xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_removal.c (revision d2a8fad3579763bd288260c8c465ab9eb448d465)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51 
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82 
83 typedef struct vdev_copy_arg {
84 	metaslab_t	*vca_msp;
85 	uint64_t	vca_outstanding_bytes;
86 	uint64_t	vca_read_error_bytes;
87 	uint64_t	vca_write_error_bytes;
88 	kcondvar_t	vca_cv;
89 	kmutex_t	vca_lock;
90 } vdev_copy_arg_t;
91 
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108 
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 static int zfs_removal_ignore_errors = 0;
116 
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 uint_t vdev_removal_max_span = 32 * 1024;
134 
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140 
141 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
142 
143 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145 
146 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 	    DMU_POOL_DIRECTORY_OBJECT,
151 	    DMU_POOL_REMOVING, sizeof (uint64_t),
152 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 	    &spa->spa_removing_phys, tx));
154 }
155 
156 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 	for (int i = 0; i < count; i++) {
160 		uint64_t guid =
161 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162 
163 		if (guid == target_guid)
164 			return (nvpp[i]);
165 	}
166 
167 	return (NULL);
168 }
169 
170 static void
vdev_activate(vdev_t * vd)171 vdev_activate(vdev_t *vd)
172 {
173 	metaslab_group_t *mg = vd->vdev_mg;
174 	spa_t *spa = vd->vdev_spa;
175 	uint64_t vdev_space = spa_deflate(spa) ?
176 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
177 
178 	ASSERT(!vd->vdev_islog);
179 	ASSERT(vd->vdev_noalloc);
180 
181 	metaslab_group_activate(mg);
182 	metaslab_group_activate(vd->vdev_log_mg);
183 
184 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
185 
186 	spa->spa_nonallocating_dspace -= vdev_space;
187 
188 	vd->vdev_noalloc = B_FALSE;
189 }
190 
191 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)192 vdev_passivate(vdev_t *vd, uint64_t *txg)
193 {
194 	spa_t *spa = vd->vdev_spa;
195 	int error;
196 
197 	ASSERT(!vd->vdev_noalloc);
198 
199 	vdev_t *rvd = spa->spa_root_vdev;
200 	metaslab_group_t *mg = vd->vdev_mg;
201 	metaslab_class_t *normal = spa_normal_class(spa);
202 	if (mg->mg_class == normal) {
203 		/*
204 		 * We must check that this is not the only allocating device in
205 		 * the pool before passivating, otherwise we will not be able
206 		 * to make progress because we can't allocate from any vdevs.
207 		 */
208 		boolean_t last = B_TRUE;
209 		for (uint64_t id = 0; id < rvd->vdev_children; id++) {
210 			vdev_t *cvd = rvd->vdev_child[id];
211 
212 			if (cvd == vd || !vdev_is_concrete(cvd) ||
213 			    vdev_is_dead(cvd))
214 				continue;
215 
216 			metaslab_class_t *mc = cvd->vdev_mg->mg_class;
217 			if (mc != normal)
218 				continue;
219 
220 			if (!cvd->vdev_noalloc) {
221 				last = B_FALSE;
222 				break;
223 			}
224 		}
225 		if (last)
226 			return (SET_ERROR(EINVAL));
227 	}
228 
229 	metaslab_group_passivate(mg);
230 	ASSERT(!vd->vdev_islog);
231 	metaslab_group_passivate(vd->vdev_log_mg);
232 
233 	/*
234 	 * Wait for the youngest allocations and frees to sync,
235 	 * and then wait for the deferral of those frees to finish.
236 	 */
237 	spa_vdev_config_exit(spa, NULL,
238 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
239 
240 	/*
241 	 * We must ensure that no "stubby" log blocks are allocated
242 	 * on the device to be removed.  These blocks could be
243 	 * written at any time, including while we are in the middle
244 	 * of copying them.
245 	 */
246 	error = spa_reset_logs(spa);
247 
248 	*txg = spa_vdev_config_enter(spa);
249 
250 	if (error != 0) {
251 		metaslab_group_activate(mg);
252 		ASSERT(!vd->vdev_islog);
253 		if (vd->vdev_log_mg != NULL)
254 			metaslab_group_activate(vd->vdev_log_mg);
255 		return (error);
256 	}
257 
258 	spa->spa_nonallocating_dspace += spa_deflate(spa) ?
259 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
260 	vd->vdev_noalloc = B_TRUE;
261 
262 	return (0);
263 }
264 
265 /*
266  * Turn off allocations for a top-level device from the pool.
267  *
268  * Turning off allocations for a top-level device can take a significant
269  * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270  * functions which allow us to grab and release the spa_config_lock while
271  * still holding the namespace lock. During each step the configuration
272  * is synced out.
273  */
274 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
276 {
277 	vdev_t *vd;
278 	uint64_t txg;
279 	int error = 0;
280 
281 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
282 	ASSERT(spa_writeable(spa));
283 
284 	txg = spa_vdev_enter(spa);
285 
286 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
287 
288 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
289 
290 	if (vd == NULL)
291 		error = SET_ERROR(ENOENT);
292 	else if (vd->vdev_mg == NULL)
293 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
294 	else if (!vd->vdev_noalloc)
295 		error = vdev_passivate(vd, &txg);
296 
297 	if (error == 0) {
298 		vdev_dirty_leaves(vd, VDD_DTL, txg);
299 		vdev_config_dirty(vd);
300 	}
301 
302 	error = spa_vdev_exit(spa, NULL, txg, error);
303 
304 	return (error);
305 }
306 
307 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
309 {
310 	vdev_t *vd;
311 	uint64_t txg;
312 	int error = 0;
313 
314 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
315 	ASSERT(spa_writeable(spa));
316 
317 	txg = spa_vdev_enter(spa);
318 
319 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
320 
321 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
322 
323 	if (vd == NULL)
324 		error = SET_ERROR(ENOENT);
325 	else if (vd->vdev_mg == NULL)
326 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
327 	else if (!vd->vdev_removing)
328 		vdev_activate(vd);
329 
330 	if (error == 0) {
331 		vdev_dirty_leaves(vd, VDD_DTL, txg);
332 		vdev_config_dirty(vd);
333 	}
334 
335 	(void) spa_vdev_exit(spa, NULL, txg, error);
336 
337 	return (error);
338 }
339 
340 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)341 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
342     int count, nvlist_t *dev_to_remove)
343 {
344 	nvlist_t **newdev = NULL;
345 
346 	if (count > 1)
347 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
348 
349 	for (int i = 0, j = 0; i < count; i++) {
350 		if (dev[i] == dev_to_remove)
351 			continue;
352 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
353 	}
354 
355 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
356 	fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
357 	    count - 1);
358 
359 	for (int i = 0; i < count - 1; i++)
360 		nvlist_free(newdev[i]);
361 
362 	if (count > 1)
363 		kmem_free(newdev, (count - 1) * sizeof (void *));
364 }
365 
366 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)367 spa_vdev_removal_create(vdev_t *vd)
368 {
369 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
370 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
371 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
372 	svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
373 	    NULL, 0, 0);
374 	svr->svr_vdev_id = vd->vdev_id;
375 
376 	for (int i = 0; i < TXG_SIZE; i++) {
377 		svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
378 		    NULL, 0, 0);
379 		list_create(&svr->svr_new_segments[i],
380 		    sizeof (vdev_indirect_mapping_entry_t),
381 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
382 	}
383 
384 	return (svr);
385 }
386 
387 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)388 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
389 {
390 	for (int i = 0; i < TXG_SIZE; i++) {
391 		ASSERT0(svr->svr_bytes_done[i]);
392 		ASSERT0(svr->svr_max_offset_to_sync[i]);
393 		zfs_range_tree_destroy(svr->svr_frees[i]);
394 		list_destroy(&svr->svr_new_segments[i]);
395 	}
396 
397 	zfs_range_tree_destroy(svr->svr_allocd_segs);
398 	mutex_destroy(&svr->svr_lock);
399 	cv_destroy(&svr->svr_cv);
400 	kmem_free(svr, sizeof (*svr));
401 }
402 
403 /*
404  * This is called as a synctask in the txg in which we will mark this vdev
405  * as removing (in the config stored in the MOS).
406  *
407  * It begins the evacuation of a toplevel vdev by:
408  * - initializing the spa_removing_phys which tracks this removal
409  * - computing the amount of space to remove for accounting purposes
410  * - dirtying all dbufs in the spa_config_object
411  * - creating the spa_vdev_removal
412  * - starting the spa_vdev_remove_thread
413  */
414 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)415 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
416 {
417 	int vdev_id = (uintptr_t)arg;
418 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
419 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
420 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
421 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
422 	spa_vdev_removal_t *svr = NULL;
423 	uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
424 
425 	ASSERT0(vdev_get_nparity(vd));
426 	svr = spa_vdev_removal_create(vd);
427 
428 	ASSERT(vd->vdev_removing);
429 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
430 
431 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
432 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
433 		/*
434 		 * By activating the OBSOLETE_COUNTS feature, we prevent
435 		 * the pool from being downgraded and ensure that the
436 		 * refcounts are precise.
437 		 */
438 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
439 		uint64_t one = 1;
440 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
441 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
442 		    &one, tx));
443 		boolean_t are_precise __maybe_unused;
444 		ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
445 		ASSERT3B(are_precise, ==, B_TRUE);
446 	}
447 
448 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
449 	vd->vdev_indirect_mapping =
450 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
451 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
452 	vd->vdev_indirect_births =
453 	    vdev_indirect_births_open(mos, vic->vic_births_object);
454 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
455 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
456 	spa->spa_removing_phys.sr_end_time = 0;
457 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
458 	spa->spa_removing_phys.sr_to_copy = 0;
459 	spa->spa_removing_phys.sr_copied = 0;
460 
461 	/*
462 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
463 	 * there may be space in the defer tree, which is free, but still
464 	 * counted in vs_alloc.
