1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51
52 /*
53 * This file contains the necessary logic to remove vdevs from a
54 * storage pool. Currently, the only devices that can be removed
55 * are log, cache, and spare devices; and top level vdevs from a pool
56 * w/o raidz or mirrors. (Note that members of a mirror can be removed
57 * by the detach operation.)
58 *
59 * Log vdevs are removed by evacuating them and then turning the vdev
60 * into a hole vdev while holding spa config locks.
61 *
62 * Top level vdevs are removed and converted into an indirect vdev via
63 * a multi-step process:
64 *
65 * - Disable allocations from this device (spa_vdev_remove_top).
66 *
67 * - From a new thread (spa_vdev_remove_thread), copy data from
68 * the removing vdev to a different vdev. The copy happens in open
69 * context (spa_vdev_copy_impl) and issues a sync task
70 * (vdev_mapping_sync) so the sync thread can update the partial
71 * indirect mappings in core and on disk.
72 *
73 * - If a free happens during a removal, it is freed from the
74 * removing vdev, and if it has already been copied, from the new
75 * location as well (free_from_removing_vdev).
76 *
77 * - After the removal is completed, the copy thread converts the vdev
78 * into an indirect vdev (vdev_remove_complete) before instructing
79 * the sync thread to destroy the space maps and finish the removal
80 * (spa_finish_removal).
81 */
82
83 typedef struct vdev_copy_arg {
84 metaslab_t *vca_msp;
85 uint64_t vca_outstanding_bytes;
86 uint64_t vca_read_error_bytes;
87 uint64_t vca_write_error_bytes;
88 kcondvar_t vca_cv;
89 kmutex_t vca_lock;
90 } vdev_copy_arg_t;
91
92 /*
93 * The maximum amount of memory we can use for outstanding i/o while
94 * doing a device removal. This determines how much i/o we can have
95 * in flight concurrently.
96 */
97 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98
99 /*
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
104 *
105 * See also the accessor function spa_remove_max_segment().
106 */
107 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108
109 /*
110 * Ignore hard IO errors during device removal. When set if a device
111 * encounters hard IO error during the removal process the removal will
112 * not be cancelled. This can result in a normally recoverable block
113 * becoming permanently damaged and is not recommended.
114 */
115 static int zfs_removal_ignore_errors = 0;
116
117 /*
118 * Allow a remap segment to span free chunks of at most this size. The main
119 * impact of a larger span is that we will read and write larger, more
120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121 * for iops. The value here was chosen to align with
122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123 * reads (but there's no reason it has to be the same).
124 *
125 * Additionally, a higher span will have the following relatively minor
126 * effects:
127 * - the mapping will be smaller, since one entry can cover more allocated
128 * segments
129 * - more of the fragmentation in the removing device will be preserved
130 * - we'll do larger allocations, which may fail and fall back on smaller
131 * allocations
132 */
133 uint_t vdev_removal_max_span = 32 * 1024;
134
135 /*
136 * This is used by the test suite so that it can ensure that certain
137 * actions happen while in the middle of a removal.
138 */
139 int zfs_removal_suspend_progress = 0;
140
141 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
142
143 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145
146 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 DMU_POOL_DIRECTORY_OBJECT,
151 DMU_POOL_REMOVING, sizeof (uint64_t),
152 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 &spa->spa_removing_phys, tx));
154 }
155
156 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 for (int i = 0; i < count; i++) {
160 uint64_t guid =
161 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162
163 if (guid == target_guid)
164 return (nvpp[i]);
165 }
166
167 return (NULL);
168 }
169
170 static void
vdev_activate(vdev_t * vd)171 vdev_activate(vdev_t *vd)
172 {
173 metaslab_group_t *mg = vd->vdev_mg;
174 spa_t *spa = vd->vdev_spa;
175 uint64_t vdev_space = spa_deflate(spa) ?
176 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
177
178 ASSERT(!vd->vdev_islog);
179 ASSERT(vd->vdev_noalloc);
180
181 metaslab_group_activate(mg);
182 metaslab_group_activate(vd->vdev_log_mg);
183
184 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
185
186 spa->spa_nonallocating_dspace -= vdev_space;
187
188 vd->vdev_noalloc = B_FALSE;
189 }
190
191 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)192 vdev_passivate(vdev_t *vd, uint64_t *txg)
193 {
194 spa_t *spa = vd->vdev_spa;
195 int error;
196
197 ASSERT(!vd->vdev_noalloc);
198
199 vdev_t *rvd = spa->spa_root_vdev;
200 metaslab_group_t *mg = vd->vdev_mg;
201 metaslab_class_t *normal = spa_normal_class(spa);
202 if (mg->mg_class == normal) {
203 /*
204 * We must check that this is not the only allocating device in
205 * the pool before passivating, otherwise we will not be able
206 * to make progress because we can't allocate from any vdevs.
207 */
208 boolean_t last = B_TRUE;
209 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
210 vdev_t *cvd = rvd->vdev_child[id];
211
212 if (cvd == vd || !vdev_is_concrete(cvd) ||
213 vdev_is_dead(cvd))
214 continue;
215
216 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
217 if (mc != normal)
218 continue;
219
220 if (!cvd->vdev_noalloc) {
221 last = B_FALSE;
222 break;
223 }
224 }
225 if (last)
226 return (SET_ERROR(EINVAL));
227 }
228
229 metaslab_group_passivate(mg);
230 ASSERT(!vd->vdev_islog);
231 metaslab_group_passivate(vd->vdev_log_mg);
232
233 /*
234 * Wait for the youngest allocations and frees to sync,
235 * and then wait for the deferral of those frees to finish.
236 */
237 spa_vdev_config_exit(spa, NULL,
238 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
239
240 /*
241 * We must ensure that no "stubby" log blocks are allocated
242 * on the device to be removed. These blocks could be
243 * written at any time, including while we are in the middle
244 * of copying them.
245 */
246 error = spa_reset_logs(spa);
247
248 *txg = spa_vdev_config_enter(spa);
249
250 if (error != 0) {
251 metaslab_group_activate(mg);
252 ASSERT(!vd->vdev_islog);
253 if (vd->vdev_log_mg != NULL)
254 metaslab_group_activate(vd->vdev_log_mg);
255 return (error);
256 }
257
258 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
259 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
260 vd->vdev_noalloc = B_TRUE;
261
262 return (0);
263 }
264
265 /*
266 * Turn off allocations for a top-level device from the pool.
267 *
268 * Turning off allocations for a top-level device can take a significant
269 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270 * functions which allow us to grab and release the spa_config_lock while
271 * still holding the namespace lock. During each step the configuration
272 * is synced out.
273 */
274 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
276 {
277 vdev_t *vd;
278 uint64_t txg;
279 int error = 0;
280
281 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
282 ASSERT(spa_writeable(spa));
283
284 txg = spa_vdev_enter(spa);
285
286 ASSERT(MUTEX_HELD(&spa_namespace_lock));
287
288 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
289
290 if (vd == NULL)
291 error = SET_ERROR(ENOENT);
292 else if (vd->vdev_mg == NULL)
293 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
294 else if (!vd->vdev_noalloc)
295 error = vdev_passivate(vd, &txg);
296
297 if (error == 0) {
298 vdev_dirty_leaves(vd, VDD_DTL, txg);
299 vdev_config_dirty(vd);
300 }
301
302 error = spa_vdev_exit(spa, NULL, txg, error);
303
304 return (error);
305 }
306
307 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
309 {
310 vdev_t *vd;
311 uint64_t txg;
312 int error = 0;
313
314 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
315 ASSERT(spa_writeable(spa));
316
317 txg = spa_vdev_enter(spa);
318
319 ASSERT(MUTEX_HELD(&spa_namespace_lock));
320
321 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
322
323 if (vd == NULL)
324 error = SET_ERROR(ENOENT);
325 else if (vd->vdev_mg == NULL)
326 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
327 else if (!vd->vdev_removing)
328 vdev_activate(vd);
329
330 if (error == 0) {
331 vdev_dirty_leaves(vd, VDD_DTL, txg);
332 vdev_config_dirty(vd);
333 }
334
335 (void) spa_vdev_exit(spa, NULL, txg, error);
336
337 return (error);
338 }
339
340 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)341 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
342 int count, nvlist_t *dev_to_remove)
343 {
344 nvlist_t **newdev = NULL;
345
346 if (count > 1)
347 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
348
349 for (int i = 0, j = 0; i < count; i++) {
350 if (dev[i] == dev_to_remove)
351 continue;
352 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
353 }
354
355 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
356 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
357 count - 1);
358
359 for (int i = 0; i < count - 1; i++)
360 nvlist_free(newdev[i]);
361
362 if (count > 1)
363 kmem_free(newdev, (count - 1) * sizeof (void *));
364 }
365
366 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)367 spa_vdev_removal_create(vdev_t *vd)
368 {
369 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
370 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
371 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
372 svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
373 NULL, 0, 0);
374 svr->svr_vdev_id = vd->vdev_id;
375
376 for (int i = 0; i < TXG_SIZE; i++) {
377 svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
378 NULL, 0, 0);
379 list_create(&svr->svr_new_segments[i],
380 sizeof (vdev_indirect_mapping_entry_t),
381 offsetof(vdev_indirect_mapping_entry_t, vime_node));
382 }
383
384 return (svr);
385 }
386
387 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)388 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
389 {
390 for (int i = 0; i < TXG_SIZE; i++) {
391 ASSERT0(svr->svr_bytes_done[i]);
392 ASSERT0(svr->svr_max_offset_to_sync[i]);
393 zfs_range_tree_destroy(svr->svr_frees[i]);
394 list_destroy(&svr->svr_new_segments[i]);
395 }
396
397 zfs_range_tree_destroy(svr->svr_allocd_segs);
398 mutex_destroy(&svr->svr_lock);
399 cv_destroy(&svr->svr_cv);
400 kmem_free(svr, sizeof (*svr));
401 }
402
403 /*
404 * This is called as a synctask in the txg in which we will mark this vdev
405 * as removing (in the config stored in the MOS).
