1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29
30 /*
31 * This file is responsible for handling all of the details of generating
32 * encryption parameters and performing encryption and authentication.
33 *
34 * BLOCK ENCRYPTION PARAMETERS:
35 * Encryption /Authentication Algorithm Suite (crypt):
36 * The encryption algorithm, mode, and key length we are going to use. We
37 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
38 * keys. All authentication is currently done with SHA512-HMAC.
39 *
40 * Plaintext:
41 * The unencrypted data that we want to encrypt.
42 *
43 * Initialization Vector (IV):
44 * An initialization vector for the encryption algorithms. This is used to
45 * "tweak" the encryption algorithms so that two blocks of the same data are
46 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
47 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
48 * never reused with the same encryption key. This value is stored unencrypted
49 * and must simply be provided to the decryption function. We use a 96 bit IV
50 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
51 * derive the IV randomly. The first 64 bits of the IV are stored in the second
52 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
53 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
54 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
55 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
56 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
57 * format supports at most 2^15 slots per L0 dnode block, because the maximum
58 * block size is 16MB (2^24). In either case, for level 0 blocks this number
59 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
60 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
61 * for the dnode code.
62 *
63 * Master key:
64 * This is the most important secret data of an encrypted dataset. It is used
65 * along with the salt to generate that actual encryption keys via HKDF. We
66 * do not use the master key to directly encrypt any data because there are
67 * theoretical limits on how much data can actually be safely encrypted with
68 * any encryption mode. The master key is stored encrypted on disk with the
69 * user's wrapping key. Its length is determined by the encryption algorithm.
70 * For details on how this is stored see the block comment in dsl_crypt.c
71 *
72 * Salt:
73 * Used as an input to the HKDF function, along with the master key. We use a
74 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
75 * can be used for encrypting many blocks, so we cache the current salt and the
76 * associated derived key in zio_crypt_t so we do not need to derive it again
77 * needlessly.
78 *
79 * Encryption Key:
80 * A secret binary key, generated from an HKDF function used to encrypt and
81 * decrypt data.
82 *
83 * Message Authenication Code (MAC)
84 * The MAC is an output of authenticated encryption modes such as AES-GCM and
85 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
86 * data on disk and return garbage to the application. Effectively, it is a
87 * checksum that can not be reproduced by an attacker. We store the MAC in the
88 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
89 * regular checksum of the ciphertext which can be used for scrubbing.
90 *
91 * OBJECT AUTHENTICATION:
92 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
93 * they contain some info that always needs to be readable. To prevent this
94 * data from being altered, we authenticate this data using SHA512-HMAC. This
95 * will produce a MAC (similar to the one produced via encryption) which can
96 * be used to verify the object was not modified. HMACs do not require key
97 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
98 * data.
99 *
100 * ZIL ENCRYPTION:
101 * ZIL blocks have their bp written to disk ahead of the associated data, so we
102 * cannot store the MAC there as we normally do. For these blocks the MAC is
103 * stored in the embedded checksum within the zil_chain_t header. The salt and
104 * IV are generated for the block on bp allocation instead of at encryption
105 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
106 * for claiming even though all of the sensitive user data still needs to be
107 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
108 * pieces of the block need to be encrypted. All data that is not encrypted is
109 * authenticated using the AAD mechanisms that the supported encryption modes
110 * provide for. In order to preserve the semantics of the ZIL for encrypted
111 * datasets, the ZIL is not protected at the objset level as described below.
112 *
113 * DNODE ENCRYPTION:
114 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
115 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
116 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
117 * which pieces of the block need to be encrypted. For more details about
118 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
119 *
120 * OBJECT SET AUTHENTICATION:
121 * Up to this point, everything we have encrypted and authenticated has been
122 * at level 0 (or -2 for the ZIL). If we did not do any further work the
123 * on-disk format would be susceptible to attacks that deleted or rearrannged
124 * the order of level 0 blocks. Ideally, the cleanest solution would be to
125 * maintain a tree of authentication MACs going up the bp tree. However, this
126 * presents a problem for raw sends. Send files do not send information about
127 * indirect blocks so there would be no convenient way to transfer the MACs and
128 * they cannot be recalculated on the receive side without the master key which
129 * would defeat one of the purposes of raw sends in the first place. Instead,
130 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
131 * from the level below. We also include some portable fields from blk_prop such
132 * as the lsize and compression algorithm to prevent the data from being
133 * misinterpretted.
134 *
135 * At the objset level, we maintain 2 seperate 256 bit MACs in the
136 * objset_phys_t. The first one is "portable" and is the logical root of the
137 * MAC tree maintianed in the metadnode's bps. The second, is "local" and is
138 * used as the root MAC for the user accounting objects, which are also not
139 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
140 * of the send file. The useraccounting code ensures that the useraccounting
141 * info is not present upon a receive, so the local MAC can simply be cleared
142 * out at that time. For more info about objset_phys_t authentication, see
143 * zio_crypt_do_objset_hmacs().
144 *
145 * CONSIDERATIONS FOR DEDUP:
146 * In order for dedup to work, blocks that we want to dedup with one another
147 * need to use the same IV and encryption key, so that they will have the same
148 * ciphertext. Normally, one should never reuse an IV with the same encryption
149 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
150 * blocks. In this case, however, since we are using the same plaindata as
151 * well all that we end up with is a duplicate of the original ciphertext we
152 * already had. As a result, an attacker with read access to the raw disk will
153 * be able to tell which blocks are the same but this information is given away
154 * by dedup anyway. In order to get the same IVs and encryption keys for
155 * equivalent blocks of data we use an HMAC of the plaindata. We use an HMAC
156 * here so that a reproducible checksum of the plaindata is never available to
157 * the attacker. The HMAC key is kept alongside the master key, encrypted on
158 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
159 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
160 * will only work within a clone family since encrypted dedup requires use of
161 * the same master and HMAC keys.
162 */
163
164 /*
165 * After encrypting many blocks with the same key we may start to run up
166 * against the theoretical limits of how much data can securely be encrypted
167 * with a single key using the supported encryption modes. The most obvious
168 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
169 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
170 * This risk actually grows surprisingly quickly over time according to the
171 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
172 * generated n IVs with a cryptographically secure RNG, the approximate
173 * probability p(n) of a collision is given as:
174 *
175 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
176 *
177 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
178 *
179 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
180 * we must not write more than 398,065,730 blocks with the same encryption key.
181 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
182 * generating a new random 64 bit salt for our HKDF encryption key generation
183 * function.
184 */
185 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
186 #define ZFS_CURRENT_MAX_SALT_USES \
187 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
188 unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
189
190 /*
191 * Set to a nonzero value to cause zio_do_crypt_uio() to fail 1/this many
192 * calls, to test decryption error handling code paths.
193 */
194 uint64_t zio_decrypt_fail_fraction = 0;
195
196 typedef struct blkptr_auth_buf {
197 uint64_t bab_prop; /* blk_prop - portable mask */
198 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
199 uint64_t bab_pad; /* reserved for future use */
200 } blkptr_auth_buf_t;
201
202 zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
203 {"", ZC_TYPE_NONE, 0, "inherit"},
204 {"", ZC_TYPE_NONE, 0, "on"},
205 {"", ZC_TYPE_NONE, 0, "off"},
206 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
207 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
208 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
209 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
210 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
211 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
212 };
213
214 void
zio_crypt_key_destroy(zio_crypt_key_t * key)215 zio_crypt_key_destroy(zio_crypt_key_t *key)
216 {
217 rw_destroy(&key->zk_salt_lock);
218
219 /* free crypto templates */
220 crypto_destroy_ctx_template(key->zk_current_tmpl);
221 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
222
223 /* zero out sensitive data */
224 bzero(key, sizeof (zio_crypt_key_t));
225 }
226
227 int
zio_crypt_key_init(uint64_t crypt,zio_crypt_key_t * key)228 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
229 {
230 int ret;
231 crypto_mechanism_t mech;
232 uint_t keydata_len;
233
234 ASSERT(key != NULL);
235 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
236
237 keydata_len = zio_crypt_table[crypt].ci_keylen;
238 bzero(key, sizeof (zio_crypt_key_t));
239
240 /* fill keydata buffers and salt with random data */
241 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
242 if (ret != 0)
243 goto error;
244
245 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
246 if (ret != 0)
247 goto error;
248
249 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
250 if (ret != 0)
251 goto error;
252
253 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
254 if (ret != 0)
255 goto error;
256
257 /* derive the current key from the master key */
258 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
259 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
260 keydata_len);
261 if (ret != 0)
262 goto error;
263
264 /* initialize keys for the ICP */
265 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
266 key->zk_current_key.ck_data = key->zk_current_keydata;
267 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
268
269 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
270 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
271 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
272
273 /*
274 * Initialize the crypto templates. It's ok if this fails because
275 * this is just an optimization.
