xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision d2a8fad3579763bd288260c8c465ab9eb448d465)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
30  */
31 
32 #include <sys/sysmacros.h>
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/txg.h>
37 #include <sys/spa_impl.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_trim.h>
40 #include <sys/zio_impl.h>
41 #include <sys/zio_compress.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu_objset.h>
44 #include <sys/arc.h>
45 #include <sys/brt.h>
46 #include <sys/ddt.h>
47 #include <sys/blkptr.h>
48 #include <sys/zfeature.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/time.h>
52 #include <sys/trace_zfs.h>
53 #include <sys/abd.h>
54 #include <sys/dsl_crypt.h>
55 #include <cityhash.h>
56 
57 /*
58  * ==========================================================================
59  * I/O type descriptions
60  * ==========================================================================
61  */
62 const char *const zio_type_name[ZIO_TYPES] = {
63 	/*
64 	 * Note: Linux kernel thread name length is limited
65 	 * so these names will differ from upstream open zfs.
66 	 */
67 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
68 };
69 
70 int zio_dva_throttle_enabled = B_TRUE;
71 static int zio_deadman_log_all = B_FALSE;
72 
73 /*
74  * ==========================================================================
75  * I/O kmem caches
76  * ==========================================================================
77  */
78 static kmem_cache_t *zio_cache;
79 static kmem_cache_t *zio_link_cache;
80 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
83 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
85 #endif
86 
87 /* Mark IOs as "slow" if they take longer than 30 seconds */
88 static uint_t zio_slow_io_ms = (30 * MILLISEC);
89 
90 #define	BP_SPANB(indblkshift, level) \
91 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
92 #define	COMPARE_META_LEVEL	0x80000000ul
93 /*
94  * The following actions directly effect the spa's sync-to-convergence logic.
95  * The values below define the sync pass when we start performing the action.
96  * Care should be taken when changing these values as they directly impact
97  * spa_sync() performance. Tuning these values may introduce subtle performance
98  * pathologies and should only be done in the context of performance analysis.
99  * These tunables will eventually be removed and replaced with #defines once
100  * enough analysis has been done to determine optimal values.
101  *
102  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
103  * regular blocks are not deferred.
104  *
105  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
106  * compression (including of metadata).  In practice, we don't have this
107  * many sync passes, so this has no effect.
108  *
109  * The original intent was that disabling compression would help the sync
110  * passes to converge. However, in practice disabling compression increases
111  * the average number of sync passes, because when we turn compression off, a
112  * lot of block's size will change and thus we have to re-allocate (not
113  * overwrite) them. It also increases the number of 128KB allocations (e.g.
114  * for indirect blocks and spacemaps) because these will not be compressed.
115  * The 128K allocations are especially detrimental to performance on highly
116  * fragmented systems, which may have very few free segments of this size,
117  * and may need to load new metaslabs to satisfy 128K allocations.
118  */
119 
120 /* defer frees starting in this pass */
121 uint_t zfs_sync_pass_deferred_free = 2;
122 
123 /* don't compress starting in this pass */
124 static uint_t zfs_sync_pass_dont_compress = 8;
125 
126 /* rewrite new bps starting in this pass */
127 static uint_t zfs_sync_pass_rewrite = 2;
128 
129 /*
130  * An allocating zio is one that either currently has the DVA allocate
131  * stage set or will have it later in its lifetime.
132  */
133 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
134 
135 /*
136  * Enable smaller cores by excluding metadata
137  * allocations as well.
138  */
139 int zio_exclude_metadata = 0;
140 static int zio_requeue_io_start_cut_in_line = 1;
141 
142 #ifdef ZFS_DEBUG
143 static const int zio_buf_debug_limit = 16384;
144 #else
145 static const int zio_buf_debug_limit = 0;
146 #endif
147 
148 typedef struct zio_stats {
149 	kstat_named_t ziostat_total_allocations;
150 	kstat_named_t ziostat_alloc_class_fallbacks;
151 	kstat_named_t ziostat_gang_writes;
152 	kstat_named_t ziostat_gang_multilevel;
153 } zio_stats_t;
154 
155 static zio_stats_t zio_stats = {
156 	{ "total_allocations",	KSTAT_DATA_UINT64 },
157 	{ "alloc_class_fallbacks",	KSTAT_DATA_UINT64 },
158 	{ "gang_writes",	KSTAT_DATA_UINT64 },
159 	{ "gang_multilevel",	KSTAT_DATA_UINT64 },
160 };
161 
162 struct {
163 	wmsum_t ziostat_total_allocations;
164 	wmsum_t ziostat_alloc_class_fallbacks;
165 	wmsum_t ziostat_gang_writes;
166 	wmsum_t ziostat_gang_multilevel;
167 } ziostat_sums;
168 
169 #define	ZIOSTAT_BUMP(stat)	wmsum_add(&ziostat_sums.stat, 1);
170 
171 static kstat_t *zio_ksp;
172 
173 static inline void __zio_execute(zio_t *zio);
174 
175 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
176 
177 static int
zio_kstats_update(kstat_t * ksp,int rw)178 zio_kstats_update(kstat_t *ksp, int rw)
179 {
180 	zio_stats_t *zs = ksp->ks_data;
181 	if (rw == KSTAT_WRITE)
182 		return (EACCES);
183 
184 	zs->ziostat_total_allocations.value.ui64 =
185 	    wmsum_value(&ziostat_sums.ziostat_total_allocations);
186 	zs->ziostat_alloc_class_fallbacks.value.ui64 =
187 	    wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks);
188 	zs->ziostat_gang_writes.value.ui64 =
189 	    wmsum_value(&ziostat_sums.ziostat_gang_writes);
190 	zs->ziostat_gang_multilevel.value.ui64 =
191 	    wmsum_value(&ziostat_sums.ziostat_gang_multilevel);
192 	return (0);
193 }
194 
195 void
zio_init(void)196 zio_init(void)
197 {
198 	size_t c;
199 
200 	zio_cache = kmem_cache_create("zio_cache",
201 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
202 	zio_link_cache = kmem_cache_create("zio_link_cache",
203 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
204 
205 	wmsum_init(&ziostat_sums.ziostat_total_allocations, 0);
206 	wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0);
207 	wmsum_init(&ziostat_sums.ziostat_gang_writes, 0);
208 	wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0);
209 	zio_ksp = kstat_create("zfs", 0, "zio_stats",
210 	    "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) /
211 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
212 	if (zio_ksp != NULL) {
213 		zio_ksp->ks_data = &zio_stats;
214 		zio_ksp->ks_update = zio_kstats_update;
215 		kstat_install(zio_ksp);
216 	}
217 
218 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
219 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
220 		size_t align, cflags, data_cflags;
221 		char name[32];
222 
223 		/*
224 		 * Create cache for each half-power of 2 size, starting from
225 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
226 		 * of ~7/8, sufficient for transient allocations mostly using
227 		 * these caches.
228 		 */
229 		size_t p2 = size;
230 		while (!ISP2(p2))
231 			p2 &= p2 - 1;
232 		if (!IS_P2ALIGNED(size, p2 / 2))
233 			continue;
234 
235 #ifndef _KERNEL
236 		/*
237 		 * If we are using watchpoints, put each buffer on its own page,
238 		 * to eliminate the performance overhead of trapping to the
239 		 * kernel when modifying a non-watched buffer that shares the
240 		 * page with a watched buffer.
241 		 */
242 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
243 			continue;
244 #endif
245 
246 		if (IS_P2ALIGNED(size, PAGESIZE))
247 			align = PAGESIZE;
248 		else
249 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
250 
251 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
252 		    KMC_NODEBUG : 0;
253 		data_cflags = KMC_NODEBUG;
254 		if (abd_size_alloc_linear(size)) {
255 			cflags |= KMC_RECLAIMABLE;
256 			data_cflags |= KMC_RECLAIMABLE;
257 		}
258 		if (cflags == data_cflags) {
259 			/*
260 			 * Resulting kmem caches would be identical.
261 			 * Save memory by creating only one.
262 			 */
263 			(void) snprintf(name, sizeof (name),
264 			    "zio_buf_comb_%lu", (ulong_t)size);
265 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
266 			    NULL, NULL, NULL, NULL, NULL, cflags);
267 			zio_data_buf_cache[c] = zio_buf_cache[c];
268 			continue;
269 		}
270 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
271 		    (ulong_t)size);
272 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
273 		    NULL, NULL, NULL, NULL, NULL, cflags);
274 
275 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
276 		    (ulong_t)size);
277 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
278 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
279 	}
280 
281 	while (--c != 0) {
282 		ASSERT(zio_buf_cache[c] != NULL);
283 		if (zio_buf_cache[c - 1] == NULL)
284 			zio_buf_cache[c - 1] = zio_buf_cache[c];
285 
286 		ASSERT(zio_data_buf_cache[c] != NULL);
287 		if (zio_data_buf_cache[c - 1] == NULL)
288 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
289 	}
290 
291 	zio_inject_init();
292 
293 	lz4_init();
294 }
295 
296 void
zio_fini(void)297 zio_fini(void)
298 {
299 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
300 
301 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
302 	for (size_t i = 0; i < n; i++) {
303 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
304 			(void) printf("zio_fini: [%d] %llu != %llu\n",
305 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
306 			    (long long unsigned)zio_buf_cache_allocs[i],
307 			    (long long unsigned)zio_buf_cache_frees[i]);
308 	}
309 #endif
310 
311 	/*
312 	 * The same kmem cache can show up multiple times in both zio_buf_cache
313 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
314 	 * sort it out.
315 	 */
316 	for (size_t i = 0; i < n; i++) {
317 		kmem_cache_t *cache = zio_buf_cache[i];
318 		if (cache == NULL)
319 			continue;
320 		for (size_t j = i; j < n; j++) {
321 			if (cache == zio_buf_cache[j])
322 				zio_buf_cache[j] = NULL;
323 			if (cache == zio_data_buf_cache[j])
324 				zio_data_buf_cache[j] = NULL;
325 		}
326 		kmem_cache_destroy(cache);
327 	}
328 
329 	for (size_t i = 0; i < n; i++) {
330 		kmem_cache_t *cache = zio_data_buf_cache[i];
331 		if (cache == NULL)
332 			continue;
333 		for (size_t j = i; j < n; j++) {
334 			if (cache == zio_data_buf_cache[j])
335 				zio_data_buf_cache[j] = NULL;
336 		}
337 		kmem_cache_destroy(cache);
338 	}
339 
340 	for (size_t i = 0; i < n; i++) {
341 		VERIFY3P(zio_buf_cache[i], ==, NULL);
342 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
343 	}
344 
345 	if (zio_ksp != NULL) {
346 		kstat_delete(zio_ksp);
347 		zio_ksp = NULL;
348 	}
349 
350 	wmsum_fini(&ziostat_sums.ziostat_total_allocations);
351 	wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks);
352 	wmsum_fini(&ziostat_sums.ziostat_gang_writes);
353 	wmsum_fini(&ziostat_sums.ziostat_gang_multilevel);
354 
355 	kmem_cache_destroy(zio_link_cache);
356 	kmem_cache_destroy(zio_cache);
357 
358 	zio_inject_fini();
359 
360 	lz4_fini();
361 }
362 
363 /*
364  * ==========================================================================
365  * Allocate and free I/O buffers
366  * ==========================================================================
367  */
368 
369 #if defined(ZFS_DEBUG) && defined(_KERNEL)
370 #define	ZFS_ZIO_BUF_CANARY	1
371 #endif
372 
373 #ifdef ZFS_ZIO_BUF_CANARY
374 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
375 
376 /*
377  * Use empty space after the buffer to detect overflows.
378  *
379  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
380  * allocations of different sizes may have some unused space after the data.
381  * Filling part of that space with a known pattern on allocation and checking
382  * it on free should allow us to detect some buffer overflows.
383  */
384 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)385 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
386 {
387 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
388 	ulong_t *canary = p + off / sizeof (ulong_t);
389 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
390 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
391 	    cache[c] == cache[c + 1])
392 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
393 	for (; off < asize; canary++, off += sizeof (ulong_t))
394 		*canary = zio_buf_canary;
395 }
396 
397 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)398 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
399 {
400 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
401 	ulong_t *canary = p + off / sizeof (ulong_t);
402 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
403 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
404 	    cache[c] == cache[c + 1])
405 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
406 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
407 		if (unlikely(*canary != zio_buf_canary)) {
408 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
409 			    p, size, (canary - p) * sizeof (ulong_t),
410 			    *canary, zio_buf_canary);
411 		}
412 	}
413 }
414 #endif
415 
416 /*
417  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
418  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
419  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
420  * excess / transient data in-core during a crashdump.
421  */
422 void *
zio_buf_alloc(size_t size)423 zio_buf_alloc(size_t size)
424 {
425 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
426 
427 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
428 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
429 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
430 #endif
431 
432 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
433 #ifdef ZFS_ZIO_BUF_CANARY
434 	zio_buf_put_canary(p, size, zio_buf_cache, c);
435 #endif
436 	return (p);
437 }
438 
439 /*
440  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
441  * crashdump if the kernel panics.  This exists so that we will limit the amount
442  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
443  * of kernel heap dumped to disk when the kernel panics)
444  */
445 void *
zio_data_buf_alloc(size_t size)446 zio_data_buf_alloc(size_t size)
447 {
448 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
449 
450 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
451 
452 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
453 #ifdef ZFS_ZIO_BUF_CANARY
454 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
455 #endif
456 	return (p);
457 }
458 
459 void
zio_buf_free(void * buf,size_t size)460 zio_buf_free(void *buf, size_t size)
461 {
462 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
463 
464 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
465 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
466 	atomic_add_64(&zio_buf_cache_frees[c], 1);
467 #endif
468 
469 #ifdef ZFS_ZIO_BUF_CANARY
470 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
471 #endif
472 	kmem_cache_free(zio_buf_cache[c], buf);
473 }
474 
475 void
zio_data_buf_free(void * buf,size_t size)476 zio_data_buf_free(void *buf, size_t size)
477 {
478 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
479 
480 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
481 
482 #ifdef ZFS_ZIO_BUF_CANARY
483 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
484 #endif
485 	kmem_cache_free(zio_data_buf_cache[c], buf);
486 }
487 
488 static void
zio_abd_free(void * abd,size_t size)489 zio_abd_free(void *abd, size_t size)
490 {
491 	(void) size;
492 	abd_free((abd_t *)abd);
493 }
494 
495 /*
496  * ==========================================================================
497  * Push and pop I/O transform buffers
498  * ==========================================================================
499  */
500 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)501 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
502     zio_transform_func_t *transform)
503 {
504 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
505 
506 	zt->zt_orig_abd = zio->io_abd;
507 	zt->zt_orig_size = zio->io_size;
508 	zt->zt_bufsize = bufsize;
509 	zt->zt_transform = transform;
510 
511 	zt->zt_next = zio->io_transform_stack;
512 	zio->io_transform_stack = zt;
513 
514 	zio->io_abd = data;
515 	zio->io_size = size;
516 }
517 
518 void
zio_pop_transforms(zio_t * zio)519 zio_pop_transforms(zio_t *zio)
520 {
521 	zio_transform_t *zt;
522 
523 	while ((zt = zio->io_transform_stack) != NULL) {
524 		if (zt->zt_transform != NULL)
525 			zt->zt_transform(zio,
526 			    zt->zt_orig_abd, zt->zt_orig_size);
527 
528 		if (zt->zt_bufsize != 0)
529 			abd_free(zio->io_abd);
530 
531 		zio->io_abd = zt->zt_orig_abd;
532 		zio->io_size = zt->zt_orig_size;
533 		zio->io_transform_stack = zt->zt_next;
534 
535 		kmem_free(zt, sizeof (zio_transform_t));
536 	}
537 }
538 
539 /*
540  * ==========================================================================
541  * I/O transform callbacks for subblocks, decompression, and decryption
542  * ==========================================================================
543  */
544 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)545 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
546 {
547 	ASSERT(zio->io_size > size);
548 
549 	if (zio->io_type == ZIO_TYPE_READ)
550 		abd_copy(data, zio->io_abd, size);
551 }
552 
553 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)554 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
555 {
556 	if (zio->io_error == 0) {
557 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
558 		    zio->io_abd, data, zio->io_size, size,
559 		    &zio->io_prop.zp_complevel);
560 
561 		if (zio_injection_enabled && ret == 0)
562 			ret = zio_handle_fault_injection(zio, EINVAL);
563 
564 		if (ret != 0)
565 			zio->io_error = SET_ERROR(EIO);
566 	}
567 }
568 
569 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)570 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
571 {
572 	int ret;
573 	void *tmp;
574 	blkptr_t *bp = zio->io_bp;
575 	spa_t *spa = zio->io_spa;
576 	uint64_t dsobj = zio->io_bookmark.zb_objset;
577 	uint64_t lsize = BP_GET_LSIZE(bp);
578 	dmu_object_type_t ot = BP_GET_TYPE(bp);
579 	uint8_t salt[ZIO_DATA_SALT_LEN];
580 	uint8_t iv[ZIO_DATA_IV_LEN];
581 	uint8_t mac[ZIO_DATA_MAC_LEN];
582 	boolean_t no_crypt = B_FALSE;
583 
584 	ASSERT(BP_USES_CRYPT(bp));
585 	ASSERT3U(size, !=, 0);
586 
587 	if (zio->io_error != 0)
588 		return;
589 
590 	/*
591 	 * Verify the cksum of MACs stored in an indirect bp. It will always
592 	 * be possible to verify this since it does not require an encryption
593 	 * key.
594 	 */
595 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
596 		zio_crypt_decode_mac_bp(bp, mac);
597 
598 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
599 			/*
600 			 * We haven't decompressed the data yet, but
601 			 * zio_crypt_do_indirect_mac_checksum() requires
602 			 * decompressed data to be able to parse out the MACs
603 			 * from the indirect block. We decompress it now and
604 			 * throw away the result after we are finished.
605 			 */
606 			abd_t *abd = abd_alloc_linear(lsize, B_TRUE);
607 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
608 			    zio->io_abd, abd, zio->io_size, lsize,
609 			    &zio->io_prop.zp_complevel);
610 			if (ret != 0) {
611 				abd_free(abd);
612 				ret = SET_ERROR(EIO);
613 				goto error;
614 			}
615 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
616 			    abd, lsize, BP_SHOULD_BYTESWAP(bp), mac);
617 			abd_free(abd);
618 		} else {
619 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
620 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
621 		}
622 		abd_copy(data, zio->io_abd, size);
623 
624 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
625 			ret = zio_handle_decrypt_injection(spa,
626 			    &zio->io_bookmark, ot, ECKSUM);
627 		}
628 		if (ret != 0)
629 			goto error;
630 
631 		return;
632 	}
633 
634 	/*
635 	 * If this is an authenticated block, just check the MAC. It would be
636 	 * nice to separate this out into its own flag, but when this was done,
637 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
638 	 * could make this a flag bit.
639 	 */
640 	if (BP_IS_AUTHENTICATED(bp)) {
641 		if (ot == DMU_OT_OBJSET) {
642 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
643 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
644 		} else {
645 			zio_crypt_decode_mac_bp(bp, mac);
646 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
647 			    zio->io_abd, size, mac);
648 			if (zio_injection_enabled && ret == 0) {
649 				ret = zio_handle_decrypt_injection(spa,
650 				    &zio->io_bookmark, ot, ECKSUM);
651 			}
652 		}
653 		abd_copy(data, zio->io_abd, size);
654 
655 		if (ret != 0)
656 			goto error;
657 
658 		return;
659 	}
660 
661 	zio_crypt_decode_params_bp(bp, salt, iv);
662 
663 	if (ot == DMU_OT_INTENT_LOG) {
664 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
665 		zio_crypt_decode_mac_zil(tmp, mac);
666 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
667 	} else {
668 		zio_crypt_decode_mac_bp(bp, mac);
669 	}
670 
671 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
672 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
673 	    zio->io_abd, &no_crypt);
674 	if (no_crypt)
675 		abd_copy(data, zio->io_abd, size);
676 
677 	if (ret != 0)
678 		goto error;
679 
680 	return;
681 
682 error:
683 	/* assert that the key was found unless this was speculative */
684 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
685 
686 	/*
687 	 * If there was a decryption / authentication error return EIO as
688 	 * the io_error. If this was not a speculative zio, create an ereport.
689 	 */
690 	if (ret == ECKSUM) {
691 		zio->io_error = SET_ERROR(EIO);
692 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
693 			spa_log_error(spa, &zio->io_bookmark,
694 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
695 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
696 			    spa, NULL, &zio->io_bookmark, zio, 0);
697 		}
698 	} else {
699 		zio->io_error = ret;
700 	}
701 }
702 
703 /*
704  * ==========================================================================
705  * I/O parent/child relationships and pipeline interlocks
706  * ==========================================================================
707  */
708 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)709 zio_walk_parents(zio_t *cio, zio_link_t **zl)
710 {
711 	list_t *pl = &cio->io_parent_list;
712 
713 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
714 	if (*zl == NULL)
715 		return (NULL);
716 
717 	ASSERT((*zl)->zl_child == cio);
718 	return ((*zl)->zl_parent);
719 }
720 
721 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)722 zio_walk_children(zio_t *pio, zio_link_t **zl)
723 {
724 	list_t *cl = &pio->io_child_list;
725 
726 	ASSERT(MUTEX_HELD(&pio->io_lock));
727 
728 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
729 	if (*zl == NULL)
730 		return (NULL);
731 
732 	ASSERT((*zl)->zl_parent == pio);
733 	return ((*zl)->zl_child);
734 }
735 
736 zio_t *
zio_unique_parent(zio_t * cio)737 zio_unique_parent(zio_t *cio)
738 {
739 	zio_link_t *zl = NULL;
740 	zio_t *pio = zio_walk_parents(cio, &zl);
741 
742 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
743 	return (pio);
744 }
745 
746 void
zio_add_child(zio_t * pio,zio_t * cio)747 zio_add_child(zio_t *pio, zio_t *cio)
748 {
749 	/*
750 	 * Logical I/Os can have logical, gang, or vdev children.
751 	 * Gang I/Os can have gang or vdev children.
752 	 * Vdev I/Os can only have vdev children.
753 	 * The following ASSERT captures all of these constraints.
754 	 */
755 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
756 
757 	/* Parent should not have READY stage if child doesn't have it. */
758 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
759 	    (cio->io_child_type != ZIO_CHILD_VDEV),
760 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
761 
762 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
763 	zl->zl_parent = pio;
764 	zl->zl_child = cio;
765 
766 	mutex_enter(&pio->io_lock);
767 	mutex_enter(&cio->io_lock);
768 
769 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
770 
771 	uint64_t *countp = pio->io_children[cio->io_child_type];
772 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
773 		countp[w] += !cio->io_state[w];
774 
775 	list_insert_head(&pio->io_child_list, zl);
776 	list_insert_head(&cio->io_parent_list, zl);
777 
778 	mutex_exit(&cio->io_lock);
779 	mutex_exit(&pio->io_lock);
780 }
781 
782 void
zio_add_child_first(zio_t * pio,zio_t * cio)783 zio_add_child_first(zio_t *pio, zio_t *cio)
784 {
785 	/*
786 	 * Logical I/Os can have logical, gang, or vdev children.
