1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2020 Joyent, Inc.
26 * Copyright 2025 Oxide Computer Company
27 */
28
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 /*
32 * ZFS_MDB lets dmu.h know that we don't have dmu_ot, and we will define our
33 * own macros to access the target's dmu_ot. Therefore it must be defined
34 * before including any ZFS headers. Note that we don't define
35 * DMU_OT_IS_ENCRYPTED_IMPL() or DMU_OT_BYTESWAP_IMPL(), therefore using them
36 * will result in a compilation error. If they are needed in the future, we
37 * can implement them similarly to mdb_dmu_ot_is_encrypted_impl().
38 */
39 #define ZFS_MDB
40 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) mdb_dmu_ot_is_encrypted_impl(ot)
41
42 #include <mdb/mdb_ctf.h>
43 #include <sys/zfs_context.h>
44 #include <sys/mdb_modapi.h>
45 #include <sys/dbuf.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/list.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/zap_leaf.h>
54 #include <sys/zap_impl.h>
55 #include <ctype.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/sa_impl.h>
58 #include <sys/multilist.h>
59 #include <sys/btree.h>
60
61 #ifdef _KERNEL
62 #define ZFS_OBJ_NAME "zfs"
63 #else
64 #define ZFS_OBJ_NAME "libzpool.so.1"
65 #endif
66 extern int64_t mdb_gethrtime(void);
67
68 #define ZFS_STRUCT "struct " ZFS_OBJ_NAME "`"
69
70 #ifndef _KERNEL
71 int aok;
72 #endif
73
74 enum spa_flags {
75 SPA_FLAG_CONFIG = 1 << 0,
76 SPA_FLAG_VDEVS = 1 << 1,
77 SPA_FLAG_ERRORS = 1 << 2,
78 SPA_FLAG_METASLAB_GROUPS = 1 << 3,
79 SPA_FLAG_METASLABS = 1 << 4,
80 SPA_FLAG_HISTOGRAMS = 1 << 5
81 };
82
83 /*
84 * If any of these flags are set, call spa_vdevs in spa_print
85 */
86 #define SPA_FLAG_ALL_VDEV \
87 (SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
88 SPA_FLAG_METASLABS)
89
90 static int
getmember(uintptr_t addr,const char * type,mdb_ctf_id_t * idp,const char * member,int len,void * buf)91 getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
92 const char *member, int len, void *buf)
93 {
94 mdb_ctf_id_t id;
95 ulong_t off;
96 char name[64];
97
98 if (idp == NULL) {
99 if (mdb_ctf_lookup_by_name(type, &id) == -1) {
100 mdb_warn("couldn't find type %s", type);
101 return (DCMD_ERR);
102 }
103 idp = &id;
104 } else {
105 type = name;
106 mdb_ctf_type_name(*idp, name, sizeof (name));
107 }
108
109 if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
110 mdb_warn("couldn't find member %s of type %s\n", member, type);
111 return (DCMD_ERR);
112 }
113 if (off % 8 != 0) {
114 mdb_warn("member %s of type %s is unsupported bitfield",
115 member, type);
116 return (DCMD_ERR);
117 }
118 off /= 8;
119
120 if (mdb_vread(buf, len, addr + off) == -1) {
121 mdb_warn("failed to read %s from %s at %p",
122 member, type, addr + off);
123 return (DCMD_ERR);
124 }
125 /* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
126
127 return (0);
128 }
129
130 #define GETMEMB(addr, structname, member, dest) \
131 getmember(addr, ZFS_STRUCT structname, NULL, #member, \
132 sizeof (dest), &(dest))
133
134 #define GETMEMBID(addr, ctfid, member, dest) \
135 getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
136
137 static boolean_t
strisprint(const char * cp)138 strisprint(const char *cp)
139 {
140 for (; *cp; cp++) {
141 if (!isprint(*cp))
142 return (B_FALSE);
143 }
144 return (B_TRUE);
145 }
146
147 /*
148 * <addr>::sm_entries <buffer length in bytes>
149 *
150 * Treat the buffer specified by the given address as a buffer that contains
151 * space map entries. Iterate over the specified number of entries and print
152 * them in both encoded and decoded form.
153 */
154 /* ARGSUSED */
155 static int
sm_entries(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)156 sm_entries(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
157 {
158 uint64_t bufsz = 0;
159 boolean_t preview = B_FALSE;
160
161 if (!(flags & DCMD_ADDRSPEC))
162 return (DCMD_USAGE);
163
164 if (argc < 1) {
165 preview = B_TRUE;
166 bufsz = 2;
167 } else if (argc != 1) {
168 return (DCMD_USAGE);
169 } else {
170 switch (argv[0].a_type) {
171 case MDB_TYPE_STRING:
172 bufsz = mdb_strtoull(argv[0].a_un.a_str);
173 break;
174 case MDB_TYPE_IMMEDIATE:
175 bufsz = argv[0].a_un.a_val;
176 break;
177 default:
178 return (DCMD_USAGE);
179 }
180 }
181
182 char *actions[] = { "ALLOC", "FREE", "INVALID" };
183 for (uintptr_t bufend = addr + bufsz; addr < bufend;
184 addr += sizeof (uint64_t)) {
185 uint64_t nwords;
186 uint64_t start_addr = addr;
187
188 uint64_t word = 0;
189 if (mdb_vread(&word, sizeof (word), addr) == -1) {
190 mdb_warn("failed to read space map entry %p", addr);
191 return (DCMD_ERR);
192 }
193
194 if (SM_PREFIX_DECODE(word) == SM_DEBUG_PREFIX) {
195 (void) mdb_printf("\t [%6llu] %s: txg %llu, "
196 "pass %llu\n",
197 (u_longlong_t)(addr),
198 actions[SM_DEBUG_ACTION_DECODE(word)],
199 (u_longlong_t)SM_DEBUG_TXG_DECODE(word),
200 (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
201 continue;
202 }
203
204 char entry_type;
205 uint64_t raw_offset, raw_run, vdev_id = SM_NO_VDEVID;
206
207 if (SM_PREFIX_DECODE(word) != SM2_PREFIX) {
208 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
209 'A' : 'F';
210 raw_offset = SM_OFFSET_DECODE(word);
211 raw_run = SM_RUN_DECODE(word);
212 nwords = 1;
213 } else {
214 ASSERT3U(SM_PREFIX_DECODE(word), ==, SM2_PREFIX);
215
216 raw_run = SM2_RUN_DECODE(word);
217 vdev_id = SM2_VDEV_DECODE(word);
218
219 /* it is a two-word entry so we read another word */
220 addr += sizeof (uint64_t);
221 if (addr >= bufend) {
222 mdb_warn("buffer ends in the middle of a two "
223 "word entry\n", addr);
224 return (DCMD_ERR);
225 }
226
227 if (mdb_vread(&word, sizeof (word), addr) == -1) {
228 mdb_warn("failed to read space map entry %p",
229 addr);
230 return (DCMD_ERR);
231 }
232
233 entry_type = (SM2_TYPE_DECODE(word) == SM_ALLOC) ?
234 'A' : 'F';
235 raw_offset = SM2_OFFSET_DECODE(word);
236 nwords = 2;
237 }
238
239 (void) mdb_printf("\t [%6llx] %c range:"
240 " %010llx-%010llx size: %06llx vdev: %06llu words: %llu\n",
241 (u_longlong_t)start_addr,
242 entry_type, (u_longlong_t)raw_offset,
243 (u_longlong_t)(raw_offset + raw_run),
244 (u_longlong_t)raw_run,
245 (u_longlong_t)vdev_id, (u_longlong_t)nwords);
246
247 if (preview)
248 break;
249 }
250 return (DCMD_OK);
251 }
252
253 static int
mdb_dsl_dir_name(uintptr_t addr,char * buf)254 mdb_dsl_dir_name(uintptr_t addr, char *buf)
255 {
256 static int gotid;
257 static mdb_ctf_id_t dd_id;
258 uintptr_t dd_parent;
259 char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
260
261 if (!gotid) {
262 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
263 &dd_id) == -1) {
264 mdb_warn("couldn't find struct dsl_dir");
265 return (DCMD_ERR);
266 }
267 gotid = TRUE;
268 }
269 if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
270 GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
271 return (DCMD_ERR);
272 }
273
274 if (dd_parent) {
275 if (mdb_dsl_dir_name(dd_parent, buf))
276 return (DCMD_ERR);
277 strcat(buf, "/");
278 }
279
280 if (dd_myname[0])
281 strcat(buf, dd_myname);
282 else
283 strcat(buf, "???");
284
285 return (0);
286 }
287
288 static int
objset_name(uintptr_t addr,char * buf)289 objset_name(uintptr_t addr, char *buf)
290 {
291 static int gotid;
292 static mdb_ctf_id_t os_id, ds_id;
293 uintptr_t os_dsl_dataset;
294 char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
295 uintptr_t ds_dir;
296
297 buf[0] = '\0';
298
299 if (!gotid) {
300 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
301 &os_id) == -1) {
302 mdb_warn("couldn't find struct objset");
303 return (DCMD_ERR);
304 }
305 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
306 &ds_id) == -1) {
307 mdb_warn("couldn't find struct dsl_dataset");
308 return (DCMD_ERR);
309 }
310
311 gotid = TRUE;
312 }
313
314 if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
315 return (DCMD_ERR);
316
317 if (os_dsl_dataset == 0) {
318 strcat(buf, "mos");
319 return (0);
320 }
321
322 if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
323 GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
324 return (DCMD_ERR);
325 }
326
327 if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
328 return (DCMD_ERR);
329
330 if (ds_snapname[0]) {
331 strcat(buf, "@");
332 strcat(buf, ds_snapname);
333 }
334 return (0);
335 }
336
337 static int
enum_lookup(char * type,int val,const char * prefix,size_t size,char * out)338 enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
339 {
340 const char *cp;
341 size_t len = strlen(prefix);
342 mdb_ctf_id_t enum_type;
343
344 if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
345 mdb_warn("Could not find enum for %s", type);
346 return (-1);
347 }
348
349 if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
350 if (strncmp(cp, prefix, len) == 0)
351 cp += len;
352 (void) strncpy(out, cp, size);
353 } else {
354 mdb_snprintf(out, size, "? (%d)", val);
355 }
356 return (0);
357 }
358
359 /* ARGSUSED */
360 static int
zfs_params(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)361 zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
362 {
363 /*
364 * This table can be approximately generated by running:
365 * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
366 */
367 static const char *params[] = {
368 "arc_lotsfree_percent",
369 "arc_pages_pp_reserve",
370 "arc_reduce_dnlc_percent",
371 "arc_swapfs_reserve",
372 "arc_zio_arena_free_shift",
373 "dbuf_cache_hiwater_pct",
374 "dbuf_cache_lowater_pct",
375 "dbuf_cache_max_bytes",
376 "dbuf_cache_max_shift",
377 "ddt_zap_indirect_blockshift",
378 "ddt_zap_leaf_blockshift",
379 "ditto_same_vdev_distance_shift",
380 "dmu_find_threads",
381 "dmu_rescan_dnode_threshold",
382 "dsl_scan_delay_completion",
383 "fzap_default_block_shift",
384 "l2arc_feed_again",
385 "l2arc_feed_min_ms",
386 "l2arc_feed_secs",
387 "l2arc_headroom",
388 "l2arc_headroom_boost",
389 "l2arc_noprefetch",
390 "l2arc_norw",
391 "l2arc_write_boost",
392 "l2arc_write_max",
393 "metaslab_aliquot",
394 "metaslab_bias_enabled",
395 "metaslab_debug_load",
396 "metaslab_debug_unload",
397 "metaslab_df_alloc_threshold",
398 "metaslab_df_free_pct",
399 "metaslab_fragmentation_factor_enabled",
400 "metaslab_force_ganging",
401 "metaslab_lba_weighting_enabled",
402 "metaslab_load_pct",
403 "metaslab_min_alloc_size",
404 "metaslab_ndf_clump_shift",
405 "metaslab_preload_enabled",
406 "metaslab_preload_limit",
407 "metaslab_trace_enabled",
408 "metaslab_trace_max_entries",
409 "metaslab_unload_delay",
410 "metaslabs_per_vdev",
411 "reference_history",
412 "reference_tracking_enable",
413 "send_holes_without_birth_time",
414 "spa_asize_inflation",
415 "spa_load_verify_data",
416 "spa_load_verify_maxinflight",
417 "spa_load_verify_metadata",
418 "spa_max_replication_override",
419 "spa_min_slop",
420 "spa_mode_global",
421 "spa_slop_shift",
422 "space_map_blksz",
423 "vdev_mirror_shift",
424 "zfetch_max_distance",
425 "zfs_abd_chunk_size",
426 "zfs_abd_scatter_enabled",
427 "zfs_arc_average_blocksize",
428 "zfs_arc_evict_batch_limit",
429 "zfs_arc_grow_retry",
430 "zfs_arc_max",
431 "zfs_arc_meta_limit",
432 "zfs_arc_meta_min",
433 "zfs_arc_min",
434 "zfs_arc_p_min_shift",
435 "zfs_arc_shrink_shift",
436 "zfs_async_block_max_blocks",
437 "zfs_ccw_retry_interval",
438 "zfs_commit_timeout_pct",
439 "zfs_compressed_arc_enabled",
440 "zfs_condense_indirect_commit_entry_delay_ticks",
441 "zfs_condense_indirect_vdevs_enable",
442 "zfs_condense_max_obsolete_bytes",
443 "zfs_condense_min_mapping_bytes",
444 "zfs_condense_pct",
445 "zfs_dbgmsg_maxsize",
446 "zfs_deadman_checktime_ms",
447 "zfs_deadman_enabled",
448 "zfs_deadman_synctime_ms",
449 "zfs_dedup_prefetch",
450 "zfs_default_bs",
451 "zfs_default_ibs",
452 "zfs_delay_max_ns",
453 "zfs_delay_min_dirty_percent",
454 "zfs_delay_resolution_ns",
455 "zfs_delay_scale",
456 "zfs_dirty_data_max",
457 "zfs_dirty_data_max_max",
458 "zfs_dirty_data_max_percent",
459 "zfs_dirty_data_sync",
460 "zfs_flags",
461 "zfs_free_bpobj_enabled",
462 "zfs_free_leak_on_eio",
463 "zfs_free_min_time_ms",
464 "zfs_fsync_sync_cnt",
465 "zfs_immediate_write_sz",
466 "zfs_indirect_condense_obsolete_pct",
467 "zfs_lua_check_instrlimit_interval",
468 "zfs_lua_max_instrlimit",
469 "zfs_lua_max_memlimit",
470 "zfs_max_recordsize",
471 "zfs_mdcomp_disable",
472 "zfs_metaslab_condense_block_threshold",
473 "zfs_metaslab_fragmentation_threshold",
474 "zfs_metaslab_segment_weight_enabled",
475 "zfs_metaslab_switch_threshold",
476 "zfs_mg_fragmentation_threshold",
477 "zfs_mg_noalloc_threshold",
478 "zfs_multilist_num_sublists",
479 "zfs_no_scrub_io",
480 "zfs_no_scrub_prefetch",
481 "zfs_nocacheflush",
482 "zfs_nopwrite_enabled",
483 "zfs_object_remap_one_indirect_delay_ticks",
484 "zfs_obsolete_min_time_ms",
485 "zfs_pd_bytes_max",
486 "zfs_per_txg_dirty_frees_percent",
487 "zfs_prefetch_disable",
488 "zfs_read_chunk_size",
489 "zfs_recover",
490 "zfs_recv_queue_length",
491 "zfs_redundant_metadata_most_ditto_level",
492 "zfs_remap_blkptr_enable",
493 "zfs_remove_max_copy_bytes",
494 "zfs_remove_max_segment",
495 "zfs_resilver_delay",
496 "zfs_resilver_min_time_ms",
497 "zfs_scan_idle",
498 "zfs_scan_min_time_ms",
499 "zfs_scrub_delay",
500 "zfs_scrub_limit",
501 "zfs_send_corrupt_data",
502 "zfs_send_queue_length",
503 "zfs_send_set_freerecords_bit",
504 "zfs_sync_pass_deferred_free",
505 "zfs_sync_pass_dont_compress",
506 "zfs_sync_pass_rewrite",
507 "zfs_sync_taskq_batch_pct",
508 "zfs_top_maxinflight",
509 "zfs_txg_timeout",
510 "zfs_vdev_aggregation_limit",
511 "zfs_vdev_async_read_max_active",
512 "zfs_vdev_async_read_min_active",
513 "zfs_vdev_async_write_active_max_dirty_percent",
514 "zfs_vdev_async_write_active_min_dirty_percent",
515 "zfs_vdev_async_write_max_active",
516 "zfs_vdev_async_write_min_active",
517 "zfs_vdev_cache_bshift",
518 "zfs_vdev_cache_max",
519 "zfs_vdev_cache_size",
520 "zfs_vdev_max_active",
521 "zfs_vdev_queue_depth_pct",
522 "zfs_vdev_read_gap_limit",
523 "zfs_vdev_removal_max_active",
524 "zfs_vdev_removal_min_active",
525 "zfs_vdev_scrub_max_active",
526 "zfs_vdev_scrub_min_active",
527 "zfs_vdev_sync_read_max_active",
528 "zfs_vdev_sync_read_min_active",
529 "zfs_vdev_sync_write_max_active",
530 "zfs_vdev_sync_write_min_active",
531 "zfs_vdev_write_gap_limit",
532 "zfs_write_implies_delete_child",
533 "zfs_zil_clean_taskq_maxalloc",
534 "zfs_zil_clean_taskq_minalloc",
535 "zfs_zil_clean_taskq_nthr_pct",
536 "zil_replay_disable",
537 "zil_slog_bulk",
538 "zio_buf_debug_limit",
539 "zio_dva_throttle_enabled",
540 "zio_injection_enabled",
541 "zvol_immediate_write_sz",
542 "zvol_maxphys",
543 "zvol_unmap_enabled",
544 "zvol_unmap_sync_enabled",
545 "zfs_max_dataset_nesting",
546 };
547
548 for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
549 int sz;
550 uint64_t val64;
551 uint32_t *val32p = (uint32_t *)&val64;
552
553 sz = mdb_readvar(&val64, params[i]);
554 if (sz == 4) {
555 mdb_printf("%s = 0x%x\n", params[i], *val32p);
556 } else if (sz == 8) {
557 mdb_printf("%s = 0x%llx\n", params[i], val64);
558 } else {
559 mdb_warn("variable %s not found", params[i]);
560 }
561 }
562
563 return (DCMD_OK);
564 }
565
566 /* ARGSUSED */
567 static int
dva(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)568 dva(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
569 {
570 dva_t dva;
571 if (mdb_vread(&dva, sizeof (dva_t), addr) == -1) {
572 mdb_warn("failed to read dva_t");
573 return (DCMD_ERR);
574 }
575 mdb_printf("<%llu:%llx:%llx>\n",
576 (u_longlong_t)DVA_GET_VDEV(&dva),
577 (u_longlong_t)DVA_GET_OFFSET(&dva),
578 (u_longlong_t)DVA_GET_ASIZE(&dva));
579
580 return (DCMD_OK);
581 }
582
583 typedef struct mdb_dmu_object_type_info {
584 boolean_t ot_encrypt;
585 } mdb_dmu_object_type_info_t;
586
587 static boolean_t
mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)588 mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)
589 {
590 mdb_dmu_object_type_info_t mdoti;
591 GElf_Sym sym;
592 size_t sz = mdb_ctf_sizeof_by_name("dmu_object_type_info_t");
593
594 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "dmu_ot", &sym)) {
595 mdb_warn("failed to find " ZFS_OBJ_NAME "`dmu_ot");
596 return (B_FALSE);
597 }
598
599 if (mdb_ctf_vread(&mdoti, "dmu_object_type_info_t",
600 "mdb_dmu_object_type_info_t", sym.st_value + sz * ot, 0) != 0) {
601 return (B_FALSE);
602 }
603
604 return (mdoti.ot_encrypt);
605 }
606
607 /* ARGSUSED */
608 static int
blkptr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)609 blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
610 {
611 char type[80], checksum[80], compress[80];
612 blkptr_t blk, *bp = &blk;
613 char buf[BP_SPRINTF_LEN];
614
615 if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
616 mdb_warn("failed to read blkptr_t");
617 return (DCMD_ERR);
618 }
619
620 if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
621 sizeof (type), type) == -1 ||
622 enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
623 "ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
624 enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
625 "ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
626 mdb_warn("Could not find blkptr enumerated types");
627 return (DCMD_ERR);
628 }
629
630 SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
631 checksum, compress);
632
633 mdb_printf("%s\n", buf);
634
635 return (DCMD_OK);
636 }
637
638 typedef struct mdb_dmu_buf_impl {
639 struct {
640 uint64_t db_object;
641 uintptr_t db_data;
642 } db;
643 uintptr_t db_objset;
644 uint64_t db_level;
645 uint64_t db_blkid;
646 struct {
647 uint64_t rc_count;
648 } db_holds;
649 } mdb_dmu_buf_impl_t;
650
651 /* ARGSUSED */
652 static int
dbuf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)653 dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
654 {
655 mdb_dmu_buf_impl_t db;
656 char objectname[32];
657 char blkidname[32];
658 char path[ZFS_MAX_DATASET_NAME_LEN];
659 int ptr_width = (int)(sizeof (void *)) * 2;
660
661 if (DCMD_HDRSPEC(flags))
662 mdb_printf("%*s %8s %3s %9s %5s %s\n",
663 ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
664
665 if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
666 addr, 0) == -1)
667 return (DCMD_ERR);
668
669 if (db.db.db_object == DMU_META_DNODE_OBJECT)
670 (void) strcpy(objectname, "mdn");
671 else
672 (void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
673 (u_longlong_t)db.db.db_object);
674
675 if (db.db_blkid == DMU_BONUS_BLKID)
676 (void) strcpy(blkidname, "bonus");
677 else
678 (void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
679 (u_longlong_t)db.db_blkid);
680
681 if (objset_name(db.db_objset, path)) {
682 return (DCMD_ERR);
683 }
684
685 mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
686 objectname, (int)db.db_level, blkidname,
687 db.db_holds.rc_count, path);
688
689 return (DCMD_OK);
690 }
691
692 /* ARGSUSED */
693 static int
