xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 53a2e2635ab2d17bed1de7b4e0d782dd23ceb6ea)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2018 Datto Inc.
27  * Copyright (c) 2025, Klara, Inc.
28  */
29 
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/zap.h>
37 #include <sys/arc.h>
38 #include <sys/stat.h>
39 #include <sys/zil.h>
40 #include <sys/zil_impl.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/metaslab.h>
46 #include <sys/trace_zfs.h>
47 #include <sys/abd.h>
48 #include <sys/brt.h>
49 #include <sys/wmsum.h>
50 
51 /*
52  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
53  * calls that change the file system. Each itx has enough information to
54  * be able to replay them after a system crash, power loss, or
55  * equivalent failure mode. These are stored in memory until either:
56  *
57  *   1. they are committed to the pool by the DMU transaction group
58  *      (txg), at which point they can be discarded; or
59  *   2. they are committed to the on-disk ZIL for the dataset being
60  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
61  *      requirement).
62  *
63  * In the event of a crash or power loss, the itxs contained by each
64  * dataset's on-disk ZIL will be replayed when that dataset is first
65  * instantiated (e.g. if the dataset is a normal filesystem, when it is
66  * first mounted).
67  *
68  * As hinted at above, there is one ZIL per dataset (both the in-memory
69  * representation, and the on-disk representation). The on-disk format
70  * consists of 3 parts:
71  *
72  * 	- a single, per-dataset, ZIL header; which points to a chain of
73  * 	- zero or more ZIL blocks; each of which contains
74  * 	- zero or more ZIL records
75  *
76  * A ZIL record holds the information necessary to replay a single
77  * system call transaction. A ZIL block can hold many ZIL records, and
78  * the blocks are chained together, similarly to a singly linked list.
79  *
80  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
81  * block in the chain, and the ZIL header points to the first block in
82  * the chain.
83  *
84  * Note, there is not a fixed place in the pool to hold these ZIL
85  * blocks; they are dynamically allocated and freed as needed from the
86  * blocks available on the pool, though they can be preferentially
87  * allocated from a dedicated "log" vdev.
88  */
89 
90 /*
91  * This controls the amount of time that a ZIL block (lwb) will remain
92  * "open" when it isn't "full", and it has a thread waiting for it to be
93  * committed to stable storage. Please refer to the zil_commit_waiter()
94  * function (and the comments within it) for more details.
95  */
96 static uint_t zfs_commit_timeout_pct = 10;
97 
98 /*
99  * See zil.h for more information about these fields.
100  */
101 static zil_kstat_values_t zil_stats = {
102 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_commit_error_count",		KSTAT_DATA_UINT64 },
105 	{ "zil_commit_stall_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_commit_suspend_count",		KSTAT_DATA_UINT64 },
107 	{ "zil_commit_crash_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
109 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
110 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
111 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
113 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
114 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
120 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
121 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
122 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
123 };
124 
125 static zil_sums_t zil_sums_global;
126 static kstat_t *zil_kstats_global;
127 
128 /*
129  * Disable intent logging replay.  This global ZIL switch affects all pools.
130  */
131 int zil_replay_disable = 0;
132 
133 /*
134  * Disable the flush commands that are normally sent to the disk(s) by the ZIL
135  * after an LWB write has completed. Setting this will cause ZIL corruption on
136  * power loss if a volatile out-of-order write cache is enabled.
137  */
138 static int zil_nocacheflush = 0;
139 
140 /*
141  * Limit SLOG write size per commit executed with synchronous priority.
142  * Any writes above that will be executed with lower (asynchronous) priority
143  * to limit potential SLOG device abuse by single active ZIL writer.