787 	 * Gang I/Os can have gang or vdev children.
788 	 * Vdev I/Os can only have vdev children.
789 	 * The following ASSERT captures all of these constraints.
790 	 */
791 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
792 
793 	/* Parent should not have READY stage if child doesn't have it. */
794 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
795 	    (cio->io_child_type != ZIO_CHILD_VDEV),
796 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
797 
798 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
799 	zl->zl_parent = pio;
800 	zl->zl_child = cio;
801 
802 	ASSERT(list_is_empty(&cio->io_parent_list));
803 	list_insert_head(&cio->io_parent_list, zl);
804 
805 	mutex_enter(&pio->io_lock);
806 
807 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
808 
809 	uint64_t *countp = pio->io_children[cio->io_child_type];
810 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
811 		countp[w] += !cio->io_state[w];
812 
813 	list_insert_head(&pio->io_child_list, zl);
814 
815 	mutex_exit(&pio->io_lock);
816 }
817 
818 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)819 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
820 {
821 	ASSERT(zl->zl_parent == pio);
822 	ASSERT(zl->zl_child == cio);
823 
824 	mutex_enter(&pio->io_lock);
825 	mutex_enter(&cio->io_lock);
826 
827 	list_remove(&pio->io_child_list, zl);
828 	list_remove(&cio->io_parent_list, zl);
829 
830 	mutex_exit(&cio->io_lock);
831 	mutex_exit(&pio->io_lock);
832 	kmem_cache_free(zio_link_cache, zl);
833 }
834 
835 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)836 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
837 {
838 	boolean_t waiting = B_FALSE;
839 
840 	mutex_enter(&zio->io_lock);
841 	ASSERT(zio->io_stall == NULL);
842 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
843 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
844 			continue;
845 
846 		uint64_t *countp = &zio->io_children[c][wait];
847 		if (*countp != 0) {
848 			zio->io_stage >>= 1;
849 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
850 			zio->io_stall = countp;
851 			waiting = B_TRUE;
852 			break;
853 		}
854 	}
855 	mutex_exit(&zio->io_lock);
856 	return (waiting);
857 }
858 
859 __attribute__((always_inline))
860 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)861 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
862     zio_t **next_to_executep)
863 {
864 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
865 	int *errorp = &pio->io_child_error[zio->io_child_type];
866 
867 	mutex_enter(&pio->io_lock);
868 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
869 		*errorp = zio_worst_error(*errorp, zio->io_error);
870 	pio->io_reexecute |= zio->io_reexecute;
871 	ASSERT3U(*countp, >, 0);
872 
873 	/*
874 	 * Propogate the Direct I/O checksum verify failure to the parent.
875 	 */
876 	if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)
877 		pio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
878 
879 	(*countp)--;
880 
881 	if (*countp == 0 && pio->io_stall == countp) {
882 		zio_taskq_type_t type =
883 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
884 		    ZIO_TASKQ_INTERRUPT;
885 		pio->io_stall = NULL;
886 		mutex_exit(&pio->io_lock);
887 
888 		/*
889 		 * If we can tell the caller to execute this parent next, do
890 		 * so. We do this if the parent's zio type matches the child's
891 		 * type, or if it's a zio_null() with no done callback, and so
892 		 * has no actual work to do. Otherwise dispatch the parent zio
893 		 * in its own taskq.
894 		 *
895 		 * Having the caller execute the parent when possible reduces
896 		 * locking on the zio taskq's, reduces context switch
897 		 * overhead, and has no recursion penalty.  Note that one
898 		 * read from disk typically causes at least 3 zio's: a
899 		 * zio_null(), the logical zio_read(), and then a physical
900 		 * zio.  When the physical ZIO completes, we are able to call
901 		 * zio_done() on all 3 of these zio's from one invocation of
902 		 * zio_execute() by returning the parent back to
903 		 * zio_execute().  Since the parent isn't executed until this
904 		 * thread returns back to zio_execute(), the caller should do
905 		 * so promptly.
906 		 *
907 		 * In other cases, dispatching the parent prevents
908 		 * overflowing the stack when we have deeply nested
909 		 * parent-child relationships, as we do with the "mega zio"
910 		 * of writes for spa_sync(), and the chain of ZIL blocks.
911 		 */
912 		if (next_to_executep != NULL && *next_to_executep == NULL &&
913 		    (pio->io_type == zio->io_type ||
914 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
915 			*next_to_executep = pio;
916 		} else {
917 			zio_taskq_dispatch(pio, type, B_FALSE);
918 		}
919 	} else {
920 		mutex_exit(&pio->io_lock);
921 	}
922 }
923 
924 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)925 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
926 {
927 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
928 		zio->io_error = zio->io_child_error[c];
929 }
930 
931 int
zio_bookmark_compare(const void * x1,const void * x2)932 zio_bookmark_compare(const void *x1, const void *x2)
933 {
934 	const zio_t *z1 = x1;
935 	const zio_t *z2 = x2;
936 
937 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
938 		return (-1);
939 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
940 		return (1);
941 
942 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
943 		return (-1);
944 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
945 		return (1);
946 
947 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
948 		return (-1);
949 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
950 		return (1);
951 
952 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
953 		return (-1);
954 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
955 		return (1);
956 
957 	if (z1 < z2)
958 		return (-1);
959 	if (z1 > z2)
960 		return (1);
961 
962 	return (0);
963 }
964 
965 /*
966  * ==========================================================================
967  * Create the various types of I/O (read, write, free, etc)
968  * ==========================================================================
969  */
970 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)971 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
972     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
973     void *private, zio_type_t type, zio_priority_t priority,
974     zio_flag_t flags, vdev_t *vd, uint64_t offset,
975     const zbookmark_phys_t *zb, enum zio_stage stage,
976     enum zio_stage pipeline)
977 {
978 	zio_t *zio;
979 
980 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
981 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
982 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
983 
984 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
985 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
986 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
987 
988 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
989 
990 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
991 	memset(zio, 0, sizeof (zio_t));
992 
993 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
994 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
995 
996 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
997 	    offsetof(zio_link_t, zl_parent_node));
998 	list_create(&zio->io_child_list, sizeof (zio_link_t),
999 	    offsetof(zio_link_t, zl_child_node));
1000 	metaslab_trace_init(&zio->io_alloc_list);
1001 
1002 	if (vd != NULL)
1003 		zio->io_child_type = ZIO_CHILD_VDEV;
1004 	else if (flags & ZIO_FLAG_GANG_CHILD)
1005 		zio->io_child_type = ZIO_CHILD_GANG;
1006 	else if (flags & ZIO_FLAG_DDT_CHILD)
1007 		zio->io_child_type = ZIO_CHILD_DDT;
1008 	else
1009 		zio->io_child_type = ZIO_CHILD_LOGICAL;
1010 
1011 	if (bp != NULL) {
1012 		if (type != ZIO_TYPE_WRITE ||
1013 		    zio->io_child_type == ZIO_CHILD_DDT) {
1014 			zio->io_bp_copy = *bp;
1015 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
1016 		} else {
1017 			zio->io_bp = (blkptr_t *)bp;
1018 		}
1019 		zio->io_bp_orig = *bp;
1020 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
1021 			zio->io_logical = zio;
1022 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
1023 			pipeline |= ZIO_GANG_STAGES;
1024 	}
1025 
1026 	zio->io_spa = spa;
1027 	zio->io_txg = txg;
1028 	zio->io_done = done;
1029 	zio->io_private = private;
1030 	zio->io_type = type;
1031 	zio->io_priority = priority;
1032 	zio->io_vd = vd;
1033 	zio->io_offset = offset;
1034 	zio->io_orig_abd = zio->io_abd = data;
1035 	zio->io_orig_size = zio->io_size = psize;
1036 	zio->io_lsize = lsize;
1037 	zio->io_orig_flags = zio->io_flags = flags;
1038 	zio->io_orig_stage = zio->io_stage = stage;
1039 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
1040 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
1041 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
1042 
1043 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
1044 	    (pipeline & ZIO_STAGE_READY) == 0;
1045 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
1046 
1047 	if (zb != NULL)
1048 		zio->io_bookmark = *zb;
1049 
1050 	if (pio != NULL) {
1051 		zio->io_metaslab_class = pio->io_metaslab_class;
1052 		if (zio->io_logical == NULL)
1053 			zio->io_logical = pio->io_logical;
1054 		if (zio->io_child_type == ZIO_CHILD_GANG)
1055 			zio->io_gang_leader = pio->io_gang_leader;
1056 		zio_add_child_first(pio, zio);
1057 	}
1058 
1059 	taskq_init_ent(&zio->io_tqent);
1060 
1061 	return (zio);
1062 }
1063 
1064 void
zio_destroy(zio_t * zio)1065 zio_destroy(zio_t *zio)
1066 {
1067 	metaslab_trace_fini(&zio->io_alloc_list);
1068 	list_destroy(&zio->io_parent_list);
1069 	list_destroy(&zio->io_child_list);
1070 	mutex_destroy(&zio->io_lock);
1071 	cv_destroy(&zio->io_cv);
1072 	kmem_cache_free(zio_cache, zio);
1073 }
1074 
1075 /*
1076  * ZIO intended to be between others.  Provides synchronization at READY
1077  * and DONE pipeline stages and calls the respective callbacks.
1078  */
1079 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)1080 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1081     void *private, zio_flag_t flags)
1082 {
1083 	zio_t *zio;
1084 
1085 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1086 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1087 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1088 
1089 	return (zio);
1090 }
1091 
1092 /*
1093  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1094  * READY pipeline stage (is ready on creation), so it should not be used
1095  * as child of any ZIO that may need waiting for grandchildren READY stage
1096  * (any other ZIO type).
1097  */
1098 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1099 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1100 {
1101 	zio_t *zio;
1102 
1103 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1104 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1105 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1106 
1107 	return (zio);
1108 }
1109 
1110 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1111 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1112     enum blk_verify_flag blk_verify, const char *fmt, ...)
1113 {
1114 	va_list adx;
1115 	char buf[256];
1116 
1117 	va_start(adx, fmt);
1118 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1119 	va_end(adx);
1120 
1121 	zfs_dbgmsg("bad blkptr at %px: "
1122 	    "DVA[0]=%#llx/%#llx "
1123 	    "DVA[1]=%#llx/%#llx "
1124 	    "DVA[2]=%#llx/%#llx "
1125 	    "prop=%#llx "
1126 	    "pad=%#llx,%#llx "
1127 	    "phys_birth=%#llx "
1128 	    "birth=%#llx "
1129 	    "fill=%#llx "
1130 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1131 	    bp,
1132 	    (long long)bp->blk_dva[0].dva_word[0],
1133 	    (long long)bp->blk_dva[0].dva_word[1],
1134 	    (long long)bp->blk_dva[1].dva_word[0],
1135 	    (long long)bp->blk_dva[1].dva_word[1],
1136 	    (long long)bp->blk_dva[2].dva_word[0],
1137 	    (long long)bp->blk_dva[2].dva_word[1],
1138 	    (long long)bp->blk_prop,
1139 	    (long long)bp->blk_pad[0],
1140 	    (long long)bp->blk_pad[1],
1141 	    (long long)BP_GET_PHYSICAL_BIRTH(bp),
1142 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1143 	    (long long)bp->blk_fill,
1144 	    (long long)bp->blk_cksum.zc_word[0],
1145 	    (long long)bp->blk_cksum.zc_word[1],
1146 	    (long long)bp->blk_cksum.zc_word[2],
1147 	    (long long)bp->blk_cksum.zc_word[3]);
1148 	switch (blk_verify) {
1149 	case BLK_VERIFY_HALT:
1150 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1151 		break;
1152 	case BLK_VERIFY_LOG:
1153 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1154 		break;
1155 	case BLK_VERIFY_ONLY:
1156 		break;
1157 	}
1158 
1159 	return (1);
1160 }
1161 
1162 /*
1163  * Verify the block pointer fields contain reasonable values.  This means
1164  * it only contains known object types, checksum/compression identifiers,
1165  * block sizes within the maximum allowed limits, valid DVAs, etc.
1166  *
1167  * If everything checks out 0 is returned.  The zfs_blkptr_verify
1168  * argument controls the behavior when an invalid field is detected.
1169  *
1170  * Values for blk_verify_flag:
1171  *   BLK_VERIFY_ONLY: evaluate the block
1172  *   BLK_VERIFY_LOG: evaluate the block and log problems
1173  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1174  *
1175  * Values for blk_config_flag:
1176  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1177  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1178  *   obtained for reader
1179  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1180  *   performance
1181  */
1182 int
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1183 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1184     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1185 {
1186 	int errors = 0;
1187 
1188 	if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1189 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1190 		    "blkptr at %px has invalid TYPE %llu",
1191 		    bp, (longlong_t)BP_GET_TYPE(bp));
1192 	}
1193 	if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1194 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1195 		    "blkptr at %px has invalid COMPRESS %llu",
1196 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1197 	}
1198 	if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1199 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1200 		    "blkptr at %px has invalid LSIZE %llu",
1201 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1202 	}
1203 	if (BP_IS_EMBEDDED(bp)) {
1204 		if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1205 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1206 			    "blkptr at %px has invalid ETYPE %llu",
1207 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1208 		}
1209 		if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1210 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1211 			    "blkptr at %px has invalid PSIZE %llu",
1212 			    bp, (longlong_t)BPE_GET_PSIZE(bp));
1213 		}
1214 		return (errors ? ECKSUM : 0);
1215 	}
1216 	if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1217 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1218 		    "blkptr at %px has invalid CHECKSUM %llu",
1219 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1220 	}
1221 	if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1222 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1223 		    "blkptr at %px has invalid PSIZE %llu",
1224 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1225 	}
1226 
1227 	/*
1228 	 * Do not verify individual DVAs if the config is not trusted. This
1229 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1230 	 */
1231 	if (unlikely(!spa->spa_trust_config))
1232 		return (errors ? ECKSUM : 0);
1233 
1234 	switch (blk_config) {
1235 	case BLK_CONFIG_HELD:
1236 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1237 		break;
1238 	case BLK_CONFIG_NEEDED:
1239 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1240 		break;
1241 	case BLK_CONFIG_NEEDED_TRY:
1242 		if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER))
1243 			return (EBUSY);
1244 		break;
1245 	case BLK_CONFIG_SKIP:
1246 		return (errors ? ECKSUM : 0);
1247 	default:
1248 		panic("invalid blk_config %u", blk_config);
1249 	}
1250 
1251 	/*
1252 	 * Pool-specific checks.
1253 	 *
1254 	 * Note: it would be nice to verify that the logical birth
1255 	 * and physical birth are not too large.  However,
1256 	 * spa_freeze() allows the birth time of log blocks (and
1257 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1258 	 * large.
1259 	 */
1260 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1261 		const dva_t *dva = &bp->blk_dva[i];
1262 		uint64_t vdevid = DVA_GET_VDEV(dva);
1263 
1264 		if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1265 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1266 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1267 			    bp, i, (longlong_t)vdevid);
1268 			continue;
1269 		}
1270 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1271 		if (unlikely(vd == NULL)) {
1272 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1273 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1274 			    bp, i, (longlong_t)vdevid);
1275 			continue;
1276 		}
1277 		if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1278 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1279 			    "blkptr at %px DVA %u has hole VDEV %llu",
1280 			    bp, i, (longlong_t)vdevid);
1281 			continue;
1282 		}
1283 		if (vd->vdev_ops == &vdev_missing_ops) {
1284 			/*
1285 			 * "missing" vdevs are valid during import, but we
1286 			 * don't have their detailed info (e.g. asize), so
1287 			 * we can't perform any more checks on them.
1288 			 */
1289 			continue;
1290 		}
1291 		uint64_t offset = DVA_GET_OFFSET(dva);
1292 		uint64_t asize = DVA_GET_ASIZE(dva);
1293 		if (DVA_GET_GANG(dva))
1294 			asize = vdev_gang_header_asize(vd);
1295 		if (unlikely(offset + asize > vd->vdev_asize)) {
1296 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1297 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1298 			    bp, i, (longlong_t)offset);
1299 		}
1300 	}
1301 	if (blk_config == BLK_CONFIG_NEEDED || blk_config ==
1302 	    BLK_CONFIG_NEEDED_TRY)
1303 		spa_config_exit(spa, SCL_VDEV, bp);
1304 
1305 	return (errors ? ECKSUM : 0);
1306 }
1307 
1308 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1309 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1310 {
1311 	(void) bp;
1312 	uint64_t vdevid = DVA_GET_VDEV(dva);
1313 
1314 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1315 		return (B_FALSE);
1316 
1317 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1318 	if (vd == NULL)
1319 		return (B_FALSE);
1320 
1321 	if (vd->vdev_ops == &vdev_hole_ops)
1322 		return (B_FALSE);
1323 
1324 	if (vd->vdev_ops == &vdev_missing_ops) {
1325 		return (B_FALSE);
1326 	}
1327 
1328 	uint64_t offset = DVA_GET_OFFSET(dva);
1329 	uint64_t asize = DVA_GET_ASIZE(dva);
1330 
1331 	if (DVA_GET_GANG(dva))
1332 		asize = vdev_gang_header_asize(vd);
1333 	if (offset + asize > vd->vdev_asize)
1334 		return (B_FALSE);
1335 
1336 	return (B_TRUE);
1337 }
1338 
1339 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1340 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1341     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1342     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1343 {
1344 	zio_t *zio;
1345 
1346 	zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1347 	    data, size, size, done, private,
1348 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1349 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1350 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1351 
1352 	return (zio);
1353 }
1354 
1355 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1356 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1357     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1358     zio_done_func_t *ready, zio_done_func_t *children_ready,
1359     zio_done_func_t *done, void *private, zio_priority_t priority,
1360     zio_flag_t flags, const zbookmark_phys_t *zb)
1361 {
1362 	zio_t *zio;
1363 	enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ?
1364 	    ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ?
1365 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE;
1366 
1367 
1368 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1369 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1370 	    ZIO_STAGE_OPEN, pipeline);
1371 
1372 	zio->io_ready = ready;
1373 	zio->io_children_ready = children_ready;
1374 	zio->io_prop = *zp;
1375 
1376 	/*
1377 	 * Data can be NULL if we are going to call zio_write_override() to
1378 	 * provide the already-allocated BP.  But we may need the data to
1379 	 * verify a dedup hit (if requested).  In this case, don't try to
1380 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1381 	 * dedup blocks need data as well so we also disable dedup in this
1382 	 * case.
1383 	 */
1384 	if (data == NULL &&
1385 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1386 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1387 	}
1388 
1389 	return (zio);
1390 }
1391 
1392 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1393 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1394     uint64_t size, zio_done_func_t *done, void *private,
1395     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1396 {
1397 	zio_t *zio;
1398 
1399 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1400 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1401 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1402 
1403 	return (zio);
1404 }
1405 
1406 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,boolean_t nopwrite,boolean_t brtwrite)1407 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1408     boolean_t brtwrite)
1409 {
1410 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1411 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1412 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1413 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1414 	ASSERT(!brtwrite || !nopwrite);
1415 
1416 	/*
1417 	 * We must reset the io_prop to match the values that existed
1418 	 * when the bp was first written by dmu_sync() keeping in mind
1419 	 * that nopwrite and dedup are mutually exclusive.
1420 	 */
1421 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1422 	zio->io_prop.zp_nopwrite = nopwrite;
1423 	zio->io_prop.zp_brtwrite = brtwrite;
1424 	zio->io_prop.zp_copies = copies;
1425 	zio->io_bp_override = bp;
1426 }
1427 
1428 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1429 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1430 {
1431 
1432 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1433 
1434 	/*
1435 	 * The check for EMBEDDED is a performance optimization.  We
1436 	 * process the free here (by ignoring it) rather than
1437 	 * putting it on the list and then processing it in zio_free_sync().
1438 	 */
1439 	if (BP_IS_EMBEDDED(bp))
1440 		return;
1441 
1442 	/*
1443 	 * Frees that are for the currently-syncing txg, are not going to be
1444 	 * deferred, and which will not need to do a read (i.e. not GANG or
1445 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1446 	 * in-memory list for later processing.
1447 	 *
1448 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1449 	 * when the log space map feature is disabled. [see relevant comment
1450 	 * in spa_sync_iterate_to_convergence()]
1451 	 */
1452 	if (BP_IS_GANG(bp) ||
1453 	    BP_GET_DEDUP(bp) ||
1454 	    txg != spa->spa_syncing_txg ||
1455 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1456 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1457 	    brt_maybe_exists(spa, bp)) {
1458 		metaslab_check_free(spa, bp);
1459 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1460 	} else {
1461 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1462 	}
1463 }
1464 
1465 /*
1466  * To improve performance, this function may return NULL if we were able
1467  * to do the free immediately.  This avoids the cost of creating a zio
1468  * (and linking it to the parent, etc).
1469  */
1470 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1471 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1472     zio_flag_t flags)
1473 {
1474 	ASSERT(!BP_IS_HOLE(bp));
1475 	ASSERT(spa_syncing_txg(spa) == txg);
1476 
1477 	if (BP_IS_EMBEDDED(bp))
1478 		return (NULL);
1479 
1480 	metaslab_check_free(spa, bp);
1481 	arc_freed(spa, bp);
1482 	dsl_scan_freed(spa, bp);
1483 
1484 	if (BP_IS_GANG(bp) ||
1485 	    BP_GET_DEDUP(bp) ||
1486 	    brt_maybe_exists(spa, bp)) {
1487 		/*
1488 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1489 		 * block header, the DDT or the BRT), so issue them
1490 		 * asynchronously so that this thread is not tied up.
1491 		 */
1492 		enum zio_stage stage =
1493 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1494 
1495 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1496 		    BP_GET_PSIZE(bp), NULL, NULL,
1497 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1498 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1499 	} else {
1500 		metaslab_free(spa, bp, txg, B_FALSE);
1501 		return (NULL);
1502 	}
1503 }
1504 
1505 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1506 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1507     zio_done_func_t *done, void *private, zio_flag_t flags)
1508 {
1509 	zio_t *zio;
1510 
1511 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1512 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1513 
1514 	if (BP_IS_EMBEDDED(bp))
1515 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1516 
1517 	/*
1518 	 * A claim is an allocation of a specific block.  Claims are needed
1519 	 * to support immediate writes in the intent log.  The issue is that
1520 	 * immediate writes contain committed data, but in a txg that was
1521 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1522 	 * the intent log claims all blocks that contain immediate write data
1523 	 * so that the SPA knows they're in use.
