return (0);
1610 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 return (0);
1612 }
1613
1614 static rctl_ops_t zone_locked_mem_ops = {
1615 rcop_no_action,
1616 zone_locked_mem_usage,
1617 zone_locked_mem_set,
1618 zone_locked_mem_test
1619 };
1620
1621 /*ARGSUSED*/
1622 static rctl_qty_t
zone_max_swap_usage(rctl_t * rctl,struct proc * p)1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 {
1625 rctl_qty_t q;
1626 zone_t *z = p->p_zone;
1627
1628 ASSERT(MUTEX_HELD(&p->p_lock));
1629 mutex_enter(&z->zone_mem_lock);
1630 q = z->zone_max_swap;
1631 mutex_exit(&z->zone_mem_lock);
1632 return (q);
1633 }
1634
1635 /*ARGSUSED*/
1636 static int
zone_max_swap_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 {
1640 rctl_qty_t q;
1641 zone_t *z;
1642
1643 z = e->rcep_p.zone;
1644 ASSERT(MUTEX_HELD(&p->p_lock));
1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 q = z->zone_max_swap;
1647 if (q + incr > rcntl->rcv_value)
1648 return (1);
1649 return (0);
1650 }
1651
1652 /*ARGSUSED*/
1653 static int
zone_max_swap_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655 rctl_qty_t nv)
1656 {
1657 ASSERT(MUTEX_HELD(&p->p_lock));
1658 ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 if (e->rcep_p.zone == NULL)
1660 return (0);
1661 e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 return (0);
1663 }
1664
1665 static rctl_ops_t zone_max_swap_ops = {
1666 rcop_no_action,
1667 zone_max_swap_usage,
1668 zone_max_swap_set,
1669 zone_max_swap_test
1670 };
1671
1672 /*ARGSUSED*/
1673 static rctl_qty_t
zone_max_lofi_usage(rctl_t * rctl,struct proc * p)1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 {
1676 rctl_qty_t q;
1677 zone_t *z = p->p_zone;
1678
1679 ASSERT(MUTEX_HELD(&p->p_lock));
1680 mutex_enter(&z->zone_rctl_lock);
1681 q = z->zone_max_lofi;
1682 mutex_exit(&z->zone_rctl_lock);
1683 return (q);
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
zone_max_lofi_test(rctl_t * r,proc_t * p,rctl_entity_p_t * e,rctl_val_t * rcntl,rctl_qty_t incr,uint_t flags)1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 {
1691 rctl_qty_t q;
1692 zone_t *z;
1693
1694 z = e->rcep_p.zone;
1695 ASSERT(MUTEX_HELD(&p->p_lock));
1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 q = z->zone_max_lofi;
1698 if (q + incr > rcntl->rcv_value)
1699 return (1);
1700 return (0);
1701 }
1702
1703 /*ARGSUSED*/
1704 static int
zone_max_lofi_set(rctl_t * rctl,struct proc * p,rctl_entity_p_t * e,rctl_qty_t nv)1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706 rctl_qty_t nv)
1707 {
1708 ASSERT(MUTEX_HELD(&p->p_lock));
1709 ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 if (e->rcep_p.zone == NULL)
1711 return (0);
1712 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 return (0);
1714 }
1715
1716 static rctl_ops_t zone_max_lofi_ops = {
1717 rcop_no_action,
1718 zone_max_lofi_usage,
1719 zone_max_lofi_set,
1720 zone_max_lofi_test
1721 };
1722
1723 /*
1724 * Helper function to brand the zone with a unique ID.
1725 */
1726 static void
zone_uniqid(zone_t * zone)1727 zone_uniqid(zone_t *zone)
1728 {
1729 static uint64_t uniqid = 0;
1730
1731 ASSERT(MUTEX_HELD(&zonehash_lock));
1732 zone->zone_uniqid = uniqid++;
1733 }
1734
1735 /*
1736 * Returns a held pointer to the "kcred" for the specified zone.
1737 */
1738 struct cred *
zone_get_kcred(zoneid_t zoneid)1739 zone_get_kcred(zoneid_t zoneid)
1740 {
1741 zone_t *zone;
1742 cred_t *cr;
1743
1744 if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 return (NULL);
1746 cr = zone->zone_kcred;
1747 crhold(cr);
1748 zone_rele(zone);
1749 return (cr);
1750 }
1751
1752 static int
zone_lockedmem_kstat_update(kstat_t * ksp,int rw)1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 {
1755 zone_t *zone = ksp->ks_private;
1756 zone_kstat_t *zk = ksp->ks_data;
1757
1758 if (rw == KSTAT_WRITE)
1759 return (EACCES);
1760
1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 return (0);
1764 }
1765
1766 static int
zone_nprocs_kstat_update(kstat_t * ksp,int rw)1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 {
1769 zone_t *zone = ksp->ks_private;
1770 zone_kstat_t *zk = ksp->ks_data;
1771
1772 if (rw == KSTAT_WRITE)
1773 return (EACCES);
1774
1775 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 return (0);
1778 }
1779
1780 static int
zone_swapresv_kstat_update(kstat_t * ksp,int rw)1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 {
1783 zone_t *zone = ksp->ks_private;
1784 zone_kstat_t *zk = ksp->ks_data;
1785
1786 if (rw == KSTAT_WRITE)
1787 return (EACCES);
1788
1789 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 return (0);
1792 }
1793
1794 static kstat_t *
zone_kstat_create_common(zone_t * zone,char * name,int (* updatefunc)(kstat_t *,int))1795 zone_kstat_create_common(zone_t *zone, char *name,
1796 int (*updatefunc) (kstat_t *, int))
1797 {
1798 kstat_t *ksp;
1799 zone_kstat_t *zk;
1800
1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 KSTAT_FLAG_VIRTUAL);
1804
1805 if (ksp == NULL)
1806 return (NULL);
1807
1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 ksp->ks_update = updatefunc;
1815 ksp->ks_private = zone;
1816 kstat_install(ksp);
1817 return (ksp);
1818 }
1819
1820 static int
zone_misc_kstat_update(kstat_t * ksp,int rw)1821 zone_misc_kstat_update(kstat_t *ksp, int rw)
1822 {
1823 zone_t *zone = ksp->ks_private;
1824 zone_misc_kstat_t *zmp = ksp->ks_data;
1825 hrtime_t tmp;
1826
1827 if (rw == KSTAT_WRITE)
1828 return (EACCES);
1829
1830 tmp = zone->zone_utime;
1831 scalehrtime(&tmp);
1832 zmp->zm_utime.value.ui64 = tmp;
1833 tmp = zone->zone_stime;
1834 scalehrtime(&tmp);
1835 zmp->zm_stime.value.ui64 = tmp;
1836 tmp = zone->zone_wtime;
1837 scalehrtime(&tmp);
1838 zmp->zm_wtime.value.ui64 = tmp;
1839
1840 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1841 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1842 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1843
1844 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1845 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1846 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1847 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1848
1849 return (0);
1850 }
1851
1852 static kstat_t *
zone_misc_kstat_create(zone_t * zone)1853 zone_misc_kstat_create(zone_t *zone)
1854 {
1855 kstat_t *ksp;
1856 zone_misc_kstat_t *zmp;
1857
1858 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1859 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1860 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1861 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1862 return (NULL);
1863
1864 if (zone->zone_id != GLOBAL_ZONEID)
1865 kstat_zone_add(ksp, GLOBAL_ZONEID);
1866
1867 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1868 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1869 ksp->ks_lock = &zone->zone_misc_lock;
1870 zone->zone_misc_stats = zmp;
1871
1872 /* The kstat "name" field is not large enough for a full zonename */
1873 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1874 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1875 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1876 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1877 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1878 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1879 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1880 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1881 KSTAT_DATA_UINT32);
1882 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1883 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1884 KSTAT_DATA_UINT32);
1885 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1886 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1887
1888
1889 ksp->ks_update = zone_misc_kstat_update;
1890 ksp->ks_private = zone;
1891
1892 kstat_install(ksp);
1893 return (ksp);
1894 }
1895
1896 static void
zone_kstat_create(zone_t * zone)1897 zone_kstat_create(zone_t *zone)
1898 {
1899 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1900 "lockedmem", zone_lockedmem_kstat_update);
1901 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1902 "swapresv", zone_swapresv_kstat_update);
1903 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1904 "nprocs", zone_nprocs_kstat_update);
1905
1906 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1907 zone->zone_misc_stats = kmem_zalloc(
1908 sizeof (zone_misc_kstat_t), KM_SLEEP);
1909 }
1910 }
1911
1912 static void
zone_kstat_delete_common(kstat_t ** pkstat,size_t datasz)1913 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1914 {
1915 void *data;
1916
1917 if (*pkstat != NULL) {
1918 data = (*pkstat)->ks_data;
1919 kstat_delete(*pkstat);
1920 kmem_free(data, datasz);
1921 *pkstat = NULL;
1922 }
1923 }
1924
1925 static void
zone_kstat_delete(zone_t * zone)1926 zone_kstat_delete(zone_t *zone)
1927 {
1928 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1929 sizeof (zone_kstat_t));
1930 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1931 sizeof (zone_kstat_t));
1932 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1933 sizeof (zone_kstat_t));
1934 zone_kstat_delete_common(&zone->zone_misc_ksp,
1935 sizeof (zone_misc_kstat_t));
1936 }
1937
1938 /*
1939 * Called very early on in boot to initialize the ZSD list so that
1940 * zone_key_create() can be called before zone_init(). It also initializes
1941 * portions of zone0 which may be used before zone_init() is called. The
1942 * variable "global_zone" will be set when zone0 is fully initialized by
1943 * zone_init().
1944 */
1945 void
zone_zsd_init(void)1946 zone_zsd_init(void)
1947 {
1948 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1949 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1950 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1951 offsetof(struct zsd_entry, zsd_linkage));
1952 list_create(&zone_active, sizeof (zone_t),
1953 offsetof(zone_t, zone_linkage));
1954 list_create(&zone_deathrow, sizeof (zone_t),
1955 offsetof(zone_t, zone_linkage));
1956
1957 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1958 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1959 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1960 zone0.zone_shares = 1;
1961 zone0.zone_nlwps = 0;
1962 zone0.zone_nlwps_ctl = INT_MAX;
1963 zone0.zone_nprocs = 0;
1964 zone0.zone_nprocs_ctl = INT_MAX;
1965 zone0.zone_locked_mem = 0;
1966 zone0.zone_locked_mem_ctl = UINT64_MAX;
1967 ASSERT(zone0.zone_max_swap == 0);
1968 zone0.zone_max_swap_ctl = UINT64_MAX;
1969 zone0.zone_max_lofi = 0;
1970 zone0.zone_max_lofi_ctl = UINT64_MAX;
1971 zone0.zone_shmmax = 0;
1972 zone0.zone_ipc.ipcq_shmmni = 0;
1973 zone0.zone_ipc.ipcq_semmni = 0;
1974 zone0.zone_ipc.ipcq_msgmni = 0;
1975 zone0.zone_name = GLOBAL_ZONENAME;
1976 zone0.zone_nodename = utsname.nodename;
1977 zone0.zone_domain = srpc_domain;
1978 zone0.zone_hostid = HW_INVALID_HOSTID;
1979 zone0.zone_fs_allowed = NULL;
1980 zone0.zone_ref = 1;
1981 zone0.zone_id = GLOBAL_ZONEID;
1982 zone0.zone_status = ZONE_IS_RUNNING;
1983 zone0.zone_rootpath = "/";
1984 zone0.zone_rootpathlen = 2;
1985 zone0.zone_psetid = ZONE_PS_INVAL;
1986 zone0.zone_ncpus = 0;
1987 zone0.zone_ncpus_online = 0;
1988 zone0.zone_proc_initpid = 1;
1989 zone0.zone_initname = initname;
1990 zone0.zone_lockedmem_kstat = NULL;
1991 zone0.zone_swapresv_kstat = NULL;
1992 zone0.zone_nprocs_kstat = NULL;
1993
1994 zone0.zone_stime = 0;
1995 zone0.zone_utime = 0;
1996 zone0.zone_wtime = 0;
1997
1998 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
1999 offsetof(zone_ref_t, zref_linkage));
2000 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2001 offsetof(struct zsd_entry, zsd_linkage));
2002 list_insert_head(&zone_active, &zone0);
2003
2004 /*
2005 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2006 * to anything meaningful. It is assigned to be 'rootdir' in
2007 * vfs_mountroot().
2008 */
2009 zone0.zone_rootvp = NULL;
2010 zone0.zone_vfslist = NULL;
2011 zone0.zone_bootargs = initargs;
2012 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2013 /*
2014 * The global zone has all privileges
2015 */
2016 priv_fillset(zone0.zone_privset);
2017 /*
2018 * Add p0 to the global zone
2019 */
2020 zone0.zone_zsched = &p0;
2021 p0.p_zone = &zone0;
2022 }
2023
2024 /*
2025 * Compute a hash value based on the contents of the label and the DOI. The
2026 * hash algorithm is somewhat arbitrary, but is based on the observation that
2027 * humans will likely pick labels that differ by amounts that work out to be
2028 * multiples of the number of hash chains, and thus stirring in some primes
2029 * should help.
2030 */
2031 static uint_t
hash_bylabel(void * hdata,mod_hash_key_t key)2032 hash_bylabel(void *hdata, mod_hash_key_t key)
2033 {
2034 const ts_label_t *lab = (ts_label_t *)key;
2035 const uint32_t *up, *ue;
2036 uint_t hash;
2037 int i;
2038
2039 _NOTE(ARGUNUSED(hdata));
2040
2041 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2042 /* we depend on alignment of label, but not representation */
2043 up = (const uint32_t *)&lab->tsl_label;
2044 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2045 i = 1;
2046 while (up < ue) {
2047 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2048 hash += *up + (*up << ((i % 16) + 1));
2049 up++;
2050 i++;
2051 }
2052 return (hash);
2053 }
2054
2055 /*
2056 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2057 * equal). This may need to be changed if less than / greater than is ever
2058 * needed.
2059 */
2060 static int
hash_labelkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)2061 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2062 {
2063 ts_label_t *lab1 = (ts_label_t *)key1;
2064 ts_label_t *lab2 = (ts_label_t *)key2;
2065
2066 return (label_equal(lab1, lab2) ? 0 : 1);
2067 }
2068
2069 /*
2070 * Called by main() to initialize the zones framework.
2071 */
2072 void
zone_init(void)2073 zone_init(void)
2074 {
2075 rctl_dict_entry_t *rde;
2076 rctl_val_t *dval;
2077 rctl_set_t *set;
2078 rctl_alloc_gp_t *gp;
2079 rctl_entity_p_t e;
2080 int res;
2081
2082 ASSERT(curproc == &p0);
2083
2084 /*
2085 * Create ID space for zone IDs. ID 0 is reserved for the
2086 * global zone.
2087 */
2088 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2089
2090 /*
2091 * Initialize generic zone resource controls, if any.
2092 */
2093 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2094 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2095 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2096 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2097
2098 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2099 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2100 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2101 RCTL_GLOBAL_INFINITE,
2102 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2103
2104 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2105 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2106 INT_MAX, INT_MAX, &zone_lwps_ops);
2107
2108 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2110 INT_MAX, INT_MAX, &zone_procs_ops);
2111
2112 /*
2113 * System V IPC resource controls
2114 */
2115 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2116 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2117 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2118
2119 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2122
2123 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2126
2127 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2129 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2130
2131 /*
2132 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2133 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2134 */
2135 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2136 bzero(dval, sizeof (rctl_val_t));
2137 dval->rcv_value = 1;
2138 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2139 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2140 dval->rcv_action_recip_pid = -1;
2141
2142 rde = rctl_dict_lookup("zone.cpu-shares");
2143 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2144
2145 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2146 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2147 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2148 &zone_locked_mem_ops);
2149
2150 rc_zone_max_swap = rctl_register("zone.max-swap",
2151 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2152 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2153 &zone_max_swap_ops);
2154
2155 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2156 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2157 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2158 &zone_max_lofi_ops);
2159
2160 /*
2161 * Initialize the ``global zone''.
2162 */
2163 set = rctl_set_create();
2164 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2165 mutex_enter(&p0.p_lock);
2166 e.rcep_p.zone = &zone0;
2167 e.rcep_t = RCENTITY_ZONE;
2168 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2169 gp);
2170
2171 zone0.zone_nlwps = p0.p_lwpcnt;
2172 zone0.zone_nprocs = 1;
2173 zone0.zone_ntasks = 1;
2174 mutex_exit(&p0.p_lock);
2175 zone0.zone_restart_init = B_TRUE;
2176 zone0.zone_brand = &native_brand;
2177 rctl_prealloc_destroy(gp);
2178 /*
2179 * pool_default hasn't been initialized yet, so we let pool_init()
2180 * take care of making sure the global zone is in the default pool.
2181 */
2182
2183 /*
2184 * Initialize global zone kstats
2185 */
2186 zone_kstat_create(&zone0);
2187
2188 /*
2189 * Initialize zone label.
2190 * mlp are initialized when tnzonecfg is loaded.
2191 */
2192 zone0.zone_slabel = l_admin_low;
2193 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2194 label_hold(l_admin_low);
2195
2196 /*
2197 * Initialise the lock for the database structure used by mntfs.
2198 */
2199 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2200
2201 mutex_enter(&zonehash_lock);
2202 zone_uniqid(&zone0);
2203 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2204
2205 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2206 mod_hash_null_valdtor);
2207 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2208 zone_hash_size, mod_hash_null_valdtor);
2209 /*
2210 * maintain zonehashbylabel only for labeled systems
2211 */
2212 if (is_system_labeled())
2213 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2214 zone_hash_size, mod_hash_null_keydtor,
2215 mod_hash_null_valdtor, hash_bylabel, NULL,
2216 hash_labelkey_cmp, KM_SLEEP);
2217 zonecount = 1;
2218
2219 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2220 (mod_hash_val_t)&zone0);
2221 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2222 (mod_hash_val_t)&zone0);
2223 if (is_system_labeled()) {
2224 zone0.zone_flags |= ZF_HASHED_LABEL;
2225 (void) mod_hash_insert(zonehashbylabel,
2226 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2227 }
2228 mutex_exit(&zonehash_lock);
2229
2230 /*
2231 * We avoid setting zone_kcred until now, since kcred is initialized
2232 * sometime after zone_zsd_init() and before zone_init().
2233 */
2234 zone0.zone_kcred = kcred;
2235 /*
2236 * The global zone is fully initialized (except for zone_rootvp which
2237 * will be set when the root filesystem is mounted).
2238 */
2239 global_zone = &zone0;
2240
2241 /*
2242 * Setup an event channel to send zone status change notifications on
2243 */
2244 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2245 EVCH_CREAT);
2246
2247 if (res)
2248 panic("Sysevent_evc_bind failed during zone setup.\n");
2249
2250 }
2251
2252 static void
zone_free(zone_t * zone)2253 zone_free(zone_t *zone)
2254 {
2255 ASSERT(zone != global_zone);
2256 ASSERT(zone->zone_ntasks == 0);
2257 ASSERT(zone->zone_nlwps == 0);
2258 ASSERT(zone->zone_nprocs == 0);
2259 ASSERT(zone->zone_cred_ref == 0);
2260 ASSERT(zone->zone_kcred == NULL);
2261 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2262 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2263 ASSERT(list_is_empty(&zone->zone_ref_list));
2264
2265 /*
2266 * Remove any zone caps.
2267 */
2268 cpucaps_zone_remove(zone);
2269
2270 ASSERT(zone->zone_cpucap == NULL);
2271
2272 /* remove from deathrow list */
2273 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2274 ASSERT(zone->zone_ref == 0);
2275 mutex_enter(&zone_deathrow_lock);
2276 list_remove(&zone_deathrow, zone);
2277 mutex_exit(&zone_deathrow_lock);
2278 }
2279
2280 list_destroy(&zone->zone_ref_list);
2281 zone_free_zsd(zone);
2282 zone_free_datasets(zone);
2283 list_destroy(&zone->zone_dl_list);
2284
2285 if (zone->zone_rootvp != NULL)
2286 VN_RELE(zone->zone_rootvp);
2287 if (zone->zone_rootpath)
2288 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2289 if (zone->zone_name != NULL)
2290 kmem_free(zone->zone_name, ZONENAME_MAX);
2291 if (zone->zone_slabel != NULL)
2292 label_rele(zone->zone_slabel);
2293 if (zone->zone_nodename != NULL)
2294 kmem_free(zone->zone_nodename, _SYS_NMLN);
2295 if (zone->zone_domain != NULL)
2296 kmem_free(zone->zone_domain, _SYS_NMLN);
2297 if (zone->zone_privset != NULL)
2298 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2299 if (zone->zone_rctls != NULL)
2300 rctl_set_free(zone->zone_rctls);
2301 if (zone->zone_bootargs != NULL)
2302 strfree(zone->zone_bootargs);
2303 if (zone->zone_initname != NULL)
2304 strfree(zone->zone_initname);
2305 if (zone->zone_fs_allowed != NULL)
2306 strfree(zone->zone_fs_allowed);
2307 if (zone->zone_pfexecd != NULL)
2308 klpd_freelist(&zone->zone_pfexecd);
2309 id_free(zoneid_space, zone->zone_id);
2310 mutex_destroy(&zone->zone_lock);
2311 cv_destroy(&zone->zone_cv);
2312 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2313 rw_destroy(&zone->zone_mntfs_db_lock);
2314 kmem_free(zone, sizeof (zone_t));
2315 }
2316
2317 /*
2318 * See block comment at the top of this file for information about zone
2319 * status values.
2320 */
2321 /*
2322 * Convenience function for setting zone status.
2323 */
2324 static void
zone_status_set(zone_t * zone,zone_status_t status)2325 zone_status_set(zone_t *zone, zone_status_t status)
2326 {
2327
2328 nvlist_t *nvl = NULL;
2329 ASSERT(MUTEX_HELD(&zone_status_lock));
2330 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2331 status >= zone_status_get(zone));
2332
2333 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2334 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2335 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2336 zone_status_table[status]) ||
2337 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2338 zone_status_table[zone->zone_status]) ||
2339 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2340 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2341 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2342 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2343 #ifdef DEBUG
2344 (void) printf(
2345 "Failed to allocate and send zone state change event.\n");
2346 #endif
2347 }
2348 nvlist_free(nvl);
2349
2350 zone->zone_status = status;
2351
2352 cv_broadcast(&zone->zone_cv);
2353 }
2354
2355 /*
2356 * Public function to retrieve the zone status. The zone status may
2357 * change after it is retrieved.