144  */
145 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
146 
147 static kmem_cache_t *zil_lwb_cache;
148 static kmem_cache_t *zil_zcw_cache;
149 
150 static int zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
151 static itx_t *zil_itx_clone(itx_t *oitx);
152 static uint64_t zil_max_waste_space(zilog_t *zilog);
153 
154 static int
zil_bp_compare(const void * x1,const void * x2)155 zil_bp_compare(const void *x1, const void *x2)
156 {
157 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
158 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
159 
160 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
161 	if (likely(cmp))
162 		return (cmp);
163 
164 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
165 }
166 
167 static void
zil_bp_tree_init(zilog_t * zilog)168 zil_bp_tree_init(zilog_t *zilog)
169 {
170 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
171 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
172 }
173 
174 static void
zil_bp_tree_fini(zilog_t * zilog)175 zil_bp_tree_fini(zilog_t *zilog)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	zil_bp_node_t *zn;
179 	void *cookie = NULL;
180 
181 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
182 		kmem_free(zn, sizeof (zil_bp_node_t));
183 
184 	avl_destroy(t);
185 }
186 
187 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)188 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
189 {
190 	avl_tree_t *t = &zilog->zl_bp_tree;
191 	const dva_t *dva;
192 	zil_bp_node_t *zn;
193 	avl_index_t where;
194 
195 	if (BP_IS_EMBEDDED(bp))
196 		return (0);
197 
198 	dva = BP_IDENTITY(bp);
199 
200 	if (avl_find(t, dva, &where) != NULL)
201 		return (SET_ERROR(EEXIST));
202 
203 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
204 	zn->zn_dva = *dva;
205 	avl_insert(t, zn, where);
206 
207 	return (0);
208 }
209 
210 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)211 zil_header_in_syncing_context(zilog_t *zilog)
212 {
213 	return ((zil_header_t *)zilog->zl_header);
214 }
215 
216 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)217 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
218 {
219 	zio_cksum_t *zc = &bp->blk_cksum;
220 
221 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
222 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
223 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
224 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
225 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
226 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
227 }
228 
229 static int
zil_kstats_global_update(kstat_t * ksp,int rw)230 zil_kstats_global_update(kstat_t *ksp, int rw)
231 {
232 	zil_kstat_values_t *zs = ksp->ks_data;
233 	ASSERT3P(&zil_stats, ==, zs);
234 
235 	if (rw == KSTAT_WRITE) {
236 		return (SET_ERROR(EACCES));
237 	}
238 
239 	zil_kstat_values_update(zs, &zil_sums_global);
240 
241 	return (0);
242 }
243 
244 /*
245  * Read a log block and make sure it's valid.
246  */
247 static int
zil_read_log_block(zilog_t * zilog,boolean_t decrypt,const blkptr_t * bp,blkptr_t * nbp,char ** begin,char ** end,arc_buf_t ** abuf)248 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
249     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
250 {
251 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
252 	arc_flags_t aflags = ARC_FLAG_WAIT;
253 	zbookmark_phys_t zb;
254 	int error;
255 
256 	if (zilog->zl_header->zh_claim_txg == 0)
257 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
258 
259 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
260 		zio_flags |= ZIO_FLAG_SPECULATIVE;
261 
262 	if (!decrypt)
263 		zio_flags |= ZIO_FLAG_RAW;
264 
265 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
266 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
267 
268 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
269 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
270 
271 	if (error == 0) {
272 		zio_cksum_t cksum = bp->blk_cksum;
273 
274 		/*
275 		 * Validate the checksummed log block.
276 		 *
277 		 * Sequence numbers should be... sequential.  The checksum
278 		 * verifier for the next block should be bp's checksum plus 1.
279 		 *
280 		 * Also check the log chain linkage and size used.