276 */
277 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
278 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
279 &key->zk_current_tmpl, KM_SLEEP);
280 if (ret != CRYPTO_SUCCESS)
281 key->zk_current_tmpl = NULL;
282
283 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
284 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
285 &key->zk_hmac_tmpl, KM_SLEEP);
286 if (ret != CRYPTO_SUCCESS)
287 key->zk_hmac_tmpl = NULL;
288
289 key->zk_crypt = crypt;
290 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
291 key->zk_salt_count = 0;
292 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
293
294 return (0);
295
296 error:
297 zio_crypt_key_destroy(key);
298 return (ret);
299 }
300
301 static int
zio_crypt_key_change_salt(zio_crypt_key_t * key)302 zio_crypt_key_change_salt(zio_crypt_key_t *key)
303 {
304 int ret = 0;
305 uint8_t salt[ZIO_DATA_SALT_LEN];
306 crypto_mechanism_t mech;
307 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
308
309 /* generate a new salt */
310 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
311 if (ret != 0)
312 goto error;
313
314 rw_enter(&key->zk_salt_lock, RW_WRITER);
315
316 /* someone beat us to the salt rotation, just unlock and return */
317 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
318 goto out_unlock;
319
320 /* derive the current key from the master key and the new salt */
321 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
322 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
323 if (ret != 0)
324 goto out_unlock;
325
326 /* assign the salt and reset the usage count */
327 bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
328 key->zk_salt_count = 0;
329
330 /* destroy the old context template and create the new one */
331 crypto_destroy_ctx_template(key->zk_current_tmpl);
332 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
333 &key->zk_current_tmpl, KM_SLEEP);
334 if (ret != CRYPTO_SUCCESS)
335 key->zk_current_tmpl = NULL;
336
337 rw_exit(&key->zk_salt_lock);
338
339 return (0);
340
341 out_unlock:
342 rw_exit(&key->zk_salt_lock);
343 error:
344 return (ret);
345 }
346
347 /* See comment above zfs_key_max_salt_uses definition for details */
348 int
zio_crypt_key_get_salt(zio_crypt_key_t * key,uint8_t * salt)349 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
350 {
351 int ret;
352 boolean_t salt_change;
353
354 rw_enter(&key->zk_salt_lock, RW_READER);
355
356 bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
357 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
358 ZFS_CURRENT_MAX_SALT_USES);
359
360 rw_exit(&key->zk_salt_lock);
361
362 if (salt_change) {
363 ret = zio_crypt_key_change_salt(key);
364 if (ret != 0)
365 goto error;
366 }
367
368 return (0);
369
370 error:
371 return (ret);
372 }
373
374 void *failed_decrypt_buf;
375 int failed_decrypt_size;
376
377 /*
378 * This function handles all encryption and decryption in zfs. When
379 * encrypting it expects puio to reference the plaintext and cuio to
380 * reference the cphertext. cuio must have enough space for the
381 * ciphertext + room for a MAC. datalen should be the length of the
382 * plaintext / ciphertext alone.
383 */
384 /* ARGSUSED */
385 static int
zio_do_crypt_uio(boolean_t encrypt,uint64_t crypt,crypto_key_t * key,crypto_ctx_template_t tmpl,uint8_t * ivbuf,uint_t datalen,uio_t * puio,uio_t * cuio,uint8_t * authbuf,uint_t auth_len)386 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
387 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
388 uio_t *puio, uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
389 {
390 int ret;
391 crypto_data_t plaindata, cipherdata;
392 CK_AES_CCM_PARAMS ccmp;
393 CK_AES_GCM_PARAMS gcmp;
394 crypto_mechanism_t mech;
395 zio_crypt_info_t crypt_info;
396 uint_t plain_full_len, maclen;
397
398 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
399 ASSERT3U(key->ck_format, ==, CRYPTO_KEY_RAW);
400
401 /* lookup the encryption info */
402 crypt_info = zio_crypt_table[crypt];
403
404 /* the mac will always be the last iovec_t in the cipher uio */
405 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
406
407 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
408
409 /* setup encryption mechanism (same as crypt) */
410 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
411
412 /*
413 * Strangely, the ICP requires that plain_full_len must include
414 * the MAC length when decrypting, even though the UIO does not
415 * need to have the extra space allocated.
416 */
417 if (encrypt) {
418 plain_full_len = datalen;
419 } else {
420 plain_full_len = datalen + maclen;
421 }
422
423 /*
424 * setup encryption params (currently only AES CCM and AES GCM
425 * are supported)
426 */
427 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
428 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
429 ccmp.ulAuthDataSize = auth_len;
430 ccmp.authData = authbuf;
431 ccmp.ulMACSize = maclen;
432 ccmp.nonce = ivbuf;
433 ccmp.ulDataSize = plain_full_len;
434
435 mech.cm_param = (char *)(&ccmp);
436 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
437 } else {
438 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
439 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
440 gcmp.ulAADLen = auth_len;
441 gcmp.pAAD = authbuf;
442 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
443 gcmp.pIv = ivbuf;
444
445 mech.cm_param = (char *)(&gcmp);
446 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
447 }
448
449 /* populate the cipher and plain data structs. */
450 plaindata.cd_format = CRYPTO_DATA_UIO;
451 plaindata.cd_offset = 0;
452 plaindata.cd_uio = puio;
453 plaindata.cd_miscdata = NULL;
454 plaindata.cd_length = plain_full_len;
455
456 cipherdata.cd_format = CRYPTO_DATA_UIO;
457 cipherdata.cd_offset = 0;
458 cipherdata.cd_uio = cuio;
459 cipherdata.cd_miscdata = NULL;
460 cipherdata.cd_length = datalen + maclen;
461
462 /* perform the actual encryption */
463 if (encrypt) {
464 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata,
465 NULL);
466 if (ret != CRYPTO_SUCCESS) {
467 ret = SET_ERROR(EIO);
468 goto error;
469 }
470 } else {
471 if (zio_decrypt_fail_fraction != 0 &&
472 spa_get_random(zio_decrypt_fail_fraction) == 0) {
473 ret = CRYPTO_INVALID_MAC;
474 } else {
475 ret = crypto_decrypt(&mech, &cipherdata,
476 key, tmpl, &plaindata, NULL);
477 }
478 if (ret != CRYPTO_SUCCESS) {
479 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
480 ret = SET_ERROR(ECKSUM);
481 goto error;
482 }
483 }
484
485 return (0);
486
487 error:
488 return (ret);
489 }
490
491 int
zio_crypt_key_wrap(crypto_key_t * cwkey,zio_crypt_key_t * key,uint8_t * iv,uint8_t * mac,uint8_t * keydata_out,uint8_t * hmac_keydata_out)492 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
493 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
494 {
495 int ret;
496 uio_t puio, cuio;
497 uint64_t aad[3];
498 iovec_t plain_iovecs[2], cipher_iovecs[3];
499 uint64_t crypt = key->zk_crypt;
500 uint_t enc_len, keydata_len, aad_len;
501
502 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
503 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
504
505 keydata_len = zio_crypt_table[crypt].ci_keylen;
506
507 /* generate iv for wrapping the master and hmac key */
508 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
509 if (ret != 0)
510 goto error;
511
512 /* initialize uio_ts */
513 plain_iovecs[0].iov_base = (char *)key->zk_master_keydata;
514 plain_iovecs[0].iov_len = keydata_len;
515 plain_iovecs[1].iov_base = (char *)key->zk_hmac_keydata;
516 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
517
518 cipher_iovecs[0].iov_base = (char *)keydata_out;
519 cipher_iovecs[0].iov_len = keydata_len;
520 cipher_iovecs[1].iov_base = (char *)hmac_keydata_out;
521 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
522 cipher_iovecs[2].iov_base = (char *)mac;
523 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
524
525 /*
526 * Although we don't support writing to the old format, we do
527 * support rewrapping the key so that the user can move and
528 * quarantine datasets on the old format.