2358 */
2359 zone_status_t
zone_status_get(zone_t * zone)2360 zone_status_get(zone_t *zone)
2361 {
2362 return (zone->zone_status);
2363 }
2364
2365 static int
zone_set_bootargs(zone_t * zone,const char * zone_bootargs)2366 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2367 {
2368 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2369 int err = 0;
2370
2371 ASSERT(zone != global_zone);
2372 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2373 goto done; /* EFAULT or ENAMETOOLONG */
2374
2375 if (zone->zone_bootargs != NULL)
2376 strfree(zone->zone_bootargs);
2377
2378 zone->zone_bootargs = strdup(buf);
2379
2380 done:
2381 kmem_free(buf, BOOTARGS_MAX);
2382 return (err);
2383 }
2384
2385 static int
zone_set_brand(zone_t * zone,const char * brand)2386 zone_set_brand(zone_t *zone, const char *brand)
2387 {
2388 struct brand_attr *attrp;
2389 brand_t *bp;
2390
2391 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2392 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2393 kmem_free(attrp, sizeof (struct brand_attr));
2394 return (EFAULT);
2395 }
2396
2397 bp = brand_register_zone(attrp);
2398 kmem_free(attrp, sizeof (struct brand_attr));
2399 if (bp == NULL)
2400 return (EINVAL);
2401
2402 /*
2403 * This is the only place where a zone can change it's brand.
2404 * We already need to hold zone_status_lock to check the zone
2405 * status, so we'll just use that lock to serialize zone
2406 * branding requests as well.
2407 */
2408 mutex_enter(&zone_status_lock);
2409
2410 /* Re-Branding is not allowed and the zone can't be booted yet */
2411 if ((ZONE_IS_BRANDED(zone)) ||
2412 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2413 mutex_exit(&zone_status_lock);
2414 brand_unregister_zone(bp);
2415 return (EINVAL);
2416 }
2417
2418 /* set up the brand specific data */
2419 zone->zone_brand = bp;
2420 ZBROP(zone)->b_init_brand_data(zone);
2421
2422 mutex_exit(&zone_status_lock);
2423 return (0);
2424 }
2425
2426 static int
zone_set_fs_allowed(zone_t * zone,const char * zone_fs_allowed)2427 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2428 {
2429 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2430 int err = 0;
2431
2432 ASSERT(zone != global_zone);
2433 if ((err = copyinstr(zone_fs_allowed, buf,
2434 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2435 goto done;
2436
2437 if (zone->zone_fs_allowed != NULL)
2438 strfree(zone->zone_fs_allowed);
2439
2440 zone->zone_fs_allowed = strdup(buf);
2441
2442 done:
2443 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2444 return (err);
2445 }
2446
2447 static int
zone_set_initname(zone_t * zone,const char * zone_initname)2448 zone_set_initname(zone_t *zone, const char *zone_initname)
2449 {
2450 char initname[INITNAME_SZ];
2451 size_t len;
2452 int err = 0;
2453
2454 ASSERT(zone != global_zone);
2455 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2456 return (err); /* EFAULT or ENAMETOOLONG */
2457
2458 if (zone->zone_initname != NULL)
2459 strfree(zone->zone_initname);
2460
2461 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2462 (void) strcpy(zone->zone_initname, initname);
2463 return (0);
2464 }
2465
2466 static int
zone_set_phys_mcap(zone_t * zone,const uint64_t * zone_mcap)2467 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2468 {
2469 uint64_t mcap;
2470 int err = 0;
2471
2472 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2473 zone->zone_phys_mcap = mcap;
2474
2475 return (err);
2476 }
2477
2478 static int
zone_set_sched_class(zone_t * zone,const char * new_class)2479 zone_set_sched_class(zone_t *zone, const char *new_class)
2480 {
2481 char sched_class[PC_CLNMSZ];
2482 id_t classid;
2483 int err;
2484
2485 ASSERT(zone != global_zone);
2486 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2487 return (err); /* EFAULT or ENAMETOOLONG */
2488
2489 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2490 return (set_errno(EINVAL));
2491 zone->zone_defaultcid = classid;
2492 ASSERT(zone->zone_defaultcid > 0 &&
2493 zone->zone_defaultcid < loaded_classes);
2494
2495 return (0);
2496 }
2497
2498 /*
2499 * Block indefinitely waiting for (zone_status >= status)
2500 */
2501 void
zone_status_wait(zone_t * zone,zone_status_t status)2502 zone_status_wait(zone_t *zone, zone_status_t status)
2503 {
2504 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2505
2506 mutex_enter(&zone_status_lock);
2507 while (zone->zone_status < status) {
2508 cv_wait(&zone->zone_cv, &zone_status_lock);
2509 }
2510 mutex_exit(&zone_status_lock);
2511 }
2512
2513 /*
2514 * Private CPR-safe version of zone_status_wait().
2515 */
2516 static void
zone_status_wait_cpr(zone_t * zone,zone_status_t status,char * str)2517 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2518 {
2519 callb_cpr_t cprinfo;
2520
2521 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2522
2523 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2524 str);
2525 mutex_enter(&zone_status_lock);
2526 while (zone->zone_status < status) {
2527 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2528 cv_wait(&zone->zone_cv, &zone_status_lock);
2529 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2530 }
2531 /*
2532 * zone_status_lock is implicitly released by the following.
2533 */
2534 CALLB_CPR_EXIT(&cprinfo);
2535 }
2536
2537 /*
2538 * Block until zone enters requested state or signal is received. Return (0)
2539 * if signaled, non-zero otherwise.
2540 */
2541 int
zone_status_wait_sig(zone_t * zone,zone_status_t status)2542 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2543 {
2544 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2545
2546 mutex_enter(&zone_status_lock);
2547 while (zone->zone_status < status) {
2548 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2549 mutex_exit(&zone_status_lock);
2550 return (0);
2551 }
2552 }
2553 mutex_exit(&zone_status_lock);
2554 return (1);
2555 }
2556
2557 /*
2558 * Block until the zone enters the requested state or the timeout expires,
2559 * whichever happens first. Return (-1) if operation timed out, time remaining
2560 * otherwise.
2561 */
2562 clock_t
zone_status_timedwait(zone_t * zone,clock_t tim,zone_status_t status)2563 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2564 {
2565 clock_t timeleft = 0;
2566
2567 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2568
2569 mutex_enter(&zone_status_lock);
2570 while (zone->zone_status < status && timeleft != -1) {
2571 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2572 }
2573 mutex_exit(&zone_status_lock);
2574 return (timeleft);
2575 }
2576
2577 /*
2578 * Block until the zone enters the requested state, the current process is
2579 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2580 * operation timed out, 0 if signaled, time remaining otherwise.
2581 */
2582 clock_t
zone_status_timedwait_sig(zone_t * zone,clock_t tim,zone_status_t status)2583 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2584 {
2585 clock_t timeleft = tim - ddi_get_lbolt();
2586
2587 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2588
2589 mutex_enter(&zone_status_lock);
2590 while (zone->zone_status < status) {
2591 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2592 tim);
2593 if (timeleft <= 0)
2594 break;
2595 }
2596 mutex_exit(&zone_status_lock);
2597 return (timeleft);
2598 }
2599
2600 /*
2601 * Zones have two reference counts: one for references from credential
2602 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2603 * This is so we can allow a zone to be rebooted while there are still
2604 * outstanding cred references, since certain drivers cache dblks (which
2605 * implicitly results in cached creds). We wait for zone_ref to drop to
2606 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2607 * later freed when the zone_cred_ref drops to 0, though nothing other
2608 * than the zone id and privilege set should be accessed once the zone
2609 * is "dead".
2610 *
2611 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2612 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2613 * to 0. This can be useful to flush out other sources of cached creds
2614 * that may be less innocuous than the driver case.
2615 *
2616 * Zones also provide a tracked reference counting mechanism in which zone
2617 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2618 * debuggers determine the sources of leaked zone references. See
2619 * zone_hold_ref() and zone_rele_ref() below for more information.
2620 */
2621
2622 int zone_wait_for_cred = 0;
2623
2624 static void
zone_hold_locked(zone_t * z)2625 zone_hold_locked(zone_t *z)
2626 {
2627 ASSERT(MUTEX_HELD(&z->zone_lock));
2628 z->zone_ref++;
2629 ASSERT(z->zone_ref != 0);
2630 }
2631
2632 /*
2633 * Increment the specified zone's reference count. The zone's zone_t structure
2634 * will not be freed as long as the zone's reference count is nonzero.
2635 * Decrement the zone's reference count via zone_rele().
2636 *
2637 * NOTE: This function should only be used to hold zones for short periods of
2638 * time. Use zone_hold_ref() if the zone must be held for a long time.
2639 */
2640 void
zone_hold(zone_t * z)2641 zone_hold(zone_t *z)
2642 {
2643 mutex_enter(&z->zone_lock);
2644 zone_hold_locked(z);
2645 mutex_exit(&z->zone_lock);
2646 }
2647
2648 /*
2649 * If the non-cred ref count drops to 1 and either the cred ref count
2650 * is 0 or we aren't waiting for cred references, the zone is ready to
2651 * be destroyed.
2652 */
2653 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2654 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2655
2656 /*
2657 * Common zone reference release function invoked by zone_rele() and
2658 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2659 * zone's subsystem-specific reference counters are not affected by the
2660 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2661 * removed from the specified zone's reference list. ref must be non-NULL iff
2662 * subsys is not ZONE_REF_NUM_SUBSYS.
2663 */
2664 static void
zone_rele_common(zone_t * z,zone_ref_t * ref,zone_ref_subsys_t subsys)2665 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2666 {
2667 boolean_t wakeup;
2668
2669 mutex_enter(&z->zone_lock);
2670 ASSERT(z->zone_ref != 0);
2671 z->zone_ref--;
2672 if (subsys != ZONE_REF_NUM_SUBSYS) {
2673 ASSERT(z->zone_subsys_ref[subsys] != 0);
2674 z->zone_subsys_ref[subsys]--;
2675 list_remove(&z->zone_ref_list, ref);
2676 }
2677 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2678 /* no more refs, free the structure */
2679 mutex_exit(&z->zone_lock);
2680 zone_free(z);
2681 return;
2682 }
2683 /* signal zone_destroy so the zone can finish halting */
2684 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2685 mutex_exit(&z->zone_lock);
2686
2687 if (wakeup) {
2688 /*
2689 * Grabbing zonehash_lock here effectively synchronizes with
2690 * zone_destroy() to avoid missed signals.
2691 */
2692 mutex_enter(&zonehash_lock);
2693 cv_broadcast(&zone_destroy_cv);
2694 mutex_exit(&zonehash_lock);
2695 }
2696 }
2697
2698 /*
2699 * Decrement the specified zone's reference count. The specified zone will
2700 * cease to exist after this function returns if the reference count drops to
2701 * zero. This function should be paired with zone_hold().
2702 */
2703 void
zone_rele(zone_t * z)2704 zone_rele(zone_t *z)
2705 {
2706 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2707 }
2708
2709 /*
2710 * Initialize a zone reference structure. This function must be invoked for
2711 * a reference structure before the structure is passed to zone_hold_ref().
2712 */
2713 void
zone_init_ref(zone_ref_t * ref)2714 zone_init_ref(zone_ref_t *ref)
2715 {
2716 ref->zref_zone = NULL;
2717 list_link_init(&ref->zref_linkage);
2718 }
2719
2720 /*
2721 * Acquire a reference to zone z. The caller must specify the
2722 * zone_ref_subsys_t constant associated with its subsystem. The specified
2723 * zone_ref_t structure will represent a reference to the specified zone. Use
2724 * zone_rele_ref() to release the reference.
2725 *
2726 * The referenced zone_t structure will not be freed as long as the zone_t's
2727 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2728 * references.
2729 *
2730 * NOTE: The zone_ref_t structure must be initialized before it is used.
2731 * See zone_init_ref() above.
2732 */
2733 void
zone_hold_ref(zone_t * z,zone_ref_t * ref,zone_ref_subsys_t subsys)2734 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2735 {
2736 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2737
2738 /*
2739 * Prevent consumers from reusing a reference structure before
2740 * releasing it.
2741 */
2742 VERIFY(ref->zref_zone == NULL);
2743
2744 ref->zref_zone = z;
2745 mutex_enter(&z->zone_lock);
2746 zone_hold_locked(z);
2747 z->zone_subsys_ref[subsys]++;
2748 ASSERT(z->zone_subsys_ref[subsys] != 0);
2749 list_insert_head(&z->zone_ref_list, ref);
2750 mutex_exit(&z->zone_lock);
2751 }
2752
2753 /*
2754 * Release the zone reference represented by the specified zone_ref_t.
2755 * The reference is invalid after it's released; however, the zone_ref_t
2756 * structure can be reused without having to invoke zone_init_ref().
2757 * subsys should be the same value that was passed to zone_hold_ref()
2758 * when the reference was acquired.
2759 */
2760 void
zone_rele_ref(zone_ref_t * ref,zone_ref_subsys_t subsys)2761 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2762 {
2763 zone_rele_common(ref->zref_zone, ref, subsys);
2764
2765 /*
2766 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2767 * when consumers dereference the reference. This helps us catch
2768 * consumers who use released references. Furthermore, this lets
2769 * consumers reuse the zone_ref_t structure without having to
2770 * invoke zone_init_ref().
2771 */
2772 ref->zref_zone = NULL;
2773 }
2774
2775 void
zone_cred_hold(zone_t * z)2776 zone_cred_hold(zone_t *z)
2777 {
2778 mutex_enter(&z->zone_lock);
2779 z->zone_cred_ref++;
2780 ASSERT(z->zone_cred_ref != 0);
2781 mutex_exit(&z->zone_lock);
2782 }
2783
2784 void
zone_cred_rele(zone_t * z)2785 zone_cred_rele(zone_t *z)
2786 {
2787 boolean_t wakeup;
2788
2789 mutex_enter(&z->zone_lock);
2790 ASSERT(z->zone_cred_ref != 0);
2791 z->zone_cred_ref--;
2792 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2793 /* no more refs, free the structure */
2794 mutex_exit(&z->zone_lock);
2795 zone_free(z);
2796 return;
2797 }
2798 /*
2799 * If zone_destroy is waiting for the cred references to drain
2800 * out, and they have, signal it.
2801 */
2802 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2803 zone_status_get(z) >= ZONE_IS_DEAD);
2804 mutex_exit(&z->zone_lock);
2805
2806 if (wakeup) {
2807 /*
2808 * Grabbing zonehash_lock here effectively synchronizes with
2809 * zone_destroy() to avoid missed signals.
2810 */
2811 mutex_enter(&zonehash_lock);
2812 cv_broadcast(&zone_destroy_cv);
2813 mutex_exit(&zonehash_lock);
2814 }
2815 }
2816
2817 void
zone_task_hold(zone_t * z)2818 zone_task_hold(zone_t *z)
2819 {
2820 mutex_enter(&z->zone_lock);
2821 z->zone_ntasks++;
2822 ASSERT(z->zone_ntasks != 0);
2823 mutex_exit(&z->zone_lock);
2824 }
2825
2826 void
zone_task_rele(zone_t * zone)2827 zone_task_rele(zone_t *zone)
2828 {
2829 uint_t refcnt;
2830
2831 mutex_enter(&zone->zone_lock);
2832 ASSERT(zone->zone_ntasks != 0);
2833 refcnt = --zone->zone_ntasks;
2834 if (refcnt > 1) { /* Common case */
2835 mutex_exit(&zone->zone_lock);
2836 return;
2837 }
2838 zone_hold_locked(zone); /* so we can use the zone_t later */
2839 mutex_exit(&zone->zone_lock);
2840 if (refcnt == 1) {
2841 /*
2842 * See if the zone is shutting down.
2843 */
2844 mutex_enter(&zone_status_lock);
2845 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2846 goto out;
2847 }
2848
2849 /*
2850 * Make sure the ntasks didn't change since we
2851 * dropped zone_lock.
2852 */
2853 mutex_enter(&zone->zone_lock);
2854 if (refcnt != zone->zone_ntasks) {
2855 mutex_exit(&zone->zone_lock);
2856 goto out;
2857 }
2858 mutex_exit(&zone->zone_lock);
2859
2860 /*
2861 * No more user processes in the zone. The zone is empty.
2862 */
2863 zone_status_set(zone, ZONE_IS_EMPTY);
2864 goto out;
2865 }
2866
2867 ASSERT(refcnt == 0);
2868 /*
2869 * zsched has exited; the zone is dead.
2870 */
2871 zone->zone_zsched = NULL; /* paranoia */
2872 mutex_enter(&zone_status_lock);
2873 zone_status_set(zone, ZONE_IS_DEAD);
2874 out:
2875 mutex_exit(&zone_status_lock);
2876 zone_rele(zone);
2877 }
2878
2879 zoneid_t
getzoneid(void)2880 getzoneid(void)
2881 {
2882 return (curproc->p_zone->zone_id);
2883 }
2884
2885 /*
2886 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2887 * check the validity of a zone's state.
2888 */
2889 static zone_t *
zone_find_all_by_id(zoneid_t zoneid)2890 zone_find_all_by_id(zoneid_t zoneid)
2891 {
2892 mod_hash_val_t hv;
2893 zone_t *zone = NULL;
2894
2895 ASSERT(MUTEX_HELD(&zonehash_lock));
2896
2897 if (mod_hash_find(zonehashbyid,
2898 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2899 zone = (zone_t *)hv;
2900 return (zone);
2901 }
2902
2903 static zone_t *
zone_find_all_by_label(const ts_label_t * label)2904 zone_find_all_by_label(const ts_label_t *label)
2905 {
2906 mod_hash_val_t hv;
2907 zone_t *zone = NULL;
2908
2909 ASSERT(MUTEX_HELD(&zonehash_lock));
2910
2911 /*
2912 * zonehashbylabel is not maintained for unlabeled systems
2913 */
2914 if (!is_system_labeled())
2915 return (NULL);
2916 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2917 zone = (zone_t *)hv;
2918 return (zone);
2919 }
2920
2921 static zone_t *
zone_find_all_by_name(char * name)2922 zone_find_all_by_name(char *name)
2923 {
2924 mod_hash_val_t hv;
2925 zone_t *zone = NULL;
2926
2927 ASSERT(MUTEX_HELD(&zonehash_lock));
2928
2929 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2930 zone = (zone_t *)hv;
2931 return (zone);
2932 }
2933
2934 /*
2935 * Public interface for looking up a zone by zoneid. Only returns the zone if
2936 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2937 * Caller must call zone_rele() once it is done with the zone.
2938 *
2939 * The zone may begin the zone_destroy() sequence immediately after this
2940 * function returns, but may be safely used until zone_rele() is called.
2941 */
2942 zone_t *
zone_find_by_id(zoneid_t zoneid)2943 zone_find_by_id(zoneid_t zoneid)
2944 {
2945 zone_t *zone;
2946 zone_status_t status;
2947
2948 mutex_enter(&zonehash_lock);
2949 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2950 mutex_exit(&zonehash_lock);
2951 return (NULL);
2952 }
2953 status = zone_status_get(zone);
2954 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2955 /*
2956 * For all practical purposes the zone doesn't exist.
2957 */
2958 mutex_exit(&zonehash_lock);
2959 return (NULL);
2960 }
2961 zone_hold(zone);
2962 mutex_exit(&zonehash_lock);
2963 return (zone);
2964 }
2965
2966 /*
2967 * Similar to zone_find_by_id, but using zone label as the key.
2968 */
2969 zone_t *
zone_find_by_label(const ts_label_t * label)2970 zone_find_by_label(const ts_label_t *label)
2971 {
2972 zone_t *zone;
2973 zone_status_t status;
2974
2975 mutex_enter(&zonehash_lock);
2976 if ((zone = zone_find_all_by_label(label)) == NULL) {
2977 mutex_exit(&zonehash_lock);
2978 return (NULL);
2979 }
2980
2981 status = zone_status_get(zone);
2982 if (status > ZONE_IS_DOWN) {
2983 /*
2984 * For all practical purposes the zone doesn't exist.
2985 */
2986 mutex_exit(&zonehash_lock);
2987 return (NULL);
2988 }
2989 zone_hold(zone);
2990 mutex_exit(&zonehash_lock);
2991 return (zone);
2992 }
2993
2994 /*
2995 * Similar to zone_find_by_id, but using zone name as the key.
2996 */
2997 zone_t *
zone_find_by_name(char * name)2998 zone_find_by_name(char *name)
2999 {
3000 zone_t *zone;
3001 zone_status_t status;
3002
3003 mutex_enter(&zonehash_lock);
3004 if ((zone = zone_find_all_by_name(name)) == NULL) {
3005 mutex_exit(&zonehash_lock);
3006 return (NULL);
3007 }
3008 status = zone_status_get(zone);
3009 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3010 /*
3011 * For all practical purposes the zone doesn't exist.
3012 */
3013 mutex_exit(&zonehash_lock);
3014 return (NULL);
3015 }
3016 zone_hold(zone);
3017 mutex_exit(&zonehash_lock);
3018 return (zone);
3019 }
3020
3021 /*
3022 * Similar to zone_find_by_id(), using the path as a key. For instance,
3023 * if there is a zone "foo" rooted at /foo/root, and the path argument
3024 * is "/foo/root/proc", it will return the held zone_t corresponding to
3025 * zone "foo".
3026 *
3027 * zone_find_by_path() always returns a non-NULL value, since at the
3028 * very least every path will be contained in the global zone.
3029 *
3030 * As with the other zone_find_by_*() functions, the caller is
3031 * responsible for zone_rele()ing the return value of this function.
3032 */
3033 zone_t *
zone_find_by_path(const char * path)3034 zone_find_by_path(const char *path)
3035 {
3036 zone_t *zone;
3037 zone_t *zret = NULL;
3038 zone_status_t status;
3039
3040 if (path == NULL) {
3041 /*
3042 * Call from rootconf().