dbuf_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)694 dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
695 {
696 #define HISTOSZ 32
697 uintptr_t dbp;
698 dmu_buf_impl_t db;
699 dbuf_hash_table_t ht;
700 uint64_t bucket, ndbufs;
701 uint64_t histo[HISTOSZ];
702 uint64_t histo2[HISTOSZ];
703 int i, maxidx;
704
705 if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
706 mdb_warn("failed to read 'dbuf_hash_table'");
707 return (DCMD_ERR);
708 }
709
710 for (i = 0; i < HISTOSZ; i++) {
711 histo[i] = 0;
712 histo2[i] = 0;
713 }
714
715 ndbufs = 0;
716 for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
717 int len;
718
719 if (mdb_vread(&dbp, sizeof (void *),
720 (uintptr_t)(ht.hash_table+bucket)) == -1) {
721 mdb_warn("failed to read hash bucket %u at %p",
722 bucket, ht.hash_table+bucket);
723 return (DCMD_ERR);
724 }
725
726 len = 0;
727 while (dbp != 0) {
728 if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
729 dbp) == -1) {
730 mdb_warn("failed to read dbuf at %p", dbp);
731 return (DCMD_ERR);
732 }
733 dbp = (uintptr_t)db.db_hash_next;
734 for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
735 histo2[i]++;
736 len++;
737 ndbufs++;
738 }
739
740 if (len >= HISTOSZ)
741 len = HISTOSZ-1;
742 histo[len]++;
743 }
744
745 mdb_printf("hash table has %llu buckets, %llu dbufs "
746 "(avg %llu buckets/dbuf)\n",
747 ht.hash_table_mask+1, ndbufs,
748 (ht.hash_table_mask+1)/ndbufs);
749
750 mdb_printf("\n");
751 maxidx = 0;
752 for (i = 0; i < HISTOSZ; i++)
753 if (histo[i] > 0)
754 maxidx = i;
755 mdb_printf("hash chain length number of buckets\n");
756 for (i = 0; i <= maxidx; i++)
757 mdb_printf("%u %llu\n", i, histo[i]);
758
759 mdb_printf("\n");
760 maxidx = 0;
761 for (i = 0; i < HISTOSZ; i++)
762 if (histo2[i] > 0)
763 maxidx = i;
764 mdb_printf("hash chain depth number of dbufs\n");
765 for (i = 0; i <= maxidx; i++)
766 mdb_printf("%u or more %llu %llu%%\n",
767 i, histo2[i], histo2[i]*100/ndbufs);
768
769
770 return (DCMD_OK);
771 }
772
773 #define CHAIN_END 0xffff
774 /*
775 * ::zap_leaf [-v]
776 *
777 * Print a zap_leaf_phys_t, assumed to be 16k
778 */
779 /* ARGSUSED */
780 static int
zap_leaf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)781 zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
782 {
783 char buf[16*1024];
784 int verbose = B_FALSE;
785 int four = B_FALSE;
786 dmu_buf_t l_dbuf;
787 zap_leaf_t l;
788 zap_leaf_phys_t *zlp = (void *)buf;
789 int i;
790
791 if (mdb_getopts(argc, argv,
792 'v', MDB_OPT_SETBITS, TRUE, &verbose,
793 '4', MDB_OPT_SETBITS, TRUE, &four,
794 NULL) != argc)
795 return (DCMD_USAGE);
796
797 l_dbuf.db_data = zlp;
798 l.l_dbuf = &l_dbuf;
799 l.l_bs = 14; /* assume 16k blocks */
800 if (four)
801 l.l_bs = 12;
802
803 if (!(flags & DCMD_ADDRSPEC)) {
804 return (DCMD_USAGE);
805 }
806
807 if (mdb_vread(buf, sizeof (buf), addr) == -1) {
808 mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
809 return (DCMD_ERR);
810 }
811
812 if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
813 zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
814 mdb_warn("This does not appear to be a zap_leaf_phys_t");
815 return (DCMD_ERR);
816 }
817
818 mdb_printf("zap_leaf_phys_t at %p:\n", addr);
819 mdb_printf(" lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
820 mdb_printf(" lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
821 mdb_printf(" lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
822 mdb_printf(" lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
823 zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
824 mdb_printf(" lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
825 mdb_printf(" lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
826 zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
827 "ENTRIES_CDSORTED" : "");
828
829 if (verbose) {
830 mdb_printf(" hash table:\n");
831 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
832 if (zlp->l_hash[i] != CHAIN_END)
833 mdb_printf(" %u: %u\n", i, zlp->l_hash[i]);
834 }
835 }
836
837 mdb_printf(" chunks:\n");
838 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
839 /* LINTED: alignment */
840 zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
841 switch (zlc->l_entry.le_type) {
842 case ZAP_CHUNK_FREE:
843 if (verbose) {
844 mdb_printf(" %u: free; lf_next = %u\n",
845 i, zlc->l_free.lf_next);
846 }
847 break;
848 case ZAP_CHUNK_ENTRY:
849 mdb_printf(" %u: entry\n", i);
850 if (verbose) {
851 mdb_printf(" le_next = %u\n",
852 zlc->l_entry.le_next);
853 }
854 mdb_printf(" le_name_chunk = %u\n",
855 zlc->l_entry.le_name_chunk);
856 mdb_printf(" le_name_numints = %u\n",
857 zlc->l_entry.le_name_numints);
858 mdb_printf(" le_value_chunk = %u\n",
859 zlc->l_entry.le_value_chunk);
860 mdb_printf(" le_value_intlen = %u\n",
861 zlc->l_entry.le_value_intlen);
862 mdb_printf(" le_value_numints = %u\n",
863 zlc->l_entry.le_value_numints);
864 mdb_printf(" le_cd = %u\n",
865 zlc->l_entry.le_cd);
866 mdb_printf(" le_hash = %llx\n",
867 zlc->l_entry.le_hash);
868 break;
869 case ZAP_CHUNK_ARRAY:
870 mdb_printf(" %u: array", i);
871 if (strisprint((char *)zlc->l_array.la_array))
872 mdb_printf(" \"%s\"", zlc->l_array.la_array);
873 mdb_printf("\n");
874 if (verbose) {
875 int j;
876 mdb_printf(" ");
877 for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
878 mdb_printf("%02x ",
879 zlc->l_array.la_array[j]);
880 }
881 mdb_printf("\n");
882 }
883 if (zlc->l_array.la_next != CHAIN_END) {
884 mdb_printf(" lf_next = %u\n",
885 zlc->l_array.la_next);
886 }
887 break;
888 default:
889 mdb_printf(" %u: undefined type %u\n",
890 zlc->l_entry.le_type);
891 }
892 }
893
894 return (DCMD_OK);
895 }
896
897 typedef struct dbufs_data {
898 mdb_ctf_id_t id;
899 uint64_t objset;
900 uint64_t object;
901 uint64_t level;
902 uint64_t blkid;
903 char *osname;
904 } dbufs_data_t;
905
906 #define DBUFS_UNSET (0xbaddcafedeadbeefULL)
907
908 /* ARGSUSED */
909 static int
dbufs_cb(uintptr_t addr,const void * unknown,void * arg)910 dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
911 {
912 dbufs_data_t *data = arg;
913 uintptr_t objset;
914 dmu_buf_t db;
915 uint8_t level;
916 uint64_t blkid;
917 char osname[ZFS_MAX_DATASET_NAME_LEN];
918
919 if (GETMEMBID(addr, &data->id, db_objset, objset) ||
920 GETMEMBID(addr, &data->id, db, db) ||
921 GETMEMBID(addr, &data->id, db_level, level) ||
922 GETMEMBID(addr, &data->id, db_blkid, blkid)) {
923 return (WALK_ERR);
924 }
925
926 if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
927 (data->osname == NULL || (objset_name(objset, osname) == 0 &&
928 strcmp(data->osname, osname) == 0)) &&
929 (data->object == DBUFS_UNSET || data->object == db.db_object) &&
930 (data->level == DBUFS_UNSET || data->level == level) &&
931 (data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
932 mdb_printf("%#lr\n", addr);
933 }
934 return (WALK_NEXT);
935 }
936
937 /* ARGSUSED */
938 static int
dbufs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)939 dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
940 {
941 dbufs_data_t data;
942 char *object = NULL;
943 char *blkid = NULL;
944
945 data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
946 data.osname = NULL;
947
948 if (mdb_getopts(argc, argv,
949 'O', MDB_OPT_UINT64, &data.objset,
950 'n', MDB_OPT_STR, &data.osname,
951 'o', MDB_OPT_STR, &object,
952 'l', MDB_OPT_UINT64, &data.level,
953 'b', MDB_OPT_STR, &blkid,
954 NULL) != argc) {
955 return (DCMD_USAGE);
956 }
957
958 if (object) {
959 if (strcmp(object, "mdn") == 0) {
960 data.object = DMU_META_DNODE_OBJECT;
961 } else {
962 data.object = mdb_strtoull(object);
963 }
964 }
965
966 if (blkid) {
967 if (strcmp(blkid, "bonus") == 0) {
968 data.blkid = DMU_BONUS_BLKID;
969 } else {
970 data.blkid = mdb_strtoull(blkid);
971 }
972 }
973
974 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
975 mdb_warn("couldn't find struct dmu_buf_impl_t");
976 return (DCMD_ERR);
977 }
978
979 if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
980 mdb_warn("can't walk dbufs");
981 return (DCMD_ERR);
982 }
983
984 return (DCMD_OK);
985 }
986
987 typedef struct abuf_find_data {
988 dva_t dva;
989 mdb_ctf_id_t id;
990 } abuf_find_data_t;
991
992 /* ARGSUSED */
993 static int
abuf_find_cb(uintptr_t addr,const void * unknown,void * arg)994 abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
995 {
996 abuf_find_data_t *data = arg;
997 dva_t dva;
998
999 if (GETMEMBID(addr, &data->id, b_dva, dva)) {
1000 return (WALK_ERR);
1001 }
1002
1003 if (dva.dva_word[0] == data->dva.dva_word[0] &&
1004 dva.dva_word[1] == data->dva.dva_word[1]) {
1005 mdb_printf("%#lr\n", addr);
1006 }
1007 return (WALK_NEXT);
1008 }
1009
1010 typedef struct mdb_arc_state {
1011 uintptr_t arcs_list[ARC_BUFC_NUMTYPES];
1012 } mdb_arc_state_t;
1013
1014 /* ARGSUSED */
1015 static int
abuf_find(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1016 abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1017 {
1018 abuf_find_data_t data;
1019 GElf_Sym sym;
1020 int i, j;
1021 const char *syms[] = {
1022 "ARC_mru",
1023 "ARC_mru_ghost",
1024 "ARC_mfu",
1025 "ARC_mfu_ghost",
1026 };
1027
1028 if (argc != 2)
1029 return (DCMD_USAGE);
1030
1031 for (i = 0; i < 2; i ++) {
1032 switch (argv[i].a_type) {
1033 case MDB_TYPE_STRING:
1034 data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
1035 break;
1036 case MDB_TYPE_IMMEDIATE:
1037 data.dva.dva_word[i] = argv[i].a_un.a_val;
1038 break;
1039 default:
1040 return (DCMD_USAGE);
1041 }
1042 }
1043
1044 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
1045 mdb_warn("couldn't find struct arc_buf_hdr");
1046 return (DCMD_ERR);
1047 }
1048
1049 for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
1050 mdb_arc_state_t mas;
1051
1052 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
1053 mdb_warn("can't find symbol %s", syms[i]);
1054 return (DCMD_ERR);
1055 }
1056
1057 if (mdb_ctf_vread(&mas, "arc_state_t", "mdb_arc_state_t",
1058 sym.st_value, 0) != 0) {
1059 mdb_warn("can't read arcs_list of %s", syms[i]);
1060 return (DCMD_ERR);
1061 }
1062
1063 for (j = 0; j < ARC_BUFC_NUMTYPES; j++) {
1064 uintptr_t addr = mas.arcs_list[j];
1065
1066 if (addr == 0)
1067 continue;
1068
1069 if (mdb_pwalk("multilist", abuf_find_cb, &data,
1070 addr) != 0) {
1071 mdb_warn("can't walk %s", syms[i]);
1072 return (DCMD_ERR);
1073 }
1074 }
1075 }
1076
1077 return (DCMD_OK);
1078 }
1079
1080 typedef struct dbgmsg_arg {
1081 boolean_t da_address;
1082 boolean_t da_hrtime;
1083 boolean_t da_timedelta;
1084 boolean_t da_time;
1085 boolean_t da_whatis;
1086
1087 hrtime_t da_curtime;
1088 } dbgmsg_arg_t;
1089
1090 static int
dbgmsg_cb(uintptr_t addr,const void * unknown __unused,void * arg)1091 dbgmsg_cb(uintptr_t addr, const void *unknown __unused, void *arg)
1092 {
1093 static mdb_ctf_id_t id;
1094 static boolean_t gotid;
1095 static ulong_t off;
1096
1097 dbgmsg_arg_t *da = arg;
1098 time_t timestamp;
1099 hrtime_t hrtime;
1100 char buf[1024];
1101
1102 if (!gotid) {
1103 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
1104 -1) {
1105 mdb_warn("couldn't find struct zfs_dbgmsg");
1106 return (WALK_ERR);
1107 }
1108 gotid = TRUE;
1109 if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
1110 mdb_warn("couldn't find zdm_msg");
1111 return (WALK_ERR);
1112 }
1113 off /= 8;
1114 }
1115
1116 if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
1117 return (WALK_ERR);
1118 }
1119
1120 if (da->da_hrtime || da->da_timedelta) {
1121 if (GETMEMBID(addr, &id, zdm_hrtime, hrtime)) {
1122 return (WALK_ERR);
1123 }
1124 }
1125
1126 if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
1127 mdb_warn("failed to read zdm_msg at %p\n", addr + off);
1128 return (DCMD_ERR);
1129 }
1130
1131 if (da->da_address)
1132 mdb_printf("%p ", addr);
1133
1134 if (da->da_timedelta) {
1135 int64_t diff;
1136 char dbuf[32] = { 0 };
1137
1138 if (da->da_curtime == 0)
1139 da->da_curtime = mdb_gethrtime();
1140
1141 diff = (int64_t)hrtime - da->da_curtime;
1142 mdb_nicetime(diff, dbuf, sizeof (dbuf));
1143 mdb_printf("%-20s ", dbuf);
1144 } else if (da->da_hrtime) {
1145 mdb_printf("%016x ", hrtime);
1146 } else if (da->da_time) {
1147 mdb_printf("%Y ", timestamp);
1148 }
1149
1150 mdb_printf("%s\n", buf);
1151
1152 if (da->da_whatis)
1153 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
1154
1155 return (WALK_NEXT);
1156 }
1157
1158 static int
dbgmsg(uintptr_t addr,uint_t flags __unused,int argc,const mdb_arg_t * argv)1159 dbgmsg(uintptr_t addr, uint_t flags __unused, int argc, const mdb_arg_t *argv)
1160 {
1161 GElf_Sym sym;
1162 dbgmsg_arg_t da = { 0 };
1163 boolean_t verbose = B_FALSE;
1164
1165 if (mdb_getopts(argc, argv,
1166 'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
1167 'r', MDB_OPT_SETBITS, B_TRUE, &da.da_hrtime,
1168 't', MDB_OPT_SETBITS, B_TRUE, &da.da_timedelta,
1169 'T', MDB_OPT_SETBITS, B_TRUE, &da.da_time,
1170 'v', MDB_OPT_SETBITS, B_TRUE, &verbose,
1171 'w', MDB_OPT_SETBITS, B_TRUE, &da.da_whatis,
1172 NULL) != argc) {
1173 return (DCMD_USAGE);
1174 }
1175
1176 if (verbose)
1177 da.da_address = da.da_time = B_TRUE;
1178
1179 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
1180 mdb_warn("can't find zfs_dbgmsgs");
1181 return (DCMD_ERR);
1182 }
1183
1184 if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
1185 mdb_warn("can't walk zfs_dbgmsgs");
1186 return (DCMD_ERR);
1187 }
1188
1189 return (DCMD_OK);
1190 }
1191
1192
1193 static void
dbgmsg_help(void)1194 dbgmsg_help(void)
1195 {
1196 mdb_printf("Print entries from the ZFS debug log.\n\n"
1197 "%<b>OPTIONS%</b>\n"
1198 "\t-a\tInclude the address of each zfs_dbgmsg_t.\n"
1199 "\t-r\tDisplay high-resolution timestamps.\n"
1200 "\t-t\tInclude the age of the message.\n"
1201 "\t-T\tInclude the date/time of the message.\n"
1202 "\t-v\tEquivalent to -aT.\n"
1203 "\t-w\tRun ::whatis on each zfs_dbgmsg_t. Useful in DEBUG kernels\n"
1204 "\t\tto show the origin of the message.\n");
1205 }
1206
1207 /*ARGSUSED*/
1208 static int
arc_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1209 arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1210 {
1211 kstat_named_t *stats;
1212 GElf_Sym sym;
1213 int nstats, i;
1214 uint_t opt_a = FALSE;
1215 uint_t opt_b = FALSE;
1216 uint_t shift = 0;
1217 const char *suffix;
1218
1219 static const char *bytestats[] = {
1220 "p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
1221 "arc_meta_used", "arc_meta_limit", "arc_meta_max",
1222 "arc_meta_min", "hdr_size", "data_size", "metadata_size",
1223 "other_size", "anon_size", "anon_evictable_data",
1224 "anon_evictable_metadata", "mru_size", "mru_evictable_data",
1225 "mru_evictable_metadata", "mru_ghost_size",
1226 "mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
1227 "mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
1228 "mfu_ghost_size", "mfu_ghost_evictable_data",
1229 "mfu_ghost_evictable_metadata", "evict_l2_cached",
1230 "evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
1231 "l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
1232 "compressed_size", "uncompressed_size", "overhead_size",
1233 NULL
1234 };
1235
1236 static const char *extras[] = {
1237 "arc_no_grow", "arc_tempreserve",
1238 NULL
1239 };
1240
1241 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
1242 mdb_warn("failed to find 'arc_stats'");
1243 return (DCMD_ERR);
1244 }
1245
1246 stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
1247
1248 if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
1249 mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
1250 return (DCMD_ERR);
1251 }
1252
1253 nstats = sym.st_size / sizeof (kstat_named_t);
1254
1255 /* NB: -a / opt_a are ignored for backwards compatability */
1256 if (mdb_getopts(argc, argv,
1257 'a', MDB_OPT_SETBITS, TRUE, &opt_a,
1258 'b', MDB_OPT_SETBITS, TRUE, &opt_b,
1259 'k', MDB_OPT_SETBITS, 10, &shift,
1260 'm', MDB_OPT_SETBITS, 20, &shift,
1261 'g', MDB_OPT_SETBITS, 30, &shift,
1262 NULL) != argc)
1263 return (DCMD_USAGE);
1264
1265 if (!opt_b && !shift)
1266 shift = 20;
1267
1268 switch (shift) {
1269 case 0:
1270 suffix = "B";
1271 break;
1272 case 10:
1273 suffix = "KB";
1274 break;
1275 case 20:
1276 suffix = "MB";
1277 break;
1278 case 30:
1279 suffix = "GB";
1280 break;
1281 default:
1282 suffix = "XX";
1283 }
1284
1285 for (i = 0; i < nstats; i++) {
1286 int j;
1287 boolean_t bytes = B_FALSE;
1288
1289 for (j = 0; bytestats[j]; j++) {
1290 if (strcmp(stats[i].name, bytestats[j]) == 0) {
1291 bytes = B_TRUE;
1292 break;
1293 }
1294 }
1295
1296 if (bytes) {
1297 mdb_printf("%-25s = %9llu %s\n", stats[i].name,
1298 stats[i].value.ui64 >> shift, suffix);
1299 } else {
1300 mdb_printf("%-25s = %9llu\n", stats[i].name,
1301 stats[i].value.ui64);
1302 }
1303 }
1304
1305 for (i = 0; extras[i]; i++) {
1306 uint64_t buf;
1307
1308 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
1309 mdb_warn("failed to find '%s'", extras[i]);
1310 return (DCMD_ERR);
1311 }
1312
1313 if (sym.st_size != sizeof (uint64_t) &&
1314 sym.st_size != sizeof (uint32_t)) {
1315 mdb_warn("expected scalar for variable '%s'\n",
1316 extras[i]);
1317 return (DCMD_ERR);
1318 }
1319
1320 if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
1321 mdb_warn("couldn't read '%s'", extras[i]);
1322 return (DCMD_ERR);
1323 }
1324
1325 mdb_printf("%-25s = ", extras[i]);
1326
1327 /* NB: all the 64-bit extras happen to be byte counts */
1328 if (sym.st_size == sizeof (uint64_t))
1329 mdb_printf("%9llu %s\n", buf >> shift, suffix);
1330
1331 if (sym.st_size == sizeof (uint32_t))
1332 mdb_printf("%9d\n", *((uint32_t *)&buf));
1333 }
1334 return (DCMD_OK);
1335 }
1336
1337 typedef struct mdb_spa_print {
1338 pool_state_t spa_state;
1339 char spa_name[ZFS_MAX_DATASET_NAME_LEN];
1340 uintptr_t spa_normal_class;
1341 } mdb_spa_print_t;
1342
1343
1344 const char histo_stars[] = "****************************************";
1345 const int histo_width = sizeof (histo_stars) - 1;
1346
1347 static void
dump_histogram(const uint64_t * histo,int size,int offset)1348 dump_histogram(const uint64_t *histo, int size, int offset)
1349 {
1350 int i;
1351 int minidx = size - 1;
1352 int maxidx = 0;
1353 uint64_t max = 0;
1354
1355 for (i = 0; i < size; i++) {
1356 if (histo[i] > max)
1357 max = histo[i];
1358 if (histo[i] > 0 && i > maxidx)
1359 maxidx = i;
1360 if (histo[i] > 0 && i < minidx)
1361 minidx = i;
1362 }
1363
1364 if (max < histo_width)
1365 max = histo_width;
1366
1367 for (i = minidx; i <= maxidx; i++) {
1368 mdb_printf("%3u: %6llu %s\n",
1369 i + offset, (u_longlong_t)histo[i],
1370 &histo_stars[(max - histo[i]) * histo_width / max]);
1371 }
1372 }
1373
1374 typedef struct mdb_metaslab_class {
1375 uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1376 } mdb_metaslab_class_t;
1377
1378 /*
1379 * spa_class_histogram(uintptr_t class_addr)
1380 *
1381 * Prints free space histogram for a device class
1382 *
1383 * Returns DCMD_OK, or DCMD_ERR.