406 *
407 * It begins the evacuation of a toplevel vdev by:
408 * - initializing the spa_removing_phys which tracks this removal
409 * - computing the amount of space to remove for accounting purposes
410 * - dirtying all dbufs in the spa_config_object
411 * - creating the spa_vdev_removal
412 * - starting the spa_vdev_remove_thread
413 */
414 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)415 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
416 {
417 int vdev_id = (uintptr_t)arg;
418 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
419 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
420 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
421 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
422 spa_vdev_removal_t *svr = NULL;
423 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
424
425 ASSERT0(vdev_get_nparity(vd));
426 svr = spa_vdev_removal_create(vd);
427
428 ASSERT(vd->vdev_removing);
429 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
430
431 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
432 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
433 /*
434 * By activating the OBSOLETE_COUNTS feature, we prevent
435 * the pool from being downgraded and ensure that the
436 * refcounts are precise.
437 */
438 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
439 uint64_t one = 1;
440 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
441 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
442 &one, tx));
443 boolean_t are_precise __maybe_unused;
444 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
445 ASSERT3B(are_precise, ==, B_TRUE);
446 }
447
448 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
449 vd->vdev_indirect_mapping =
450 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
451 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
452 vd->vdev_indirect_births =
453 vdev_indirect_births_open(mos, vic->vic_births_object);
454 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
455 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
456 spa->spa_removing_phys.sr_end_time = 0;
457 spa->spa_removing_phys.sr_state = DSS_SCANNING;
458 spa->spa_removing_phys.sr_to_copy = 0;
459 spa->spa_removing_phys.sr_copied = 0;
460
461 /*
462 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
463 * there may be space in the defer tree, which is free, but still
464 * counted in vs_alloc.
465 */
466 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
467 metaslab_t *ms = vd->vdev_ms[i];
468 if (ms->ms_sm == NULL)
469 continue;
470
471 spa->spa_removing_phys.sr_to_copy +=
472 metaslab_allocated_space(ms);
473
474 /*
475 * Space which we are freeing this txg does not need to
476 * be copied.
477 */
478 spa->spa_removing_phys.sr_to_copy -=
479 zfs_range_tree_space(ms->ms_freeing);
480
481 ASSERT0(zfs_range_tree_space(ms->ms_freed));
482 for (int t = 0; t < TXG_SIZE; t++)
483 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
484 }
485
486 /*
487 * Sync tasks are called before metaslab_sync(), so there should
488 * be no already-synced metaslabs in the TXG_CLEAN list.
489 */
490 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
491
492 spa_sync_removing_state(spa, tx);
493
494 /*
495 * All blocks that we need to read the most recent mapping must be
496 * stored on concrete vdevs. Therefore, we must dirty anything that
497 * is read before spa_remove_init(). Specifically, the
498 * spa_config_object. (Note that although we already modified the
499 * spa_config_object in spa_sync_removing_state, that may not have
500 * modified all blocks of the object.)
501 */
502 dmu_object_info_t doi;
503 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
504 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
505 dmu_buf_t *dbuf;
506 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
507 offset, FTAG, &dbuf, 0));
508 dmu_buf_will_dirty(dbuf, tx);
509 offset += dbuf->db_size;
510 dmu_buf_rele(dbuf, FTAG);
511 }
512
513 /*
514 * Now that we've allocated the im_object, dirty the vdev to ensure
515 * that the object gets written to the config on disk.
516 */
517 vdev_config_dirty(vd);
518
519 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
520 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
521 (u_longlong_t)dmu_tx_get_txg(tx),
522 (u_longlong_t)vic->vic_mapping_object);
523
524 spa_history_log_internal(spa, "vdev remove started", tx,
525 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
526 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
527 /*
528 * Setting spa_vdev_removal causes subsequent frees to call
529 * free_from_removing_vdev(). Note that we don't need any locking
530 * because we are the sync thread, and metaslab_free_impl() is only
531 * called from syncing context (potentially from a zio taskq thread,
532 * but in any case only when there are outstanding free i/os, which
533 * there are not).
534 */
535 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
536 spa->spa_vdev_removal = svr;
537 svr->svr_thread = thread_create(NULL, 0,
538 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
539 }
540
541 /*
542 * When we are opening a pool, we must read the mapping for each
543 * indirect vdev in order from most recently removed to least
544 * recently removed. We do this because the blocks for the mapping
545 * of older indirect vdevs may be stored on more recently removed vdevs.
546 * In order to read each indirect mapping object, we must have
547 * initialized all more recently removed vdevs.
548 */
549 int
spa_remove_init(spa_t * spa)550 spa_remove_init(spa_t *spa)
551 {
552 int error;
553
554 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
555 DMU_POOL_DIRECTORY_OBJECT,
556 DMU_POOL_REMOVING, sizeof (uint64_t),
557 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
558 &spa->spa_removing_phys);
559
560 if (error == ENOENT) {
561 spa->spa_removing_phys.sr_state = DSS_NONE;
562 spa->spa_removing_phys.sr_removing_vdev = -1;
563 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
564 spa->spa_indirect_vdevs_loaded = B_TRUE;
565 return (0);
566 } else if (error != 0) {
567 return (error);
568 }
569
570 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
571 /*
572 * We are currently removing a vdev. Create and
573 * initialize a spa_vdev_removal_t from the bonus
574 * buffer of the removing vdevs vdev_im_object, and
575 * initialize its partial mapping.
576 */
577 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
578 vdev_t *vd = vdev_lookup_top(spa,
579 spa->spa_removing_phys.sr_removing_vdev);
580
581 if (vd == NULL) {
582 spa_config_exit(spa, SCL_STATE, FTAG);
583 return (EINVAL);
584 }
585
586 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
587
588 ASSERT(vdev_is_concrete(vd));
589 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
590 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
591 ASSERT(vd->vdev_removing);
592
593 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
594 spa->spa_meta_objset, vic->vic_mapping_object);
595 vd->vdev_indirect_births = vdev_indirect_births_open(
596 spa->spa_meta_objset, vic->vic_births_object);
597 spa_config_exit(spa, SCL_STATE, FTAG);
598
599 spa->spa_vdev_removal = svr;
600 }
601
602 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
603 uint64_t indirect_vdev_id =
604 spa->spa_removing_phys.sr_prev_indirect_vdev;
605 while (indirect_vdev_id != UINT64_MAX) {
606 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
607 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
608
609 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
610 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
611 spa->spa_meta_objset, vic->vic_mapping_object);
612 vd->vdev_indirect_births = vdev_indirect_births_open(
613 spa->spa_meta_objset, vic->vic_births_object);
614
615 indirect_vdev_id = vic->vic_prev_indirect_vdev;
616 }
617 spa_config_exit(spa, SCL_STATE, FTAG);
618
619 /*
620 * Now that we've loaded all the indirect mappings, we can allow
621 * reads from other blocks (e.g. via predictive prefetch).
622 */
623 spa->spa_indirect_vdevs_loaded = B_TRUE;
624 return (0);
625 }
626
627 void
spa_restart_removal(spa_t * spa)628 spa_restart_removal(spa_t *spa)
629 {
630 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
631
632 if (svr == NULL)
633 return;
634
635 /*
636 * In general when this function is called there is no
637 * removal thread running. The only scenario where this
638 * is not true is during spa_import() where this function
639 * is called twice [once from spa_import_impl() and
640 * spa_async_resume()]. Thus, in the scenario where we
641 * import a pool that has an ongoing removal we don't
642 * want to spawn a second thread.
643 */
644 if (svr->svr_thread != NULL)
645 return;
646
647 if (!spa_writeable(spa))
648 return;
649
650 zfs_dbgmsg("restarting removal of %llu",
651 (u_longlong_t)svr->svr_vdev_id);
652 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
653 0, &p0, TS_RUN, minclsyspri);
654 }
655
656 /*
657 * Process freeing from a device which is in the middle of being removed.
658 * We must handle this carefully so that we attempt to copy freed data,
659 * and we correctly free already-copied data.
660 */
661 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)662 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
663 {
664 spa_t *spa = vd->vdev_spa;
665 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
666 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
667 uint64_t txg = spa_syncing_txg(spa);
668 uint64_t max_offset_yet = 0;
669
670 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
671 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
672 vdev_indirect_mapping_object(vim));
673 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
674
675 mutex_enter(&svr->svr_lock);
676
677 /*
678 * Remove the segment from the removing vdev's spacemap. This
679 * ensures that we will not attempt to copy this space (if the
680 * removal thread has not yet visited it), and also ensures
681 * that we know what is actually allocated on the new vdevs
682 * (needed if we cancel the removal).
683 *
684 * Note: we must do the metaslab_free_concrete() with the svr_lock
685 * held, so that the remove_thread can not load this metaslab and then
686 * visit this offset between the time that we metaslab_free_concrete()
687 * and when we check to see if it has been visited.
688 *
689 * Note: The checkpoint flag is set to false as having/taking
690 * a checkpoint and removing a device can't happen at the same
691 * time.
692 */
693 ASSERT(!spa_has_checkpoint(spa));
694 metaslab_free_concrete(vd, offset, size, B_FALSE);
695
696 uint64_t synced_size = 0;
697 uint64_t synced_offset = 0;
698 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
699 if (offset < max_offset_synced) {
700 /*
701 * The mapping for this offset is already on disk.
702 * Free from the new location.
703 *
704 * Note that we use svr_max_synced_offset because it is
705 * updated atomically with respect to the in-core mapping.
706 * By contrast, vim_max_offset is not.