3043 */
3044 zone_hold(global_zone);
3045 return (global_zone);
3046 }
3047 ASSERT(*path == '/');
3048 mutex_enter(&zonehash_lock);
3049 for (zone = list_head(&zone_active); zone != NULL;
3050 zone = list_next(&zone_active, zone)) {
3051 if (ZONE_PATH_VISIBLE(path, zone))
3052 zret = zone;
3053 }
3054 ASSERT(zret != NULL);
3055 status = zone_status_get(zret);
3056 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3057 /*
3058 * Zone practically doesn't exist.
3059 */
3060 zret = global_zone;
3061 }
3062 zone_hold(zret);
3063 mutex_exit(&zonehash_lock);
3064 return (zret);
3065 }
3066
3067 /*
3068 * Public interface for updating per-zone load averages. Called once per
3069 * second.
3070 *
3071 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3072 */
3073 void
zone_loadavg_update()3074 zone_loadavg_update()
3075 {
3076 zone_t *zp;
3077 zone_status_t status;
3078 struct loadavg_s *lavg;
3079 hrtime_t zone_total;
3080 int i;
3081 hrtime_t hr_avg;
3082 int nrun;
3083 static int64_t f[3] = { 135, 27, 9 };
3084 int64_t q, r;
3085
3086 mutex_enter(&zonehash_lock);
3087 for (zp = list_head(&zone_active); zp != NULL;
3088 zp = list_next(&zone_active, zp)) {
3089 mutex_enter(&zp->zone_lock);
3090
3091 /* Skip zones that are on the way down or not yet up */
3092 status = zone_status_get(zp);
3093 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3094 /* For all practical purposes the zone doesn't exist. */
3095 mutex_exit(&zp->zone_lock);
3096 continue;
3097 }
3098
3099 /*
3100 * Update the 10 second moving average data in zone_loadavg.
3101 */
3102 lavg = &zp->zone_loadavg;
3103
3104 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3105 scalehrtime(&zone_total);
3106
3107 /* The zone_total should always be increasing. */
3108 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3109 zone_total - lavg->lg_total : 0;
3110 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3111 /* lg_total holds the prev. 1 sec. total */
3112 lavg->lg_total = zone_total;
3113
3114 /*
3115 * To simplify the calculation, we don't calculate the load avg.
3116 * until the zone has been up for at least 10 seconds and our
3117 * moving average is thus full.
3118 */
3119 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3120 lavg->lg_len++;
3121 mutex_exit(&zp->zone_lock);
3122 continue;
3123 }
3124
3125 /* Now calculate the 1min, 5min, 15 min load avg. */
3126 hr_avg = 0;
3127 for (i = 0; i < S_LOADAVG_SZ; i++)
3128 hr_avg += lavg->lg_loads[i];
3129 hr_avg = hr_avg / S_LOADAVG_SZ;
3130 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3131
3132 /* Compute load avg. See comment in calcloadavg() */
3133 for (i = 0; i < 3; i++) {
3134 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3135 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3136 zp->zone_hp_avenrun[i] +=
3137 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3138
3139 /* avenrun[] can only hold 31 bits of load avg. */
3140 if (zp->zone_hp_avenrun[i] <
3141 ((uint64_t)1<<(31+16-FSHIFT)))
3142 zp->zone_avenrun[i] = (int32_t)
3143 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3144 else
3145 zp->zone_avenrun[i] = 0x7fffffff;
3146 }
3147
3148 mutex_exit(&zp->zone_lock);
3149 }
3150 mutex_exit(&zonehash_lock);
3151 }
3152
3153 /*
3154 * Get the number of cpus visible to this zone. The system-wide global
3155 * 'ncpus' is returned if pools are disabled, the caller is in the
3156 * global zone, or a NULL zone argument is passed in.
3157 */
3158 int
zone_ncpus_get(zone_t * zone)3159 zone_ncpus_get(zone_t *zone)
3160 {
3161 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3162
3163 return (myncpus != 0 ? myncpus : ncpus);
3164 }
3165
3166 /*
3167 * Get the number of online cpus visible to this zone. The system-wide
3168 * global 'ncpus_online' is returned if pools are disabled, the caller
3169 * is in the global zone, or a NULL zone argument is passed in.
3170 */
3171 int
zone_ncpus_online_get(zone_t * zone)3172 zone_ncpus_online_get(zone_t *zone)
3173 {
3174 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3175
3176 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3177 }
3178
3179 /*
3180 * Return the pool to which the zone is currently bound.
3181 */
3182 pool_t *
zone_pool_get(zone_t * zone)3183 zone_pool_get(zone_t *zone)
3184 {
3185 ASSERT(pool_lock_held());
3186
3187 return (zone->zone_pool);
3188 }
3189
3190 /*
3191 * Set the zone's pool pointer and update the zone's visibility to match
3192 * the resources in the new pool.
3193 */
3194 void
zone_pool_set(zone_t * zone,pool_t * pool)3195 zone_pool_set(zone_t *zone, pool_t *pool)
3196 {
3197 ASSERT(pool_lock_held());
3198 ASSERT(MUTEX_HELD(&cpu_lock));
3199
3200 zone->zone_pool = pool;
3201 zone_pset_set(zone, pool->pool_pset->pset_id);
3202 }
3203
3204 /*
3205 * Return the cached value of the id of the processor set to which the
3206 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3207 * facility is disabled.
3208 */
3209 psetid_t
zone_pset_get(zone_t * zone)3210 zone_pset_get(zone_t *zone)
3211 {
3212 ASSERT(MUTEX_HELD(&cpu_lock));
3213
3214 return (zone->zone_psetid);
3215 }
3216
3217 /*
3218 * Set the cached value of the id of the processor set to which the zone
3219 * is currently bound. Also update the zone's visibility to match the
3220 * resources in the new processor set.
3221 */
3222 void
zone_pset_set(zone_t * zone,psetid_t newpsetid)3223 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3224 {
3225 psetid_t oldpsetid;
3226
3227 ASSERT(MUTEX_HELD(&cpu_lock));
3228 oldpsetid = zone_pset_get(zone);
3229
3230 if (oldpsetid == newpsetid)
3231 return;
3232 /*
3233 * Global zone sees all.
3234 */
3235 if (zone != global_zone) {
3236 zone->zone_psetid = newpsetid;
3237 if (newpsetid != ZONE_PS_INVAL)
3238 pool_pset_visibility_add(newpsetid, zone);
3239 if (oldpsetid != ZONE_PS_INVAL)
3240 pool_pset_visibility_remove(oldpsetid, zone);
3241 }
3242 /*
3243 * Disabling pools, so we should start using the global values
3244 * for ncpus and ncpus_online.
3245 */
3246 if (newpsetid == ZONE_PS_INVAL) {
3247 zone->zone_ncpus = 0;
3248 zone->zone_ncpus_online = 0;
3249 }
3250 }
3251
3252 /*
3253 * Walk the list of active zones and issue the provided callback for
3254 * each of them.
3255 *
3256 * Caller must not be holding any locks that may be acquired under
3257 * zonehash_lock. See comment at the beginning of the file for a list of
3258 * common locks and their interactions with zones.
3259 */
3260 int
zone_walk(int (* cb)(zone_t *,void *),void * data)3261 zone_walk(int (*cb)(zone_t *, void *), void *data)
3262 {
3263 zone_t *zone;
3264 int ret = 0;
3265 zone_status_t status;
3266
3267 mutex_enter(&zonehash_lock);
3268 for (zone = list_head(&zone_active); zone != NULL;
3269 zone = list_next(&zone_active, zone)) {
3270 /*
3271 * Skip zones that shouldn't be externally visible.
3272 */
3273 status = zone_status_get(zone);
3274 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3275 continue;
3276 /*
3277 * Bail immediately if any callback invocation returns a
3278 * non-zero value.
3279 */
3280 ret = (*cb)(zone, data);
3281 if (ret != 0)
3282 break;
3283 }
3284 mutex_exit(&zonehash_lock);
3285 return (ret);
3286 }
3287
3288 static int
zone_set_root(zone_t * zone,const char * upath)3289 zone_set_root(zone_t *zone, const char *upath)
3290 {
3291 vnode_t *vp;
3292 int trycount;
3293 int error = 0;
3294 char *path;
3295 struct pathname upn, pn;
3296 size_t pathlen;
3297
3298 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3299 return (error);
3300
3301 pn_alloc(&pn);
3302
3303 /* prevent infinite loop */
3304 trycount = 10;
3305 for (;;) {
3306 if (--trycount <= 0) {
3307 error = ESTALE;
3308 goto out;
3309 }
3310
3311 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3312 /*
3313 * VOP_ACCESS() may cover 'vp' with a new
3314 * filesystem, if 'vp' is an autoFS vnode.
3315 * Get the new 'vp' if so.
3316 */
3317 if ((error =
3318 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3319 (!vn_ismntpt(vp) ||
3320 (error = traverse(&vp)) == 0)) {
3321 pathlen = pn.pn_pathlen + 2;
3322 path = kmem_alloc(pathlen, KM_SLEEP);
3323 (void) strncpy(path, pn.pn_path,
3324 pn.pn_pathlen + 1);
3325 path[pathlen - 2] = '/';
3326 path[pathlen - 1] = '\0';
3327 pn_free(&pn);
3328 pn_free(&upn);
3329
3330 /* Success! */
3331 break;
3332 }
3333 VN_RELE(vp);
3334 }
3335 if (error != ESTALE)
3336 goto out;
3337 }
3338
3339 ASSERT(error == 0);
3340 zone->zone_rootvp = vp; /* we hold a reference to vp */
3341 zone->zone_rootpath = path;
3342 zone->zone_rootpathlen = pathlen;
3343 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3344 zone->zone_flags |= ZF_IS_SCRATCH;
3345 return (0);
3346
3347 out:
3348 pn_free(&pn);
3349 pn_free(&upn);
3350 return (error);
3351 }
3352
3353 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3354 ((c) >= 'a' && (c) <= 'z') || \
3355 ((c) >= 'A' && (c) <= 'Z'))
3356
3357 static int
zone_set_name(zone_t * zone,const char * uname)3358 zone_set_name(zone_t *zone, const char *uname)
3359 {
3360 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3361 size_t len;
3362 int i, err;
3363
3364 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3365 kmem_free(kname, ZONENAME_MAX);
3366 return (err); /* EFAULT or ENAMETOOLONG */
3367 }
3368
3369 /* must be less than ZONENAME_MAX */
3370 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3371 kmem_free(kname, ZONENAME_MAX);
3372 return (EINVAL);
3373 }
3374
3375 /*
3376 * Name must start with an alphanumeric and must contain only
3377 * alphanumerics, '-', '_' and '.'.
3378 */
3379 if (!isalnum(kname[0])) {
3380 kmem_free(kname, ZONENAME_MAX);
3381 return (EINVAL);
3382 }
3383 for (i = 1; i < len - 1; i++) {
3384 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3385 kname[i] != '.') {
3386 kmem_free(kname, ZONENAME_MAX);
3387 return (EINVAL);
3388 }
3389 }
3390
3391 zone->zone_name = kname;
3392 return (0);
3393 }
3394
3395 /*
3396 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3397 * is NULL or it points to a zone with no hostid emulation, then the machine's
3398 * hostid (i.e., the global zone's hostid) is returned. This function returns
3399 * zero if neither the zone nor the host machine (global zone) have hostids. It
3400 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3401 * hostid and the machine's hostid is invalid.
3402 */
3403 uint32_t
zone_get_hostid(zone_t * zonep)3404 zone_get_hostid(zone_t *zonep)
3405 {
3406 unsigned long machine_hostid;
3407
3408 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3409 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3410 return (HW_INVALID_HOSTID);
3411 return ((uint32_t)machine_hostid);
3412 }
3413 return (zonep->zone_hostid);
3414 }
3415
3416 /*
3417 * Similar to thread_create(), but makes sure the thread is in the appropriate
3418 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3419 */
3420 /*ARGSUSED*/
3421 kthread_t *
zthread_create(caddr_t stk,size_t stksize,void (* proc)(),void * arg,size_t len,pri_t pri)3422 zthread_create(
3423 caddr_t stk,
3424 size_t stksize,
3425 void (*proc)(),
3426 void *arg,
3427 size_t len,
3428 pri_t pri)
3429 {
3430 kthread_t *t;
3431 zone_t *zone = curproc->p_zone;
3432 proc_t *pp = zone->zone_zsched;
3433
3434 zone_hold(zone); /* Reference to be dropped when thread exits */
3435
3436 /*
3437 * No-one should be trying to create threads if the zone is shutting
3438 * down and there aren't any kernel threads around. See comment
3439 * in zthread_exit().
3440 */
3441 ASSERT(!(zone->zone_kthreads == NULL &&
3442 zone_status_get(zone) >= ZONE_IS_EMPTY));
3443 /*
3444 * Create a thread, but don't let it run until we've finished setting
3445 * things up.
3446 */
3447 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3448 ASSERT(t->t_forw == NULL);
3449 mutex_enter(&zone_status_lock);
3450 if (zone->zone_kthreads == NULL) {
3451 t->t_forw = t->t_back = t;
3452 } else {
3453 kthread_t *tx = zone->zone_kthreads;
3454
3455 t->t_forw = tx;
3456 t->t_back = tx->t_back;
3457 tx->t_back->t_forw = t;
3458 tx->t_back = t;
3459 }
3460 zone->zone_kthreads = t;
3461 mutex_exit(&zone_status_lock);
3462
3463 mutex_enter(&pp->p_lock);
3464 t->t_proc_flag |= TP_ZTHREAD;
3465 project_rele(t->t_proj);
3466 t->t_proj = project_hold(pp->p_task->tk_proj);
3467
3468 /*
3469 * Setup complete, let it run.
3470 */
3471 thread_lock(t);
3472 t->t_schedflag |= TS_ALLSTART;
3473 setrun_locked(t);
3474 thread_unlock(t);
3475
3476 mutex_exit(&pp->p_lock);
3477
3478 return (t);
3479 }
3480
3481 /*
3482 * Similar to thread_exit(). Must be called by threads created via
3483 * zthread_exit().
3484 */
3485 void
zthread_exit(void)3486 zthread_exit(void)
3487 {
3488 kthread_t *t = curthread;
3489 proc_t *pp = curproc;
3490 zone_t *zone = pp->p_zone;
3491
3492 mutex_enter(&zone_status_lock);
3493
3494 /*
3495 * Reparent to p0
3496 */
3497 kpreempt_disable();
3498 mutex_enter(&pp->p_lock);
3499 t->t_proc_flag &= ~TP_ZTHREAD;
3500 t->t_procp = &p0;
3501 hat_thread_exit(t);
3502 mutex_exit(&pp->p_lock);
3503 kpreempt_enable();
3504
3505 if (t->t_back == t) {
3506 ASSERT(t->t_forw == t);
3507 /*
3508 * If the zone is empty, once the thread count
3509 * goes to zero no further kernel threads can be
3510 * created. This is because if the creator is a process
3511 * in the zone, then it must have exited before the zone
3512 * state could be set to ZONE_IS_EMPTY.
3513 * Otherwise, if the creator is a kernel thread in the
3514 * zone, the thread count is non-zero.
3515 *
3516 * This really means that non-zone kernel threads should
3517 * not create zone kernel threads.
3518 */
3519 zone->zone_kthreads = NULL;
3520 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3521 zone_status_set(zone, ZONE_IS_DOWN);
3522 /*
3523 * Remove any CPU caps on this zone.
3524 */
3525 cpucaps_zone_remove(zone);
3526 }
3527 } else {
3528 t->t_forw->t_back = t->t_back;
3529 t->t_back->t_forw = t->t_forw;
3530 if (zone->zone_kthreads == t)
3531 zone->zone_kthreads = t->t_forw;
3532 }
3533 mutex_exit(&zone_status_lock);
3534 zone_rele(zone);
3535 thread_exit();
3536 /* NOTREACHED */
3537 }
3538
3539 static void
zone_chdir(vnode_t * vp,vnode_t ** vpp,proc_t * pp)3540 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3541 {
3542 vnode_t *oldvp;
3543
3544 /* we're going to hold a reference here to the directory */
3545 VN_HOLD(vp);
3546
3547 /* update abs cwd/root path see c2/audit.c */
3548 if (AU_AUDITING())
3549 audit_chdirec(vp, vpp);
3550
3551 mutex_enter(&pp->p_lock);
3552 oldvp = *vpp;
3553 *vpp = vp;
3554 mutex_exit(&pp->p_lock);
3555 if (oldvp != NULL)
3556 VN_RELE(oldvp);
3557 }
3558
3559 /*
3560 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3561 */
3562 static int
nvlist2rctlval(nvlist_t * nvl,rctl_val_t * rv)3563 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3564 {
3565 nvpair_t *nvp = NULL;
3566 boolean_t priv_set = B_FALSE;
3567 boolean_t limit_set = B_FALSE;
3568 boolean_t action_set = B_FALSE;
3569
3570 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3571 const char *name;
3572 uint64_t ui64;
3573
3574 name = nvpair_name(nvp);
3575 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3576 return (EINVAL);
3577 (void) nvpair_value_uint64(nvp, &ui64);
3578 if (strcmp(name, "privilege") == 0) {
3579 /*
3580 * Currently only privileged values are allowed, but
3581 * this may change in the future.
3582 */
3583 if (ui64 != RCPRIV_PRIVILEGED)
3584 return (EINVAL);
3585 rv->rcv_privilege = ui64;
3586 priv_set = B_TRUE;
3587 } else if (strcmp(name, "limit") == 0) {
3588 rv->rcv_value = ui64;
3589 limit_set = B_TRUE;
3590 } else if (strcmp(name, "action") == 0) {
3591 if (ui64 != RCTL_LOCAL_NOACTION &&
3592 ui64 != RCTL_LOCAL_DENY)
3593 return (EINVAL);
3594 rv->rcv_flagaction = ui64;
3595 action_set = B_TRUE;
3596 } else {
3597 return (EINVAL);
3598 }
3599 }
3600
3601 if (!(priv_set && limit_set && action_set))
3602 return (EINVAL);
3603 rv->rcv_action_signal = 0;
3604 rv->rcv_action_recipient = NULL;
3605 rv->rcv_action_recip_pid = -1;
3606 rv->rcv_firing_time = 0;
3607
3608 return (0);
3609 }
3610
3611 /*
3612 * Non-global zone version of start_init.
3613 */
3614 void
zone_start_init(void)3615 zone_start_init(void)
3616 {
3617 proc_t *p = ttoproc(curthread);
3618 zone_t *z = p->p_zone;
3619
3620 ASSERT(!INGLOBALZONE(curproc));
3621
3622 /*
3623 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3624 * storing just the pid of init is sufficient.
3625 */
3626 z->zone_proc_initpid = p->p_pid;
3627
3628 /*
3629 * We maintain zone_boot_err so that we can return the cause of the
3630 * failure back to the caller of the zone_boot syscall.
3631 */
3632 p->p_zone->zone_boot_err = start_init_common();
3633
3634 /*
3635 * We will prevent booting zones from becoming running zones if the
3636 * global zone is shutting down.
3637 */
3638 mutex_enter(&zone_status_lock);
3639 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3640 ZONE_IS_SHUTTING_DOWN) {
3641 /*
3642 * Make sure we are still in the booting state-- we could have
3643 * raced and already be shutting down, or even further along.
3644 */
3645 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3646 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3647 }
3648 mutex_exit(&zone_status_lock);
3649 /* It's gone bad, dispose of the process */
3650 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3651 mutex_enter(&p->p_lock);
3652 ASSERT(p->p_flag & SEXITLWPS);
3653 lwp_exit();
3654 }
3655 } else {
3656 if (zone_status_get(z) == ZONE_IS_BOOTING)
3657 zone_status_set(z, ZONE_IS_RUNNING);
3658 mutex_exit(&zone_status_lock);
3659 /* cause the process to return to userland. */
3660 lwp_rtt();
3661 }
3662 }
3663
3664 struct zsched_arg {
3665 zone_t *zone;
3666 nvlist_t *nvlist;
3667 };
3668
3669 /*
3670 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3671 * anything to do with scheduling, but rather with the fact that
3672 * per-zone kernel threads are parented to zsched, just like regular
3673 * kernel threads are parented to sched (p0).
3674 *
3675 * zsched is also responsible for launching init for the zone.
3676 */
3677 static void
zsched(void * arg)3678 zsched(void *arg)
3679 {
3680 struct zsched_arg *za = arg;
3681 proc_t *pp = curproc;
3682 proc_t *initp = proc_init;
3683 zone_t *zone = za->zone;
3684 cred_t *cr, *oldcred;
3685 rctl_set_t *set;
3686 rctl_alloc_gp_t *gp;
3687 contract_t *ct = NULL;
3688 task_t *tk, *oldtk;
3689 rctl_entity_p_t e;
3690 kproject_t *pj;
3691
3692 nvlist_t *nvl = za->nvlist;
3693 nvpair_t *nvp = NULL;
3694
3695 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3696 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3697 PTOU(pp)->u_argc = 0;
3698 PTOU(pp)->u_argv = NULL;
3699 PTOU(pp)->u_envp = NULL;
3700 PTOU(pp)->u_commpagep = NULL;
3701 closeall(P_FINFO(pp));
3702
3703 /*
3704 * We are this zone's "zsched" process. As the zone isn't generally
3705 * visible yet we don't need to grab any locks before initializing its
3706 * zone_proc pointer.
3707 */
3708 zone_hold(zone); /* this hold is released by zone_destroy() */
3709 zone->zone_zsched = pp;
3710 mutex_enter(&pp->p_lock);
3711 pp->p_zone = zone;
3712 mutex_exit(&pp->p_lock);
3713
3714 /*
3715 * Disassociate process from its 'parent'; parent ourselves to init
3716 * (pid 1) and change other values as needed.
3717 */
3718 sess_create();
3719
3720 mutex_enter(&pidlock);
3721 proc_detach(pp);
3722 pp->p_ppid = 1;
3723 pp->p_flag |= SZONETOP;
3724 pp->p_ancpid = 1;
3725 pp->p_parent = initp;
3726 pp->p_psibling = NULL;
3727 if (initp->p_child)
3728 initp->p_child->p_psibling = pp;
3729 pp->p_sibling = initp->p_child;
3730 initp->p_child = pp;
3731
3732 /* Decrement what newproc() incremented. */
3733 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3734 /*
3735 * Our credentials are about to become kcred-like, so we don't care
3736 * about the caller's ruid.