529 */
530 if (key->zk_version == 0) {
531 aad_len = sizeof (uint64_t);
532 aad[0] = LE_64(key->zk_guid);
533 } else {
534 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
535 aad_len = sizeof (uint64_t) * 3;
536 aad[0] = LE_64(key->zk_guid);
537 aad[1] = LE_64(crypt);
538 aad[2] = LE_64(key->zk_version);
539 }
540
541 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
542 puio.uio_iov = plain_iovecs;
543 puio.uio_iovcnt = 2;
544 puio.uio_segflg = UIO_SYSSPACE;
545 cuio.uio_iov = cipher_iovecs;
546 cuio.uio_iovcnt = 3;
547 cuio.uio_segflg = UIO_SYSSPACE;
548
549 /* encrypt the keys and store the resulting ciphertext and mac */
550 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
551 &puio, &cuio, (uint8_t *)aad, aad_len);
552 if (ret != 0)
553 goto error;
554
555 return (0);
556
557 error:
558 return (ret);
559 }
560
561 int
zio_crypt_key_unwrap(crypto_key_t * cwkey,uint64_t crypt,uint64_t version,uint64_t guid,uint8_t * keydata,uint8_t * hmac_keydata,uint8_t * iv,uint8_t * mac,zio_crypt_key_t * key)562 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
563 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
564 uint8_t *mac, zio_crypt_key_t *key)
565 {
566 int ret;
567 crypto_mechanism_t mech;
568 uio_t puio, cuio;
569 uint64_t aad[3];
570 iovec_t plain_iovecs[2], cipher_iovecs[3];
571 uint_t enc_len, keydata_len, aad_len;
572
573 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
574 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
575
576 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
577 keydata_len = zio_crypt_table[crypt].ci_keylen;
578
579 /* initialize uio_ts */
580 plain_iovecs[0].iov_base = (char *)key->zk_master_keydata;
581 plain_iovecs[0].iov_len = keydata_len;
582 plain_iovecs[1].iov_base = (char *)key->zk_hmac_keydata;
583 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
584
585 cipher_iovecs[0].iov_base = (char *)keydata;
586 cipher_iovecs[0].iov_len = keydata_len;
587 cipher_iovecs[1].iov_base = (char *)hmac_keydata;
588 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
589 cipher_iovecs[2].iov_base = (char *)mac;
590 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
591
592 if (version == 0) {
593 aad_len = sizeof (uint64_t);
594 aad[0] = LE_64(guid);
595 } else {
596 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
597 aad_len = sizeof (uint64_t) * 3;
598 aad[0] = LE_64(guid);
599 aad[1] = LE_64(crypt);
600 aad[2] = LE_64(version);
601 }
602
603 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
604 puio.uio_iov = plain_iovecs;
605 puio.uio_segflg = UIO_SYSSPACE;
606 puio.uio_iovcnt = 2;
607 cuio.uio_iov = cipher_iovecs;
608 cuio.uio_iovcnt = 3;
609 cuio.uio_segflg = UIO_SYSSPACE;
610
611 /* decrypt the keys and store the result in the output buffers */
612 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
613 &puio, &cuio, (uint8_t *)aad, aad_len);
614 if (ret != 0)
615 goto error;
616
617 /* generate a fresh salt */
618 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
619 if (ret != 0)
620 goto error;
621
622 /* derive the current key from the master key */
623 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
624 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
625 keydata_len);
626 if (ret != 0)
627 goto error;
628
629 /* initialize keys for ICP */
630 key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
631 key->zk_current_key.ck_data = key->zk_current_keydata;
632 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
633
634 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
635 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
636 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
637
638 /*
639 * Initialize the crypto templates. It's ok if this fails because
640 * this is just an optimization.
641 */
642 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
643 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
644 &key->zk_current_tmpl, KM_SLEEP);
645 if (ret != CRYPTO_SUCCESS)
646 key->zk_current_tmpl = NULL;
647
648 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
649 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
650 &key->zk_hmac_tmpl, KM_SLEEP);
651 if (ret != CRYPTO_SUCCESS)
652 key->zk_hmac_tmpl = NULL;
653
654 key->zk_crypt = crypt;
655 key->zk_version = version;
656 key->zk_guid = guid;
657 key->zk_salt_count = 0;
658
659 return (0);
660
661 error:
662 zio_crypt_key_destroy(key);
663 return (ret);
664 }
665
666 int
zio_crypt_generate_iv(uint8_t * ivbuf)667 zio_crypt_generate_iv(uint8_t *ivbuf)
668 {
669 int ret;
670
671 /* randomly generate the IV */
672 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
673 if (ret != 0)
674 goto error;
675
676 return (0);
677
678 error:
679 bzero(ivbuf, ZIO_DATA_IV_LEN);
680 return (ret);
681 }
682
683 int
zio_crypt_do_hmac(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * digestbuf,uint_t digestlen)684 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
685 uint8_t *digestbuf, uint_t digestlen)
686 {
687 int ret;
688 crypto_mechanism_t mech;
689 crypto_data_t in_data, digest_data;
690 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
691
692 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
693
694 /* initialize sha512-hmac mechanism and crypto data */
695 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
696 mech.cm_param = NULL;
697 mech.cm_param_len = 0;
698
699 /* initialize the crypto data */
700 in_data.cd_format = CRYPTO_DATA_RAW;
701 in_data.cd_offset = 0;
702 in_data.cd_length = datalen;
703 in_data.cd_raw.iov_base = (char *)data;
704 in_data.cd_raw.iov_len = in_data.cd_length;
705
706 digest_data.cd_format = CRYPTO_DATA_RAW;
707 digest_data.cd_offset = 0;
708 digest_data.cd_length = SHA512_DIGEST_LENGTH;
709 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
710 digest_data.cd_raw.iov_len = digest_data.cd_length;
711
712 /* generate the hmac */
713 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
714 &digest_data, NULL);
715 if (ret != CRYPTO_SUCCESS) {
716 ret = SET_ERROR(EIO);
717 goto error;
718 }
719
720 bcopy(raw_digestbuf, digestbuf, digestlen);
721
722 return (0);
723
724 error:
725 bzero(digestbuf, digestlen);
726 return (ret);
727 }
728
729 int
zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t * key,uint8_t * data,uint_t datalen,uint8_t * ivbuf,uint8_t * salt)730 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
731 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
732 {
733 int ret;
734 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
735
736 ret = zio_crypt_do_hmac(key, data, datalen,
737 digestbuf, SHA512_DIGEST_LENGTH);
738 if (ret != 0)
739 return (ret);
740
741 bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
742 bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
743
744 return (0);
745 }
746
747 /*
748 * The following functions are used to encode and decode encryption parameters
749 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
750 * byte strings, which normally means that these strings would not need to deal
751 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
752 * byteswapped by lower layers and so we must "undo" that byteswap here upon
753 * decoding and encoding in a non-native byteorder. These functions require
754 * that the byteorder bit is correct before being called.