1384 */
1385 static int
spa_class_histogram(uintptr_t class_addr)1386 spa_class_histogram(uintptr_t class_addr)
1387 {
1388 mdb_metaslab_class_t mc;
1389 if (mdb_ctf_vread(&mc, "metaslab_class_t",
1390 "mdb_metaslab_class_t", class_addr, 0) == -1)
1391 return (DCMD_ERR);
1392
1393 mdb_inc_indent(4);
1394 dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1395 mdb_dec_indent(4);
1396 return (DCMD_OK);
1397 }
1398
1399 /*
1400 * ::spa
1401 *
1402 * -c Print configuration information as well
1403 * -v Print vdev state
1404 * -e Print vdev error stats
1405 * -m Print vdev metaslab info
1406 * -M print vdev metaslab group info
1407 * -h Print histogram info (must be combined with -m or -M)
1408 *
1409 * Print a summarized spa_t. When given no arguments, prints out a table of all
1410 * active pools on the system.
1411 */
1412 /* ARGSUSED */
1413 static int
spa_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1414 spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1415 {
1416 const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
1417 "SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
1418 const char *state;
1419 int spa_flags = 0;
1420
1421 if (mdb_getopts(argc, argv,
1422 'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
1423 'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
1424 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1425 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1426 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1427 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1428 NULL) != argc)
1429 return (DCMD_USAGE);
1430
1431 if (!(flags & DCMD_ADDRSPEC)) {
1432 if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
1433 mdb_warn("can't walk spa");
1434 return (DCMD_ERR);
1435 }
1436
1437 return (DCMD_OK);
1438 }
1439
1440 if (flags & DCMD_PIPE_OUT) {
1441 mdb_printf("%#lr\n", addr);
1442 return (DCMD_OK);
1443 }
1444
1445 if (DCMD_HDRSPEC(flags))
1446 mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
1447 sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
1448
1449 mdb_spa_print_t spa;
1450 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
1451 return (DCMD_ERR);
1452
1453 if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
1454 state = "UNKNOWN";
1455 else
1456 state = statetab[spa.spa_state];
1457
1458 mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
1459 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1460 spa_class_histogram(spa.spa_normal_class);
1461
1462 if (spa_flags & SPA_FLAG_CONFIG) {
1463 mdb_printf("\n");
1464 mdb_inc_indent(4);
1465 if (mdb_call_dcmd("spa_config", addr, flags, 0,
1466 NULL) != DCMD_OK)
1467 return (DCMD_ERR);
1468 mdb_dec_indent(4);
1469 }
1470
1471 if (spa_flags & SPA_FLAG_ALL_VDEV) {
1472 mdb_arg_t v;
1473 char opts[100] = "-";
1474 int args =
1475 (spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
1476
1477 if (spa_flags & SPA_FLAG_ERRORS)
1478 strcat(opts, "e");
1479 if (spa_flags & SPA_FLAG_METASLABS)
1480 strcat(opts, "m");
1481 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
1482 strcat(opts, "M");
1483 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1484 strcat(opts, "h");
1485
1486 v.a_type = MDB_TYPE_STRING;
1487 v.a_un.a_str = opts;
1488
1489 mdb_printf("\n");
1490 mdb_inc_indent(4);
1491 if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
1492 &v) != DCMD_OK)
1493 return (DCMD_ERR);
1494 mdb_dec_indent(4);
1495 }
1496
1497 return (DCMD_OK);
1498 }
1499
1500 typedef struct mdb_spa_config_spa {
1501 uintptr_t spa_config;
1502 } mdb_spa_config_spa_t;
1503
1504 /*
1505 * ::spa_config
1506 *
1507 * Given a spa_t, print the configuration information stored in spa_config.
1508 * Since it's just an nvlist, format it as an indented list of name=value pairs.
1509 * We simply read the value of spa_config and pass off to ::nvlist.
1510 */
1511 /* ARGSUSED */
1512 static int
spa_print_config(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1513 spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1514 {
1515 mdb_spa_config_spa_t spa;
1516
1517 if (argc != 0 || !(flags & DCMD_ADDRSPEC))
1518 return (DCMD_USAGE);
1519
1520 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
1521 addr, 0) == -1)
1522 return (DCMD_ERR);
1523
1524 if (spa.spa_config == 0) {
1525 mdb_printf("(none)\n");
1526 return (DCMD_OK);
1527 }
1528
1529 return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
1530 0, NULL));
1531 }
1532
1533 typedef struct mdb_range_tree {
1534 struct {
1535 uint64_t bt_num_elems;
1536 uint64_t bt_num_nodes;
1537 } rt_root;
1538 uint64_t rt_space;
1539 range_seg_type_t rt_type;
1540 uint8_t rt_shift;
1541 uint64_t rt_start;
1542 } mdb_range_tree_t;
1543
1544 typedef struct mdb_metaslab_group {
1545 uint64_t mg_fragmentation;
1546 uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1547 uintptr_t mg_vd;
1548 } mdb_metaslab_group_t;
1549
1550 typedef struct mdb_metaslab {
1551 uint64_t ms_id;
1552 uint64_t ms_start;
1553 uint64_t ms_size;
1554 int64_t ms_deferspace;
1555 uint64_t ms_fragmentation;
1556 uint64_t ms_weight;
1557 uintptr_t ms_allocating[TXG_SIZE];
1558 uintptr_t ms_checkpointing;
1559 uintptr_t ms_freeing;
1560 uintptr_t ms_freed;
1561 uintptr_t ms_allocatable;
1562 uintptr_t ms_unflushed_frees;
1563 uintptr_t ms_unflushed_allocs;
1564 uintptr_t ms_sm;
1565 } mdb_metaslab_t;
1566
1567 typedef struct mdb_space_map_phys_t {
1568 int64_t smp_alloc;
1569 uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
1570 } mdb_space_map_phys_t;
1571
1572 typedef struct mdb_space_map {
1573 uint64_t sm_size;
1574 uint8_t sm_shift;
1575 uintptr_t sm_phys;
1576 } mdb_space_map_t;
1577
1578 typedef struct mdb_vdev {
1579 uint64_t vdev_id;
1580 uint64_t vdev_state;
1581 uintptr_t vdev_ops;
1582 struct {
1583 uint64_t vs_aux;
1584 uint64_t vs_ops[VS_ZIO_TYPES];
1585 uint64_t vs_bytes[VS_ZIO_TYPES];
1586 uint64_t vs_read_errors;
1587 uint64_t vs_write_errors;
1588 uint64_t vs_checksum_errors;
1589 } vdev_stat;
1590 uintptr_t vdev_child;
1591 uint64_t vdev_children;
1592 uint64_t vdev_ms_count;
1593 uintptr_t vdev_mg;
1594 uintptr_t vdev_ms;
1595 uintptr_t vdev_path;
1596 } mdb_vdev_t;
1597
1598 typedef struct mdb_vdev_ops {
1599 char vdev_op_type[16];
1600 } mdb_vdev_ops_t;
1601
1602 static int
metaslab_stats(mdb_vdev_t * vd,int spa_flags)1603 metaslab_stats(mdb_vdev_t *vd, int spa_flags)
1604 {
1605 mdb_inc_indent(4);
1606 mdb_printf("%<u>%-?s %6s %20s %10s %10s %10s%</u>\n", "ADDR", "ID",
1607 "OFFSET", "FREE", "FRAG", "UCMU");
1608
1609 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1610 UM_SLEEP | UM_GC);
1611 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1612 vd->vdev_ms) == -1) {
1613 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1614 return (DCMD_ERR);
1615 }
1616
1617 for (int m = 0; m < vd->vdev_ms_count; m++) {
1618 mdb_metaslab_t ms;
1619 mdb_space_map_t sm = { 0 };
1620 mdb_space_map_phys_t smp = { 0 };
1621 mdb_range_tree_t rt;
1622 uint64_t uallocs, ufrees, raw_free, raw_uchanges_mem;
1623 char free[MDB_NICENUM_BUFLEN];
1624 char uchanges_mem[MDB_NICENUM_BUFLEN];
1625
1626 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1627 vdev_ms[m], 0) == -1)
1628 return (DCMD_ERR);
1629
1630 if (ms.ms_sm != 0 &&
1631 mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
1632 ms.ms_sm, 0) == -1)
1633 return (DCMD_ERR);
1634
1635 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1636 ms.ms_unflushed_frees, 0) == -1)
1637 return (DCMD_ERR);
1638 ufrees = rt.rt_space;
1639 raw_uchanges_mem = rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1640
1641 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1642 ms.ms_unflushed_allocs, 0) == -1)
1643 return (DCMD_ERR);
1644 uallocs = rt.rt_space;
1645 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1646 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1647
1648 raw_free = ms.ms_size;
1649 if (ms.ms_sm != 0 && sm.sm_phys != 0) {
1650 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
1651 "mdb_space_map_phys_t", sm.sm_phys, 0);
1652 raw_free -= smp.smp_alloc;
1653 }
1654 raw_free += ufrees - uallocs;
1655 mdb_nicenum(raw_free, free);
1656
1657 mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
1658 ms.ms_start, free);
1659 if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
1660 mdb_printf("%9s ", "-");
1661 else
1662 mdb_printf("%9llu%% ", ms.ms_fragmentation);
1663 mdb_printf("%10s\n", uchanges_mem);
1664
1665 if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != 0 &&
1666 sm.sm_phys != 0) {
1667 dump_histogram(smp.smp_histogram,
1668 SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
1669 }
1670 }
1671 mdb_dec_indent(4);
1672 return (DCMD_OK);
1673 }
1674
1675 static int
metaslab_group_stats(mdb_vdev_t * vd,int spa_flags)1676 metaslab_group_stats(mdb_vdev_t *vd, int spa_flags)
1677 {
1678 mdb_metaslab_group_t mg;
1679 if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
1680 vd->vdev_mg, 0) == -1) {
1681 mdb_warn("failed to read vdev_mg at %p\n", vd->vdev_mg);
1682 return (DCMD_ERR);
1683 }
1684
1685 mdb_inc_indent(4);
1686 mdb_printf("%<u>%-?s %7s %9s%</u>\n", "ADDR", "FRAG", "UCMU");
1687
1688 if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
1689 mdb_printf("%0?p %6s\n", vd->vdev_mg, "-");
1690 else
1691 mdb_printf("%0?p %6llu%%", vd->vdev_mg, mg.mg_fragmentation);
1692
1693
1694 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1695 UM_SLEEP | UM_GC);
1696 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1697 vd->vdev_ms) == -1) {
1698 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1699 return (DCMD_ERR);
1700 }
1701
1702 uint64_t raw_uchanges_mem = 0;
1703 char uchanges_mem[MDB_NICENUM_BUFLEN];
1704 for (int m = 0; m < vd->vdev_ms_count; m++) {
1705 mdb_metaslab_t ms;
1706 mdb_range_tree_t rt;
1707
1708 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1709 vdev_ms[m], 0) == -1)
1710 return (DCMD_ERR);
1711
1712 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1713 ms.ms_unflushed_frees, 0) == -1)
1714 return (DCMD_ERR);
1715 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1716
1717 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1718 ms.ms_unflushed_allocs, 0) == -1)
1719 return (DCMD_ERR);
1720 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1721 }
1722 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1723 mdb_printf("%10s\n", uchanges_mem);
1724
1725 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1726 dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1727 mdb_dec_indent(4);
1728 return (DCMD_OK);
1729 }
1730
1731 /*
1732 * ::vdev
1733 *
1734 * Print out a summarized vdev_t, in the following form:
1735 *
1736 * ADDR STATE AUX DESC
1737 * fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0
1738 *
1739 * If '-r' is specified, recursively visit all children.
1740 *
1741 * With '-e', the statistics associated with the vdev are printed as well.