3737 */
3738 upcount_inc(crgetruid(kcred), zone->zone_id);
3739 mutex_exit(&pidlock);
3740
3741 /*
3742 * getting out of global zone, so decrement lwp and process counts
3743 */
3744 pj = pp->p_task->tk_proj;
3745 mutex_enter(&global_zone->zone_nlwps_lock);
3746 pj->kpj_nlwps -= pp->p_lwpcnt;
3747 global_zone->zone_nlwps -= pp->p_lwpcnt;
3748 pj->kpj_nprocs--;
3749 global_zone->zone_nprocs--;
3750 mutex_exit(&global_zone->zone_nlwps_lock);
3751
3752 /*
3753 * Decrement locked memory counts on old zone and project.
3754 */
3755 mutex_enter(&global_zone->zone_mem_lock);
3756 global_zone->zone_locked_mem -= pp->p_locked_mem;
3757 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3758 mutex_exit(&global_zone->zone_mem_lock);
3759
3760 /*
3761 * Create and join a new task in project '0' of this zone.
3762 *
3763 * We don't need to call holdlwps() since we know we're the only lwp in
3764 * this process.
3765 *
3766 * task_join() returns with p_lock held.
3767 */
3768 tk = task_create(0, zone);
3769 mutex_enter(&cpu_lock);
3770 oldtk = task_join(tk, 0);
3771
3772 pj = pp->p_task->tk_proj;
3773
3774 mutex_enter(&zone->zone_mem_lock);
3775 zone->zone_locked_mem += pp->p_locked_mem;
3776 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3777 mutex_exit(&zone->zone_mem_lock);
3778
3779 /*
3780 * add lwp and process counts to zsched's zone, and increment
3781 * project's task and process count due to the task created in
3782 * the above task_create.
3783 */
3784 mutex_enter(&zone->zone_nlwps_lock);
3785 pj->kpj_nlwps += pp->p_lwpcnt;
3786 pj->kpj_ntasks += 1;
3787 zone->zone_nlwps += pp->p_lwpcnt;
3788 pj->kpj_nprocs++;
3789 zone->zone_nprocs++;
3790 mutex_exit(&zone->zone_nlwps_lock);
3791
3792 mutex_exit(&curproc->p_lock);
3793 mutex_exit(&cpu_lock);
3794 task_rele(oldtk);
3795
3796 /*
3797 * The process was created by a process in the global zone, hence the
3798 * credentials are wrong. We might as well have kcred-ish credentials.
3799 */
3800 cr = zone->zone_kcred;
3801 crhold(cr);
3802 mutex_enter(&pp->p_crlock);
3803 oldcred = pp->p_cred;
3804 pp->p_cred = cr;
3805 mutex_exit(&pp->p_crlock);
3806 crfree(oldcred);
3807
3808 /*
3809 * Hold credentials again (for thread)
3810 */
3811 crhold(cr);
3812
3813 /*
3814 * p_lwpcnt can't change since this is a kernel process.
3815 */
3816 crset(pp, cr);
3817
3818 /*
3819 * Chroot
3820 */
3821 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3822 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3823
3824 /*
3825 * Initialize zone's rctl set.
3826 */
3827 set = rctl_set_create();
3828 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3829 mutex_enter(&pp->p_lock);
3830 e.rcep_p.zone = zone;
3831 e.rcep_t = RCENTITY_ZONE;
3832 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3833 mutex_exit(&pp->p_lock);
3834 rctl_prealloc_destroy(gp);
3835
3836 /*
3837 * Apply the rctls passed in to zone_create(). This is basically a list
3838 * assignment: all of the old values are removed and the new ones
3839 * inserted. That is, if an empty list is passed in, all values are
3840 * removed.
3841 */
3842 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3843 rctl_dict_entry_t *rde;
3844 rctl_hndl_t hndl;
3845 char *name;
3846 nvlist_t **nvlarray;
3847 uint_t i, nelem;
3848 int error; /* For ASSERT()s */
3849
3850 name = nvpair_name(nvp);
3851 hndl = rctl_hndl_lookup(name);
3852 ASSERT(hndl != -1);
3853 rde = rctl_dict_lookup_hndl(hndl);
3854 ASSERT(rde != NULL);
3855
3856 for (; /* ever */; ) {
3857 rctl_val_t oval;
3858
3859 mutex_enter(&pp->p_lock);
3860 error = rctl_local_get(hndl, NULL, &oval, pp);
3861 mutex_exit(&pp->p_lock);
3862 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3863 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3864 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3865 break;
3866 mutex_enter(&pp->p_lock);
3867 error = rctl_local_delete(hndl, &oval, pp);
3868 mutex_exit(&pp->p_lock);
3869 ASSERT(error == 0);
3870 }
3871 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3872 ASSERT(error == 0);
3873 for (i = 0; i < nelem; i++) {
3874 rctl_val_t *nvalp;
3875
3876 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3877 error = nvlist2rctlval(nvlarray[i], nvalp);
3878 ASSERT(error == 0);
3879 /*
3880 * rctl_local_insert can fail if the value being
3881 * inserted is a duplicate; this is OK.
3882 */
3883 mutex_enter(&pp->p_lock);
3884 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3885 kmem_cache_free(rctl_val_cache, nvalp);
3886 mutex_exit(&pp->p_lock);
3887 }
3888 }
3889 /*
3890 * Tell the world that we're done setting up.
3891 *
3892 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3893 * and atomically set the zone's processor set visibility. Once
3894 * we drop pool_lock() this zone will automatically get updated
3895 * to reflect any future changes to the pools configuration.
3896 *
3897 * Note that after we drop the locks below (zonehash_lock in
3898 * particular) other operations such as a zone_getattr call can
3899 * now proceed and observe the zone. That is the reason for doing a
3900 * state transition to the INITIALIZED state.
3901 */
3902 pool_lock();
3903 mutex_enter(&cpu_lock);
3904 mutex_enter(&zonehash_lock);
3905 zone_uniqid(zone);
3906 zone_zsd_configure(zone);
3907 if (pool_state == POOL_ENABLED)
3908 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3909 mutex_enter(&zone_status_lock);
3910 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3911 zone_status_set(zone, ZONE_IS_INITIALIZED);
3912 mutex_exit(&zone_status_lock);
3913 mutex_exit(&zonehash_lock);
3914 mutex_exit(&cpu_lock);
3915 pool_unlock();
3916
3917 /* Now call the create callback for this key */
3918 zsd_apply_all_keys(zsd_apply_create, zone);
3919
3920 /* The callbacks are complete. Mark ZONE_IS_READY */
3921 mutex_enter(&zone_status_lock);
3922 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3923 zone_status_set(zone, ZONE_IS_READY);
3924 mutex_exit(&zone_status_lock);
3925
3926 /*
3927 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3928 * we launch init, and set the state to running.
3929 */
3930 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3931
3932 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3933 id_t cid;
3934
3935 /*
3936 * Ok, this is a little complicated. We need to grab the
3937 * zone's pool's scheduling class ID; note that by now, we
3938 * are already bound to a pool if we need to be (zoneadmd
3939 * will have done that to us while we're in the READY
3940 * state). *But* the scheduling class for the zone's 'init'
3941 * must be explicitly passed to newproc, which doesn't
3942 * respect pool bindings.
3943 *
3944 * We hold the pool_lock across the call to newproc() to
3945 * close the obvious race: the pool's scheduling class
3946 * could change before we manage to create the LWP with
3947 * classid 'cid'.
3948 */
3949 pool_lock();
3950 if (zone->zone_defaultcid > 0)
3951 cid = zone->zone_defaultcid;
3952 else
3953 cid = pool_get_class(zone->zone_pool);
3954 if (cid == -1)
3955 cid = defaultcid;
3956
3957 /*
3958 * If this fails, zone_boot will ultimately fail. The
3959 * state of the zone will be set to SHUTTING_DOWN-- userland
3960 * will have to tear down the zone, and fail, or try again.
3961 */
3962 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3963 minclsyspri - 1, &ct, 0)) != 0) {
3964 mutex_enter(&zone_status_lock);
3965 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3966 mutex_exit(&zone_status_lock);
3967 } else {
3968 zone->zone_boot_time = gethrestime_sec();
3969 }
3970
3971 pool_unlock();
3972 }
3973
3974 /*
3975 * Wait for zone_destroy() to be called. This is what we spend
3976 * most of our life doing.
3977 */
3978 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3979
3980 if (ct)
3981 /*
3982 * At this point the process contract should be empty.
3983 * (Though if it isn't, it's not the end of the world.)
3984 */
3985 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3986
3987 /*
3988 * Allow kcred to be freed when all referring processes
3989 * (including this one) go away. We can't just do this in
3990 * zone_free because we need to wait for the zone_cred_ref to
3991 * drop to 0 before calling zone_free, and the existence of
3992 * zone_kcred will prevent that. Thus, we call crfree here to
3993 * balance the crdup in zone_create. The crhold calls earlier
3994 * in zsched will be dropped when the thread and process exit.
3995 */
3996 crfree(zone->zone_kcred);
3997 zone->zone_kcred = NULL;
3998
3999 exit(CLD_EXITED, 0);
4000 }
4001
4002 /*
4003 * Helper function to determine if there are any submounts of the
4004 * provided path. Used to make sure the zone doesn't "inherit" any
4005 * mounts from before it is created.
4006 */
4007 static uint_t
zone_mount_count(const char * rootpath)4008 zone_mount_count(const char *rootpath)
4009 {
4010 vfs_t *vfsp;
4011 uint_t count = 0;
4012 size_t rootpathlen = strlen(rootpath);
4013
4014 /*
4015 * Holding zonehash_lock prevents race conditions with
4016 * vfs_list_add()/vfs_list_remove() since we serialize with
4017 * zone_find_by_path().
4018 */
4019 ASSERT(MUTEX_HELD(&zonehash_lock));
4020 /*
4021 * The rootpath must end with a '/'
4022 */
4023 ASSERT(rootpath[rootpathlen - 1] == '/');
4024
4025 /*
4026 * This intentionally does not count the rootpath itself if that
4027 * happens to be a mount point.
4028 */
4029 vfs_list_read_lock();
4030 vfsp = rootvfs;
4031 do {
4032 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4033 rootpathlen) == 0)
4034 count++;
4035 vfsp = vfsp->vfs_next;
4036 } while (vfsp != rootvfs);
4037 vfs_list_unlock();
4038 return (count);
4039 }
4040
4041 /*
4042 * Helper function to make sure that a zone created on 'rootpath'
4043 * wouldn't end up containing other zones' rootpaths.
4044 */
4045 static boolean_t
zone_is_nested(const char * rootpath)4046 zone_is_nested(const char *rootpath)
4047 {
4048 zone_t *zone;
4049 size_t rootpathlen = strlen(rootpath);
4050 size_t len;
4051
4052 ASSERT(MUTEX_HELD(&zonehash_lock));
4053
4054 /*
4055 * zone_set_root() appended '/' and '\0' at the end of rootpath
4056 */
4057 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4058 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4059 return (B_TRUE);
4060
4061 for (zone = list_head(&zone_active); zone != NULL;
4062 zone = list_next(&zone_active, zone)) {
4063 if (zone == global_zone)
4064 continue;
4065 len = strlen(zone->zone_rootpath);
4066 if (strncmp(rootpath, zone->zone_rootpath,
4067 MIN(rootpathlen, len)) == 0)
4068 return (B_TRUE);
4069 }
4070 return (B_FALSE);
4071 }
4072
4073 static int
zone_set_privset(zone_t * zone,const priv_set_t * zone_privs,size_t zone_privssz)4074 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4075 size_t zone_privssz)
4076 {
4077 priv_set_t *privs;
4078
4079 if (zone_privssz < sizeof (priv_set_t))
4080 return (ENOMEM);
4081
4082 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4083
4084 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4085 kmem_free(privs, sizeof (priv_set_t));
4086 return (EFAULT);
4087 }
4088
4089 zone->zone_privset = privs;
4090 return (0);
4091 }
4092
4093 /*
4094 * We make creative use of nvlists to pass in rctls from userland. The list is
4095 * a list of the following structures:
4096 *
4097 * (name = rctl_name, value = nvpair_list_array)
4098 *
4099 * Where each element of the nvpair_list_array is of the form:
4100 *
4101 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4102 * (name = "limit", value = uint64_t),
4103 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4104 */
4105 static int
parse_rctls(caddr_t ubuf,size_t buflen,nvlist_t ** nvlp)4106 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4107 {
4108 nvpair_t *nvp = NULL;
4109 nvlist_t *nvl = NULL;
4110 char *kbuf;
4111 int error;
4112 rctl_val_t rv;
4113
4114 *nvlp = NULL;
4115
4116 if (buflen == 0)
4117 return (0);
4118
4119 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4120 return (ENOMEM);
4121 if (copyin(ubuf, kbuf, buflen)) {
4122 error = EFAULT;
4123 goto out;
4124 }
4125 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4126 /*
4127 * nvl may have been allocated/free'd, but the value set to
4128 * non-NULL, so we reset it here.
4129 */
4130 nvl = NULL;
4131 error = EINVAL;
4132 goto out;
4133 }
4134 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4135 rctl_dict_entry_t *rde;
4136 rctl_hndl_t hndl;
4137 nvlist_t **nvlarray;
4138 uint_t i, nelem;
4139 char *name;
4140
4141 error = EINVAL;
4142 name = nvpair_name(nvp);
4143 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4144 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4145 goto out;
4146 }
4147 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4148 goto out;
4149 }
4150 rde = rctl_dict_lookup_hndl(hndl);
4151 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4152 ASSERT(error == 0);
4153 for (i = 0; i < nelem; i++) {
4154 if (error = nvlist2rctlval(nvlarray[i], &rv))
4155 goto out;
4156 }
4157 if (rctl_invalid_value(rde, &rv)) {
4158 error = EINVAL;
4159 goto out;
4160 }
4161 }
4162 error = 0;
4163 *nvlp = nvl;
4164 out:
4165 kmem_free(kbuf, buflen);
4166 if (error && nvl != NULL)
4167 nvlist_free(nvl);
4168 return (error);
4169 }
4170
4171 int
zone_create_error(int er_error,int er_ext,int * er_out)4172 zone_create_error(int er_error, int er_ext, int *er_out) {
4173 if (er_out != NULL) {
4174 if (copyout(&er_ext, er_out, sizeof (int))) {
4175 return (set_errno(EFAULT));
4176 }
4177 }
4178 return (set_errno(er_error));
4179 }
4180
4181 static int
zone_set_label(zone_t * zone,const bslabel_t * lab,uint32_t doi)4182 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4183 {
4184 ts_label_t *tsl;
4185 bslabel_t blab;
4186
4187 /* Get label from user */
4188 if (copyin(lab, &blab, sizeof (blab)) != 0)
4189 return (EFAULT);
4190 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4191 if (tsl == NULL)
4192 return (ENOMEM);
4193
4194 zone->zone_slabel = tsl;
4195 return (0);
4196 }
4197
4198 /*
4199 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4200 */
4201 static int
parse_zfs(zone_t * zone,caddr_t ubuf,size_t buflen)4202 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4203 {
4204 char *kbuf;
4205 char *dataset, *next;
4206 zone_dataset_t *zd;
4207 size_t len;
4208
4209 if (ubuf == NULL || buflen == 0)
4210 return (0);
4211
4212 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4213 return (ENOMEM);
4214
4215 if (copyin(ubuf, kbuf, buflen) != 0) {
4216 kmem_free(kbuf, buflen);
4217 return (EFAULT);
4218 }
4219
4220 dataset = next = kbuf;
4221 for (;;) {
4222 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4223
4224 next = strchr(dataset, ',');
4225
4226 if (next == NULL)
4227 len = strlen(dataset);
4228 else
4229 len = next - dataset;
4230
4231 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4232 bcopy(dataset, zd->zd_dataset, len);
4233 zd->zd_dataset[len] = '\0';
4234
4235 list_insert_head(&zone->zone_datasets, zd);
4236
4237 if (next == NULL)
4238 break;
4239
4240 dataset = next + 1;
4241 }
4242
4243 kmem_free(kbuf, buflen);
4244 return (0);
4245 }
4246
4247 /*
4248 * System call to create/initialize a new zone named 'zone_name', rooted
4249 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4250 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4251 * with labeling set by 'match', 'doi', and 'label'.
4252 *
4253 * If extended error is non-null, we may use it to return more detailed
4254 * error information.
4255 */
4256 static zoneid_t
zone_create(const char * zone_name,const char * zone_root,const priv_set_t * zone_privs,size_t zone_privssz,caddr_t rctlbuf,size_t rctlbufsz,caddr_t zfsbuf,size_t zfsbufsz,int * extended_error,int match,uint32_t doi,const bslabel_t * label,int flags)4257 zone_create(const char *zone_name, const char *zone_root,
4258 const priv_set_t *zone_privs, size_t zone_privssz,
4259 caddr_t rctlbuf, size_t rctlbufsz,
4260 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4261 int match, uint32_t doi, const bslabel_t *label,
4262 int flags)
4263 {
4264 struct zsched_arg zarg;
4265 nvlist_t *rctls = NULL;
4266 proc_t *pp = curproc;
4267 zone_t *zone, *ztmp;
4268 zoneid_t zoneid;
4269 int error;
4270 int error2 = 0;
4271 char *str;
4272 cred_t *zkcr;
4273 boolean_t insert_label_hash;
4274
4275 if (secpolicy_zone_config(CRED()) != 0)
4276 return (set_errno(EPERM));
4277
4278 /* can't boot zone from within chroot environment */
4279 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4280 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4281 extended_error));
4282
4283 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4284 zoneid = zone->zone_id = id_alloc(zoneid_space);
4285 zone->zone_status = ZONE_IS_UNINITIALIZED;
4286 zone->zone_pool = pool_default;
4287 zone->zone_pool_mod = gethrtime();
4288 zone->zone_psetid = ZONE_PS_INVAL;
4289 zone->zone_ncpus = 0;
4290 zone->zone_ncpus_online = 0;
4291 zone->zone_restart_init = B_TRUE;
4292 zone->zone_brand = &native_brand;
4293 zone->zone_initname = NULL;
4294 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4295 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4296 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4297 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4298 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4299 offsetof(zone_ref_t, zref_linkage));
4300 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4301 offsetof(struct zsd_entry, zsd_linkage));
4302 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4303 offsetof(zone_dataset_t, zd_linkage));
4304 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4305 offsetof(zone_dl_t, zdl_linkage));
4306 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4307 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4308
4309 if (flags & ZCF_NET_EXCL) {
4310 zone->zone_flags |= ZF_NET_EXCL;
4311 }
4312
4313 if ((error = zone_set_name(zone, zone_name)) != 0) {
4314 zone_free(zone);
4315 return (zone_create_error(error, 0, extended_error));
4316 }
4317
4318 if ((error = zone_set_root(zone, zone_root)) != 0) {
4319 zone_free(zone);
4320 return (zone_create_error(error, 0, extended_error));
4321 }
4322 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4323 zone_free(zone);
4324 return (zone_create_error(error, 0, extended_error));
4325 }
4326
4327 /* initialize node name to be the same as zone name */
4328 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4329 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4330 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4331
4332 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4333 zone->zone_domain[0] = '\0';
4334 zone->zone_hostid = HW_INVALID_HOSTID;
4335 zone->zone_shares = 1;
4336 zone->zone_shmmax = 0;
4337 zone->zone_ipc.ipcq_shmmni = 0;
4338 zone->zone_ipc.ipcq_semmni = 0;
4339 zone->zone_ipc.ipcq_msgmni = 0;
4340 zone->zone_bootargs = NULL;
4341 zone->zone_fs_allowed = NULL;
4342 zone->zone_initname =
4343 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4344 (void) strcpy(zone->zone_initname, zone_default_initname);
4345 zone->zone_nlwps = 0;
4346 zone->zone_nlwps_ctl = INT_MAX;
4347 zone->zone_nprocs = 0;
4348 zone->zone_nprocs_ctl = INT_MAX;
4349 zone->zone_locked_mem = 0;
4350 zone->zone_locked_mem_ctl = UINT64_MAX;
4351 zone->zone_max_swap = 0;
4352 zone->zone_max_swap_ctl = UINT64_MAX;
4353 zone->zone_max_lofi = 0;
4354 zone->zone_max_lofi_ctl = UINT64_MAX;
4355 zone0.zone_lockedmem_kstat = NULL;
4356 zone0.zone_swapresv_kstat = NULL;
4357
4358 /*
4359 * Zsched initializes the rctls.
4360 */
4361 zone->zone_rctls = NULL;
4362
4363 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4364 zone_free(zone);
4365 return (zone_create_error(error, 0, extended_error));
4366 }
4367
4368 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4369 zone_free(zone);
4370 return (set_errno(error));
4371 }
4372
4373 /*
4374 * Read in the trusted system parameters:
4375 * match flag and sensitivity label.
4376 */
4377 zone->zone_match = match;
4378 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4379 /* Fail if requested to set doi to anything but system's doi */
4380 if (doi != 0 && doi != default_doi) {
4381 zone_free(zone);
4382 return (set_errno(EINVAL));
4383 }
4384 /* Always apply system's doi to the zone */
4385 error = zone_set_label(zone, label, default_doi);
4386 if (error != 0) {
4387 zone_free(zone);
4388 return (set_errno(error));
4389 }
4390 insert_label_hash = B_TRUE;
4391 } else {
4392 /* all zones get an admin_low label if system is not labeled */
4393 zone->zone_slabel = l_admin_low;
4394 label_hold(l_admin_low);
4395 insert_label_hash = B_FALSE;
4396 }
4397
4398 /*
4399 * Stop all lwps since that's what normally happens as part of fork().
4400 * This needs to happen before we grab any locks to avoid deadlock
4401 * (another lwp in the process could be waiting for the held lock).