1524 	 *
1525 	 * All claims *must* be resolved in the first txg -- before the SPA
1526 	 * starts allocating blocks -- so that nothing is allocated twice.
1527 	 * If txg == 0 we just verify that the block is claimable.
1528 	 */
1529 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1530 	    spa_min_claim_txg(spa));
1531 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1532 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1533 
1534 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1535 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1536 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1537 	ASSERT0(zio->io_queued_timestamp);
1538 
1539 	return (zio);
1540 }
1541 
1542 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1543 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1544     zio_done_func_t *done, void *private, zio_priority_t priority,
1545     zio_flag_t flags, enum trim_flag trim_flags)
1546 {
1547 	zio_t *zio;
1548 
1549 	ASSERT0(vd->vdev_children);
1550 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1551 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1552 	ASSERT3U(size, !=, 0);
1553 
1554 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1555 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1556 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1557 	zio->io_trim_flags = trim_flags;
1558 
1559 	return (zio);
1560 }
1561 
1562 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1563 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1564     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1565     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1566 {
1567 	zio_t *zio;
1568 
1569 	ASSERT(vd->vdev_children == 0);
1570 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1571 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1572 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1573 
1574 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1575 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1576 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1577 
1578 	zio->io_prop.zp_checksum = checksum;
1579 
1580 	return (zio);
1581 }
1582 
1583 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1584 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1585     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1586     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1587 {
1588 	zio_t *zio;
1589 
1590 	ASSERT(vd->vdev_children == 0);
1591 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1592 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1593 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1594 
1595 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1596 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1597 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1598 
1599 	zio->io_prop.zp_checksum = checksum;
1600 
1601 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1602 		/*
1603 		 * zec checksums are necessarily destructive -- they modify
1604 		 * the end of the write buffer to hold the verifier/checksum.
1605 		 * Therefore, we must make a local copy in case the data is
1606 		 * being written to multiple places in parallel.
1607 		 */
1608 		abd_t *wbuf = abd_alloc_sametype(data, size);
1609 		abd_copy(wbuf, data, size);
1610 
1611 		zio_push_transform(zio, wbuf, size, size, NULL);
1612 	}
1613 
1614 	return (zio);
1615 }
1616 
1617 /*
1618  * Create a child I/O to do some work for us.
1619  */
1620 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1621 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1622     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1623     zio_flag_t flags, zio_done_func_t *done, void *private)
1624 {
1625 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1626 	zio_t *zio;
1627 
1628 	/*
1629 	 * vdev child I/Os do not propagate their error to the parent.
1630 	 * Therefore, for correct operation the caller *must* check for
1631 	 * and handle the error in the child i/o's done callback.
1632 	 * The only exceptions are i/os that we don't care about
1633 	 * (OPTIONAL or REPAIR).
1634 	 */
1635 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1636 	    done != NULL);
1637 
1638 	if (type == ZIO_TYPE_READ && bp != NULL) {
1639 		/*
1640 		 * If we have the bp, then the child should perform the
1641 		 * checksum and the parent need not.  This pushes error
1642 		 * detection as close to the leaves as possible and
1643 		 * eliminates redundant checksums in the interior nodes.
1644 		 */
1645 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1646 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1647 		/*
1648 		 * We never allow the mirror VDEV to attempt reading from any
1649 		 * additional data copies after the first Direct I/O checksum
1650 		 * verify failure. This is to avoid bad data being written out
1651 		 * through the mirror during self healing. See comment in
1652 		 * vdev_mirror_io_done() for more details.
1653 		 */
1654 		ASSERT0(pio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
1655 	} else if (type == ZIO_TYPE_WRITE &&
1656 	    pio->io_prop.zp_direct_write == B_TRUE) {
1657 		/*
1658 		 * By default we only will verify checksums for Direct I/O
1659 		 * writes for Linux. FreeBSD is able to place user pages under
1660 		 * write protection before issuing them to the ZIO pipeline.
1661 		 *
1662 		 * Checksum validation errors will only be reported through
1663 		 * the top-level VDEV, which is set by this child ZIO.
1664 		 */
1665 		ASSERT3P(bp, !=, NULL);
1666 		ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
1667 		pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY;
1668 	}
1669 
1670 	if (vd->vdev_ops->vdev_op_leaf) {
1671 		ASSERT0(vd->vdev_children);
1672 		offset += VDEV_LABEL_START_SIZE;
1673 	}
1674 
1675 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1676 
1677 	/*
1678 	 * If we've decided to do a repair, the write is not speculative --
1679 	 * even if the original read was.
1680 	 */
1681 	if (flags & ZIO_FLAG_IO_REPAIR)
1682 		flags &= ~ZIO_FLAG_SPECULATIVE;
1683 
1684 	/*
1685 	 * If we're creating a child I/O that is not associated with a
1686 	 * top-level vdev, then the child zio is not an allocating I/O.
1687 	 * If this is a retried I/O then we ignore it since we will
1688 	 * have already processed the original allocating I/O.
1689 	 */
1690 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1691 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1692 		ASSERT(pio->io_metaslab_class != NULL);
1693 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1694 		ASSERT(type == ZIO_TYPE_WRITE);
1695 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1696 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1697 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1698 		    pio->io_child_type == ZIO_CHILD_GANG);
1699 
1700 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1701 	}
1702 
1703 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1704 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1705 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1706 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1707 
1708 	return (zio);
1709 }
1710 
1711 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1712 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1713     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1714     zio_done_func_t *done, void *private)
1715 {
1716 	zio_t *zio;
1717 
1718 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1719 
1720 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1721 	    data, size, size, done, private, type, priority,
1722 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1723 	    vd, offset, NULL,
1724 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1725 
1726 	return (zio);
1727 }
1728 
1729 
1730 /*
1731  * Send a flush command to the given vdev. Unlike most zio creation functions,
1732  * the flush zios are issued immediately. You can wait on pio to pause until
1733  * the flushes complete.
1734  */
1735 void
zio_flush(zio_t * pio,vdev_t * vd)1736 zio_flush(zio_t *pio, vdev_t *vd)
1737 {
1738 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1739 	    ZIO_FLAG_DONT_RETRY;
1740 
1741 	if (vd->vdev_nowritecache)
1742 		return;
1743 
1744 	if (vd->vdev_children == 0) {
1745 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1746 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1747 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1748 	} else {
1749 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1750 			zio_flush(pio, vd->vdev_child[c]);
1751 	}
1752 }
1753 
1754 void
zio_shrink(zio_t * zio,uint64_t size)1755 zio_shrink(zio_t *zio, uint64_t size)
1756 {
1757 	ASSERT3P(zio->io_executor, ==, NULL);
1758 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1759 	ASSERT3U(size, <=, zio->io_size);
1760 
1761 	/*
1762 	 * We don't shrink for raidz because of problems with the
1763 	 * reconstruction when reading back less than the block size.
1764 	 * Note, BP_IS_RAIDZ() assumes no compression.
1765 	 */
1766 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1767 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1768 		/* we are not doing a raw write */
1769 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1770 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1771 	}
1772 }
1773 
1774 /*
1775  * Round provided allocation size up to a value that can be allocated
1776  * by at least some vdev(s) in the pool with minimum or no additional
1777  * padding and without extra space usage on others
1778  */
1779 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1780 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1781 {
1782 	if (size > spa->spa_min_alloc)
1783 		return (roundup(size, spa->spa_gcd_alloc));
1784 	return (spa->spa_min_alloc);
1785 }
1786 
1787 size_t
zio_get_compression_max_size(enum zio_compress compress,uint64_t gcd_alloc,uint64_t min_alloc,size_t s_len)1788 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc,
1789     uint64_t min_alloc, size_t s_len)
1790 {
1791 	size_t d_len;
1792 
1793 	/* minimum 12.5% must be saved (legacy value, may be changed later) */
1794 	d_len = s_len - (s_len >> 3);
1795 
1796 	/* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1797 	if (compress == ZIO_COMPRESS_ZLE)
1798 		return (d_len);
1799 
1800 	d_len = d_len - d_len % gcd_alloc;
1801 
1802 	if (d_len < min_alloc)
1803 		return (BPE_PAYLOAD_SIZE);
1804 	return (d_len);
1805 }
1806 
1807 /*
1808  * ==========================================================================
1809  * Prepare to read and write logical blocks
1810  * ==========================================================================
1811  */
1812 
1813 static zio_t *
zio_read_bp_init(zio_t * zio)1814 zio_read_bp_init(zio_t *zio)
1815 {
1816 	blkptr_t *bp = zio->io_bp;
1817 	uint64_t psize =
1818 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1819 
1820 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1821 
1822 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1823 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1824 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1825 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1826 		    psize, psize, zio_decompress);
1827 	}
1828 
1829 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1830 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1831 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1832 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1833 		    psize, psize, zio_decrypt);
1834 	}
1835 
1836 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1837 		int psize = BPE_GET_PSIZE(bp);
1838 		void *data = abd_borrow_buf(zio->io_abd, psize);
1839 
1840 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1841 		decode_embedded_bp_compressed(bp, data);
1842 		abd_return_buf_copy(zio->io_abd, data, psize);
1843 	} else {
1844 		ASSERT(!BP_IS_EMBEDDED(bp));
1845 	}
1846 
1847 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1848 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1849 
1850 	return (zio);
1851 }
1852 
1853 static zio_t *
zio_write_bp_init(zio_t * zio)1854 zio_write_bp_init(zio_t *zio)
1855 {
1856 	if (!IO_IS_ALLOCATING(zio))
1857 		return (zio);
1858 
1859 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1860 
1861 	if (zio->io_bp_override) {
1862 		blkptr_t *bp = zio->io_bp;
1863 		zio_prop_t *zp = &zio->io_prop;
1864 
1865 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1866 
1867 		*bp = *zio->io_bp_override;
1868 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1869 
1870 		if (zp->zp_brtwrite)
1871 			return (zio);
1872 
1873 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1874 
1875 		if (BP_IS_EMBEDDED(bp))
1876 			return (zio);
1877 
1878 		/*
1879 		 * If we've been overridden and nopwrite is set then
1880 		 * set the flag accordingly to indicate that a nopwrite
1881 		 * has already occurred.
1882 		 */
1883 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1884 			ASSERT(!zp->zp_dedup);
1885 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1886 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1887 			return (zio);
1888 		}
1889 
1890 		ASSERT(!zp->zp_nopwrite);
1891 
1892 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1893 			return (zio);
1894 
1895 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1896 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1897 
1898 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1899 		    !zp->zp_encrypt) {
1900 			BP_SET_DEDUP(bp, 1);
1901 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1902 			return (zio);
1903 		}
1904 
1905 		/*
1906 		 * We were unable to handle this as an override bp, treat
1907 		 * it as a regular write I/O.
1908 		 */
1909 		zio->io_bp_override = NULL;
1910 		*bp = zio->io_bp_orig;
1911 		zio->io_pipeline = zio->io_orig_pipeline;
1912 	}
1913 
1914 	return (zio);
1915 }
1916 
1917 static zio_t *
zio_write_compress(zio_t * zio)1918 zio_write_compress(zio_t *zio)
1919 {
1920 	spa_t *spa = zio->io_spa;
1921 	zio_prop_t *zp = &zio->io_prop;
1922 	enum zio_compress compress = zp->zp_compress;
1923 	blkptr_t *bp = zio->io_bp;
1924 	uint64_t lsize = zio->io_lsize;
1925 	uint64_t psize = zio->io_size;
1926 	uint32_t pass = 1;
1927 
1928 	/*
1929 	 * If our children haven't all reached the ready stage,
1930 	 * wait for them and then repeat this pipeline stage.
1931 	 */
1932 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1933 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1934 		return (NULL);
1935 	}
1936 
1937 	if (!IO_IS_ALLOCATING(zio))
1938 		return (zio);
1939 
1940 	if (zio->io_children_ready != NULL) {
1941 		/*
1942 		 * Now that all our children are ready, run the callback
1943 		 * associated with this zio in case it wants to modify the
1944 		 * data to be written.
1945 		 */
1946 		ASSERT3U(zp->zp_level, >, 0);
1947 		zio->io_children_ready(zio);
1948 	}
1949 
1950 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1951 	ASSERT(zio->io_bp_override == NULL);
1952 
1953 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1954 		/*
1955 		 * We're rewriting an existing block, which means we're
1956 		 * working on behalf of spa_sync().  For spa_sync() to
1957 		 * converge, it must eventually be the case that we don't
1958 		 * have to allocate new blocks.  But compression changes
1959 		 * the blocksize, which forces a reallocate, and makes
1960 		 * convergence take longer.  Therefore, after the first
1961 		 * few passes, stop compressing to ensure convergence.
1962 		 */
1963 		pass = spa_sync_pass(spa);
1964 
1965 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1966 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1967 		ASSERT(!BP_GET_DEDUP(bp));
1968 
1969 		if (pass >= zfs_sync_pass_dont_compress)
1970 			compress = ZIO_COMPRESS_OFF;
1971 
1972 		/* Make sure someone doesn't change their mind on overwrites */
1973 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1974 		    MIN(zp->zp_copies, spa_max_replication(spa))
1975 		    == BP_GET_NDVAS(bp));
1976 	}
1977 
1978 	/* If it's a compressed write that is not raw, compress the buffer. */
1979 	if (compress != ZIO_COMPRESS_OFF &&
1980 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1981 		abd_t *cabd = NULL;
1982 		if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1983 			psize = 0;
1984 		else if (compress == ZIO_COMPRESS_EMPTY)
1985 			psize = lsize;
1986 		else
1987 			psize = zio_compress_data(compress, zio->io_abd, &cabd,
1988 			    lsize,
1989 			    zio_get_compression_max_size(compress,
1990 			    spa->spa_gcd_alloc, spa->spa_min_alloc, lsize),
1991 			    zp->zp_complevel);
1992 		if (psize == 0) {
1993 			compress = ZIO_COMPRESS_OFF;
1994 		} else if (psize >= lsize) {
1995 			compress = ZIO_COMPRESS_OFF;
1996 			if (cabd != NULL)
1997 				abd_free(cabd);
1998 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1999 		    psize <= BPE_PAYLOAD_SIZE &&
2000 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
2001 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
2002 			void *cbuf = abd_borrow_buf_copy(cabd, lsize);
2003 			encode_embedded_bp_compressed(bp,
2004 			    cbuf, compress, lsize, psize);
2005 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
2006 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
2007 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
2008 			abd_return_buf(cabd, cbuf, lsize);
2009 			abd_free(cabd);
2010 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
2011 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2012 			ASSERT(spa_feature_is_active(spa,
2013 			    SPA_FEATURE_EMBEDDED_DATA));
2014 			return (zio);
2015 		} else {
2016 			/*
2017 			 * Round compressed size up to the minimum allocation
2018 			 * size of the smallest-ashift device, and zero the
2019 			 * tail. This ensures that the compressed size of the
2020 			 * BP (and thus compressratio property) are correct,
2021 			 * in that we charge for the padding used to fill out
2022 			 * the last sector.
2023 			 */
2024 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
2025 			    psize);
2026 			if (rounded >= lsize) {
2027 				compress = ZIO_COMPRESS_OFF;
2028 				abd_free(cabd);
2029 				psize = lsize;
2030 			} else {
2031 				abd_zero_off(cabd, psize, rounded - psize);
2032 				psize = rounded;
2033 				zio_push_transform(zio, cabd,
2034 				    psize, lsize, NULL);
2035 			}
2036 		}
2037 
2038 		/*
2039 		 * We were unable to handle this as an override bp, treat
2040 		 * it as a regular write I/O.
2041 		 */
2042 		zio->io_bp_override = NULL;
2043 		*bp = zio->io_bp_orig;
2044 		zio->io_pipeline = zio->io_orig_pipeline;
2045 
2046 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
2047 	    zp->zp_type == DMU_OT_DNODE) {
2048 		/*
2049 		 * The DMU actually relies on the zio layer's compression
2050 		 * to free metadnode blocks that have had all contained
2051 		 * dnodes freed. As a result, even when doing a raw
2052 		 * receive, we must check whether the block can be compressed
2053 		 * to a hole.
2054 		 */
2055 		if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
2056 			psize = 0;
2057 			compress = ZIO_COMPRESS_OFF;
2058 		} else {
2059 			psize = lsize;
2060 		}
2061 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
2062 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
2063 		/*
2064 		 * If we are raw receiving an encrypted dataset we should not
2065 		 * take this codepath because it will change the on-disk block
2066 		 * and decryption will fail.
2067 		 */
2068 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
2069 		    lsize);
2070 
2071 		if (rounded != psize) {
2072 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
2073 			abd_zero_off(cdata, psize, rounded - psize);
2074 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
2075 			psize = rounded;
2076 			zio_push_transform(zio, cdata,
2077 			    psize, rounded, NULL);
2078 		}
2079 	} else {
2080 		ASSERT3U(psize, !=, 0);
2081 	}
2082 
2083 	/*
2084 	 * The final pass of spa_sync() must be all rewrites, but the first
2085 	 * few passes offer a trade-off: allocating blocks defers convergence,
2086 	 * but newly allocated blocks are sequential, so they can be written
2087 	 * to disk faster.  Therefore, we allow the first few passes of
2088 	 * spa_sync() to allocate new blocks, but force rewrites after that.
2089 	 * There should only be a handful of blocks after pass 1 in any case.
2090 	 */
2091 	if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
2092 	    BP_GET_PSIZE(bp) == psize &&
2093 	    pass >= zfs_sync_pass_rewrite) {
2094 		VERIFY3U(psize, !=, 0);
2095 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
2096 
2097 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
2098 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
2099 	} else {
2100 		BP_ZERO(bp);
2101 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2102 	}
2103 
2104 	if (psize == 0) {
2105 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
2106 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
2107 			BP_SET_LSIZE(bp, lsize);
2108 			BP_SET_TYPE(bp, zp->zp_type);
2109 			BP_SET_LEVEL(bp, zp->zp_level);
2110 			BP_SET_BIRTH(bp, zio->io_txg, 0);
2111 		}
2112 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2113 	} else {
2114 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
2115 		BP_SET_LSIZE(bp, lsize);
2116 		BP_SET_TYPE(bp, zp->zp_type);
2117 		BP_SET_LEVEL(bp, zp->zp_level);
2118 		BP_SET_PSIZE(bp, psize);
2119 		BP_SET_COMPRESS(bp, compress);
2120 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
2121 		BP_SET_DEDUP(bp, zp->zp_dedup);
2122 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2123 		if (zp->zp_dedup) {
2124 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2125 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2126 			ASSERT(!zp->zp_encrypt ||
2127 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
2128 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2129 		}
2130 		if (zp->zp_nopwrite) {
2131 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2132 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2133 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2134 		}
2135 	}
2136 	return (zio);
2137 }
2138 
2139 static zio_t *
zio_free_bp_init(zio_t * zio)2140 zio_free_bp_init(zio_t *zio)
2141 {
2142 	blkptr_t *bp = zio->io_bp;
2143 
2144 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2145 		if (BP_GET_DEDUP(bp))
2146 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2147 	}
2148 
2149 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2150 
2151 	return (zio);
2152 }
2153 
2154 /*
2155  * ==========================================================================
2156  * Execute the I/O pipeline
2157  * ==========================================================================
2158  */
2159 
2160 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2161 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2162 {
2163 	spa_t *spa = zio->io_spa;
2164 	zio_type_t t = zio->io_type;
2165 
2166 	/*
2167 	 * If we're a config writer or a probe, the normal issue and
2168 	 * interrupt threads may all be blocked waiting for the config lock.
2169 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2170 	 */
2171 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2172 		t = ZIO_TYPE_NULL;
2173 
2174 	/*
2175 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2176 	 */
2177 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2178 		t = ZIO_TYPE_NULL;
2179 
2180 	/*
2181 	 * If this is a high priority I/O, then use the high priority taskq if
2182 	 * available or cut the line otherwise.
2183 	 */
2184 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2185 		if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2186 			q++;
2187 		else
2188 			cutinline = B_TRUE;
2189 	}
2190 
2191 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2192 
2193 	spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2194 }
2195 
2196 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2197 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2198 {
2199 	spa_t *spa = zio->io_spa;
2200 
2201 	taskq_t *tq = taskq_of_curthread();
2202 
2203 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2204 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2205 		uint_t i;
2206 		for (i = 0; i < tqs->stqs_count; i++) {
2207 			if (tqs->stqs_taskq[i] == tq)
2208 				return (B_TRUE);
2209 		}
2210 	}
2211 
2212 	return (B_FALSE);
2213 }
2214 
2215 static zio_t *
zio_issue_async(zio_t * zio)2216 zio_issue_async(zio_t *zio)
2217 {
2218 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2219 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2220 	return (NULL);
2221 }
2222 
2223 void
zio_interrupt(void * zio)2224 zio_interrupt(void *zio)
2225 {
2226 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2227 }
2228 
2229 void
zio_delay_interrupt(zio_t * zio)2230 zio_delay_interrupt(zio_t *zio)
2231 {
2232 	/*
2233 	 * The timeout_generic() function isn't defined in userspace, so
2234 	 * rather than trying to implement the function, the zio delay
2235 	 * functionality has been disabled for userspace builds.
2236 	 */
2237 
2238 #ifdef _KERNEL
2239 	/*
2240 	 * If io_target_timestamp is zero, then no delay has been registered
2241 	 * for this IO, thus jump to the end of this function and "skip" the
2242 	 * delay; issuing it directly to the zio layer.
2243 	 */
2244 	if (zio->io_target_timestamp != 0) {
2245 		hrtime_t now = gethrtime();
2246 
2247 		if (now >= zio->io_target_timestamp) {
2248 			/*
2249 			 * This IO has already taken longer than the target
2250 			 * delay to complete, so we don't want to delay it
2251 			 * any longer; we "miss" the delay and issue it
2252 			 * directly to the zio layer. This is likely due to
2253 			 * the target latency being set to a value less than
2254 			 * the underlying hardware can satisfy (e.g. delay
2255 			 * set to 1ms, but the disks take 10ms to complete an
2256 			 * IO request).
2257 			 */
2258 
2259 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2260 			    hrtime_t, now);
2261 
2262 			zio_interrupt(zio);
2263 		} else {
2264 			taskqid_t tid;
2265 			hrtime_t diff = zio->io_target_timestamp - now;
2266 			int ticks = MAX(1, NSEC_TO_TICK(diff));
2267 			clock_t expire_at_tick = ddi_get_lbolt() + ticks;
2268 
2269 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2270 			    hrtime_t, now, hrtime_t, diff);
2271 
2272 			tid = taskq_dispatch_delay(system_taskq, zio_interrupt,
2273 			    zio, TQ_NOSLEEP, expire_at_tick);
2274 			if (tid == TASKQID_INVALID) {
2275 				/*
2276 				 * Couldn't allocate a task.  Just finish the
2277 				 * zio without a delay.