465 	 */
466 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
467 		metaslab_t *ms = vd->vdev_ms[i];
468 		if (ms->ms_sm == NULL)
469 			continue;
470 
471 		spa->spa_removing_phys.sr_to_copy +=
472 		    metaslab_allocated_space(ms);
473 
474 		/*
475 		 * Space which we are freeing this txg does not need to
476 		 * be copied.
477 		 */
478 		spa->spa_removing_phys.sr_to_copy -=
479 		    zfs_range_tree_space(ms->ms_freeing);
480 
481 		ASSERT0(zfs_range_tree_space(ms->ms_freed));
482 		for (int t = 0; t < TXG_SIZE; t++)
483 			ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
484 	}
485 
486 	/*
487 	 * Sync tasks are called before metaslab_sync(), so there should
488 	 * be no already-synced metaslabs in the TXG_CLEAN list.
489 	 */
490 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
491 
492 	spa_sync_removing_state(spa, tx);
493 
494 	/*
495 	 * All blocks that we need to read the most recent mapping must be
496 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
497 	 * is read before spa_remove_init().  Specifically, the
498 	 * spa_config_object.  (Note that although we already modified the
499 	 * spa_config_object in spa_sync_removing_state, that may not have
500 	 * modified all blocks of the object.)
501 	 */
502 	dmu_object_info_t doi;
503 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
504 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
505 		dmu_buf_t *dbuf;
506 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
507 		    offset, FTAG, &dbuf, 0));
508 		dmu_buf_will_dirty(dbuf, tx);
509 		offset += dbuf->db_size;
510 		dmu_buf_rele(dbuf, FTAG);
511 	}
512 
513 	/*
514 	 * Now that we've allocated the im_object, dirty the vdev to ensure
515 	 * that the object gets written to the config on disk.
516 	 */
517 	vdev_config_dirty(vd);
518 
519 	zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
520 	    "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
521 	    (u_longlong_t)dmu_tx_get_txg(tx),
522 	    (u_longlong_t)vic->vic_mapping_object);
523 
524 	spa_history_log_internal(spa, "vdev remove started", tx,
525 	    "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
526 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
527 	/*
528 	 * Setting spa_vdev_removal causes subsequent frees to call
529 	 * free_from_removing_vdev().  Note that we don't need any locking
530 	 * because we are the sync thread, and metaslab_free_impl() is only
531 	 * called from syncing context (potentially from a zio taskq thread,
532 	 * but in any case only when there are outstanding free i/os, which
533 	 * there are not).
534 	 */
535 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
536 	spa->spa_vdev_removal = svr;
537 	svr->svr_thread = thread_create(NULL, 0,
538 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
539 }
540 
541 /*
542  * When we are opening a pool, we must read the mapping for each
543  * indirect vdev in order from most recently removed to least
544  * recently removed.  We do this because the blocks for the mapping
545  * of older indirect vdevs may be stored on more recently removed vdevs.
546  * In order to read each indirect mapping object, we must have
547  * initialized all more recently removed vdevs.
548  */
549 int
spa_remove_init(spa_t * spa)550 spa_remove_init(spa_t *spa)
551 {
552 	int error;
553 
554 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
555 	    DMU_POOL_DIRECTORY_OBJECT,
556 	    DMU_POOL_REMOVING, sizeof (uint64_t),
557 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
558 	    &spa->spa_removing_phys);
559 
560 	if (error == ENOENT) {
561 		spa->spa_removing_phys.sr_state = DSS_NONE;
562 		spa->spa_removing_phys.sr_removing_vdev = -1;
563 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
564 		spa->spa_indirect_vdevs_loaded = B_TRUE;
565 		return (0);
566 	} else if (error != 0) {
567 		return (error);
568 	}
569 
570 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
571 		/*
572 		 * We are currently removing a vdev.  Create and
573 		 * initialize a spa_vdev_removal_t from the bonus
574 		 * buffer of the removing vdevs vdev_im_object, and
575 		 * initialize its partial mapping.
576 		 */
577 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
578 		vdev_t *vd = vdev_lookup_top(spa,
579 		    spa->spa_removing_phys.sr_removing_vdev);
580 
581 		if (vd == NULL) {
582 			spa_config_exit(spa, SCL_STATE, FTAG);
583 			return (EINVAL);
584 		}
585 
586 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
587 
588 		ASSERT(vdev_is_concrete(vd));
589 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
590 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
591 		ASSERT(vd->vdev_removing);
592 
593 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
594 		    spa->spa_meta_objset, vic->vic_mapping_object);
595 		vd->vdev_indirect_births = vdev_indirect_births_open(
596 		    spa->spa_meta_objset, vic->vic_births_object);
597 		spa_config_exit(spa, SCL_STATE, FTAG);
598 
599 		spa->spa_vdev_removal = svr;
600 	}
601 
602 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
603 	uint64_t indirect_vdev_id =
604 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
605 	while (indirect_vdev_id != UINT64_MAX) {
606 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
607 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
608 
609 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
610 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
611 		    spa->spa_meta_objset, vic->vic_mapping_object);
612 		vd->vdev_indirect_births = vdev_indirect_births_open(
613 		    spa->spa_meta_objset, vic->vic_births_object);
614 
615 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
616 	}
617 	spa_config_exit(spa, SCL_STATE, FTAG);
618 
619 	/*
620 	 * Now that we've loaded all the indirect mappings, we can allow
621 	 * reads from other blocks (e.g. via predictive prefetch).
622 	 */
623 	spa->spa_indirect_vdevs_loaded = B_TRUE;
624 	return (0);
625 }
626 
627 void
spa_restart_removal(spa_t * spa)628 spa_restart_removal(spa_t *spa)
629 {
630 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
631 
632 	if (svr == NULL)
633 		return;
634 
635 	/*
636 	 * In general when this function is called there is no
637 	 * removal thread running. The only scenario where this
638 	 * is not true is during spa_import() where this function
639 	 * is called twice [once from spa_import_impl() and
640 	 * spa_async_resume()]. Thus, in the scenario where we
641 	 * import a pool that has an ongoing removal we don't
642 	 * want to spawn a second thread.
643 	 */
644 	if (svr->svr_thread != NULL)
645 		return;
646 
647 	if (!spa_writeable(spa))
648 		return;
649 
650 	zfs_dbgmsg("restarting removal of %llu",
651 	    (u_longlong_t)svr->svr_vdev_id);
652 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
653 	    0, &p0, TS_RUN, minclsyspri);
654 }
655 
656 /*
657  * Process freeing from a device which is in the middle of being removed.
658  * We must handle this carefully so that we attempt to copy freed data,
659  * and we correctly free already-copied data.
660  */
661 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)662 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
663 {
664 	spa_t *spa = vd->vdev_spa;
665 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
666 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
667 	uint64_t txg = spa_syncing_txg(spa);
668 	uint64_t max_offset_yet = 0;
669 
670 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
671 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
672 	    vdev_indirect_mapping_object(vim));
673 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
674 
675 	mutex_enter(&svr->svr_lock);
676 
677 	/*
678 	 * Remove the segment from the removing vdev's spacemap.  This
679 	 * ensures that we will not attempt to copy this space (if the
680 	 * removal thread has not yet visited it), and also ensures
681 	 * that we know what is actually allocated on the new vdevs
682 	 * (needed if we cancel the removal).
683 	 *
684 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
685 	 * held, so that the remove_thread can not load this metaslab and then
686 	 * visit this offset between the time that we metaslab_free_concrete()
687 	 * and when we check to see if it has been visited.
688 	 *
689 	 * Note: The checkpoint flag is set to false as having/taking
690 	 * a checkpoint and removing a device can't happen at the same
691 	 * time.
692 	 */
693 	ASSERT(!spa_has_checkpoint(spa));
694 	metaslab_free_concrete(vd, offset, size, B_FALSE);
695 
696 	uint64_t synced_size = 0;
697 	uint64_t synced_offset = 0;
698 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
699 	if (offset < max_offset_synced) {
700 		/*
701 		 * The mapping for this offset is already on disk.
702 		 * Free from the new location.
703 		 *
704 		 * Note that we use svr_max_synced_offset because it is
705 		 * updated atomically with respect to the in-core mapping.
706 		 * By contrast, vim_max_offset is not.
707 		 *
708 		 * This block may be split between a synced entry and an
709 		 * in-flight or unvisited entry.  Only process the synced
710 		 * portion of it here.
711 		 */
712 		synced_size = MIN(size, max_offset_synced - offset);
713 		synced_offset = offset;
714 
715 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
716 		max_offset_yet = max_offset_synced;
717 
718 		DTRACE_PROBE3(remove__free__synced,
719 		    spa_t *, spa,
720 		    uint64_t, offset,
721 		    uint64_t, synced_size);
722 
723 		size -= synced_size;
724 		offset += synced_size;
725 	}
726 
727 	/*
728 	 * Look at all in-flight txgs starting from the currently syncing one
729 	 * and see if a section of this free is being copied. By starting from
730 	 * this txg and iterating forward, we might find that this region
731 	 * was copied in two different txgs and handle it appropriately.
732 	 */
733 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
734 		int txgoff = (txg + i) & TXG_MASK;
735 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
736 			/*
737 			 * The mapping for this offset is in flight, and
738 			 * will be synced in txg+i.
739 			 */
740 			uint64_t inflight_size = MIN(size,
741 			    svr->svr_max_offset_to_sync[txgoff] - offset);
742 
743 			DTRACE_PROBE4(remove__free__inflight,
744 			    spa_t *, spa,
745 			    uint64_t, offset,
746 			    uint64_t, inflight_size,
747 			    uint64_t, txg + i);
748 
749 			/*
750 			 * We copy data in order of increasing offset.
751 			 * Therefore the max_offset_to_sync[] must increase
752 			 * (or be zero, indicating that nothing is being
753 			 * copied in that txg).