4402 */
4403 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4404 zone_free(zone);
4405 nvlist_free(rctls);
4406 return (zone_create_error(error, 0, extended_error));
4407 }
4408
4409 if (block_mounts(zone) == 0) {
4410 mutex_enter(&pp->p_lock);
4411 if (curthread != pp->p_agenttp)
4412 continuelwps(pp);
4413 mutex_exit(&pp->p_lock);
4414 zone_free(zone);
4415 nvlist_free(rctls);
4416 return (zone_create_error(error, 0, extended_error));
4417 }
4418
4419 /*
4420 * Set up credential for kernel access. After this, any errors
4421 * should go through the dance in errout rather than calling
4422 * zone_free directly.
4423 */
4424 zone->zone_kcred = crdup(kcred);
4425 crsetzone(zone->zone_kcred, zone);
4426 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4427 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4428 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4429 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4430
4431 mutex_enter(&zonehash_lock);
4432 /*
4433 * Make sure zone doesn't already exist.
4434 *
4435 * If the system and zone are labeled,
4436 * make sure no other zone exists that has the same label.
4437 */
4438 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4439 (insert_label_hash &&
4440 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4441 zone_status_t status;
4442
4443 status = zone_status_get(ztmp);
4444 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4445 error = EEXIST;
4446 else
4447 error = EBUSY;
4448
4449 if (insert_label_hash)
4450 error2 = ZE_LABELINUSE;
4451
4452 goto errout;
4453 }
4454
4455 /*
4456 * Don't allow zone creations which would cause one zone's rootpath to
4457 * be accessible from that of another (non-global) zone.
4458 */
4459 if (zone_is_nested(zone->zone_rootpath)) {
4460 error = EBUSY;
4461 goto errout;
4462 }
4463
4464 ASSERT(zonecount != 0); /* check for leaks */
4465 if (zonecount + 1 > maxzones) {
4466 error = ENOMEM;
4467 goto errout;
4468 }
4469
4470 if (zone_mount_count(zone->zone_rootpath) != 0) {
4471 error = EBUSY;
4472 error2 = ZE_AREMOUNTS;
4473 goto errout;
4474 }
4475
4476 /*
4477 * Zone is still incomplete, but we need to drop all locks while
4478 * zsched() initializes this zone's kernel process. We
4479 * optimistically add the zone to the hashtable and associated
4480 * lists so a parallel zone_create() doesn't try to create the
4481 * same zone.
4482 */
4483 zonecount++;
4484 (void) mod_hash_insert(zonehashbyid,
4485 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4486 (mod_hash_val_t)(uintptr_t)zone);
4487 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4488 (void) strcpy(str, zone->zone_name);
4489 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4490 (mod_hash_val_t)(uintptr_t)zone);
4491 if (insert_label_hash) {
4492 (void) mod_hash_insert(zonehashbylabel,
4493 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4494 zone->zone_flags |= ZF_HASHED_LABEL;
4495 }
4496
4497 /*
4498 * Insert into active list. At this point there are no 'hold's
4499 * on the zone, but everyone else knows not to use it, so we can
4500 * continue to use it. zsched() will do a zone_hold() if the
4501 * newproc() is successful.
4502 */
4503 list_insert_tail(&zone_active, zone);
4504 mutex_exit(&zonehash_lock);
4505
4506 zarg.zone = zone;
4507 zarg.nvlist = rctls;
4508 /*
4509 * The process, task, and project rctls are probably wrong;
4510 * we need an interface to get the default values of all rctls,
4511 * and initialize zsched appropriately. I'm not sure that that
4512 * makes much of a difference, though.
4513 */
4514 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4515 if (error != 0) {
4516 /*
4517 * We need to undo all globally visible state.
4518 */
4519 mutex_enter(&zonehash_lock);
4520 list_remove(&zone_active, zone);
4521 if (zone->zone_flags & ZF_HASHED_LABEL) {
4522 ASSERT(zone->zone_slabel != NULL);
4523 (void) mod_hash_destroy(zonehashbylabel,
4524 (mod_hash_key_t)zone->zone_slabel);
4525 }
4526 (void) mod_hash_destroy(zonehashbyname,
4527 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4528 (void) mod_hash_destroy(zonehashbyid,
4529 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4530 ASSERT(zonecount > 1);
4531 zonecount--;
4532 goto errout;
4533 }
4534
4535 /*
4536 * Zone creation can't fail from now on.
4537 */
4538
4539 /*
4540 * Create zone kstats
4541 */
4542 zone_kstat_create(zone);
4543
4544 /*
4545 * Let the other lwps continue.
4546 */
4547 mutex_enter(&pp->p_lock);
4548 if (curthread != pp->p_agenttp)
4549 continuelwps(pp);
4550 mutex_exit(&pp->p_lock);
4551
4552 /*
4553 * Wait for zsched to finish initializing the zone.
4554 */
4555 zone_status_wait(zone, ZONE_IS_READY);
4556 /*
4557 * The zone is fully visible, so we can let mounts progress.
4558 */
4559 resume_mounts(zone);
4560 nvlist_free(rctls);
4561
4562 return (zoneid);
4563
4564 errout:
4565 mutex_exit(&zonehash_lock);
4566 /*
4567 * Let the other lwps continue.
4568 */
4569 mutex_enter(&pp->p_lock);
4570 if (curthread != pp->p_agenttp)
4571 continuelwps(pp);
4572 mutex_exit(&pp->p_lock);
4573
4574 resume_mounts(zone);
4575 nvlist_free(rctls);
4576 /*
4577 * There is currently one reference to the zone, a cred_ref from
4578 * zone_kcred. To free the zone, we call crfree, which will call
4579 * zone_cred_rele, which will call zone_free.
4580 */
4581 ASSERT(zone->zone_cred_ref == 1);
4582 ASSERT(zone->zone_kcred->cr_ref == 1);
4583 ASSERT(zone->zone_ref == 0);
4584 zkcr = zone->zone_kcred;
4585 zone->zone_kcred = NULL;
4586 crfree(zkcr); /* triggers call to zone_free */
4587 return (zone_create_error(error, error2, extended_error));
4588 }
4589
4590 /*
4591 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4592 * the heavy lifting. initname is the path to the program to launch
4593 * at the "top" of the zone; if this is NULL, we use the system default,
4594 * which is stored at zone_default_initname.
4595 */
4596 static int
zone_boot(zoneid_t zoneid)4597 zone_boot(zoneid_t zoneid)
4598 {
4599 int err;
4600 zone_t *zone;
4601
4602 if (secpolicy_zone_config(CRED()) != 0)
4603 return (set_errno(EPERM));
4604 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4605 return (set_errno(EINVAL));
4606
4607 mutex_enter(&zonehash_lock);
4608 /*
4609 * Look for zone under hash lock to prevent races with calls to
4610 * zone_shutdown, zone_destroy, etc.
4611 */
4612 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4613 mutex_exit(&zonehash_lock);
4614 return (set_errno(EINVAL));
4615 }
4616
4617 mutex_enter(&zone_status_lock);
4618 if (zone_status_get(zone) != ZONE_IS_READY) {
4619 mutex_exit(&zone_status_lock);
4620 mutex_exit(&zonehash_lock);
4621 return (set_errno(EINVAL));
4622 }
4623 zone_status_set(zone, ZONE_IS_BOOTING);
4624 mutex_exit(&zone_status_lock);
4625
4626 zone_hold(zone); /* so we can use the zone_t later */
4627 mutex_exit(&zonehash_lock);
4628
4629 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4630 zone_rele(zone);
4631 return (set_errno(EINTR));
4632 }
4633
4634 /*
4635 * Boot (starting init) might have failed, in which case the zone
4636 * will go to the SHUTTING_DOWN state; an appropriate errno will
4637 * be placed in zone->zone_boot_err, and so we return that.
4638 */
4639 err = zone->zone_boot_err;
4640 zone_rele(zone);
4641 return (err ? set_errno(err) : 0);
4642 }
4643
4644 /*
4645 * Kills all user processes in the zone, waiting for them all to exit
4646 * before returning.
4647 */
4648 static int
zone_empty(zone_t * zone)4649 zone_empty(zone_t *zone)
4650 {
4651 int waitstatus;
4652
4653 /*
4654 * We need to drop zonehash_lock before killing all
4655 * processes, otherwise we'll deadlock with zone_find_*
4656 * which can be called from the exit path.
4657 */
4658 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4659 while ((waitstatus = zone_status_timedwait_sig(zone,
4660 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4661 killall(zone->zone_id);
4662 }
4663 /*
4664 * return EINTR if we were signaled
4665 */
4666 if (waitstatus == 0)
4667 return (EINTR);
4668 return (0);
4669 }
4670
4671 /*
4672 * This function implements the policy for zone visibility.
4673 *
4674 * In standard Solaris, a non-global zone can only see itself.
4675 *
4676 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4677 * it dominates. For this test, the label of the global zone is treated as
4678 * admin_high so it is special-cased instead of being checked for dominance.
4679 *
4680 * Returns true if zone attributes are viewable, false otherwise.
4681 */
4682 static boolean_t
zone_list_access(zone_t * zone)4683 zone_list_access(zone_t *zone)
4684 {
4685
4686 if (curproc->p_zone == global_zone ||
4687 curproc->p_zone == zone) {
4688 return (B_TRUE);
4689 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4690 bslabel_t *curproc_label;
4691 bslabel_t *zone_label;
4692
4693 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4694 zone_label = label2bslabel(zone->zone_slabel);
4695
4696 if (zone->zone_id != GLOBAL_ZONEID &&
4697 bldominates(curproc_label, zone_label)) {
4698 return (B_TRUE);
4699 } else {
4700 return (B_FALSE);
4701 }
4702 } else {
4703 return (B_FALSE);
4704 }
4705 }
4706
4707 /*
4708 * Systemcall to start the zone's halt sequence. By the time this
4709 * function successfully returns, all user processes and kernel threads
4710 * executing in it will have exited, ZSD shutdown callbacks executed,
4711 * and the zone status set to ZONE_IS_DOWN.
4712 *
4713 * It is possible that the call will interrupt itself if the caller is the
4714 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4715 */
4716 static int
zone_shutdown(zoneid_t zoneid)4717 zone_shutdown(zoneid_t zoneid)
4718 {
4719 int error;
4720 zone_t *zone;
4721 zone_status_t status;
4722
4723 if (secpolicy_zone_config(CRED()) != 0)
4724 return (set_errno(EPERM));
4725 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4726 return (set_errno(EINVAL));
4727
4728 mutex_enter(&zonehash_lock);
4729 /*
4730 * Look for zone under hash lock to prevent races with other
4731 * calls to zone_shutdown and zone_destroy.
4732 */
4733 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4734 mutex_exit(&zonehash_lock);
4735 return (set_errno(EINVAL));
4736 }
4737
4738 /*
4739 * We have to drop zonehash_lock before calling block_mounts.
4740 * Hold the zone so we can continue to use the zone_t.
4741 */
4742 zone_hold(zone);
4743 mutex_exit(&zonehash_lock);
4744
4745 /*
4746 * Block mounts so that VFS_MOUNT() can get an accurate view of
4747 * the zone's status with regards to ZONE_IS_SHUTTING down.
4748 *
4749 * e.g. NFS can fail the mount if it determines that the zone
4750 * has already begun the shutdown sequence.
4751 *
4752 */
4753 if (block_mounts(zone) == 0) {
4754 zone_rele(zone);
4755 return (set_errno(EINTR));
4756 }
4757
4758 mutex_enter(&zonehash_lock);
4759 mutex_enter(&zone_status_lock);
4760 status = zone_status_get(zone);
4761 /*
4762 * Fail if the zone isn't fully initialized yet.
4763 */
4764 if (status < ZONE_IS_READY) {
4765 mutex_exit(&zone_status_lock);
4766 mutex_exit(&zonehash_lock);
4767 resume_mounts(zone);
4768 zone_rele(zone);
4769 return (set_errno(EINVAL));
4770 }
4771 /*
4772 * If conditions required for zone_shutdown() to return have been met,
4773 * return success.
4774 */
4775 if (status >= ZONE_IS_DOWN) {
4776 mutex_exit(&zone_status_lock);
4777 mutex_exit(&zonehash_lock);
4778 resume_mounts(zone);
4779 zone_rele(zone);
4780 return (0);
4781 }
4782 /*
4783 * If zone_shutdown() hasn't been called before, go through the motions.
4784 * If it has, there's nothing to do but wait for the kernel threads to
4785 * drain.
4786 */
4787 if (status < ZONE_IS_EMPTY) {
4788 uint_t ntasks;
4789
4790 mutex_enter(&zone->zone_lock);
4791 if ((ntasks = zone->zone_ntasks) != 1) {
4792 /*
4793 * There's still stuff running.
4794 */
4795 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4796 }
4797 mutex_exit(&zone->zone_lock);
4798 if (ntasks == 1) {
4799 /*
4800 * The only way to create another task is through
4801 * zone_enter(), which will block until we drop
4802 * zonehash_lock. The zone is empty.
4803 */
4804 if (zone->zone_kthreads == NULL) {
4805 /*
4806 * Skip ahead to ZONE_IS_DOWN
4807 */
4808 zone_status_set(zone, ZONE_IS_DOWN);
4809 } else {
4810 zone_status_set(zone, ZONE_IS_EMPTY);
4811 }
4812 }
4813 }
4814 mutex_exit(&zone_status_lock);
4815 mutex_exit(&zonehash_lock);
4816 resume_mounts(zone);
4817
4818 if (error = zone_empty(zone)) {
4819 zone_rele(zone);
4820 return (set_errno(error));
4821 }
4822 /*
4823 * After the zone status goes to ZONE_IS_DOWN this zone will no
4824 * longer be notified of changes to the pools configuration, so
4825 * in order to not end up with a stale pool pointer, we point
4826 * ourselves at the default pool and remove all resource
4827 * visibility. This is especially important as the zone_t may
4828 * languish on the deathrow for a very long time waiting for
4829 * cred's to drain out.
4830 *
4831 * This rebinding of the zone can happen multiple times
4832 * (presumably due to interrupted or parallel systemcalls)
4833 * without any adverse effects.
4834 */
4835 if (pool_lock_intr() != 0) {
4836 zone_rele(zone);
4837 return (set_errno(EINTR));
4838 }
4839 if (pool_state == POOL_ENABLED) {
4840 mutex_enter(&cpu_lock);
4841 zone_pool_set(zone, pool_default);
4842 /*
4843 * The zone no longer needs to be able to see any cpus.
4844 */
4845 zone_pset_set(zone, ZONE_PS_INVAL);
4846 mutex_exit(&cpu_lock);
4847 }
4848 pool_unlock();
4849
4850 /*
4851 * ZSD shutdown callbacks can be executed multiple times, hence
4852 * it is safe to not be holding any locks across this call.
4853 */
4854 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4855
4856 mutex_enter(&zone_status_lock);
4857 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4858 zone_status_set(zone, ZONE_IS_DOWN);
4859 mutex_exit(&zone_status_lock);
4860
4861 /*
4862 * Wait for kernel threads to drain.
4863 */
4864 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4865 zone_rele(zone);
4866 return (set_errno(EINTR));
4867 }
4868
4869 /*
4870 * Zone can be become down/destroyable even if the above wait
4871 * returns EINTR, so any code added here may never execute.
4872 * (i.e. don't add code here)
4873 */
4874
4875 zone_rele(zone);
4876 return (0);
4877 }
4878
4879 /*
4880 * Log the specified zone's reference counts. The caller should not be
4881 * holding the zone's zone_lock.
4882 */
4883 static void
zone_log_refcounts(zone_t * zone)4884 zone_log_refcounts(zone_t *zone)
4885 {
4886 char *buffer;
4887 char *buffer_position;
4888 uint32_t buffer_size;
4889 uint32_t index;
4890 uint_t ref;
4891 uint_t cred_ref;
4892
4893 /*
4894 * Construct a string representing the subsystem-specific reference
4895 * counts. The counts are printed in ascending order by index into the
4896 * zone_t::zone_subsys_ref array. The list will be surrounded by
4897 * square brackets [] and will only contain nonzero reference counts.
4898 *
4899 * The buffer will hold two square bracket characters plus ten digits,
4900 * one colon, one space, one comma, and some characters for a
4901 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4902 * bit integers have at most ten decimal digits.) The last
4903 * reference count's comma is replaced by the closing square
4904 * bracket and a NULL character to terminate the string.
4905 *
4906 * NOTE: We have to grab the zone's zone_lock to create a consistent
4907 * snapshot of the zone's reference counters.
4908 *
4909 * First, figure out how much space the string buffer will need.
4910 * The buffer's size is stored in buffer_size.
4911 */
4912 buffer_size = 2; /* for the square brackets */
4913 mutex_enter(&zone->zone_lock);
4914 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4915 ref = zone->zone_ref;
4916 cred_ref = zone->zone_cred_ref;
4917 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4918 if (zone->zone_subsys_ref[index] != 0)
4919 buffer_size += strlen(zone_ref_subsys_names[index]) +
4920 13;
4921 if (buffer_size == 2) {
4922 /*
4923 * No subsystems had nonzero reference counts. Don't bother
4924 * with allocating a buffer; just log the general-purpose and
4925 * credential reference counts.
4926 */
4927 mutex_exit(&zone->zone_lock);
4928 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4929 "Zone '%s' (ID: %d) is shutting down, but %u zone "
4930 "references and %u credential references are still extant",
4931 zone->zone_name, zone->zone_id, ref, cred_ref);
4932 return;
4933 }
4934
4935 /*
4936 * buffer_size contains the exact number of characters that the
4937 * buffer will need. Allocate the buffer and fill it with nonzero
4938 * subsystem-specific reference counts. Surround the results with
4939 * square brackets afterwards.
4940 */
4941 buffer = kmem_alloc(buffer_size, KM_SLEEP);
4942 buffer_position = &buffer[1];
4943 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4944 /*
4945 * NOTE: The DDI's version of sprintf() returns a pointer to
4946 * the modified buffer rather than the number of bytes written
4947 * (as in snprintf(3C)). This is unfortunate and annoying.
4948 * Therefore, we'll use snprintf() with INT_MAX to get the
4949 * number of bytes written. Using INT_MAX is safe because
4950 * the buffer is perfectly sized for the data: we'll never
4951 * overrun the buffer.
4952 */
4953 if (zone->zone_subsys_ref[index] != 0)
4954 buffer_position += snprintf(buffer_position, INT_MAX,
4955 "%s: %u,", zone_ref_subsys_names[index],
4956 zone->zone_subsys_ref[index]);
4957 }
4958 mutex_exit(&zone->zone_lock);
4959 buffer[0] = '[';
4960 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4961 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4962 buffer_position[-1] = ']';
4963
4964 /*
4965 * Log the reference counts and free the message buffer.
4966 */
4967 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4968 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4969 "%u credential references are still extant %s", zone->zone_name,
4970 zone->zone_id, ref, cred_ref, buffer);
4971 kmem_free(buffer, buffer_size);
4972 }
4973
4974 /*
4975 * Systemcall entry point to finalize the zone halt process. The caller
4976 * must have already successfully called zone_shutdown().
4977 *
4978 * Upon successful completion, the zone will have been fully destroyed:
4979 * zsched will have exited, destructor callbacks executed, and the zone
4980 * removed from the list of active zones.
4981 */
4982 static int
zone_destroy(zoneid_t zoneid)4983 zone_destroy(zoneid_t zoneid)
4984 {
4985 uint64_t uniqid;
4986 zone_t *zone;
4987 zone_status_t status;
4988 clock_t wait_time;
4989 boolean_t log_refcounts;
4990
4991 if (secpolicy_zone_config(CRED()) != 0)
4992 return (set_errno(EPERM));
4993 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4994 return (set_errno(EINVAL));
4995
4996 mutex_enter(&zonehash_lock);
4997 /*
4998 * Look for zone under hash lock to prevent races with other
4999 * calls to zone_destroy.
5000 */
5001 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5002 mutex_exit(&zonehash_lock);
5003 return (set_errno(EINVAL));
5004 }
5005
5006 if (zone_mount_count(zone->zone_rootpath) != 0) {
5007 mutex_exit(&zonehash_lock);
5008 return (set_errno(EBUSY));
5009 }
5010 mutex_enter(&zone_status_lock);
5011 status = zone_status_get(zone);
5012 if (status < ZONE_IS_DOWN) {
5013 mutex_exit(&zone_status_lock);
5014 mutex_exit(&zonehash_lock);
5015 return (set_errno(EBUSY));
5016 } else if (status == ZONE_IS_DOWN) {
5017 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5018 }
5019 mutex_exit(&zone_status_lock);
5020 zone_hold(zone);
5021 mutex_exit(&zonehash_lock);
5022
5023 /*
5024 * wait for zsched to exit
5025 */
5026 zone_status_wait(zone, ZONE_IS_DEAD);
5027 zone_zsd_callbacks(zone, ZSD_DESTROY);
5028 zone->zone_netstack = NULL;
5029 uniqid = zone->zone_uniqid;
5030 zone_rele(zone);
5031 zone = NULL; /* potentially free'd */
5032
5033 log_refcounts = B_FALSE;
5034 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5035 mutex_enter(&zonehash_lock);
5036 for (; /* ever */; ) {
5037 boolean_t unref;
5038 boolean_t refs_have_been_logged;
5039
5040 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5041 zone->zone_uniqid != uniqid) {
5042 /*
5043 * The zone has gone away. Necessary conditions
5044 * are met, so we return success.
5045 */
5046 mutex_exit(&zonehash_lock);
5047 return (0);
5048 }
5049 mutex_enter(&zone->zone_lock);
5050 unref = ZONE_IS_UNREF(zone);
5051 refs_have_been_logged = (zone->zone_flags &
5052 ZF_REFCOUNTS_LOGGED);
5053 mutex_exit(&zone->zone_lock);
5054 if (unref) {
5055 /*
5056 * There is only one reference to the zone -- that
5057 * added when the zone was added to the hashtables --
5058 * and things will remain this way until we drop
5059 * zonehash_lock... we can go ahead and cleanup the
5060 * zone.
5061 */
5062 break;
5063 }
5064
5065 /*
5066 * Wait for zone_rele_common() or zone_cred_rele() to signal
5067 * zone_destroy_cv. zone_destroy_cv is signaled only when
5068 * some zone's general-purpose reference count reaches one.