755 */
756 void
zio_crypt_encode_params_bp(blkptr_t * bp,uint8_t * salt,uint8_t * iv)757 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
758 {
759 uint64_t val64;
760 uint32_t val32;
761
762 ASSERT(BP_IS_ENCRYPTED(bp));
763
764 if (!BP_SHOULD_BYTESWAP(bp)) {
765 bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
766 bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
767 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
768 BP_SET_IV2(bp, val32);
769 } else {
770 bcopy(salt, &val64, sizeof (uint64_t));
771 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
772
773 bcopy(iv, &val64, sizeof (uint64_t));
774 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
775
776 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
777 BP_SET_IV2(bp, BSWAP_32(val32));
778 }
779 }
780
781 void
zio_crypt_decode_params_bp(const blkptr_t * bp,uint8_t * salt,uint8_t * iv)782 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
783 {
784 uint64_t val64;
785 uint32_t val32;
786
787 ASSERT(BP_IS_PROTECTED(bp));
788
789 /* for convenience, so callers don't need to check */
790 if (BP_IS_AUTHENTICATED(bp)) {
791 bzero(salt, ZIO_DATA_SALT_LEN);
792 bzero(iv, ZIO_DATA_IV_LEN);
793 return;
794 }
795
796 if (!BP_SHOULD_BYTESWAP(bp)) {
797 bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
798 bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
799
800 val32 = (uint32_t)BP_GET_IV2(bp);
801 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
802 } else {
803 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
804 bcopy(&val64, salt, sizeof (uint64_t));
805
806 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
807 bcopy(&val64, iv, sizeof (uint64_t));
808
809 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
810 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
811 }
812 }
813
814 void
zio_crypt_encode_mac_bp(blkptr_t * bp,uint8_t * mac)815 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
816 {
817 uint64_t val64;
818
819 ASSERT(BP_USES_CRYPT(bp));
820 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
821
822 if (!BP_SHOULD_BYTESWAP(bp)) {
823 bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
824 bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
825 sizeof (uint64_t));
826 } else {
827 bcopy(mac, &val64, sizeof (uint64_t));
828 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
829
830 bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
831 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
832 }
833 }
834
835 void
zio_crypt_decode_mac_bp(const blkptr_t * bp,uint8_t * mac)836 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
837 {
838 uint64_t val64;
839
840 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
841
842 /* for convenience, so callers don't need to check */
843 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
844 bzero(mac, ZIO_DATA_MAC_LEN);
845 return;
846 }
847
848 if (!BP_SHOULD_BYTESWAP(bp)) {
849 bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
850 bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
851 sizeof (uint64_t));
852 } else {
853 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
854 bcopy(&val64, mac, sizeof (uint64_t));
855
856 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
857 bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
858 }
859 }
860
861 void
zio_crypt_encode_mac_zil(void * data,uint8_t * mac)862 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
863 {
864 zil_chain_t *zilc = data;
865
866 bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
867 bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
868 sizeof (uint64_t));
869 }
870
871 void
zio_crypt_decode_mac_zil(const void * data,uint8_t * mac)872 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
873 {
874 /*
875 * The ZIL MAC is embedded in the block it protects, which will
876 * not have been byteswapped by the time this function has been called.
877 * As a result, we don't need to worry about byteswapping the MAC.
878 */
879 const zil_chain_t *zilc = data;
880
881 bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
882 bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
883 sizeof (uint64_t));
884 }
885
886 /*
887 * This routine takes a block of dnodes (src_abd) and copies only the bonus
888 * buffers to the same offsets in the dst buffer. datalen should be the size
889 * of both the src_abd and the dst buffer (not just the length of the bonus
890 * buffers).
891 */
892 void
zio_crypt_copy_dnode_bonus(abd_t * src_abd,uint8_t * dst,uint_t datalen)893 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
894 {
895 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
896 uint8_t *src;
897 dnode_phys_t *dnp, *sdnp, *ddnp;
898
899 src = abd_borrow_buf_copy(src_abd, datalen);
900
901 sdnp = (dnode_phys_t *)src;
902 ddnp = (dnode_phys_t *)dst;
903
904 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
905 dnp = &sdnp[i];
906 if (dnp->dn_type != DMU_OT_NONE &&
907 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
908 dnp->dn_bonuslen != 0) {
909 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
910 DN_MAX_BONUS_LEN(dnp));
911 }
912 }
913
914 abd_return_buf(src_abd, src, datalen);
915 }
916
917 /*
918 * This function decides what fields from blk_prop are included in
919 * the on-disk various MAC algorithms.
920 */
921 static void
zio_crypt_bp_zero_nonportable_blkprop(blkptr_t * bp,uint64_t version)922 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
923 {
924 /*
925 * Version 0 did not properly zero out all non-portable fields
926 * as it should have done. We maintain this code so that we can
927 * do read-only imports of pools on this version.
928 */
929 if (version == 0) {
930 BP_SET_DEDUP(bp, 0);
931 BP_SET_CHECKSUM(bp, 0);
932 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
933 return;
934 }
935
936 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
937
938 /*
939 * The hole_birth feature might set these fields even if this bp
940 * is a hole. We zero them out here to guarantee that raw sends
941 * will function with or without the feature.
942 */
943 if (BP_IS_HOLE(bp)) {
944 bp->blk_prop = 0ULL;
945 return;
946 }
947
948 /*
949 * At L0 we want to verify these fields to ensure that data blocks
950 * can not be reinterpretted. For instance, we do not want an attacker
951 * to trick us into returning raw lz4 compressed data to the user
952 * by modifying the compression bits. At higher levels, we cannot
953 * enforce this policy since raw sends do not convey any information
954 * about indirect blocks, so these values might be different on the
955 * receive side. Fortunately, this does not open any new attack
956 * vectors, since any alterations that can be made to a higher level
957 * bp must still verify the correct order of the layer below it.
958 */
959 if (BP_GET_LEVEL(bp) != 0) {
960 BP_SET_BYTEORDER(bp, 0);
961 BP_SET_COMPRESS(bp, 0);
962
963 /*
964 * psize cannot be set to zero or it will trigger
965 * asserts, but the value doesn't really matter as
966 * long as it is constant.
967 */
968 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
969 }
970
971 BP_SET_DEDUP(bp, 0);
972 BP_SET_CHECKSUM(bp, 0);
973 }
974
975 static void
zio_crypt_bp_auth_init(uint64_t version,boolean_t should_bswap,blkptr_t * bp,blkptr_auth_buf_t * bab,uint_t * bab_len)976 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
977 blkptr_auth_buf_t *bab, uint_t *bab_len)
978 {
979 blkptr_t tmpbp = *bp;
980
981 if (should_bswap)
982 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
983
984 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
985 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
986
987 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
988
989 /*
990 * We always MAC blk_prop in LE to ensure portability. This
991 * must be done after decoding the mac, since the endianness
992 * will get zero'd out here.