754 			 */
755 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
756 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
757 				    >=, max_offset_yet);
758 				max_offset_yet =
759 				    svr->svr_max_offset_to_sync[txgoff];
760 			}
761 
762 			/*
763 			 * We've already committed to copying this segment:
764 			 * we have allocated space elsewhere in the pool for
765 			 * it and have an IO outstanding to copy the data. We
766 			 * cannot free the space before the copy has
767 			 * completed, or else the copy IO might overwrite any
768 			 * new data. To free that space, we record the
769 			 * segment in the appropriate svr_frees tree and free
770 			 * the mapped space later, in the txg where we have
771 			 * completed the copy and synced the mapping (see
772 			 * vdev_mapping_sync).
773 			 */
774 			zfs_range_tree_add(svr->svr_frees[txgoff],
775 			    offset, inflight_size);
776 			size -= inflight_size;
777 			offset += inflight_size;
778 
779 			/*
780 			 * This space is already accounted for as being
781 			 * done, because it is being copied in txg+i.
782 			 * However, if i!=0, then it is being copied in
783 			 * a future txg.  If we crash after this txg
784 			 * syncs but before txg+i syncs, then the space
785 			 * will be free.  Therefore we must account
786 			 * for the space being done in *this* txg
787 			 * (when it is freed) rather than the future txg
788 			 * (when it will be copied).
789 			 */
790 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
791 			    inflight_size);
792 			svr->svr_bytes_done[txgoff] -= inflight_size;
793 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
794 		}
795 	}
796 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
797 
798 	if (size > 0) {
799 		/*
800 		 * The copy thread has not yet visited this offset.  Ensure
801 		 * that it doesn't.
802 		 */
803 
804 		DTRACE_PROBE3(remove__free__unvisited,
805 		    spa_t *, spa,
806 		    uint64_t, offset,
807 		    uint64_t, size);
808 
809 		if (svr->svr_allocd_segs != NULL)
810 			zfs_range_tree_clear(svr->svr_allocd_segs, offset,
811 			    size);
812 
813 		/*
814 		 * Since we now do not need to copy this data, for
815 		 * accounting purposes we have done our job and can count
816 		 * it as completed.
817 		 */
818 		svr->svr_bytes_done[txg & TXG_MASK] += size;
819 	}
820 	mutex_exit(&svr->svr_lock);
821 
822 	/*
823 	 * Now that we have dropped svr_lock, process the synced portion
824 	 * of this free.
825 	 */
826 	if (synced_size > 0) {
827 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
828 
829 		/*
830 		 * Note: this can only be called from syncing context,
831 		 * and the vdev_indirect_mapping is only changed from the
832 		 * sync thread, so we don't need svr_lock while doing
833 		 * metaslab_free_impl_cb.
834 		 */
835 		boolean_t checkpoint = B_FALSE;
836 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
837 		    metaslab_free_impl_cb, &checkpoint);
838 	}
839 }
840 
841 /*
842  * Stop an active removal and update the spa_removing phys.
843  */
844 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)845 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
846 {
847 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
848 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
849 
850 	/* Ensure the removal thread has completed before we free the svr. */
851 	spa_vdev_remove_suspend(spa);
852 
853 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
854 
855 	if (state == DSS_FINISHED) {
856 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
857 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
858 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
859 
860 		if (srp->sr_prev_indirect_vdev != -1) {
861 			vdev_t *pvd;
862 			pvd = vdev_lookup_top(spa,
863 			    srp->sr_prev_indirect_vdev);
864 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
865 		}
866 
867 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
868 		srp->sr_prev_indirect_vdev = vd->vdev_id;
869 	}
870 	spa->spa_removing_phys.sr_state = state;
871 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
872 
873 	spa->spa_vdev_removal = NULL;
874 	spa_vdev_removal_destroy(svr);
875 
876 	spa_sync_removing_state(spa, tx);
877 	spa_notify_waiters(spa);
878 
879 	vdev_config_dirty(spa->spa_root_vdev);
880 }
881 
882 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)883 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
884 {
885 	vdev_t *vd = arg;
886 	vdev_indirect_mark_obsolete(vd, offset, size);
887 	boolean_t checkpoint = B_FALSE;
888 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
889 	    metaslab_free_impl_cb, &checkpoint);
890 }
891 
892 /*
893  * On behalf of the removal thread, syncs an incremental bit more of
894  * the indirect mapping to disk and updates the in-memory mapping.
895  * Called as a sync task in every txg that the removal thread makes progress.
896  */
897 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)898 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
899 {
900 	spa_vdev_removal_t *svr = arg;
901 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
902 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
903 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
904 	uint64_t txg = dmu_tx_get_txg(tx);
905 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
906 
907 	ASSERT(vic->vic_mapping_object != 0);
908 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
909 
910 	vdev_indirect_mapping_add_entries(vim,
911 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
912 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
913 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
914 
915 	/*
916 	 * Free the copied data for anything that was freed while the
917 	 * mapping entries were in flight.
918 	 */
919 	mutex_enter(&svr->svr_lock);
920 	zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
921 	    free_mapped_segment_cb, vd);
922 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
923 	    vdev_indirect_mapping_max_offset(vim));
924 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
925 	mutex_exit(&svr->svr_lock);
926 
927 	spa_sync_removing_state(spa, tx);
928 }
929 
930 typedef struct vdev_copy_segment_arg {
931 	spa_t *vcsa_spa;
932 	dva_t *vcsa_dest_dva;
933 	uint64_t vcsa_txg;
934 	zfs_range_tree_t *vcsa_obsolete_segs;
935 } vdev_copy_segment_arg_t;
936 
937 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)938 unalloc_seg(void *arg, uint64_t start, uint64_t size)
939 {
940 	vdev_copy_segment_arg_t *vcsa = arg;
941 	spa_t *spa = vcsa->vcsa_spa;
942 	blkptr_t bp = { { { {0} } } };
943 
944 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
945 	BP_SET_LSIZE(&bp, size);
946 	BP_SET_PSIZE(&bp, size);
947 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
948 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
949 	BP_SET_TYPE(&bp, DMU_OT_NONE);
950 	BP_SET_LEVEL(&bp, 0);
951 	BP_SET_DEDUP(&bp, 0);
952 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
953 
954 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
955 	DVA_SET_OFFSET(&bp.blk_dva[0],
956 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
957 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
958 
959 	zio_free(spa, vcsa->vcsa_txg, &bp);
960 }
961 
962 /*
963  * All reads and writes associated with a call to spa_vdev_copy_segment()
964  * are done.
965  */
966 static void
spa_vdev_copy_segment_done(zio_t * zio)967 spa_vdev_copy_segment_done(zio_t *zio)
968 {
969 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
970 
971 	zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
972 	    unalloc_seg, vcsa);
973 	zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
974 	kmem_free(vcsa, sizeof (*vcsa));
975 
976 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
977 }
978 
979 /*
980  * The write of the new location is done.
981  */
982 static void
spa_vdev_copy_segment_write_done(zio_t * zio)983 spa_vdev_copy_segment_write_done(zio_t *zio)
984 {
985 	vdev_copy_arg_t *vca = zio->io_private;
986 
987 	abd_free(zio->io_abd);
988 
989 	mutex_enter(&vca->vca_lock);
990 	vca->vca_outstanding_bytes -= zio->io_size;
991 
992 	if (zio->io_error != 0)
993 		vca->vca_write_error_bytes += zio->io_size;
994 
995 	cv_signal(&vca->vca_cv);
996 	mutex_exit(&vca->vca_lock);
997 }
998 
999 /*
1000  * The read of the old location is done.  The parent zio is the write to
1001  * the new location.  Allow it to start.
1002  */
1003 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1004 spa_vdev_copy_segment_read_done(zio_t *zio)
1005 {
1006 	vdev_copy_arg_t *vca = zio->io_private;
1007 
1008 	if (zio->io_error != 0) {
1009 		mutex_enter(&vca->vca_lock);
1010 		vca->vca_read_error_bytes += zio->io_size;
1011 		mutex_exit(&vca->vca_lock);
1012 	}
1013 
1014 	zio_nowait(zio_unique_parent(zio));
1015 }
1016 
1017 /*
1018  * If the old and new vdevs are mirrors, we will read both sides of the old
1019  * mirror, and write each copy to the corresponding side of the new mirror.
1020  * If the old and new vdevs have a different number of children, we will do
1021  * this as best as possible.  Since we aren't verifying checksums, this
1022  * ensures that as long as there's a good copy of the data, we'll have a
1023  * good copy after the removal, even if there's silent damage to one side
1024  * of the mirror. If we're removing a mirror that has some silent damage,
1025  * we'll have exactly the same damage in the new location (assuming that
1026  * the new location is also a mirror).
1027  *
1028  * We accomplish this by creating a tree of zio_t's, with as many writes as
1029  * there are "children" of the new vdev (a non-redundant vdev counts as one
1030  * child, a 2-way mirror has 2 children, etc). Each write has an associated
1031  * read from a child of the old vdev. Typically there will be the same
1032  * number of children of the old and new vdevs.  However, if there are more
1033  * children of the new vdev, some child(ren) of the old vdev will be issued
1034  * multiple reads.  If there are more children of the old vdev, some copies
1035  * will be dropped.
1036  *
1037  * For example, the tree of zio_t's for a 2-way mirror is:
1038  *
1039  *                            null
1040  *                           /    \
1041  *    write(new vdev, child 0)      write(new vdev, child 1)
1042  *      |                             |
1043  *    read(old vdev, child 0)       read(old vdev, child 1)
1044  *
1045  * Child zio's complete before their parents complete.  However, zio's
1046  * created with zio_vdev_child_io() may be issued before their children
1047  * complete.  In this case we need to make sure that the children (reads)
1048  * complete before the parents (writes) are *issued*.  We do this by not
1049  * calling zio_nowait() on each write until its corresponding read has
1050  * completed.
1051  *
1052  * The spa_config_lock must be held while zio's created by
1053  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1054  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1055  * zio is needed to release the spa_config_lock after all the reads and
1056  * writes complete. (Note that we can't grab the config lock for each read,
1057  * because it is not reentrant - we could deadlock with a thread waiting
1058  * for a write lock.)