5069 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5070 * on zone_destroy_cv, then log the zone's reference counts and
5071 * continue to wait for zone_rele() and zone_cred_rele().
5072 */
5073 if (!refs_have_been_logged) {
5074 if (!log_refcounts) {
5075 /*
5076 * This thread hasn't timed out waiting on
5077 * zone_destroy_cv yet. Wait wait_time clock
5078 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5079 * seconds) for the zone's references to clear.
5080 */
5081 ASSERT(wait_time > 0);
5082 wait_time = cv_reltimedwait_sig(
5083 &zone_destroy_cv, &zonehash_lock, wait_time,
5084 TR_SEC);
5085 if (wait_time > 0) {
5086 /*
5087 * A thread in zone_rele() or
5088 * zone_cred_rele() signaled
5089 * zone_destroy_cv before this thread's
5090 * wait timed out. The zone might have
5091 * only one reference left; find out!
5092 */
5093 continue;
5094 } else if (wait_time == 0) {
5095 /* The thread's process was signaled. */
5096 mutex_exit(&zonehash_lock);
5097 return (set_errno(EINTR));
5098 }
5099
5100 /*
5101 * The thread timed out while waiting on
5102 * zone_destroy_cv. Even though the thread
5103 * timed out, it has to check whether another
5104 * thread woke up from zone_destroy_cv and
5105 * destroyed the zone.
5106 *
5107 * If the zone still exists and has more than
5108 * one unreleased general-purpose reference,
5109 * then log the zone's reference counts.
5110 */
5111 log_refcounts = B_TRUE;
5112 continue;
5113 }
5114
5115 /*
5116 * The thread already timed out on zone_destroy_cv while
5117 * waiting for subsystems to release the zone's last
5118 * general-purpose references. Log the zone's reference
5119 * counts and wait indefinitely on zone_destroy_cv.
5120 */
5121 zone_log_refcounts(zone);
5122 }
5123 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5124 /* The thread's process was signaled. */
5125 mutex_exit(&zonehash_lock);
5126 return (set_errno(EINTR));
5127 }
5128 }
5129
5130 /*
5131 * Remove CPU cap for this zone now since we're not going to
5132 * fail below this point.
5133 */
5134 cpucaps_zone_remove(zone);
5135
5136 /* Get rid of the zone's kstats */
5137 zone_kstat_delete(zone);
5138
5139 /* remove the pfexecd doors */
5140 if (zone->zone_pfexecd != NULL) {
5141 klpd_freelist(&zone->zone_pfexecd);
5142 zone->zone_pfexecd = NULL;
5143 }
5144
5145 /* free brand specific data */
5146 if (ZONE_IS_BRANDED(zone))
5147 ZBROP(zone)->b_free_brand_data(zone);
5148
5149 /* Say goodbye to brand framework. */
5150 brand_unregister_zone(zone->zone_brand);
5151
5152 /*
5153 * It is now safe to let the zone be recreated; remove it from the
5154 * lists. The memory will not be freed until the last cred
5155 * reference goes away.
5156 */
5157 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5158 zonecount--;
5159 /* remove from active list and hash tables */
5160 list_remove(&zone_active, zone);
5161 (void) mod_hash_destroy(zonehashbyname,
5162 (mod_hash_key_t)zone->zone_name);
5163 (void) mod_hash_destroy(zonehashbyid,
5164 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5165 if (zone->zone_flags & ZF_HASHED_LABEL)
5166 (void) mod_hash_destroy(zonehashbylabel,
5167 (mod_hash_key_t)zone->zone_slabel);
5168 mutex_exit(&zonehash_lock);
5169
5170 /*
5171 * Release the root vnode; we're not using it anymore. Nor should any
5172 * other thread that might access it exist.
5173 */
5174 if (zone->zone_rootvp != NULL) {
5175 VN_RELE(zone->zone_rootvp);
5176 zone->zone_rootvp = NULL;
5177 }
5178
5179 /* add to deathrow list */
5180 mutex_enter(&zone_deathrow_lock);
5181 list_insert_tail(&zone_deathrow, zone);
5182 mutex_exit(&zone_deathrow_lock);
5183
5184 /*
5185 * Drop last reference (which was added by zsched()), this will
5186 * free the zone unless there are outstanding cred references.
5187 */
5188 zone_rele(zone);
5189 return (0);
5190 }
5191
5192 /*
5193 * Systemcall entry point for zone_getattr(2).
5194 */
5195 static ssize_t
zone_getattr(zoneid_t zoneid,int attr,void * buf,size_t bufsize)5196 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5197 {
5198 size_t size;
5199 int error = 0, err;
5200 zone_t *zone;
5201 char *zonepath;
5202 char *outstr;
5203 zone_status_t zone_status;
5204 pid_t initpid;
5205 boolean_t global = (curzone == global_zone);
5206 boolean_t inzone = (curzone->zone_id == zoneid);
5207 ushort_t flags;
5208 zone_net_data_t *zbuf;
5209
5210 mutex_enter(&zonehash_lock);
5211 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5212 mutex_exit(&zonehash_lock);
5213 return (set_errno(EINVAL));
5214 }
5215 zone_status = zone_status_get(zone);
5216 if (zone_status < ZONE_IS_INITIALIZED) {
5217 mutex_exit(&zonehash_lock);
5218 return (set_errno(EINVAL));
5219 }
5220 zone_hold(zone);
5221 mutex_exit(&zonehash_lock);
5222
5223 /*
5224 * If not in the global zone, don't show information about other zones,
5225 * unless the system is labeled and the local zone's label dominates
5226 * the other zone.
5227 */
5228 if (!zone_list_access(zone)) {
5229 zone_rele(zone);
5230 return (set_errno(EINVAL));
5231 }
5232
5233 switch (attr) {
5234 case ZONE_ATTR_ROOT:
5235 if (global) {
5236 /*
5237 * Copy the path to trim the trailing "/" (except for
5238 * the global zone).
5239 */
5240 if (zone != global_zone)
5241 size = zone->zone_rootpathlen - 1;
5242 else
5243 size = zone->zone_rootpathlen;
5244 zonepath = kmem_alloc(size, KM_SLEEP);
5245 bcopy(zone->zone_rootpath, zonepath, size);
5246 zonepath[size - 1] = '\0';
5247 } else {
5248 if (inzone || !is_system_labeled()) {
5249 /*
5250 * Caller is not in the global zone.
5251 * if the query is on the current zone
5252 * or the system is not labeled,
5253 * just return faked-up path for current zone.
5254 */
5255 zonepath = "/";
5256 size = 2;
5257 } else {
5258 /*
5259 * Return related path for current zone.
5260 */
5261 int prefix_len = strlen(zone_prefix);
5262 int zname_len = strlen(zone->zone_name);
5263
5264 size = prefix_len + zname_len + 1;
5265 zonepath = kmem_alloc(size, KM_SLEEP);
5266 bcopy(zone_prefix, zonepath, prefix_len);
5267 bcopy(zone->zone_name, zonepath +
5268 prefix_len, zname_len);
5269 zonepath[size - 1] = '\0';
5270 }
5271 }
5272 if (bufsize > size)
5273 bufsize = size;
5274 if (buf != NULL) {
5275 err = copyoutstr(zonepath, buf, bufsize, NULL);
5276 if (err != 0 && err != ENAMETOOLONG)
5277 error = EFAULT;
5278 }
5279 if (global || (is_system_labeled() && !inzone))
5280 kmem_free(zonepath, size);
5281 break;
5282
5283 case ZONE_ATTR_NAME:
5284 size = strlen(zone->zone_name) + 1;
5285 if (bufsize > size)
5286 bufsize = size;
5287 if (buf != NULL) {
5288 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5289 if (err != 0 && err != ENAMETOOLONG)
5290 error = EFAULT;
5291 }
5292 break;
5293
5294 case ZONE_ATTR_STATUS:
5295 /*
5296 * Since we're not holding zonehash_lock, the zone status
5297 * may be anything; leave it up to userland to sort it out.
5298 */
5299 size = sizeof (zone_status);
5300 if (bufsize > size)
5301 bufsize = size;
5302 zone_status = zone_status_get(zone);
5303 if (buf != NULL &&
5304 copyout(&zone_status, buf, bufsize) != 0)
5305 error = EFAULT;
5306 break;
5307 case ZONE_ATTR_FLAGS:
5308 size = sizeof (zone->zone_flags);
5309 if (bufsize > size)
5310 bufsize = size;
5311 flags = zone->zone_flags;
5312 if (buf != NULL &&
5313 copyout(&flags, buf, bufsize) != 0)
5314 error = EFAULT;
5315 break;
5316 case ZONE_ATTR_PRIVSET:
5317 size = sizeof (priv_set_t);
5318 if (bufsize > size)
5319 bufsize = size;
5320 if (buf != NULL &&
5321 copyout(zone->zone_privset, buf, bufsize) != 0)
5322 error = EFAULT;
5323 break;
5324 case ZONE_ATTR_UNIQID:
5325 size = sizeof (zone->zone_uniqid);
5326 if (bufsize > size)
5327 bufsize = size;
5328 if (buf != NULL &&
5329 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5330 error = EFAULT;
5331 break;
5332 case ZONE_ATTR_POOLID:
5333 {
5334 pool_t *pool;
5335 poolid_t poolid;
5336
5337 if (pool_lock_intr() != 0) {
5338 error = EINTR;
5339 break;
5340 }
5341 pool = zone_pool_get(zone);
5342 poolid = pool->pool_id;
5343 pool_unlock();
5344 size = sizeof (poolid);
5345 if (bufsize > size)
5346 bufsize = size;
5347 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5348 error = EFAULT;
5349 }
5350 break;
5351 case ZONE_ATTR_SLBL:
5352 size = sizeof (bslabel_t);
5353 if (bufsize > size)
5354 bufsize = size;
5355 if (zone->zone_slabel == NULL)
5356 error = EINVAL;
5357 else if (buf != NULL &&
5358 copyout(label2bslabel(zone->zone_slabel), buf,
5359 bufsize) != 0)
5360 error = EFAULT;
5361 break;
5362 case ZONE_ATTR_INITPID:
5363 size = sizeof (initpid);
5364 if (bufsize > size)
5365 bufsize = size;
5366 initpid = zone->zone_proc_initpid;
5367 if (initpid == -1) {
5368 error = ESRCH;
5369 break;
5370 }
5371 if (buf != NULL &&
5372 copyout(&initpid, buf, bufsize) != 0)
5373 error = EFAULT;
5374 break;
5375 case ZONE_ATTR_BRAND:
5376 size = strlen(zone->zone_brand->b_name) + 1;
5377
5378 if (bufsize > size)
5379 bufsize = size;
5380 if (buf != NULL) {
5381 err = copyoutstr(zone->zone_brand->b_name, buf,
5382 bufsize, NULL);
5383 if (err != 0 && err != ENAMETOOLONG)
5384 error = EFAULT;
5385 }
5386 break;
5387 case ZONE_ATTR_INITNAME:
5388 size = strlen(zone->zone_initname) + 1;
5389 if (bufsize > size)
5390 bufsize = size;
5391 if (buf != NULL) {
5392 err = copyoutstr(zone->zone_initname, buf, bufsize,
5393 NULL);
5394 if (err != 0 && err != ENAMETOOLONG)
5395 error = EFAULT;
5396 }
5397 break;
5398 case ZONE_ATTR_BOOTARGS:
5399 if (zone->zone_bootargs == NULL)
5400 outstr = "";
5401 else
5402 outstr = zone->zone_bootargs;
5403 size = strlen(outstr) + 1;
5404 if (bufsize > size)
5405 bufsize = size;
5406 if (buf != NULL) {
5407 err = copyoutstr(outstr, buf, bufsize, NULL);
5408 if (err != 0 && err != ENAMETOOLONG)
5409 error = EFAULT;
5410 }
5411 break;
5412 case ZONE_ATTR_PHYS_MCAP:
5413 size = sizeof (zone->zone_phys_mcap);
5414 if (bufsize > size)
5415 bufsize = size;
5416 if (buf != NULL &&
5417 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5418 error = EFAULT;
5419 break;
5420 case ZONE_ATTR_SCHED_CLASS:
5421 mutex_enter(&class_lock);
5422
5423 if (zone->zone_defaultcid >= loaded_classes)
5424 outstr = "";
5425 else
5426 outstr = sclass[zone->zone_defaultcid].cl_name;
5427 size = strlen(outstr) + 1;
5428 if (bufsize > size)
5429 bufsize = size;
5430 if (buf != NULL) {
5431 err = copyoutstr(outstr, buf, bufsize, NULL);
5432 if (err != 0 && err != ENAMETOOLONG)
5433 error = EFAULT;
5434 }
5435
5436 mutex_exit(&class_lock);
5437 break;
5438 case ZONE_ATTR_HOSTID:
5439 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5440 bufsize == sizeof (zone->zone_hostid)) {
5441 size = sizeof (zone->zone_hostid);
5442 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5443 bufsize) != 0)
5444 error = EFAULT;
5445 } else {
5446 error = EINVAL;
5447 }
5448 break;
5449 case ZONE_ATTR_FS_ALLOWED:
5450 if (zone->zone_fs_allowed == NULL)
5451 outstr = "";
5452 else
5453 outstr = zone->zone_fs_allowed;
5454 size = strlen(outstr) + 1;
5455 if (bufsize > size)
5456 bufsize = size;
5457 if (buf != NULL) {
5458 err = copyoutstr(outstr, buf, bufsize, NULL);
5459 if (err != 0 && err != ENAMETOOLONG)
5460 error = EFAULT;
5461 }
5462 break;
5463 case ZONE_ATTR_NETWORK:
5464 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5465 if (copyin(buf, zbuf, bufsize) != 0) {
5466 error = EFAULT;
5467 } else {
5468 error = zone_get_network(zoneid, zbuf);
5469 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5470 error = EFAULT;
5471 }
5472 kmem_free(zbuf, bufsize);
5473 break;
5474 default:
5475 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5476 size = bufsize;
5477 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5478 } else {
5479 error = EINVAL;
5480 }
5481 }
5482 zone_rele(zone);
5483
5484 if (error)
5485 return (set_errno(error));
5486 return ((ssize_t)size);
5487 }
5488
5489 /*
5490 * Systemcall entry point for zone_setattr(2).
5491 */
5492 /*ARGSUSED*/
5493 static int
zone_setattr(zoneid_t zoneid,int attr,void * buf,size_t bufsize)5494 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5495 {
5496 zone_t *zone;
5497 zone_status_t zone_status;
5498 int err = -1;
5499 zone_net_data_t *zbuf;
5500
5501 if (secpolicy_zone_config(CRED()) != 0)
5502 return (set_errno(EPERM));
5503
5504 /*
5505 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5506 * global zone.
5507 */
5508 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5509 return (set_errno(EINVAL));
5510 }
5511
5512 mutex_enter(&zonehash_lock);
5513 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5514 mutex_exit(&zonehash_lock);
5515 return (set_errno(EINVAL));
5516 }
5517 zone_hold(zone);
5518 mutex_exit(&zonehash_lock);
5519
5520 /*
5521 * At present most attributes can only be set on non-running,
5522 * non-global zones.
5523 */
5524 zone_status = zone_status_get(zone);
5525 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5526 err = EINVAL;
5527 goto done;
5528 }
5529
5530 switch (attr) {
5531 case ZONE_ATTR_INITNAME:
5532 err = zone_set_initname(zone, (const char *)buf);
5533 break;
5534 case ZONE_ATTR_INITNORESTART:
5535 zone->zone_restart_init = B_FALSE;
5536 err = 0;
5537 break;
5538 case ZONE_ATTR_BOOTARGS:
5539 err = zone_set_bootargs(zone, (const char *)buf);
5540 break;
5541 case ZONE_ATTR_BRAND:
5542 err = zone_set_brand(zone, (const char *)buf);
5543 break;
5544 case ZONE_ATTR_FS_ALLOWED:
5545 err = zone_set_fs_allowed(zone, (const char *)buf);
5546 break;
5547 case ZONE_ATTR_PHYS_MCAP:
5548 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5549 break;
5550 case ZONE_ATTR_SCHED_CLASS:
5551 err = zone_set_sched_class(zone, (const char *)buf);
5552 break;
5553 case ZONE_ATTR_HOSTID:
5554 if (bufsize == sizeof (zone->zone_hostid)) {
5555 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5556 err = 0;
5557 else
5558 err = EFAULT;
5559 } else {
5560 err = EINVAL;
5561 }
5562 break;
5563 case ZONE_ATTR_NETWORK:
5564 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5565 err = EINVAL;
5566 break;
5567 }
5568 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5569 if (copyin(buf, zbuf, bufsize) != 0) {
5570 kmem_free(zbuf, bufsize);
5571 err = EFAULT;
5572 break;
5573 }
5574 err = zone_set_network(zoneid, zbuf);
5575 kmem_free(zbuf, bufsize);
5576 break;
5577 default:
5578 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5579 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5580 else
5581 err = EINVAL;
5582 }
5583
5584 done:
5585 zone_rele(zone);
5586 ASSERT(err != -1);
5587 return (err != 0 ? set_errno(err) : 0);
5588 }
5589
5590 /*
5591 * Return zero if the process has at least one vnode mapped in to its
5592 * address space which shouldn't be allowed to change zones.
5593 *
5594 * Also return zero if the process has any shared mappings which reserve
5595 * swap. This is because the counting for zone.max-swap does not allow swap
5596 * reservation to be shared between zones. zone swap reservation is counted
5597 * on zone->zone_max_swap.
5598 */
5599 static int
as_can_change_zones(void)5600 as_can_change_zones(void)
5601 {
5602 proc_t *pp = curproc;
5603 struct seg *seg;
5604 struct as *as = pp->p_as;
5605 vnode_t *vp;
5606 int allow = 1;
5607
5608 ASSERT(pp->p_as != &kas);
5609 AS_LOCK_ENTER(as, RW_READER);
5610 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5611
5612 /*
5613 * Cannot enter zone with shared anon memory which
5614 * reserves swap. See comment above.
5615 */
5616 if (seg_can_change_zones(seg) == B_FALSE) {
5617 allow = 0;
5618 break;
5619 }
5620 /*
5621 * if we can't get a backing vnode for this segment then skip
5622 * it.
5623 */
5624 vp = NULL;
5625 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5626 continue;
5627 if (!vn_can_change_zones(vp)) { /* bail on first match */
5628 allow = 0;
5629 break;
5630 }
5631 }
5632 AS_LOCK_EXIT(as);
5633 return (allow);
5634 }
5635
5636 /*
5637 * Count swap reserved by curproc's address space
5638 */
5639 static size_t
as_swresv(void)5640 as_swresv(void)
5641 {
5642 proc_t *pp = curproc;
5643 struct seg *seg;
5644 struct as *as = pp->p_as;
5645 size_t swap = 0;
5646
5647 ASSERT(pp->p_as != &kas);
5648 ASSERT(AS_WRITE_HELD(as));
5649 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5650 swap += seg_swresv(seg);
5651
5652 return (swap);
5653 }
5654
5655 /*
5656 * Systemcall entry point for zone_enter().
5657 *
5658 * The current process is injected into said zone. In the process
5659 * it will change its project membership, privileges, rootdir/cwd,
5660 * zone-wide rctls, and pool association to match those of the zone.
5661 *
5662 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5663 * state will transition it to ZONE_IS_RUNNING. Processes may only
5664 * enter a zone that is "ready" or "running".
5665 */
5666 static int
zone_enter(zoneid_t zoneid)5667 zone_enter(zoneid_t zoneid)
5668 {
5669 zone_t *zone;
5670 vnode_t *vp;
5671 proc_t *pp = curproc;
5672 contract_t *ct;
5673 cont_process_t *ctp;
5674 task_t *tk, *oldtk;
5675 kproject_t *zone_proj0;
5676 cred_t *cr, *newcr;
5677 pool_t *oldpool, *newpool;
5678 sess_t *sp;
5679 uid_t uid;
5680 zone_status_t status;
5681 int err = 0;
5682 rctl_entity_p_t e;
5683 size_t swap;
5684 kthread_id_t t;
5685
5686 if (secpolicy_zone_config(CRED()) != 0)
5687 return (set_errno(EPERM));
5688 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5689 return (set_errno(EINVAL));
5690
5691 /*
5692 * Stop all lwps so we don't need to hold a lock to look at
5693 * curproc->p_zone. This needs to happen before we grab any
5694 * locks to avoid deadlock (another lwp in the process could
5695 * be waiting for the held lock).
5696 */
5697 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5698 return (set_errno(EINTR));
5699
5700 /*
5701 * Make sure we're not changing zones with files open or mapped in
5702 * to our address space which shouldn't be changing zones.
5703 */
5704 if (!files_can_change_zones()) {
5705 err = EBADF;
5706 goto out;
5707 }
5708 if (!as_can_change_zones()) {
5709 err = EFAULT;
5710 goto out;
5711 }
5712
5713 mutex_enter(&zonehash_lock);
5714 if (pp->p_zone != global_zone) {
5715 mutex_exit(&zonehash_lock);
5716 err = EINVAL;
5717 goto out;
5718 }
5719
5720 zone = zone_find_all_by_id(zoneid);
5721 if (zone == NULL) {
5722 mutex_exit(&zonehash_lock);
5723 err = EINVAL;
5724 goto out;
5725 }
5726
5727 /*
5728 * To prevent processes in a zone from holding contracts on
5729 * extrazonal resources, and to avoid process contract
5730 * memberships which span zones, contract holders and processes
5731 * which aren't the sole members of their encapsulating process
5732 * contracts are not allowed to zone_enter.
5733 */
5734 ctp = pp->p_ct_process;
5735 ct = &ctp->conp_contract;
5736 mutex_enter(&ct->ct_lock);
5737 mutex_enter(&pp->p_lock);
5738 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5739 mutex_exit(&pp->p_lock);
5740 mutex_exit(&ct->ct_lock);
5741 mutex_exit(&zonehash_lock);
5742 err = EINVAL;
5743 goto out;
5744 }
5745
5746 /*
5747 * Moreover, we don't allow processes whose encapsulating
5748 * process contracts have inherited extrazonal contracts.
5749 * While it would be easier to eliminate all process contracts
5750 * with inherited contracts, we need to be able to give a
5751 * restarted init (or other zone-penetrating process) its
5752 * predecessor's contracts.