707 *
708 * This block may be split between a synced entry and an
709 * in-flight or unvisited entry. Only process the synced
710 * portion of it here.
711 */
712 synced_size = MIN(size, max_offset_synced - offset);
713 synced_offset = offset;
714
715 ASSERT3U(max_offset_yet, <=, max_offset_synced);
716 max_offset_yet = max_offset_synced;
717
718 DTRACE_PROBE3(remove__free__synced,
719 spa_t *, spa,
720 uint64_t, offset,
721 uint64_t, synced_size);
722
723 size -= synced_size;
724 offset += synced_size;
725 }
726
727 /*
728 * Look at all in-flight txgs starting from the currently syncing one
729 * and see if a section of this free is being copied. By starting from
730 * this txg and iterating forward, we might find that this region
731 * was copied in two different txgs and handle it appropriately.
732 */
733 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
734 int txgoff = (txg + i) & TXG_MASK;
735 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
736 /*
737 * The mapping for this offset is in flight, and
738 * will be synced in txg+i.
739 */
740 uint64_t inflight_size = MIN(size,
741 svr->svr_max_offset_to_sync[txgoff] - offset);
742
743 DTRACE_PROBE4(remove__free__inflight,
744 spa_t *, spa,
745 uint64_t, offset,
746 uint64_t, inflight_size,
747 uint64_t, txg + i);
748
749 /*
750 * We copy data in order of increasing offset.
751 * Therefore the max_offset_to_sync[] must increase
752 * (or be zero, indicating that nothing is being
753 * copied in that txg).
754 */
755 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
756 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
757 >=, max_offset_yet);
758 max_offset_yet =
759 svr->svr_max_offset_to_sync[txgoff];
760 }
761
762 /*
763 * We've already committed to copying this segment:
764 * we have allocated space elsewhere in the pool for
765 * it and have an IO outstanding to copy the data. We
766 * cannot free the space before the copy has
767 * completed, or else the copy IO might overwrite any
768 * new data. To free that space, we record the
769 * segment in the appropriate svr_frees tree and free
770 * the mapped space later, in the txg where we have
771 * completed the copy and synced the mapping (see
772 * vdev_mapping_sync).
773 */
774 zfs_range_tree_add(svr->svr_frees[txgoff],
775 offset, inflight_size);
776 size -= inflight_size;
777 offset += inflight_size;
778
779 /*
780 * This space is already accounted for as being
781 * done, because it is being copied in txg+i.
782 * However, if i!=0, then it is being copied in
783 * a future txg. If we crash after this txg
784 * syncs but before txg+i syncs, then the space
785 * will be free. Therefore we must account
786 * for the space being done in *this* txg
787 * (when it is freed) rather than the future txg
788 * (when it will be copied).
789 */
790 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
791 inflight_size);
792 svr->svr_bytes_done[txgoff] -= inflight_size;
793 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
794 }
795 }
796 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
797
798 if (size > 0) {
799 /*
800 * The copy thread has not yet visited this offset. Ensure
801 * that it doesn't.
802 */
803
804 DTRACE_PROBE3(remove__free__unvisited,
805 spa_t *, spa,
806 uint64_t, offset,
807 uint64_t, size);
808
809 if (svr->svr_allocd_segs != NULL)
810 zfs_range_tree_clear(svr->svr_allocd_segs, offset,
811 size);
812
813 /*
814 * Since we now do not need to copy this data, for
815 * accounting purposes we have done our job and can count
816 * it as completed.
817 */
818 svr->svr_bytes_done[txg & TXG_MASK] += size;
819 }
820 mutex_exit(&svr->svr_lock);
821
822 /*
823 * Now that we have dropped svr_lock, process the synced portion
824 * of this free.
825 */
826 if (synced_size > 0) {
827 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
828
829 /*
830 * Note: this can only be called from syncing context,
831 * and the vdev_indirect_mapping is only changed from the
832 * sync thread, so we don't need svr_lock while doing
833 * metaslab_free_impl_cb.
834 */
835 boolean_t checkpoint = B_FALSE;
836 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
837 metaslab_free_impl_cb, &checkpoint);
838 }
839 }
840
841 /*
842 * Stop an active removal and update the spa_removing phys.
843 */
844 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)845 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
846 {
847 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
848 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
849
850 /* Ensure the removal thread has completed before we free the svr. */
851 spa_vdev_remove_suspend(spa);
852
853 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
854
855 if (state == DSS_FINISHED) {
856 spa_removing_phys_t *srp = &spa->spa_removing_phys;
857 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
858 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
859
860 if (srp->sr_prev_indirect_vdev != -1) {
861 vdev_t *pvd;
862 pvd = vdev_lookup_top(spa,
863 srp->sr_prev_indirect_vdev);
864 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
865 }
866
867 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
868 srp->sr_prev_indirect_vdev = vd->vdev_id;
869 }
870 spa->spa_removing_phys.sr_state = state;
871 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
872
873 spa->spa_vdev_removal = NULL;
874 spa_vdev_removal_destroy(svr);
875
876 spa_sync_removing_state(spa, tx);
877 spa_notify_waiters(spa);
878
879 vdev_config_dirty(spa->spa_root_vdev);
880 }
881
882 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)883 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
884 {
885 vdev_t *vd = arg;
886 vdev_indirect_mark_obsolete(vd, offset, size);
887 boolean_t checkpoint = B_FALSE;
888 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
889 metaslab_free_impl_cb, &checkpoint);
890 }
891
892 /*
893 * On behalf of the removal thread, syncs an incremental bit more of
894 * the indirect mapping to disk and updates the in-memory mapping.
895 * Called as a sync task in every txg that the removal thread makes progress.
896 */
897 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)898 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
899 {
900 spa_vdev_removal_t *svr = arg;
901 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
902 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
903 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
904 uint64_t txg = dmu_tx_get_txg(tx);
905 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
906
907 ASSERT(vic->vic_mapping_object != 0);
908 ASSERT3U(txg, ==, spa_syncing_txg(spa));
909
910 vdev_indirect_mapping_add_entries(vim,
911 &svr->svr_new_segments[txg & TXG_MASK], tx);
912 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
913 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
914
915 /*
916 * Free the copied data for anything that was freed while the
917 * mapping entries were in flight.
918 */
919 mutex_enter(&svr->svr_lock);
920 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
921 free_mapped_segment_cb, vd);
922 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
923 vdev_indirect_mapping_max_offset(vim));
924 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
925 mutex_exit(&svr->svr_lock);
926
927 spa_sync_removing_state(spa, tx);
928 }
929
930 typedef struct vdev_copy_segment_arg {
931 spa_t *vcsa_spa;
932 dva_t *vcsa_dest_dva;
933 uint64_t vcsa_txg;
934 zfs_range_tree_t *vcsa_obsolete_segs;
935 } vdev_copy_segment_arg_t;
936
937 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)938 unalloc_seg(void *arg, uint64_t start, uint64_t size)
939 {
940 vdev_copy_segment_arg_t *vcsa = arg;
941 spa_t *spa = vcsa->vcsa_spa;
942 blkptr_t bp = { { { {0} } } };
943
944 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
945 BP_SET_LSIZE(&bp, size);
946 BP_SET_PSIZE(&bp, size);
947 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
948 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
949 BP_SET_TYPE(&bp, DMU_OT_NONE);
950 BP_SET_LEVEL(&bp, 0);
951 BP_SET_DEDUP(&bp, 0);
952 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
953
954 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
955 DVA_SET_OFFSET(&bp.blk_dva[0],
956 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
957 DVA_SET_ASIZE(&bp.blk_dva[0], size);
958
959 zio_free(spa, vcsa->vcsa_txg, &bp);
960 }
961
962 /*
963 * All reads and writes associated with a call to spa_vdev_copy_segment()
964 * are done.
965 */
966 static void
spa_vdev_copy_segment_done(zio_t * zio)967 spa_vdev_copy_segment_done(zio_t *zio)
968 {
969 vdev_copy_segment_arg_t *vcsa = zio->io_private;
970
971 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
972 unalloc_seg, vcsa);
973 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
974 kmem_free(vcsa, sizeof (*vcsa));
975
976 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
977 }
978
979 /*
980 * The write of the new location is done.
981 */
982 static void
spa_vdev_copy_segment_write_done(zio_t * zio)983 spa_vdev_copy_segment_write_done(zio_t *zio)
984 {
985 vdev_copy_arg_t *vca = zio->io_private;
986
987 abd_free(zio->io_abd);
988
989 mutex_enter(&vca->vca_lock);
990 vca->vca_outstanding_bytes -= zio->io_size;
991
992 if (zio->io_error != 0)
993 vca->vca_write_error_bytes += zio->io_size;
994
995 cv_signal(&vca->vca_cv);
996 mutex_exit(&vca->vca_lock);
997 }
998
999 /*
1000 * The read of the old location is done. The parent zio is the write to
1001 * the new location. Allow it to start.
1002 */
1003 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1004 spa_vdev_copy_segment_read_done(zio_t *zio)
1005 {
1006 vdev_copy_arg_t *vca = zio->io_private;
1007
1008 if (zio->io_error != 0) {
1009 mutex_enter(&vca->vca_lock);
1010 vca->vca_read_error_bytes += zio->io_size;
1011 mutex_exit(&vca->vca_lock);
1012 }
1013
1014 zio_nowait(zio_unique_parent(zio));
1015 }
1016
1017 /*
1018 * If the old and new vdevs are mirrors, we will read both sides of the old
1019 * mirror, and write each copy to the corresponding side of the new mirror.
1020 * If the old and new vdevs have a different number of children, we will do
1021 * this as best as possible. Since we aren't verifying checksums, this
1022 * ensures that as long as there's a good copy of the data, we'll have a
1023 * good copy after the removal, even if there's silent damage to one side
1024 * of the mirror. If we're removing a mirror that has some silent damage,
1025 * we'll have exactly the same damage in the new location (assuming that
1026 * the new location is also a mirror).