2278 				 */
2279 				zio_interrupt(zio);
2280 			}
2281 		}
2282 		return;
2283 	}
2284 #endif
2285 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2286 	zio_interrupt(zio);
2287 }
2288 
2289 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2290 zio_deadman_impl(zio_t *pio, int ziodepth)
2291 {
2292 	zio_t *cio, *cio_next;
2293 	zio_link_t *zl = NULL;
2294 	vdev_t *vd = pio->io_vd;
2295 
2296 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2297 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2298 		zbookmark_phys_t *zb = &pio->io_bookmark;
2299 		uint64_t delta = gethrtime() - pio->io_timestamp;
2300 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2301 
2302 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2303 		    "delta=%llu queued=%llu io=%llu "
2304 		    "path=%s "
2305 		    "last=%llu type=%d "
2306 		    "priority=%d flags=0x%llx stage=0x%x "
2307 		    "pipeline=0x%x pipeline-trace=0x%x "
2308 		    "objset=%llu object=%llu "
2309 		    "level=%llu blkid=%llu "
2310 		    "offset=%llu size=%llu "
2311 		    "error=%d",
2312 		    ziodepth, pio, pio->io_timestamp,
2313 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2314 		    vd ? vd->vdev_path : "NULL",
2315 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2316 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2317 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2318 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2319 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2320 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2321 		    pio->io_error);
2322 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2323 		    pio->io_spa, vd, zb, pio, 0);
2324 
2325 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2326 		    taskq_empty_ent(&pio->io_tqent)) {
2327 			zio_interrupt(pio);
2328 		}
2329 	}
2330 
2331 	mutex_enter(&pio->io_lock);
2332 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2333 		cio_next = zio_walk_children(pio, &zl);
2334 		zio_deadman_impl(cio, ziodepth + 1);
2335 	}
2336 	mutex_exit(&pio->io_lock);
2337 }
2338 
2339 /*
2340  * Log the critical information describing this zio and all of its children
2341  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2342  */
2343 void
zio_deadman(zio_t * pio,const char * tag)2344 zio_deadman(zio_t *pio, const char *tag)
2345 {
2346 	spa_t *spa = pio->io_spa;
2347 	char *name = spa_name(spa);
2348 
2349 	if (!zfs_deadman_enabled || spa_suspended(spa))
2350 		return;
2351 
2352 	zio_deadman_impl(pio, 0);
2353 
2354 	switch (spa_get_deadman_failmode(spa)) {
2355 	case ZIO_FAILURE_MODE_WAIT:
2356 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2357 		break;
2358 
2359 	case ZIO_FAILURE_MODE_CONTINUE:
2360 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2361 		break;
2362 
2363 	case ZIO_FAILURE_MODE_PANIC:
2364 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2365 		break;
2366 	}
2367 }
2368 
2369 /*
2370  * Execute the I/O pipeline until one of the following occurs:
2371  * (1) the I/O completes; (2) the pipeline stalls waiting for
2372  * dependent child I/Os; (3) the I/O issues, so we're waiting
2373  * for an I/O completion interrupt; (4) the I/O is delegated by
2374  * vdev-level caching or aggregation; (5) the I/O is deferred
2375  * due to vdev-level queueing; (6) the I/O is handed off to
2376  * another thread.  In all cases, the pipeline stops whenever
2377  * there's no CPU work; it never burns a thread in cv_wait_io().
2378  *
2379  * There's no locking on io_stage because there's no legitimate way
2380  * for multiple threads to be attempting to process the same I/O.
2381  */
2382 static zio_pipe_stage_t *zio_pipeline[];
2383 
2384 /*
2385  * zio_execute() is a wrapper around the static function
2386  * __zio_execute() so that we can force  __zio_execute() to be
2387  * inlined.  This reduces stack overhead which is important
2388  * because __zio_execute() is called recursively in several zio
2389  * code paths.  zio_execute() itself cannot be inlined because
2390  * it is externally visible.
2391  */
2392 void
zio_execute(void * zio)2393 zio_execute(void *zio)
2394 {
2395 	fstrans_cookie_t cookie;
2396 
2397 	cookie = spl_fstrans_mark();
2398 	__zio_execute(zio);
2399 	spl_fstrans_unmark(cookie);
2400 }
2401 
2402 /*
2403  * Used to determine if in the current context the stack is sized large
2404  * enough to allow zio_execute() to be called recursively.  A minimum
2405  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2406  */
2407 static boolean_t
zio_execute_stack_check(zio_t * zio)2408 zio_execute_stack_check(zio_t *zio)
2409 {
2410 #if !defined(HAVE_LARGE_STACKS)
2411 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2412 
2413 	/* Executing in txg_sync_thread() context. */
2414 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2415 		return (B_TRUE);
2416 
2417 	/* Pool initialization outside of zio_taskq context. */
2418 	if (dp && spa_is_initializing(dp->dp_spa) &&
2419 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2420 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2421 		return (B_TRUE);
2422 #else
2423 	(void) zio;
2424 #endif /* HAVE_LARGE_STACKS */
2425 
2426 	return (B_FALSE);
2427 }
2428 
2429 __attribute__((always_inline))
2430 static inline void
__zio_execute(zio_t * zio)2431 __zio_execute(zio_t *zio)
2432 {
2433 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2434 
2435 	while (zio->io_stage < ZIO_STAGE_DONE) {
2436 		enum zio_stage pipeline = zio->io_pipeline;
2437 		enum zio_stage stage = zio->io_stage;
2438 
2439 		zio->io_executor = curthread;
2440 
2441 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2442 		ASSERT(ISP2(stage));
2443 		ASSERT(zio->io_stall == NULL);
2444 
2445 		do {
2446 			stage <<= 1;
2447 		} while ((stage & pipeline) == 0);
2448 
2449 		ASSERT(stage <= ZIO_STAGE_DONE);
2450 
2451 		/*
2452 		 * If we are in interrupt context and this pipeline stage
2453 		 * will grab a config lock that is held across I/O,
2454 		 * or may wait for an I/O that needs an interrupt thread
2455 		 * to complete, issue async to avoid deadlock.
2456 		 *
2457 		 * For VDEV_IO_START, we cut in line so that the io will
2458 		 * be sent to disk promptly.
2459 		 */
2460 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2461 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2462 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2463 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2464 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2465 			return;
2466 		}
2467 
2468 		/*
2469 		 * If the current context doesn't have large enough stacks
2470 		 * the zio must be issued asynchronously to prevent overflow.
2471 		 */
2472 		if (zio_execute_stack_check(zio)) {
2473 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2474 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2475 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2476 			return;
2477 		}
2478 
2479 		zio->io_stage = stage;
2480 		zio->io_pipeline_trace |= zio->io_stage;
2481 
2482 		/*
2483 		 * The zio pipeline stage returns the next zio to execute
2484 		 * (typically the same as this one), or NULL if we should
2485 		 * stop.
2486 		 */
2487 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2488 
2489 		if (zio == NULL)
2490 			return;
2491 	}
2492 }
2493 
2494 
2495 /*
2496  * ==========================================================================
2497  * Initiate I/O, either sync or async
2498  * ==========================================================================
2499  */
2500 int
zio_wait(zio_t * zio)2501 zio_wait(zio_t *zio)
2502 {
2503 	/*
2504 	 * Some routines, like zio_free_sync(), may return a NULL zio
2505 	 * to avoid the performance overhead of creating and then destroying
2506 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2507 	 * zio and ignore it.
2508 	 */
2509 	if (zio == NULL)
2510 		return (0);
2511 
2512 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2513 	int error;
2514 
2515 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2516 	ASSERT3P(zio->io_executor, ==, NULL);
2517 
2518 	zio->io_waiter = curthread;
2519 	ASSERT0(zio->io_queued_timestamp);
2520 	zio->io_queued_timestamp = gethrtime();
2521 
2522 	if (zio->io_type == ZIO_TYPE_WRITE) {
2523 		spa_select_allocator(zio);
2524 	}
2525 	__zio_execute(zio);
2526 
2527 	mutex_enter(&zio->io_lock);
2528 	while (zio->io_executor != NULL) {
2529 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2530 		    ddi_get_lbolt() + timeout);
2531 
2532 		if (zfs_deadman_enabled && error == -1 &&
2533 		    gethrtime() - zio->io_queued_timestamp >
2534 		    spa_deadman_ziotime(zio->io_spa)) {
2535 			mutex_exit(&zio->io_lock);
2536 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2537 			zio_deadman(zio, FTAG);
2538 			mutex_enter(&zio->io_lock);
2539 		}
2540 	}
2541 	mutex_exit(&zio->io_lock);
2542 
2543 	error = zio->io_error;
2544 	zio_destroy(zio);
2545 
2546 	return (error);
2547 }
2548 
2549 void
zio_nowait(zio_t * zio)2550 zio_nowait(zio_t *zio)
2551 {
2552 	/*
2553 	 * See comment in zio_wait().
2554 	 */
2555 	if (zio == NULL)
2556 		return;
2557 
2558 	ASSERT3P(zio->io_executor, ==, NULL);
2559 
2560 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2561 	    list_is_empty(&zio->io_parent_list)) {
2562 		zio_t *pio;
2563 
2564 		/*
2565 		 * This is a logical async I/O with no parent to wait for it.
2566 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2567 		 * will ensure they complete prior to unloading the pool.
2568 		 */
2569 		spa_t *spa = zio->io_spa;
2570 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2571 
2572 		zio_add_child(pio, zio);
2573 	}
2574 
2575 	ASSERT0(zio->io_queued_timestamp);
2576 	zio->io_queued_timestamp = gethrtime();
2577 	if (zio->io_type == ZIO_TYPE_WRITE) {
2578 		spa_select_allocator(zio);
2579 	}
2580 	__zio_execute(zio);
2581 }
2582 
2583 /*
2584  * ==========================================================================
2585  * Reexecute, cancel, or suspend/resume failed I/O
2586  * ==========================================================================
2587  */
2588 
2589 static void
zio_reexecute(void * arg)2590 zio_reexecute(void *arg)
2591 {
2592 	zio_t *pio = arg;
2593 	zio_t *cio, *cio_next, *gio;
2594 
2595 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2596 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2597 	ASSERT(pio->io_gang_leader == NULL);
2598 	ASSERT(pio->io_gang_tree == NULL);
2599 
2600 	mutex_enter(&pio->io_lock);
2601 	pio->io_flags = pio->io_orig_flags;
2602 	pio->io_stage = pio->io_orig_stage;
2603 	pio->io_pipeline = pio->io_orig_pipeline;
2604 	pio->io_reexecute = 0;
2605 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2606 	pio->io_pipeline_trace = 0;
2607 	pio->io_error = 0;
2608 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2609 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2610 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2611 
2612 	/*
2613 	 * It's possible for a failed ZIO to be a descendant of more than one
2614 	 * ZIO tree. When reexecuting it, we have to be sure to add its wait
2615 	 * states to all parent wait counts.
2616 	 *
2617 	 * Those parents, in turn, may have other children that are currently
2618 	 * active, usually because they've already been reexecuted after
2619 	 * resuming. Those children may be executing and may call
2620 	 * zio_notify_parent() at the same time as we're updating our parent's
2621 	 * counts. To avoid races while updating the counts, we take
2622 	 * gio->io_lock before each update.
2623 	 */
2624 	zio_link_t *zl = NULL;
2625 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2626 		mutex_enter(&gio->io_lock);
2627 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2628 			gio->io_children[pio->io_child_type][w] +=
2629 			    !pio->io_state[w];
2630 		}
2631 		mutex_exit(&gio->io_lock);
2632 	}
2633 
2634 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2635 		pio->io_child_error[c] = 0;
2636 
2637 	if (IO_IS_ALLOCATING(pio))
2638 		BP_ZERO(pio->io_bp);
2639 
2640 	/*
2641 	 * As we reexecute pio's children, new children could be created.
2642 	 * New children go to the head of pio's io_child_list, however,
2643 	 * so we will (correctly) not reexecute them.  The key is that
2644 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2645 	 * cannot be affected by any side effects of reexecuting 'cio'.
2646 	 */
2647 	zl = NULL;
2648 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2649 		cio_next = zio_walk_children(pio, &zl);
2650 		mutex_exit(&pio->io_lock);
2651 		zio_reexecute(cio);
2652 		mutex_enter(&pio->io_lock);
2653 	}
2654 	mutex_exit(&pio->io_lock);
2655 
2656 	/*
2657 	 * Now that all children have been reexecuted, execute the parent.
2658 	 * We don't reexecute "The Godfather" I/O here as it's the
2659 	 * responsibility of the caller to wait on it.
2660 	 */
2661 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2662 		pio->io_queued_timestamp = gethrtime();
2663 		__zio_execute(pio);
2664 	}
2665 }
2666 
2667 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2668 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2669 {
2670 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2671 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2672 		    "failure and the failure mode property for this pool "
2673 		    "is set to panic.", spa_name(spa));
2674 
2675 	if (reason != ZIO_SUSPEND_MMP) {
2676 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2677 		    "I/O failure and has been suspended.", spa_name(spa));
2678 	}
2679 
2680 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2681 	    NULL, NULL, 0);
2682 
2683 	mutex_enter(&spa->spa_suspend_lock);
2684 
2685 	if (spa->spa_suspend_zio_root == NULL)
2686 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2687 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2688 		    ZIO_FLAG_GODFATHER);
2689 
2690 	spa->spa_suspended = reason;
2691 
2692 	if (zio != NULL) {
2693 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2694 		ASSERT(zio != spa->spa_suspend_zio_root);
2695 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2696 		ASSERT(zio_unique_parent(zio) == NULL);
2697 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2698 		zio_add_child(spa->spa_suspend_zio_root, zio);
2699 	}
2700 
2701 	mutex_exit(&spa->spa_suspend_lock);
2702 }
2703 
2704 int
zio_resume(spa_t * spa)2705 zio_resume(spa_t *spa)
2706 {
2707 	zio_t *pio;
2708 
2709 	/*
2710 	 * Reexecute all previously suspended i/o.
2711 	 */
2712 	mutex_enter(&spa->spa_suspend_lock);
2713 	if (spa->spa_suspended != ZIO_SUSPEND_NONE)
2714 		cmn_err(CE_WARN, "Pool '%s' was suspended and is being "
2715 		    "resumed. Failed I/O will be retried.",
2716 		    spa_name(spa));
2717 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2718 	cv_broadcast(&spa->spa_suspend_cv);
2719 	pio = spa->spa_suspend_zio_root;
2720 	spa->spa_suspend_zio_root = NULL;
2721 	mutex_exit(&spa->spa_suspend_lock);
2722 
2723 	if (pio == NULL)
2724 		return (0);
2725 
2726 	zio_reexecute(pio);
2727 	return (zio_wait(pio));
2728 }
2729 
2730 void
zio_resume_wait(spa_t * spa)2731 zio_resume_wait(spa_t *spa)
2732 {
2733 	mutex_enter(&spa->spa_suspend_lock);
2734 	while (spa_suspended(spa))
2735 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2736 	mutex_exit(&spa->spa_suspend_lock);
2737 }
2738 
2739 /*
2740  * ==========================================================================
2741  * Gang blocks.
2742  *
2743  * A gang block is a collection of small blocks that looks to the DMU
2744  * like one large block.  When zio_dva_allocate() cannot find a block
2745  * of the requested size, due to either severe fragmentation or the pool
2746  * being nearly full, it calls zio_write_gang_block() to construct the
2747  * block from smaller fragments.
2748  *
2749  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2750  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2751  * an indirect block: it's an array of block pointers.  It consumes
2752  * only one sector and hence is allocatable regardless of fragmentation.
2753  * The gang header's bps point to its gang members, which hold the data.
2754  *
2755  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2756  * as the verifier to ensure uniqueness of the SHA256 checksum.
2757  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2758  * not the gang header.  This ensures that data block signatures (needed for
2759  * deduplication) are independent of how the block is physically stored.
2760  *
2761  * Gang blocks can be nested: a gang member may itself be a gang block.
2762  * Thus every gang block is a tree in which root and all interior nodes are
2763  * gang headers, and the leaves are normal blocks that contain user data.
2764  * The root of the gang tree is called the gang leader.
2765  *
2766  * To perform any operation (read, rewrite, free, claim) on a gang block,
2767  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2768  * in the io_gang_tree field of the original logical i/o by recursively
2769  * reading the gang leader and all gang headers below it.  This yields
2770  * an in-core tree containing the contents of every gang header and the
2771  * bps for every constituent of the gang block.
2772  *
2773  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2774  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2775  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2776  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2777  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2778  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2779  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2780  * of the gang header plus zio_checksum_compute() of the data to update the
2781  * gang header's blk_cksum as described above.
2782  *
2783  * The two-phase assemble/issue model solves the problem of partial failure --
2784  * what if you'd freed part of a gang block but then couldn't read the
2785  * gang header for another part?  Assembling the entire gang tree first
2786  * ensures that all the necessary gang header I/O has succeeded before
2787  * starting the actual work of free, claim, or write.  Once the gang tree
2788  * is assembled, free and claim are in-memory operations that cannot fail.
2789  *
2790  * In the event that a gang write fails, zio_dva_unallocate() walks the
2791  * gang tree to immediately free (i.e. insert back into the space map)
2792  * everything we've allocated.  This ensures that we don't get ENOSPC
2793  * errors during repeated suspend/resume cycles due to a flaky device.
2794  *
2795  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2796  * the gang tree, we won't modify the block, so we can safely defer the free
2797  * (knowing that the block is still intact).  If we *can* assemble the gang
2798  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2799  * each constituent bp and we can allocate a new block on the next sync pass.
2800  *
2801  * In all cases, the gang tree allows complete recovery from partial failure.
2802  * ==========================================================================
2803  */
2804 
2805 static void
zio_gang_issue_func_done(zio_t * zio)2806 zio_gang_issue_func_done(zio_t *zio)
2807 {
2808 	abd_free(zio->io_abd);
2809 }
2810 
2811 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2812 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2813     uint64_t offset)
2814 {
2815 	if (gn != NULL)
2816 		return (pio);
2817 
2818 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2819 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2820 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2821 	    &pio->io_bookmark));
2822 }
2823 
2824 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2825 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2826     uint64_t offset)
2827 {
2828 	zio_t *zio;
2829 
2830 	if (gn != NULL) {
2831 		abd_t *gbh_abd =
2832 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2833 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2834 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2835 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2836 		    &pio->io_bookmark);
2837 		/*
2838 		 * As we rewrite each gang header, the pipeline will compute
2839 		 * a new gang block header checksum for it; but no one will
2840 		 * compute a new data checksum, so we do that here.  The one
2841 		 * exception is the gang leader: the pipeline already computed
2842 		 * its data checksum because that stage precedes gang assembly.
2843 		 * (Presently, nothing actually uses interior data checksums;
2844 		 * this is just good hygiene.)
2845 		 */
2846 		if (gn != pio->io_gang_leader->io_gang_tree) {
2847 			abd_t *buf = abd_get_offset(data, offset);
2848 
2849 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2850 			    buf, BP_GET_PSIZE(bp));
2851 
2852 			abd_free(buf);
2853 		}
2854 		/*
2855 		 * If we are here to damage data for testing purposes,
2856 		 * leave the GBH alone so that we can detect the damage.
2857 		 */
2858 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2859 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2860 	} else {
2861 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2862 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2863 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2864 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2865 	}
2866 
2867 	return (zio);
2868 }
2869 
2870 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2871 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2872     uint64_t offset)
2873 {
2874 	(void) gn, (void) data, (void) offset;
2875 
2876 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2877 	    ZIO_GANG_CHILD_FLAGS(pio));
2878 	if (zio == NULL) {
2879 		zio = zio_null(pio, pio->io_spa,
2880 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2881 	}
2882 	return (zio);
2883 }
2884 
2885 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2886 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2887     uint64_t offset)
2888 {
2889 	(void) gn, (void) data, (void) offset;
2890 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2891 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2892 }
2893 
2894 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2895 	NULL,
2896 	zio_read_gang,
2897 	zio_rewrite_gang,
2898 	zio_free_gang,
2899 	zio_claim_gang,
2900 	NULL
2901 };
2902 
2903 static void zio_gang_tree_assemble_done(zio_t *zio);
2904 
2905 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)2906 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2907 {
2908 	zio_gang_node_t *gn;
2909 
2910 	ASSERT(*gnpp == NULL);
2911 
2912 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2913 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2914 	*gnpp = gn;
2915 
2916 	return (gn);
2917 }
2918 
2919 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2920 zio_gang_node_free(zio_gang_node_t **gnpp)
2921 {
2922 	zio_gang_node_t *gn = *gnpp;
2923 
2924 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2925 		ASSERT(gn->gn_child[g] == NULL);
2926 
2927 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2928 	kmem_free(gn, sizeof (*gn));
2929 	*gnpp = NULL;
2930 }
2931 
2932 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2933 zio_gang_tree_free(zio_gang_node_t **gnpp)
2934 {
2935 	zio_gang_node_t *gn = *gnpp;
2936 
2937 	if (gn == NULL)
2938 		return;
2939 
2940 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2941 		zio_gang_tree_free(&gn->gn_child[g]);
2942 
2943 	zio_gang_node_free(gnpp);
2944 }
2945 
2946 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2947 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2948 {
2949 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2950 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2951 
2952 	ASSERT(gio->io_gang_leader == gio);
2953 	ASSERT(BP_IS_GANG(bp));
2954 
2955 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2956 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2957 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2958 }
2959 
2960 static void
zio_gang_tree_assemble_done(zio_t * zio)2961 zio_gang_tree_assemble_done(zio_t *zio)
2962 {
2963 	zio_t *gio = zio->io_gang_leader;
2964 	zio_gang_node_t *gn = zio->io_private;
2965 	blkptr_t *bp = zio->io_bp;
2966 
2967 	ASSERT(gio == zio_unique_parent(zio));
2968 	ASSERT(list_is_empty(&zio->io_child_list));
2969 
2970 	if (zio->io_error)
2971 		return;
2972 
2973 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2974 	if (BP_SHOULD_BYTESWAP(bp))
2975 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2976 
2977 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2978 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2979 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2980 
2981 	abd_free(zio->io_abd);
2982 
2983 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2984 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2985 		if (!BP_IS_GANG(gbp))
2986 			continue;
2987 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2988 	}
2989 }
2990 
2991 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)2992 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2993     uint64_t offset)
2994 {
2995 	zio_t *gio = pio->io_gang_leader;
2996 	zio_t *zio;
2997 
2998 	ASSERT(BP_IS_GANG(bp) == !!gn);
2999 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
3000 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
3001 
3002 	/*
3003 	 * If you're a gang header, your data is in gn->gn_gbh.