1059  */
1060 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1061 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1062     vdev_t *source_vd, uint64_t source_offset,
1063     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1064 {
1065 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1066 
1067 	/*
1068 	 * If the destination child in unwritable then there is no point
1069 	 * in issuing the source reads which cannot be written.
1070 	 */
1071 	if (!vdev_writeable(dest_child_vd))
1072 		return;
1073 
1074 	mutex_enter(&vca->vca_lock);
1075 	vca->vca_outstanding_bytes += size;
1076 	mutex_exit(&vca->vca_lock);
1077 
1078 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1079 
1080 	vdev_t *source_child_vd = NULL;
1081 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1082 		/*
1083 		 * Source and dest are both mirrors.  Copy from the same
1084 		 * child id as we are copying to (wrapping around if there
1085 		 * are more dest children than source children).  If the
1086 		 * preferred source child is unreadable select another.
1087 		 */
1088 		for (int i = 0; i < source_vd->vdev_children; i++) {
1089 			source_child_vd = source_vd->vdev_child[
1090 			    (dest_id + i) % source_vd->vdev_children];
1091 			if (vdev_readable(source_child_vd))
1092 				break;
1093 		}
1094 	} else {
1095 		source_child_vd = source_vd;
1096 	}
1097 
1098 	/*
1099 	 * There should always be at least one readable source child or
1100 	 * the pool would be in a suspended state.  Somehow selecting an
1101 	 * unreadable child would result in IO errors, the removal process
1102 	 * being cancelled, and the pool reverting to its pre-removal state.
1103 	 */
1104 	ASSERT3P(source_child_vd, !=, NULL);
1105 
1106 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1107 	    dest_child_vd, dest_offset, abd, size,
1108 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1109 	    ZIO_FLAG_CANFAIL,
1110 	    spa_vdev_copy_segment_write_done, vca);
1111 
1112 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
1113 	    source_child_vd, source_offset, abd, size,
1114 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1115 	    ZIO_FLAG_CANFAIL,
1116 	    spa_vdev_copy_segment_read_done, vca));
1117 }
1118 
1119 /*
1120  * Allocate a new location for this segment, and create the zio_t's to
1121  * read from the old location and write to the new location.
1122  */
1123 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1124 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1125     uint64_t maxalloc, uint64_t txg,
1126     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1127 {
1128 	metaslab_group_t *mg = vd->vdev_mg;
1129 	spa_t *spa = vd->vdev_spa;
1130 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1131 	vdev_indirect_mapping_entry_t *entry;
1132 	dva_t dst = {{ 0 }};
1133 	uint64_t start = zfs_range_tree_min(segs);
1134 	ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1135 
1136 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1137 	ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1138 
1139 	uint64_t size = zfs_range_tree_span(segs);
1140 	if (zfs_range_tree_span(segs) > maxalloc) {
1141 		/*
1142 		 * We can't allocate all the segments.  Prefer to end
1143 		 * the allocation at the end of a segment, thus avoiding
1144 		 * additional split blocks.
1145 		 */
1146 		zfs_range_seg_max_t search;
1147 		zfs_btree_index_t where;
1148 		zfs_rs_set_start(&search, segs, start + maxalloc);
1149 		zfs_rs_set_end(&search, segs, start + maxalloc);
1150 		(void) zfs_btree_find(&segs->rt_root, &search, &where);
1151 		zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1152 		    &where);
1153 		if (rs != NULL) {
1154 			size = zfs_rs_get_end(rs, segs) - start;
1155 		} else {
1156 			/*
1157 			 * There are no segments that end before maxalloc.
1158 			 * I.e. the first segment is larger than maxalloc,
1159 			 * so we must split it.
1160 			 */
1161 			size = maxalloc;
1162 		}
1163 	}
1164 	ASSERT3U(size, <=, maxalloc);
1165 	ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1166 
1167 	/*
1168 	 * An allocation class might not have any remaining vdevs or space
1169 	 */
1170 	metaslab_class_t *mc = mg->mg_class;
1171 	if (mc->mc_groups == 0)
1172 		mc = spa_normal_class(spa);
1173 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1174 	    METASLAB_DONT_THROTTLE, zal, 0);
1175 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
1176 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1177 		    &dst, 0, NULL, txg, METASLAB_DONT_THROTTLE, zal, 0);
1178 	}
1179 	if (error != 0)
1180 		return (error);
1181 
1182 	/*
1183 	 * Determine the ranges that are not actually needed.  Offsets are
1184 	 * relative to the start of the range to be copied (i.e. relative to the
1185 	 * local variable "start").
1186 	 */
1187 	zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL,
1188 	    ZFS_RANGE_SEG64, NULL, 0, 0);
1189 
1190 	zfs_btree_index_t where;
1191 	zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1192 	ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1193 	uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1194 	while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1195 		if (zfs_rs_get_start(rs, segs) >= start + size) {
1196 			break;
1197 		} else {
1198 			zfs_range_tree_add(obsolete_segs,
1199 			    prev_seg_end - start,
1200 			    zfs_rs_get_start(rs, segs) - prev_seg_end);
1201 		}
1202 		prev_seg_end = zfs_rs_get_end(rs, segs);
1203 	}
1204 	/* We don't end in the middle of an obsolete range */
1205 	ASSERT3U(start + size, <=, prev_seg_end);
1206 
1207 	zfs_range_tree_clear(segs, start, size);
1208 
1209 	/*
1210 	 * We can't have any padding of the allocated size, otherwise we will
1211 	 * misunderstand what's allocated, and the size of the mapping. We
1212 	 * prevent padding by ensuring that all devices in the pool have the
1213 	 * same ashift, and the allocation size is a multiple of the ashift.
1214 	 */
1215 	VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1216 
1217 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1218 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1219 	entry->vime_mapping.vimep_dst = dst;
1220 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1221 		entry->vime_obsolete_count =
1222 		    zfs_range_tree_space(obsolete_segs);
1223 	}
1224 
1225 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1226 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1227 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1228 	vcsa->vcsa_spa = spa;
1229 	vcsa->vcsa_txg = txg;
1230 
1231 	/*
1232 	 * See comment before spa_vdev_copy_one_child().
1233 	 */
1234 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1235 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1236 	    spa_vdev_copy_segment_done, vcsa, 0);
1237 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1238 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1239 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1240 			vdev_t *child = dest_vd->vdev_child[i];
1241 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1242 			    child, DVA_GET_OFFSET(&dst), i, size);
1243 		}
1244 	} else {
1245 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1246 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1247 	}
1248 	zio_nowait(nzio);
1249 
1250 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1251 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1252 	vdev_dirty(vd, 0, NULL, txg);
1253 
1254 	return (0);
1255 }
1256 
1257 /*
1258  * Complete the removal of a toplevel vdev. This is called as a
1259  * synctask in the same txg that we will sync out the new config (to the
1260  * MOS object) which indicates that this vdev is indirect.
1261  */
1262 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1263 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1264 {
1265 	spa_vdev_removal_t *svr = arg;
1266 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1267 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1268 
1269 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1270 
1271 	for (int i = 0; i < TXG_SIZE; i++) {
1272 		ASSERT0(svr->svr_bytes_done[i]);
1273 	}
1274 
1275 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1276 	    spa->spa_removing_phys.sr_to_copy);
1277 
1278 	vdev_destroy_spacemaps(vd, tx);
1279 
1280 	/* destroy leaf zaps, if any */
1281 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1282 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1283 	    pair != NULL;
1284 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1285 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1286 	}
1287 	fnvlist_free(svr->svr_zaplist);
1288 
1289 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1290 	/* vd->vdev_path is not available here */
1291 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1292 	    "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1293 }
1294 
1295 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1296 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1297 {
1298 	ASSERT3P(zlist, !=, NULL);
1299 	ASSERT0(vdev_get_nparity(vd));
1300 
1301 	if (vd->vdev_leaf_zap != 0) {
1302 		char zkey[32];
1303 		(void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1304 		    VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1305 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1306 	}
1307 
1308 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1309 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1310 	}
1311 }
1312 
1313 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1314 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1315 {
1316 	vdev_t *ivd;
1317 	dmu_tx_t *tx;
1318 	spa_t *spa = vd->vdev_spa;
1319 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1320 
1321 	/*
1322 	 * First, build a list of leaf zaps to be destroyed.
1323 	 * This is passed to the sync context thread,
1324 	 * which does the actual unlinking.
1325 	 */
1326 	svr->svr_zaplist = fnvlist_alloc();
1327 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1328 
1329 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1330 	ivd->vdev_removing = 0;
1331 
1332 	vd->vdev_leaf_zap = 0;
1333 
1334 	vdev_remove_child(ivd, vd);
1335 	vdev_compact_children(ivd);
1336 
1337 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1338 
1339 	mutex_enter(&svr->svr_lock);
1340 	svr->svr_thread = NULL;
1341 	cv_broadcast(&svr->svr_cv);
1342 	mutex_exit(&svr->svr_lock);
1343 
1344 	/* After this, we can not use svr. */
1345 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1346 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1347 	    vdev_remove_complete_sync, svr, tx);
1348 	dmu_tx_commit(tx);
1349 }
1350 
1351 /*
1352  * Complete the removal of a toplevel vdev. This is called in open
1353  * context by the removal thread after we have copied all vdev's data.
1354  */
1355 static void
vdev_remove_complete(spa_t * spa)1356 vdev_remove_complete(spa_t *spa)
1357 {
1358 	uint64_t txg;
1359 
1360 	/*
1361 	 * Wait for any deferred frees to be synced before we call
1362 	 * vdev_metaslab_fini()
1363 	 */
1364 	txg_wait_synced(spa->spa_dsl_pool, 0);
1365 	txg = spa_vdev_enter(spa);
1366 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1367 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1368 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1369 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1370 	vdev_rebuild_stop_wait(vd);
1371 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1372 	uint64_t vdev_space = spa_deflate(spa) ?