993 */
994 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
995 bab->bab_prop = LE_64(tmpbp.blk_prop);
996 bab->bab_pad = 0ULL;
997
998 /* version 0 did not include the padding */
999 *bab_len = sizeof (blkptr_auth_buf_t);
1000 if (version == 0)
1001 *bab_len -= sizeof (uint64_t);
1002 }
1003
1004 static int
zio_crypt_bp_do_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1005 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
1006 boolean_t should_bswap, blkptr_t *bp)
1007 {
1008 int ret;
1009 uint_t bab_len;
1010 blkptr_auth_buf_t bab;
1011 crypto_data_t cd;
1012
1013 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1014 cd.cd_format = CRYPTO_DATA_RAW;
1015 cd.cd_offset = 0;
1016 cd.cd_length = bab_len;
1017 cd.cd_raw.iov_base = (char *)&bab;
1018 cd.cd_raw.iov_len = cd.cd_length;
1019
1020 ret = crypto_mac_update(ctx, &cd, NULL);
1021 if (ret != CRYPTO_SUCCESS) {
1022 ret = SET_ERROR(EIO);
1023 goto error;
1024 }
1025
1026 return (0);
1027
1028 error:
1029 return (ret);
1030 }
1031
1032 static void
zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX * ctx,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1033 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1034 boolean_t should_bswap, blkptr_t *bp)
1035 {
1036 uint_t bab_len;
1037 blkptr_auth_buf_t bab;
1038
1039 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1040 SHA2Update(ctx, &bab, bab_len);
1041 }
1042
1043 static void
zio_crypt_bp_do_aad_updates(uint8_t ** aadp,uint_t * aad_len,uint64_t version,boolean_t should_bswap,blkptr_t * bp)1044 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1045 boolean_t should_bswap, blkptr_t *bp)
1046 {
1047 uint_t bab_len;
1048 blkptr_auth_buf_t bab;
1049
1050 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1051 bcopy(&bab, *aadp, bab_len);
1052 *aadp += bab_len;
1053 *aad_len += bab_len;
1054 }
1055
1056 static int
zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx,uint64_t version,boolean_t should_bswap,dnode_phys_t * dnp)1057 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1058 boolean_t should_bswap, dnode_phys_t *dnp)
1059 {
1060 int ret, i;
1061 dnode_phys_t *adnp;
1062 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1063 crypto_data_t cd;
1064 uint8_t tmp_dncore[sizeof (dnode_phys_t)];
1065
1066 adnp = (dnode_phys_t *)tmp_dncore;
1067 cd.cd_format = CRYPTO_DATA_RAW;
1068 cd.cd_offset = 0;
1069 cd.cd_length = offsetof(dnode_phys_t, dn_blkptr);
1070 cd.cd_raw.iov_base = (char *)adnp;
1071 cd.cd_raw.iov_len = cd.cd_length;
1072
1073 /* authenticate the core dnode (masking out non-portable bits) */
1074 bcopy(dnp, tmp_dncore, cd.cd_length);
1075 if (le_bswap) {
1076 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1077 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1078 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1079 adnp->dn_used = BSWAP_64(adnp->dn_used);
1080 }
1081 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1082 adnp->dn_used = 0;
1083
1084 ret = crypto_mac_update(ctx, &cd, NULL);
1085 if (ret != CRYPTO_SUCCESS) {
1086 ret = SET_ERROR(EIO);
1087 goto error;
1088 }
1089
1090 for (i = 0; i < dnp->dn_nblkptr; i++) {
1091 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1092 should_bswap, &dnp->dn_blkptr[i]);
1093 if (ret != 0)
1094 goto error;
1095 }
1096
1097 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1098 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1099 should_bswap, DN_SPILL_BLKPTR(dnp));
1100 if (ret != 0)
1101 goto error;
1102 }
1103
1104 return (0);
1105
1106 error:
1107 return (ret);
1108 }
1109
1110 /*
1111 * objset_phys_t blocks introduce a number of exceptions to the normal
1112 * authentication process. objset_phys_t's contain 2 seperate HMACS for
1113 * protecting the integrity of their data. The portable_mac protects the
1114 * the metadnode. This MAC can be sent with a raw send and protects against
1115 * reordering of data within the metadnode. The local_mac protects the user
1116 * accounting objects which are not sent from one system to another.
1117 *
1118 * In addition, objset blocks are the only blocks that can be modified and
1119 * written to disk without the key loaded under certain circumstances. During
1120 * zil_claim() we need to be able to update the zil_header_t to complete
1121 * claiming log blocks and during raw receives we need to write out the
1122 * portable_mac from the send file. Both of these actions are possible
1123 * because these fields are not protected by either MAC so neither one will
1124 * need to modify the MACs without the key. However, when the modified blocks
1125 * are written out they will be byteswapped into the host machine's native
1126 * endianness which will modify fields protected by the MAC. As a result, MAC
1127 * calculation for objset blocks works slightly differently from other block
1128 * types. Where other block types MAC the data in whatever endianness is
1129 * written to disk, objset blocks always MAC little endian version of their
1130 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131 * and le_bswap indicates whether a byteswap is needed to get this block
1132 * into little endian format.
1133 */
1134 /* ARGSUSED */
1135 int
zio_crypt_do_objset_hmacs(zio_crypt_key_t * key,void * data,uint_t datalen,boolean_t should_bswap,uint8_t * portable_mac,uint8_t * local_mac)1136 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1137 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1138 {
1139 int ret;
1140 crypto_mechanism_t mech;
1141 crypto_context_t ctx;
1142 crypto_data_t cd;
1143 objset_phys_t *osp = data;
1144 uint64_t intval;
1145 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1146 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1147 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1148
1149 /* initialize HMAC mechanism */
1150 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1151 mech.cm_param = NULL;
1152 mech.cm_param_len = 0;
1153
1154 cd.cd_format = CRYPTO_DATA_RAW;
1155 cd.cd_offset = 0;
1156
1157 /* calculate the portable MAC from the portable fields and metadnode */
1158 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1159 if (ret != CRYPTO_SUCCESS) {
1160 ret = SET_ERROR(EIO);
1161 goto error;
1162 }
1163
1164 /* add in the os_type */
1165 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1166 cd.cd_length = sizeof (uint64_t);
1167 cd.cd_raw.iov_base = (char *)&intval;
1168 cd.cd_raw.iov_len = cd.cd_length;
1169
1170 ret = crypto_mac_update(ctx, &cd, NULL);
1171 if (ret != CRYPTO_SUCCESS) {
1172 ret = SET_ERROR(EIO);
1173 goto error;
1174 }
1175
1176 /* add in the portable os_flags */
1177 intval = osp->os_flags;
1178 if (should_bswap)
1179 intval = BSWAP_64(intval);
1180 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1181 /* CONSTCOND */
1182 if (!ZFS_HOST_BYTEORDER)
1183 intval = BSWAP_64(intval);
1184
1185 cd.cd_length = sizeof (uint64_t);
1186 cd.cd_raw.iov_base = (char *)&intval;
1187 cd.cd_raw.iov_len = cd.cd_length;
1188
1189 ret = crypto_mac_update(ctx, &cd, NULL);
1190 if (ret != CRYPTO_SUCCESS) {
1191 ret = SET_ERROR(EIO);
1192 goto error;
1193 }
1194
1195 /* add in fields from the metadnode */
1196 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1197 should_bswap, &osp->os_meta_dnode);
1198 if (ret)
1199 goto error;
1200
1201 /* store the final digest in a temporary buffer and copy what we need */
1202 cd.cd_length = SHA512_DIGEST_LENGTH;
1203 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1204 cd.cd_raw.iov_len = cd.cd_length;
1205
1206 ret = crypto_mac_final(ctx, &cd, NULL);
1207 if (ret != CRYPTO_SUCCESS) {
1208 ret = SET_ERROR(EIO);
1209 goto error;
1210 }
1211
1212 bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
1213
1214 /*
1215 * The local MAC protects the user, group and project accounting.
1216 * If these objects are not present, the local MAC is zeroed out.
1217 */
1218 if ((datalen >= OBJSET_PHYS_SIZE_V3 &&
1219 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1220 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1221 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1222 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1223 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1224 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1225 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1226 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1227 return (0);
1228 }
1229
1230 /* calculate the local MAC from the userused and groupused dnodes */
1231 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
1232 if (ret != CRYPTO_SUCCESS) {
1233 ret = SET_ERROR(EIO);
1234 goto error;
1235 }
1236
1237 /* add in the non-portable os_flags */
1238 intval = osp->os_flags;
1239 if (should_bswap)
1240 intval = BSWAP_64(intval);
1241 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1242 /* CONSTCOND */
1243 if (!ZFS_HOST_BYTEORDER)
1244 intval = BSWAP_64(intval);
1245
1246 cd.cd_length = sizeof (uint64_t);
1247 cd.cd_raw.iov_base = (char *)&intval;
1248 cd.cd_raw.iov_len = cd.cd_length;
1249
1250 ret = crypto_mac_update(ctx, &cd, NULL);
1251 if (ret != CRYPTO_SUCCESS) {
1252 ret = SET_ERROR(EIO);
1253 goto error;
1254 }
1255
1256 /* add in fields from the user accounting dnodes */
1257 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1258 should_bswap, &osp->os_userused_dnode);
1259 if (ret)
1260 goto error;
1261
1262 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1263 should_bswap, &osp->os_groupused_dnode);
1264 if (ret)
1265 goto error;
1266
1267 /* store the final digest in a temporary buffer and copy what we need */
1268 cd.cd_length = SHA512_DIGEST_LENGTH;
1269 cd.cd_raw.iov_base = (char *)raw_local_mac;
1270 cd.cd_raw.iov_len = cd.cd_length;
1271
1272 ret = crypto_mac_final(ctx, &cd, NULL);
1273 if (ret != CRYPTO_SUCCESS) {
1274 ret = SET_ERROR(EIO);
1275 goto error;
1276 }
1277
1278 bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
1279
1280 return (0);
1281
1282 error:
1283 bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
1284 bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1285 return (ret);
1286 }
1287
1288 static void
zio_crypt_destroy_uio(uio_t * uio)1289 zio_crypt_destroy_uio(uio_t *uio)
1290 {
1291 if (uio->uio_iov)
1292 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1293 }
1294
1295 /*
1296 * This function parses an uncompressed indirect block and returns a checksum
1297 * of all the portable fields from all of the contained bps. The portable
1298 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1299 * checksum, and psize bits. For an explanation of the purpose of this, see
1300 * the comment block on object set authentication.