3004 	 * If you're a gang member, your data is in 'data' and gn == NULL.
3005 	 */
3006 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
3007 
3008 	if (gn != NULL) {
3009 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
3010 
3011 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3012 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
3013 			if (BP_IS_HOLE(gbp))
3014 				continue;
3015 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
3016 			    offset);
3017 			offset += BP_GET_PSIZE(gbp);
3018 		}
3019 	}
3020 
3021 	if (gn == gio->io_gang_tree)
3022 		ASSERT3U(gio->io_size, ==, offset);
3023 
3024 	if (zio != pio)
3025 		zio_nowait(zio);
3026 }
3027 
3028 static zio_t *
zio_gang_assemble(zio_t * zio)3029 zio_gang_assemble(zio_t *zio)
3030 {
3031 	blkptr_t *bp = zio->io_bp;
3032 
3033 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
3034 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3035 
3036 	zio->io_gang_leader = zio;
3037 
3038 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
3039 
3040 	return (zio);
3041 }
3042 
3043 static zio_t *
zio_gang_issue(zio_t * zio)3044 zio_gang_issue(zio_t *zio)
3045 {
3046 	blkptr_t *bp = zio->io_bp;
3047 
3048 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
3049 		return (NULL);
3050 	}
3051 
3052 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
3053 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3054 
3055 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
3056 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
3057 		    0);
3058 	else
3059 		zio_gang_tree_free(&zio->io_gang_tree);
3060 
3061 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3062 
3063 	return (zio);
3064 }
3065 
3066 static void
zio_gang_inherit_allocator(zio_t * pio,zio_t * cio)3067 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
3068 {
3069 	cio->io_allocator = pio->io_allocator;
3070 }
3071 
3072 static void
zio_write_gang_member_ready(zio_t * zio)3073 zio_write_gang_member_ready(zio_t *zio)
3074 {
3075 	zio_t *pio = zio_unique_parent(zio);
3076 	dva_t *cdva = zio->io_bp->blk_dva;
3077 	dva_t *pdva = pio->io_bp->blk_dva;
3078 	uint64_t asize;
3079 	zio_t *gio __maybe_unused = zio->io_gang_leader;
3080 
3081 	if (BP_IS_HOLE(zio->io_bp))
3082 		return;
3083 
3084 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
3085 
3086 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
3087 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
3088 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
3089 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
3090 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
3091 
3092 	mutex_enter(&pio->io_lock);
3093 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
3094 		ASSERT(DVA_GET_GANG(&pdva[d]));
3095 		asize = DVA_GET_ASIZE(&pdva[d]);
3096 		asize += DVA_GET_ASIZE(&cdva[d]);
3097 		DVA_SET_ASIZE(&pdva[d], asize);
3098 	}
3099 	mutex_exit(&pio->io_lock);
3100 }
3101 
3102 static void
zio_write_gang_done(zio_t * zio)3103 zio_write_gang_done(zio_t *zio)
3104 {
3105 	/*
3106 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
3107 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3108 	 * check for it here as it is cleared in zio_ready.
3109 	 */
3110 	if (zio->io_abd != NULL)
3111 		abd_free(zio->io_abd);
3112 }
3113 
3114 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)3115 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
3116 {
3117 	spa_t *spa = pio->io_spa;
3118 	blkptr_t *bp = pio->io_bp;
3119 	zio_t *gio = pio->io_gang_leader;
3120 	zio_t *zio;
3121 	zio_gang_node_t *gn, **gnpp;
3122 	zio_gbh_phys_t *gbh;
3123 	abd_t *gbh_abd;
3124 	uint64_t txg = pio->io_txg;
3125 	uint64_t resid = pio->io_size;
3126 	uint64_t lsize;
3127 	int copies = gio->io_prop.zp_copies;
3128 	zio_prop_t zp;
3129 	int error;
3130 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
3131 
3132 	/*
3133 	 * If one copy was requested, store 2 copies of the GBH, so that we
3134 	 * can still traverse all the data (e.g. to free or scrub) even if a
3135 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
3136 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
3137 	 */
3138 	int gbh_copies = copies;
3139 	if (gbh_copies == 1) {
3140 		gbh_copies = MIN(2, spa_max_replication(spa));
3141 	}
3142 
3143 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
3144 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
3145 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3146 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3147 		ASSERT(has_data);
3148 
3149 		flags |= METASLAB_ASYNC_ALLOC;
3150 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3151 		    mca_alloc_slots, pio));
3152 
3153 		/*
3154 		 * The logical zio has already placed a reservation for
3155 		 * 'copies' allocation slots but gang blocks may require
3156 		 * additional copies. These additional copies
3157 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
3158 		 * since metaslab_class_throttle_reserve() always allows
3159 		 * additional reservations for gang blocks.
3160 		 */
3161 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3162 		    pio->io_allocator, pio, flags));
3163 	}
3164 
3165 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3166 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3167 	    &pio->io_alloc_list, pio, pio->io_allocator);
3168 	if (error) {
3169 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3170 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3171 			ASSERT(has_data);
3172 
3173 			/*
3174 			 * If we failed to allocate the gang block header then
3175 			 * we remove any additional allocation reservations that
3176 			 * we placed here. The original reservation will
3177 			 * be removed when the logical I/O goes to the ready
3178 			 * stage.
3179 			 */
3180 			metaslab_class_throttle_unreserve(mc,
3181 			    gbh_copies - copies, pio->io_allocator, pio);
3182 		}
3183 
3184 		pio->io_error = error;
3185 		return (pio);
3186 	}
3187 
3188 	if (pio == gio) {
3189 		gnpp = &gio->io_gang_tree;
3190 	} else {
3191 		gnpp = pio->io_private;
3192 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3193 	}
3194 
3195 	gn = zio_gang_node_alloc(gnpp);
3196 	gbh = gn->gn_gbh;
3197 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
3198 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3199 
3200 	/*
3201 	 * Create the gang header.
3202 	 */
3203 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3204 	    zio_write_gang_done, NULL, pio->io_priority,
3205 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3206 
3207 	zio_gang_inherit_allocator(pio, zio);
3208 
3209 	/*
3210 	 * Create and nowait the gang children.
3211 	 */
3212 	for (int g = 0; resid != 0; resid -= lsize, g++) {
3213 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3214 		    SPA_MINBLOCKSIZE);
3215 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3216 
3217 		zp.zp_checksum = gio->io_prop.zp_checksum;
3218 		zp.zp_compress = ZIO_COMPRESS_OFF;
3219 		zp.zp_complevel = gio->io_prop.zp_complevel;
3220 		zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3221 		zp.zp_level = 0;
3222 		zp.zp_copies = gio->io_prop.zp_copies;
3223 		zp.zp_dedup = B_FALSE;
3224 		zp.zp_dedup_verify = B_FALSE;
3225 		zp.zp_nopwrite = B_FALSE;
3226 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3227 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3228 		zp.zp_direct_write = B_FALSE;
3229 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3230 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3231 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3232 
3233 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3234 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3235 		    resid) : NULL, lsize, lsize, &zp,
3236 		    zio_write_gang_member_ready, NULL,
3237 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3238 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3239 
3240 		zio_gang_inherit_allocator(zio, cio);
3241 
3242 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3243 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3244 			ASSERT(has_data);
3245 
3246 			/*
3247 			 * Gang children won't throttle but we should
3248 			 * account for their work, so reserve an allocation
3249 			 * slot for them here.
3250 			 */
3251 			VERIFY(metaslab_class_throttle_reserve(mc,
3252 			    zp.zp_copies, cio->io_allocator, cio, flags));
3253 		}
3254 		zio_nowait(cio);
3255 	}
3256 
3257 	/*
3258 	 * Set pio's pipeline to just wait for zio to finish.
3259 	 */
3260 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3261 
3262 	zio_nowait(zio);
3263 
3264 	return (pio);
3265 }
3266 
3267 /*
3268  * The zio_nop_write stage in the pipeline determines if allocating a
3269  * new bp is necessary.  The nopwrite feature can handle writes in
3270  * either syncing or open context (i.e. zil writes) and as a result is
3271  * mutually exclusive with dedup.
3272  *
3273  * By leveraging a cryptographically secure checksum, such as SHA256, we
3274  * can compare the checksums of the new data and the old to determine if
3275  * allocating a new block is required.  Note that our requirements for
3276  * cryptographic strength are fairly weak: there can't be any accidental
3277  * hash collisions, but we don't need to be secure against intentional
3278  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3279  * to write the file to begin with, and triggering an incorrect (hash
3280  * collision) nopwrite is no worse than simply writing to the file.
3281  * That said, there are no known attacks against the checksum algorithms
3282  * used for nopwrite, assuming that the salt and the checksums
3283  * themselves remain secret.
3284  */
3285 static zio_t *
zio_nop_write(zio_t * zio)3286 zio_nop_write(zio_t *zio)
3287 {
3288 	blkptr_t *bp = zio->io_bp;
3289 	blkptr_t *bp_orig = &zio->io_bp_orig;
3290 	zio_prop_t *zp = &zio->io_prop;
3291 
3292 	ASSERT(BP_IS_HOLE(bp));
3293 	ASSERT(BP_GET_LEVEL(bp) == 0);
3294 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3295 	ASSERT(zp->zp_nopwrite);
3296 	ASSERT(!zp->zp_dedup);
3297 	ASSERT(zio->io_bp_override == NULL);
3298 	ASSERT(IO_IS_ALLOCATING(zio));
3299 
3300 	/*
3301 	 * Check to see if the original bp and the new bp have matching
3302 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3303 	 * If they don't then just continue with the pipeline which will
3304 	 * allocate a new bp.
3305 	 */
3306 	if (BP_IS_HOLE(bp_orig) ||
3307 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3308 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3309 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3310 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3311 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3312 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3313 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3314 		return (zio);
3315 
3316 	/*
3317 	 * If the checksums match then reset the pipeline so that we
3318 	 * avoid allocating a new bp and issuing any I/O.
3319 	 */
3320 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3321 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3322 		    ZCHECKSUM_FLAG_NOPWRITE);
3323 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3324 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3325 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3326 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3327 
3328 		/*
3329 		 * If we're overwriting a block that is currently on an
3330 		 * indirect vdev, then ignore the nopwrite request and
3331 		 * allow a new block to be allocated on a concrete vdev.
3332 		 */
3333 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3334 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3335 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3336 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3337 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3338 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3339 				return (zio);
3340 			}
3341 		}
3342 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3343 
3344 		*bp = *bp_orig;
3345 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3346 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3347 	}
3348 
3349 	return (zio);
3350 }
3351 
3352 /*
3353  * ==========================================================================
3354  * Block Reference Table
3355  * ==========================================================================
3356  */
3357 static zio_t *
zio_brt_free(zio_t * zio)3358 zio_brt_free(zio_t *zio)
3359 {
3360 	blkptr_t *bp;
3361 
3362 	bp = zio->io_bp;
3363 
3364 	if (BP_GET_LEVEL(bp) > 0 ||
3365 	    BP_IS_METADATA(bp) ||
3366 	    !brt_maybe_exists(zio->io_spa, bp)) {
3367 		return (zio);
3368 	}
3369 
3370 	if (!brt_entry_decref(zio->io_spa, bp)) {
3371 		/*
3372 		 * This isn't the last reference, so we cannot free
3373 		 * the data yet.
3374 		 */
3375 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3376 	}
3377 
3378 	return (zio);
3379 }
3380 
3381 /*
3382  * ==========================================================================
3383  * Dedup
3384  * ==========================================================================
3385  */
3386 static void
zio_ddt_child_read_done(zio_t * zio)3387 zio_ddt_child_read_done(zio_t *zio)
3388 {
3389 	blkptr_t *bp = zio->io_bp;
3390 	ddt_t *ddt;
3391 	ddt_entry_t *dde = zio->io_private;
3392 	zio_t *pio = zio_unique_parent(zio);
3393 
3394 	mutex_enter(&pio->io_lock);
3395 	ddt = ddt_select(zio->io_spa, bp);
3396 
3397 	if (zio->io_error == 0) {
3398 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3399 		/* this phys variant doesn't need repair */
3400 		ddt_phys_clear(dde->dde_phys, v);
3401 	}
3402 
3403 	if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL)
3404 		dde->dde_io->dde_repair_abd = zio->io_abd;
3405 	else
3406 		abd_free(zio->io_abd);
3407 	mutex_exit(&pio->io_lock);
3408 }
3409 
3410 static zio_t *
zio_ddt_read_start(zio_t * zio)3411 zio_ddt_read_start(zio_t *zio)
3412 {
3413 	blkptr_t *bp = zio->io_bp;
3414 
3415 	ASSERT(BP_GET_DEDUP(bp));
3416 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3417 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3418 
3419 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3420 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3421 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3422 		ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp);
3423 		ddt_univ_phys_t *ddp = dde->dde_phys;
3424 		blkptr_t blk;
3425 
3426 		ASSERT(zio->io_vsd == NULL);
3427 		zio->io_vsd = dde;
3428 
3429 		if (v_self == DDT_PHYS_NONE)
3430 			return (zio);
3431 
3432 		/* issue I/O for the other copies */
3433 		for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3434 			ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3435 
3436 			if (ddt_phys_birth(ddp, v) == 0 || v == v_self)
3437 				continue;
3438 
3439 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key,
3440 			    ddp, v, &blk);
3441 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3442 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3443 			    zio->io_size, zio_ddt_child_read_done, dde,
3444 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3445 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3446 		}
3447 		return (zio);
3448 	}
3449 
3450 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3451 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3452 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3453 
3454 	return (zio);
3455 }
3456 
3457 static zio_t *
zio_ddt_read_done(zio_t * zio)3458 zio_ddt_read_done(zio_t *zio)
3459 {
3460 	blkptr_t *bp = zio->io_bp;
3461 
3462 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3463 		return (NULL);
3464 	}
3465 
3466 	ASSERT(BP_GET_DEDUP(bp));
3467 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3468 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3469 
3470 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3471 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3472 		ddt_entry_t *dde = zio->io_vsd;
3473 		if (ddt == NULL) {
3474 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3475 			return (zio);
3476 		}
3477 		if (dde == NULL) {
3478 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3479 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3480 			return (NULL);
3481 		}
3482 		if (dde->dde_io->dde_repair_abd != NULL) {
3483 			abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd,
3484 			    zio->io_size);
3485 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3486 		}
3487 		ddt_repair_done(ddt, dde);
3488 		zio->io_vsd = NULL;
3489 	}
3490 
3491 	ASSERT(zio->io_vsd == NULL);
3492 
3493 	return (zio);
3494 }
3495 
3496 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3497 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3498 {
3499 	spa_t *spa = zio->io_spa;
3500 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3501 
3502 	ASSERT(!(zio->io_bp_override && do_raw));
3503 
3504 	/*
3505 	 * Note: we compare the original data, not the transformed data,
3506 	 * because when zio->io_bp is an override bp, we will not have
3507 	 * pushed the I/O transforms.  That's an important optimization
3508 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3509 	 * However, we should never get a raw, override zio so in these
3510 	 * cases we can compare the io_abd directly. This is useful because
3511 	 * it allows us to do dedup verification even if we don't have access
3512 	 * to the original data (for instance, if the encryption keys aren't
3513 	 * loaded).
3514 	 */
3515 
3516 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3517 		if (DDT_PHYS_IS_DITTO(ddt, p))
3518 			continue;
3519 
3520 		if (dde->dde_io == NULL)
3521 			continue;
3522 
3523 		zio_t *lio = dde->dde_io->dde_lead_zio[p];
3524 		if (lio == NULL)
3525 			continue;
3526 
3527 		if (do_raw)
3528 			return (lio->io_size != zio->io_size ||
3529 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3530 
3531 		return (lio->io_orig_size != zio->io_orig_size ||
3532 		    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3533 	}
3534 
3535 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3536 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3537 		uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v);
3538 
3539 		if (phys_birth != 0 && do_raw) {
3540 			blkptr_t blk = *zio->io_bp;
3541 			uint64_t psize;
3542 			abd_t *tmpabd;
3543 			int error;
3544 
3545 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3546 			psize = BP_GET_PSIZE(&blk);
3547 
3548 			if (psize != zio->io_size)
3549 				return (B_TRUE);
3550 
3551 			ddt_exit(ddt);
3552 
3553 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3554 
3555 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3556 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3557 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3558 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3559 
3560 			if (error == 0) {
3561 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3562 					error = SET_ERROR(ENOENT);
3563 			}
3564 
3565 			abd_free(tmpabd);
3566 			ddt_enter(ddt);
3567 			return (error != 0);
3568 		} else if (phys_birth != 0) {
3569 			arc_buf_t *abuf = NULL;
3570 			arc_flags_t aflags = ARC_FLAG_WAIT;
3571 			blkptr_t blk = *zio->io_bp;
3572 			int error;
3573 
3574 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3575 
3576 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3577 				return (B_TRUE);
3578 
3579 			ddt_exit(ddt);
3580 
3581 			error = arc_read(NULL, spa, &blk,
3582 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3583 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3584 			    &aflags, &zio->io_bookmark);
3585 
3586 			if (error == 0) {
3587 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3588 				    zio->io_orig_size) != 0)
3589 					error = SET_ERROR(ENOENT);
3590 				arc_buf_destroy(abuf, &abuf);
3591 			}
3592 
3593 			ddt_enter(ddt);
3594 			return (error != 0);
3595 		}
3596 	}
3597 
3598 	return (B_FALSE);
3599 }
3600 
3601 static void
zio_ddt_child_write_done(zio_t * zio)3602 zio_ddt_child_write_done(zio_t *zio)
3603 {
3604 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3605 	ddt_entry_t *dde = zio->io_private;
3606 
3607 	zio_link_t *zl = NULL;
3608 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3609 
3610 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3611 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3612 	ddt_univ_phys_t *ddp = dde->dde_phys;
3613 
3614 	ddt_enter(ddt);
3615 
3616 	/* we're the lead, so once we're done there's no one else outstanding */
3617 	if (dde->dde_io->dde_lead_zio[p] == zio)
3618 		dde->dde_io->dde_lead_zio[p] = NULL;
3619 
3620 	ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys;
3621 
3622 	if (zio->io_error != 0) {
3623 		/*
3624 		 * The write failed, so we're about to abort the entire IO
3625 		 * chain. We need to revert the entry back to what it was at
3626 		 * the last time it was successfully extended.
3627 		 */
3628 		ddt_phys_copy(ddp, orig, v);
3629 		ddt_phys_clear(orig, v);
3630 
3631 		ddt_exit(ddt);
3632 		return;
3633 	}
3634 
3635 	/*
3636 	 * We've successfully added new DVAs to the entry. Clear the saved
3637 	 * state or, if there's still outstanding IO, remember it so we can
3638 	 * revert to a known good state if that IO fails.
3639 	 */
3640 	if (dde->dde_io->dde_lead_zio[p] == NULL)
3641 		ddt_phys_clear(orig, v);
3642 	else
3643 		ddt_phys_copy(orig, ddp, v);
3644 
3645 	/*
3646 	 * Add references for all dedup writes that were waiting on the
3647 	 * physical one, skipping any other physical writes that are waiting.
3648 	 */
3649 	zio_t *pio;
3650 	zl = NULL;
3651 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3652 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3653 			ddt_phys_addref(ddp, v);
3654 	}
3655 
3656 	ddt_exit(ddt);
3657 }
3658 
3659 static void
zio_ddt_child_write_ready(zio_t * zio)3660 zio_ddt_child_write_ready(zio_t *zio)
3661 {
3662 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3663 	ddt_entry_t *dde = zio->io_private;
3664 
3665 	zio_link_t *zl = NULL;
3666 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3667 
3668 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3669 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3670 
3671 	if (zio->io_error != 0)
3672 		return;
3673 
3674 	ddt_enter(ddt);
3675 
3676 	ddt_phys_extend(dde->dde_phys, v, zio->io_bp);
3677 
3678 	zio_t *pio;
3679 	zl = NULL;
3680 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3681 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3682 			ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg);
3683 	}
3684 
3685 	ddt_exit(ddt);
3686 }
3687 
3688 static zio_t *
zio_ddt_write(zio_t * zio)3689 zio_ddt_write(zio_t *zio)
3690 {
3691 	spa_t *spa = zio->io_spa;
3692 	blkptr_t *bp = zio->io_bp;
3693 	uint64_t txg = zio->io_txg;
3694 	zio_prop_t *zp = &zio->io_prop;
3695 	ddt_t *ddt = ddt_select(spa, bp);
3696 	ddt_entry_t *dde;
3697 
3698 	ASSERT(BP_GET_DEDUP(bp));
3699 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3700 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3701 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3702 	/*
3703 	 * Deduplication will not take place for Direct I/O writes. The
3704 	 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3705 	 * place in the open-context. Direct I/O write can not attempt to
3706 	 * modify the ddt_tree while issuing out a write.
3707 	 */
3708 	ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE);
3709 
3710 	ddt_enter(ddt);
3711 	dde = ddt_lookup(ddt, bp);
3712 	if (dde == NULL) {
3713 		/* DDT size is over its quota so no new entries */
3714 		zp->zp_dedup = B_FALSE;
3715 		BP_SET_DEDUP(bp, B_FALSE);
3716 		if (zio->io_bp_override == NULL)
3717 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
3718 		ddt_exit(ddt);
3719 		return (zio);
3720 	}
3721 
3722 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3723 		/*
3724 		 * If we're using a weak checksum, upgrade to a strong checksum
3725 		 * and try again.  If we're already using a strong checksum,
3726 		 * we can't resolve it, so just convert to an ordinary write.
3727 		 * (And automatically e-mail a paper to Nature?)
3728 		 */
3729 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3730 		    ZCHECKSUM_FLAG_DEDUP)) {
3731 			zp->zp_checksum = spa_dedup_checksum(spa);
3732 			zio_pop_transforms(zio);
3733 			zio->io_stage = ZIO_STAGE_OPEN;
3734 			BP_ZERO(bp);
3735 		} else {
3736 			zp->zp_dedup = B_FALSE;
3737 			BP_SET_DEDUP(bp, B_FALSE);
3738 		}
3739 		ASSERT(!BP_GET_DEDUP(bp));
3740 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3741 		ddt_exit(ddt);
3742 		return (zio);
3743 	}
3744 
3745 	int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies);
3746 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3747 	ddt_univ_phys_t *ddp = dde->dde_phys;
3748 
3749 	/*
3750 	 * In the common cases, at this point we have a regular BP with no
3751 	 * allocated DVAs, and the corresponding DDT entry for its checksum.
3752 	 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3753 	 * requirement.