1373 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1374 
1375 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1376 	    ESC_ZFS_VDEV_REMOVE_DEV);
1377 
1378 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1379 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1380 
1381 	ASSERT3U(0, !=, vdev_space);
1382 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1383 
1384 	/* the vdev is no longer part of the dspace */
1385 	spa->spa_nonallocating_dspace -= vdev_space;
1386 
1387 	/*
1388 	 * Discard allocation state.
1389 	 */
1390 	if (vd->vdev_mg != NULL) {
1391 		vdev_metaslab_fini(vd);
1392 		metaslab_group_destroy(vd->vdev_mg);
1393 		vd->vdev_mg = NULL;
1394 	}
1395 	if (vd->vdev_log_mg != NULL) {
1396 		ASSERT0(vd->vdev_ms_count);
1397 		metaslab_group_destroy(vd->vdev_log_mg);
1398 		vd->vdev_log_mg = NULL;
1399 	}
1400 	ASSERT0(vd->vdev_stat.vs_space);
1401 	ASSERT0(vd->vdev_stat.vs_dspace);
1402 
1403 	vdev_remove_replace_with_indirect(vd, txg);
1404 
1405 	/*
1406 	 * We now release the locks, allowing spa_sync to run and finish the
1407 	 * removal via vdev_remove_complete_sync in syncing context.
1408 	 *
1409 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1410 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1411 	 * manipulated, even while we don't have the config lock.
1412 	 */
1413 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1414 
1415 	/*
1416 	 * Top ZAP should have been transferred to the indirect vdev in
1417 	 * vdev_remove_replace_with_indirect.
1418 	 */
1419 	ASSERT0(vd->vdev_top_zap);
1420 
1421 	/*
1422 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1423 	 */
1424 	ASSERT0(vd->vdev_leaf_zap);
1425 
1426 	txg = spa_vdev_enter(spa);
1427 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1428 	/*
1429 	 * Request to update the config and the config cachefile.
1430 	 */
1431 	vdev_config_dirty(spa->spa_root_vdev);
1432 	(void) spa_vdev_exit(spa, vd, txg, 0);
1433 
1434 	if (ev != NULL)
1435 		spa_event_post(ev);
1436 }
1437 
1438 /*
1439  * Evacuates a segment of size at most max_alloc from the vdev
1440  * via repeated calls to spa_vdev_copy_segment. If an allocation
1441  * fails, the pool is probably too fragmented to handle such a
1442  * large size, so decrease max_alloc so that the caller will not try
1443  * this size again this txg.
1444  */
1445 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1446 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1447     uint64_t *max_alloc, dmu_tx_t *tx)
1448 {
1449 	uint64_t txg = dmu_tx_get_txg(tx);
1450 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1451 
1452 	mutex_enter(&svr->svr_lock);
1453 
1454 	/*
1455 	 * Determine how big of a chunk to copy.  We can allocate up
1456 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1457 	 * bytes of unallocated space at a time.  "segs" will track the
1458 	 * allocated segments that we are copying.  We may also be copying
1459 	 * free segments (of up to vdev_removal_max_span bytes).
1460 	 */
1461 	zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1462 	    NULL, 0, 0);
1463 	for (;;) {
1464 		zfs_range_tree_t *rt = svr->svr_allocd_segs;
1465 		zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1466 
1467 		if (rs == NULL)
1468 			break;
1469 
1470 		uint64_t seg_length;
1471 
1472 		if (zfs_range_tree_is_empty(segs)) {
1473 			/* need to truncate the first seg based on max_alloc */
1474 			seg_length = MIN(zfs_rs_get_end(rs, rt) -
1475 			    zfs_rs_get_start(rs, rt), *max_alloc);
1476 		} else {
1477 			if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1478 			    > vdev_removal_max_span) {
1479 				/*
1480 				 * Including this segment would cause us to
1481 				 * copy a larger unneeded chunk than is allowed.
1482 				 */
1483 				break;
1484 			} else if (zfs_rs_get_end(rs, rt) -
1485 			    zfs_range_tree_min(segs) > *max_alloc) {
1486 				/*
1487 				 * This additional segment would extend past
1488 				 * max_alloc. Rather than splitting this
1489 				 * segment, leave it for the next mapping.
1490 				 */
1491 				break;
1492 			} else {
1493 				seg_length = zfs_rs_get_end(rs, rt) -
1494 				    zfs_rs_get_start(rs, rt);
1495 			}
1496 		}
1497 
1498 		zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1499 		zfs_range_tree_remove(svr->svr_allocd_segs,
1500 		    zfs_rs_get_start(rs, rt), seg_length);
1501 	}
1502 
1503 	if (zfs_range_tree_is_empty(segs)) {
1504 		mutex_exit(&svr->svr_lock);
1505 		zfs_range_tree_destroy(segs);
1506 		return;
1507 	}
1508 
1509 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1510 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1511 		    svr, tx);
1512 	}
1513 
1514 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1515 
1516 	/*
1517 	 * Note: this is the amount of *allocated* space
1518 	 * that we are taking care of each txg.
1519 	 */
1520 	svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1521 
1522 	mutex_exit(&svr->svr_lock);
1523 
1524 	zio_alloc_list_t zal;
1525 	metaslab_trace_init(&zal);
1526 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1527 	while (!zfs_range_tree_is_empty(segs)) {
1528 		int error = spa_vdev_copy_segment(vd,
1529 		    segs, thismax, txg, vca, &zal);
1530 
1531 		if (error == ENOSPC) {
1532 			/*
1533 			 * Cut our segment in half, and don't try this
1534 			 * segment size again this txg.  Note that the
1535 			 * allocation size must be aligned to the highest
1536 			 * ashift in the pool, so that the allocation will
1537 			 * not be padded out to a multiple of the ashift,
1538 			 * which could cause us to think that this mapping
1539 			 * is larger than we intended.
1540 			 */
1541 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1542 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1543 			uint64_t attempted =
1544 			    MIN(zfs_range_tree_span(segs), thismax);
1545 			thismax = P2ROUNDUP(attempted / 2,
1546 			    1 << spa->spa_max_ashift);
1547 			/*
1548 			 * The minimum-size allocation can not fail.
1549 			 */
1550 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1551 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1552 		} else {
1553 			ASSERT0(error);
1554 
1555 			/*
1556 			 * We've performed an allocation, so reset the
1557 			 * alloc trace list.
1558 			 */
1559 			metaslab_trace_fini(&zal);
1560 			metaslab_trace_init(&zal);
1561 		}
1562 	}
1563 	metaslab_trace_fini(&zal);
1564 	zfs_range_tree_destroy(segs);
1565 }
1566 
1567 /*
1568  * The size of each removal mapping is limited by the tunable
1569  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1570  * pool's ashift, so that we don't try to split individual sectors regardless
1571  * of the tunable value.  (Note that device removal requires that all devices
1572  * have the same ashift, so there's no difference between spa_min_ashift and
1573  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1574  */
1575 uint64_t
spa_remove_max_segment(spa_t * spa)1576 spa_remove_max_segment(spa_t *spa)
1577 {
1578 	return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1579 }
1580 
1581 /*
1582  * The removal thread operates in open context.  It iterates over all
1583  * allocated space in the vdev, by loading each metaslab's spacemap.
1584  * For each contiguous segment of allocated space (capping the segment
1585  * size at SPA_MAXBLOCKSIZE), we:
1586  *    - Allocate space for it on another vdev.
1587  *    - Create a new mapping from the old location to the new location
1588  *      (as a record in svr_new_segments).
1589  *    - Initiate a physical read zio to get the data off the removing disk.
1590  *    - In the read zio's done callback, initiate a physical write zio to
1591  *      write it to the new vdev.
1592  * Note that all of this will take effect when a particular TXG syncs.
1593  * The sync thread ensures that all the phys reads and writes for the syncing
1594  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1595  * (see vdev_mapping_sync()).
1596  */
1597 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1598 spa_vdev_remove_thread(void *arg)
1599 {
1600 	spa_t *spa = arg;
1601 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1602 	vdev_copy_arg_t vca;
1603 	uint64_t max_alloc = spa_remove_max_segment(spa);
1604 	uint64_t last_txg = 0;
1605 
1606 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1607 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1608 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1609 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1610 
1611 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1612 	ASSERT(vdev_is_concrete(vd));
1613 	ASSERT(vd->vdev_removing);
1614 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1615 	ASSERT(vim != NULL);
1616 
1617 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1618 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1619 	vca.vca_outstanding_bytes = 0;
1620 	vca.vca_read_error_bytes = 0;
1621 	vca.vca_write_error_bytes = 0;
1622 
1623 	mutex_enter(&svr->svr_lock);
1624 
1625 	/*
1626 	 * Start from vim_max_offset so we pick up where we left off
1627 	 * if we are restarting the removal after opening the pool.
1628 	 */
1629 	uint64_t msi;
1630 	for (msi = start_offset >> vd->vdev_ms_shift;
1631 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1632 		metaslab_t *msp = vd->vdev_ms[msi];
1633 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1634 
1635 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1636 
1637 		mutex_enter(&msp->ms_sync_lock);
1638 		mutex_enter(&msp->ms_lock);
1639 
1640 		/*
1641 		 * Assert nothing in flight -- ms_*tree is empty.
1642 		 */
1643 		for (int i = 0; i < TXG_SIZE; i++) {
1644 			ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1645 		}
1646 
1647 		/*
1648 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1649 		 * read the allocated segments from the space map object
1650 		 * into svr_allocd_segs. Since we do this while holding
1651 		 * svr_lock and ms_sync_lock, concurrent frees (which
1652 		 * would have modified the space map) will wait for us
1653 		 * to finish loading the spacemap, and then take the
1654 		 * appropriate action (see free_from_removing_vdev()).
1655 		 */
1656 		if (msp->ms_sm != NULL) {
1657 			VERIFY0(space_map_load(msp->ms_sm,
1658 			    svr->svr_allocd_segs, SM_ALLOC));
1659 
1660 			zfs_range_tree_walk(msp->ms_unflushed_allocs,
1661 			    zfs_range_tree_add, svr->svr_allocd_segs);
1662 			zfs_range_tree_walk(msp->ms_unflushed_frees,
1663 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1664 			zfs_range_tree_walk(msp->ms_freeing,
1665 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1666 
1667 			/*
1668 			 * When we are resuming from a paused removal (i.e.