1301 */
1302 static int
zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate,void * buf,uint_t datalen,uint64_t version,boolean_t byteswap,uint8_t * cksum)1303 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1304 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1305 {
1306 blkptr_t *bp;
1307 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1308 SHA2_CTX ctx;
1309 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1310
1311 /* checksum all of the MACs from the layer below */
1312 SHA2Init(SHA512, &ctx);
1313 for (i = 0, bp = buf; i < epb; i++, bp++) {
1314 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1315 byteswap, bp);
1316 }
1317 SHA2Final(digestbuf, &ctx);
1318
1319 if (generate) {
1320 bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
1321 return (0);
1322 }
1323
1324 if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1325 return (SET_ERROR(ECKSUM));
1326
1327 return (0);
1328 }
1329
1330 int
zio_crypt_do_indirect_mac_checksum(boolean_t generate,void * buf,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1331 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1332 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1333 {
1334 int ret;
1335
1336 /*
1337 * Unfortunately, callers of this function will not always have
1338 * easy access to the on-disk format version. This info is
1339 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1340 * is expected to be verifiable even when the key isn't loaded.
1341 * Here, instead of doing a ZAP lookup for the version for each
1342 * zio, we simply try both existing formats.
1343 */
1344 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1345 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1346 if (ret == ECKSUM) {
1347 ASSERT(!generate);
1348 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1349 buf, datalen, 0, byteswap, cksum);
1350 }
1351
1352 return (ret);
1353 }
1354
1355 int
zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate,abd_t * abd,uint_t datalen,boolean_t byteswap,uint8_t * cksum)1356 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1357 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1358 {
1359 int ret;
1360 void *buf;
1361
1362 buf = abd_borrow_buf_copy(abd, datalen);
1363 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1364 byteswap, cksum);
1365 abd_return_buf(abd, buf, datalen);
1366
1367 return (ret);
1368 }
1369
1370 /*
1371 * Special case handling routine for encrypting / decrypting ZIL blocks.
1372 * We do not check for the older ZIL chain because the encryption feature
1373 * was not available before the newer ZIL chain was introduced. The goal
1374 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1375 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1376 */
1377
1378 /* ARGSUSED */
1379 static int
zio_crypt_init_uios_zil(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,uio_t * puio,uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1380 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1381 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, uio_t *puio,
1382 uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1383 boolean_t *no_crypt)
1384 {
1385 int ret;
1386 uint64_t txtype, lr_len;
1387 uint_t nr_src, nr_dst, crypt_len;
1388 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1389 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1390 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1391 zil_chain_t *zilc;
1392 lr_t *lr;
1393 uint8_t *aadbuf = zio_buf_alloc(datalen);
1394
1395 /* cipherbuf always needs an extra iovec for the MAC */
1396 if (encrypt) {
1397 src = plainbuf;
1398 dst = cipherbuf;
1399 nr_src = 0;
1400 nr_dst = 1;
1401 } else {
1402 src = cipherbuf;
1403 dst = plainbuf;
1404 nr_src = 1;
1405 nr_dst = 0;
1406 }
1407
1408 /* find the start and end record of the log block */
1409 zilc = (zil_chain_t *)src;
1410 slrp = src + sizeof (zil_chain_t);
1411 aadp = aadbuf;
1412 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1413
1414 /* calculate the number of encrypted iovecs we will need */
1415 for (; slrp < blkend; slrp += lr_len) {
1416 lr = (lr_t *)slrp;
1417
1418 if (!byteswap) {
1419 txtype = lr->lrc_txtype;
1420 lr_len = lr->lrc_reclen;
1421 } else {
1422 txtype = BSWAP_64(lr->lrc_txtype);
1423 lr_len = BSWAP_64(lr->lrc_reclen);
1424 }
1425
1426 nr_iovecs++;
1427 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1428 nr_iovecs++;
1429 }
1430
1431 nr_src += nr_iovecs;
1432 nr_dst += nr_iovecs;
1433
1434 /* allocate the iovec arrays */
1435 if (nr_src != 0) {
1436 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1437 if (src_iovecs == NULL) {
1438 ret = SET_ERROR(ENOMEM);
1439 goto error;
1440 }
1441 }
1442
1443 if (nr_dst != 0) {
1444 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1445 if (dst_iovecs == NULL) {
1446 ret = SET_ERROR(ENOMEM);
1447 goto error;
1448 }
1449 }
1450
1451 /*
1452 * Copy the plain zil header over and authenticate everything except
1453 * the checksum that will store our MAC. If we are writing the data
1454 * the embedded checksum will not have been calculated yet, so we don't
1455 * authenticate that.
1456 */
1457 bcopy(src, dst, sizeof (zil_chain_t));
1458 bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1459 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1460 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1461
1462 /* loop over records again, filling in iovecs */
1463 nr_iovecs = 0;
1464 slrp = src + sizeof (zil_chain_t);
1465 dlrp = dst + sizeof (zil_chain_t);
1466
1467 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1468 lr = (lr_t *)slrp;
1469
1470 if (!byteswap) {
1471 txtype = lr->lrc_txtype;
1472 lr_len = lr->lrc_reclen;
1473 } else {
1474 txtype = BSWAP_64(lr->lrc_txtype);
1475 lr_len = BSWAP_64(lr->lrc_reclen);
1476 }
1477
1478 /* copy the common lr_t */
1479 bcopy(slrp, dlrp, sizeof (lr_t));
1480 bcopy(slrp, aadp, sizeof (lr_t));
1481 aadp += sizeof (lr_t);
1482 aad_len += sizeof (lr_t);
1483
1484 ASSERT3P(src_iovecs, !=, NULL);
1485 ASSERT3P(dst_iovecs, !=, NULL);
1486
1487 /*
1488 * If this is a TX_WRITE record we want to encrypt everything
1489 * except the bp if exists. If the bp does exist we want to
1490 * authenticate it.
1491 */
1492 if (txtype == TX_WRITE) {
1493 crypt_len = sizeof (lr_write_t) -
1494 sizeof (lr_t) - sizeof (blkptr_t);
1495 src_iovecs[nr_iovecs].iov_base = (char *)slrp +
1496 sizeof (lr_t);
1497 src_iovecs[nr_iovecs].iov_len = crypt_len;
1498 dst_iovecs[nr_iovecs].iov_base = (char *)dlrp +
1499 sizeof (lr_t);
1500 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1501
1502 /* copy the bp now since it will not be encrypted */
1503 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1504 dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1505 sizeof (blkptr_t));
1506 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1507 aadp, sizeof (blkptr_t));
1508 aadp += sizeof (blkptr_t);
1509 aad_len += sizeof (blkptr_t);
1510 nr_iovecs++;
1511 total_len += crypt_len;
1512
1513 if (lr_len != sizeof (lr_write_t)) {
1514 crypt_len = lr_len - sizeof (lr_write_t);
1515 src_iovecs[nr_iovecs].iov_base = (char *)
1516 slrp + sizeof (lr_write_t);
1517 src_iovecs[nr_iovecs].iov_len = crypt_len;
1518 dst_iovecs[nr_iovecs].iov_base = (char *)
1519 dlrp + sizeof (lr_write_t);
1520 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1521 nr_iovecs++;
1522 total_len += crypt_len;
1523 }
1524 } else {
1525 crypt_len = lr_len - sizeof (lr_t);
1526 src_iovecs[nr_iovecs].iov_base = (char *)slrp +
1527 sizeof (lr_t);
1528 src_iovecs[nr_iovecs].iov_len = crypt_len;
1529 dst_iovecs[nr_iovecs].iov_base = (char *)dlrp +
1530 sizeof (lr_t);
1531 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1532 nr_iovecs++;
1533 total_len += crypt_len;
1534 }
1535 }
1536
1537 *no_crypt = (nr_iovecs == 0);
1538 *enc_len = total_len;
1539 *authbuf = aadbuf;
1540 *auth_len = aad_len;
1541
1542 if (encrypt) {
1543 puio->uio_iov = src_iovecs;
1544 puio->uio_iovcnt = nr_src;
1545 cuio->uio_iov = dst_iovecs;
1546 cuio->uio_iovcnt = nr_dst;
1547 } else {
1548 puio->uio_iov = dst_iovecs;
1549 puio->uio_iovcnt = nr_dst;
1550 cuio->uio_iov = src_iovecs;
1551 cuio->uio_iovcnt = nr_src;
1552 }
1553
1554 return (0);
1555
1556 error:
1557 zio_buf_free(aadbuf, datalen);
1558 if (src_iovecs != NULL)
1559 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1560 if (dst_iovecs != NULL)
1561 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1562
1563 *enc_len = 0;
1564 *authbuf = NULL;
1565 *auth_len = 0;
1566 *no_crypt = B_FALSE;
1567 puio->uio_iov = NULL;
1568 puio->uio_iovcnt = 0;
1569 cuio->uio_iov = NULL;
1570 cuio->uio_iovcnt = 0;
1571 return (ret);
1572 }
1573
1574 /*
1575 * Special case handling routine for encrypting / decrypting dnode blocks.