281 		 */
282 		cksum.zc_word[ZIL_ZC_SEQ]++;
283 
284 		uint64_t size = BP_GET_LSIZE(bp);
285 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
286 			zil_chain_t *zilc = (*abuf)->b_data;
287 			char *lr = (char *)(zilc + 1);
288 
289 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
290 			    sizeof (cksum)) ||
291 			    zilc->zc_nused < sizeof (*zilc) ||
292 			    zilc->zc_nused > size) {
293 				error = SET_ERROR(ECKSUM);
294 			} else {
295 				*begin = lr;
296 				*end = lr + zilc->zc_nused - sizeof (*zilc);
297 				*nbp = zilc->zc_next_blk;
298 			}
299 		} else {
300 			char *lr = (*abuf)->b_data;
301 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
302 
303 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
304 			    sizeof (cksum)) ||
305 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
306 				error = SET_ERROR(ECKSUM);
307 			} else {
308 				*begin = lr;
309 				*end = lr + zilc->zc_nused;
310 				*nbp = zilc->zc_next_blk;
311 			}
312 		}
313 	}
314 
315 	return (error);
316 }
317 
318 /*
319  * Read a TX_WRITE log data block.
320  */
321 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)322 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
323 {
324 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
325 	const blkptr_t *bp = &lr->lr_blkptr;
326 	arc_flags_t aflags = ARC_FLAG_WAIT;
327 	arc_buf_t *abuf = NULL;
328 	zbookmark_phys_t zb;
329 	int error;
330 
331 	if (BP_IS_HOLE(bp)) {
332 		if (wbuf != NULL)
333 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
334 		return (0);
335 	}
336 
337 	if (zilog->zl_header->zh_claim_txg == 0)
338 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
339 
340 	/*
341 	 * If we are not using the resulting data, we are just checking that
342 	 * it hasn't been corrupted so we don't need to waste CPU time
343 	 * decompressing and decrypting it.
344 	 */
345 	if (wbuf == NULL)
346 		zio_flags |= ZIO_FLAG_RAW;
347 
348 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
349 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
350 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
351 
352 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
353 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
354 
355 	if (error == 0) {
356 		if (wbuf != NULL)
357 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
358 		arc_buf_destroy(abuf, &abuf);
359 	}
360 
361 	return (error);
362 }
363 
364 void
zil_sums_init(zil_sums_t * zs)365 zil_sums_init(zil_sums_t *zs)
366 {
367 	wmsum_init(&zs->zil_commit_count, 0);
368 	wmsum_init(&zs->zil_commit_writer_count, 0);
369 	wmsum_init(&zs->zil_commit_error_count, 0);
370 	wmsum_init(&zs->zil_commit_stall_count, 0);
371 	wmsum_init(&zs->zil_commit_suspend_count, 0);
372 	wmsum_init(&zs->zil_commit_crash_count, 0);
373 	wmsum_init(&zs->zil_itx_count, 0);
374 	wmsum_init(&zs->zil_itx_indirect_count, 0);
375 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
376 	wmsum_init(&zs->zil_itx_copied_count, 0);
377 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
378 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
379 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
380 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
381 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
382 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
383 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
384 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
385 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
386 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
387 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
388 }
389 
390 void
zil_sums_fini(zil_sums_t * zs)391 zil_sums_fini(zil_sums_t *zs)
392 {
393 	wmsum_fini(&zs->zil_commit_count);
394 	wmsum_fini(&zs->zil_commit_writer_count);
395 	wmsum_fini(&zs->zil_commit_error_count);
396 	wmsum_fini(&zs->zil_commit_stall_count);
397 	wmsum_fini(&zs->zil_commit_suspend_count);
398 	wmsum_fini(&zs->zil_commit_crash_count);
399 	wmsum_fini(&zs->zil_itx_count);
400 	wmsum_fini(&zs->zil_itx_indirect_count);
401 	wmsum_fini(&zs->zil_itx_indirect_bytes);
402 	wmsum_fini(&zs->zil_itx_copied_count);
403 	wmsum_fini(&zs->zil_itx_copied_bytes);
404 	wmsum_fini(&zs->zil_itx_needcopy_count);
405 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
406 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
407 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
408 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
409 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
410 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
411 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
412 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
413 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
414 }
415 
416 void
zil_kstat_values_update(zil_kstat_values_t * zs,zil_sums_t * zil_sums)417 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
418 {
419 	zs->zil_commit_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_commit_count);
421 	zs->zil_commit_writer_count.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_commit_writer_count);
423 	zs->zil_commit_error_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_commit_error_count);
425 	zs->zil_commit_stall_count.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_commit_stall_count);
427 	zs->zil_commit_suspend_count.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_commit_suspend_count);
429 	zs->zil_commit_crash_count.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_commit_crash_count);
431 	zs->zil_itx_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_count);
433 	zs->zil_itx_indirect_count.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
435 	zs->zil_itx_indirect_bytes.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
437 	zs->zil_itx_copied_count.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_copied_count);
439 	zs->zil_itx_copied_bytes.value.ui64 =
440 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
441 	zs->zil_itx_needcopy_count.value.ui64 =
442 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
443 	zs->zil_itx_needcopy_bytes.value.ui64 =
444 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
445 	zs->zil_itx_metaslab_normal_count.value.ui64 =
446 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
447 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
448 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
449 	zs->zil_itx_metaslab_normal_write.value.ui64 =
450 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
451 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
452 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
453 	zs->zil_itx_metaslab_slog_count.value.ui64 =
454 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
455 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
456 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
457 	zs->zil_itx_metaslab_slog_write.value.ui64 =
458 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
459 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
460 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
461 }
462 
463 /*
464  * Parse the intent log, and call parse_func for each valid record within.