1742 */
1743 static int
do_print_vdev(uintptr_t addr,int flags,int depth,boolean_t recursive,int spa_flags)1744 do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
1745 int spa_flags)
1746 {
1747 mdb_vdev_t vd;
1748 if (mdb_ctf_vread(&vd, "vdev_t", "mdb_vdev_t",
1749 (uintptr_t)addr, 0) == -1)
1750 return (DCMD_ERR);
1751
1752 if (flags & DCMD_PIPE_OUT) {
1753 mdb_printf("%#lr\n", addr);
1754 } else {
1755 char desc[MAXNAMELEN];
1756 if (vd.vdev_path != 0) {
1757 if (mdb_readstr(desc, sizeof (desc),
1758 (uintptr_t)vd.vdev_path) == -1) {
1759 mdb_warn("failed to read vdev_path at %p\n",
1760 vd.vdev_path);
1761 return (DCMD_ERR);
1762 }
1763 } else if (vd.vdev_ops != 0) {
1764 vdev_ops_t ops;
1765 if (mdb_vread(&ops, sizeof (ops),
1766 (uintptr_t)vd.vdev_ops) == -1) {
1767 mdb_warn("failed to read vdev_ops at %p\n",
1768 vd.vdev_ops);
1769 return (DCMD_ERR);
1770 }
1771 (void) strcpy(desc, ops.vdev_op_type);
1772 } else {
1773 (void) strcpy(desc, "<unknown>");
1774 }
1775
1776 if (depth == 0 && DCMD_HDRSPEC(flags))
1777 mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
1778 "ADDR", "STATE", "AUX",
1779 sizeof (uintptr_t) == 4 ? 43 : 35,
1780 "DESCRIPTION");
1781
1782 mdb_printf("%0?p ", addr);
1783
1784 const char *state, *aux;
1785 switch (vd.vdev_state) {
1786 case VDEV_STATE_CLOSED:
1787 state = "CLOSED";
1788 break;
1789 case VDEV_STATE_OFFLINE:
1790 state = "OFFLINE";
1791 break;
1792 case VDEV_STATE_CANT_OPEN:
1793 state = "CANT_OPEN";
1794 break;
1795 case VDEV_STATE_DEGRADED:
1796 state = "DEGRADED";
1797 break;
1798 case VDEV_STATE_HEALTHY:
1799 state = "HEALTHY";
1800 break;
1801 case VDEV_STATE_REMOVED:
1802 state = "REMOVED";
1803 break;
1804 case VDEV_STATE_FAULTED:
1805 state = "FAULTED";
1806 break;
1807 default:
1808 state = "UNKNOWN";
1809 break;
1810 }
1811
1812 switch (vd.vdev_stat.vs_aux) {
1813 case VDEV_AUX_NONE:
1814 aux = "-";
1815 break;
1816 case VDEV_AUX_OPEN_FAILED:
1817 aux = "OPEN_FAILED";
1818 break;
1819 case VDEV_AUX_CORRUPT_DATA:
1820 aux = "CORRUPT_DATA";
1821 break;
1822 case VDEV_AUX_NO_REPLICAS:
1823 aux = "NO_REPLICAS";
1824 break;
1825 case VDEV_AUX_BAD_GUID_SUM:
1826 aux = "BAD_GUID_SUM";
1827 break;
1828 case VDEV_AUX_TOO_SMALL:
1829 aux = "TOO_SMALL";
1830 break;
1831 case VDEV_AUX_BAD_LABEL:
1832 aux = "BAD_LABEL";
1833 break;
1834 case VDEV_AUX_VERSION_NEWER:
1835 aux = "VERS_NEWER";
1836 break;
1837 case VDEV_AUX_VERSION_OLDER:
1838 aux = "VERS_OLDER";
1839 break;
1840 case VDEV_AUX_UNSUP_FEAT:
1841 aux = "UNSUP_FEAT";
1842 break;
1843 case VDEV_AUX_SPARED:
1844 aux = "SPARED";
1845 break;
1846 case VDEV_AUX_ERR_EXCEEDED:
1847 aux = "ERR_EXCEEDED";
1848 break;
1849 case VDEV_AUX_IO_FAILURE:
1850 aux = "IO_FAILURE";
1851 break;
1852 case VDEV_AUX_BAD_LOG:
1853 aux = "BAD_LOG";
1854 break;
1855 case VDEV_AUX_EXTERNAL:
1856 aux = "EXTERNAL";
1857 break;
1858 case VDEV_AUX_SPLIT_POOL:
1859 aux = "SPLIT_POOL";
1860 break;
1861 case VDEV_AUX_CHILDREN_OFFLINE:
1862 aux = "CHILDREN_OFFLINE";
1863 break;
1864 default:
1865 aux = "UNKNOWN";
1866 break;
1867 }
1868
1869 mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
1870
1871 if (spa_flags & SPA_FLAG_ERRORS) {
1872 int i;
1873
1874 mdb_inc_indent(4);
1875 mdb_printf("\n");
1876 mdb_printf("%<u> %12s %12s %12s %12s "
1877 "%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
1878 "IOCTL");
1879 mdb_printf("OPS ");
1880 for (i = 1; i < VS_ZIO_TYPES; i++)
1881 mdb_printf("%11#llx%s",
1882 vd.vdev_stat.vs_ops[i],
1883 i == VS_ZIO_TYPES - 1 ? "" : " ");
1884 mdb_printf("\n");
1885 mdb_printf("BYTES ");
1886 for (i = 1; i < VS_ZIO_TYPES; i++)
1887 mdb_printf("%11#llx%s",
1888 vd.vdev_stat.vs_bytes[i],
1889 i == VS_ZIO_TYPES - 1 ? "" : " ");
1890
1891
1892 mdb_printf("\n");
1893 mdb_printf("EREAD %10#llx\n",
1894 vd.vdev_stat.vs_read_errors);
1895 mdb_printf("EWRITE %10#llx\n",
1896 vd.vdev_stat.vs_write_errors);
1897 mdb_printf("ECKSUM %10#llx\n",
1898 vd.vdev_stat.vs_checksum_errors);
1899 mdb_dec_indent(4);
1900 mdb_printf("\n");
1901 }
1902
1903 if ((spa_flags & SPA_FLAG_METASLAB_GROUPS) &&
1904 vd.vdev_mg != 0) {
1905 metaslab_group_stats(&vd, spa_flags);
1906 }
1907 if ((spa_flags & SPA_FLAG_METASLABS) && vd.vdev_ms != 0) {
1908 metaslab_stats(&vd, spa_flags);
1909 }
1910 }
1911
1912 uint64_t children = vd.vdev_children;
1913 if (children == 0 || !recursive)
1914 return (DCMD_OK);
1915
1916 uintptr_t *child = mdb_alloc(children * sizeof (child),
1917 UM_SLEEP | UM_GC);
1918 if (mdb_vread(child, children * sizeof (void *), vd.vdev_child) == -1) {
1919 mdb_warn("failed to read vdev children at %p", vd.vdev_child);
1920 return (DCMD_ERR);
1921 }
1922
1923 for (uint64_t c = 0; c < children; c++) {
1924 if (do_print_vdev(child[c], flags, depth + 2, recursive,
1925 spa_flags)) {
1926 return (DCMD_ERR);
1927 }
1928 }
1929
1930 return (DCMD_OK);
1931 }
1932
1933 static int
vdev_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1934 vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1935 {
1936 uint64_t depth = 0;
1937 boolean_t recursive = B_FALSE;
1938 int spa_flags = 0;
1939
1940 if (mdb_getopts(argc, argv,
1941 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1942 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1943 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1944 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1945 'r', MDB_OPT_SETBITS, TRUE, &recursive,
1946 'd', MDB_OPT_UINT64, &depth, NULL) != argc)
1947 return (DCMD_USAGE);
1948
1949 if (!(flags & DCMD_ADDRSPEC)) {
1950 mdb_warn("no vdev_t address given\n");
1951 return (DCMD_ERR);
1952 }
1953
1954 return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
1955 }
1956
1957 typedef struct mdb_metaslab_alloc_trace {
1958 uintptr_t mat_mg;
1959 uintptr_t mat_msp;
1960 uint64_t mat_size;
1961 uint64_t mat_weight;
1962 uint64_t mat_offset;
1963 uint32_t mat_dva_id;
1964 int mat_allocator;
1965 } mdb_metaslab_alloc_trace_t;
1966
1967 static void
metaslab_print_weight(uint64_t weight)1968 metaslab_print_weight(uint64_t weight)
1969 {
1970 char buf[100];
1971
1972 if (WEIGHT_IS_SPACEBASED(weight)) {
1973 mdb_nicenum(
1974 weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
1975 buf);
1976 } else {
1977 char size[MDB_NICENUM_BUFLEN];
1978 mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
1979 (void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
1980 WEIGHT_GET_COUNT(weight), size);
1981 }
1982 mdb_printf("%11s ", buf);
1983 }
1984
1985 /* ARGSUSED */
1986 static int
metaslab_weight(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1987 metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1988 {
1989 uint64_t weight = 0;
1990 char active;
1991
1992 if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
1993 if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
1994 mdb_warn("failed to read weight at %p\n", addr);
1995 return (DCMD_ERR);
1996 }
1997 } else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
1998 weight = (uint64_t)mdb_argtoull(&argv[0]);
1999 } else {
2000 return (DCMD_USAGE);
2001 }
2002
2003 if (DCMD_HDRSPEC(flags)) {
2004 mdb_printf("%<u>%-6s %9s %9s%</u>\n",
2005 "ACTIVE", "ALGORITHM", "WEIGHT");
2006 }
2007
2008 if (weight & METASLAB_WEIGHT_PRIMARY)
2009 active = 'P';
2010 else if (weight & METASLAB_WEIGHT_SECONDARY)
2011 active = 'S';
2012 else
2013 active = '-';
2014 mdb_printf("%6c %8s ", active,
2015 WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
2016 metaslab_print_weight(weight);
2017 mdb_printf("\n");
2018
2019 return (DCMD_OK);
2020 }
2021
2022 /* ARGSUSED */
2023 static int
metaslab_trace(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2024 metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2025 {
2026 mdb_metaslab_alloc_trace_t mat;
2027 mdb_metaslab_group_t mg = { 0 };
2028 char result_type[100];
2029
2030 if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
2031 "mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
2032 return (DCMD_ERR);
2033 }
2034
2035 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2036 mdb_printf("%<u>%6s %6s %8s %11s %11s %18s %18s%</u>\n",
2037 "MSID", "DVA", "ASIZE", "ALLOCATOR", "WEIGHT", "RESULT",
2038 "VDEV");
2039 }
2040
2041 if (mat.mat_msp != 0) {
2042 mdb_metaslab_t ms;
2043
2044 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2045 mat.mat_msp, 0) == -1) {
2046 return (DCMD_ERR);
2047 }
2048 mdb_printf("%6llu ", ms.ms_id);
2049 } else {
2050 mdb_printf("%6s ", "-");
2051 }
2052
2053 mdb_printf("%6d %8llx %11llx ", mat.mat_dva_id, mat.mat_size,
2054 mat.mat_allocator);
2055
2056 metaslab_print_weight(mat.mat_weight);
2057
2058 if ((int64_t)mat.mat_offset < 0) {
2059 if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
2060 "TRACE_", sizeof (result_type), result_type) == -1) {
2061 mdb_warn("Could not find enum for trace_alloc_type");
2062 return (DCMD_ERR);
2063 }
2064 mdb_printf("%18s ", result_type);
2065 } else {
2066 mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
2067 }
2068
2069 if (mat.mat_mg != 0 &&
2070 mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
2071 mat.mat_mg, 0) == -1) {
2072 return (DCMD_ERR);
2073 }
2074
2075 if (mg.mg_vd != 0) {
2076 mdb_vdev_t vdev;
2077 char desc[MAXNAMELEN];
2078
2079 if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
2080 mg.mg_vd, 0) == -1) {
2081 return (DCMD_ERR);
2082 }
2083
2084 if (vdev.vdev_path != 0) {
2085 char path[MAXNAMELEN];
2086
2087 if (mdb_readstr(path, sizeof (path),
2088 vdev.vdev_path) == -1) {
2089 mdb_warn("failed to read vdev_path at %p\n",
2090 vdev.vdev_path);
2091 return (DCMD_ERR);
2092 }
2093 char *slash;
2094 if ((slash = strrchr(path, '/')) != NULL) {
2095 strcpy(desc, slash + 1);
2096 } else {
2097 strcpy(desc, path);
2098 }
2099 } else if (vdev.vdev_ops != 0) {
2100 mdb_vdev_ops_t ops;
2101 if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
2102 vdev.vdev_ops, 0) == -1) {
2103 mdb_warn("failed to read vdev_ops at %p\n",
2104 vdev.vdev_ops);
2105 return (DCMD_ERR);
2106 }
2107 (void) mdb_snprintf(desc, sizeof (desc),
2108 "%s-%llu", ops.vdev_op_type, vdev.vdev_id);
2109 } else {
2110 (void) strcpy(desc, "<unknown>");
2111 }
2112 mdb_printf("%18s\n", desc);
2113 }
2114
2115 return (DCMD_OK);
2116 }
2117
2118 typedef struct metaslab_walk_data {
2119 uint64_t mw_numvdevs;
2120 uintptr_t *mw_vdevs;
2121 int mw_curvdev;
2122 uint64_t mw_nummss;
2123 uintptr_t *mw_mss;
2124 int mw_curms;
2125 } metaslab_walk_data_t;
2126
2127 static int
metaslab_walk_step(mdb_walk_state_t * wsp)2128 metaslab_walk_step(mdb_walk_state_t *wsp)
2129 {
2130 metaslab_walk_data_t *mw = wsp->walk_data;
2131 metaslab_t ms;
2132 uintptr_t msp;
2133
2134 if (mw->mw_curvdev >= mw->mw_numvdevs)
2135 return (WALK_DONE);
2136
2137 if (mw->mw_mss == NULL) {
2138 uintptr_t mssp;
2139 uintptr_t vdevp;
2140
2141 ASSERT(mw->mw_curms == 0);
2142 ASSERT(mw->mw_nummss == 0);
2143
2144 vdevp = mw->mw_vdevs[mw->mw_curvdev];
2145 if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
2146 GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
2147 return (WALK_ERR);
2148 }
2149
2150 mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
2151 UM_SLEEP | UM_GC);
2152 if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
2153 mssp) == -1) {
2154 mdb_warn("failed to read vdev_ms at %p", mssp);
2155 return (WALK_ERR);
2156 }
2157 }
2158
2159 if (mw->mw_curms >= mw->mw_nummss) {
2160 mw->mw_mss = NULL;
2161 mw->mw_curms = 0;
2162 mw->mw_nummss = 0;
2163 mw->mw_curvdev++;
2164 return (WALK_NEXT);
2165 }
2166
2167 msp = mw->mw_mss[mw->mw_curms];
2168 if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
2169 mdb_warn("failed to read metaslab_t at %p", msp);
2170 return (WALK_ERR);
2171 }
2172
2173 mw->mw_curms++;
2174
2175 return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
2176 }
2177
2178 static int
metaslab_walk_init(mdb_walk_state_t * wsp)2179 metaslab_walk_init(mdb_walk_state_t *wsp)
2180 {
2181 metaslab_walk_data_t *mw;
2182 uintptr_t root_vdevp;
2183 uintptr_t childp;
2184
2185 if (wsp->walk_addr == 0) {
2186 mdb_warn("must supply address of spa_t\n");
2187 return (WALK_ERR);
2188 }
2189
2190 mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
2191
2192 if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
2193 GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
2194 GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
2195 return (DCMD_ERR);
2196 }
2197
2198 mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
2199 UM_SLEEP | UM_GC);
2200 if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
2201 childp) == -1) {
2202 mdb_warn("failed to read root vdev children at %p", childp);
2203 return (DCMD_ERR);
2204 }
2205
2206 wsp->walk_data = mw;
2207
2208 return (WALK_NEXT);
2209 }
2210
2211 typedef struct mdb_spa {
2212 uintptr_t spa_dsl_pool;
2213 uintptr_t spa_root_vdev;
2214 } mdb_spa_t;
2215
2216 typedef struct mdb_dsl_pool {
2217 uintptr_t dp_root_dir;
2218 } mdb_dsl_pool_t;
2219
2220 typedef struct mdb_dsl_dir {
2221 uintptr_t dd_dbuf;
2222 int64_t dd_space_towrite[TXG_SIZE];
2223 } mdb_dsl_dir_t;
2224
2225 typedef struct mdb_dsl_dir_phys {
2226 uint64_t dd_used_bytes;
2227 uint64_t dd_compressed_bytes;
2228 uint64_t dd_uncompressed_bytes;
2229 } mdb_dsl_dir_phys_t;
2230
2231 typedef struct space_data {
2232 uint64_t ms_allocating[TXG_SIZE];
2233 uint64_t ms_checkpointing;
2234 uint64_t ms_freeing;
2235 uint64_t ms_freed;
2236 uint64_t ms_unflushed_frees;
2237 uint64_t ms_unflushed_allocs;
2238 uint64_t ms_allocatable;
2239 int64_t ms_deferspace;
2240 uint64_t avail;
2241 } space_data_t;
2242
2243 /* ARGSUSED */
2244 static int
space_cb(uintptr_t addr,const void * unknown,void * arg)2245 space_cb(uintptr_t addr, const void *unknown, void *arg)
2246 {
2247 space_data_t *sd = arg;
2248 mdb_metaslab_t ms;
2249 mdb_range_tree_t rt;
2250 mdb_space_map_t sm = { 0 };
2251 mdb_space_map_phys_t smp = { 0 };
2252 uint64_t uallocs, ufrees;
2253 int i;
2254
2255 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2256 addr, 0) == -1)
2257 return (WALK_ERR);
2258
2259 for (i = 0; i < TXG_SIZE; i++) {
2260 if (mdb_ctf_vread(&rt, "range_tree_t",
2261 "mdb_range_tree_t", ms.ms_allocating[i], 0) == -1)
2262 return (WALK_ERR);
2263 sd->ms_allocating[i] += rt.rt_space;
2264 }
2265
2266 if (mdb_ctf_vread(&rt, "range_tree_t",
2267 "mdb_range_tree_t", ms.ms_checkpointing, 0) == -1)
2268 return (WALK_ERR);
2269 sd->ms_checkpointing += rt.rt_space;
2270
2271 if (mdb_ctf_vread(&rt, "range_tree_t",
2272 "mdb_range_tree_t", ms.ms_freeing, 0) == -1)
2273 return (WALK_ERR);
2274 sd->ms_freeing += rt.rt_space;
2275
2276 if (mdb_ctf_vread(&rt, "range_tree_t",
2277 "mdb_range_tree_t", ms.ms_freed, 0) == -1)
2278 return (WALK_ERR);
2279 sd->ms_freed += rt.rt_space;
2280
2281 if (mdb_ctf_vread(&rt, "range_tree_t",
2282 "mdb_range_tree_t", ms.ms_allocatable, 0) == -1)
2283 return (WALK_ERR);
2284 sd->ms_allocatable += rt.rt_space;
2285
2286 if (mdb_ctf_vread(&rt, "range_tree_t",
2287 "mdb_range_tree_t", ms.ms_unflushed_frees, 0) == -1)
2288 return (WALK_ERR);
2289 sd->ms_unflushed_frees += rt.rt_space;
2290 ufrees = rt.rt_space;
2291
2292 if (mdb_ctf_vread(&rt, "range_tree_t",
2293 "mdb_range_tree_t", ms.ms_unflushed_allocs, 0) == -1)
2294 return (WALK_ERR);
2295 sd->ms_unflushed_allocs += rt.rt_space;
2296 uallocs = rt.rt_space;
2297
2298 if (ms.ms_sm != 0 &&
2299 mdb_ctf_vread(&sm, "space_map_t",
2300 "mdb_space_map_t", ms.ms_sm, 0) == -1)
2301 return (WALK_ERR);
2302
2303 if (sm.sm_phys != 0) {
2304 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
2305 "mdb_space_map_phys_t", sm.sm_phys, 0);
2306 }
2307
2308 sd->ms_deferspace += ms.ms_deferspace;
2309 sd->avail += sm.sm_size - smp.smp_alloc + ufrees - uallocs;
2310
2311 return (WALK_NEXT);
2312 }
2313
2314 /*
2315 * ::spa_space [-b]
2316 *
2317 * Given a spa_t, print out it's on-disk space usage and in-core
2318 * estimates of future usage. If -b is given, print space in bytes.
2319 * Otherwise print in megabytes.
2320 */
2321 /* ARGSUSED */
2322 static int
spa_space(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2323 spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2324 {
2325 mdb_spa_t spa;
2326 mdb_dsl_pool_t dp;
2327 mdb_dsl_dir_t dd;
2328 mdb_dmu_buf_impl_t db;
2329 mdb_dsl_dir_phys_t dsp;
2330 space_data_t sd;
2331 int shift = 20;
2332 char *suffix = "M";
2333 int bytes = B_FALSE;
2334
2335 if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
2336 argc)
2337 return (DCMD_USAGE);
2338 if (!(flags & DCMD_ADDRSPEC))
2339 return (DCMD_USAGE);
2340
2341 if (bytes) {
2342 shift = 0;
2343 suffix = "";
2344 }
2345
2346 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
2347 addr, 0) == -1 ||
2348 mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
2349 spa.spa_dsl_pool, 0) == -1 ||
2350 mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
2351 dp.dp_root_dir, 0) == -1 ||
2352 mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
2353 dd.dd_dbuf, 0) == -1 ||
2354 mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
2355 "mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
2356 return (DCMD_ERR);
2357 }
2358
2359 mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
2360 dd.dd_space_towrite[0] >> shift, suffix,
2361 dd.dd_space_towrite[1] >> shift, suffix,
2362 dd.dd_space_towrite[2] >> shift, suffix,
2363 dd.dd_space_towrite[3] >> shift, suffix);
2364
2365 mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
2366 dsp.dd_used_bytes >> shift, suffix);
2367 mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
2368 dsp.dd_compressed_bytes >> shift, suffix);
2369 mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
2370 dsp.dd_uncompressed_bytes >> shift, suffix);
2371
2372 bzero(&sd, sizeof (sd));
2373 if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
2374 mdb_warn("can't walk metaslabs");
2375 return (DCMD_ERR);
2376 }
2377
2378 mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
2379 sd.ms_allocating[0] >> shift, suffix,
2380 sd.ms_allocating[1] >> shift, suffix,
2381 sd.ms_allocating[2] >> shift, suffix,
2382 sd.ms_allocating[3] >> shift, suffix);
2383 mdb_printf("ms_checkpointing = %llu%s\n",
2384 sd.ms_checkpointing >> shift, suffix);
2385 mdb_printf("ms_freeing = %llu%s\n",
2386 sd.ms_freeing >> shift, suffix);
2387 mdb_printf("ms_freed = %llu%s\n",
2388 sd.ms_freed >> shift, suffix);
2389 mdb_printf("ms_unflushed_frees = %llu%s\n",
2390 sd.ms_unflushed_frees >> shift, suffix);
2391 mdb_printf("ms_unflushed_allocs = %llu%s\n",
2392 sd.ms_unflushed_allocs >> shift, suffix);
2393 mdb_printf("ms_allocatable = %llu%s\n",
2394 sd.ms_allocatable >> shift, suffix);
2395 mdb_printf("ms_deferspace = %llu%s\n",
2396 sd.ms_deferspace >> shift, suffix);
2397 mdb_printf("current avail = %llu%s\n",
2398 sd.avail >> shift, suffix);
2399
2400 return (DCMD_OK);
2401 }
2402
2403 typedef struct mdb_spa_aux_vdev {
2404 int sav_count;
2405 uintptr_t sav_vdevs;
2406 } mdb_spa_aux_vdev_t;
2407
2408 typedef struct mdb_spa_vdevs {
2409 uintptr_t spa_root_vdev;
2410 mdb_spa_aux_vdev_t spa_l2cache;
2411 mdb_spa_aux_vdev_t spa_spares;
2412 } mdb_spa_vdevs_t;
2413
2414 static int
spa_print_aux(mdb_spa_aux_vdev_t * sav,uint_t flags,mdb_arg_t * v,const char * name)2415 spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
2416 const char *name)
2417 {
2418 uintptr_t *aux;
2419 size_t len;
2420 int ret, i;
2421
2422 /*
2423 * Iterate over aux vdevs and print those out as well. This is a
2424 * little annoying because we don't have a root vdev to pass to ::vdev.
2425 * Instead, we print a single line and then call it for each child
2426 * vdev.