5753 */
5754 if (ctp->conp_ninherited != 0) {
5755 contract_t *next;
5756 for (next = list_head(&ctp->conp_inherited); next;
5757 next = list_next(&ctp->conp_inherited, next)) {
5758 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5759 mutex_exit(&pp->p_lock);
5760 mutex_exit(&ct->ct_lock);
5761 mutex_exit(&zonehash_lock);
5762 err = EINVAL;
5763 goto out;
5764 }
5765 }
5766 }
5767
5768 mutex_exit(&pp->p_lock);
5769 mutex_exit(&ct->ct_lock);
5770
5771 status = zone_status_get(zone);
5772 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5773 /*
5774 * Can't join
5775 */
5776 mutex_exit(&zonehash_lock);
5777 err = EINVAL;
5778 goto out;
5779 }
5780
5781 /*
5782 * Make sure new priv set is within the permitted set for caller
5783 */
5784 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5785 mutex_exit(&zonehash_lock);
5786 err = EPERM;
5787 goto out;
5788 }
5789 /*
5790 * We want to momentarily drop zonehash_lock while we optimistically
5791 * bind curproc to the pool it should be running in. This is safe
5792 * since the zone can't disappear (we have a hold on it).
5793 */
5794 zone_hold(zone);
5795 mutex_exit(&zonehash_lock);
5796
5797 /*
5798 * Grab pool_lock to keep the pools configuration from changing
5799 * and to stop ourselves from getting rebound to another pool
5800 * until we join the zone.
5801 */
5802 if (pool_lock_intr() != 0) {
5803 zone_rele(zone);
5804 err = EINTR;
5805 goto out;
5806 }
5807 ASSERT(secpolicy_pool(CRED()) == 0);
5808 /*
5809 * Bind ourselves to the pool currently associated with the zone.
5810 */
5811 oldpool = curproc->p_pool;
5812 newpool = zone_pool_get(zone);
5813 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5814 (err = pool_do_bind(newpool, P_PID, P_MYID,
5815 POOL_BIND_ALL)) != 0) {
5816 pool_unlock();
5817 zone_rele(zone);
5818 goto out;
5819 }
5820
5821 /*
5822 * Grab cpu_lock now; we'll need it later when we call
5823 * task_join().
5824 */
5825 mutex_enter(&cpu_lock);
5826 mutex_enter(&zonehash_lock);
5827 /*
5828 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5829 */
5830 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5831 /*
5832 * Can't join anymore.
5833 */
5834 mutex_exit(&zonehash_lock);
5835 mutex_exit(&cpu_lock);
5836 if (pool_state == POOL_ENABLED &&
5837 newpool != oldpool)
5838 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5839 POOL_BIND_ALL);
5840 pool_unlock();
5841 zone_rele(zone);
5842 err = EINVAL;
5843 goto out;
5844 }
5845
5846 /*
5847 * a_lock must be held while transfering locked memory and swap
5848 * reservation from the global zone to the non global zone because
5849 * asynchronous faults on the processes' address space can lock
5850 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5851 * segments respectively.
5852 */
5853 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5854 swap = as_swresv();
5855 mutex_enter(&pp->p_lock);
5856 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5857 /* verify that we do not exceed and task or lwp limits */
5858 mutex_enter(&zone->zone_nlwps_lock);
5859 /* add new lwps to zone and zone's proj0 */
5860 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5861 zone->zone_nlwps += pp->p_lwpcnt;
5862 /* add 1 task to zone's proj0 */
5863 zone_proj0->kpj_ntasks += 1;
5864
5865 zone_proj0->kpj_nprocs++;
5866 zone->zone_nprocs++;
5867 mutex_exit(&zone->zone_nlwps_lock);
5868
5869 mutex_enter(&zone->zone_mem_lock);
5870 zone->zone_locked_mem += pp->p_locked_mem;
5871 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5872 zone->zone_max_swap += swap;
5873 mutex_exit(&zone->zone_mem_lock);
5874
5875 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5876 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5877 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5878
5879 /* remove lwps and process from proc's old zone and old project */
5880 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5881 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5882 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5883 pp->p_task->tk_proj->kpj_nprocs--;
5884 pp->p_zone->zone_nprocs--;
5885 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5886
5887 mutex_enter(&pp->p_zone->zone_mem_lock);
5888 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5889 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5890 pp->p_zone->zone_max_swap -= swap;
5891 mutex_exit(&pp->p_zone->zone_mem_lock);
5892
5893 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5894 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5895 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5896
5897 pp->p_flag |= SZONETOP;
5898 pp->p_zone = zone;
5899 mutex_exit(&pp->p_lock);
5900 AS_LOCK_EXIT(pp->p_as);
5901
5902 /*
5903 * Joining the zone cannot fail from now on.
5904 *
5905 * This means that a lot of the following code can be commonized and
5906 * shared with zsched().
5907 */
5908
5909 /*
5910 * If the process contract fmri was inherited, we need to
5911 * flag this so that any contract status will not leak
5912 * extra zone information, svc_fmri in this case
5913 */
5914 if (ctp->conp_svc_ctid != ct->ct_id) {
5915 mutex_enter(&ct->ct_lock);
5916 ctp->conp_svc_zone_enter = ct->ct_id;
5917 mutex_exit(&ct->ct_lock);
5918 }
5919
5920 /*
5921 * Reset the encapsulating process contract's zone.
5922 */
5923 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5924 contract_setzuniqid(ct, zone->zone_uniqid);
5925
5926 /*
5927 * Create a new task and associate the process with the project keyed
5928 * by (projid,zoneid).
5929 *
5930 * We might as well be in project 0; the global zone's projid doesn't
5931 * make much sense in a zone anyhow.
5932 *
5933 * This also increments zone_ntasks, and returns with p_lock held.
5934 */
5935 tk = task_create(0, zone);
5936 oldtk = task_join(tk, 0);
5937 mutex_exit(&cpu_lock);
5938
5939 /*
5940 * call RCTLOP_SET functions on this proc
5941 */
5942 e.rcep_p.zone = zone;
5943 e.rcep_t = RCENTITY_ZONE;
5944 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5945 RCD_CALLBACK);
5946 mutex_exit(&pp->p_lock);
5947
5948 /*
5949 * We don't need to hold any of zsched's locks here; not only do we know
5950 * the process and zone aren't going away, we know its session isn't
5951 * changing either.
5952 *
5953 * By joining zsched's session here, we mimic the behavior in the
5954 * global zone of init's sid being the pid of sched. We extend this
5955 * to all zlogin-like zone_enter()'ing processes as well.
5956 */
5957 mutex_enter(&pidlock);
5958 sp = zone->zone_zsched->p_sessp;
5959 sess_hold(zone->zone_zsched);
5960 mutex_enter(&pp->p_lock);
5961 pgexit(pp);
5962 sess_rele(pp->p_sessp, B_TRUE);
5963 pp->p_sessp = sp;
5964 pgjoin(pp, zone->zone_zsched->p_pidp);
5965
5966 /*
5967 * If any threads are scheduled to be placed on zone wait queue they
5968 * should abandon the idea since the wait queue is changing.
5969 * We need to be holding pidlock & p_lock to do this.
5970 */
5971 if ((t = pp->p_tlist) != NULL) {
5972 do {
5973 thread_lock(t);
5974 /*
5975 * Kick this thread so that he doesn't sit
5976 * on a wrong wait queue.
5977 */
5978 if (ISWAITING(t))
5979 setrun_locked(t);
5980
5981 if (t->t_schedflag & TS_ANYWAITQ)
5982 t->t_schedflag &= ~ TS_ANYWAITQ;
5983
5984 thread_unlock(t);
5985 } while ((t = t->t_forw) != pp->p_tlist);
5986 }
5987
5988 /*
5989 * If there is a default scheduling class for the zone and it is not
5990 * the class we are currently in, change all of the threads in the
5991 * process to the new class. We need to be holding pidlock & p_lock
5992 * when we call parmsset so this is a good place to do it.
5993 */
5994 if (zone->zone_defaultcid > 0 &&
5995 zone->zone_defaultcid != curthread->t_cid) {
5996 pcparms_t pcparms;
5997
5998 pcparms.pc_cid = zone->zone_defaultcid;
5999 pcparms.pc_clparms[0] = 0;
6000
6001 /*
6002 * If setting the class fails, we still want to enter the zone.
6003 */
6004 if ((t = pp->p_tlist) != NULL) {
6005 do {
6006 (void) parmsset(&pcparms, t);
6007 } while ((t = t->t_forw) != pp->p_tlist);
6008 }
6009 }
6010
6011 mutex_exit(&pp->p_lock);
6012 mutex_exit(&pidlock);
6013
6014 mutex_exit(&zonehash_lock);
6015 /*
6016 * We're firmly in the zone; let pools progress.
6017 */
6018 pool_unlock();
6019 task_rele(oldtk);
6020 /*
6021 * We don't need to retain a hold on the zone since we already
6022 * incremented zone_ntasks, so the zone isn't going anywhere.
6023 */
6024 zone_rele(zone);
6025
6026 /*
6027 * Chroot
6028 */
6029 vp = zone->zone_rootvp;
6030 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6031 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6032
6033 /*
6034 * Change process credentials
6035 */
6036 newcr = cralloc();
6037 mutex_enter(&pp->p_crlock);
6038 cr = pp->p_cred;
6039 crcopy_to(cr, newcr);
6040 crsetzone(newcr, zone);
6041 pp->p_cred = newcr;
6042
6043 /*
6044 * Restrict all process privilege sets to zone limit
6045 */
6046 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6047 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6048 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6049 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6050 mutex_exit(&pp->p_crlock);
6051 crset(pp, newcr);
6052
6053 /*
6054 * Adjust upcount to reflect zone entry.
6055 */
6056 uid = crgetruid(newcr);
6057 mutex_enter(&pidlock);
6058 upcount_dec(uid, GLOBAL_ZONEID);
6059 upcount_inc(uid, zoneid);
6060 mutex_exit(&pidlock);
6061
6062 /*
6063 * Set up core file path and content.
6064 */
6065 set_core_defaults();
6066
6067 out:
6068 /*
6069 * Let the other lwps continue.
6070 */
6071 mutex_enter(&pp->p_lock);
6072 if (curthread != pp->p_agenttp)
6073 continuelwps(pp);
6074 mutex_exit(&pp->p_lock);
6075
6076 return (err != 0 ? set_errno(err) : 0);
6077 }
6078
6079 /*
6080 * Systemcall entry point for zone_list(2).
6081 *
6082 * Processes running in a (non-global) zone only see themselves.
6083 * On labeled systems, they see all zones whose label they dominate.
6084 */
6085 static int
zone_list(zoneid_t * zoneidlist,uint_t * numzones)6086 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6087 {
6088 zoneid_t *zoneids;
6089 zone_t *zone, *myzone;
6090 uint_t user_nzones, real_nzones;
6091 uint_t domi_nzones;
6092 int error;
6093
6094 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6095 return (set_errno(EFAULT));
6096
6097 myzone = curproc->p_zone;
6098 if (myzone != global_zone) {
6099 bslabel_t *mybslab;
6100
6101 if (!is_system_labeled()) {
6102 /* just return current zone */
6103 real_nzones = domi_nzones = 1;
6104 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6105 zoneids[0] = myzone->zone_id;
6106 } else {
6107 /* return all zones that are dominated */
6108 mutex_enter(&zonehash_lock);
6109 real_nzones = zonecount;
6110 domi_nzones = 0;
6111 if (real_nzones > 0) {
6112 zoneids = kmem_alloc(real_nzones *
6113 sizeof (zoneid_t), KM_SLEEP);
6114 mybslab = label2bslabel(myzone->zone_slabel);
6115 for (zone = list_head(&zone_active);
6116 zone != NULL;
6117 zone = list_next(&zone_active, zone)) {
6118 if (zone->zone_id == GLOBAL_ZONEID)
6119 continue;
6120 if (zone != myzone &&
6121 (zone->zone_flags & ZF_IS_SCRATCH))
6122 continue;
6123 /*
6124 * Note that a label always dominates
6125 * itself, so myzone is always included
6126 * in the list.
6127 */
6128 if (bldominates(mybslab,
6129 label2bslabel(zone->zone_slabel))) {
6130 zoneids[domi_nzones++] =
6131 zone->zone_id;
6132 }
6133 }
6134 }
6135 mutex_exit(&zonehash_lock);
6136 }
6137 } else {
6138 mutex_enter(&zonehash_lock);
6139 real_nzones = zonecount;
6140 domi_nzones = 0;
6141 if (real_nzones > 0) {
6142 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6143 KM_SLEEP);
6144 for (zone = list_head(&zone_active); zone != NULL;
6145 zone = list_next(&zone_active, zone))
6146 zoneids[domi_nzones++] = zone->zone_id;
6147 ASSERT(domi_nzones == real_nzones);
6148 }
6149 mutex_exit(&zonehash_lock);
6150 }
6151
6152 /*
6153 * If user has allocated space for fewer entries than we found, then
6154 * return only up to his limit. Either way, tell him exactly how many
6155 * we found.
6156 */
6157 if (domi_nzones < user_nzones)
6158 user_nzones = domi_nzones;
6159 error = 0;
6160 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6161 error = EFAULT;
6162 } else if (zoneidlist != NULL && user_nzones != 0) {
6163 if (copyout(zoneids, zoneidlist,
6164 user_nzones * sizeof (zoneid_t)) != 0)
6165 error = EFAULT;
6166 }
6167
6168 if (real_nzones > 0)
6169 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6170
6171 if (error != 0)
6172 return (set_errno(error));
6173 else
6174 return (0);
6175 }
6176
6177 /*
6178 * Systemcall entry point for zone_lookup(2).
6179 *
6180 * Non-global zones are only able to see themselves and (on labeled systems)
6181 * the zones they dominate.
6182 */
6183 static zoneid_t
zone_lookup(const char * zone_name)6184 zone_lookup(const char *zone_name)
6185 {
6186 char *kname;
6187 zone_t *zone;
6188 zoneid_t zoneid;
6189 int err;
6190
6191 if (zone_name == NULL) {
6192 /* return caller's zone id */
6193 return (getzoneid());
6194 }
6195
6196 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6197 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6198 kmem_free(kname, ZONENAME_MAX);
6199 return (set_errno(err));
6200 }
6201
6202 mutex_enter(&zonehash_lock);
6203 zone = zone_find_all_by_name(kname);
6204 kmem_free(kname, ZONENAME_MAX);
6205 /*
6206 * In a non-global zone, can only lookup global and own name.
6207 * In Trusted Extensions zone label dominance rules apply.
6208 */
6209 if (zone == NULL ||
6210 zone_status_get(zone) < ZONE_IS_READY ||
6211 !zone_list_access(zone)) {
6212 mutex_exit(&zonehash_lock);
6213 return (set_errno(EINVAL));
6214 } else {
6215 zoneid = zone->zone_id;
6216 mutex_exit(&zonehash_lock);
6217 return (zoneid);
6218 }
6219 }
6220
6221 static int
zone_version(int * version_arg)6222 zone_version(int *version_arg)
6223 {
6224 int version = ZONE_SYSCALL_API_VERSION;
6225
6226 if (copyout(&version, version_arg, sizeof (int)) != 0)
6227 return (set_errno(EFAULT));
6228 return (0);
6229 }
6230
6231 /* ARGSUSED */
6232 long
zone(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)6233 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6234 {
6235 zone_def zs;
6236 int err;
6237
6238 switch (cmd) {
6239 case ZONE_CREATE:
6240 if (get_udatamodel() == DATAMODEL_NATIVE) {
6241 if (copyin(arg1, &zs, sizeof (zone_def))) {
6242 return (set_errno(EFAULT));
6243 }
6244 } else {
6245 #ifdef _SYSCALL32_IMPL
6246 zone_def32 zs32;
6247
6248 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6249 return (set_errno(EFAULT));
6250 }
6251 zs.zone_name =
6252 (const char *)(unsigned long)zs32.zone_name;
6253 zs.zone_root =
6254 (const char *)(unsigned long)zs32.zone_root;
6255 zs.zone_privs =
6256 (const struct priv_set *)
6257 (unsigned long)zs32.zone_privs;
6258 zs.zone_privssz = zs32.zone_privssz;
6259 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6260 zs.rctlbufsz = zs32.rctlbufsz;
6261 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6262 zs.zfsbufsz = zs32.zfsbufsz;
6263 zs.extended_error =
6264 (int *)(unsigned long)zs32.extended_error;
6265 zs.match = zs32.match;
6266 zs.doi = zs32.doi;
6267 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6268 zs.flags = zs32.flags;
6269 #else
6270 panic("get_udatamodel() returned bogus result\n");
6271 #endif
6272 }
6273
6274 return (zone_create(zs.zone_name, zs.zone_root,
6275 zs.zone_privs, zs.zone_privssz,
6276 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6277 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6278 zs.extended_error, zs.match, zs.doi,
6279 zs.label, zs.flags));
6280 case ZONE_BOOT:
6281 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6282 case ZONE_DESTROY:
6283 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6284 case ZONE_GETATTR:
6285 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6286 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6287 case ZONE_SETATTR:
6288 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6289 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6290 case ZONE_ENTER:
6291 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6292 case ZONE_LIST:
6293 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6294 case ZONE_SHUTDOWN:
6295 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6296 case ZONE_LOOKUP:
6297 return (zone_lookup((const char *)arg1));
6298 case ZONE_VERSION:
6299 return (zone_version((int *)arg1));
6300 case ZONE_ADD_DATALINK:
6301 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6302 (datalink_id_t)(uintptr_t)arg2));
6303 case ZONE_DEL_DATALINK:
6304 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6305 (datalink_id_t)(uintptr_t)arg2));
6306 case ZONE_CHECK_DATALINK: {
6307 zoneid_t zoneid;
6308 boolean_t need_copyout;
6309
6310 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6311 return (EFAULT);
6312 need_copyout = (zoneid == ALL_ZONES);
6313 err = zone_check_datalink(&zoneid,
6314 (datalink_id_t)(uintptr_t)arg2);
6315 if (err == 0 && need_copyout) {
6316 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6317 err = EFAULT;
6318 }
6319 return (err == 0 ? 0 : set_errno(err));
6320 }
6321 case ZONE_LIST_DATALINK:
6322 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6323 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6324 default:
6325 return (set_errno(EINVAL));
6326 }
6327 }
6328
6329 struct zarg {
6330 zone_t *zone;
6331 zone_cmd_arg_t arg;
6332 };
6333
6334 static int
zone_lookup_door(const char * zone_name,door_handle_t * doorp)6335 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6336 {
6337 char *buf;
6338 size_t buflen;
6339 int error;
6340
6341 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6342 buf = kmem_alloc(buflen, KM_SLEEP);
6343 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6344 error = door_ki_open(buf, doorp);
6345 kmem_free(buf, buflen);
6346 return (error);
6347 }
6348
6349 static void
zone_release_door(door_handle_t * doorp)6350 zone_release_door(door_handle_t *doorp)
6351 {
6352 door_ki_rele(*doorp);
6353 *doorp = NULL;
6354 }
6355
6356 static void
zone_ki_call_zoneadmd(struct zarg * zargp)6357 zone_ki_call_zoneadmd(struct zarg *zargp)
6358 {
6359 door_handle_t door = NULL;
6360 door_arg_t darg, save_arg;
6361 char *zone_name;
6362 size_t zone_namelen;
6363 zoneid_t zoneid;
6364 zone_t *zone;
6365 zone_cmd_arg_t arg;
6366 uint64_t uniqid;
6367 size_t size;
6368 int error;
6369 int retry;
6370
6371 zone = zargp->zone;
6372 arg = zargp->arg;
6373 kmem_free(zargp, sizeof (*zargp));
6374
6375 zone_namelen = strlen(zone->zone_name) + 1;
6376 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6377 bcopy(zone->zone_name, zone_name, zone_namelen);
6378 zoneid = zone->zone_id;
6379 uniqid = zone->zone_uniqid;
6380 /*
6381 * zoneadmd may be down, but at least we can empty out the zone.
6382 * We can ignore the return value of zone_empty() since we're called
6383 * from a kernel thread and know we won't be delivered any signals.
6384 */
6385 ASSERT(curproc == &p0);
6386 (void) zone_empty(zone);
6387 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6388 zone_rele(zone);
6389
6390 size = sizeof (arg);
6391 darg.rbuf = (char *)&arg;
6392 darg.data_ptr = (char *)&arg;
6393 darg.rsize = size;
6394 darg.data_size = size;
6395 darg.desc_ptr = NULL;
6396 darg.desc_num = 0;
6397
6398 save_arg = darg;
6399 /*
6400 * Since we're not holding a reference to the zone, any number of
6401 * things can go wrong, including the zone disappearing before we get a
6402 * chance to talk to zoneadmd.
6403 */
6404 for (retry = 0; /* forever */; retry++) {
6405 if (door == NULL &&
6406 (error = zone_lookup_door(zone_name, &door)) != 0) {
6407 goto next;
6408 }
6409 ASSERT(door != NULL);
6410
6411 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6412 SIZE_MAX, 0)) == 0) {
6413 break;
6414 }
6415 switch (error) {
6416 case EINTR:
6417 /* FALLTHROUGH */
6418 case EAGAIN: /* process may be forking */
6419 /*
6420 * Back off for a bit
6421 */
6422 break;
6423 case EBADF:
6424 zone_release_door(&door);
6425 if (zone_lookup_door(zone_name, &door) != 0) {
6426 /*
6427 * zoneadmd may be dead, but it may come back to
6428 * life later.
6429 */
6430 break;
6431 }
6432 break;
6433 default:
6434 cmn_err(CE_WARN,
6435 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6436 error);
6437 goto out;
6438 }
6439 next:
6440 /*
6441 * If this isn't the same zone_t that we originally had in mind,
6442 * then this is the same as if two kadmin requests come in at
6443 * the same time: the first one wins. This means we lose, so we
6444 * bail.
6445 */
6446 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6447 /*
6448 * Problem is solved.