1576 */
1577 static int
zio_crypt_init_uios_dnode(boolean_t encrypt,uint64_t version,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,uio_t * puio,uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1578 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1579 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1580 uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1581 uint_t *auth_len, boolean_t *no_crypt)
1582 {
1583 int ret;
1584 uint_t nr_src, nr_dst, crypt_len;
1585 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1586 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1587 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1588 uint8_t *src, *dst, *aadp;
1589 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1590 uint8_t *aadbuf = zio_buf_alloc(datalen);
1591
1592 if (encrypt) {
1593 src = plainbuf;
1594 dst = cipherbuf;
1595 nr_src = 0;
1596 nr_dst = 1;
1597 } else {
1598 src = cipherbuf;
1599 dst = plainbuf;
1600 nr_src = 1;
1601 nr_dst = 0;
1602 }
1603
1604 sdnp = (dnode_phys_t *)src;
1605 ddnp = (dnode_phys_t *)dst;
1606 aadp = aadbuf;
1607
1608 /*
1609 * Count the number of iovecs we will need to do the encryption by
1610 * counting the number of bonus buffers that need to be encrypted.
1611 */
1612 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1613 /*
1614 * This block may still be byteswapped. However, all of the
1615 * values we use are either uint8_t's (for which byteswapping
1616 * is a noop) or a * != 0 check, which will work regardless
1617 * of whether or not we byteswap.
1618 */
1619 if (sdnp[i].dn_type != DMU_OT_NONE &&
1620 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1621 sdnp[i].dn_bonuslen != 0) {
1622 nr_iovecs++;
1623 }
1624 }
1625
1626 nr_src += nr_iovecs;
1627 nr_dst += nr_iovecs;
1628
1629 if (nr_src != 0) {
1630 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1631 if (src_iovecs == NULL) {
1632 ret = SET_ERROR(ENOMEM);
1633 goto error;
1634 }
1635 }
1636
1637 if (nr_dst != 0) {
1638 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1639 if (dst_iovecs == NULL) {
1640 ret = SET_ERROR(ENOMEM);
1641 goto error;
1642 }
1643 }
1644
1645 nr_iovecs = 0;
1646
1647 /*
1648 * Iterate through the dnodes again, this time filling in the uios
1649 * we allocated earlier. We also concatenate any data we want to
1650 * authenticate onto aadbuf.
1651 */
1652 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1653 dnp = &sdnp[i];
1654 /* copy over the core fields and blkptrs (kept as plaintext) */
1655 bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1656 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1657 bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
1658 sizeof (blkptr_t));
1659 }
1660
1661 /*
1662 * Handle authenticated data. We authenticate everything in
1663 * the dnode that can be brought over when we do a raw send.
1664 * This includes all of the core fields as well as the MACs
1665 * stored in the bp checksums and all of the portable bits
1666 * from blk_prop. We include the dnode padding here in case it
1667 * ever gets used in the future. Some dn_flags and dn_used are
1668 * not portable so we mask those out values out of the
1669 * authenticated data.
1670 */
1671 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1672 bcopy(dnp, aadp, crypt_len);
1673 adnp = (dnode_phys_t *)aadp;
1674 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1675 adnp->dn_used = 0;
1676 aadp += crypt_len;
1677 aad_len += crypt_len;
1678
1679 for (j = 0; j < dnp->dn_nblkptr; j++) {
1680 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1681 version, byteswap, &dnp->dn_blkptr[j]);
1682 }
1683
1684 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1685 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1686 version, byteswap, DN_SPILL_BLKPTR(dnp));
1687 }
1688
1689 /*
1690 * If this bonus buffer needs to be encrypted, we prepare an
1691 * iovec_t. The encryption / decryption functions will fill
1692 * this in for us with the encrypted or decrypted data.
1693 * Otherwise we add the bonus buffer to the authenticated
1694 * data buffer and copy it over to the destination. The
1695 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1696 * we can guarantee alignment with the AES block size
1697 * (128 bits).
1698 */
1699 crypt_len = DN_MAX_BONUS_LEN(dnp);
1700 if (dnp->dn_type != DMU_OT_NONE &&
1701 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1702 dnp->dn_bonuslen != 0) {
1703 ASSERT3U(nr_iovecs, <, nr_src);
1704 ASSERT3U(nr_iovecs, <, nr_dst);
1705 ASSERT3P(src_iovecs, !=, NULL);
1706 ASSERT3P(dst_iovecs, !=, NULL);
1707 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1708 src_iovecs[nr_iovecs].iov_len = crypt_len;
1709 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1710 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1711
1712 nr_iovecs++;
1713 total_len += crypt_len;
1714 } else {
1715 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
1716 bcopy(DN_BONUS(dnp), aadp, crypt_len);
1717 aadp += crypt_len;
1718 aad_len += crypt_len;
1719 }
1720 }
1721
1722 *no_crypt = (nr_iovecs == 0);
1723 *enc_len = total_len;
1724 *authbuf = aadbuf;
1725 *auth_len = aad_len;
1726
1727 if (encrypt) {
1728 puio->uio_iov = src_iovecs;
1729 puio->uio_iovcnt = nr_src;
1730 cuio->uio_iov = dst_iovecs;
1731 cuio->uio_iovcnt = nr_dst;
1732 } else {
1733 puio->uio_iov = dst_iovecs;
1734 puio->uio_iovcnt = nr_dst;
1735 cuio->uio_iov = src_iovecs;
1736 cuio->uio_iovcnt = nr_src;
1737 }
1738
1739 return (0);
1740
1741 error:
1742 zio_buf_free(aadbuf, datalen);
1743 if (src_iovecs != NULL)
1744 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1745 if (dst_iovecs != NULL)
1746 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1747
1748 *enc_len = 0;
1749 *authbuf = NULL;
1750 *auth_len = 0;
1751 *no_crypt = B_FALSE;
1752 puio->uio_iov = NULL;
1753 puio->uio_iovcnt = 0;
1754 cuio->uio_iov = NULL;
1755 cuio->uio_iovcnt = 0;
1756 return (ret);
1757 }
1758
1759 /* ARGSUSED */
1760 static int
zio_crypt_init_uios_normal(boolean_t encrypt,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,uio_t * puio,uio_t * cuio,uint_t * enc_len)1761 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1762 uint8_t *cipherbuf, uint_t datalen, uio_t *puio, uio_t *cuio,
1763 uint_t *enc_len)
1764 {
1765 int ret;
1766 uint_t nr_plain = 1, nr_cipher = 2;
1767 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1768
1769 /* allocate the iovecs for the plain and cipher data */
1770 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1771 KM_SLEEP);
1772 if (!plain_iovecs) {
1773 ret = SET_ERROR(ENOMEM);
1774 goto error;
1775 }
1776
1777 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1778 KM_SLEEP);
1779 if (!cipher_iovecs) {
1780 ret = SET_ERROR(ENOMEM);
1781 goto error;
1782 }
1783
1784 plain_iovecs[0].iov_base = (void *)plainbuf;
1785 plain_iovecs[0].iov_len = datalen;
1786 cipher_iovecs[0].iov_base = (void *)cipherbuf;
1787 cipher_iovecs[0].iov_len = datalen;
1788
1789 *enc_len = datalen;
1790 puio->uio_iov = plain_iovecs;
1791 puio->uio_iovcnt = nr_plain;
1792 cuio->uio_iov = cipher_iovecs;
1793 cuio->uio_iovcnt = nr_cipher;
1794
1795 return (0);
1796
1797 error:
1798 if (plain_iovecs != NULL)
1799 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1800 if (cipher_iovecs != NULL)
1801 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1802
1803 *enc_len = 0;
1804 puio->uio_iov = NULL;
1805 puio->uio_iovcnt = 0;
1806 cuio->uio_iov = NULL;
1807 cuio->uio_iovcnt = 0;
1808 return (ret);
1809 }
1810
1811 /*
1812 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1813 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1814 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1815 * requiring special handling to parse out pieces that are to be encrypted. The
1816 * authbuf is used by these special cases to store additional authenticated
1817 * data (AAD) for the encryption modes.