2427 */
2428 if (sav->sav_count != 0) {
2429 v[1].a_type = MDB_TYPE_STRING;
2430 v[1].a_un.a_str = "-d";
2431 v[2].a_type = MDB_TYPE_IMMEDIATE;
2432 v[2].a_un.a_val = 2;
2433
2434 len = sav->sav_count * sizeof (uintptr_t);
2435 aux = mdb_alloc(len, UM_SLEEP);
2436 if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
2437 mdb_free(aux, len);
2438 mdb_warn("failed to read l2cache vdevs at %p",
2439 sav->sav_vdevs);
2440 return (DCMD_ERR);
2441 }
2442
2443 mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
2444
2445 for (i = 0; i < sav->sav_count; i++) {
2446 ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
2447 if (ret != DCMD_OK) {
2448 mdb_free(aux, len);
2449 return (ret);
2450 }
2451 }
2452
2453 mdb_free(aux, len);
2454 }
2455
2456 return (0);
2457 }
2458
2459 /*
2460 * ::spa_vdevs
2461 *
2462 * -e Include error stats
2463 * -m Include metaslab information
2464 * -M Include metaslab group information
2465 * -h Include histogram information (requires -m or -M)
2466 *
2467 * Print out a summarized list of vdevs for the given spa_t.
2468 * This is accomplished by invoking "::vdev -re" on the root vdev, as well as
2469 * iterating over the cache devices.
2470 */
2471 /* ARGSUSED */
2472 static int
spa_vdevs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2473 spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2474 {
2475 mdb_arg_t v[3];
2476 int ret;
2477 char opts[100] = "-r";
2478 int spa_flags = 0;
2479
2480 if (mdb_getopts(argc, argv,
2481 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
2482 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
2483 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
2484 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
2485 NULL) != argc)
2486 return (DCMD_USAGE);
2487
2488 if (!(flags & DCMD_ADDRSPEC))
2489 return (DCMD_USAGE);
2490
2491 mdb_spa_vdevs_t spa;
2492 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
2493 return (DCMD_ERR);
2494
2495 /*
2496 * Unitialized spa_t structures can have a NULL root vdev.
2497 */
2498 if (spa.spa_root_vdev == 0) {
2499 mdb_printf("no associated vdevs\n");
2500 return (DCMD_OK);
2501 }
2502
2503 if (spa_flags & SPA_FLAG_ERRORS)
2504 strcat(opts, "e");
2505 if (spa_flags & SPA_FLAG_METASLABS)
2506 strcat(opts, "m");
2507 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
2508 strcat(opts, "M");
2509 if (spa_flags & SPA_FLAG_HISTOGRAMS)
2510 strcat(opts, "h");
2511
2512 v[0].a_type = MDB_TYPE_STRING;
2513 v[0].a_un.a_str = opts;
2514
2515 ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
2516 flags, 1, v);
2517 if (ret != DCMD_OK)
2518 return (ret);
2519
2520 if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
2521 spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
2522 return (DCMD_ERR);
2523
2524 return (DCMD_OK);
2525 }
2526
2527 /*
2528 * ::zio
2529 *
2530 * Print a summary of zio_t and all its children. This is intended to display a
2531 * zio tree, and hence we only pick the most important pieces of information for
2532 * the main summary. More detailed information can always be found by doing a
2533 * '::print zio' on the underlying zio_t. The columns we display are:
2534 *
2535 * ADDRESS TYPE STAGE WAITER TIME_ELAPSED
2536 *
2537 * The 'address' column is indented by one space for each depth level as we
2538 * descend down the tree.
2539 */
2540
2541 #define ZIO_MAXINDENT 7
2542 #define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
2543 #define ZIO_WALK_SELF 0
2544 #define ZIO_WALK_CHILD 1
2545 #define ZIO_WALK_PARENT 2
2546
2547 typedef struct zio_print_args {
2548 int zpa_current_depth;
2549 int zpa_min_depth;
2550 int zpa_max_depth;
2551 int zpa_type;
2552 uint_t zpa_flags;
2553 } zio_print_args_t;
2554
2555 typedef struct mdb_zio {
2556 enum zio_type io_type;
2557 enum zio_stage io_stage;
2558 uintptr_t io_waiter;
2559 uintptr_t io_spa;
2560 struct {
2561 struct {
2562 uintptr_t list_next;
2563 } list_head;
2564 } io_parent_list;
2565 int io_error;
2566 } mdb_zio_t;
2567
2568 typedef struct mdb_zio_timestamp {
2569 hrtime_t io_timestamp;
2570 } mdb_zio_timestamp_t;
2571
2572 static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
2573
2574 static int
zio_print_cb(uintptr_t addr,zio_print_args_t * zpa)2575 zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
2576 {
2577 mdb_ctf_id_t type_enum, stage_enum;
2578 int indent = zpa->zpa_current_depth;
2579 const char *type, *stage;
2580 uintptr_t laddr;
2581 mdb_zio_t zio;
2582 mdb_zio_timestamp_t zio_timestamp = { 0 };
2583
2584 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
2585 return (WALK_ERR);
2586 (void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
2587 "mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
2588
2589 if (indent > ZIO_MAXINDENT)
2590 indent = ZIO_MAXINDENT;
2591
2592 if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
2593 mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
2594 mdb_warn("failed to lookup zio enums");
2595 return (WALK_ERR);
2596 }
2597
2598 if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
2599 type += sizeof ("ZIO_TYPE_") - 1;
2600 else
2601 type = "?";
2602
2603 if (zio.io_error == 0) {
2604 stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
2605 if (stage != NULL)
2606 stage += sizeof ("ZIO_STAGE_") - 1;
2607 else
2608 stage = "?";
2609 } else {
2610 stage = "FAILED";
2611 }
2612
2613 if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
2614 if (zpa->zpa_flags & DCMD_PIPE_OUT) {
2615 mdb_printf("%?p\n", addr);
2616 } else {
2617 mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
2618 ZIO_MAXWIDTH - indent, addr, type, stage);
2619 if (zio.io_waiter != 0)
2620 mdb_printf("%-16lx ", zio.io_waiter);
2621 else
2622 mdb_printf("%-16s ", "-");
2623 #ifdef _KERNEL
2624 if (zio_timestamp.io_timestamp != 0) {
2625 mdb_printf("%llums", (mdb_gethrtime() -
2626 zio_timestamp.io_timestamp) /
2627 1000000);
2628 } else {
2629 mdb_printf("%-12s ", "-");
2630 }
2631 #else
2632 mdb_printf("%-12s ", "-");
2633 #endif
2634 mdb_printf("\n");
2635 }
2636 }
2637
2638 if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
2639 return (WALK_NEXT);
2640
2641 if (zpa->zpa_type == ZIO_WALK_PARENT)
2642 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2643 "io_parent_list");
2644 else
2645 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2646 "io_child_list");
2647
2648 zpa->zpa_current_depth++;
2649 if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
2650 mdb_warn("failed to walk zio_t children at %p\n", laddr);
2651 return (WALK_ERR);
2652 }
2653 zpa->zpa_current_depth--;
2654
2655 return (WALK_NEXT);
2656 }
2657
2658 /* ARGSUSED */
2659 static int
zio_child_cb(uintptr_t addr,const void * unknown,void * arg)2660 zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
2661 {
2662 zio_link_t zl;
2663 uintptr_t ziop;
2664 zio_print_args_t *zpa = arg;
2665
2666 if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
2667 mdb_warn("failed to read zio_link_t at %p", addr);
2668 return (WALK_ERR);
2669 }
2670
2671 if (zpa->zpa_type == ZIO_WALK_PARENT)
2672 ziop = (uintptr_t)zl.zl_parent;
2673 else
2674 ziop = (uintptr_t)zl.zl_child;
2675
2676 return (zio_print_cb(ziop, zpa));
2677 }
2678
2679 /* ARGSUSED */
2680 static int
zio_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2681 zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2682 {
2683 zio_print_args_t zpa = { 0 };
2684
2685 if (!(flags & DCMD_ADDRSPEC))
2686 return (DCMD_USAGE);
2687
2688 if (mdb_getopts(argc, argv,
2689 'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
2690 'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
2691 'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
2692 NULL) != argc)
2693 return (DCMD_USAGE);
2694
2695 zpa.zpa_flags = flags;
2696 if (zpa.zpa_max_depth != 0) {
2697 if (zpa.zpa_type == ZIO_WALK_SELF)
2698 zpa.zpa_type = ZIO_WALK_CHILD;
2699 } else if (zpa.zpa_type != ZIO_WALK_SELF) {
2700 zpa.zpa_min_depth = 1;
2701 zpa.zpa_max_depth = 1;
2702 }
2703
2704 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2705 mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
2706 ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
2707 "TIME_ELAPSED");
2708 }
2709
2710 if (zio_print_cb(addr, &zpa) != WALK_NEXT)
2711 return (DCMD_ERR);
2712
2713 return (DCMD_OK);
2714 }
2715
2716 /*
2717 * [addr]::zio_state
2718 *
2719 * Print a summary of all zio_t structures on the system, or for a particular
2720 * pool. This is equivalent to '::walk zio_root | ::zio'.
2721 */
2722 /*ARGSUSED*/
2723 static int
zio_state(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2724 zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2725 {
2726 /*
2727 * MDB will remember the last address of the pipeline, so if we don't
2728 * zero this we'll end up trying to walk zio structures for a
2729 * non-existent spa_t.
2730 */
2731 if (!(flags & DCMD_ADDRSPEC))
2732 addr = 0;
2733
2734 return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
2735 }
2736
2737
2738 typedef struct mdb_zfs_btree_hdr {
2739 uintptr_t bth_parent;
2740 boolean_t bth_core;
2741 /*
2742 * For both leaf and core nodes, represents the number of elements in
2743 * the node. For core nodes, they will have bth_count + 1 children.
2744 */
2745 uint32_t bth_count;
2746 } mdb_zfs_btree_hdr_t;
2747
2748 typedef struct mdb_zfs_btree_core {
2749 mdb_zfs_btree_hdr_t btc_hdr;
2750 uintptr_t btc_children[BTREE_CORE_ELEMS + 1];
2751 uint8_t btc_elems[];
2752 } mdb_zfs_btree_core_t;
2753
2754 typedef struct mdb_zfs_btree_leaf {
2755 mdb_zfs_btree_hdr_t btl_hdr;
2756 uint8_t btl_elems[];
2757 } mdb_zfs_btree_leaf_t;
2758
2759 typedef struct mdb_zfs_btree {
2760 uintptr_t bt_root;
2761 size_t bt_elem_size;
2762 } mdb_zfs_btree_t;
2763
2764 typedef struct btree_walk_data {
2765 mdb_zfs_btree_t bwd_btree;
2766 mdb_zfs_btree_hdr_t *bwd_node;
2767 uint64_t bwd_offset; // In units of bt_node_size
2768 } btree_walk_data_t;
2769
2770 static uintptr_t
btree_leftmost_child(uintptr_t addr,mdb_zfs_btree_hdr_t * buf)2771 btree_leftmost_child(uintptr_t addr, mdb_zfs_btree_hdr_t *buf)
2772 {
2773 size_t size = offsetof(zfs_btree_core_t, btc_children) +
2774 sizeof (uintptr_t);
2775 for (;;) {
2776 if (mdb_vread(buf, size, addr) == -1) {
2777 mdb_warn("failed to read at %p\n", addr);
2778 return ((uintptr_t)0ULL);
2779 }
2780 if (!buf->bth_core)
2781 return (addr);
2782 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)buf;
2783 addr = node->btc_children[0];
2784 }
2785 }
2786
2787 static int
btree_walk_step(mdb_walk_state_t * wsp)2788 btree_walk_step(mdb_walk_state_t *wsp)
2789 {
2790 btree_walk_data_t *bwd = wsp->walk_data;
2791 size_t elem_size = bwd->bwd_btree.bt_elem_size;
2792 if (wsp->walk_addr == 0ULL)
2793 return (WALK_DONE);
2794
2795 if (!bwd->bwd_node->bth_core) {
2796 /*
2797 * For the first element in a leaf node, read in the full
2798 * leaf, since we only had part of it read in before.
2799 */
2800 if (bwd->bwd_offset == 0) {
2801 if (mdb_vread(bwd->bwd_node, BTREE_LEAF_SIZE,
2802 wsp->walk_addr) == -1) {
2803 mdb_warn("failed to read at %p\n",
2804 wsp->walk_addr);
2805 return (WALK_ERR);
2806 }
2807 }
2808
2809 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2810 offsetof(mdb_zfs_btree_leaf_t, btl_elems) +
2811 bwd->bwd_offset * elem_size), bwd->bwd_node,
2812 wsp->walk_cbdata);
2813 if (status != WALK_NEXT)
2814 return (status);
2815 bwd->bwd_offset++;
2816
2817 /* Find the next element, if we're at the end of the leaf. */
2818 while (bwd->bwd_offset == bwd->bwd_node->bth_count) {
2819 uintptr_t par = bwd->bwd_node->bth_parent;
2820 uintptr_t cur = wsp->walk_addr;
2821 wsp->walk_addr = par;
2822 if (par == 0ULL)
2823 return (WALK_NEXT);
2824
2825 size_t size = sizeof (zfs_btree_core_t) +
2826 BTREE_CORE_ELEMS * elem_size;
2827 if (mdb_vread(bwd->bwd_node, size, wsp->walk_addr) ==
2828 -1) {
2829 mdb_warn("failed to read at %p\n",
2830 wsp->walk_addr);
2831 return (WALK_ERR);
2832 }
2833 mdb_zfs_btree_core_t *node =
2834 (mdb_zfs_btree_core_t *)bwd->bwd_node;
2835 int i;
2836 for (i = 0; i <= bwd->bwd_node->bth_count; i++) {
2837 if (node->btc_children[i] == cur)
2838 break;
2839 }
2840 if (i > bwd->bwd_node->bth_count) {
2841 mdb_warn("btree parent/child mismatch at "
2842 "%#lx\n", cur);
2843 return (WALK_ERR);
2844 }
2845 bwd->bwd_offset = i;
2846 }
2847 return (WALK_NEXT);
2848 }
2849
2850 if (!bwd->bwd_node->bth_core) {
2851 mdb_warn("Invalid btree node at %#lx\n", wsp->walk_addr);
2852 return (WALK_ERR);
2853 }
2854 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)bwd->bwd_node;
2855 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2856 offsetof(mdb_zfs_btree_core_t, btc_elems) + bwd->bwd_offset *
2857 elem_size), bwd->bwd_node, wsp->walk_cbdata);
2858 if (status != WALK_NEXT)
2859 return (status);
2860
2861 uintptr_t new_child = node->btc_children[bwd->bwd_offset + 1];
2862 wsp->walk_addr = btree_leftmost_child(new_child, bwd->bwd_node);
2863 if (wsp->walk_addr == 0ULL)
2864 return (WALK_ERR);
2865
2866 bwd->bwd_offset = 0;
2867 return (WALK_NEXT);
2868 }
2869
2870 static int
btree_walk_init(mdb_walk_state_t * wsp)2871 btree_walk_init(mdb_walk_state_t *wsp)
2872 {
2873 btree_walk_data_t *bwd;
2874
2875 if (wsp->walk_addr == 0ULL) {
2876 mdb_warn("must supply address of zfs_btree_t\n");
2877 return (WALK_ERR);
2878 }
2879
2880 bwd = mdb_zalloc(sizeof (btree_walk_data_t), UM_SLEEP);
2881 if (mdb_ctf_vread(&bwd->bwd_btree, "zfs_btree_t", "mdb_zfs_btree_t",
2882 wsp->walk_addr, 0) == -1) {
2883 mdb_free(bwd, sizeof (*bwd));
2884 return (WALK_ERR);
2885 }
2886
2887 if (bwd->bwd_btree.bt_elem_size == 0) {
2888 mdb_warn("invalid or uninitialized btree at %#lx\n",
2889 wsp->walk_addr);
2890 mdb_free(bwd, sizeof (*bwd));
2891 return (WALK_ERR);
2892 }
2893
2894 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2895 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2896 bwd->bwd_node = mdb_zalloc(size, UM_SLEEP);
2897
2898 uintptr_t node = (uintptr_t)bwd->bwd_btree.bt_root;
2899 if (node == 0ULL) {
2900 wsp->walk_addr = 0ULL;
2901 wsp->walk_data = bwd;
2902 return (WALK_NEXT);
2903 }
2904 node = btree_leftmost_child(node, bwd->bwd_node);
2905 if (node == 0ULL) {
2906 mdb_free(bwd->bwd_node, size);
2907 mdb_free(bwd, sizeof (*bwd));
2908 return (WALK_ERR);
2909 }
2910 bwd->bwd_offset = 0;
2911
2912 wsp->walk_addr = node;
2913 wsp->walk_data = bwd;
2914 return (WALK_NEXT);
2915 }
2916
2917 static void
btree_walk_fini(mdb_walk_state_t * wsp)2918 btree_walk_fini(mdb_walk_state_t *wsp)
2919 {
2920 btree_walk_data_t *bwd = (btree_walk_data_t *)wsp->walk_data;
2921
2922 if (bwd == NULL)
2923 return;
2924
2925 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2926 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2927 if (bwd->bwd_node != NULL)
2928 mdb_free(bwd->bwd_node, size);
2929
2930 mdb_free(bwd, sizeof (*bwd));
2931 }
2932
2933 typedef struct mdb_multilist {
2934 uint64_t ml_num_sublists;
2935 uintptr_t ml_sublists;
2936 } mdb_multilist_t;
2937
2938 static int
multilist_walk_step(mdb_walk_state_t * wsp)2939 multilist_walk_step(mdb_walk_state_t *wsp)
2940 {
2941 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2942 wsp->walk_cbdata));
2943 }
2944
2945 static int
multilist_walk_init(mdb_walk_state_t * wsp)2946 multilist_walk_init(mdb_walk_state_t *wsp)
2947 {
2948 mdb_multilist_t ml;
2949 ssize_t sublist_sz;
2950 int list_offset;
2951 size_t i;
2952
2953 if (wsp->walk_addr == 0) {
2954 mdb_warn("must supply address of multilist_t\n");
2955 return (WALK_ERR);
2956 }
2957
2958 if (mdb_ctf_vread(&ml, "multilist_t", "mdb_multilist_t",
2959 wsp->walk_addr, 0) == -1) {
2960 return (WALK_ERR);
2961 }
2962
2963 if (ml.ml_num_sublists == 0 || ml.ml_sublists == 0) {
2964 mdb_warn("invalid or uninitialized multilist at %#lx\n",
2965 wsp->walk_addr);
2966 return (WALK_ERR);
2967 }
2968
2969 /* mdb_ctf_sizeof_by_name() will print an error for us */
2970 sublist_sz = mdb_ctf_sizeof_by_name("multilist_sublist_t");
2971 if (sublist_sz == -1)
2972 return (WALK_ERR);
2973
2974 /* mdb_ctf_offsetof_by_name will print an error for us */
2975 list_offset = mdb_ctf_offsetof_by_name("multilist_sublist_t",
2976 "mls_list");
2977 if (list_offset == -1)
2978 return (WALK_ERR);
2979
2980 for (i = 0; i < ml.ml_num_sublists; i++) {
2981 wsp->walk_addr = ml.ml_sublists + i * sublist_sz + list_offset;
2982
2983 if (mdb_layered_walk("list", wsp) == -1) {
2984 mdb_warn("can't walk multilist sublist");
2985 return (WALK_ERR);
2986 }
2987 }
2988
2989 return (WALK_NEXT);
2990 }
2991
2992 typedef struct mdb_txg_list {
2993 size_t tl_offset;
2994 uintptr_t tl_head[TXG_SIZE];
2995 } mdb_txg_list_t;
2996
2997 typedef struct txg_list_walk_data {
2998 uintptr_t lw_head[TXG_SIZE];
2999 int lw_txgoff;
3000 int lw_maxoff;
3001 size_t lw_offset;
3002 void *lw_obj;
3003 } txg_list_walk_data_t;
3004
3005 static int
txg_list_walk_init_common(mdb_walk_state_t * wsp,int txg,int maxoff)3006 txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
3007 {
3008 txg_list_walk_data_t *lwd;
3009 mdb_txg_list_t list;
3010 int i;
3011
3012 lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
3013 if (mdb_ctf_vread(&list, "txg_list_t", "mdb_txg_list_t", wsp->walk_addr,
3014 0) == -1) {
3015 mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
3016 return (WALK_ERR);
3017 }
3018
3019 for (i = 0; i < TXG_SIZE; i++)
3020 lwd->lw_head[i] = list.tl_head[i];
3021 lwd->lw_offset = list.tl_offset;
3022 lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
3023 UM_SLEEP | UM_GC);
3024 lwd->lw_txgoff = txg;
3025 lwd->lw_maxoff = maxoff;
3026
3027 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3028 wsp->walk_data = lwd;
3029
3030 return (WALK_NEXT);
3031 }
3032
3033 static int
txg_list_walk_init(mdb_walk_state_t * wsp)3034 txg_list_walk_init(mdb_walk_state_t *wsp)
3035 {
3036 return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
3037 }
3038
3039 static int
txg_list0_walk_init(mdb_walk_state_t * wsp)3040 txg_list0_walk_init(mdb_walk_state_t *wsp)
3041 {
3042 return (txg_list_walk_init_common(wsp, 0, 0));
3043 }
3044
3045 static int
txg_list1_walk_init(mdb_walk_state_t * wsp)3046 txg_list1_walk_init(mdb_walk_state_t *wsp)
3047 {
3048 return (txg_list_walk_init_common(wsp, 1, 1));
3049 }
3050
3051 static int
txg_list2_walk_init(mdb_walk_state_t * wsp)3052 txg_list2_walk_init(mdb_walk_state_t *wsp)
3053 {
3054 return (txg_list_walk_init_common(wsp, 2, 2));
3055 }
3056
3057 static int
txg_list3_walk_init(mdb_walk_state_t * wsp)3058 txg_list3_walk_init(mdb_walk_state_t *wsp)
3059 {
3060 return (txg_list_walk_init_common(wsp, 3, 3));
3061 }
3062
3063 static int
txg_list_walk_step(mdb_walk_state_t * wsp)3064 txg_list_walk_step(mdb_walk_state_t *wsp)
3065 {
3066 txg_list_walk_data_t *lwd = wsp->walk_data;
3067 uintptr_t addr;
3068 txg_node_t *node;
3069 int status;
3070
3071 while (wsp->walk_addr == 0 && lwd->lw_txgoff < lwd->lw_maxoff) {
3072 lwd->lw_txgoff++;
3073 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3074 }
3075
3076 if (wsp->walk_addr == 0)
3077 return (WALK_DONE);
3078
3079 addr = wsp->walk_addr - lwd->lw_offset;
3080
3081 if (mdb_vread(lwd->lw_obj,
3082 lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
3083 mdb_warn("failed to read list element at %#lx", addr);
3084 return (WALK_ERR);
3085 }
3086
3087 status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
3088 node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
3089 wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
3090
3091 return (status);
3092 }
3093
3094 /*
3095 * ::walk spa
3096 *
3097 * Walk all named spa_t structures in the namespace. This is nothing more than
3098 * a layered avl walk.