1027 *
1028 * We accomplish this by creating a tree of zio_t's, with as many writes as
1029 * there are "children" of the new vdev (a non-redundant vdev counts as one
1030 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1031 * read from a child of the old vdev. Typically there will be the same
1032 * number of children of the old and new vdevs. However, if there are more
1033 * children of the new vdev, some child(ren) of the old vdev will be issued
1034 * multiple reads. If there are more children of the old vdev, some copies
1035 * will be dropped.
1036 *
1037 * For example, the tree of zio_t's for a 2-way mirror is:
1038 *
1039 * null
1040 * / \
1041 * write(new vdev, child 0) write(new vdev, child 1)
1042 * | |
1043 * read(old vdev, child 0) read(old vdev, child 1)
1044 *
1045 * Child zio's complete before their parents complete. However, zio's
1046 * created with zio_vdev_child_io() may be issued before their children
1047 * complete. In this case we need to make sure that the children (reads)
1048 * complete before the parents (writes) are *issued*. We do this by not
1049 * calling zio_nowait() on each write until its corresponding read has
1050 * completed.
1051 *
1052 * The spa_config_lock must be held while zio's created by
1053 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1054 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1055 * zio is needed to release the spa_config_lock after all the reads and
1056 * writes complete. (Note that we can't grab the config lock for each read,
1057 * because it is not reentrant - we could deadlock with a thread waiting
1058 * for a write lock.)
1059 */
1060 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1061 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1062 vdev_t *source_vd, uint64_t source_offset,
1063 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1064 {
1065 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1066
1067 /*
1068 * If the destination child in unwritable then there is no point
1069 * in issuing the source reads which cannot be written.
1070 */
1071 if (!vdev_writeable(dest_child_vd))
1072 return;
1073
1074 mutex_enter(&vca->vca_lock);
1075 vca->vca_outstanding_bytes += size;
1076 mutex_exit(&vca->vca_lock);
1077
1078 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1079
1080 vdev_t *source_child_vd = NULL;
1081 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1082 /*
1083 * Source and dest are both mirrors. Copy from the same
1084 * child id as we are copying to (wrapping around if there
1085 * are more dest children than source children). If the
1086 * preferred source child is unreadable select another.
1087 */
1088 for (int i = 0; i < source_vd->vdev_children; i++) {
1089 source_child_vd = source_vd->vdev_child[
1090 (dest_id + i) % source_vd->vdev_children];
1091 if (vdev_readable(source_child_vd))
1092 break;
1093 }
1094 } else {
1095 source_child_vd = source_vd;
1096 }
1097
1098 /*
1099 * There should always be at least one readable source child or
1100 * the pool would be in a suspended state. Somehow selecting an
1101 * unreadable child would result in IO errors, the removal process
1102 * being cancelled, and the pool reverting to its pre-removal state.
1103 */
1104 ASSERT3P(source_child_vd, !=, NULL);
1105
1106 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1107 dest_child_vd, dest_offset, abd, size,
1108 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1109 ZIO_FLAG_CANFAIL,
1110 spa_vdev_copy_segment_write_done, vca);
1111
1112 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1113 source_child_vd, source_offset, abd, size,
1114 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1115 ZIO_FLAG_CANFAIL,
1116 spa_vdev_copy_segment_read_done, vca));
1117 }
1118
1119 /*
1120 * Allocate a new location for this segment, and create the zio_t's to
1121 * read from the old location and write to the new location.
1122 */
1123 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1124 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1125 uint64_t maxalloc, uint64_t txg,
1126 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1127 {
1128 metaslab_group_t *mg = vd->vdev_mg;
1129 spa_t *spa = vd->vdev_spa;
1130 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1131 vdev_indirect_mapping_entry_t *entry;
1132 dva_t dst = {{ 0 }};
1133 uint64_t start = zfs_range_tree_min(segs);
1134 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1135
1136 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1137 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1138
1139 uint64_t size = zfs_range_tree_span(segs);
1140 if (zfs_range_tree_span(segs) > maxalloc) {
1141 /*
1142 * We can't allocate all the segments. Prefer to end
1143 * the allocation at the end of a segment, thus avoiding
1144 * additional split blocks.
1145 */
1146 zfs_range_seg_max_t search;
1147 zfs_btree_index_t where;
1148 zfs_rs_set_start(&search, segs, start + maxalloc);
1149 zfs_rs_set_end(&search, segs, start + maxalloc);
1150 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1151 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1152 &where);
1153 if (rs != NULL) {
1154 size = zfs_rs_get_end(rs, segs) - start;
1155 } else {
1156 /*
1157 * There are no segments that end before maxalloc.
1158 * I.e. the first segment is larger than maxalloc,
1159 * so we must split it.
1160 */
1161 size = maxalloc;
1162 }
1163 }
1164 ASSERT3U(size, <=, maxalloc);
1165 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1166
1167 /*
1168 * An allocation class might not have any remaining vdevs or space
1169 */
1170 metaslab_class_t *mc = mg->mg_class;
1171 if (mc->mc_groups == 0)
1172 mc = spa_normal_class(spa);
1173 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1174 METASLAB_DONT_THROTTLE, zal, 0);
1175 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1176 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1177 &dst, 0, NULL, txg, METASLAB_DONT_THROTTLE, zal, 0);
1178 }
1179 if (error != 0)
1180 return (error);
1181
1182 /*
1183 * Determine the ranges that are not actually needed. Offsets are
1184 * relative to the start of the range to be copied (i.e. relative to the
1185 * local variable "start").
1186 */
1187 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL,
1188 ZFS_RANGE_SEG64, NULL, 0, 0);
1189
1190 zfs_btree_index_t where;
1191 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1192 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1193 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1194 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1195 if (zfs_rs_get_start(rs, segs) >= start + size) {
1196 break;
1197 } else {
1198 zfs_range_tree_add(obsolete_segs,
1199 prev_seg_end - start,
1200 zfs_rs_get_start(rs, segs) - prev_seg_end);
1201 }
1202 prev_seg_end = zfs_rs_get_end(rs, segs);
1203 }
1204 /* We don't end in the middle of an obsolete range */
1205 ASSERT3U(start + size, <=, prev_seg_end);
1206
1207 zfs_range_tree_clear(segs, start, size);
1208
1209 /*
1210 * We can't have any padding of the allocated size, otherwise we will
1211 * misunderstand what's allocated, and the size of the mapping. We
1212 * prevent padding by ensuring that all devices in the pool have the
1213 * same ashift, and the allocation size is a multiple of the ashift.
1214 */
1215 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1216
1217 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1218 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1219 entry->vime_mapping.vimep_dst = dst;
1220 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1221 entry->vime_obsolete_count =
1222 zfs_range_tree_space(obsolete_segs);
1223 }
1224
1225 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1226 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1227 vcsa->vcsa_obsolete_segs = obsolete_segs;
1228 vcsa->vcsa_spa = spa;
1229 vcsa->vcsa_txg = txg;
1230
1231 /*
1232 * See comment before spa_vdev_copy_one_child().
1233 */
1234 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1235 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1236 spa_vdev_copy_segment_done, vcsa, 0);
1237 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1238 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1239 for (int i = 0; i < dest_vd->vdev_children; i++) {
1240 vdev_t *child = dest_vd->vdev_child[i];
1241 spa_vdev_copy_one_child(vca, nzio, vd, start,
1242 child, DVA_GET_OFFSET(&dst), i, size);
1243 }
1244 } else {
1245 spa_vdev_copy_one_child(vca, nzio, vd, start,
1246 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1247 }
1248 zio_nowait(nzio);
1249
1250 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1251 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1252 vdev_dirty(vd, 0, NULL, txg);
1253
1254 return (0);
1255 }
1256
1257 /*
1258 * Complete the removal of a toplevel vdev. This is called as a
1259 * synctask in the same txg that we will sync out the new config (to the
1260 * MOS object) which indicates that this vdev is indirect.
1261 */
1262 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1263 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1264 {
1265 spa_vdev_removal_t *svr = arg;
1266 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1267 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1268
1269 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1270
1271 for (int i = 0; i < TXG_SIZE; i++) {
1272 ASSERT0(svr->svr_bytes_done[i]);
1273 }
1274
1275 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1276 spa->spa_removing_phys.sr_to_copy);
1277
1278 vdev_destroy_spacemaps(vd, tx);
1279
1280 /* destroy leaf zaps, if any */
1281 ASSERT3P(svr->svr_zaplist, !=, NULL);
1282 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1283 pair != NULL;
1284 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1285 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1286 }
1287 fnvlist_free(svr->svr_zaplist);
1288
1289 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1290 /* vd->vdev_path is not available here */
1291 spa_history_log_internal(spa, "vdev remove completed", tx,
1292 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1293 }
1294
1295 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1296 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1297 {
1298 ASSERT3P(zlist, !=, NULL);
1299 ASSERT0(vdev_get_nparity(vd));
1300
1301 if (vd->vdev_leaf_zap != 0) {
1302 char zkey[32];
1303 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1304 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1305 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1306 }
1307
1308 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1309 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1310 }
1311 }
1312
1313 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1314 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1315 {
1316 vdev_t *ivd;
1317 dmu_tx_t *tx;
1318 spa_t *spa = vd->vdev_spa;
1319 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1320
1321 /*
1322 * First, build a list of leaf zaps to be destroyed.
1323 * This is passed to the sync context thread,
1324 * which does the actual unlinking.