3754 	 *
3755 	 * One of three things needs to happen to fulfill this:
3756 	 *
3757 	 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3758 	 *   them out of the entry and return;
3759 	 *
3760 	 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3761 	 *   issue the write as normal so that DVAs can be allocated and the
3762 	 *   data land on disk. We then copy the DVAs into the DDT entry on
3763 	 *   return.
3764 	 *
3765 	 * - if the DDT entry has some DVAs, but too few, we have to issue the
3766 	 *   write, adjusted to have allocate fewer copies. When it returns, we
3767 	 *   add the new DVAs to the DDT entry, and update the BP to have the
3768 	 *   full amount it originally requested.
3769 	 *
3770 	 * In all cases, if there's already a writing IO in flight, we need to
3771 	 * defer the action until after the write is done. If our action is to
3772 	 * write, we need to adjust our request for additional DVAs to match
3773 	 * what will be in the DDT entry after it completes. In this way every
3774 	 * IO can be guaranteed to recieve enough DVAs simply by joining the
3775 	 * end of the chain and letting the sequence play out.
3776 	 */
3777 
3778 	/*
3779 	 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3780 	 * the third one as normal.
3781 	 */
3782 	int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp));
3783 	IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0);
3784 
3785 	/* Number of DVAs requested bya the IO. */
3786 	uint8_t need_dvas = zp->zp_copies;
3787 
3788 	/*
3789 	 * What we do next depends on whether or not there's IO outstanding that
3790 	 * will update this entry.
3791 	 */
3792 	if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) {
3793 		/*
3794 		 * No IO outstanding, so we only need to worry about ourselves.
3795 		 */
3796 
3797 		/*
3798 		 * Override BPs bring their own DVAs and their own problems.
3799 		 */
3800 		if (zio->io_bp_override) {
3801 			/*
3802 			 * For a brand-new entry, all the work has been done
3803 			 * for us, and we can just fill it out from the provided
3804 			 * block and leave.
3805 			 */
3806 			if (have_dvas == 0) {
3807 				ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3808 				ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3809 				ddt_phys_extend(ddp, v, bp);
3810 				ddt_phys_addref(ddp, v);
3811 				ddt_exit(ddt);
3812 				return (zio);
3813 			}
3814 
3815 			/*
3816 			 * If we already have this entry, then we want to treat
3817 			 * it like a regular write. To do this we just wipe
3818 			 * them out and proceed like a regular write.
3819 			 *
3820 			 * Even if there are some DVAs in the entry, we still
3821 			 * have to clear them out. We can't use them to fill
3822 			 * out the dedup entry, as they are all referenced
3823 			 * together by a bp already on disk, and will be freed
3824 			 * as a group.
3825 			 */
3826 			BP_ZERO_DVAS(bp);
3827 			BP_SET_BIRTH(bp, 0, 0);
3828 		}
3829 
3830 		/*
3831 		 * If there are enough DVAs in the entry to service our request,
3832 		 * then we can just use them as-is.
3833 		 */
3834 		if (have_dvas >= need_dvas) {
3835 			ddt_bp_fill(ddp, v, bp, txg);
3836 			ddt_phys_addref(ddp, v);
3837 			ddt_exit(ddt);
3838 			return (zio);
3839 		}
3840 
3841 		/*
3842 		 * Otherwise, we have to issue IO to fill the entry up to the
3843 		 * amount we need.
3844 		 */
3845 		need_dvas -= have_dvas;
3846 	} else {
3847 		/*
3848 		 * There's a write in-flight. If there's already enough DVAs on
3849 		 * the entry, then either there were already enough to start
3850 		 * with, or the in-flight IO is between READY and DONE, and so
3851 		 * has extended the entry with new DVAs. Either way, we don't
3852 		 * need to do anything, we can just slot in behind it.
3853 		 */
3854 
3855 		if (zio->io_bp_override) {
3856 			/*
3857 			 * If there's a write out, then we're soon going to
3858 			 * have our own copies of this block, so clear out the
3859 			 * override block and treat it as a regular dedup
3860 			 * write. See comment above.
3861 			 */
3862 			BP_ZERO_DVAS(bp);
3863 			BP_SET_BIRTH(bp, 0, 0);
3864 		}
3865 
3866 		if (have_dvas >= need_dvas) {
3867 			/*
3868 			 * A minor point: there might already be enough
3869 			 * committed DVAs in the entry to service our request,
3870 			 * but we don't know which are completed and which are
3871 			 * allocated but not yet written. In this case, should
3872 			 * the IO for the new DVAs fail, we will be on the end
3873 			 * of the IO chain and will also recieve an error, even
3874 			 * though our request could have been serviced.
3875 			 *
3876 			 * This is an extremely rare case, as it requires the
3877 			 * original block to be copied with a request for a
3878 			 * larger number of DVAs, then copied again requesting
3879 			 * the same (or already fulfilled) number of DVAs while
3880 			 * the first request is active, and then that first
3881 			 * request errors. In return, the logic required to
3882 			 * catch and handle it is complex. For now, I'm just
3883 			 * not going to bother with it.
3884 			 */
3885 
3886 			/*
3887 			 * We always fill the bp here as we may have arrived
3888 			 * after the in-flight write has passed READY, and so
3889 			 * missed out.
3890 			 */
3891 			ddt_bp_fill(ddp, v, bp, txg);
3892 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3893 			ddt_exit(ddt);
3894 			return (zio);
3895 		}
3896 
3897 		/*
3898 		 * There's not enough in the entry yet, so we need to look at
3899 		 * the write in-flight and see how many DVAs it will have once
3900 		 * it completes.
3901 		 *
3902 		 * The in-flight write has potentially had its copies request
3903 		 * reduced (if we're filling out an existing entry), so we need
3904 		 * to reach in and get the original write to find out what it is
3905 		 * expecting.
3906 		 *
3907 		 * Note that the parent of the lead zio will always have the
3908 		 * highest zp_copies of any zio in the chain, because ones that
3909 		 * can be serviced without additional IO are always added to
3910 		 * the back of the chain.
3911 		 */
3912 		zio_link_t *zl = NULL;
3913 		zio_t *pio =
3914 		    zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl);
3915 		ASSERT(pio);
3916 		uint8_t parent_dvas = pio->io_prop.zp_copies;
3917 
3918 		if (parent_dvas >= need_dvas) {
3919 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3920 			ddt_exit(ddt);
3921 			return (zio);
3922 		}
3923 
3924 		/*
3925 		 * Still not enough, so we will need to issue to get the
3926 		 * shortfall.
3927 		 */
3928 		need_dvas -= parent_dvas;
3929 	}
3930 
3931 	/*
3932 	 * We need to write. We will create a new write with the copies
3933 	 * property adjusted to match the number of DVAs we need to need to
3934 	 * grow the DDT entry by to satisfy the request.
3935 	 */
3936 	zio_prop_t czp = *zp;
3937 	czp.zp_copies = need_dvas;
3938 	zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3939 	    zio->io_orig_size, zio->io_orig_size, &czp,
3940 	    zio_ddt_child_write_ready, NULL,
3941 	    zio_ddt_child_write_done, dde, zio->io_priority,
3942 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3943 
3944 	zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3945 
3946 	/*
3947 	 * We are the new lead zio, because our parent has the highest
3948 	 * zp_copies that has been requested for this entry so far.
3949 	 */
3950 	ddt_alloc_entry_io(dde);
3951 	if (dde->dde_io->dde_lead_zio[p] == NULL) {
3952 		/*
3953 		 * First time out, take a copy of the stable entry to revert
3954 		 * to if there's an error (see zio_ddt_child_write_done())
3955 		 */
3956 		ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v);
3957 	} else {
3958 		/*
3959 		 * Make the existing chain our child, because it cannot
3960 		 * complete until we have.
3961 		 */
3962 		zio_add_child(cio, dde->dde_io->dde_lead_zio[p]);
3963 	}
3964 	dde->dde_io->dde_lead_zio[p] = cio;
3965 
3966 	ddt_exit(ddt);
3967 
3968 	zio_nowait(cio);
3969 
3970 	return (zio);
3971 }
3972 
3973 static ddt_entry_t *freedde; /* for debugging */
3974 
3975 static zio_t *
zio_ddt_free(zio_t * zio)3976 zio_ddt_free(zio_t *zio)
3977 {
3978 	spa_t *spa = zio->io_spa;
3979 	blkptr_t *bp = zio->io_bp;
3980 	ddt_t *ddt = ddt_select(spa, bp);
3981 	ddt_entry_t *dde = NULL;
3982 
3983 	ASSERT(BP_GET_DEDUP(bp));
3984 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3985 
3986 	ddt_enter(ddt);
3987 	freedde = dde = ddt_lookup(ddt, bp);
3988 	if (dde) {
3989 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3990 		if (v != DDT_PHYS_NONE)
3991 			ddt_phys_decref(dde->dde_phys, v);
3992 	}
3993 	ddt_exit(ddt);
3994 
3995 	/*
3996 	 * When no entry was found, it must have been pruned,
3997 	 * so we can free it now instead of decrementing the
3998 	 * refcount in the DDT.
3999 	 */
4000 	if (!dde) {
4001 		BP_SET_DEDUP(bp, 0);
4002 		zio->io_pipeline |= ZIO_STAGE_DVA_FREE;
4003 	}
4004 
4005 	return (zio);
4006 }
4007 
4008 /*
4009  * ==========================================================================
4010  * Allocate and free blocks
4011  * ==========================================================================
4012  */
4013 
4014 static zio_t *
zio_io_to_allocate(spa_t * spa,int allocator)4015 zio_io_to_allocate(spa_t *spa, int allocator)
4016 {
4017 	zio_t *zio;
4018 
4019 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
4020 
4021 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
4022 	if (zio == NULL)
4023 		return (NULL);
4024 
4025 	ASSERT(IO_IS_ALLOCATING(zio));
4026 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4027 
4028 	/*
4029 	 * Try to place a reservation for this zio. If we're unable to
4030 	 * reserve then we throttle.
4031 	 */
4032 	ASSERT3U(zio->io_allocator, ==, allocator);
4033 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
4034 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
4035 		return (NULL);
4036 	}
4037 
4038 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
4039 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
4040 
4041 	return (zio);
4042 }
4043 
4044 static zio_t *
zio_dva_throttle(zio_t * zio)4045 zio_dva_throttle(zio_t *zio)
4046 {
4047 	spa_t *spa = zio->io_spa;
4048 	zio_t *nio;
4049 	metaslab_class_t *mc;
4050 
4051 	/* locate an appropriate allocation class */
4052 	mc = spa_preferred_class(spa, zio);
4053 
4054 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
4055 	    !mc->mc_alloc_throttle_enabled ||
4056 	    zio->io_child_type == ZIO_CHILD_GANG ||
4057 	    zio->io_flags & ZIO_FLAG_NODATA) {
4058 		return (zio);
4059 	}
4060 
4061 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4062 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4063 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4064 	ASSERT3U(zio->io_queued_timestamp, >, 0);
4065 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
4066 
4067 	int allocator = zio->io_allocator;
4068 	zio->io_metaslab_class = mc;
4069 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
4070 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
4071 	nio = zio_io_to_allocate(spa, allocator);
4072 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
4073 	return (nio);
4074 }
4075 
4076 static void
zio_allocate_dispatch(spa_t * spa,int allocator)4077 zio_allocate_dispatch(spa_t *spa, int allocator)
4078 {
4079 	zio_t *zio;
4080 
4081 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
4082 	zio = zio_io_to_allocate(spa, allocator);
4083 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
4084 	if (zio == NULL)
4085 		return;
4086 
4087 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
4088 	ASSERT0(zio->io_error);
4089 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
4090 }
4091 
4092 static zio_t *
zio_dva_allocate(zio_t * zio)4093 zio_dva_allocate(zio_t *zio)
4094 {
4095 	spa_t *spa = zio->io_spa;
4096 	metaslab_class_t *mc;
4097 	blkptr_t *bp = zio->io_bp;
4098 	int error;
4099 	int flags = 0;
4100 
4101 	if (zio->io_gang_leader == NULL) {
4102 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4103 		zio->io_gang_leader = zio;
4104 	}
4105 
4106 	ASSERT(BP_IS_HOLE(bp));
4107 	ASSERT0(BP_GET_NDVAS(bp));
4108 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
4109 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
4110 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
4111 
4112 	if (zio->io_flags & ZIO_FLAG_NODATA)
4113 		flags |= METASLAB_DONT_THROTTLE;
4114 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
4115 		flags |= METASLAB_GANG_CHILD;
4116 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
4117 		flags |= METASLAB_ASYNC_ALLOC;
4118 
4119 	/*
4120 	 * if not already chosen, locate an appropriate allocation class
4121 	 */
4122 	mc = zio->io_metaslab_class;
4123 	if (mc == NULL) {
4124 		mc = spa_preferred_class(spa, zio);
4125 		zio->io_metaslab_class = mc;
4126 	}
4127 	ZIOSTAT_BUMP(ziostat_total_allocations);
4128 
4129 	/*
4130 	 * Try allocating the block in the usual metaslab class.
4131 	 * If that's full, allocate it in the normal class.
4132 	 * If that's full, allocate as a gang block,
4133 	 * and if all are full, the allocation fails (which shouldn't happen).
4134 	 *
4135 	 * Note that we do not fall back on embedded slog (ZIL) space, to
4136 	 * preserve unfragmented slog space, which is critical for decent
4137 	 * sync write performance.  If a log allocation fails, we will fall
4138 	 * back to spa_sync() which is abysmal for performance.
4139 	 */
4140 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4141 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
4142 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4143 	    &zio->io_alloc_list, zio, zio->io_allocator);
4144 
4145 	/*
4146 	 * Fallback to normal class when an alloc class is full
4147 	 */
4148 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
4149 		/*
4150 		 * When the dedup or special class is spilling into the  normal
4151 		 * class, there can still be significant space available due
4152 		 * to deferred frees that are in-flight.  We track the txg when
4153 		 * this occurred and back off adding new DDT entries for a few
4154 		 * txgs to allow the free blocks to be processed.
4155 		 */
4156 		if ((mc == spa_dedup_class(spa) || (spa_special_has_ddt(spa) &&
4157 		    mc == spa_special_class(spa))) &&
4158 		    spa->spa_dedup_class_full_txg != zio->io_txg) {
4159 			spa->spa_dedup_class_full_txg = zio->io_txg;
4160 			zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, "
4161 			    "%llu allocated of %llu",
4162 			    spa_name(spa), (int)zio->io_txg,
4163 			    mc == spa_dedup_class(spa) ? "dedup" : "special",
4164 			    (int)zio->io_size,
4165 			    (u_longlong_t)metaslab_class_get_alloc(mc),
4166 			    (u_longlong_t)metaslab_class_get_space(mc));
4167 		}
4168 
4169 		/*
4170 		 * If throttling, transfer reservation over to normal class.
4171 		 * The io_allocator slot can remain the same even though we
4172 		 * are switching classes.
4173 		 */
4174 		if (mc->mc_alloc_throttle_enabled &&
4175 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
4176 			metaslab_class_throttle_unreserve(mc,
4177 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
4178 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
4179 
4180 			VERIFY(metaslab_class_throttle_reserve(
4181 			    spa_normal_class(spa),
4182 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
4183 			    flags | METASLAB_MUST_RESERVE));
4184 		}
4185 		zio->io_metaslab_class = mc = spa_normal_class(spa);
4186 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4187 			zfs_dbgmsg("%s: metaslab allocation failure, "
4188 			    "trying normal class: zio %px, size %llu, error %d",
4189 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4190 			    error);
4191 		}
4192 
4193 		ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4194 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
4195 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4196 		    &zio->io_alloc_list, zio, zio->io_allocator);
4197 	}
4198 
4199 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
4200 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4201 			zfs_dbgmsg("%s: metaslab allocation failure, "
4202 			    "trying ganging: zio %px, size %llu, error %d",
4203 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4204 			    error);
4205 		}
4206 		ZIOSTAT_BUMP(ziostat_gang_writes);
4207 		if (flags & METASLAB_GANG_CHILD)
4208 			ZIOSTAT_BUMP(ziostat_gang_multilevel);
4209 		return (zio_write_gang_block(zio, mc));
4210 	}
4211 	if (error != 0) {
4212 		if (error != ENOSPC ||
4213 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
4214 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4215 			    "size %llu, error %d",
4216 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4217 			    error);
4218 		}
4219 		zio->io_error = error;
4220 	}
4221 
4222 	return (zio);
4223 }
4224 
4225 static zio_t *
zio_dva_free(zio_t * zio)4226 zio_dva_free(zio_t *zio)
4227 {
4228 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
4229 
4230 	return (zio);
4231 }
4232 
4233 static zio_t *
zio_dva_claim(zio_t * zio)4234 zio_dva_claim(zio_t *zio)
4235 {
4236 	int error;
4237 
4238 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
4239 	if (error)
4240 		zio->io_error = error;
4241 
4242 	return (zio);
4243 }
4244 
4245 /*
4246  * Undo an allocation.  This is used by zio_done() when an I/O fails
4247  * and we want to give back the block we just allocated.
4248  * This handles both normal blocks and gang blocks.
4249  */
4250 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)4251 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
4252 {
4253 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
4254 	ASSERT(zio->io_bp_override == NULL);
4255 
4256 	if (!BP_IS_HOLE(bp)) {
4257 		metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
4258 		    B_TRUE);
4259 	}
4260 
4261 	if (gn != NULL) {
4262 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
4263 			zio_dva_unallocate(zio, gn->gn_child[g],
4264 			    &gn->gn_gbh->zg_blkptr[g]);
4265 		}
4266 	}
4267 }
4268 
4269 /*
4270  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
4271  */
4272 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)4273 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
4274     uint64_t size, boolean_t *slog)
4275 {
4276 	int error = 1;
4277 	zio_alloc_list_t io_alloc_list;
4278 
4279 	ASSERT(txg > spa_syncing_txg(spa));
4280 
4281 	metaslab_trace_init(&io_alloc_list);
4282 
4283 	/*
4284 	 * Block pointer fields are useful to metaslabs for stats and debugging.
4285 	 * Fill in the obvious ones before calling into metaslab_alloc().
4286 	 */
4287 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4288 	BP_SET_PSIZE(new_bp, size);
4289 	BP_SET_LEVEL(new_bp, 0);
4290 
4291 	/*
4292 	 * When allocating a zil block, we don't have information about
4293 	 * the final destination of the block except the objset it's part
4294 	 * of, so we just hash the objset ID to pick the allocator to get
4295 	 * some parallelism.
4296 	 */
4297 	int flags = METASLAB_ZIL;
4298 	int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object)
4299 	    % spa->spa_alloc_count;
4300 	ZIOSTAT_BUMP(ziostat_total_allocations);
4301 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
4302 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
4303 	*slog = (error == 0);
4304 	if (error != 0) {
4305 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
4306 		    new_bp, 1, txg, NULL, flags,
4307 		    &io_alloc_list, NULL, allocator);
4308 	}
4309 	if (error != 0) {
4310 		ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4311 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
4312 		    new_bp, 1, txg, NULL, flags,
4313 		    &io_alloc_list, NULL, allocator);
4314 	}
4315 	metaslab_trace_fini(&io_alloc_list);
4316 
4317 	if (error == 0) {
4318 		BP_SET_LSIZE(new_bp, size);
4319 		BP_SET_PSIZE(new_bp, size);
4320 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
4321 		BP_SET_CHECKSUM(new_bp,
4322 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
4323 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
4324 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4325 		BP_SET_LEVEL(new_bp, 0);
4326 		BP_SET_DEDUP(new_bp, 0);
4327 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
4328 
4329 		/*
4330 		 * encrypted blocks will require an IV and salt. We generate
4331 		 * these now since we will not be rewriting the bp at
4332 		 * rewrite time.
4333 		 */
4334 		if (os->os_encrypted) {
4335 			uint8_t iv[ZIO_DATA_IV_LEN];
4336 			uint8_t salt[ZIO_DATA_SALT_LEN];
4337 
4338 			BP_SET_CRYPT(new_bp, B_TRUE);
4339 			VERIFY0(spa_crypt_get_salt(spa,
4340 			    dmu_objset_id(os), salt));
4341 			VERIFY0(zio_crypt_generate_iv(iv));
4342 
4343 			zio_crypt_encode_params_bp(new_bp, salt, iv);
4344 		}
4345 	} else {
4346 		zfs_dbgmsg("%s: zil block allocation failure: "
4347 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
4348 		    error);
4349 	}
4350 
4351 	return (error);
4352 }
4353 
4354 /*
4355  * ==========================================================================
4356  * Read and write to physical devices
4357  * ==========================================================================
4358  */
4359 
4360 /*
4361  * Issue an I/O to the underlying vdev. Typically the issue pipeline
4362  * stops after this stage and will resume upon I/O completion.
4363  * However, there are instances where the vdev layer may need to
4364  * continue the pipeline when an I/O was not issued. Since the I/O
4365  * that was sent to the vdev layer might be different than the one
4366  * currently active in the pipeline (see vdev_queue_io()), we explicitly
4367  * force the underlying vdev layers to call either zio_execute() or
4368  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4369  */
4370 static zio_t *
zio_vdev_io_start(zio_t * zio)4371 zio_vdev_io_start(zio_t *zio)
4372 {
4373 	vdev_t *vd = zio->io_vd;
4374 	uint64_t align;
4375 	spa_t *spa = zio->io_spa;
4376 
4377 	zio->io_delay = 0;
4378 
4379 	ASSERT(zio->io_error == 0);
4380 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
4381 
4382 	if (vd == NULL) {
4383 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4384 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
4385 
4386 		/*
4387 		 * The mirror_ops handle multiple DVAs in a single BP.
4388 		 */
4389 		vdev_mirror_ops.vdev_op_io_start(zio);
4390 		return (NULL);
4391 	}
4392 
4393 	ASSERT3P(zio->io_logical, !=, zio);
4394 	if (zio->io_type == ZIO_TYPE_WRITE) {
4395 		ASSERT(spa->spa_trust_config);
4396 
4397 		/*
4398 		 * Note: the code can handle other kinds of writes,
4399 		 * but we don't expect them.
4400 		 */
4401 		if (zio->io_vd->vdev_noalloc) {
4402 			ASSERT(zio->io_flags &
4403 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4404 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4405 		}
4406 	}
4407 
4408 	align = 1ULL << vd->vdev_top->vdev_ashift;
4409 
4410 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4411 	    P2PHASE(zio->io_size, align) != 0) {
4412 		/* Transform logical writes to be a full physical block size. */
4413 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
4414 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4415 		ASSERT(vd == vd->vdev_top);
4416 		if (zio->io_type == ZIO_TYPE_WRITE) {
4417 			abd_copy(abuf, zio->io_abd, zio->io_size);
4418 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4419 		}
4420 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4421 	}
4422 
4423 	/*
4424 	 * If this is not a physical io, make sure that it is properly aligned
4425 	 * before proceeding.