3099 */
3100 static int
spa_walk_init(mdb_walk_state_t * wsp)3101 spa_walk_init(mdb_walk_state_t *wsp)
3102 {
3103 GElf_Sym sym;
3104
3105 if (wsp->walk_addr != 0) {
3106 mdb_warn("spa walk only supports global walks\n");
3107 return (WALK_ERR);
3108 }
3109
3110 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
3111 mdb_warn("failed to find symbol 'spa_namespace_avl'");
3112 return (WALK_ERR);
3113 }
3114
3115 wsp->walk_addr = (uintptr_t)sym.st_value;
3116
3117 if (mdb_layered_walk("avl", wsp) == -1) {
3118 mdb_warn("failed to walk 'avl'\n");
3119 return (WALK_ERR);
3120 }
3121
3122 return (WALK_NEXT);
3123 }
3124
3125 static int
spa_walk_step(mdb_walk_state_t * wsp)3126 spa_walk_step(mdb_walk_state_t *wsp)
3127 {
3128 return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
3129 }
3130
3131 /*
3132 * [addr]::walk zio
3133 *
3134 * Walk all active zio_t structures on the system. This is simply a layered
3135 * walk on top of ::walk zio_cache, with the optional ability to limit the
3136 * structures to a particular pool.
3137 */
3138 static int
zio_walk_init(mdb_walk_state_t * wsp)3139 zio_walk_init(mdb_walk_state_t *wsp)
3140 {
3141 wsp->walk_data = (void *)wsp->walk_addr;
3142
3143 if (mdb_layered_walk("zio_cache", wsp) == -1) {
3144 mdb_warn("failed to walk 'zio_cache'\n");
3145 return (WALK_ERR);
3146 }
3147
3148 return (WALK_NEXT);
3149 }
3150
3151 static int
zio_walk_step(mdb_walk_state_t * wsp)3152 zio_walk_step(mdb_walk_state_t *wsp)
3153 {
3154 mdb_zio_t zio;
3155 uintptr_t spa = (uintptr_t)wsp->walk_data;
3156
3157 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3158 wsp->walk_addr, 0) == -1)
3159 return (WALK_ERR);
3160
3161 if (spa != 0 && spa != zio.io_spa)
3162 return (WALK_NEXT);
3163
3164 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3165 }
3166
3167 /*
3168 * [addr]::walk zio_root
3169 *
3170 * Walk only root zio_t structures, optionally for a particular spa_t.
3171 */
3172 static int
zio_walk_root_step(mdb_walk_state_t * wsp)3173 zio_walk_root_step(mdb_walk_state_t *wsp)
3174 {
3175 mdb_zio_t zio;
3176 uintptr_t spa = (uintptr_t)wsp->walk_data;
3177
3178 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3179 wsp->walk_addr, 0) == -1)
3180 return (WALK_ERR);
3181
3182 if (spa != 0 && spa != zio.io_spa)
3183 return (WALK_NEXT);
3184
3185 /* If the parent list is not empty, ignore */
3186 if (zio.io_parent_list.list_head.list_next !=
3187 wsp->walk_addr +
3188 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
3189 mdb_ctf_offsetof_by_name("struct list", "list_head"))
3190 return (WALK_NEXT);
3191
3192 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3193 }
3194
3195 /*
3196 * ::zfs_blkstats
3197 *
3198 * -v print verbose per-level information
3199 *
3200 */
3201 static int
zfs_blkstats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3202 zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3203 {
3204 boolean_t verbose = B_FALSE;
3205 zfs_all_blkstats_t stats;
3206 dmu_object_type_t t;
3207 zfs_blkstat_t *tzb;
3208 uint64_t ditto;
3209
3210 if (mdb_getopts(argc, argv,
3211 'v', MDB_OPT_SETBITS, TRUE, &verbose,
3212 NULL) != argc)
3213 return (DCMD_USAGE);
3214
3215 if (!(flags & DCMD_ADDRSPEC))
3216 return (DCMD_USAGE);
3217
3218 if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
3219 GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
3220 mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
3221 mdb_warn("failed to read data at %p;", addr);
3222 mdb_printf("maybe no stats? run \"zpool scrub\" first.");
3223 return (DCMD_ERR);
3224 }
3225
3226 tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
3227 if (tzb->zb_gangs != 0) {
3228 mdb_printf("Ganged blocks: %llu\n",
3229 (longlong_t)tzb->zb_gangs);
3230 }
3231
3232 ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
3233 tzb->zb_ditto_3_of_3_samevdev;
3234 if (ditto != 0) {
3235 mdb_printf("Dittoed blocks on same vdev: %llu\n",
3236 (longlong_t)ditto);
3237 }
3238
3239 mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
3240 "\t avg\t comp\t%%Total\tType\n");
3241
3242 for (t = 0; t <= DMU_OT_TOTAL; t++) {
3243 char csize[MDB_NICENUM_BUFLEN], lsize[MDB_NICENUM_BUFLEN];
3244 char psize[MDB_NICENUM_BUFLEN], asize[MDB_NICENUM_BUFLEN];
3245 char avg[MDB_NICENUM_BUFLEN];
3246 char comp[MDB_NICENUM_BUFLEN], pct[MDB_NICENUM_BUFLEN];
3247 char typename[64];
3248 int l;
3249
3250
3251 if (t == DMU_OT_DEFERRED)
3252 strcpy(typename, "deferred free");
3253 else if (t == DMU_OT_OTHER)
3254 strcpy(typename, "other");
3255 else if (t == DMU_OT_TOTAL)
3256 strcpy(typename, "Total");
3257 else if (enum_lookup("enum dmu_object_type",
3258 t, "DMU_OT_", sizeof (typename), typename) == -1) {
3259 mdb_warn("failed to read type name");
3260 return (DCMD_ERR);
3261 }
3262
3263 if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
3264 continue;
3265
3266 for (l = -1; l < DN_MAX_LEVELS; l++) {
3267 int level = (l == -1 ? DN_MAX_LEVELS : l);
3268 zfs_blkstat_t *zb = &stats.zab_type[level][t];
3269
3270 if (zb->zb_asize == 0)
3271 continue;
3272
3273 /*
3274 * Don't print each level unless requested.
3275 */
3276 if (!verbose && level != DN_MAX_LEVELS)
3277 continue;
3278
3279 /*
3280 * If all the space is level 0, don't print the
3281 * level 0 separately.
3282 */
3283 if (level == 0 && zb->zb_asize ==
3284 stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
3285 continue;
3286
3287 mdb_nicenum(zb->zb_count, csize);
3288 mdb_nicenum(zb->zb_lsize, lsize);
3289 mdb_nicenum(zb->zb_psize, psize);
3290 mdb_nicenum(zb->zb_asize, asize);
3291 mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
3292 (void) mdb_snprintfrac(comp, MDB_NICENUM_BUFLEN,
3293 zb->zb_lsize, zb->zb_psize, 2);
3294 (void) mdb_snprintfrac(pct, MDB_NICENUM_BUFLEN,
3295 100 * zb->zb_asize, tzb->zb_asize, 2);
3296
3297 mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
3298 "\t%5s\t%6s\t",
3299 csize, lsize, psize, asize, avg, comp, pct);
3300
3301 if (level == DN_MAX_LEVELS)
3302 mdb_printf("%s\n", typename);
3303 else
3304 mdb_printf(" L%d %s\n",
3305 level, typename);
3306 }
3307 }
3308
3309 return (DCMD_OK);
3310 }
3311
3312 typedef struct mdb_reference {
3313 uintptr_t ref_holder;
3314 uintptr_t ref_removed;
3315 uint64_t ref_number;
3316 } mdb_reference_t;
3317
3318 /* ARGSUSED */
3319 static int
reference_cb(uintptr_t addr,const void * ignored,void * arg)3320 reference_cb(uintptr_t addr, const void *ignored, void *arg)
3321 {
3322 mdb_reference_t ref;
3323 boolean_t holder_is_str = B_FALSE;
3324 char holder_str[128];
3325 boolean_t removed = (boolean_t)arg;
3326
3327 if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
3328 0) == -1)
3329 return (DCMD_ERR);
3330
3331 if (mdb_readstr(holder_str, sizeof (holder_str),
3332 ref.ref_holder) != -1)
3333 holder_is_str = strisprint(holder_str);
3334
3335 if (removed)
3336 mdb_printf("removed ");
3337 mdb_printf("reference ");
3338 if (ref.ref_number != 1)
3339 mdb_printf("with count=%llu ", ref.ref_number);
3340 mdb_printf("with tag %lx", ref.ref_holder);
3341 if (holder_is_str)
3342 mdb_printf(" \"%s\"", holder_str);
3343 mdb_printf(", held at:\n");
3344
3345 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
3346
3347 if (removed) {
3348 mdb_printf("removed at:\n");
3349 (void) mdb_call_dcmd("whatis", ref.ref_removed,
3350 DCMD_ADDRSPEC, 0, NULL);
3351 }
3352
3353 mdb_printf("\n");
3354
3355 return (WALK_NEXT);
3356 }
3357
3358 typedef struct mdb_zfs_refcount {
3359 uint64_t rc_count;
3360 } mdb_zfs_refcount_t;
3361
3362 typedef struct mdb_zfs_refcount_removed {
3363 uint_t rc_removed_count;
3364 } mdb_zfs_refcount_removed_t;
3365
3366 typedef struct mdb_zfs_refcount_tracked {
3367 boolean_t rc_tracked;
3368 } mdb_zfs_refcount_tracked_t;
3369
3370 /* ARGSUSED */
3371 static int
zfs_refcount(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3372 zfs_refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3373 {
3374 mdb_zfs_refcount_t rc;
3375 mdb_zfs_refcount_removed_t rcr;
3376 mdb_zfs_refcount_tracked_t rct;
3377 int off;
3378 boolean_t released = B_FALSE;
3379
3380 if (!(flags & DCMD_ADDRSPEC))
3381 return (DCMD_USAGE);
3382
3383 if (mdb_getopts(argc, argv,
3384 'r', MDB_OPT_SETBITS, B_TRUE, &released,
3385 NULL) != argc)
3386 return (DCMD_USAGE);
3387
3388 if (mdb_ctf_vread(&rc, "zfs_refcount_t", "mdb_zfs_refcount_t", addr,
3389 0) == -1)
3390 return (DCMD_ERR);
3391
3392 if (mdb_ctf_vread(&rcr, "zfs_refcount_t", "mdb_zfs_refcount_removed_t",
3393 addr, MDB_CTF_VREAD_QUIET) == -1) {
3394 mdb_printf("zfs_refcount_t at %p has %llu holds (untracked)\n",
3395 addr, (longlong_t)rc.rc_count);
3396 return (DCMD_OK);
3397 }
3398
3399 if (mdb_ctf_vread(&rct, "zfs_refcount_t", "mdb_zfs_refcount_tracked_t",
3400 addr, MDB_CTF_VREAD_QUIET) == -1) {
3401 /* If this is an old target, it might be tracked. */
3402 rct.rc_tracked = B_TRUE;
3403 }
3404
3405 mdb_printf("zfs_refcount_t at %p has %llu current holds, "
3406 "%llu recently released holds\n",
3407 addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
3408
3409 if (rct.rc_tracked && rc.rc_count > 0)
3410 mdb_printf("current holds:\n");
3411 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_tree");
3412 if (off == -1)
3413 return (DCMD_ERR);
3414 mdb_pwalk("avl", reference_cb, (void *)B_FALSE, addr + off);
3415
3416 if (released && rcr.rc_removed_count > 0) {
3417 mdb_printf("released holds:\n");
3418
3419 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_removed");
3420 if (off == -1)
3421 return (DCMD_ERR);
3422 mdb_pwalk("list", reference_cb, (void *)B_TRUE, addr + off);
3423 }
3424
3425 return (DCMD_OK);
3426 }
3427
3428 /* ARGSUSED */
3429 static int
sa_attr_table(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3430 sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3431 {
3432 sa_attr_table_t *table;
3433 sa_os_t sa_os;
3434 char *name;
3435 int i;
3436
3437 if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
3438 mdb_warn("failed to read sa_os at %p", addr);
3439 return (DCMD_ERR);
3440 }
3441
3442 table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3443 UM_SLEEP | UM_GC);
3444 name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
3445
3446 if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3447 (uintptr_t)sa_os.sa_attr_table) == -1) {
3448 mdb_warn("failed to read sa_os at %p", addr);
3449 return (DCMD_ERR);
3450 }
3451
3452 mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
3453 "ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
3454 for (i = 0; i != sa_os.sa_num_attrs; i++) {
3455 mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
3456 mdb_printf("%5x %8x %8x %8x %-s\n",
3457 (int)table[i].sa_attr, (int)table[i].sa_registered,
3458 (int)table[i].sa_length, table[i].sa_byteswap, name);
3459 }
3460
3461 return (DCMD_OK);
3462 }
3463
3464 static int
sa_get_off_table(uintptr_t addr,uint32_t ** off_tab,int attr_count)3465 sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
3466 {
3467 uintptr_t idx_table;
3468
3469 if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
3470 mdb_printf("can't find offset table in sa_idx_tab\n");
3471 return (-1);
3472 }
3473
3474 *off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
3475 UM_SLEEP | UM_GC);
3476
3477 if (mdb_vread(*off_tab,
3478 attr_count * sizeof (uint32_t), idx_table) == -1) {
3479 mdb_warn("failed to attribute offset table %p", idx_table);
3480 return (-1);
3481 }
3482
3483 return (DCMD_OK);
3484 }
3485
3486 /*ARGSUSED*/
3487 static int
sa_attr_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3488 sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3489 {
3490 uint32_t *offset_tab;
3491 int attr_count;
3492 uint64_t attr_id;
3493 uintptr_t attr_addr;
3494 uintptr_t bonus_tab, spill_tab;
3495 uintptr_t db_bonus, db_spill;
3496 uintptr_t os, os_sa;
3497 uintptr_t db_data;
3498
3499 if (argc != 1)
3500 return (DCMD_USAGE);
3501
3502 if (argv[0].a_type == MDB_TYPE_STRING)
3503 attr_id = mdb_strtoull(argv[0].a_un.a_str);
3504 else
3505 return (DCMD_USAGE);
3506
3507 if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
3508 GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
3509 GETMEMB(addr, "sa_handle", sa_os, os) ||
3510 GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
3511 GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
3512 mdb_printf("Can't find necessary information in sa_handle "
3513 "in sa_handle\n");
3514 return (DCMD_ERR);
3515 }
3516
3517 if (GETMEMB(os, "objset", os_sa, os_sa)) {
3518 mdb_printf("Can't find os_sa in objset\n");
3519 return (DCMD_ERR);
3520 }
3521
3522 if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
3523 mdb_printf("Can't find sa_num_attrs\n");
3524 return (DCMD_ERR);
3525 }
3526
3527 if (attr_id > attr_count) {
3528 mdb_printf("attribute id number is out of range\n");
3529 return (DCMD_ERR);
3530 }
3531
3532 if (bonus_tab) {
3533 if (sa_get_off_table(bonus_tab, &offset_tab,
3534 attr_count) == -1) {
3535 return (DCMD_ERR);
3536 }
3537
3538 if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
3539 mdb_printf("can't find db_data in bonus dbuf\n");
3540 return (DCMD_ERR);
3541 }
3542 }
3543
3544 if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
3545 spill_tab == 0) {
3546 mdb_printf("Attribute does not exist\n");
3547 return (DCMD_ERR);
3548 } else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
3549 if (sa_get_off_table(spill_tab, &offset_tab,
3550 attr_count) == -1) {
3551 return (DCMD_ERR);
3552 }
3553 if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
3554 mdb_printf("can't find db_data in spill dbuf\n");
3555 return (DCMD_ERR);
3556 }
3557 if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
3558 mdb_printf("Attribute does not exist\n");
3559 return (DCMD_ERR);
3560 }
3561 }
3562 attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
3563 mdb_printf("%p\n", attr_addr);
3564 return (DCMD_OK);
3565 }
3566
3567 /* ARGSUSED */
3568 static int
zfs_ace_print_common(uintptr_t addr,uint_t flags,uint64_t id,uint32_t access_mask,uint16_t ace_flags,uint16_t ace_type,int verbose)3569 zfs_ace_print_common(uintptr_t addr, uint_t flags,
3570 uint64_t id, uint32_t access_mask, uint16_t ace_flags,
3571 uint16_t ace_type, int verbose)
3572 {
3573 if (DCMD_HDRSPEC(flags) && !verbose)
3574 mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
3575 "ADDR", "FLAGS", "MASK", "TYPE", "ID");
3576
3577 if (!verbose) {
3578 mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
3579 ace_flags, access_mask, ace_type, id);
3580 return (DCMD_OK);
3581 }
3582
3583 switch (ace_flags & ACE_TYPE_FLAGS) {
3584 case ACE_OWNER:
3585 mdb_printf("owner@:");
3586 break;
3587 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3588 mdb_printf("group@:");
3589 break;
3590 case ACE_EVERYONE:
3591 mdb_printf("everyone@:");
3592 break;
3593 case ACE_IDENTIFIER_GROUP:
3594 mdb_printf("group:%llx:", (u_longlong_t)id);
3595 break;
3596 case 0: /* User entry */
3597 mdb_printf("user:%llx:", (u_longlong_t)id);
3598 break;
3599 }
3600
3601 /* print out permission mask */
3602 if (access_mask & ACE_READ_DATA)
3603 mdb_printf("r");
3604 else
3605 mdb_printf("-");
3606 if (access_mask & ACE_WRITE_DATA)
3607 mdb_printf("w");
3608 else
3609 mdb_printf("-");
3610 if (access_mask & ACE_EXECUTE)
3611 mdb_printf("x");
3612 else
3613 mdb_printf("-");
3614 if (access_mask & ACE_APPEND_DATA)
3615 mdb_printf("p");
3616 else
3617 mdb_printf("-");
3618 if (access_mask & ACE_DELETE)
3619 mdb_printf("d");
3620 else
3621 mdb_printf("-");
3622 if (access_mask & ACE_DELETE_CHILD)
3623 mdb_printf("D");
3624 else
3625 mdb_printf("-");
3626 if (access_mask & ACE_READ_ATTRIBUTES)
3627 mdb_printf("a");
3628 else
3629 mdb_printf("-");
3630 if (access_mask & ACE_WRITE_ATTRIBUTES)
3631 mdb_printf("A");
3632 else
3633 mdb_printf("-");
3634 if (access_mask & ACE_READ_NAMED_ATTRS)
3635 mdb_printf("R");
3636 else
3637 mdb_printf("-");
3638 if (access_mask & ACE_WRITE_NAMED_ATTRS)
3639 mdb_printf("W");
3640 else
3641 mdb_printf("-");
3642 if (access_mask & ACE_READ_ACL)
3643 mdb_printf("c");
3644 else
3645 mdb_printf("-");
3646 if (access_mask & ACE_WRITE_ACL)
3647 mdb_printf("C");
3648 else
3649 mdb_printf("-");
3650 if (access_mask & ACE_WRITE_OWNER)
3651 mdb_printf("o");
3652 else
3653 mdb_printf("-");
3654 if (access_mask & ACE_SYNCHRONIZE)
3655 mdb_printf("s");
3656 else
3657 mdb_printf("-");
3658
3659 mdb_printf(":");
3660
3661 /* Print out inheritance flags */
3662 if (ace_flags & ACE_FILE_INHERIT_ACE)
3663 mdb_printf("f");
3664 else
3665 mdb_printf("-");
3666 if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
3667 mdb_printf("d");
3668 else
3669 mdb_printf("-");
3670 if (ace_flags & ACE_INHERIT_ONLY_ACE)