1325 */
1326 svr->svr_zaplist = fnvlist_alloc();
1327 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1328
1329 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1330 ivd->vdev_removing = 0;
1331
1332 vd->vdev_leaf_zap = 0;
1333
1334 vdev_remove_child(ivd, vd);
1335 vdev_compact_children(ivd);
1336
1337 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1338
1339 mutex_enter(&svr->svr_lock);
1340 svr->svr_thread = NULL;
1341 cv_broadcast(&svr->svr_cv);
1342 mutex_exit(&svr->svr_lock);
1343
1344 /* After this, we can not use svr. */
1345 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1346 dsl_sync_task_nowait(spa->spa_dsl_pool,
1347 vdev_remove_complete_sync, svr, tx);
1348 dmu_tx_commit(tx);
1349 }
1350
1351 /*
1352 * Complete the removal of a toplevel vdev. This is called in open
1353 * context by the removal thread after we have copied all vdev's data.
1354 */
1355 static void
vdev_remove_complete(spa_t * spa)1356 vdev_remove_complete(spa_t *spa)
1357 {
1358 uint64_t txg;
1359
1360 /*
1361 * Wait for any deferred frees to be synced before we call
1362 * vdev_metaslab_fini()
1363 */
1364 txg_wait_synced(spa->spa_dsl_pool, 0);
1365 txg = spa_vdev_enter(spa);
1366 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1367 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1368 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1369 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1370 vdev_rebuild_stop_wait(vd);
1371 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1372 uint64_t vdev_space = spa_deflate(spa) ?
1373 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1374
1375 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1376 ESC_ZFS_VDEV_REMOVE_DEV);
1377
1378 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1379 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1380
1381 ASSERT3U(0, !=, vdev_space);
1382 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1383
1384 /* the vdev is no longer part of the dspace */
1385 spa->spa_nonallocating_dspace -= vdev_space;
1386
1387 /*
1388 * Discard allocation state.
1389 */
1390 if (vd->vdev_mg != NULL) {
1391 vdev_metaslab_fini(vd);
1392 metaslab_group_destroy(vd->vdev_mg);
1393 vd->vdev_mg = NULL;
1394 }
1395 if (vd->vdev_log_mg != NULL) {
1396 ASSERT0(vd->vdev_ms_count);
1397 metaslab_group_destroy(vd->vdev_log_mg);
1398 vd->vdev_log_mg = NULL;
1399 }
1400 ASSERT0(vd->vdev_stat.vs_space);
1401 ASSERT0(vd->vdev_stat.vs_dspace);
1402
1403 vdev_remove_replace_with_indirect(vd, txg);
1404
1405 /*
1406 * We now release the locks, allowing spa_sync to run and finish the
1407 * removal via vdev_remove_complete_sync in syncing context.
1408 *
1409 * Note that we hold on to the vdev_t that has been replaced. Since
1410 * it isn't part of the vdev tree any longer, it can't be concurrently
1411 * manipulated, even while we don't have the config lock.
1412 */
1413 (void) spa_vdev_exit(spa, NULL, txg, 0);
1414
1415 /*
1416 * Top ZAP should have been transferred to the indirect vdev in
1417 * vdev_remove_replace_with_indirect.
1418 */
1419 ASSERT0(vd->vdev_top_zap);
1420
1421 /*
1422 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1423 */
1424 ASSERT0(vd->vdev_leaf_zap);
1425
1426 txg = spa_vdev_enter(spa);
1427 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1428 /*
1429 * Request to update the config and the config cachefile.
1430 */
1431 vdev_config_dirty(spa->spa_root_vdev);
1432 (void) spa_vdev_exit(spa, vd, txg, 0);
1433
1434 if (ev != NULL)
1435 spa_event_post(ev);
1436 }
1437
1438 /*
1439 * Evacuates a segment of size at most max_alloc from the vdev
1440 * via repeated calls to spa_vdev_copy_segment. If an allocation
1441 * fails, the pool is probably too fragmented to handle such a
1442 * large size, so decrease max_alloc so that the caller will not try
1443 * this size again this txg.
1444 */
1445 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1446 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1447 uint64_t *max_alloc, dmu_tx_t *tx)
1448 {
1449 uint64_t txg = dmu_tx_get_txg(tx);
1450 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1451
1452 mutex_enter(&svr->svr_lock);
1453
1454 /*
1455 * Determine how big of a chunk to copy. We can allocate up
1456 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1457 * bytes of unallocated space at a time. "segs" will track the
1458 * allocated segments that we are copying. We may also be copying
1459 * free segments (of up to vdev_removal_max_span bytes).
1460 */
1461 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1462 NULL, 0, 0);
1463 for (;;) {
1464 zfs_range_tree_t *rt = svr->svr_allocd_segs;
1465 zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1466
1467 if (rs == NULL)
1468 break;
1469
1470 uint64_t seg_length;
1471
1472 if (zfs_range_tree_is_empty(segs)) {
1473 /* need to truncate the first seg based on max_alloc */
1474 seg_length = MIN(zfs_rs_get_end(rs, rt) -
1475 zfs_rs_get_start(rs, rt), *max_alloc);
1476 } else {
1477 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1478 > vdev_removal_max_span) {
1479 /*
1480 * Including this segment would cause us to
1481 * copy a larger unneeded chunk than is allowed.
1482 */
1483 break;
1484 } else if (zfs_rs_get_end(rs, rt) -
1485 zfs_range_tree_min(segs) > *max_alloc) {
1486 /*
1487 * This additional segment would extend past
1488 * max_alloc. Rather than splitting this
1489 * segment, leave it for the next mapping.
1490 */
1491 break;
1492 } else {
1493 seg_length = zfs_rs_get_end(rs, rt) -
1494 zfs_rs_get_start(rs, rt);
1495 }
1496 }
1497
1498 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1499 zfs_range_tree_remove(svr->svr_allocd_segs,
1500 zfs_rs_get_start(rs, rt), seg_length);
1501 }
1502
1503 if (zfs_range_tree_is_empty(segs)) {
1504 mutex_exit(&svr->svr_lock);
1505 zfs_range_tree_destroy(segs);
1506 return;
1507 }
1508
1509 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1510 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1511 svr, tx);
1512 }
1513
1514 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1515
1516 /*
1517 * Note: this is the amount of *allocated* space
1518 * that we are taking care of each txg.
1519 */
1520 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1521
1522 mutex_exit(&svr->svr_lock);
1523
1524 zio_alloc_list_t zal;
1525 metaslab_trace_init(&zal);
1526 uint64_t thismax = SPA_MAXBLOCKSIZE;
1527 while (!zfs_range_tree_is_empty(segs)) {
1528 int error = spa_vdev_copy_segment(vd,
1529 segs, thismax, txg, vca, &zal);
1530
1531 if (error == ENOSPC) {
1532 /*
1533 * Cut our segment in half, and don't try this
1534 * segment size again this txg. Note that the
1535 * allocation size must be aligned to the highest
1536 * ashift in the pool, so that the allocation will
1537 * not be padded out to a multiple of the ashift,
1538 * which could cause us to think that this mapping
1539 * is larger than we intended.
1540 */
1541 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1542 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1543 uint64_t attempted =
1544 MIN(zfs_range_tree_span(segs), thismax);
1545 thismax = P2ROUNDUP(attempted / 2,
1546 1 << spa->spa_max_ashift);
1547 /*
1548 * The minimum-size allocation can not fail.
1549 */
1550 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1551 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1552 } else {
1553 ASSERT0(error);
1554
1555 /*
1556 * We've performed an allocation, so reset the
1557 * alloc trace list.
1558 */
1559 metaslab_trace_fini(&zal);
1560 metaslab_trace_init(&zal);
1561 }
1562 }
1563 metaslab_trace_fini(&zal);
1564 zfs_range_tree_destroy(segs);
1565 }
1566
1567 /*
1568 * The size of each removal mapping is limited by the tunable
1569 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1570 * pool's ashift, so that we don't try to split individual sectors regardless
1571 * of the tunable value. (Note that device removal requires that all devices
1572 * have the same ashift, so there's no difference between spa_min_ashift and
1573 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1574 */
1575 uint64_t
spa_remove_max_segment(spa_t * spa)1576 spa_remove_max_segment(spa_t *spa)
1577 {
1578 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1579 }
1580
1581 /*
1582 * The removal thread operates in open context. It iterates over all
1583 * allocated space in the vdev, by loading each metaslab's spacemap.
1584 * For each contiguous segment of allocated space (capping the segment
1585 * size at SPA_MAXBLOCKSIZE), we:
1586 * - Allocate space for it on another vdev.
1587 * - Create a new mapping from the old location to the new location
1588 * (as a record in svr_new_segments).
1589 * - Initiate a physical read zio to get the data off the removing disk.
1590 * - In the read zio's done callback, initiate a physical write zio to
1591 * write it to the new vdev.
1592 * Note that all of this will take effect when a particular TXG syncs.
1593 * The sync thread ensures that all the phys reads and writes for the syncing
1594 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1595 * (see vdev_mapping_sync()).
1596 */
1597 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1598 spa_vdev_remove_thread(void *arg)
1599 {
1600 spa_t *spa = arg;
1601 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1602 vdev_copy_arg_t vca;
1603 uint64_t max_alloc = spa_remove_max_segment(spa);
1604 uint64_t last_txg = 0;
1605
1606 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1607 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1608 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1609 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1610
1611 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1612 ASSERT(vdev_is_concrete(vd));
1613 ASSERT(vd->vdev_removing);
1614 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1615 ASSERT(vim != NULL);
1616
1617 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1618 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1619 vca.vca_outstanding_bytes = 0;
1620 vca.vca_read_error_bytes = 0;
1621 vca.vca_write_error_bytes = 0;
1622
1623 mutex_enter(&svr->svr_lock);
1624
1625 /*
1626 * Start from vim_max_offset so we pick up where we left off
1627 * if we are restarting the removal after opening the pool.