4426 	 */
4427 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4428 		ASSERT0(P2PHASE(zio->io_offset, align));
4429 		ASSERT0(P2PHASE(zio->io_size, align));
4430 	} else {
4431 		/*
4432 		 * For physical writes, we allow 512b aligned writes and assume
4433 		 * the device will perform a read-modify-write as necessary.
4434 		 */
4435 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4436 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4437 	}
4438 
4439 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4440 
4441 	/*
4442 	 * If this is a repair I/O, and there's no self-healing involved --
4443 	 * that is, we're just resilvering what we expect to resilver --
4444 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4445 	 * This prevents spurious resilvering.
4446 	 *
4447 	 * There are a few ways that we can end up creating these spurious
4448 	 * resilver i/os:
4449 	 *
4450 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4451 	 * dirty DTL.  The mirror code will issue resilver writes to
4452 	 * each DVA, including the one(s) that are not on vdevs with dirty
4453 	 * DTLs.
4454 	 *
4455 	 * 2. With nested replication, which happens when we have a
4456 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4457 	 * For example, given mirror(replacing(A+B), C), it's likely that
4458 	 * only A is out of date (it's the new device). In this case, we'll
4459 	 * read from C, then use the data to resilver A+B -- but we don't
4460 	 * actually want to resilver B, just A. The top-level mirror has no
4461 	 * way to know this, so instead we just discard unnecessary repairs
4462 	 * as we work our way down the vdev tree.
4463 	 *
4464 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4465 	 * The same logic applies to any form of nested replication: ditto
4466 	 * + mirror, RAID-Z + replacing, etc.
4467 	 *
4468 	 * However, indirect vdevs point off to other vdevs which may have
4469 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4470 	 * will be properly bypassed instead.
4471 	 *
4472 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4473 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4474 	 * used, its spare blocks need to be written to but the leaf vdev's
4475 	 * of such blocks can have empty DTL_PARTIAL.
4476 	 *
4477 	 * There seemed no clean way to allow such writes while bypassing
4478 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4479 	 * for correctness.
4480 	 */
4481 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4482 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4483 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4484 	    vd->vdev_ops != &vdev_indirect_ops &&
4485 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4486 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4487 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4488 		zio_vdev_io_bypass(zio);
4489 		return (zio);
4490 	}
4491 
4492 	/*
4493 	 * Select the next best leaf I/O to process.  Distributed spares are
4494 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4495 	 * applying the dRAID mapping.
4496 	 */
4497 	if (vd->vdev_ops->vdev_op_leaf &&
4498 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4499 	    (zio->io_type == ZIO_TYPE_READ ||
4500 	    zio->io_type == ZIO_TYPE_WRITE ||
4501 	    zio->io_type == ZIO_TYPE_TRIM)) {
4502 
4503 		if ((zio = vdev_queue_io(zio)) == NULL)
4504 			return (NULL);
4505 
4506 		if (!vdev_accessible(vd, zio)) {
4507 			zio->io_error = SET_ERROR(ENXIO);
4508 			zio_interrupt(zio);
4509 			return (NULL);
4510 		}
4511 		zio->io_delay = gethrtime();
4512 
4513 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4514 			/*
4515 			 * "no-op" injections return success, but do no actual
4516 			 * work. Just return it.
4517 			 */
4518 			zio_delay_interrupt(zio);
4519 			return (NULL);
4520 		}
4521 	}
4522 
4523 	vd->vdev_ops->vdev_op_io_start(zio);
4524 	return (NULL);
4525 }
4526 
4527 static zio_t *
zio_vdev_io_done(zio_t * zio)4528 zio_vdev_io_done(zio_t *zio)
4529 {
4530 	vdev_t *vd = zio->io_vd;
4531 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4532 	boolean_t unexpected_error = B_FALSE;
4533 
4534 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4535 		return (NULL);
4536 	}
4537 
4538 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4539 	    zio->io_type == ZIO_TYPE_WRITE ||
4540 	    zio->io_type == ZIO_TYPE_FLUSH ||
4541 	    zio->io_type == ZIO_TYPE_TRIM);
4542 
4543 	if (zio->io_delay)
4544 		zio->io_delay = gethrtime() - zio->io_delay;
4545 
4546 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4547 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4548 		if (zio->io_type != ZIO_TYPE_FLUSH)
4549 			vdev_queue_io_done(zio);
4550 
4551 		if (zio_injection_enabled && zio->io_error == 0)
4552 			zio->io_error = zio_handle_device_injections(vd, zio,
4553 			    EIO, EILSEQ);
4554 
4555 		if (zio_injection_enabled && zio->io_error == 0)
4556 			zio->io_error = zio_handle_label_injection(zio, EIO);
4557 
4558 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4559 		    zio->io_type != ZIO_TYPE_TRIM) {
4560 			if (!vdev_accessible(vd, zio)) {
4561 				zio->io_error = SET_ERROR(ENXIO);
4562 			} else {
4563 				unexpected_error = B_TRUE;
4564 			}
4565 		}
4566 	}
4567 
4568 	ops->vdev_op_io_done(zio);
4569 
4570 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4571 		VERIFY(vdev_probe(vd, zio) == NULL);
4572 
4573 	return (zio);
4574 }
4575 
4576 /*
4577  * This function is used to change the priority of an existing zio that is
4578  * currently in-flight. This is used by the arc to upgrade priority in the
4579  * event that a demand read is made for a block that is currently queued
4580  * as a scrub or async read IO. Otherwise, the high priority read request
4581  * would end up having to wait for the lower priority IO.
4582  */
4583 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4584 zio_change_priority(zio_t *pio, zio_priority_t priority)
4585 {
4586 	zio_t *cio, *cio_next;
4587 	zio_link_t *zl = NULL;
4588 
4589 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4590 
4591 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4592 		vdev_queue_change_io_priority(pio, priority);
4593 	} else {
4594 		pio->io_priority = priority;
4595 	}
4596 
4597 	mutex_enter(&pio->io_lock);
4598 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4599 		cio_next = zio_walk_children(pio, &zl);
4600 		zio_change_priority(cio, priority);
4601 	}
4602 	mutex_exit(&pio->io_lock);
4603 }
4604 
4605 /*
4606  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4607  * disk, and use that to finish the checksum ereport later.
4608  */
4609 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4610 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4611     const abd_t *good_buf)
4612 {
4613 	/* no processing needed */
4614 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4615 }
4616 
4617 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4618 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4619 {
4620 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4621 
4622 	abd_copy(abd, zio->io_abd, zio->io_size);
4623 
4624 	zcr->zcr_cbinfo = zio->io_size;
4625 	zcr->zcr_cbdata = abd;
4626 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4627 	zcr->zcr_free = zio_abd_free;
4628 }
4629 
4630 static zio_t *
zio_vdev_io_assess(zio_t * zio)4631 zio_vdev_io_assess(zio_t *zio)
4632 {
4633 	vdev_t *vd = zio->io_vd;
4634 
4635 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4636 		return (NULL);
4637 	}
4638 
4639 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4640 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4641 
4642 	if (zio->io_vsd != NULL) {
4643 		zio->io_vsd_ops->vsd_free(zio);
4644 		zio->io_vsd = NULL;
4645 	}
4646 
4647 	/*
4648 	 * If a Direct I/O operation has a checksum verify error then this I/O
4649 	 * should not attempt to be issued again.
4650 	 */
4651 	if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) {
4652 		if (zio->io_type == ZIO_TYPE_WRITE) {
4653 			ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4654 			ASSERT3U(zio->io_error, ==, EIO);
4655 		}
4656 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4657 		return (zio);
4658 	}
4659 
4660 	if (zio_injection_enabled && zio->io_error == 0)
4661 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4662 
4663 	/*
4664 	 * If the I/O failed, determine whether we should attempt to retry it.
4665 	 *
4666 	 * On retry, we cut in line in the issue queue, since we don't want
4667 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4668 	 */
4669 	if (zio->io_error && vd == NULL &&
4670 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4671 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4672 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4673 		zio->io_error = 0;
4674 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4675 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4676 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4677 		    zio_requeue_io_start_cut_in_line);
4678 		return (NULL);
4679 	}
4680 
4681 	/*
4682 	 * If we got an error on a leaf device, convert it to ENXIO
4683 	 * if the device is not accessible at all.
4684 	 */
4685 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4686 	    !vdev_accessible(vd, zio))
4687 		zio->io_error = SET_ERROR(ENXIO);
4688 
4689 	/*
4690 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4691 	 * set vdev_cant_write so that we stop trying to allocate from it.
4692 	 */
4693 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4694 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4695 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4696 		    "cant_write=TRUE due to write failure with ENXIO",
4697 		    zio);
4698 		vd->vdev_cant_write = B_TRUE;
4699 	}
4700 
4701 	/*
4702 	 * If a cache flush returns ENOTSUP we know that no future
4703 	 * attempts will ever succeed. In this case we set a persistent
4704 	 * boolean flag so that we don't bother with it in the future, and
4705 	 * then we act like the flush succeeded.
4706 	 */
4707 	if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH &&
4708 	    vd != NULL) {
4709 		vd->vdev_nowritecache = B_TRUE;
4710 		zio->io_error = 0;
4711 	}
4712 
4713 	if (zio->io_error)
4714 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4715 
4716 	return (zio);
4717 }
4718 
4719 void
zio_vdev_io_reissue(zio_t * zio)4720 zio_vdev_io_reissue(zio_t *zio)
4721 {
4722 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4723 	ASSERT(zio->io_error == 0);
4724 
4725 	zio->io_stage >>= 1;
4726 }
4727 
4728 void
zio_vdev_io_redone(zio_t * zio)4729 zio_vdev_io_redone(zio_t *zio)
4730 {
4731 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4732 
4733 	zio->io_stage >>= 1;
4734 }
4735 
4736 void
zio_vdev_io_bypass(zio_t * zio)4737 zio_vdev_io_bypass(zio_t *zio)
4738 {
4739 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4740 	ASSERT(zio->io_error == 0);
4741 
4742 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4743 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4744 }
4745 
4746 /*
4747  * ==========================================================================
4748  * Encrypt and store encryption parameters
4749  * ==========================================================================
4750  */
4751 
4752 
4753 /*
4754  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4755  * managing the storage of encryption parameters and passing them to the
4756  * lower-level encryption functions.
4757  */
4758 static zio_t *
zio_encrypt(zio_t * zio)4759 zio_encrypt(zio_t *zio)
4760 {
4761 	zio_prop_t *zp = &zio->io_prop;
4762 	spa_t *spa = zio->io_spa;
4763 	blkptr_t *bp = zio->io_bp;
4764 	uint64_t psize = BP_GET_PSIZE(bp);
4765 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4766 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4767 	void *enc_buf = NULL;
4768 	abd_t *eabd = NULL;
4769 	uint8_t salt[ZIO_DATA_SALT_LEN];
4770 	uint8_t iv[ZIO_DATA_IV_LEN];
4771 	uint8_t mac[ZIO_DATA_MAC_LEN];
4772 	boolean_t no_crypt = B_FALSE;
4773 
4774 	/* the root zio already encrypted the data */
4775 	if (zio->io_child_type == ZIO_CHILD_GANG)
4776 		return (zio);
4777 
4778 	/* only ZIL blocks are re-encrypted on rewrite */
4779 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4780 		return (zio);
4781 
4782 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4783 		BP_SET_CRYPT(bp, B_FALSE);
4784 		return (zio);
4785 	}
4786 
4787 	/* if we are doing raw encryption set the provided encryption params */
4788 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4789 		ASSERT0(BP_GET_LEVEL(bp));
4790 		BP_SET_CRYPT(bp, B_TRUE);
4791 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4792 		if (ot != DMU_OT_OBJSET)
4793 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4794 
4795 		/* dnode blocks must be written out in the provided byteorder */
4796 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4797 		    ot == DMU_OT_DNODE) {
4798 			void *bswap_buf = zio_buf_alloc(psize);
4799 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4800 
4801 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4802 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4803 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4804 			    psize);
4805 
4806 			abd_take_ownership_of_buf(babd, B_TRUE);
4807 			zio_push_transform(zio, babd, psize, psize, NULL);
4808 		}
4809 
4810 		if (DMU_OT_IS_ENCRYPTED(ot))
4811 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4812 		return (zio);
4813 	}
4814 
4815 	/* indirect blocks only maintain a cksum of the lower level MACs */
4816 	if (BP_GET_LEVEL(bp) > 0) {
4817 		BP_SET_CRYPT(bp, B_TRUE);
4818 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4819 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4820 		    mac));
4821 		zio_crypt_encode_mac_bp(bp, mac);
4822 		return (zio);
4823 	}
4824 
4825 	/*
4826 	 * Objset blocks are a special case since they have 2 256-bit MACs
4827 	 * embedded within them.
4828 	 */
4829 	if (ot == DMU_OT_OBJSET) {
4830 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4831 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4832 		BP_SET_CRYPT(bp, B_TRUE);
4833 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4834 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4835 		return (zio);
4836 	}
4837 
4838 	/* unencrypted object types are only authenticated with a MAC */
4839 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4840 		BP_SET_CRYPT(bp, B_TRUE);
4841 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4842 		    zio->io_abd, psize, mac));
4843 		zio_crypt_encode_mac_bp(bp, mac);
4844 		return (zio);
4845 	}
4846 
4847 	/*
4848 	 * Later passes of sync-to-convergence may decide to rewrite data
4849 	 * in place to avoid more disk reallocations. This presents a problem
4850 	 * for encryption because this constitutes rewriting the new data with
4851 	 * the same encryption key and IV. However, this only applies to blocks
4852 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4853 	 * MOS. We assert that the zio is allocating or an intent log write
4854 	 * to enforce this.
4855 	 */
4856 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4857 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4858 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4859 	ASSERT3U(psize, !=, 0);
4860 
4861 	enc_buf = zio_buf_alloc(psize);
4862 	eabd = abd_get_from_buf(enc_buf, psize);
4863 	abd_take_ownership_of_buf(eabd, B_TRUE);
4864 
4865 	/*
4866 	 * For an explanation of what encryption parameters are stored
4867 	 * where, see the block comment in zio_crypt.c.
4868 	 */
4869 	if (ot == DMU_OT_INTENT_LOG) {
4870 		zio_crypt_decode_params_bp(bp, salt, iv);
4871 	} else {
4872 		BP_SET_CRYPT(bp, B_TRUE);
4873 	}
4874 
4875 	/* Perform the encryption. This should not fail */
4876 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4877 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4878 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4879 
4880 	/* encode encryption metadata into the bp */
4881 	if (ot == DMU_OT_INTENT_LOG) {
4882 		/*
4883 		 * ZIL blocks store the MAC in the embedded checksum, so the
4884 		 * transform must always be applied.
4885 		 */
4886 		zio_crypt_encode_mac_zil(enc_buf, mac);
4887 		zio_push_transform(zio, eabd, psize, psize, NULL);
4888 	} else {
4889 		BP_SET_CRYPT(bp, B_TRUE);
4890 		zio_crypt_encode_params_bp(bp, salt, iv);
4891 		zio_crypt_encode_mac_bp(bp, mac);
4892 
4893 		if (no_crypt) {
4894 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4895 			abd_free(eabd);
4896 		} else {
4897 			zio_push_transform(zio, eabd, psize, psize, NULL);
4898 		}
4899 	}
4900 
4901 	return (zio);
4902 }
4903 
4904 /*
4905  * ==========================================================================
4906  * Generate and verify checksums
4907  * ==========================================================================
4908  */
4909 static zio_t *
zio_checksum_generate(zio_t * zio)4910 zio_checksum_generate(zio_t *zio)
4911 {
4912 	blkptr_t *bp = zio->io_bp;
4913 	enum zio_checksum checksum;
4914 
4915 	if (bp == NULL) {
4916 		/*
4917 		 * This is zio_write_phys().
4918 		 * We're either generating a label checksum, or none at all.
4919 		 */
4920 		checksum = zio->io_prop.zp_checksum;
4921 
4922 		if (checksum == ZIO_CHECKSUM_OFF)
4923 			return (zio);
4924 
4925 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4926 	} else {
4927 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4928 			ASSERT(!IO_IS_ALLOCATING(zio));
4929 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4930 		} else {
4931 			checksum = BP_GET_CHECKSUM(bp);
4932 		}
4933 	}
4934 
4935 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4936 
4937 	return (zio);
4938 }
4939 
4940 static zio_t *
zio_checksum_verify(zio_t * zio)4941 zio_checksum_verify(zio_t *zio)
4942 {
4943 	zio_bad_cksum_t info;
4944 	blkptr_t *bp = zio->io_bp;
4945 	int error;
4946 
4947 	ASSERT(zio->io_vd != NULL);
4948 
4949 	if (bp == NULL) {
4950 		/*
4951 		 * This is zio_read_phys().
4952 		 * We're either verifying a label checksum, or nothing at all.
4953 		 */
4954 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4955 			return (zio);
4956 
4957 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4958 	}
4959 
4960 	ASSERT0(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
4961 	IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ,
4962 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE));
4963 
4964 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4965 		zio->io_error = error;
4966 		if (error == ECKSUM &&
4967 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4968 			if (zio->io_flags & ZIO_FLAG_DIO_READ) {
4969 				zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
4970 				zio_t *pio = zio_unique_parent(zio);
4971 				/*
4972 				 * Any Direct I/O read that has a checksum
4973 				 * error must be treated as suspicous as the
4974 				 * contents of the buffer could be getting
4975 				 * manipulated while the I/O is taking place.
4976 				 *
4977 				 * The checksum verify error will only be
4978 				 * reported here for disk and file VDEV's and
4979 				 * will be reported on those that the failure
4980 				 * occurred on. Other types of VDEV's report the
4981 				 * verify failure in their own code paths.
4982 				 */
4983 				if (pio->io_child_type == ZIO_CHILD_LOGICAL) {
4984 					zio_dio_chksum_verify_error_report(zio);
4985 				}
4986 			} else {
4987 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4988 				zio->io_vd->vdev_stat.vs_checksum_errors++;
4989 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4990 				(void) zfs_ereport_start_checksum(zio->io_spa,
4991 				    zio->io_vd, &zio->io_bookmark, zio,
4992 				    zio->io_offset, zio->io_size, &info);
4993 			}
4994 		}
4995 	}
4996 
4997 	return (zio);
4998 }
4999 
5000 static zio_t *
zio_dio_checksum_verify(zio_t * zio)5001 zio_dio_checksum_verify(zio_t *zio)
5002 {
5003 	zio_t *pio = zio_unique_parent(zio);
5004 	int error;
5005 
5006 	ASSERT3P(zio->io_vd, !=, NULL);
5007 	ASSERT3P(zio->io_bp, !=, NULL);
5008 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5009 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5010 	ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE);
5011 	ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
5012 
5013 	if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0)
5014 		goto out;
5015 
5016 	if ((error = zio_checksum_error(zio, NULL)) != 0) {
5017 		zio->io_error = error;
5018 		if (error == ECKSUM) {
5019 			zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
5020 			zio_dio_chksum_verify_error_report(zio);
5021 		}
5022 	}
5023 
5024 out:
5025 	return (zio);
5026 }
5027 
5028 
5029 /*
5030  * Called by RAID-Z to ensure we don't compute the checksum twice.
5031  */
5032 void
zio_checksum_verified(zio_t * zio)5033 zio_checksum_verified(zio_t *zio)
5034 {
5035 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
5036 }
5037 
5038 /*
5039  * Report Direct I/O checksum verify error and create ZED event.
5040  */
5041 void
zio_dio_chksum_verify_error_report(zio_t * zio)5042 zio_dio_chksum_verify_error_report(zio_t *zio)
5043 {
5044 	ASSERT(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
5045 
5046 	if (zio->io_child_type == ZIO_CHILD_LOGICAL)
5047 		return;
5048 
5049 	mutex_enter(&zio->io_vd->vdev_stat_lock);
5050 	zio->io_vd->vdev_stat.vs_dio_verify_errors++;
5051 	mutex_exit(&zio->io_vd->vdev_stat_lock);
5052 	if (zio->io_type == ZIO_TYPE_WRITE) {
5053 		/*
5054 		 * Convert checksum error for writes into EIO.
5055 		 */
5056 		zio->io_error = SET_ERROR(EIO);
5057 		/*
5058 		 * Report dio_verify_wr ZED event.
5059 		 */
5060 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR,
5061 		    zio->io_spa,  zio->io_vd, &zio->io_bookmark, zio, 0);
5062 	} else {
5063 		/*
5064 		 * Report dio_verify_rd ZED event.
5065 		 */
5066 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD,
5067 		    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5068 	}
5069 }
5070 
5071 /*
5072  * ==========================================================================
5073  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
5074  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
5075  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
5076  * indicate errors that are specific to one I/O, and most likely permanent.
5077  * Any other error is presumed to be worse because we weren't expecting it.
5078  * ==========================================================================
5079  */
5080 int
zio_worst_error(int e1,int e2)5081 zio_worst_error(int e1, int e2)
5082 {
5083 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
5084 	int r1, r2;
5085 
5086 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
5087 		if (e1 == zio_error_rank[r1])
5088 			break;
5089 
5090 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
5091 		if (e2 == zio_error_rank[r2])
5092 			break;
5093 
5094 	return (r1 > r2 ? e1 : e2);
5095 }
5096 
5097 /*
5098  * ==========================================================================
5099  * I/O completion
5100  * ==========================================================================
5101  */
5102 static zio_t *
zio_ready(zio_t * zio)5103 zio_ready(zio_t *zio)
5104 {
5105 	blkptr_t *bp = zio->io_bp;
5106 	zio_t *pio, *pio_next;
5107 	zio_link_t *zl = NULL;
5108 
5109 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
5110 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
5111 		return (NULL);
5112 	}
5113 
5114 	if (zio->io_ready) {
5115 		ASSERT(IO_IS_ALLOCATING(zio));
5116 		ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
5117 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
5118 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
5119 
5120 		zio->io_ready(zio);
5121 	}
5122 
5123 #ifdef ZFS_DEBUG
5124 	if (bp != NULL && bp != &zio->io_bp_copy)
5125 		zio->io_bp_copy = *bp;
5126 #endif
5127 
5128 	if (zio->io_error != 0) {
5129 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
5130 
5131 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
5132 			ASSERT(IO_IS_ALLOCATING(zio));
5133 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5134 			ASSERT(zio->io_metaslab_class != NULL);
5135 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
5136 
5137 			/*
5138 			 * We were unable to allocate anything, unreserve and
5139 			 * issue the next I/O to allocate.