465  */
466 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg,boolean_t decrypt)467 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
468     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
469     boolean_t decrypt)
470 {
471 	const zil_header_t *zh = zilog->zl_header;
472 	boolean_t claimed = !!zh->zh_claim_txg;
473 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
474 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
475 	uint64_t max_blk_seq = 0;
476 	uint64_t max_lr_seq = 0;
477 	uint64_t blk_count = 0;
478 	uint64_t lr_count = 0;
479 	blkptr_t blk, next_blk = {{{{0}}}};
480 	int error = 0;
481 
482 	/*
483 	 * Old logs didn't record the maximum zh_claim_lr_seq.
484 	 */
485 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
486 		claim_lr_seq = UINT64_MAX;
487 
488 	/*
489 	 * Starting at the block pointed to by zh_log we read the log chain.
490 	 * For each block in the chain we strongly check that block to
491 	 * ensure its validity.  We stop when an invalid block is found.
492 	 * For each block pointer in the chain we call parse_blk_func().
493 	 * For each record in each valid block we call parse_lr_func().
494 	 * If the log has been claimed, stop if we encounter a sequence
495 	 * number greater than the highest claimed sequence number.
496 	 */
497 	zil_bp_tree_init(zilog);
498 
499 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
500 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
501 		int reclen;
502 		char *lrp, *end;
503 		arc_buf_t *abuf = NULL;
504 
505 		if (blk_seq > claim_blk_seq)
506 			break;
507 
508 		error = parse_blk_func(zilog, &blk, arg, txg);
509 		if (error != 0)
510 			break;
511 		ASSERT3U(max_blk_seq, <, blk_seq);
512 		max_blk_seq = blk_seq;
513 		blk_count++;
514 
515 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
516 			break;
517 
518 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
519 		    &lrp, &end, &abuf);
520 		if (error != 0) {
521 			if (abuf)
522 				arc_buf_destroy(abuf, &abuf);
523 			if (claimed) {
524 				char name[ZFS_MAX_DATASET_NAME_LEN];
525 
526 				dmu_objset_name(zilog->zl_os, name);
527 
528 				cmn_err(CE_WARN, "ZFS read log block error %d, "
529 				    "dataset %s, seq 0x%llx\n", error, name,
530 				    (u_longlong_t)blk_seq);
531 			}
532 			break;
533 		}
534 
535 		for (; lrp < end; lrp += reclen) {
536 			lr_t *lr = (lr_t *)lrp;
537 
538 			/*
539 			 * Are the remaining bytes large enough to hold an
540 			 * log record?