3671 mdb_printf("i");
3672 else
3673 mdb_printf("-");
3674 if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
3675 mdb_printf("n");
3676 else
3677 mdb_printf("-");
3678 if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
3679 mdb_printf("S");
3680 else
3681 mdb_printf("-");
3682 if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
3683 mdb_printf("F");
3684 else
3685 mdb_printf("-");
3686 if (ace_flags & ACE_INHERITED_ACE)
3687 mdb_printf("I");
3688 else
3689 mdb_printf("-");
3690
3691 switch (ace_type) {
3692 case ACE_ACCESS_ALLOWED_ACE_TYPE:
3693 mdb_printf(":allow\n");
3694 break;
3695 case ACE_ACCESS_DENIED_ACE_TYPE:
3696 mdb_printf(":deny\n");
3697 break;
3698 case ACE_SYSTEM_AUDIT_ACE_TYPE:
3699 mdb_printf(":audit\n");
3700 break;
3701 case ACE_SYSTEM_ALARM_ACE_TYPE:
3702 mdb_printf(":alarm\n");
3703 break;
3704 default:
3705 mdb_printf(":?\n");
3706 }
3707 return (DCMD_OK);
3708 }
3709
3710 /* ARGSUSED */
3711 static int
zfs_ace_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3712 zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3713 {
3714 zfs_ace_t zace;
3715 int verbose = FALSE;
3716 uint64_t id;
3717
3718 if (!(flags & DCMD_ADDRSPEC))
3719 return (DCMD_USAGE);
3720
3721 if (mdb_getopts(argc, argv,
3722 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3723 return (DCMD_USAGE);
3724
3725 if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
3726 mdb_warn("failed to read zfs_ace_t");
3727 return (DCMD_ERR);
3728 }
3729
3730 if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
3731 (zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3732 id = zace.z_fuid;
3733 else
3734 id = -1;
3735
3736 return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
3737 zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
3738 }
3739
3740 /* ARGSUSED */
3741 static int
zfs_ace0_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3742 zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3743 {
3744 ace_t ace;
3745 uint64_t id;
3746 int verbose = FALSE;
3747
3748 if (!(flags & DCMD_ADDRSPEC))
3749 return (DCMD_USAGE);
3750
3751 if (mdb_getopts(argc, argv,
3752 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3753 return (DCMD_USAGE);
3754
3755 if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
3756 mdb_warn("failed to read ace_t");
3757 return (DCMD_ERR);
3758 }
3759
3760 if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
3761 (ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3762 id = ace.a_who;
3763 else
3764 id = -1;
3765
3766 return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
3767 ace.a_flags, ace.a_type, verbose));
3768 }
3769
3770 typedef struct acl_dump_args {
3771 int a_argc;
3772 const mdb_arg_t *a_argv;
3773 uint16_t a_version;
3774 int a_flags;
3775 } acl_dump_args_t;
3776
3777 /* ARGSUSED */
3778 static int
acl_aces_cb(uintptr_t addr,const void * unknown,void * arg)3779 acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
3780 {
3781 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3782
3783 if (acl_args->a_version == 1) {
3784 if (mdb_call_dcmd("zfs_ace", addr,
3785 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3786 acl_args->a_argv) != DCMD_OK) {
3787 return (WALK_ERR);
3788 }
3789 } else {
3790 if (mdb_call_dcmd("zfs_ace0", addr,
3791 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3792 acl_args->a_argv) != DCMD_OK) {
3793 return (WALK_ERR);
3794 }
3795 }
3796 acl_args->a_flags = DCMD_LOOP;
3797 return (WALK_NEXT);
3798 }
3799
3800 /* ARGSUSED */
3801 static int
acl_cb(uintptr_t addr,const void * unknown,void * arg)3802 acl_cb(uintptr_t addr, const void *unknown, void *arg)
3803 {
3804 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3805
3806 if (acl_args->a_version == 1) {
3807 if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
3808 arg, addr) != 0) {
3809 mdb_warn("can't walk ACEs");
3810 return (DCMD_ERR);
3811 }
3812 } else {
3813 if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
3814 arg, addr) != 0) {
3815 mdb_warn("can't walk ACEs");
3816 return (DCMD_ERR);
3817 }
3818 }
3819 return (WALK_NEXT);
3820 }
3821
3822 /* ARGSUSED */
3823 static int
zfs_acl_dump(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3824 zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3825 {
3826 zfs_acl_t zacl;
3827 int verbose = FALSE;
3828 acl_dump_args_t acl_args;
3829
3830 if (!(flags & DCMD_ADDRSPEC))
3831 return (DCMD_USAGE);
3832
3833 if (mdb_getopts(argc, argv,
3834 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3835 return (DCMD_USAGE);
3836
3837 if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
3838 mdb_warn("failed to read zfs_acl_t");
3839 return (DCMD_ERR);
3840 }
3841
3842 acl_args.a_argc = argc;
3843 acl_args.a_argv = argv;
3844 acl_args.a_version = zacl.z_version;
3845 acl_args.a_flags = DCMD_LOOPFIRST;
3846
3847 if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
3848 mdb_warn("can't walk ACL");
3849 return (DCMD_ERR);
3850 }
3851
3852 return (DCMD_OK);
3853 }
3854
3855 /* ARGSUSED */
3856 static int
zfs_acl_node_walk_init(mdb_walk_state_t * wsp)3857 zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
3858 {
3859 if (wsp->walk_addr == 0) {
3860 mdb_warn("must supply address of zfs_acl_node_t\n");
3861 return (WALK_ERR);
3862 }
3863
3864 wsp->walk_addr +=
3865 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
3866
3867 if (mdb_layered_walk("list", wsp) == -1) {
3868 mdb_warn("failed to walk 'list'\n");
3869 return (WALK_ERR);
3870 }
3871
3872 return (WALK_NEXT);
3873 }
3874
3875 static int
zfs_acl_node_walk_step(mdb_walk_state_t * wsp)3876 zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
3877 {
3878 zfs_acl_node_t aclnode;
3879
3880 if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
3881 wsp->walk_addr) == -1) {
3882 mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
3883 return (WALK_ERR);
3884 }
3885
3886 return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
3887 }
3888
3889 typedef struct ace_walk_data {
3890 int ace_count;
3891 int ace_version;
3892 } ace_walk_data_t;
3893
3894 static int
zfs_aces_walk_init_common(mdb_walk_state_t * wsp,int version,int ace_count,uintptr_t ace_data)3895 zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
3896 int ace_count, uintptr_t ace_data)
3897 {
3898 ace_walk_data_t *ace_walk_data;
3899
3900 if (wsp->walk_addr == 0) {
3901 mdb_warn("must supply address of zfs_acl_node_t\n");
3902 return (WALK_ERR);
3903 }
3904
3905 ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
3906
3907 ace_walk_data->ace_count = ace_count;
3908 ace_walk_data->ace_version = version;
3909
3910 wsp->walk_addr = ace_data;
3911 wsp->walk_data = ace_walk_data;
3912
3913 return (WALK_NEXT);
3914 }
3915
3916 static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t * wsp,int version)3917 zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
3918 {
3919 static int gotid;
3920 static mdb_ctf_id_t acl_id;
3921 int z_ace_count;
3922 uintptr_t z_acldata;
3923
3924 if (!gotid) {
3925 if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
3926 &acl_id) == -1) {
3927 mdb_warn("couldn't find struct zfs_acl_node");
3928 return (DCMD_ERR);
3929 }
3930 gotid = TRUE;
3931 }
3932
3933 if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
3934 return (DCMD_ERR);
3935 }
3936 if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
3937 return (DCMD_ERR);
3938 }
3939
3940 return (zfs_aces_walk_init_common(wsp, version,
3941 z_ace_count, z_acldata));
3942 }
3943
3944 /* ARGSUSED */
3945 static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t * wsp)3946 zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
3947 {
3948 return (zfs_acl_node_aces_walk_init_common(wsp, 1));
3949 }
3950
3951 /* ARGSUSED */
3952 static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t * wsp)3953 zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
3954 {
3955 return (zfs_acl_node_aces_walk_init_common(wsp, 0));
3956 }
3957
3958 static int
zfs_aces_walk_step(mdb_walk_state_t * wsp)3959 zfs_aces_walk_step(mdb_walk_state_t *wsp)
3960 {
3961 ace_walk_data_t *ace_data = wsp->walk_data;
3962 zfs_ace_t zace;
3963 ace_t *acep;
3964 int status;
3965 int entry_type;
3966 int allow_type;
3967 uintptr_t ptr;
3968
3969 if (ace_data->ace_count == 0)
3970 return (WALK_DONE);
3971
3972 if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
3973 mdb_warn("failed to read zfs_ace_t at %#lx",
3974 wsp->walk_addr);
3975 return (WALK_ERR);
3976 }
3977
3978 switch (ace_data->ace_version) {
3979 case 0:
3980 acep = (ace_t *)&zace;
3981 entry_type = acep->a_flags & ACE_TYPE_FLAGS;
3982 allow_type = acep->a_type;
3983 break;
3984 case 1:
3985 entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
3986 allow_type = zace.z_hdr.z_type;
3987 break;
3988 default:
3989 return (WALK_ERR);
3990 }
3991
3992 ptr = (uintptr_t)wsp->walk_addr;
3993 switch (entry_type) {
3994 case ACE_OWNER:
3995 case ACE_EVERYONE:
3996 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3997 ptr += ace_data->ace_version == 0 ?
3998 sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
3999 break;
4000 case ACE_IDENTIFIER_GROUP:
4001 default:
4002 switch (allow_type) {
4003 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
4004 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
4005 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
4006 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
4007 ptr += ace_data->ace_version == 0 ?
4008 sizeof (ace_t) : sizeof (zfs_object_ace_t);
4009 break;
4010 default:
4011 ptr += ace_data->ace_version == 0 ?
4012 sizeof (ace_t) : sizeof (zfs_ace_t);
4013 break;
4014 }
4015 }
4016
4017 ace_data->ace_count--;
4018 status = wsp->walk_callback(wsp->walk_addr,
4019 (void *)(uintptr_t)&zace, wsp->walk_cbdata);
4020
4021 wsp->walk_addr = ptr;
4022 return (status);
4023 }
4024
4025 typedef struct mdb_zfs_rrwlock {
4026 uintptr_t rr_writer;
4027 boolean_t rr_writer_wanted;
4028 } mdb_zfs_rrwlock_t;
4029
4030 static uint_t rrw_key;
4031
4032 /* ARGSUSED */
4033 static int
rrwlock(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4034 rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4035 {
4036 mdb_zfs_rrwlock_t rrw;
4037
4038 if (rrw_key == 0) {
4039 if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
4040 return (DCMD_ERR);
4041 }
4042
4043 if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
4044 0) == -1)
4045 return (DCMD_ERR);
4046
4047 if (rrw.rr_writer != 0) {
4048 mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
4049 return (DCMD_OK);
4050 }
4051
4052 if (rrw.rr_writer_wanted) {
4053 mdb_printf("writer wanted\n");
4054 }
4055
4056 mdb_printf("anonymous references:\n");
4057 (void) mdb_call_dcmd("zfs_refcount", addr +
4058 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
4059 DCMD_ADDRSPEC, 0, NULL);
4060
4061 mdb_printf("linked references:\n");
4062 (void) mdb_call_dcmd("zfs_refcount", addr +
4063 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
4064 DCMD_ADDRSPEC, 0, NULL);
4065
4066 /*
4067 * XXX This should find references from
4068 * "::walk thread | ::tsd -v <rrw_key>", but there is no support
4069 * for programmatic consumption of dcmds, so this would be
4070 * difficult, potentially requiring reimplementing ::tsd (both
4071 * user and kernel versions) in this MDB module.
4072 */
4073
4074 return (DCMD_OK);
4075 }
4076
4077 typedef struct mdb_arc_buf_hdr_t {
4078 uint16_t b_psize;
4079 uint16_t b_lsize;
4080 struct {
4081 uint32_t b_bufcnt;
4082 uintptr_t b_state;
4083 } b_l1hdr;
4084 } mdb_arc_buf_hdr_t;
4085
4086 enum arc_cflags {
4087 ARC_CFLAG_VERBOSE = 1 << 0,
4088 ARC_CFLAG_ANON = 1 << 1,
4089 ARC_CFLAG_MRU = 1 << 2,
4090 ARC_CFLAG_MFU = 1 << 3,
4091 ARC_CFLAG_BUFS = 1 << 4,
4092 };
4093
4094 typedef struct arc_compression_stats_data {
4095 GElf_Sym anon_sym; /* ARC_anon symbol */
4096 GElf_Sym mru_sym; /* ARC_mru symbol */
4097 GElf_Sym mrug_sym; /* ARC_mru_ghost symbol */
4098 GElf_Sym mfu_sym; /* ARC_mfu symbol */
4099 GElf_Sym mfug_sym; /* ARC_mfu_ghost symbol */
4100 GElf_Sym l2c_sym; /* ARC_l2c_only symbol */
4101 uint64_t *anon_c_hist; /* histogram of compressed sizes in anon */
4102 uint64_t *anon_u_hist; /* histogram of uncompressed sizes in anon */
4103 uint64_t *anon_bufs; /* histogram of buffer counts in anon state */
4104 uint64_t *mru_c_hist; /* histogram of compressed sizes in mru */
4105 uint64_t *mru_u_hist; /* histogram of uncompressed sizes in mru */
4106 uint64_t *mru_bufs; /* histogram of buffer counts in mru */
4107 uint64_t *mfu_c_hist; /* histogram of compressed sizes in mfu */
4108 uint64_t *mfu_u_hist; /* histogram of uncompressed sizes in mfu */
4109 uint64_t *mfu_bufs; /* histogram of buffer counts in mfu */
4110 uint64_t *all_c_hist; /* histogram of compressed anon + mru + mfu */
4111 uint64_t *all_u_hist; /* histogram of uncompressed anon + mru + mfu */
4112 uint64_t *all_bufs; /* histogram of buffer counts in all states */
4113 int arc_cflags; /* arc compression flags, specified by user */
4114 int hist_nbuckets; /* number of buckets in each histogram */
4115
4116 ulong_t l1hdr_off; /* offset of b_l1hdr in arc_buf_hdr_t */
4117 } arc_compression_stats_data_t;
4118
4119 int
highbit64(uint64_t i)4120 highbit64(uint64_t i)
4121 {
4122 int h = 1;
4123
4124 if (i == 0)
4125 return (0);
4126 if (i & 0xffffffff00000000ULL) {
4127 h += 32; i >>= 32;
4128 }
4129 if (i & 0xffff0000) {
4130 h += 16; i >>= 16;
4131 }
4132 if (i & 0xff00) {
4133 h += 8; i >>= 8;
4134 }
4135 if (i & 0xf0) {
4136 h += 4; i >>= 4;
4137 }
4138 if (i & 0xc) {
4139 h += 2; i >>= 2;
4140 }
4141 if (i & 0x2) {
4142 h += 1;
4143 }
4144 return (h);
4145 }
4146
4147 /* ARGSUSED */
4148 static int
arc_compression_stats_cb(uintptr_t addr,const void * unknown,void * arg)4149 arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4150 {
4151 arc_compression_stats_data_t *data = arg;
4152 arc_flags_t flags;
4153 mdb_arc_buf_hdr_t hdr;
4154 int cbucket, ubucket, bufcnt;
4155
4156 /*
4157 * mdb_ctf_vread() uses the sizeof the target type (e.g.
4158 * sizeof (arc_buf_hdr_t) in the target) to read in the entire contents
4159 * of the target type into a buffer and then copy the values of the
4160 * desired members from the mdb typename (e.g. mdb_arc_buf_hdr_t) from
4161 * this buffer. Unfortunately, the way arc_buf_hdr_t is used by zfs,
4162 * the actual size allocated by the kernel for arc_buf_hdr_t is often
4163 * smaller than `sizeof (arc_buf_hdr_t)` (see the definitions of
4164 * l1arc_buf_hdr_t and arc_buf_hdr_t in
4165 * usr/src/uts/common/fs/zfs/arc.c). Attempting to read the entire
4166 * contents of arc_buf_hdr_t from the target (as mdb_ctf_vread() does)
4167 * can cause an error if the allocated size is indeed smaller--it's
4168 * possible that the 'missing' trailing members of arc_buf_hdr_t
4169 * (l1arc_buf_hdr_t and/or arc_buf_hdr_crypt_t) may fall into unmapped
4170 * memory.
4171 *
4172 * We use the GETMEMB macro instead which performs an mdb_vread()
4173 * but only reads enough of the target to retrieve the desired struct
4174 * member instead of the entire struct.
4175 */
4176 if (GETMEMB(addr, "arc_buf_hdr", b_flags, flags) == -1)
4177 return (WALK_ERR);
4178
4179 /*
4180 * We only count headers that have data loaded in the kernel.
4181 * This means an L1 header must be present as well as the data
4182 * that corresponds to the L1 header. If there's no L1 header,
4183 * we can skip the arc_buf_hdr_t completely. If it's present, we
4184 * must look at the ARC state (b_l1hdr.b_state) to determine if
4185 * the data is present.
4186 */
4187 if ((flags & ARC_FLAG_HAS_L1HDR) == 0)
4188 return (WALK_NEXT);
4189
4190 if (GETMEMB(addr, "arc_buf_hdr", b_psize, hdr.b_psize) == -1 ||
4191 GETMEMB(addr, "arc_buf_hdr", b_lsize, hdr.b_lsize) == -1 ||
4192 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_bufcnt,
4193 hdr.b_l1hdr.b_bufcnt) == -1 ||
4194 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_state,
4195 hdr.b_l1hdr.b_state) == -1)
4196 return (WALK_ERR);
4197
4198 /*
4199 * Headers in the ghost states, or the l2c_only state don't have
4200 * arc buffers linked off of them. Thus, their compressed size
4201 * is meaningless, so we skip these from the stats.
4202 */
4203 if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
4204 hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
4205 hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
4206 return (WALK_NEXT);
4207 }
4208
4209 /*
4210 * The physical size (compressed) and logical size
4211 * (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
4212 * we use the log2 of this value (rounded down to the nearest
4213 * integer) to determine the bucket to assign this header to.