1669 			 * when importing a pool with a removal in progress),
1670 			 * discard any state that we have already processed.
1671 			 */
1672 			zfs_range_tree_clear(svr->svr_allocd_segs, 0,
1673 			    start_offset);
1674 		}
1675 		mutex_exit(&msp->ms_lock);
1676 		mutex_exit(&msp->ms_sync_lock);
1677 
1678 		vca.vca_msp = msp;
1679 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1680 		    (u_longlong_t)zfs_btree_numnodes(
1681 		    &svr->svr_allocd_segs->rt_root),
1682 		    (u_longlong_t)msp->ms_id);
1683 
1684 		while (!svr->svr_thread_exit &&
1685 		    !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1686 
1687 			mutex_exit(&svr->svr_lock);
1688 
1689 			/*
1690 			 * We need to periodically drop the config lock so that
1691 			 * writers can get in.  Additionally, we can't wait
1692 			 * for a txg to sync while holding a config lock
1693 			 * (since a waiting writer could cause a 3-way deadlock
1694 			 * with the sync thread, which also gets a config
1695 			 * lock for reader).  So we can't hold the config lock
1696 			 * while calling dmu_tx_assign().
1697 			 */
1698 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1699 
1700 			/*
1701 			 * This delay will pause the removal around the point
1702 			 * specified by zfs_removal_suspend_progress. We do this
1703 			 * solely from the test suite or during debugging.
1704 			 */
1705 			while (zfs_removal_suspend_progress &&
1706 			    !svr->svr_thread_exit)
1707 				delay(hz);
1708 
1709 			mutex_enter(&vca.vca_lock);
1710 			while (vca.vca_outstanding_bytes >
1711 			    zfs_remove_max_copy_bytes) {
1712 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1713 			}
1714 			mutex_exit(&vca.vca_lock);
1715 
1716 			dmu_tx_t *tx =
1717 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1718 
1719 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1720 			uint64_t txg = dmu_tx_get_txg(tx);
1721 
1722 			/*
1723 			 * Reacquire the vdev_config lock.  The vdev_t
1724 			 * that we're removing may have changed, e.g. due
1725 			 * to a vdev_attach or vdev_detach.
1726 			 */
1727 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1728 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1729 
1730 			if (txg != last_txg)
1731 				max_alloc = spa_remove_max_segment(spa);
1732 			last_txg = txg;
1733 
1734 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1735 
1736 			dmu_tx_commit(tx);
1737 			mutex_enter(&svr->svr_lock);
1738 		}
1739 
1740 		mutex_enter(&vca.vca_lock);
1741 		if (zfs_removal_ignore_errors == 0 &&
1742 		    (vca.vca_read_error_bytes > 0 ||
1743 		    vca.vca_write_error_bytes > 0)) {
1744 			svr->svr_thread_exit = B_TRUE;
1745 		}
1746 		mutex_exit(&vca.vca_lock);
1747 	}
1748 
1749 	mutex_exit(&svr->svr_lock);
1750 
1751 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1752 
1753 	/*
1754 	 * Wait for all copies to finish before cleaning up the vca.
1755 	 */
1756 	txg_wait_synced(spa->spa_dsl_pool, 0);
1757 	ASSERT0(vca.vca_outstanding_bytes);
1758 
1759 	mutex_destroy(&vca.vca_lock);
1760 	cv_destroy(&vca.vca_cv);
1761 
1762 	if (svr->svr_thread_exit) {
1763 		mutex_enter(&svr->svr_lock);
1764 		zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1765 		svr->svr_thread = NULL;
1766 		cv_broadcast(&svr->svr_cv);
1767 		mutex_exit(&svr->svr_lock);
1768 
1769 		/*
1770 		 * During the removal process an unrecoverable read or write
1771 		 * error was encountered.  The removal process must be
1772 		 * cancelled or this damage may become permanent.
1773 		 */
1774 		if (zfs_removal_ignore_errors == 0 &&
1775 		    (vca.vca_read_error_bytes > 0 ||
1776 		    vca.vca_write_error_bytes > 0)) {
1777 			zfs_dbgmsg("canceling removal due to IO errors: "
1778 			    "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1779 			    (u_longlong_t)vca.vca_read_error_bytes,
1780 			    (u_longlong_t)vca.vca_write_error_bytes);
1781 			spa_vdev_remove_cancel_impl(spa);
1782 		}
1783 	} else {
1784 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1785 		vdev_remove_complete(spa);
1786 	}
1787 
1788 	thread_exit();
1789 }
1790 
1791 void
spa_vdev_remove_suspend(spa_t * spa)1792 spa_vdev_remove_suspend(spa_t *spa)
1793 {
1794 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1795 
1796 	if (svr == NULL)
1797 		return;
1798 
1799 	mutex_enter(&svr->svr_lock);
1800 	svr->svr_thread_exit = B_TRUE;
1801 	while (svr->svr_thread != NULL)
1802 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1803 	svr->svr_thread_exit = B_FALSE;
1804 	mutex_exit(&svr->svr_lock);
1805 }
1806 
1807 /*
1808  * Return true if the "allocating" property has been set to "off"
1809  */
1810 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1811 vdev_prop_allocating_off(vdev_t *vd)
1812 {
1813 	uint64_t objid = vd->vdev_top_zap;
1814 	uint64_t allocating = 1;
1815 
1816 	/* no vdev property object => no props */
1817 	if (objid != 0) {
1818 		spa_t *spa = vd->vdev_spa;
1819 		objset_t *mos = spa->spa_meta_objset;
1820 
1821 		mutex_enter(&spa->spa_props_lock);
1822 		(void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1823 		    1, &allocating);
1824 		mutex_exit(&spa->spa_props_lock);
1825 	}
1826 	return (allocating == 0);
1827 }
1828 
1829 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1830 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1831 {
1832 	(void) arg;
1833 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1834 
1835 	if (spa->spa_vdev_removal == NULL)
1836 		return (ENOTACTIVE);
1837 	return (0);
1838 }
1839 
1840 /*
1841  * Cancel a removal by freeing all entries from the partial mapping
1842  * and marking the vdev as no longer being removing.
1843  */
1844 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1845 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1846 {
1847 	(void) arg;
1848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1849 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1850 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1851 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1852 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1853 	objset_t *mos = spa->spa_meta_objset;
1854 
1855 	ASSERT3P(svr->svr_thread, ==, NULL);
1856 
1857 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1858 
1859 	boolean_t are_precise;
1860 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1861 	if (are_precise) {
1862 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1863 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1864 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1865 	}
1866 
1867 	uint64_t obsolete_sm_object;
1868 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1869 	if (obsolete_sm_object != 0) {
1870 		ASSERT(vd->vdev_obsolete_sm != NULL);
1871 		ASSERT3U(obsolete_sm_object, ==,
1872 		    space_map_object(vd->vdev_obsolete_sm));
1873 
1874 		space_map_free(vd->vdev_obsolete_sm, tx);
1875 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1876 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1877 		space_map_close(vd->vdev_obsolete_sm);
1878 		vd->vdev_obsolete_sm = NULL;
1879 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1880 	}
1881 	for (int i = 0; i < TXG_SIZE; i++) {
1882 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1883 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1884 		    vdev_indirect_mapping_max_offset(vim));
1885 	}
1886 
1887 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1888 		metaslab_t *msp = vd->vdev_ms[msi];
1889 
1890 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1891 			break;
1892 
1893 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1894 
1895 		mutex_enter(&msp->ms_lock);
1896 
1897 		/*
1898 		 * Assert nothing in flight -- ms_*tree is empty.
1899 		 */
1900 		for (int i = 0; i < TXG_SIZE; i++)
1901 			ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1902 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1903 			ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1904 		ASSERT0(zfs_range_tree_space(msp->ms_freed));
1905 
1906 		if (msp->ms_sm != NULL) {
1907 			mutex_enter(&svr->svr_lock);
1908 			VERIFY0(space_map_load(msp->ms_sm,
1909 			    svr->svr_allocd_segs, SM_ALLOC));
1910 
1911 			zfs_range_tree_walk(msp->ms_unflushed_allocs,
1912 			    zfs_range_tree_add, svr->svr_allocd_segs);
1913 			zfs_range_tree_walk(msp->ms_unflushed_frees,
1914 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1915 			zfs_range_tree_walk(msp->ms_freeing,
1916 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1917 
1918 			/*
1919 			 * Clear everything past what has been synced,
1920 			 * because we have not allocated mappings for it yet.
1921 			 */
1922 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1923 			uint64_t sm_end = msp->ms_sm->sm_start +
1924 			    msp->ms_sm->sm_size;
1925 			if (sm_end > syncd)
1926 				zfs_range_tree_clear(svr->svr_allocd_segs,
1927 				    syncd, sm_end - syncd);
1928 
1929 			mutex_exit(&svr->svr_lock);
1930 		}
1931 		mutex_exit(&msp->ms_lock);
1932 
1933 		mutex_enter(&svr->svr_lock);
1934 		zfs_range_tree_vacate(svr->svr_allocd_segs,
1935 		    free_mapped_segment_cb, vd);
1936 		mutex_exit(&svr->svr_lock);
1937 	}
1938 
1939 	/*
1940 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1941 	 * because it adds to the obsolete_segments.
1942 	 */
1943 	zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1944 
1945 	ASSERT3U(vic->vic_mapping_object, ==,
1946 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1947 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1948 	vd->vdev_indirect_mapping = NULL;
1949 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1950 	vic->vic_mapping_object = 0;
1951 
1952 	ASSERT3U(vic->vic_births_object, ==,
1953 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1954 	vdev_indirect_births_close(vd->vdev_indirect_births);
1955 	vd->vdev_indirect_births = NULL;
1956 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1957 	vic->vic_births_object = 0;
1958 
1959 	/*
1960 	 * We may have processed some frees from the removing vdev in this
1961 	 * txg, thus increasing svr_bytes_done; discard that here to
1962 	 * satisfy the assertions in spa_vdev_removal_destroy().