541 			 */
542 			if ((char *)(lr + 1) > end) {
543 				cmn_err(CE_WARN, "zil_parse: lr_t overrun");
544 				error = SET_ERROR(ECKSUM);
545 				arc_buf_destroy(abuf, &abuf);
546 				goto done;
547 			}
548 			reclen = lr->lrc_reclen;
549 			if (reclen < sizeof (lr_t) || reclen > end - lrp) {
550 				cmn_err(CE_WARN,
551 				    "zil_parse: lr_t has an invalid reclen");
552 				error = SET_ERROR(ECKSUM);
553 				arc_buf_destroy(abuf, &abuf);
554 				goto done;
555 			}
556 
557 			if (lr->lrc_seq > claim_lr_seq) {
558 				arc_buf_destroy(abuf, &abuf);
559 				goto done;
560 			}
561 
562 			error = parse_lr_func(zilog, lr, arg, txg);
563 			if (error != 0) {
564 				arc_buf_destroy(abuf, &abuf);
565 				goto done;
566 			}
567 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
568 			max_lr_seq = lr->lrc_seq;
569 			lr_count++;
570 		}
571 		arc_buf_destroy(abuf, &abuf);
572 	}
573 done:
574 	zilog->zl_parse_error = error;
575 	zilog->zl_parse_blk_seq = max_blk_seq;
576 	zilog->zl_parse_lr_seq = max_lr_seq;
577 	zilog->zl_parse_blk_count = blk_count;
578 	zilog->zl_parse_lr_count = lr_count;
579 
580 	zil_bp_tree_fini(zilog);
581 
582 	return (error);
583 }
584 
585 static int
zil_clear_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)586 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
587     uint64_t first_txg)
588 {
589 	(void) tx;
590 	ASSERT(!BP_IS_HOLE(bp));
591 
592 	/*
593 	 * As we call this function from the context of a rewind to a
594 	 * checkpoint, each ZIL block whose txg is later than the txg
595 	 * that we rewind to is invalid. Thus, we return -1 so
596 	 * zil_parse() doesn't attempt to read it.
597 	 */
598 	if (BP_GET_BIRTH(bp) >= first_txg)
599 		return (-1);
600 
601 	if (zil_bp_tree_add(zilog, bp) != 0)
602 		return (0);
603 
604 	zio_free(zilog->zl_spa, first_txg, bp);
605 	return (0);
606 }
607 
608 static int
zil_noop_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)609 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
610     uint64_t first_txg)
611 {
612 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
613 	return (0);
614 }
615 
616 static int
zil_claim_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)617 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
618     uint64_t first_txg)
619 {
620 	/*
621 	 * Claim log block if not already committed and not already claimed.
622 	 * If tx == NULL, just verify that the block is claimable.
623 	 */
624 	if (BP_IS_HOLE(bp) || BP_GET_BIRTH(bp) < first_txg ||
625 	    zil_bp_tree_add(zilog, bp) != 0)
626 		return (0);
627 
628 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
629 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
630 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
631 }
632 
633 static int
zil_claim_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)634 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
635 {
636 	lr_write_t *lr = (lr_write_t *)lrc;
637 	int error;
638 
639 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
640 
641 	/*
642 	 * If the block is not readable, don't claim it.  This can happen
643 	 * in normal operation when a log block is written to disk before
644 	 * some of the dmu_sync() blocks it points to.  In this case, the
645 	 * transaction cannot have been committed to anyone (we would have
646 	 * waited for all writes to be stable first), so it is semantically
647 	 * correct to declare this the end of the log.
648 	 */
649 	if (BP_GET_BIRTH(&lr->lr_blkptr) >= first_txg) {
650 		error = zil_read_log_data(zilog, lr, NULL);
651 		if (error != 0)
652 			return (error);
653 	}
654 
655 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
656 }
657 
658 static int
zil_claim_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)659 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
660     uint64_t first_txg)
661 {
662 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
663 	const blkptr_t *bp;
664 	spa_t *spa = zilog->zl_spa;
665 	uint_t ii;
666 
667 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
668 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
669 	    lr_bps[lr->lr_nbps]));
670 
671 	if (tx == NULL) {
672 		return (0);
673 	}
674 
675 	/*
676 	 * XXX: Do we need to byteswap lr?