1628 */
1629 uint64_t msi;
1630 for (msi = start_offset >> vd->vdev_ms_shift;
1631 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1632 metaslab_t *msp = vd->vdev_ms[msi];
1633 ASSERT3U(msi, <=, vd->vdev_ms_count);
1634
1635 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1636
1637 mutex_enter(&msp->ms_sync_lock);
1638 mutex_enter(&msp->ms_lock);
1639
1640 /*
1641 * Assert nothing in flight -- ms_*tree is empty.
1642 */
1643 for (int i = 0; i < TXG_SIZE; i++) {
1644 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1645 }
1646
1647 /*
1648 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1649 * read the allocated segments from the space map object
1650 * into svr_allocd_segs. Since we do this while holding
1651 * svr_lock and ms_sync_lock, concurrent frees (which
1652 * would have modified the space map) will wait for us
1653 * to finish loading the spacemap, and then take the
1654 * appropriate action (see free_from_removing_vdev()).
1655 */
1656 if (msp->ms_sm != NULL) {
1657 VERIFY0(space_map_load(msp->ms_sm,
1658 svr->svr_allocd_segs, SM_ALLOC));
1659
1660 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1661 zfs_range_tree_add, svr->svr_allocd_segs);
1662 zfs_range_tree_walk(msp->ms_unflushed_frees,
1663 zfs_range_tree_remove, svr->svr_allocd_segs);
1664 zfs_range_tree_walk(msp->ms_freeing,
1665 zfs_range_tree_remove, svr->svr_allocd_segs);
1666
1667 /*
1668 * When we are resuming from a paused removal (i.e.
1669 * when importing a pool with a removal in progress),
1670 * discard any state that we have already processed.
1671 */
1672 zfs_range_tree_clear(svr->svr_allocd_segs, 0,
1673 start_offset);
1674 }
1675 mutex_exit(&msp->ms_lock);
1676 mutex_exit(&msp->ms_sync_lock);
1677
1678 vca.vca_msp = msp;
1679 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1680 (u_longlong_t)zfs_btree_numnodes(
1681 &svr->svr_allocd_segs->rt_root),
1682 (u_longlong_t)msp->ms_id);
1683
1684 while (!svr->svr_thread_exit &&
1685 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1686
1687 mutex_exit(&svr->svr_lock);
1688
1689 /*
1690 * We need to periodically drop the config lock so that
1691 * writers can get in. Additionally, we can't wait
1692 * for a txg to sync while holding a config lock
1693 * (since a waiting writer could cause a 3-way deadlock
1694 * with the sync thread, which also gets a config
1695 * lock for reader). So we can't hold the config lock
1696 * while calling dmu_tx_assign().
1697 */
1698 spa_config_exit(spa, SCL_CONFIG, FTAG);
1699
1700 /*
1701 * This delay will pause the removal around the point
1702 * specified by zfs_removal_suspend_progress. We do this
1703 * solely from the test suite or during debugging.
1704 */
1705 while (zfs_removal_suspend_progress &&
1706 !svr->svr_thread_exit)
1707 delay(hz);
1708
1709 mutex_enter(&vca.vca_lock);
1710 while (vca.vca_outstanding_bytes >
1711 zfs_remove_max_copy_bytes) {
1712 cv_wait(&vca.vca_cv, &vca.vca_lock);
1713 }
1714 mutex_exit(&vca.vca_lock);
1715
1716 dmu_tx_t *tx =
1717 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1718
1719 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1720 uint64_t txg = dmu_tx_get_txg(tx);
1721
1722 /*
1723 * Reacquire the vdev_config lock. The vdev_t
1724 * that we're removing may have changed, e.g. due
1725 * to a vdev_attach or vdev_detach.
1726 */
1727 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1728 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1729
1730 if (txg != last_txg)
1731 max_alloc = spa_remove_max_segment(spa);
1732 last_txg = txg;
1733
1734 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1735
1736 dmu_tx_commit(tx);
1737 mutex_enter(&svr->svr_lock);
1738 }
1739
1740 mutex_enter(&vca.vca_lock);
1741 if (zfs_removal_ignore_errors == 0 &&
1742 (vca.vca_read_error_bytes > 0 ||
1743 vca.vca_write_error_bytes > 0)) {
1744 svr->svr_thread_exit = B_TRUE;
1745 }
1746 mutex_exit(&vca.vca_lock);
1747 }
1748
1749 mutex_exit(&svr->svr_lock);
1750
1751 spa_config_exit(spa, SCL_CONFIG, FTAG);
1752
1753 /*
1754 * Wait for all copies to finish before cleaning up the vca.
1755 */
1756 txg_wait_synced(spa->spa_dsl_pool, 0);
1757 ASSERT0(vca.vca_outstanding_bytes);
1758
1759 mutex_destroy(&vca.vca_lock);
1760 cv_destroy(&vca.vca_cv);
1761
1762 if (svr->svr_thread_exit) {
1763 mutex_enter(&svr->svr_lock);
1764 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1765 svr->svr_thread = NULL;
1766 cv_broadcast(&svr->svr_cv);
1767 mutex_exit(&svr->svr_lock);
1768
1769 /*
1770 * During the removal process an unrecoverable read or write
1771 * error was encountered. The removal process must be
1772 * cancelled or this damage may become permanent.
1773 */
1774 if (zfs_removal_ignore_errors == 0 &&
1775 (vca.vca_read_error_bytes > 0 ||
1776 vca.vca_write_error_bytes > 0)) {
1777 zfs_dbgmsg("canceling removal due to IO errors: "
1778 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1779 (u_longlong_t)vca.vca_read_error_bytes,
1780 (u_longlong_t)vca.vca_write_error_bytes);
1781 spa_vdev_remove_cancel_impl(spa);
1782 }
1783 } else {
1784 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1785 vdev_remove_complete(spa);
1786 }
1787
1788 thread_exit();
1789 }
1790
1791 void
spa_vdev_remove_suspend(spa_t * spa)1792 spa_vdev_remove_suspend(spa_t *spa)
1793 {
1794 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1795
1796 if (svr == NULL)
1797 return;
1798
1799 mutex_enter(&svr->svr_lock);
1800 svr->svr_thread_exit = B_TRUE;
1801 while (svr->svr_thread != NULL)
1802 cv_wait(&svr->svr_cv, &svr->svr_lock);
1803 svr->svr_thread_exit = B_FALSE;
1804 mutex_exit(&svr->svr_lock);
1805 }
1806
1807 /*
1808 * Return true if the "allocating" property has been set to "off"
1809 */
1810 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1811 vdev_prop_allocating_off(vdev_t *vd)
1812 {
1813 uint64_t objid = vd->vdev_top_zap;
1814 uint64_t allocating = 1;
1815
1816 /* no vdev property object => no props */
1817 if (objid != 0) {
1818 spa_t *spa = vd->vdev_spa;
1819 objset_t *mos = spa->spa_meta_objset;
1820
1821 mutex_enter(&spa->spa_props_lock);
1822 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1823 1, &allocating);
1824 mutex_exit(&spa->spa_props_lock);
1825 }
1826 return (allocating == 0);
1827 }
1828
1829 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1830 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1831 {
1832 (void) arg;
1833 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1834
1835 if (spa->spa_vdev_removal == NULL)
1836 return (ENOTACTIVE);
1837 return (0);
1838 }
1839
1840 /*
1841 * Cancel a removal by freeing all entries from the partial mapping
1842 * and marking the vdev as no longer being removing.
1843 */
1844 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1845 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1846 {
1847 (void) arg;
1848 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1849 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1850 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1851 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1852 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1853 objset_t *mos = spa->spa_meta_objset;
1854
1855 ASSERT3P(svr->svr_thread, ==, NULL);
1856
1857 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1858
1859 boolean_t are_precise;
1860 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1861 if (are_precise) {
1862 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1863 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1864 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1865 }
1866
1867 uint64_t obsolete_sm_object;
1868 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1869 if (obsolete_sm_object != 0) {
1870 ASSERT(vd->vdev_obsolete_sm != NULL);
1871 ASSERT3U(obsolete_sm_object, ==,
1872 space_map_object(vd->vdev_obsolete_sm));
1873
1874 space_map_free(vd->vdev_obsolete_sm, tx);
1875 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1876 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1877 space_map_close(vd->vdev_obsolete_sm);
1878 vd->vdev_obsolete_sm = NULL;
1879 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1880 }
1881 for (int i = 0; i < TXG_SIZE; i++) {
1882 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1883 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1884 vdev_indirect_mapping_max_offset(vim));
1885 }
1886
1887 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1888 metaslab_t *msp = vd->vdev_ms[msi];
1889
1890 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1891 break;
1892
1893 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1894
1895 mutex_enter(&msp->ms_lock);
1896
1897 /*
1898 * Assert nothing in flight -- ms_*tree is empty.
1899 */
1900 for (int i = 0; i < TXG_SIZE; i++)
1901 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1902 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1903 ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1904 ASSERT0(zfs_range_tree_space(msp->ms_freed));
1905
1906 if (msp->ms_sm != NULL) {
1907 mutex_enter(&svr->svr_lock);
1908 VERIFY0(space_map_load(msp->ms_sm,
1909 svr->svr_allocd_segs, SM_ALLOC));
1910
1911 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1912 zfs_range_tree_add, svr->svr_allocd_segs);
1913 zfs_range_tree_walk(msp->ms_unflushed_frees,
1914 zfs_range_tree_remove, svr->svr_allocd_segs);
1915 zfs_range_tree_walk(msp->ms_freeing,
1916 zfs_range_tree_remove, svr->svr_allocd_segs);
1917
1918 /*
1919 * Clear everything past what has been synced,
1920 * because we have not allocated mappings for it yet.