1963 	 * Note that future txg's can not have any bytes_done, because
1964 	 * future TXG's are only modified from open context, and we have
1965 	 * already shut down the copying thread.
1966 	 */
1967 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1968 	spa_finish_removal(spa, DSS_CANCELED, tx);
1969 
1970 	vd->vdev_removing = B_FALSE;
1971 
1972 	if (!vdev_prop_allocating_off(vd)) {
1973 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1974 		vdev_activate(vd);
1975 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1976 	}
1977 
1978 	vdev_config_dirty(vd);
1979 
1980 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1981 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1982 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1983 	    "%s vdev %llu %s", spa_name(spa),
1984 	    (u_longlong_t)vd->vdev_id,
1985 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1986 }
1987 
1988 static int
spa_vdev_remove_cancel_impl(spa_t * spa)1989 spa_vdev_remove_cancel_impl(spa_t *spa)
1990 {
1991 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1992 	    spa_vdev_remove_cancel_sync, NULL, 0,
1993 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1994 	return (error);
1995 }
1996 
1997 int
spa_vdev_remove_cancel(spa_t * spa)1998 spa_vdev_remove_cancel(spa_t *spa)
1999 {
2000 	spa_vdev_remove_suspend(spa);
2001 
2002 	if (spa->spa_vdev_removal == NULL)
2003 		return (ENOTACTIVE);
2004 
2005 	return (spa_vdev_remove_cancel_impl(spa));
2006 }
2007 
2008 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2009 svr_sync(spa_t *spa, dmu_tx_t *tx)
2010 {
2011 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2012 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2013 
2014 	if (svr == NULL)
2015 		return;
2016 
2017 	/*
2018 	 * This check is necessary so that we do not dirty the
2019 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2020 	 * is nothing to do.  Dirtying it every time would prevent us
2021 	 * from syncing-to-convergence.
2022 	 */
2023 	if (svr->svr_bytes_done[txgoff] == 0)
2024 		return;
2025 
2026 	/*
2027 	 * Update progress accounting.
2028 	 */
2029 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2030 	svr->svr_bytes_done[txgoff] = 0;
2031 
2032 	spa_sync_removing_state(spa, tx);
2033 }
2034 
2035 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2036 vdev_remove_make_hole_and_free(vdev_t *vd)
2037 {
2038 	uint64_t id = vd->vdev_id;
2039 	spa_t *spa = vd->vdev_spa;
2040 	vdev_t *rvd = spa->spa_root_vdev;
2041 
2042 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2043 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2044 
2045 	vdev_free(vd);
2046 
2047 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2048 	vdev_add_child(rvd, vd);
2049 	vdev_config_dirty(rvd);
2050 
2051 	/*
2052 	 * Reassess the health of our root vdev.
2053 	 */
2054 	vdev_reopen(rvd);
2055 }
2056 
2057 /*
2058  * Remove a log device.  The config lock is held for the specified TXG.
2059  */
2060 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2061 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2062 {
2063 	metaslab_group_t *mg = vd->vdev_mg;
2064 	spa_t *spa = vd->vdev_spa;
2065 	int error = 0;
2066 
2067 	ASSERT(vd->vdev_islog);
2068 	ASSERT(vd == vd->vdev_top);
2069 	ASSERT3P(vd->vdev_log_mg, ==, NULL);
2070 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2071 
2072 	/*
2073 	 * Stop allocating from this vdev.
2074 	 */
2075 	metaslab_group_passivate(mg);
2076 
2077 	/*
2078 	 * Wait for the youngest allocations and frees to sync,
2079 	 * and then wait for the deferral of those frees to finish.
2080 	 */
2081 	spa_vdev_config_exit(spa, NULL,
2082 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2083 
2084 	/*
2085 	 * Cancel any initialize or TRIM which was in progress.
2086 	 */
2087 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2088 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2089 	vdev_autotrim_stop_wait(vd);
2090 
2091 	/*
2092 	 * Evacuate the device.  We don't hold the config lock as
2093 	 * writer since we need to do I/O but we do keep the
2094 	 * spa_namespace_lock held.  Once this completes the device
2095 	 * should no longer have any blocks allocated on it.
2096 	 */
2097 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 	if (vd->vdev_stat.vs_alloc != 0)
2099 		error = spa_reset_logs(spa);
2100 
2101 	*txg = spa_vdev_config_enter(spa);
2102 
2103 	if (error != 0) {
2104 		metaslab_group_activate(mg);
2105 		ASSERT3P(vd->vdev_log_mg, ==, NULL);
2106 		return (error);
2107 	}
2108 	ASSERT0(vd->vdev_stat.vs_alloc);
2109 
2110 	/*
2111 	 * The evacuation succeeded.  Remove any remaining MOS metadata
2112 	 * associated with this vdev, and wait for these changes to sync.
2113 	 */
2114 	vd->vdev_removing = B_TRUE;
2115 
2116 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2117 	vdev_config_dirty(vd);
2118 
2119 	/*
2120 	 * When the log space map feature is enabled we look at
2121 	 * the vdev's top_zap to find the on-disk flush data of
2122 	 * the metaslab we just flushed. Thus, while removing a
2123 	 * log vdev we make sure to call vdev_metaslab_fini()
2124 	 * first, which removes all metaslabs of this vdev from
2125 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
2126 	 * destroys the top_zap of this log vdev.
2127 	 *
2128 	 * This avoids the scenario where we flush a metaslab
2129 	 * from the log vdev being removed that doesn't have a
2130 	 * top_zap and end up failing to lookup its on-disk flush
2131 	 * data.
2132 	 *
2133 	 * We don't call metaslab_group_destroy() right away
2134 	 * though (it will be called in vdev_free() later) as
2135 	 * during metaslab_sync() of metaslabs from other vdevs
2136 	 * we may touch the metaslab group of this vdev through
2137 	 * metaslab_class_histogram_verify()
2138 	 */
2139 	vdev_metaslab_fini(vd);
2140 
2141 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2142 	*txg = spa_vdev_config_enter(spa);
2143 
2144 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
2145 	    ESC_ZFS_VDEV_REMOVE_DEV);
2146 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2147 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2148 
2149 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
2150 	ASSERT0(vd->vdev_top_zap);
2151 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2152 	ASSERT0(vd->vdev_leaf_zap);
2153 
2154 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2155 
2156 	if (list_link_active(&vd->vdev_state_dirty_node))
2157 		vdev_state_clean(vd);
2158 	if (list_link_active(&vd->vdev_config_dirty_node))
2159 		vdev_config_clean(vd);
2160 
2161 	ASSERT0(vd->vdev_stat.vs_alloc);
2162 
2163 	/*
2164 	 * Clean up the vdev namespace.
2165 	 */
2166 	vdev_remove_make_hole_and_free(vd);
2167 
2168 	if (ev != NULL)
2169 		spa_event_post(ev);
2170 
2171 	return (0);
2172 }
2173 
2174 static int
spa_vdev_remove_top_check(vdev_t * vd)2175 spa_vdev_remove_top_check(vdev_t *vd)
2176 {
2177 	spa_t *spa = vd->vdev_spa;
2178 
2179 	if (vd != vd->vdev_top)
2180 		return (SET_ERROR(ENOTSUP));
2181 
2182 	if (!vdev_is_concrete(vd))
2183 		return (SET_ERROR(ENOTSUP));
2184 
2185 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2186 		return (SET_ERROR(ENOTSUP));
2187 
2188 	/*
2189 	 * This device is already being removed
2190 	 */
2191 	if (vd->vdev_removing)
2192 		return (SET_ERROR(EALREADY));
2193 
2194 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
2195 	metaslab_class_t *normal = spa_normal_class(spa);
2196 	if (mc != normal) {
2197 		/*
2198 		 * Space allocated from the special (or dedup) class is
2199 		 * included in the DMU's space usage, but it's not included
2200 		 * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
2201 		 * there is always at least as much free space in the normal
2202 		 * class, as is allocated from the special (and dedup) class.
2203 		 * As a backup check, we will return ENOSPC if this is
2204 		 * violated. See also spa_update_dspace().
2205 		 */
2206 		uint64_t available = metaslab_class_get_space(normal) -
2207 		    metaslab_class_get_alloc(normal);
2208 		ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2209 		if (available < vd->vdev_stat.vs_alloc)
2210 			return (SET_ERROR(ENOSPC));
2211 	} else if (!vd->vdev_noalloc) {
2212 		/* available space in the pool's normal class */
2213 		uint64_t available = dsl_dir_space_available(
2214 		    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2215 		if (available < vd->vdev_stat.vs_dspace)
2216 			return (SET_ERROR(ENOSPC));
2217 	}
2218 
2219 	/*
2220 	 * There can not be a removal in progress.
2221 	 */
2222 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2223 		return (SET_ERROR(EBUSY));
2224 
2225 	/*
2226 	 * The device must have all its data.
2227 	 */
2228 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2229 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
2230 		return (SET_ERROR(EBUSY));
2231 
2232 	/*
2233 	 * The device must be healthy.
2234 	 */
2235 	if (!vdev_readable(vd))
2236 		return (SET_ERROR(EIO));
2237 
2238 	/*
2239 	 * All vdevs in normal class must have the same ashift.
2240 	 */
2241 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
2242 		return (SET_ERROR(EINVAL));
2243 	}
2244 
2245 	/*
2246 	 * A removed special/dedup vdev must have same ashift as normal class.
2247 	 */
2248 	ASSERT(!vd->vdev_islog);
2249 	if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2250 	    vd->vdev_ashift != spa->spa_max_ashift) {
2251 		return (SET_ERROR(EINVAL));
2252 	}
2253 
2254 	/*
2255 	 * All vdevs in normal class must have the same ashift
2256 	 * and not be raidz or draid.