5140 			 */
5141 			metaslab_class_throttle_unreserve(
5142 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
5143 			    zio->io_allocator, zio);
5144 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
5145 		}
5146 	}
5147 
5148 	mutex_enter(&zio->io_lock);
5149 	zio->io_state[ZIO_WAIT_READY] = 1;
5150 	pio = zio_walk_parents(zio, &zl);
5151 	mutex_exit(&zio->io_lock);
5152 
5153 	/*
5154 	 * As we notify zio's parents, new parents could be added.
5155 	 * New parents go to the head of zio's io_parent_list, however,
5156 	 * so we will (correctly) not notify them.  The remainder of zio's
5157 	 * io_parent_list, from 'pio_next' onward, cannot change because
5158 	 * all parents must wait for us to be done before they can be done.
5159 	 */
5160 	for (; pio != NULL; pio = pio_next) {
5161 		pio_next = zio_walk_parents(zio, &zl);
5162 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
5163 	}
5164 
5165 	if (zio->io_flags & ZIO_FLAG_NODATA) {
5166 		if (bp != NULL && BP_IS_GANG(bp)) {
5167 			zio->io_flags &= ~ZIO_FLAG_NODATA;
5168 		} else {
5169 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
5170 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
5171 		}
5172 	}
5173 
5174 	if (zio_injection_enabled &&
5175 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
5176 		zio_handle_ignored_writes(zio);
5177 
5178 	return (zio);
5179 }
5180 
5181 /*
5182  * Update the allocation throttle accounting.
5183  */
5184 static void
zio_dva_throttle_done(zio_t * zio)5185 zio_dva_throttle_done(zio_t *zio)
5186 {
5187 	zio_t *lio __maybe_unused = zio->io_logical;
5188 	zio_t *pio = zio_unique_parent(zio);
5189 	vdev_t *vd = zio->io_vd;
5190 	int flags = METASLAB_ASYNC_ALLOC;
5191 
5192 	ASSERT3P(zio->io_bp, !=, NULL);
5193 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5194 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
5195 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5196 	ASSERT(vd != NULL);
5197 	ASSERT3P(vd, ==, vd->vdev_top);
5198 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
5199 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5200 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
5201 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
5202 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
5203 
5204 	/*
5205 	 * Parents of gang children can have two flavors -- ones that
5206 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
5207 	 * and ones that allocated the constituent blocks. The allocation
5208 	 * throttle needs to know the allocating parent zio so we must find
5209 	 * it here.
5210 	 */
5211 	if (pio->io_child_type == ZIO_CHILD_GANG) {
5212 		/*
5213 		 * If our parent is a rewrite gang child then our grandparent
5214 		 * would have been the one that performed the allocation.
5215 		 */
5216 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
5217 			pio = zio_unique_parent(pio);
5218 		flags |= METASLAB_GANG_CHILD;
5219 	}
5220 
5221 	ASSERT(IO_IS_ALLOCATING(pio));
5222 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
5223 	ASSERT3P(zio, !=, zio->io_logical);
5224 	ASSERT(zio->io_logical != NULL);
5225 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5226 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
5227 	ASSERT(zio->io_metaslab_class != NULL);
5228 
5229 	mutex_enter(&pio->io_lock);
5230 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
5231 	    pio->io_allocator, B_TRUE);
5232 	mutex_exit(&pio->io_lock);
5233 
5234 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
5235 	    pio->io_allocator, pio);
5236 
5237 	/*
5238 	 * Call into the pipeline to see if there is more work that
5239 	 * needs to be done. If there is work to be done it will be
5240 	 * dispatched to another taskq thread.
5241 	 */
5242 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
5243 }
5244 
5245 static zio_t *
zio_done(zio_t * zio)5246 zio_done(zio_t *zio)
5247 {
5248 	/*
5249 	 * Always attempt to keep stack usage minimal here since
5250 	 * we can be called recursively up to 19 levels deep.
5251 	 */
5252 	const uint64_t psize = zio->io_size;
5253 	zio_t *pio, *pio_next;
5254 	zio_link_t *zl = NULL;
5255 
5256 	/*
5257 	 * If our children haven't all completed,
5258 	 * wait for them and then repeat this pipeline stage.
5259 	 */
5260 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
5261 		return (NULL);
5262 	}
5263 
5264 	/*
5265 	 * If the allocation throttle is enabled, then update the accounting.
5266 	 * We only track child I/Os that are part of an allocating async
5267 	 * write. We must do this since the allocation is performed
5268 	 * by the logical I/O but the actual write is done by child I/Os.
5269 	 */
5270 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
5271 	    zio->io_child_type == ZIO_CHILD_VDEV) {
5272 		ASSERT(zio->io_metaslab_class != NULL);
5273 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
5274 		zio_dva_throttle_done(zio);
5275 	}
5276 
5277 	/*
5278 	 * If the allocation throttle is enabled, verify that
5279 	 * we have decremented the refcounts for every I/O that was throttled.
5280 	 */
5281 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
5282 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
5283 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5284 		ASSERT(zio->io_bp != NULL);
5285 		ASSERT(ZIO_HAS_ALLOCATOR(zio));
5286 
5287 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
5288 		    zio->io_allocator);
5289 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
5290 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
5291 	}
5292 
5293 
5294 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
5295 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
5296 			ASSERT(zio->io_children[c][w] == 0);
5297 
5298 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
5299 		ASSERT(zio->io_bp->blk_pad[0] == 0);
5300 		ASSERT(zio->io_bp->blk_pad[1] == 0);
5301 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
5302 		    sizeof (blkptr_t)) == 0 ||
5303 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
5304 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
5305 		    zio->io_bp_override == NULL &&
5306 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
5307 			ASSERT3U(zio->io_prop.zp_copies, <=,
5308 			    BP_GET_NDVAS(zio->io_bp));
5309 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
5310 			    (BP_COUNT_GANG(zio->io_bp) ==
5311 			    BP_GET_NDVAS(zio->io_bp)));
5312 		}
5313 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
5314 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
5315 	}
5316 
5317 	/*
5318 	 * If there were child vdev/gang/ddt errors, they apply to us now.
5319 	 */
5320 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
5321 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
5322 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
5323 
5324 	/*
5325 	 * If the I/O on the transformed data was successful, generate any
5326 	 * checksum reports now while we still have the transformed data.
5327 	 */
5328 	if (zio->io_error == 0) {
5329 		while (zio->io_cksum_report != NULL) {
5330 			zio_cksum_report_t *zcr = zio->io_cksum_report;
5331 			uint64_t align = zcr->zcr_align;
5332 			uint64_t asize = P2ROUNDUP(psize, align);
5333 			abd_t *adata = zio->io_abd;
5334 
5335 			if (adata != NULL && asize != psize) {
5336 				adata = abd_alloc(asize, B_TRUE);
5337 				abd_copy(adata, zio->io_abd, psize);
5338 				abd_zero_off(adata, psize, asize - psize);
5339 			}
5340 
5341 			zio->io_cksum_report = zcr->zcr_next;
5342 			zcr->zcr_next = NULL;
5343 			zcr->zcr_finish(zcr, adata);
5344 			zfs_ereport_free_checksum(zcr);
5345 
5346 			if (adata != NULL && asize != psize)
5347 				abd_free(adata);
5348 		}
5349 	}
5350 
5351 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
5352 
5353 	vdev_stat_update(zio, psize);
5354 
5355 	/*
5356 	 * If this I/O is attached to a particular vdev is slow, exceeding
5357 	 * 30 seconds to complete, post an error described the I/O delay.
5358 	 * We ignore these errors if the device is currently unavailable.
5359 	 */
5360 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
5361 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
5362 			/*
5363 			 * We want to only increment our slow IO counters if
5364 			 * the IO is valid (i.e. not if the drive is removed).
5365 			 *
5366 			 * zfs_ereport_post() will also do these checks, but
5367 			 * it can also ratelimit and have other failures, so we
5368 			 * need to increment the slow_io counters independent
5369 			 * of it.
5370 			 */
5371 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
5372 			    zio->io_spa, zio->io_vd, zio)) {
5373 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5374 				zio->io_vd->vdev_stat.vs_slow_ios++;
5375 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5376 
5377 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
5378 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
5379 				    zio, 0);
5380 			}
5381 		}
5382 	}
5383 
5384 	if (zio->io_error) {
5385 		/*
5386 		 * If this I/O is attached to a particular vdev,
5387 		 * generate an error message describing the I/O failure
5388 		 * at the block level.  We ignore these errors if the
5389 		 * device is currently unavailable.
5390 		 */
5391 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
5392 		    !vdev_is_dead(zio->io_vd) &&
5393 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5394 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
5395 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5396 			if (ret != EALREADY) {
5397 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5398 				if (zio->io_type == ZIO_TYPE_READ)
5399 					zio->io_vd->vdev_stat.vs_read_errors++;
5400 				else if (zio->io_type == ZIO_TYPE_WRITE)
5401 					zio->io_vd->vdev_stat.vs_write_errors++;
5402 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5403 			}
5404 		}
5405 
5406 		if ((zio->io_error == EIO || !(zio->io_flags &
5407 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
5408 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) &&
5409 		    zio == zio->io_logical) {
5410 			/*
5411 			 * For logical I/O requests, tell the SPA to log the
5412 			 * error and generate a logical data ereport.
5413 			 */
5414 			spa_log_error(zio->io_spa, &zio->io_bookmark,
5415 			    BP_GET_LOGICAL_BIRTH(zio->io_bp));
5416 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
5417 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
5418 		}
5419 	}
5420 
5421 	if (zio->io_error && zio == zio->io_logical) {
5422 		/*
5423 		 * Determine whether zio should be reexecuted.  This will
5424 		 * propagate all the way to the root via zio_notify_parent().
5425 		 */
5426 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
5427 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5428 
5429 		if (IO_IS_ALLOCATING(zio) &&
5430 		    !(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5431 		    !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5432 			if (zio->io_error != ENOSPC)
5433 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
5434 			else
5435 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5436 		}
5437 
5438 		if ((zio->io_type == ZIO_TYPE_READ ||
5439 		    zio->io_type == ZIO_TYPE_FREE) &&
5440 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
5441 		    zio->io_error == ENXIO &&
5442 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
5443 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
5444 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5445 
5446 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
5447 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5448 
5449 		/*
5450 		 * Here is a possibly good place to attempt to do
5451 		 * either combinatorial reconstruction or error correction
5452 		 * based on checksums.  It also might be a good place
5453 		 * to send out preliminary ereports before we suspend
5454 		 * processing.
5455 		 */
5456 	}
5457 
5458 	/*
5459 	 * If there were logical child errors, they apply to us now.
5460 	 * We defer this until now to avoid conflating logical child
5461 	 * errors with errors that happened to the zio itself when
5462 	 * updating vdev stats and reporting FMA events above.
5463 	 */
5464 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
5465 
5466 	if ((zio->io_error || zio->io_reexecute) &&
5467 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
5468 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
5469 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
5470 
5471 	zio_gang_tree_free(&zio->io_gang_tree);
5472 
5473 	/*
5474 	 * Godfather I/Os should never suspend.
5475 	 */
5476 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
5477 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
5478 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
5479 
5480 	if (zio->io_reexecute) {
5481 		/*
5482 		 * A Direct I/O operation that has a checksum verify error
5483 		 * should not attempt to reexecute. Instead, the error should
5484 		 * just be propagated back.
5485 		 */
5486 		ASSERT(!(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR));
5487 
5488 		/*
5489 		 * This is a logical I/O that wants to reexecute.
5490 		 *
5491 		 * Reexecute is top-down.  When an i/o fails, if it's not
5492 		 * the root, it simply notifies its parent and sticks around.
5493 		 * The parent, seeing that it still has children in zio_done(),
5494 		 * does the same.  This percolates all the way up to the root.
5495 		 * The root i/o will reexecute or suspend the entire tree.
5496 		 *
5497 		 * This approach ensures that zio_reexecute() honors
5498 		 * all the original i/o dependency relationships, e.g.
5499 		 * parents not executing until children are ready.
5500 		 */
5501 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5502 
5503 		zio->io_gang_leader = NULL;
5504 
5505 		mutex_enter(&zio->io_lock);
5506 		zio->io_state[ZIO_WAIT_DONE] = 1;
5507 		mutex_exit(&zio->io_lock);
5508 
5509 		/*
5510 		 * "The Godfather" I/O monitors its children but is
5511 		 * not a true parent to them. It will track them through
5512 		 * the pipeline but severs its ties whenever they get into
5513 		 * trouble (e.g. suspended). This allows "The Godfather"
5514 		 * I/O to return status without blocking.
5515 		 */
5516 		zl = NULL;
5517 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5518 		    pio = pio_next) {
5519 			zio_link_t *remove_zl = zl;
5520 			pio_next = zio_walk_parents(zio, &zl);
5521 
5522 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5523 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
5524 				zio_remove_child(pio, zio, remove_zl);
5525 				/*
5526 				 * This is a rare code path, so we don't
5527 				 * bother with "next_to_execute".
5528 				 */
5529 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5530 				    NULL);
5531 			}
5532 		}
5533 
5534 		if ((pio = zio_unique_parent(zio)) != NULL) {
5535 			/*
5536 			 * We're not a root i/o, so there's nothing to do
5537 			 * but notify our parent.  Don't propagate errors
5538 			 * upward since we haven't permanently failed yet.
5539 			 */
5540 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5541 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5542 			/*
5543 			 * This is a rare code path, so we don't bother with
5544 			 * "next_to_execute".
5545 			 */
5546 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5547 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
5548 			/*
5549 			 * We'd fail again if we reexecuted now, so suspend
5550 			 * until conditions improve (e.g. device comes online).
5551 			 */
5552 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5553 		} else {
5554 			/*
5555 			 * Reexecution is potentially a huge amount of work.
5556 			 * Hand it off to the otherwise-unused claim taskq.
5557 			 */
5558 			spa_taskq_dispatch(zio->io_spa,
5559 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5560 			    zio_reexecute, zio, B_FALSE);
5561 		}
5562 		return (NULL);
5563 	}
5564 
5565 	ASSERT(list_is_empty(&zio->io_child_list));
5566 	ASSERT(zio->io_reexecute == 0);
5567 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5568 
5569 	/*
5570 	 * Report any checksum errors, since the I/O is complete.
5571 	 */
5572 	while (zio->io_cksum_report != NULL) {
5573 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5574 		zio->io_cksum_report = zcr->zcr_next;
5575 		zcr->zcr_next = NULL;
5576 		zcr->zcr_finish(zcr, NULL);
5577 		zfs_ereport_free_checksum(zcr);
5578 	}
5579 
5580 	/*
5581 	 * It is the responsibility of the done callback to ensure that this
5582 	 * particular zio is no longer discoverable for adoption, and as
5583 	 * such, cannot acquire any new parents.
5584 	 */
5585 	if (zio->io_done)
5586 		zio->io_done(zio);
5587 
5588 	mutex_enter(&zio->io_lock);
5589 	zio->io_state[ZIO_WAIT_DONE] = 1;
5590 	mutex_exit(&zio->io_lock);
5591 
5592 	/*
5593 	 * We are done executing this zio.  We may want to execute a parent
5594 	 * next.  See the comment in zio_notify_parent().
5595 	 */
5596 	zio_t *next_to_execute = NULL;
5597 	zl = NULL;
5598 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5599 		zio_link_t *remove_zl = zl;
5600 		pio_next = zio_walk_parents(zio, &zl);
5601 		zio_remove_child(pio, zio, remove_zl);
5602 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5603 	}
5604 
5605 	if (zio->io_waiter != NULL) {
5606 		mutex_enter(&zio->io_lock);
5607 		zio->io_executor = NULL;
5608 		cv_broadcast(&zio->io_cv);
5609 		mutex_exit(&zio->io_lock);
5610 	} else {
5611 		zio_destroy(zio);
5612 	}
5613 
5614 	return (next_to_execute);
5615 }
5616 
5617 /*
5618  * ==========================================================================
5619  * I/O pipeline definition
5620  * ==========================================================================
5621  */
5622 static zio_pipe_stage_t *zio_pipeline[] = {
5623 	NULL,
5624 	zio_read_bp_init,
5625 	zio_write_bp_init,
5626 	zio_free_bp_init,
5627 	zio_issue_async,
5628 	zio_write_compress,
5629 	zio_encrypt,
5630 	zio_checksum_generate,
5631 	zio_nop_write,
5632 	zio_brt_free,
5633 	zio_ddt_read_start,
5634 	zio_ddt_read_done,
5635 	zio_ddt_write,
5636 	zio_ddt_free,
5637 	zio_gang_assemble,
5638 	zio_gang_issue,
5639 	zio_dva_throttle,
5640 	zio_dva_allocate,
5641 	zio_dva_free,
5642 	zio_dva_claim,
5643 	zio_ready,
5644 	zio_vdev_io_start,
5645 	zio_vdev_io_done,
5646 	zio_vdev_io_assess,
5647 	zio_checksum_verify,
5648 	zio_dio_checksum_verify,
5649 	zio_done
5650 };
5651 
5652 
5653 
5654 
5655 /*
5656  * Compare two zbookmark_phys_t's to see which we would reach first in a
5657  * pre-order traversal of the object tree.
5658  *
5659  * This is simple in every case aside from the meta-dnode object. For all other
5660  * objects, we traverse them in order (object 1 before object 2, and so on).
5661  * However, all of these objects are traversed while traversing object 0, since
5662  * the data it points to is the list of objects.  Thus, we need to convert to a
5663  * canonical representation so we can compare meta-dnode bookmarks to
5664  * non-meta-dnode bookmarks.
5665  *
5666  * We do this by calculating "equivalents" for each field of the zbookmark.
5667  * zbookmarks outside of the meta-dnode use their own object and level, and
5668  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5669  * blocks this bookmark refers to) by multiplying their blkid by their span
5670  * (the number of L0 blocks contained within one block at their level).
5671  * zbookmarks inside the meta-dnode calculate their object equivalent
5672  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5673  * level + 1<<31 (any value larger than a level could ever be) for their level.
5674  * This causes them to always compare before a bookmark in their object
5675  * equivalent, compare appropriately to bookmarks in other objects, and to
5676  * compare appropriately to other bookmarks in the meta-dnode.
5677  */
5678 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5679 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5680     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5681 {
5682 	/*
5683 	 * These variables represent the "equivalent" values for the zbookmark,
5684 	 * after converting zbookmarks inside the meta dnode to their
5685 	 * normal-object equivalents.
5686 	 */
5687 	uint64_t zb1obj, zb2obj;
5688 	uint64_t zb1L0, zb2L0;
5689 	uint64_t zb1level, zb2level;
5690 
5691 	if (zb1->zb_object == zb2->zb_object &&
5692 	    zb1->zb_level == zb2->zb_level &&
5693 	    zb1->zb_blkid == zb2->zb_blkid)
5694 		return (0);
5695 
5696 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5697 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5698 
5699 	/*
5700 	 * BP_SPANB calculates the span in blocks.
5701 	 */
5702 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5703 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5704 
5705 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5706 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5707 		zb1L0 = 0;
5708 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5709 	} else {
5710 		zb1obj = zb1->zb_object;
5711 		zb1level = zb1->zb_level;
5712 	}
5713 
5714 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5715 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5716 		zb2L0 = 0;
5717 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5718 	} else {
5719 		zb2obj = zb2->zb_object;
5720 		zb2level = zb2->zb_level;
5721 	}
5722 
5723 	/* Now that we have a canonical representation, do the comparison. */
5724 	if (zb1obj != zb2obj)
5725 		return (zb1obj < zb2obj ? -1 : 1);
5726 	else if (zb1L0 != zb2L0)
5727 		return (zb1L0 < zb2L0 ? -1 : 1);
5728 	else if (zb1level != zb2level)
5729 		return (zb1level > zb2level ? -1 : 1);
5730 	/*
5731 	 * This can (theoretically) happen if the bookmarks have the same object
5732 	 * and level, but different blkids, if the block sizes are not the same.
5733 	 * There is presently no way to change the indirect block sizes
5734 	 */
5735 	return (0);
5736 }
5737 
5738 /*
5739  *  This function checks the following: given that last_block is the place that
5740  *  our traversal stopped last time, does that guarantee that we've visited
5741  *  every node under subtree_root?  Therefore, we can't just use the raw output
5742  *  of zbookmark_compare.  We have to pass in a modified version of
5743  *  subtree_root; by incrementing the block id, and then checking whether
5744  *  last_block is before or equal to that, we can tell whether or not having
5745  *  visited last_block implies that all of subtree_root's children have been
5746  *  visited.
5747  */
5748 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5749 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5750     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5751 {
5752 	zbookmark_phys_t mod_zb = *subtree_root;
5753 	mod_zb.zb_blkid++;
5754 	ASSERT0(last_block->zb_level);
5755 
5756 	/* The objset_phys_t isn't before anything. */
5757 	if (dnp == NULL)
5758 		return (B_FALSE);
5759 
5760 	/*
5761 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5762 	 * data block size in sectors, because that variable is only used if
5763 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5764 	 * know without examining it what object it refers to, and there's no
5765 	 * harm in passing in this value in other cases, we always pass it in.
5766 	 *
5767 	 * We pass in 0 for the indirect block size shift because zb2 must be
5768 	 * level 0.  The indirect block size is only used to calculate the span
5769 	 * of the bookmark, but since the bookmark must be level 0, the span is
5770 	 * always 1, so the math works out.
5771 	 *
5772 	 * If you make changes to how the zbookmark_compare code works, be sure
5773 	 * to make sure that this code still works afterwards.
5774 	 */
5775 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5776 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5777 	    last_block) <= 0);
5778 }
5779 
5780 /*
5781  * This function is similar to zbookmark_subtree_completed(), but returns true
5782  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5783  */
5784 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5785 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5786     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5787 {
5788 	ASSERT0(last_block->zb_level);
5789 	if (dnp == NULL)
5790 		return (B_FALSE);
5791 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5792 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5793 	    last_block) >= 0);
5794 }
5795 
5796 EXPORT_SYMBOL(zio_type_name);
5797 EXPORT_SYMBOL(zio_buf_alloc);
5798 EXPORT_SYMBOL(zio_data_buf_alloc);
5799 EXPORT_SYMBOL(zio_buf_free);
5800 EXPORT_SYMBOL(zio_data_buf_free);
5801 
5802 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5803 	"Max I/O completion time (milliseconds) before marking it as slow");
5804 
5805 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5806 	"Prioritize requeued I/O");
5807 
5808 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5809 	"Defer frees starting in this pass");
5810 
5811 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5812 	"Don't compress starting in this pass");
5813 
5814 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5815 	"Rewrite new bps starting in this pass");
5816 
5817 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5818 	"Throttle block allocations in the ZIO pipeline");
5819 
5820 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5821 	"Log all slow ZIOs, not just those with vdevs");
5822