1921 */
1922 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1923 uint64_t sm_end = msp->ms_sm->sm_start +
1924 msp->ms_sm->sm_size;
1925 if (sm_end > syncd)
1926 zfs_range_tree_clear(svr->svr_allocd_segs,
1927 syncd, sm_end - syncd);
1928
1929 mutex_exit(&svr->svr_lock);
1930 }
1931 mutex_exit(&msp->ms_lock);
1932
1933 mutex_enter(&svr->svr_lock);
1934 zfs_range_tree_vacate(svr->svr_allocd_segs,
1935 free_mapped_segment_cb, vd);
1936 mutex_exit(&svr->svr_lock);
1937 }
1938
1939 /*
1940 * Note: this must happen after we invoke free_mapped_segment_cb,
1941 * because it adds to the obsolete_segments.
1942 */
1943 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1944
1945 ASSERT3U(vic->vic_mapping_object, ==,
1946 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1947 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1948 vd->vdev_indirect_mapping = NULL;
1949 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1950 vic->vic_mapping_object = 0;
1951
1952 ASSERT3U(vic->vic_births_object, ==,
1953 vdev_indirect_births_object(vd->vdev_indirect_births));
1954 vdev_indirect_births_close(vd->vdev_indirect_births);
1955 vd->vdev_indirect_births = NULL;
1956 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1957 vic->vic_births_object = 0;
1958
1959 /*
1960 * We may have processed some frees from the removing vdev in this
1961 * txg, thus increasing svr_bytes_done; discard that here to
1962 * satisfy the assertions in spa_vdev_removal_destroy().
1963 * Note that future txg's can not have any bytes_done, because
1964 * future TXG's are only modified from open context, and we have
1965 * already shut down the copying thread.
1966 */
1967 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1968 spa_finish_removal(spa, DSS_CANCELED, tx);
1969
1970 vd->vdev_removing = B_FALSE;
1971
1972 if (!vdev_prop_allocating_off(vd)) {
1973 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1974 vdev_activate(vd);
1975 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1976 }
1977
1978 vdev_config_dirty(vd);
1979
1980 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1981 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1982 spa_history_log_internal(spa, "vdev remove canceled", tx,
1983 "%s vdev %llu %s", spa_name(spa),
1984 (u_longlong_t)vd->vdev_id,
1985 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1986 }
1987
1988 static int
spa_vdev_remove_cancel_impl(spa_t * spa)1989 spa_vdev_remove_cancel_impl(spa_t *spa)
1990 {
1991 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1992 spa_vdev_remove_cancel_sync, NULL, 0,
1993 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1994 return (error);
1995 }
1996
1997 int
spa_vdev_remove_cancel(spa_t * spa)1998 spa_vdev_remove_cancel(spa_t *spa)
1999 {
2000 spa_vdev_remove_suspend(spa);
2001
2002 if (spa->spa_vdev_removal == NULL)
2003 return (ENOTACTIVE);
2004
2005 return (spa_vdev_remove_cancel_impl(spa));
2006 }
2007
2008 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2009 svr_sync(spa_t *spa, dmu_tx_t *tx)
2010 {
2011 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2012 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2013
2014 if (svr == NULL)
2015 return;
2016
2017 /*
2018 * This check is necessary so that we do not dirty the
2019 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2020 * is nothing to do. Dirtying it every time would prevent us
2021 * from syncing-to-convergence.
2022 */
2023 if (svr->svr_bytes_done[txgoff] == 0)
2024 return;
2025
2026 /*
2027 * Update progress accounting.
2028 */
2029 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2030 svr->svr_bytes_done[txgoff] = 0;
2031
2032 spa_sync_removing_state(spa, tx);
2033 }
2034
2035 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2036 vdev_remove_make_hole_and_free(vdev_t *vd)
2037 {
2038 uint64_t id = vd->vdev_id;
2039 spa_t *spa = vd->vdev_spa;
2040 vdev_t *rvd = spa->spa_root_vdev;
2041
2042 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2043 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2044
2045 vdev_free(vd);
2046
2047 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2048 vdev_add_child(rvd, vd);
2049 vdev_config_dirty(rvd);
2050
2051 /*
2052 * Reassess the health of our root vdev.
2053 */
2054 vdev_reopen(rvd);
2055 }
2056
2057 /*
2058 * Remove a log device. The config lock is held for the specified TXG.
2059 */
2060 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2061 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2062 {
2063 metaslab_group_t *mg = vd->vdev_mg;
2064 spa_t *spa = vd->vdev_spa;
2065 int error = 0;
2066
2067 ASSERT(vd->vdev_islog);
2068 ASSERT(vd == vd->vdev_top);
2069 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2070 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2071
2072 /*
2073 * Stop allocating from this vdev.
2074 */
2075 metaslab_group_passivate(mg);
2076
2077 /*
2078 * Wait for the youngest allocations and frees to sync,
2079 * and then wait for the deferral of those frees to finish.
2080 */
2081 spa_vdev_config_exit(spa, NULL,
2082 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2083
2084 /*
2085 * Cancel any initialize or TRIM which was in progress.
2086 */
2087 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2088 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2089 vdev_autotrim_stop_wait(vd);
2090
2091 /*
2092 * Evacuate the device. We don't hold the config lock as
2093 * writer since we need to do I/O but we do keep the
2094 * spa_namespace_lock held. Once this completes the device
2095 * should no longer have any blocks allocated on it.
2096 */
2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 if (vd->vdev_stat.vs_alloc != 0)
2099 error = spa_reset_logs(spa);
2100
2101 *txg = spa_vdev_config_enter(spa);
2102
2103 if (error != 0) {
2104 metaslab_group_activate(mg);
2105 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2106 return (error);
2107 }
2108 ASSERT0(vd->vdev_stat.vs_alloc);
2109
2110 /*
2111 * The evacuation succeeded. Remove any remaining MOS metadata
2112 * associated with this vdev, and wait for these changes to sync.
2113 */
2114 vd->vdev_removing = B_TRUE;
2115
2116 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2117 vdev_config_dirty(vd);
2118
2119 /*
2120 * When the log space map feature is enabled we look at
2121 * the vdev's top_zap to find the on-disk flush data of
2122 * the metaslab we just flushed. Thus, while removing a
2123 * log vdev we make sure to call vdev_metaslab_fini()
2124 * first, which removes all metaslabs of this vdev from
2125 * spa_metaslabs_by_flushed before vdev_remove_empty()
2126 * destroys the top_zap of this log vdev.
2127 *
2128 * This avoids the scenario where we flush a metaslab
2129 * from the log vdev being removed that doesn't have a
2130 * top_zap and end up failing to lookup its on-disk flush
2131 * data.
2132 *
2133 * We don't call metaslab_group_destroy() right away
2134 * though (it will be called in vdev_free() later) as
2135 * during metaslab_sync() of metaslabs from other vdevs
2136 * we may touch the metaslab group of this vdev through
2137 * metaslab_class_histogram_verify()
2138 */
2139 vdev_metaslab_fini(vd);
2140
2141 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2142 *txg = spa_vdev_config_enter(spa);
2143
2144 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2145 ESC_ZFS_VDEV_REMOVE_DEV);
2146 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2147 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2148
2149 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2150 ASSERT0(vd->vdev_top_zap);
2151 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2152 ASSERT0(vd->vdev_leaf_zap);
2153
2154 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2155
2156 if (list_link_active(&vd->vdev_state_dirty_node))
2157 vdev_state_clean(vd);
2158 if (list_link_active(&vd->vdev_config_dirty_node))
2159 vdev_config_clean(vd);
2160
2161 ASSERT0(vd->vdev_stat.vs_alloc);
2162
2163 /*
2164 * Clean up the vdev namespace.
2165 */
2166 vdev_remove_make_hole_and_free(vd);
2167
2168 if (ev != NULL)
2169 spa_event_post(ev);
2170
2171 return (0);
2172 }
2173
2174 static int
spa_vdev_remove_top_check(vdev_t * vd)2175 spa_vdev_remove_top_check(vdev_t *vd)
2176 {
2177 spa_t *spa = vd->vdev_spa;
2178
2179 if (vd != vd->vdev_top)
2180 return (SET_ERROR(ENOTSUP));
2181
2182 if (!vdev_is_concrete(vd))
2183 return (SET_ERROR(ENOTSUP));
2184
2185 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2186 return (SET_ERROR(ENOTSUP));
2187
2188 /*
2189 * This device is already being removed
2190 */
2191 if (vd->vdev_removing)
2192 return (SET_ERROR(EALREADY));
2193
2194 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2195 metaslab_class_t *normal = spa_normal_class(spa);
2196 if (mc != normal) {
2197 /*
2198 * Space allocated from the special (or dedup) class is
2199 * included in the DMU's space usage, but it's not included
2200 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2201 * there is always at least as much free space in the normal
2202 * class, as is allocated from the special (and dedup) class.
2203 * As a backup check, we will return ENOSPC if this is
2204 * violated. See also spa_update_dspace().
2205 */
2206 uint64_t available = metaslab_class_get_space(normal) -
2207 metaslab_class_get_alloc(normal);
2208 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2209 if (available < vd->vdev_stat.vs_alloc)
2210 return (SET_ERROR(ENOSPC));
2211 } else if (!vd->vdev_noalloc) {
2212 /* available space in the pool's normal class */
2213 uint64_t available = dsl_dir_space_available(
2214 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2215 if (available < vd->vdev_stat.vs_dspace)
2216 return (SET_ERROR(ENOSPC));
2217 }
2218
2219 /*
2220 * There can not be a removal in progress.
2221 */
2222 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2223 return (SET_ERROR(EBUSY));
2224
2225 /*
2226 * The device must have all its data.
2227 */
2228 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2229 !vdev_dtl_empty(vd, DTL_OUTAGE))
2230 return (SET_ERROR(EBUSY));
2231
2232 /*
2233 * The device must be healthy.
2234 */
2235 if (!vdev_readable(vd))
2236 return (SET_ERROR(EIO));
2237
2238 /*
2239 * All vdevs in normal class must have the same ashift.