1818 */
1819 /* ARGSUSED */
1820 static int
zio_crypt_init_uios(boolean_t encrypt,uint64_t version,dmu_object_type_t ot,uint8_t * plainbuf,uint8_t * cipherbuf,uint_t datalen,boolean_t byteswap,uint8_t * mac,uio_t * puio,uio_t * cuio,uint_t * enc_len,uint8_t ** authbuf,uint_t * auth_len,boolean_t * no_crypt)1821 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1822 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1823 uint8_t *mac, uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1824 uint_t *auth_len, boolean_t *no_crypt)
1825 {
1826 int ret;
1827 iovec_t *mac_iov;
1828
1829 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1830
1831 /* route to handler */
1832 switch (ot) {
1833 case DMU_OT_INTENT_LOG:
1834 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1835 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1836 no_crypt);
1837 break;
1838 case DMU_OT_DNODE:
1839 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1840 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1841 auth_len, no_crypt);
1842 break;
1843 default:
1844 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1845 datalen, puio, cuio, enc_len);
1846 *authbuf = NULL;
1847 *auth_len = 0;
1848 *no_crypt = B_FALSE;
1849 break;
1850 }
1851
1852 if (ret != 0)
1853 goto error;
1854
1855 /* populate the uios */
1856 puio->uio_segflg = UIO_SYSSPACE;
1857 cuio->uio_segflg = UIO_SYSSPACE;
1858
1859 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1860 mac_iov->iov_base = (void *)mac;
1861 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1862
1863 return (0);
1864
1865 error:
1866 return (ret);
1867 }
1868
1869 /*
1870 * Primary encryption / decryption entrypoint for zio data.
1871 */
1872 int
zio_do_crypt_data(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,uint8_t * plainbuf,uint8_t * cipherbuf,boolean_t * no_crypt)1873 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1874 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1875 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1876 boolean_t *no_crypt)
1877 {
1878 int ret;
1879 boolean_t locked = B_FALSE;
1880 uint64_t crypt = key->zk_crypt;
1881 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1882 uint_t enc_len, auth_len;
1883 uio_t puio, cuio;
1884 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1885 crypto_key_t tmp_ckey, *ckey = NULL;
1886 crypto_ctx_template_t tmpl;
1887 uint8_t *authbuf = NULL;
1888
1889 bzero(&puio, sizeof (uio_t));
1890 bzero(&cuio, sizeof (uio_t));
1891
1892 /* create uios for encryption */
1893 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1894 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1895 &authbuf, &auth_len, no_crypt);
1896 if (ret != 0)
1897 return (ret);
1898
1899 /*
1900 * If the needed key is the current one, just use it. Otherwise we
1901 * need to generate a temporary one from the given salt + master key.
1902 * If we are encrypting, we must return a copy of the current salt
1903 * so that it can be stored in the blkptr_t.
1904 */
1905 rw_enter(&key->zk_salt_lock, RW_READER);
1906 locked = B_TRUE;
1907
1908 if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1909 ckey = &key->zk_current_key;
1910 tmpl = key->zk_current_tmpl;
1911 } else {
1912 rw_exit(&key->zk_salt_lock);
1913 locked = B_FALSE;
1914
1915 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1916 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1917 if (ret != 0)
1918 goto error;
1919
1920 tmp_ckey.ck_format = CRYPTO_KEY_RAW;
1921 tmp_ckey.ck_data = enc_keydata;
1922 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1923
1924 ckey = &tmp_ckey;
1925 tmpl = NULL;
1926 }
1927
1928 /* perform the encryption / decryption */
1929 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1930 &puio, &cuio, authbuf, auth_len);
1931 if (ret != 0)
1932 goto error;
1933
1934 if (locked) {
1935 rw_exit(&key->zk_salt_lock);
1936 locked = B_FALSE;
1937 }
1938
1939 if (authbuf != NULL)
1940 zio_buf_free(authbuf, datalen);
1941 if (ckey == &tmp_ckey)
1942 bzero(enc_keydata, keydata_len);
1943 zio_crypt_destroy_uio(&puio);
1944 zio_crypt_destroy_uio(&cuio);
1945
1946 return (0);
1947
1948 error:
1949 if (!encrypt) {
1950 if (failed_decrypt_buf != NULL)
1951 kmem_free(failed_decrypt_buf, failed_decrypt_size);
1952 failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP);
1953 failed_decrypt_size = datalen;
1954 bcopy(cipherbuf, failed_decrypt_buf, datalen);
1955 }
1956 if (locked)
1957 rw_exit(&key->zk_salt_lock);
1958 if (authbuf != NULL)
1959 zio_buf_free(authbuf, datalen);
1960 if (ckey == &tmp_ckey)
1961 bzero(enc_keydata, keydata_len);
1962 zio_crypt_destroy_uio(&puio);
1963 zio_crypt_destroy_uio(&cuio);
1964
1965 return (ret);
1966 }
1967
1968 /*
1969 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1970 * linear buffers.
1971 */
1972 int
zio_do_crypt_abd(boolean_t encrypt,zio_crypt_key_t * key,dmu_object_type_t ot,boolean_t byteswap,uint8_t * salt,uint8_t * iv,uint8_t * mac,uint_t datalen,abd_t * pabd,abd_t * cabd,boolean_t * no_crypt)1973 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
1974 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
1975 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1976 {
1977 int ret;
1978 void *ptmp, *ctmp;
1979
1980 if (encrypt) {
1981 ptmp = abd_borrow_buf_copy(pabd, datalen);
1982 ctmp = abd_borrow_buf(cabd, datalen);
1983 } else {
1984 ptmp = abd_borrow_buf(pabd, datalen);
1985 ctmp = abd_borrow_buf_copy(cabd, datalen);
1986 }
1987
1988 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
1989 datalen, ptmp, ctmp, no_crypt);
1990 if (ret != 0)
1991 goto error;
1992
1993 if (encrypt) {
1994 abd_return_buf(pabd, ptmp, datalen);
1995 abd_return_buf_copy(cabd, ctmp, datalen);
1996 } else {
1997 abd_return_buf_copy(pabd, ptmp, datalen);
1998 abd_return_buf(cabd, ctmp, datalen);
1999 }
2000
2001 return (0);
2002
2003 error:
2004 if (encrypt) {
2005 abd_return_buf(pabd, ptmp, datalen);
2006 abd_return_buf_copy(cabd, ctmp, datalen);
2007 } else {
2008 abd_return_buf_copy(pabd, ptmp, datalen);
2009 abd_return_buf(cabd, ctmp, datalen);
2010 }
2011
2012 return (ret);
2013 }
2014