677 	 */
678 
679 	for (ii = 0; ii < lr->lr_nbps; ii++) {
680 		bp = &lr->lr_bps[ii];
681 
682 		/*
683 		 * When data is embedded into the BP there is no need to create
684 		 * BRT entry as there is no data block.  Just copy the BP as it
685 		 * contains the data.
686 		 */
687 		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
688 			continue;
689 
690 		/*
691 		 * We can not handle block pointers from the future, since they
692 		 * are not yet allocated.  It should not normally happen, but
693 		 * just in case lets be safe and just stop here now instead of
694 		 * corrupting the pool.
695 		 */
696 		if (BP_GET_PHYSICAL_BIRTH(bp) >= first_txg)
697 			return (SET_ERROR(ENOENT));
698 
699 		/*
700 		 * Assert the block is really allocated before we reference it.
701 		 */
702 		metaslab_check_free(spa, bp);
703 	}
704 
705 	for (ii = 0; ii < lr->lr_nbps; ii++) {
706 		bp = &lr->lr_bps[ii];
707 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
708 			brt_pending_add(spa, bp, tx);
709 	}
710 
711 	return (0);
712 }
713 
714 static int
zil_claim_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)715 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
716     uint64_t first_txg)
717 {
718 
719 	switch (lrc->lrc_txtype) {
720 	case TX_WRITE:
721 		return (zil_claim_write(zilog, lrc, tx, first_txg));
722 	case TX_CLONE_RANGE:
723 		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
724 	default:
725 		return (0);
726 	}
727 }
728 
729 static int
zil_free_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t claim_txg)730 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
731     uint64_t claim_txg)
732 {
733 	(void) claim_txg;
734 
735 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
736 
737 	return (0);
738 }
739 
740 static int
zil_free_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)741 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
742 {
743 	lr_write_t *lr = (lr_write_t *)lrc;
744 	blkptr_t *bp = &lr->lr_blkptr;
745 
746 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
747 
748 	/*
749 	 * If we previously claimed it, we need to free it.
750 	 */
751 	if (BP_GET_BIRTH(bp) >= claim_txg &&
752 	    zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
753 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
754 	}
755 
756 	return (0);
757 }
758 
759 static int
zil_free_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx)760 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
761 {
762 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
763 	const blkptr_t *bp;
764 	spa_t *spa;
765 	uint_t ii;
766 
767 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
768 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
769 	    lr_bps[lr->lr_nbps]));
770 
771 	if (tx == NULL) {
772 		return (0);
773 	}
774 
775 	spa = zilog->zl_spa;
776 
777 	for (ii = 0; ii < lr->lr_nbps; ii++) {
778 		bp = &lr->lr_bps[ii];
779 
780 		if (!BP_IS_HOLE(bp)) {
781 			zio_free(spa, dmu_tx_get_txg(tx), bp);
782 		}
783 	}
784 
785 	return (0);
786 }
787 
788 static int
zil_free_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)789 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
790     uint64_t claim_txg)
791 {
792 
793 	if (claim_txg == 0) {
794 		return (0);
795 	}
796 
797 	switch (lrc->lrc_txtype) {
798 	case TX_WRITE:
799 		return (zil_free_write(zilog, lrc, tx, claim_txg));
800 	case TX_CLONE_RANGE:
801 		return (zil_free_clone_range(zilog, lrc, tx));
802 	default:
803 		return (0);
804 	}
805 }
806 
807 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)808 zil_lwb_vdev_compare(const void *x1, const void *x2)
809 {
810 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
811 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
812 
813 	return (TREE_CMP(v1, v2));
814 }
815 
816 /*
817  * Allocate a new lwb.  We may already have a block pointer for it, in which
818  * case we get size and version from there.  Or we may not yet, in which case
819  * we choose them here and later make the block allocation match.