4214 * Thus, the histogram is logarithmic with respect to the size
4215 * of the header. For example, the following is a mapping of the
4216 * bucket numbers and the range of header sizes they correspond to:
4217 *
4218 * 0: 0 byte headers
4219 * 1: 512 byte headers
4220 * 2: [1024 - 2048) byte headers
4221 * 3: [2048 - 4096) byte headers
4222 * 4: [4096 - 8192) byte headers
4223 * 5: [8192 - 16394) byte headers
4224 * 6: [16384 - 32768) byte headers
4225 * 7: [32768 - 65536) byte headers
4226 * 8: [65536 - 131072) byte headers
4227 * 9: 131072 byte headers
4228 *
4229 * If the ARC_CFLAG_VERBOSE flag was specified, we use the
4230 * physical and logical sizes directly. Thus, the histogram will
4231 * no longer be logarithmic; instead it will be linear with
4232 * respect to the size of the header. The following is a mapping
4233 * of the first many bucket numbers and the header size they
4234 * correspond to:
4235 *
4236 * 0: 0 byte headers
4237 * 1: 512 byte headers
4238 * 2: 1024 byte headers
4239 * 3: 1536 byte headers
4240 * 4: 2048 byte headers
4241 * 5: 2560 byte headers
4242 * 6: 3072 byte headers
4243 *
4244 * And so on. Keep in mind that a range of sizes isn't used in
4245 * the case of linear scale because the headers can only
4246 * increment or decrement in sizes of 512 bytes. So, it's not
4247 * possible for a header to be sized in between whats listed
4248 * above.
4249 *
4250 * Also, the above mapping values were calculated assuming a
4251 * SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
4252 */
4253
4254 if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
4255 cbucket = hdr.b_psize;
4256 ubucket = hdr.b_lsize;
4257 } else {
4258 cbucket = highbit64(hdr.b_psize);
4259 ubucket = highbit64(hdr.b_lsize);
4260 }
4261
4262 bufcnt = hdr.b_l1hdr.b_bufcnt;
4263 if (bufcnt >= data->hist_nbuckets)
4264 bufcnt = data->hist_nbuckets - 1;
4265
4266 /* Ensure we stay within the bounds of the histogram array */
4267 ASSERT3U(cbucket, <, data->hist_nbuckets);
4268 ASSERT3U(ubucket, <, data->hist_nbuckets);
4269
4270 if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
4271 data->anon_c_hist[cbucket]++;
4272 data->anon_u_hist[ubucket]++;
4273 data->anon_bufs[bufcnt]++;
4274 } else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
4275 data->mru_c_hist[cbucket]++;
4276 data->mru_u_hist[ubucket]++;
4277 data->mru_bufs[bufcnt]++;
4278 } else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
4279 data->mfu_c_hist[cbucket]++;
4280 data->mfu_u_hist[ubucket]++;
4281 data->mfu_bufs[bufcnt]++;
4282 }
4283
4284 data->all_c_hist[cbucket]++;
4285 data->all_u_hist[ubucket]++;
4286 data->all_bufs[bufcnt]++;
4287
4288 return (WALK_NEXT);
4289 }
4290
4291 /* ARGSUSED */
4292 static int
arc_compression_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4293 arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
4294 const mdb_arg_t *argv)
4295 {
4296 arc_compression_stats_data_t data = { 0 };
4297 unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
4298 unsigned int hist_size;
4299 char range[32];
4300 int rc = DCMD_OK;
4301 int off;
4302
4303 if (mdb_getopts(argc, argv,
4304 'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
4305 'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
4306 'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
4307 'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
4308 'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags,
4309 NULL) != argc)
4310 return (DCMD_USAGE);
4311
4312 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
4313 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
4314 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
4315 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
4316 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
4317 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
4318 mdb_warn("can't find arc state symbol");
4319 return (DCMD_ERR);
4320 }
4321
4322 /*
4323 * Determine the maximum expected size for any header, and use
4324 * this to determine the number of buckets needed for each
4325 * histogram. If ARC_CFLAG_VERBOSE is specified, this value is
4326 * used directly; otherwise the log2 of the maximum size is
4327 * used. Thus, if using a log2 scale there's a maximum of 10
4328 * possible buckets, while the linear scale (when using
4329 * ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
4330 */
4331 if (data.arc_cflags & ARC_CFLAG_VERBOSE)
4332 data.hist_nbuckets = max_shifted + 1;
4333 else
4334 data.hist_nbuckets = highbit64(max_shifted) + 1;
4335
4336 hist_size = sizeof (uint64_t) * data.hist_nbuckets;
4337
4338 data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4339 data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4340 data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4341
4342 data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4343 data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4344 data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4345
4346 data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4347 data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4348 data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4349
4350 data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4351 data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4352 data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4353
4354 if ((off = mdb_ctf_offsetof_by_name(ZFS_STRUCT "arc_buf_hdr",
4355 "b_l1hdr")) == -1) {
4356 mdb_warn("could not get offset of b_l1hdr from arc_buf_hdr_t");
4357 rc = DCMD_ERR;
4358 goto out;
4359 }
4360 data.l1hdr_off = off;
4361
4362 if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
4363 &data) != 0) {
4364 mdb_warn("can't walk arc_buf_hdr's");
4365 rc = DCMD_ERR;
4366 goto out;
4367 }
4368
4369 if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
4370 rc = mdb_snprintf(range, sizeof (range),
4371 "[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
4372 SPA_MINBLOCKSIZE);
4373 } else {
4374 rc = mdb_snprintf(range, sizeof (range),
4375 "[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
4376 SPA_MINBLOCKSIZE);
4377 }
4378
4379 if (rc < 0) {
4380 /* snprintf failed, abort the dcmd */
4381 rc = DCMD_ERR;
4382 goto out;
4383 } else {
4384 /* snprintf succeeded above, reset return code */
4385 rc = DCMD_OK;
4386 }
4387
4388 if (data.arc_cflags & ARC_CFLAG_ANON) {
4389 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4390 mdb_printf("Histogram of the number of anon buffers "
4391 "that are associated with an arc hdr.\n");
4392 dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
4393 mdb_printf("\n");
4394 }
4395 mdb_printf("Histogram of compressed anon buffers.\n"
4396 "Each bucket represents buffers of size: %s.\n", range);
4397 dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
4398 mdb_printf("\n");
4399
4400 mdb_printf("Histogram of uncompressed anon buffers.\n"
4401 "Each bucket represents buffers of size: %s.\n", range);
4402 dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
4403 mdb_printf("\n");
4404 }
4405
4406 if (data.arc_cflags & ARC_CFLAG_MRU) {
4407 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4408 mdb_printf("Histogram of the number of mru buffers "
4409 "that are associated with an arc hdr.\n");
4410 dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
4411 mdb_printf("\n");
4412 }
4413 mdb_printf("Histogram of compressed mru buffers.\n"
4414 "Each bucket represents buffers of size: %s.\n", range);
4415 dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
4416 mdb_printf("\n");
4417
4418 mdb_printf("Histogram of uncompressed mru buffers.\n"
4419 "Each bucket represents buffers of size: %s.\n", range);
4420 dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
4421 mdb_printf("\n");
4422 }
4423
4424 if (data.arc_cflags & ARC_CFLAG_MFU) {
4425 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4426 mdb_printf("Histogram of the number of mfu buffers "
4427 "that are associated with an arc hdr.\n");
4428 dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
4429 mdb_printf("\n");
4430 }
4431
4432 mdb_printf("Histogram of compressed mfu buffers.\n"
4433 "Each bucket represents buffers of size: %s.\n", range);
4434 dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
4435 mdb_printf("\n");
4436
4437 mdb_printf("Histogram of uncompressed mfu buffers.\n"
4438 "Each bucket represents buffers of size: %s.\n", range);
4439 dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
4440 mdb_printf("\n");
4441 }
4442
4443 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4444 mdb_printf("Histogram of all buffers that "
4445 "are associated with an arc hdr.\n");
4446 dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
4447 mdb_printf("\n");
4448 }
4449
4450 mdb_printf("Histogram of all compressed buffers.\n"
4451 "Each bucket represents buffers of size: %s.\n", range);
4452 dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
4453 mdb_printf("\n");
4454
4455 mdb_printf("Histogram of all uncompressed buffers.\n"
4456 "Each bucket represents buffers of size: %s.\n", range);
4457 dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
4458
4459 out:
4460 mdb_free(data.anon_c_hist, hist_size);
4461 mdb_free(data.anon_u_hist, hist_size);
4462 mdb_free(data.anon_bufs, hist_size);
4463
4464 mdb_free(data.mru_c_hist, hist_size);
4465 mdb_free(data.mru_u_hist, hist_size);
4466 mdb_free(data.mru_bufs, hist_size);
4467
4468 mdb_free(data.mfu_c_hist, hist_size);
4469 mdb_free(data.mfu_u_hist, hist_size);
4470 mdb_free(data.mfu_bufs, hist_size);
4471
4472 mdb_free(data.all_c_hist, hist_size);
4473 mdb_free(data.all_u_hist, hist_size);
4474 mdb_free(data.all_bufs, hist_size);
4475
4476 return (rc);
4477 }
4478
4479 typedef struct mdb_range_seg64 {
4480 uint64_t rs_start;
4481 uint64_t rs_end;
4482 } mdb_range_seg64_t;
4483
4484 typedef struct mdb_range_seg32 {
4485 uint32_t rs_start;
4486 uint32_t rs_end;
4487 } mdb_range_seg32_t;
4488
4489 /* ARGSUSED */
4490 static int
range_tree_cb(uintptr_t addr,const void * unknown,void * arg)4491 range_tree_cb(uintptr_t addr, const void *unknown, void *arg)
4492 {
4493 mdb_range_tree_t *rt = (mdb_range_tree_t *)arg;
4494 uint64_t start, end;
4495
4496 if (rt->rt_type == RANGE_SEG64) {
4497 mdb_range_seg64_t rs;
4498
4499 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg64",
4500 "mdb_range_seg64_t", addr, 0) == -1)
4501 return (DCMD_ERR);
4502 start = rs.rs_start;
4503 end = rs.rs_end;
4504 } else {
4505 ASSERT3U(rt->rt_type, ==, RANGE_SEG32);
4506 mdb_range_seg32_t rs;
4507
4508 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg32",
4509 "mdb_range_seg32_t", addr, 0) == -1)
4510 return (DCMD_ERR);
4511 start = ((uint64_t)rs.rs_start << rt->rt_shift) + rt->rt_start;
4512 end = ((uint64_t)rs.rs_end << rt->rt_shift) + rt->rt_start;
4513 }
4514
4515 mdb_printf("\t[%llx %llx) (length %llx)\n", start, end, end - start);
4516
4517 return (0);
4518 }
4519
4520 /* ARGSUSED */
4521 static int
range_tree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4522 range_tree(uintptr_t addr, uint_t flags, int argc,
4523 const mdb_arg_t *argv)
4524 {
4525 mdb_range_tree_t rt;
4526 uintptr_t btree_addr;
4527
4528 if (!(flags & DCMD_ADDRSPEC))
4529 return (DCMD_USAGE);
4530
4531 if (mdb_ctf_vread(&rt, ZFS_STRUCT "range_tree", "mdb_range_tree_t",
4532 addr, 0) == -1)
4533 return (DCMD_ERR);
4534
4535 mdb_printf("%p: range tree of %llu entries, %llu bytes\n",
4536 addr, rt.rt_root.bt_num_elems, rt.rt_space);
4537
4538 btree_addr = addr +
4539 mdb_ctf_offsetof_by_name(ZFS_STRUCT "range_tree", "rt_root");
4540
4541 if (mdb_pwalk("zfs_btree", range_tree_cb, &rt, btree_addr) != 0) {
4542 mdb_warn("can't walk range_tree segments");
4543 return (DCMD_ERR);
4544 }
4545 return (DCMD_OK);
4546 }
4547
4548 typedef struct mdb_spa_log_sm {
4549 uint64_t sls_sm_obj;
4550 uint64_t sls_txg;
4551 uint64_t sls_nblocks;
4552 uint64_t sls_mscount;
4553 } mdb_spa_log_sm_t;
4554
4555 /* ARGSUSED */
4556 static int
logsm_stats_cb(uintptr_t addr,const void * unknown,void * arg)4557 logsm_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4558 {
4559 mdb_spa_log_sm_t sls;
4560 if (mdb_ctf_vread(&sls, ZFS_STRUCT "spa_log_sm", "mdb_spa_log_sm_t",
4561 addr, 0) == -1)
4562 return (WALK_ERR);
4563
4564 mdb_printf("%7lld %7lld %7lld %7lld\n",
4565 sls.sls_txg, sls.sls_nblocks, sls.sls_mscount, sls.sls_sm_obj);
4566
4567 return (WALK_NEXT);
4568 }
4569 typedef struct mdb_log_summary_entry {
4570 uint64_t lse_start;
4571 uint64_t lse_blkcount;
4572 uint64_t lse_mscount;
4573 } mdb_log_summary_entry_t;
4574
4575 /* ARGSUSED */
4576 static int
logsm_summary_cb(uintptr_t addr,const void * unknown,void * arg)4577 logsm_summary_cb(uintptr_t addr, const void *unknown, void *arg)
4578 {
4579 mdb_log_summary_entry_t lse;
4580 if (mdb_ctf_vread(&lse, ZFS_STRUCT "log_summary_entry",
4581 "mdb_log_summary_entry_t", addr, 0) == -1)
4582 return (WALK_ERR);
4583
4584 mdb_printf("%7lld %7lld %7lld\n",
4585 lse.lse_start, lse.lse_blkcount, lse.lse_mscount);
4586 return (WALK_NEXT);
4587 }
4588
4589 /* ARGSUSED */
4590 static int
logsm_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4591 logsm_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4592 {
4593 if (!(flags & DCMD_ADDRSPEC))
4594 return (DCMD_USAGE);
4595
4596 uintptr_t sls_avl_addr = addr +
4597 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_sm_logs_by_txg");
4598 uintptr_t summary_addr = addr +
4599 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_log_summary");
4600
4601 mdb_printf("Log Entries:\n");
4602 mdb_printf("%7s %7s %7s %7s\n", "txg", "blk", "ms", "obj");
4603 if (mdb_pwalk("avl", logsm_stats_cb, NULL, sls_avl_addr) != 0)
4604 return (DCMD_ERR);
4605
4606 mdb_printf("\nSummary Entries:\n");
4607 mdb_printf("%7s %7s %7s\n", "txg", "blk", "ms");
4608 if (mdb_pwalk("list", logsm_summary_cb, NULL, summary_addr) != 0)
4609 return (DCMD_ERR);
4610
4611 return (DCMD_OK);
4612 }
4613
4614 /*
4615 * MDB module linkage information:
4616 *
4617 * We declare a list of structures describing our dcmds, and a function
4618 * named _mdb_init to return a pointer to our module information.
4619 */
4620
4621 static const mdb_dcmd_t dcmds[] = {
4622 { "arc", "[-bkmg]", "print ARC variables", arc_print },
4623 { "blkptr", ":", "print blkptr_t", blkptr },
4624 { "dva", ":", "print dva_t", dva },
4625 { "dbuf", ":", "print dmu_buf_impl_t", dbuf },
4626 { "dbuf_stats", ":", "dbuf stats", dbuf_stats },
4627 { "dbufs",
4628 "\t[-O objset_t*] [-n objset_name | \"mos\"] "
4629 "[-o object | \"mdn\"] \n"
4630 "\t[-l level] [-b blkid | \"bonus\"]",
4631 "find dmu_buf_impl_t's that match specified criteria", dbufs },
4632 { "abuf_find", "dva_word[0] dva_word[1]",
4633 "find arc_buf_hdr_t of a specified DVA",
4634 abuf_find },
4635 { "logsm_stats", ":", "print log space map statistics of a spa_t",
4636 logsm_stats},
4637 { "spa", "?[-cevmMh]\n"
4638 "\t-c display spa config\n"
4639 "\t-e display vdev statistics\n"
4640 "\t-v display vdev information\n"
4641 "\t-m display metaslab statistics\n"
4642 "\t-M display metaslab group statistics\n"
4643 "\t-h display histogram (requires -m or -M)\n",
4644 "spa_t summary", spa_print },
4645 { "spa_config", ":", "print spa_t configuration", spa_print_config },
4646 { "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
4647 { "spa_vdevs", ":[-emMh]\n"
4648 "\t-e display vdev statistics\n"
4649 "\t-m dispaly metaslab statistics\n"
4650 "\t-M display metaslab group statistic\n"
4651 "\t-h display histogram (requires -m or -M)\n",
4652 "given a spa_t, print vdev summary", spa_vdevs },
4653 { "sm_entries", "<buffer length in bytes>",
4654 "print out space map entries from a buffer decoded",
4655 sm_entries},
4656 { "vdev", ":[-remMh]\n"
4657 "\t-r display recursively\n"
4658 "\t-e display statistics\n"
4659 "\t-m display metaslab statistics (top level vdev only)\n"
4660 "\t-M display metaslab group statistics (top level vdev only)\n"
4661 "\t-h display histogram (requires -m or -M)\n",
4662 "vdev_t summary", vdev_print },
4663 { "zio", ":[-cpr]\n"
4664 "\t-c display children\n"
4665 "\t-p display parents\n"
4666 "\t-r display recursively",
4667 "zio_t summary", zio_print },
4668 { "zio_state", "?", "print out all zio_t structures on system or "
4669 "for a particular pool", zio_state },
4670 { "zfs_blkstats", ":[-v]",
4671 "given a spa_t, print block type stats from last scrub",
4672 zfs_blkstats },
4673 { "zfs_params", "", "print zfs tunable parameters", zfs_params },
4674 { "zfs_refcount", ":[-r]\n"
4675 "\t-r display recently removed references",
4676 "print zfs_refcount_t holders", zfs_refcount },
4677 { "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
4678 { "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
4679 zfs_acl_dump },
4680 { "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
4681 { "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
4682 { "sa_attr_table", ":", "print SA attribute table from sa_os_t",
4683 sa_attr_table},
4684 { "sa_attr", ": attr_id",
4685 "print SA attribute address when given sa_handle_t", sa_attr_print},
4686 { "zfs_dbgmsg", ":[-artTvw]",
4687 "print zfs debug log", dbgmsg, dbgmsg_help},
4688 { "rrwlock", ":",
4689 "print rrwlock_t, including readers", rrwlock},
4690 { "metaslab_weight", "weight",
4691 "print metaslab weight", metaslab_weight},
4692 { "metaslab_trace", ":",
4693 "print metaslab allocation trace records", metaslab_trace},
4694 { "arc_compression_stats", ":[-vabrf]\n"
4695 "\t-v verbose, display a linearly scaled histogram\n"
4696 "\t-a display ARC_anon state statistics individually\n"
4697 "\t-r display ARC_mru state statistics individually\n"
4698 "\t-f display ARC_mfu state statistics individually\n"
4699 "\t-b display histogram of buffer counts\n",
4700 "print a histogram of compressed arc buffer sizes",
4701 arc_compression_stats},
4702 { "range_tree", ":",
4703 "print entries in range_tree_t", range_tree},
4704 { NULL }
4705 };
4706
4707 static const mdb_walker_t walkers[] = {
4708 { "txg_list", "given any txg_list_t *, walk all entries in all txgs",
4709 txg_list_walk_init, txg_list_walk_step, NULL },
4710 { "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
4711 txg_list0_walk_init, txg_list_walk_step, NULL },
4712 { "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
4713 txg_list1_walk_init, txg_list_walk_step, NULL },
4714 { "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
4715 txg_list2_walk_init, txg_list_walk_step, NULL },
4716 { "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
4717 txg_list3_walk_init, txg_list_walk_step, NULL },
4718 { "zio", "walk all zio structures, optionally for a particular spa_t",
4719 zio_walk_init, zio_walk_step, NULL },
4720 { "zio_root",
4721 "walk all root zio_t structures, optionally for a particular spa_t",
4722 zio_walk_init, zio_walk_root_step, NULL },
4723 { "spa", "walk all spa_t entries in the namespace",
4724 spa_walk_init, spa_walk_step, NULL },
4725 { "metaslab", "given a spa_t *, walk all metaslab_t structures",
4726 metaslab_walk_init, metaslab_walk_step, NULL },
4727 { "multilist", "given a multilist_t *, walk all list_t structures",
4728 multilist_walk_init, multilist_walk_step, NULL },
4729 { "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
4730 zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
4731 { "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
4732 zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
4733 { "zfs_acl_node_aces0",
4734 "given a zfs_acl_node_t, walk all ACEs as ace_t",
4735 zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
4736 { "zfs_btree", "given a zfs_btree_t *, walk all entries",
4737 btree_walk_init, btree_walk_step, btree_walk_fini },
4738 { NULL }
4739 };
4740
4741 static const mdb_modinfo_t modinfo = {
4742 MDB_API_VERSION, dcmds, walkers
4743 };
4744
4745 const mdb_modinfo_t *
_mdb_init(void)4746 _mdb_init(void)
4747 {
4748 return (&modinfo);
4749 }
4750