2257 	 */
2258 	vdev_t *rvd = spa->spa_root_vdev;
2259 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2260 		vdev_t *cvd = rvd->vdev_child[id];
2261 
2262 		/*
2263 		 * A removed special/dedup vdev must have the same ashift
2264 		 * across all vdevs in its class.
2265 		 */
2266 		if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2267 		    cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2268 		    cvd->vdev_ashift != vd->vdev_ashift) {
2269 			return (SET_ERROR(EINVAL));
2270 		}
2271 		if (cvd->vdev_ashift != 0 &&
2272 		    cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2273 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2274 		if (!vdev_is_concrete(cvd))
2275 			continue;
2276 		if (vdev_get_nparity(cvd) != 0)
2277 			return (SET_ERROR(EINVAL));
2278 		/*
2279 		 * Need the mirror to be mirror of leaf vdevs only
2280 		 */
2281 		if (cvd->vdev_ops == &vdev_mirror_ops) {
2282 			for (uint64_t cid = 0;
2283 			    cid < cvd->vdev_children; cid++) {
2284 				if (!cvd->vdev_child[cid]->vdev_ops->
2285 				    vdev_op_leaf)
2286 					return (SET_ERROR(EINVAL));
2287 			}
2288 		}
2289 	}
2290 
2291 	return (0);
2292 }
2293 
2294 /*
2295  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2296  * The config lock is held for the specified TXG.  Once initiated,
2297  * evacuation of all allocated space (copying it to other vdevs) happens
2298  * in the background (see spa_vdev_remove_thread()), and can be canceled
2299  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2300  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2301  */
2302 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2303 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2304 {
2305 	spa_t *spa = vd->vdev_spa;
2306 	boolean_t set_noalloc = B_FALSE;
2307 	int error;
2308 
2309 	/*
2310 	 * Check for errors up-front, so that we don't waste time
2311 	 * passivating the metaslab group and clearing the ZIL if there
2312 	 * are errors.
2313 	 */
2314 	error = spa_vdev_remove_top_check(vd);
2315 
2316 	/*
2317 	 * Stop allocating from this vdev.  Note that we must check
2318 	 * that this is not the only device in the pool before
2319 	 * passivating, otherwise we will not be able to make
2320 	 * progress because we can't allocate from any vdevs.
2321 	 * The above check for sufficient free space serves this
2322 	 * purpose.
2323 	 */
2324 	if (error == 0 && !vd->vdev_noalloc) {
2325 		set_noalloc = B_TRUE;
2326 		error = vdev_passivate(vd, txg);
2327 	}
2328 
2329 	if (error != 0)
2330 		return (error);
2331 
2332 	/*
2333 	 * We stop any initializing and TRIM that is currently in progress
2334 	 * but leave the state as "active". This will allow the process to
2335 	 * resume if the removal is canceled sometime later.
2336 	 */
2337 
2338 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2339 
2340 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2341 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2342 	vdev_autotrim_stop_wait(vd);
2343 
2344 	*txg = spa_vdev_config_enter(spa);
2345 
2346 	/*
2347 	 * Things might have changed while the config lock was dropped
2348 	 * (e.g. space usage).  Check for errors again.
2349 	 */
2350 	error = spa_vdev_remove_top_check(vd);
2351 
2352 	if (error != 0) {
2353 		if (set_noalloc)
2354 			vdev_activate(vd);
2355 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2356 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2357 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2358 		return (error);
2359 	}
2360 
2361 	vd->vdev_removing = B_TRUE;
2362 
2363 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2364 	vdev_config_dirty(vd);
2365 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2366 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2367 	    vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2368 	dmu_tx_commit(tx);
2369 
2370 	return (0);
2371 }
2372 
2373 /*
2374  * Remove a device from the pool.
2375  *
2376  * Removing a device from the vdev namespace requires several steps
2377  * and can take a significant amount of time.  As a result we use
2378  * the spa_vdev_config_[enter/exit] functions which allow us to
2379  * grab and release the spa_config_lock while still holding the namespace
2380  * lock.  During each step the configuration is synced out.
2381  */
2382 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2383 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2384 {
2385 	vdev_t *vd;
2386 	nvlist_t **spares, **l2cache, *nv;
2387 	uint64_t txg = 0;
2388 	uint_t nspares, nl2cache;
2389 	int error = 0, error_log;
2390 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2391 	sysevent_t *ev = NULL;
2392 	const char *vd_type = NULL;
2393 	char *vd_path = NULL;
2394 
2395 	ASSERT(spa_writeable(spa));
2396 
2397 	if (!locked)
2398 		txg = spa_vdev_enter(spa);
2399 
2400 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2401 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2402 		error = (spa_has_checkpoint(spa)) ?
2403 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2404 
2405 		if (!locked)
2406 			return (spa_vdev_exit(spa, NULL, txg, error));
2407 
2408 		return (error);
2409 	}
2410 
2411 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2412 
2413 	if (spa->spa_spares.sav_vdevs != NULL &&
2414 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2415 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2416 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2417 		/*
2418 		 * Only remove the hot spare if it's not currently in use
2419 		 * in this pool.
2420 		 */
2421 		if (vd == NULL || unspare) {
2422 			const char *type;
2423 			boolean_t draid_spare = B_FALSE;
2424 
2425 			if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2426 			    == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2427 				draid_spare = B_TRUE;
2428 
2429 			if (vd == NULL && draid_spare) {
2430 				error = SET_ERROR(ENOTSUP);
2431 			} else {
2432 				if (vd == NULL)
2433 					vd = spa_lookup_by_guid(spa,
2434 					    guid, B_TRUE);
2435 				ev = spa_event_create(spa, vd, NULL,
2436 				    ESC_ZFS_VDEV_REMOVE_AUX);
2437 
2438 				vd_type = VDEV_TYPE_SPARE;
2439 				vd_path = spa_strdup(fnvlist_lookup_string(
2440 				    nv, ZPOOL_CONFIG_PATH));
2441 				spa_vdev_remove_aux(spa->spa_spares.sav_config,
2442 				    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2443 				spa_load_spares(spa);
2444 				spa->spa_spares.sav_sync = B_TRUE;
2445 			}
2446 		} else {
2447 			error = SET_ERROR(EBUSY);
2448 		}
2449 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2450 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2451 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2452 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2453 		vd_type = VDEV_TYPE_L2CACHE;
2454 		vd_path = spa_strdup(fnvlist_lookup_string(
2455 		    nv, ZPOOL_CONFIG_PATH));
2456 		/*
2457 		 * Cache devices can always be removed.
2458 		 */
2459 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2460 
2461 		/*
2462 		 * Stop trimming the cache device. We need to release the
2463 		 * config lock to allow the syncing of TRIM transactions
2464 		 * without releasing the spa_namespace_lock. The same
2465 		 * strategy is employed in spa_vdev_remove_top().
2466 		 */
2467 		spa_vdev_config_exit(spa, NULL,
2468 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2469 		mutex_enter(&vd->vdev_trim_lock);
2470 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2471 		mutex_exit(&vd->vdev_trim_lock);
2472 		txg = spa_vdev_config_enter(spa);
2473 
2474 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2475 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2476 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2477 		spa_load_l2cache(spa);
2478 		spa->spa_l2cache.sav_sync = B_TRUE;
2479 	} else if (vd != NULL && vd->vdev_islog) {
2480 		ASSERT(!locked);
2481 		vd_type = VDEV_TYPE_LOG;
2482 		vd_path = spa_strdup((vd->vdev_path != NULL) ?
2483 		    vd->vdev_path : "-");
2484 		error = spa_vdev_remove_log(vd, &txg);
2485 	} else if (vd != NULL) {
2486 		ASSERT(!locked);
2487 		error = spa_vdev_remove_top(vd, &txg);
2488 	} else {
2489 		/*
2490 		 * There is no vdev of any kind with the specified guid.
2491 		 */
2492 		error = SET_ERROR(ENOENT);
2493 	}
2494 
2495 	error_log = error;
2496 
2497 	if (!locked)
2498 		error = spa_vdev_exit(spa, NULL, txg, error);
2499 
2500 	/*
2501 	 * Logging must be done outside the spa config lock. Otherwise,
2502 	 * this code path could end up holding the spa config lock while
2503 	 * waiting for a txg_sync so it can write to the internal log.
2504 	 * Doing that would prevent the txg sync from actually happening,
2505 	 * causing a deadlock.
2506 	 */
2507 	if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2508 		spa_history_log_internal(spa, "vdev remove", NULL,
2509 		    "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2510 	}
2511 	if (vd_path != NULL)
2512 		spa_strfree(vd_path);
2513 
2514 	if (ev != NULL)
2515 		spa_event_post(ev);
2516 
2517 	return (error);
2518 }
2519 
2520 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2521 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2522 {
2523 	prs->prs_state = spa->spa_removing_phys.sr_state;
2524 
2525 	if (prs->prs_state == DSS_NONE)
2526 		return (SET_ERROR(ENOENT));
2527 
2528 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2529 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2530 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2531 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2532 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2533 
2534 	prs->prs_mapping_memory = 0;
2535 	uint64_t indirect_vdev_id =
2536 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2537 	while (indirect_vdev_id != -1) {
2538 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2539 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2540 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2541 
2542 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2543 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2544 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2545 	}
2546 
2547 	return (0);
2548 }
2549 
2550 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2551 	"Ignore hard IO errors when removing device");
2552 
2553 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2554 	"Largest contiguous segment to allocate when removing device");
2555 
2556 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2557 	"Largest span of free chunks a remap segment can span");
2558 
2559 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2560 	"Pause device removal after this many bytes are copied "
2561 	"(debug use only - causes removal to hang)");
2562 
2563 EXPORT_SYMBOL(free_from_removing_vdev);
2564 EXPORT_SYMBOL(spa_removal_get_stats);
2565 EXPORT_SYMBOL(spa_remove_init);
2566 EXPORT_SYMBOL(spa_restart_removal);
2567 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2568 EXPORT_SYMBOL(spa_vdev_remove);
2569 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2570 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2571 EXPORT_SYMBOL(svr_sync);
2572