820  */
821 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,blkptr_t * bp,int min_sz,int sz,boolean_t slog,uint64_t txg)822 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, int min_sz, int sz,
823     boolean_t slog, uint64_t txg)
824 {
825 	lwb_t *lwb;
826 
827 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
828 	lwb->lwb_flags = 0;
829 	lwb->lwb_zilog = zilog;
830 	if (bp) {
831 		lwb->lwb_blk = *bp;
832 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2)
833 			lwb->lwb_flags |= LWB_FLAG_SLIM;
834 		sz = BP_GET_LSIZE(bp);
835 		lwb->lwb_min_sz = sz;
836 	} else {
837 		BP_ZERO(&lwb->lwb_blk);
838 		if (spa_version(zilog->zl_spa) >= SPA_VERSION_SLIM_ZIL)
839 			lwb->lwb_flags |= LWB_FLAG_SLIM;
840 		lwb->lwb_min_sz = min_sz;
841 	}
842 	if (slog)
843 		lwb->lwb_flags |= LWB_FLAG_SLOG;
844 	lwb->lwb_error = 0;
845 	/*
846 	 * Buffer allocation and capacity setup will be done in
847 	 * zil_lwb_write_open() when the LWB is opened for ITX assignment.
848 	 */
849 	lwb->lwb_nmax = lwb->lwb_nused = lwb->lwb_nfilled = 0;
850 	lwb->lwb_sz = sz;
851 	lwb->lwb_buf = NULL;
852 	lwb->lwb_state = LWB_STATE_NEW;
853 	lwb->lwb_child_zio = NULL;
854 	lwb->lwb_write_zio = NULL;
855 	lwb->lwb_root_zio = NULL;
856 	lwb->lwb_issued_timestamp = 0;
857 	lwb->lwb_issued_txg = 0;
858 	lwb->lwb_alloc_txg = txg;
859 	lwb->lwb_max_txg = 0;
860 
861 	mutex_enter(&zilog->zl_lock);
862 	list_insert_tail(&zilog->zl_lwb_list, lwb);
863 	mutex_exit(&zilog->zl_lock);
864 
865 	return (lwb);
866 }
867 
868 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)869 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
870 {
871 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
872 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
873 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
874 	ASSERT0P(lwb->lwb_child_zio);
875 	ASSERT0P(lwb->lwb_write_zio);
876 	ASSERT0P(lwb->lwb_root_zio);
877 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
878 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
879 	VERIFY(list_is_empty(&lwb->lwb_itxs));
880 	VERIFY(list_is_empty(&lwb->lwb_waiters));
881 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
882 	ASSERT(!MUTEX_HELD(&lwb->lwb_lock));
883 
884 	/*
885 	 * Clear the zilog's field to indicate this lwb is no longer
886 	 * valid, and prevent use-after-free errors.
887 	 */
888 	if (zilog->zl_last_lwb_opened == lwb)
889 		zilog->zl_last_lwb_opened = NULL;
890 
891 	kmem_cache_free(zil_lwb_cache, lwb);
892 }
893 
894 /*
895  * Called when we create in-memory log transactions so that we know
896  * to cleanup the itxs at the end of spa_sync().
897  */
898 static void
zilog_dirty(zilog_t * zilog,uint64_t txg)899 zilog_dirty(zilog_t *zilog, uint64_t txg)
900 {
901 	dsl_pool_t *dp = zilog->zl_dmu_pool;
902 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
903 
904 	ASSERT(spa_writeable(zilog->zl_spa));
905 
906 	if (ds->ds_is_snapshot)
907 		panic("dirtying snapshot!");
908 
909 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
910 		/* up the hold count until we can be written out */
911 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
912 
913 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
914 	}
915 }
916 
917 /*
918  * Determine if the zil is dirty in the specified txg. Callers wanting to
919  * ensure that the dirty state does not change must hold the itxg_lock for
920  * the specified txg. Holding the lock will ensure that the zil cannot be
921  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
922  * state.
923  */
924 static boolean_t __maybe_unused
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)925 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
926 {
927 	dsl_pool_t *dp = zilog->zl_dmu_pool;
928 
929 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
930 		return (B_TRUE);
931 	return (B_FALSE);
932 }
933 
934 /*
935  * Determine if the zil is dirty. The zil is considered dirty if it has
936  * any pending itx records that have not been cleaned by zil_clean().