6449 */
6450 break;
6451 }
6452 if (zone->zone_uniqid != uniqid) {
6453 /*
6454 * zoneid recycled
6455 */
6456 zone_rele(zone);
6457 break;
6458 }
6459 /*
6460 * We could zone_status_timedwait(), but there doesn't seem to
6461 * be much point in doing that (plus, it would mean that
6462 * zone_free() isn't called until this thread exits).
6463 */
6464 zone_rele(zone);
6465 delay(hz);
6466 darg = save_arg;
6467 }
6468 out:
6469 if (door != NULL) {
6470 zone_release_door(&door);
6471 }
6472 kmem_free(zone_name, zone_namelen);
6473 thread_exit();
6474 }
6475
6476 /*
6477 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6478 * kadmin(). The caller is a process in the zone.
6479 *
6480 * In order to shutdown the zone, we will hand off control to zoneadmd
6481 * (running in the global zone) via a door. We do a half-hearted job at
6482 * killing all processes in the zone, create a kernel thread to contact
6483 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6484 * a form of generation number used to let zoneadmd (as well as
6485 * zone_destroy()) know exactly which zone they're re talking about.
6486 */
6487 int
zone_kadmin(int cmd,int fcn,const char * mdep,cred_t * credp)6488 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6489 {
6490 struct zarg *zargp;
6491 zone_cmd_t zcmd;
6492 zone_t *zone;
6493
6494 zone = curproc->p_zone;
6495 ASSERT(getzoneid() != GLOBAL_ZONEID);
6496
6497 switch (cmd) {
6498 case A_SHUTDOWN:
6499 switch (fcn) {
6500 case AD_HALT:
6501 case AD_POWEROFF:
6502 zcmd = Z_HALT;
6503 break;
6504 case AD_BOOT:
6505 zcmd = Z_REBOOT;
6506 break;
6507 case AD_IBOOT:
6508 case AD_SBOOT:
6509 case AD_SIBOOT:
6510 case AD_NOSYNC:
6511 return (ENOTSUP);
6512 default:
6513 return (EINVAL);
6514 }
6515 break;
6516 case A_REBOOT:
6517 zcmd = Z_REBOOT;
6518 break;
6519 case A_FTRACE:
6520 case A_REMOUNT:
6521 case A_FREEZE:
6522 case A_DUMP:
6523 case A_CONFIG:
6524 return (ENOTSUP);
6525 default:
6526 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6527 return (EINVAL);
6528 }
6529
6530 if (secpolicy_zone_admin(credp, B_FALSE))
6531 return (EPERM);
6532 mutex_enter(&zone_status_lock);
6533
6534 /*
6535 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6536 * is in the zone.
6537 */
6538 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6539 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6540 /*
6541 * This zone is already on its way down.
6542 */
6543 mutex_exit(&zone_status_lock);
6544 return (0);
6545 }
6546 /*
6547 * Prevent future zone_enter()s
6548 */
6549 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6550 mutex_exit(&zone_status_lock);
6551
6552 /*
6553 * Kill everyone now and call zoneadmd later.
6554 * zone_ki_call_zoneadmd() will do a more thorough job of this
6555 * later.
6556 */
6557 killall(zone->zone_id);
6558 /*
6559 * Now, create the thread to contact zoneadmd and do the rest of the
6560 * work. This thread can't be created in our zone otherwise
6561 * zone_destroy() would deadlock.
6562 */
6563 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6564 zargp->arg.cmd = zcmd;
6565 zargp->arg.uniqid = zone->zone_uniqid;
6566 zargp->zone = zone;
6567 (void) strcpy(zargp->arg.locale, "C");
6568 /* mdep was already copied in for us by uadmin */
6569 if (mdep != NULL)
6570 (void) strlcpy(zargp->arg.bootbuf, mdep,
6571 sizeof (zargp->arg.bootbuf));
6572 zone_hold(zone);
6573
6574 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6575 TS_RUN, minclsyspri);
6576 exit(CLD_EXITED, 0);
6577
6578 return (EINVAL);
6579 }
6580
6581 /*
6582 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6583 * status to ZONE_IS_SHUTTING_DOWN.
6584 *
6585 * This function also shuts down all running zones to ensure that they won't
6586 * fork new processes.
6587 */
6588 void
zone_shutdown_global(void)6589 zone_shutdown_global(void)
6590 {
6591 zone_t *current_zonep;
6592
6593 ASSERT(INGLOBALZONE(curproc));
6594 mutex_enter(&zonehash_lock);
6595 mutex_enter(&zone_status_lock);
6596
6597 /* Modify the global zone's status first. */
6598 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6599 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6600
6601 /*
6602 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6603 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6604 * could cause assertions to fail (e.g., assertions about a zone's
6605 * state during initialization, readying, or booting) or produce races.
6606 * We'll let threads continue to initialize and ready new zones: they'll
6607 * fail to boot the new zones when they see that the global zone is
6608 * shutting down.
6609 */
6610 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6611 current_zonep = list_next(&zone_active, current_zonep)) {
6612 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6613 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6614 }
6615 mutex_exit(&zone_status_lock);
6616 mutex_exit(&zonehash_lock);
6617 }
6618
6619 /*
6620 * Returns true if the named dataset is visible in the current zone.
6621 * The 'write' parameter is set to 1 if the dataset is also writable.
6622 */
6623 int
zone_dataset_visible(const char * dataset,int * write)6624 zone_dataset_visible(const char *dataset, int *write)
6625 {
6626 static int zfstype = -1;
6627 zone_dataset_t *zd;
6628 size_t len;
6629 zone_t *zone = curproc->p_zone;
6630 const char *name = NULL;
6631 vfs_t *vfsp = NULL;
6632
6633 if (dataset[0] == '\0')
6634 return (0);
6635
6636 /*
6637 * Walk the list once, looking for datasets which match exactly, or
6638 * specify a dataset underneath an exported dataset. If found, return
6639 * true and note that it is writable.
6640 */
6641 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6642 zd = list_next(&zone->zone_datasets, zd)) {
6643
6644 len = strlen(zd->zd_dataset);
6645 if (strlen(dataset) >= len &&
6646 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6647 (dataset[len] == '\0' || dataset[len] == '/' ||
6648 dataset[len] == '@')) {
6649 if (write)
6650 *write = 1;
6651 return (1);
6652 }
6653 }
6654
6655 /*
6656 * Walk the list a second time, searching for datasets which are parents
6657 * of exported datasets. These should be visible, but read-only.
6658 *
6659 * Note that we also have to support forms such as 'pool/dataset/', with
6660 * a trailing slash.
6661 */
6662 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6663 zd = list_next(&zone->zone_datasets, zd)) {
6664
6665 len = strlen(dataset);
6666 if (dataset[len - 1] == '/')
6667 len--; /* Ignore trailing slash */
6668 if (len < strlen(zd->zd_dataset) &&
6669 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6670 zd->zd_dataset[len] == '/') {
6671 if (write)
6672 *write = 0;
6673 return (1);
6674 }
6675 }
6676
6677 /*
6678 * We reach here if the given dataset is not found in the zone_dataset
6679 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6680 * instead of delegation. For this we search for the dataset in the
6681 * zone_vfslist of this zone. If found, return true and note that it is
6682 * not writable.
6683 */
6684
6685 /*
6686 * Initialize zfstype if it is not initialized yet.
6687 */
6688 if (zfstype == -1) {
6689 struct vfssw *vswp = vfs_getvfssw("zfs");
6690 zfstype = vswp - vfssw;
6691 vfs_unrefvfssw(vswp);
6692 }
6693
6694 vfs_list_read_lock();
6695 vfsp = zone->zone_vfslist;
6696 do {
6697 ASSERT(vfsp);
6698 if (vfsp->vfs_fstype == zfstype) {
6699 name = refstr_value(vfsp->vfs_resource);
6700
6701 /*
6702 * Check if we have an exact match.
6703 */
6704 if (strcmp(dataset, name) == 0) {
6705 vfs_list_unlock();
6706 if (write)
6707 *write = 0;
6708 return (1);
6709 }
6710 /*
6711 * We need to check if we are looking for parents of
6712 * a dataset. These should be visible, but read-only.
6713 */
6714 len = strlen(dataset);
6715 if (dataset[len - 1] == '/')
6716 len--;
6717
6718 if (len < strlen(name) &&
6719 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6720 vfs_list_unlock();
6721 if (write)
6722 *write = 0;
6723 return (1);
6724 }
6725 }
6726 vfsp = vfsp->vfs_zone_next;
6727 } while (vfsp != zone->zone_vfslist);
6728
6729 vfs_list_unlock();
6730 return (0);
6731 }
6732
6733 /*
6734 * zone_find_by_any_path() -
6735 *
6736 * kernel-private routine similar to zone_find_by_path(), but which
6737 * effectively compares against zone paths rather than zonerootpath
6738 * (i.e., the last component of zonerootpaths, which should be "root/",
6739 * are not compared.) This is done in order to accurately identify all
6740 * paths, whether zone-visible or not, including those which are parallel
6741 * to /root/, such as /dev/, /home/, etc...
6742 *
6743 * If the specified path does not fall under any zone path then global
6744 * zone is returned.
6745 *
6746 * The treat_abs parameter indicates whether the path should be treated as
6747 * an absolute path although it does not begin with "/". (This supports
6748 * nfs mount syntax such as host:any/path.)
6749 *
6750 * The caller is responsible for zone_rele of the returned zone.
6751 */
6752 zone_t *
zone_find_by_any_path(const char * path,boolean_t treat_abs)6753 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6754 {
6755 zone_t *zone;
6756 int path_offset = 0;
6757
6758 if (path == NULL) {
6759 zone_hold(global_zone);
6760 return (global_zone);
6761 }
6762
6763 if (*path != '/') {
6764 ASSERT(treat_abs);
6765 path_offset = 1;
6766 }
6767
6768 mutex_enter(&zonehash_lock);
6769 for (zone = list_head(&zone_active); zone != NULL;
6770 zone = list_next(&zone_active, zone)) {
6771 char *c;
6772 size_t pathlen;
6773 char *rootpath_start;
6774
6775 if (zone == global_zone) /* skip global zone */
6776 continue;
6777
6778 /* scan backwards to find start of last component */
6779 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6780 do {
6781 c--;
6782 } while (*c != '/');
6783
6784 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6785 rootpath_start = (zone->zone_rootpath + path_offset);
6786 if (strncmp(path, rootpath_start, pathlen) == 0)
6787 break;
6788 }
6789 if (zone == NULL)
6790 zone = global_zone;
6791 zone_hold(zone);
6792 mutex_exit(&zonehash_lock);
6793 return (zone);
6794 }
6795
6796 /*
6797 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6798 * zone_dl_t pointer if found, and NULL otherwise.
6799 */
6800 static zone_dl_t *
zone_find_dl(zone_t * zone,datalink_id_t linkid)6801 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6802 {
6803 zone_dl_t *zdl;
6804
6805 ASSERT(mutex_owned(&zone->zone_lock));
6806 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6807 zdl = list_next(&zone->zone_dl_list, zdl)) {
6808 if (zdl->zdl_id == linkid)
6809 break;
6810 }
6811 return (zdl);
6812 }
6813
6814 static boolean_t
zone_dl_exists(zone_t * zone,datalink_id_t linkid)6815 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6816 {
6817 boolean_t exists;
6818
6819 mutex_enter(&zone->zone_lock);
6820 exists = (zone_find_dl(zone, linkid) != NULL);
6821 mutex_exit(&zone->zone_lock);
6822 return (exists);
6823 }
6824
6825 /*
6826 * Add an data link name for the zone.
6827 */
6828 static int
zone_add_datalink(zoneid_t zoneid,datalink_id_t linkid)6829 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6830 {
6831 zone_dl_t *zdl;
6832 zone_t *zone;
6833 zone_t *thiszone;
6834
6835 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6836 return (set_errno(ENXIO));
6837
6838 /* Verify that the datalink ID doesn't already belong to a zone. */
6839 mutex_enter(&zonehash_lock);
6840 for (zone = list_head(&zone_active); zone != NULL;
6841 zone = list_next(&zone_active, zone)) {
6842 if (zone_dl_exists(zone, linkid)) {
6843 mutex_exit(&zonehash_lock);
6844 zone_rele(thiszone);
6845 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6846 }
6847 }
6848
6849 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6850 zdl->zdl_id = linkid;
6851 zdl->zdl_net = NULL;
6852 mutex_enter(&thiszone->zone_lock);
6853 list_insert_head(&thiszone->zone_dl_list, zdl);
6854 mutex_exit(&thiszone->zone_lock);
6855 mutex_exit(&zonehash_lock);
6856 zone_rele(thiszone);
6857 return (0);
6858 }
6859
6860 static int
zone_remove_datalink(zoneid_t zoneid,datalink_id_t linkid)6861 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6862 {
6863 zone_dl_t *zdl;
6864 zone_t *zone;
6865 int err = 0;
6866
6867 if ((zone = zone_find_by_id(zoneid)) == NULL)
6868 return (set_errno(EINVAL));
6869
6870 mutex_enter(&zone->zone_lock);
6871 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6872 err = ENXIO;
6873 } else {
6874 list_remove(&zone->zone_dl_list, zdl);
6875 nvlist_free(zdl->zdl_net);
6876 kmem_free(zdl, sizeof (zone_dl_t));
6877 }
6878 mutex_exit(&zone->zone_lock);
6879 zone_rele(zone);
6880 return (err == 0 ? 0 : set_errno(err));
6881 }
6882
6883 /*
6884 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6885 * the linkid. Otherwise we just check if the specified zoneidp has been
6886 * assigned the supplied linkid.
6887 */
6888 int
zone_check_datalink(zoneid_t * zoneidp,datalink_id_t linkid)6889 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6890 {
6891 zone_t *zone;
6892 int err = ENXIO;
6893
6894 if (*zoneidp != ALL_ZONES) {
6895 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6896 if (zone_dl_exists(zone, linkid))
6897 err = 0;
6898 zone_rele(zone);
6899 }
6900 return (err);
6901 }
6902
6903 mutex_enter(&zonehash_lock);
6904 for (zone = list_head(&zone_active); zone != NULL;
6905 zone = list_next(&zone_active, zone)) {
6906 if (zone_dl_exists(zone, linkid)) {
6907 *zoneidp = zone->zone_id;
6908 err = 0;
6909 break;
6910 }
6911 }
6912 mutex_exit(&zonehash_lock);
6913 return (err);
6914 }
6915
6916 /*
6917 * Get the list of datalink IDs assigned to a zone.
6918 *
6919 * On input, *nump is the number of datalink IDs that can fit in the supplied
6920 * idarray. Upon return, *nump is either set to the number of datalink IDs
6921 * that were placed in the array if the array was large enough, or to the
6922 * number of datalink IDs that the function needs to place in the array if the
6923 * array is too small.
6924 */
6925 static int
zone_list_datalink(zoneid_t zoneid,int * nump,datalink_id_t * idarray)6926 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6927 {
6928 uint_t num, dlcount;
6929 zone_t *zone;
6930 zone_dl_t *zdl;
6931 datalink_id_t *idptr = idarray;
6932
6933 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6934 return (set_errno(EFAULT));
6935 if ((zone = zone_find_by_id(zoneid)) == NULL)
6936 return (set_errno(ENXIO));
6937
6938 num = 0;
6939 mutex_enter(&zone->zone_lock);
6940 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6941 zdl = list_next(&zone->zone_dl_list, zdl)) {
6942 /*
6943 * If the list is bigger than what the caller supplied, just
6944 * count, don't do copyout.
6945 */
6946 if (++num > dlcount)
6947 continue;
6948 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6949 mutex_exit(&zone->zone_lock);
6950 zone_rele(zone);
6951 return (set_errno(EFAULT));
6952 }
6953 idptr++;
6954 }
6955 mutex_exit(&zone->zone_lock);
6956 zone_rele(zone);
6957
6958 /* Increased or decreased, caller should be notified. */
6959 if (num != dlcount) {
6960 if (copyout(&num, nump, sizeof (num)) != 0)
6961 return (set_errno(EFAULT));
6962 }
6963 return (0);
6964 }
6965
6966 /*
6967 * Public interface for looking up a zone by zoneid. It's a customized version
6968 * for netstack_zone_create(). It can only be called from the zsd create
6969 * callbacks, since it doesn't have reference on the zone structure hence if
6970 * it is called elsewhere the zone could disappear after the zonehash_lock
6971 * is dropped.
6972 *
6973 * Furthermore it
6974 * 1. Doesn't check the status of the zone.
6975 * 2. It will be called even before zone_init is called, in that case the
6976 * address of zone0 is returned directly, and netstack_zone_create()
6977 * will only assign a value to zone0.zone_netstack, won't break anything.
6978 * 3. Returns without the zone being held.
6979 */
6980 zone_t *
zone_find_by_id_nolock(zoneid_t zoneid)6981 zone_find_by_id_nolock(zoneid_t zoneid)
6982 {
6983 zone_t *zone;
6984
6985 mutex_enter(&zonehash_lock);
6986 if (zonehashbyid == NULL)
6987 zone = &zone0;
6988 else
6989 zone = zone_find_all_by_id(zoneid);
6990 mutex_exit(&zonehash_lock);
6991 return (zone);
6992 }
6993
6994 /*
6995 * Walk the datalinks for a given zone
6996 */
6997 int
zone_datalink_walk(zoneid_t zoneid,int (* cb)(datalink_id_t,void *),void * data)6998 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6999 void *data)
7000 {
7001 zone_t *zone;
7002 zone_dl_t *zdl;
7003 datalink_id_t *idarray;
7004 uint_t idcount = 0;
7005 int i, ret = 0;
7006
7007 if ((zone = zone_find_by_id(zoneid)) == NULL)
7008 return (ENOENT);
7009
7010 /*
7011 * We first build an array of linkid's so that we can walk these and
7012 * execute the callback with the zone_lock dropped.
7013 */
7014 mutex_enter(&zone->zone_lock);
7015 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7016 zdl = list_next(&zone->zone_dl_list, zdl)) {
7017 idcount++;
7018 }
7019
7020 if (idcount == 0) {
7021 mutex_exit(&zone->zone_lock);
7022 zone_rele(zone);
7023 return (0);
7024 }
7025
7026 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7027 if (idarray == NULL) {
7028 mutex_exit(&zone->zone_lock);
7029 zone_rele(zone);
7030 return (ENOMEM);
7031 }
7032
7033 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7034 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7035 idarray[i] = zdl->zdl_id;
7036 }
7037
7038 mutex_exit(&zone->zone_lock);
7039
7040 for (i = 0; i < idcount && ret == 0; i++) {
7041 if ((ret = (*cb)(idarray[i], data)) != 0)
7042 break;
7043 }
7044
7045 zone_rele(zone);
7046 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7047 return (ret);
7048 }
7049
7050 static char *
zone_net_type2name(int type)7051 zone_net_type2name(int type)
7052 {
7053 switch (type) {
7054 case ZONE_NETWORK_ADDRESS:
7055 return (ZONE_NET_ADDRNAME);
7056 case ZONE_NETWORK_DEFROUTER:
7057 return (ZONE_NET_RTRNAME);
7058 default:
7059 return (NULL);
7060 }
7061 }
7062
7063 static int
zone_set_network(zoneid_t zoneid,zone_net_data_t * znbuf)7064 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7065 {
7066 zone_t *zone;
7067 zone_dl_t *zdl;
7068 nvlist_t *nvl;
7069 int err = 0;
7070 uint8_t *new = NULL;
7071 char *nvname;
7072 int bufsize;
7073 datalink_id_t linkid = znbuf->zn_linkid;
7074
7075 if (secpolicy_zone_config(CRED()) != 0)
7076 return (set_errno(EPERM));
7077
7078 if (zoneid == GLOBAL_ZONEID)
7079 return (set_errno(EINVAL));
7080
7081 nvname = zone_net_type2name(znbuf->zn_type);
7082 bufsize = znbuf->zn_len;
7083 new = znbuf->zn_val;
7084 if (nvname == NULL)
7085 return (set_errno(EINVAL));
7086
7087 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7088 return (set_errno(EINVAL));
7089 }
7090
7091 mutex_enter(&zone->zone_lock);
7092 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7093 err = ENXIO;
7094 goto done;
7095 }
7096 if ((nvl = zdl->zdl_net) == NULL) {
7097 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7098 err = ENOMEM;
7099 goto done;
7100 } else {
7101 zdl->zdl_net = nvl;
7102 }
7103 }
7104 if (nvlist_exists(nvl, nvname)) {
7105 err = EINVAL;
7106 goto done;
7107 }
7108 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7109 ASSERT(err == 0);
7110 done:
7111 mutex_exit(&zone->zone_lock);
7112 zone_rele(zone);
7113 if (err != 0)
7114 return (set_errno(err));
7115 else
7116 return (0);
7117 }
7118
7119 static int
zone_get_network(zoneid_t zoneid,zone_net_data_t * znbuf)7120 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7121 {
7122 zone_t *zone;
7123 zone_dl_t *zdl;
7124 nvlist_t *nvl;
7125 uint8_t *ptr;
7126 uint_t psize;
7127 int err = 0;
7128 char *nvname;
7129 int bufsize;
7130 void *buf;
7131 datalink_id_t linkid = znbuf->zn_linkid;
7132
7133 if (zoneid == GLOBAL_ZONEID)
7134 return (set_errno(EINVAL));
7135
7136 nvname = zone_net_type2name(znbuf->zn_type);
7137 bufsize = znbuf->zn_len;
7138 buf = znbuf->zn_val;
7139
7140 if (nvname == NULL)
7141 return (set_errno(EINVAL));
7142 if ((zone = zone_find_by_id(zoneid)) == NULL)
7143 return (set_errno(EINVAL));
7144
7145 mutex_enter(&zone->zone_lock);
7146 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7147 err = ENXIO;
7148 goto done;
7149 }
7150 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7151 err = ENOENT;
7152 goto done;
7153 }
7154 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7155 ASSERT(err == 0);
7156
7157 if (psize > bufsize) {
7158 err = ENOBUFS;
7159 goto done;
7160 }
7161 znbuf->zn_len = psize;
7162 bcopy(ptr, buf, psize);
7163 done:
7164 mutex_exit(&zone->zone_lock);
7165 zone_rele(zone);
7166 if (err != 0)
7167 return (set_errno(err));
7168 else
7169 return (0);
7170 }
7171