2240 */
2241 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2242 return (SET_ERROR(EINVAL));
2243 }
2244
2245 /*
2246 * A removed special/dedup vdev must have same ashift as normal class.
2247 */
2248 ASSERT(!vd->vdev_islog);
2249 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2250 vd->vdev_ashift != spa->spa_max_ashift) {
2251 return (SET_ERROR(EINVAL));
2252 }
2253
2254 /*
2255 * All vdevs in normal class must have the same ashift
2256 * and not be raidz or draid.
2257 */
2258 vdev_t *rvd = spa->spa_root_vdev;
2259 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2260 vdev_t *cvd = rvd->vdev_child[id];
2261
2262 /*
2263 * A removed special/dedup vdev must have the same ashift
2264 * across all vdevs in its class.
2265 */
2266 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2267 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2268 cvd->vdev_ashift != vd->vdev_ashift) {
2269 return (SET_ERROR(EINVAL));
2270 }
2271 if (cvd->vdev_ashift != 0 &&
2272 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2273 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2274 if (!vdev_is_concrete(cvd))
2275 continue;
2276 if (vdev_get_nparity(cvd) != 0)
2277 return (SET_ERROR(EINVAL));
2278 /*
2279 * Need the mirror to be mirror of leaf vdevs only
2280 */
2281 if (cvd->vdev_ops == &vdev_mirror_ops) {
2282 for (uint64_t cid = 0;
2283 cid < cvd->vdev_children; cid++) {
2284 if (!cvd->vdev_child[cid]->vdev_ops->
2285 vdev_op_leaf)
2286 return (SET_ERROR(EINVAL));
2287 }
2288 }
2289 }
2290
2291 return (0);
2292 }
2293
2294 /*
2295 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2296 * The config lock is held for the specified TXG. Once initiated,
2297 * evacuation of all allocated space (copying it to other vdevs) happens
2298 * in the background (see spa_vdev_remove_thread()), and can be canceled
2299 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2300 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2301 */
2302 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2303 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2304 {
2305 spa_t *spa = vd->vdev_spa;
2306 boolean_t set_noalloc = B_FALSE;
2307 int error;
2308
2309 /*
2310 * Check for errors up-front, so that we don't waste time
2311 * passivating the metaslab group and clearing the ZIL if there
2312 * are errors.
2313 */
2314 error = spa_vdev_remove_top_check(vd);
2315
2316 /*
2317 * Stop allocating from this vdev. Note that we must check
2318 * that this is not the only device in the pool before
2319 * passivating, otherwise we will not be able to make
2320 * progress because we can't allocate from any vdevs.
2321 * The above check for sufficient free space serves this
2322 * purpose.
2323 */
2324 if (error == 0 && !vd->vdev_noalloc) {
2325 set_noalloc = B_TRUE;
2326 error = vdev_passivate(vd, txg);
2327 }
2328
2329 if (error != 0)
2330 return (error);
2331
2332 /*
2333 * We stop any initializing and TRIM that is currently in progress
2334 * but leave the state as "active". This will allow the process to
2335 * resume if the removal is canceled sometime later.
2336 */
2337
2338 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2339
2340 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2341 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2342 vdev_autotrim_stop_wait(vd);
2343
2344 *txg = spa_vdev_config_enter(spa);
2345
2346 /*
2347 * Things might have changed while the config lock was dropped
2348 * (e.g. space usage). Check for errors again.
2349 */
2350 error = spa_vdev_remove_top_check(vd);
2351
2352 if (error != 0) {
2353 if (set_noalloc)
2354 vdev_activate(vd);
2355 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2356 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2357 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2358 return (error);
2359 }
2360
2361 vd->vdev_removing = B_TRUE;
2362
2363 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2364 vdev_config_dirty(vd);
2365 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2366 dsl_sync_task_nowait(spa->spa_dsl_pool,
2367 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2368 dmu_tx_commit(tx);
2369
2370 return (0);
2371 }
2372
2373 /*
2374 * Remove a device from the pool.
2375 *
2376 * Removing a device from the vdev namespace requires several steps
2377 * and can take a significant amount of time. As a result we use
2378 * the spa_vdev_config_[enter/exit] functions which allow us to
2379 * grab and release the spa_config_lock while still holding the namespace
2380 * lock. During each step the configuration is synced out.
2381 */
2382 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2383 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2384 {
2385 vdev_t *vd;
2386 nvlist_t **spares, **l2cache, *nv;
2387 uint64_t txg = 0;
2388 uint_t nspares, nl2cache;
2389 int error = 0, error_log;
2390 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2391 sysevent_t *ev = NULL;
2392 const char *vd_type = NULL;
2393 char *vd_path = NULL;
2394
2395 ASSERT(spa_writeable(spa));
2396
2397 if (!locked)
2398 txg = spa_vdev_enter(spa);
2399
2400 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2401 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2402 error = (spa_has_checkpoint(spa)) ?
2403 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2404
2405 if (!locked)
2406 return (spa_vdev_exit(spa, NULL, txg, error));
2407
2408 return (error);
2409 }
2410
2411 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2412
2413 if (spa->spa_spares.sav_vdevs != NULL &&
2414 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2415 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2416 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2417 /*
2418 * Only remove the hot spare if it's not currently in use
2419 * in this pool.
2420 */
2421 if (vd == NULL || unspare) {
2422 const char *type;
2423 boolean_t draid_spare = B_FALSE;
2424
2425 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2426 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2427 draid_spare = B_TRUE;
2428
2429 if (vd == NULL && draid_spare) {
2430 error = SET_ERROR(ENOTSUP);
2431 } else {
2432 if (vd == NULL)
2433 vd = spa_lookup_by_guid(spa,
2434 guid, B_TRUE);
2435 ev = spa_event_create(spa, vd, NULL,
2436 ESC_ZFS_VDEV_REMOVE_AUX);
2437
2438 vd_type = VDEV_TYPE_SPARE;
2439 vd_path = spa_strdup(fnvlist_lookup_string(
2440 nv, ZPOOL_CONFIG_PATH));
2441 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2442 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2443 spa_load_spares(spa);
2444 spa->spa_spares.sav_sync = B_TRUE;
2445 }
2446 } else {
2447 error = SET_ERROR(EBUSY);
2448 }
2449 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2450 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2451 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2452 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2453 vd_type = VDEV_TYPE_L2CACHE;
2454 vd_path = spa_strdup(fnvlist_lookup_string(
2455 nv, ZPOOL_CONFIG_PATH));
2456 /*
2457 * Cache devices can always be removed.
2458 */
2459 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2460
2461 /*
2462 * Stop trimming the cache device. We need to release the
2463 * config lock to allow the syncing of TRIM transactions
2464 * without releasing the spa_namespace_lock. The same
2465 * strategy is employed in spa_vdev_remove_top().
2466 */
2467 spa_vdev_config_exit(spa, NULL,
2468 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2469 mutex_enter(&vd->vdev_trim_lock);
2470 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2471 mutex_exit(&vd->vdev_trim_lock);
2472 txg = spa_vdev_config_enter(spa);
2473
2474 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2475 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2476 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2477 spa_load_l2cache(spa);
2478 spa->spa_l2cache.sav_sync = B_TRUE;
2479 } else if (vd != NULL && vd->vdev_islog) {
2480 ASSERT(!locked);
2481 vd_type = VDEV_TYPE_LOG;
2482 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2483 vd->vdev_path : "-");
2484 error = spa_vdev_remove_log(vd, &txg);
2485 } else if (vd != NULL) {
2486 ASSERT(!locked);
2487 error = spa_vdev_remove_top(vd, &txg);
2488 } else {
2489 /*
2490 * There is no vdev of any kind with the specified guid.
2491 */
2492 error = SET_ERROR(ENOENT);
2493 }
2494
2495 error_log = error;
2496
2497 if (!locked)
2498 error = spa_vdev_exit(spa, NULL, txg, error);
2499
2500 /*
2501 * Logging must be done outside the spa config lock. Otherwise,
2502 * this code path could end up holding the spa config lock while
2503 * waiting for a txg_sync so it can write to the internal log.
2504 * Doing that would prevent the txg sync from actually happening,
2505 * causing a deadlock.
2506 */
2507 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2508 spa_history_log_internal(spa, "vdev remove", NULL,
2509 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2510 }
2511 if (vd_path != NULL)
2512 spa_strfree(vd_path);
2513
2514 if (ev != NULL)
2515 spa_event_post(ev);
2516
2517 return (error);
2518 }
2519
2520 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2521 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2522 {
2523 prs->prs_state = spa->spa_removing_phys.sr_state;
2524
2525 if (prs->prs_state == DSS_NONE)
2526 return (SET_ERROR(ENOENT));
2527
2528 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2529 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2530 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2531 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2532 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2533
2534 prs->prs_mapping_memory = 0;
2535 uint64_t indirect_vdev_id =
2536 spa->spa_removing_phys.sr_prev_indirect_vdev;
2537 while (indirect_vdev_id != -1) {
2538 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2539 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2540 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2541
2542 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2543 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2544 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2545 }
2546
2547 return (0);
2548 }
2549
2550 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2551 "Ignore hard IO errors when removing device");
2552
2553 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2554 "Largest contiguous segment to allocate when removing device");
2555
2556 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2557 "Largest span of free chunks a remap segment can span");
2558
2559 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2560 "Pause device removal after this many bytes are copied "
2561 "(debug use only - causes removal to hang)");
2562
2563 EXPORT_SYMBOL(free_from_removing_vdev);
2564 EXPORT_SYMBOL(spa_removal_get_stats);
2565 EXPORT_SYMBOL(spa_remove_init);
2566 EXPORT_SYMBOL(spa_restart_removal);
2567 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2568 EXPORT_SYMBOL(spa_vdev_remove);
2569 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2570 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2571 EXPORT_SYMBOL(svr_sync);
2572