937  */
938 static boolean_t
zilog_is_dirty(zilog_t * zilog)939 zilog_is_dirty(zilog_t *zilog)
940 {
941 	dsl_pool_t *dp = zilog->zl_dmu_pool;
942 
943 	for (int t = 0; t < TXG_SIZE; t++) {
944 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
945 			return (B_TRUE);
946 	}
947 	return (B_FALSE);
948 }
949 
950 /*
951  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
952  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
953  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
954  * zil_commit.
955  */
956 static void
zil_commit_activate_saxattr_feature(zilog_t * zilog)957 zil_commit_activate_saxattr_feature(zilog_t *zilog)
958 {
959 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
960 	uint64_t txg = 0;
961 	dmu_tx_t *tx = NULL;
962 
963 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
964 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
965 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
966 		tx = dmu_tx_create(zilog->zl_os);
967 		VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
968 		dsl_dataset_dirty(ds, tx);
969 		txg = dmu_tx_get_txg(tx);
970 
971 		mutex_enter(&ds->ds_lock);
972 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
973 		    (void *)B_TRUE;
974 		mutex_exit(&ds->ds_lock);
975 		dmu_tx_commit(tx);
976 		txg_wait_synced(zilog->zl_dmu_pool, txg);
977 	}
978 }
979 
980 /*
981  * Create an on-disk intent log.
982  */
983 static lwb_t *
zil_create(zilog_t * zilog)984 zil_create(zilog_t *zilog)
985 {
986 	const zil_header_t *zh = zilog->zl_header;
987 	lwb_t *lwb = NULL;
988 	uint64_t txg = 0;
989 	dmu_tx_t *tx = NULL;
990 	blkptr_t blk;
991 	int error = 0;
992 	boolean_t slog = FALSE;
993 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
994 
995 
996 	/*
997 	 * Wait for any previous destroy to complete.
998 	 */
999 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1000 
1001 	ASSERT0(zh->zh_claim_txg);
1002 	ASSERT0(zh->zh_replay_seq);
1003 
1004 	blk = zh->zh_log;
1005 
1006 	/*
1007 	 * Allocate an initial log block if:
1008 	 *    - there isn't one already
1009 	 *    - the existing block is the wrong endianness
1010 	 */
1011 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
1012 		tx = dmu_tx_create(zilog->zl_os);
1013 		VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1014 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1015 		txg = dmu_tx_get_txg(tx);
1016 
1017 		if (!BP_IS_HOLE(&blk)) {
1018 			zio_free(zilog->zl_spa, txg, &blk);
1019 			BP_ZERO(&blk);
1020 		}
1021 
1022 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1023 		    ZIL_MIN_BLKSZ, ZIL_MIN_BLKSZ, &slog, B_TRUE);
1024 		if (error == 0)
1025 			zil_init_log_chain(zilog, &blk);
1026 	}
1027 
1028 	/*
1029 	 * Allocate a log write block (lwb) for the first log block.
1030 	 */
1031 	if (error == 0)
1032 		lwb = zil_alloc_lwb(zilog, &blk, 0, 0, slog, txg);
1033 
1034 	/*
1035 	 * If we just allocated the first log block, commit our transaction
1036 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
1037 	 * (zh is part of the MOS, so we cannot modify it in open context.)
1038 	 */
1039 	if (tx != NULL) {
1040 		/*
1041 		 * If "zilsaxattr" feature is enabled on zpool, then activate
1042 		 * it now when we're creating the ZIL chain. We can't wait with
1043 		 * this until we write the first xattr log record because we
1044 		 * need to wait for the feature activation to sync out.
1045 		 */
1046 		if (spa_feature_is_enabled(zilog->zl_spa,
1047 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1048 		    DMU_OST_ZVOL) {
1049 			mutex_enter(&ds->ds_lock);
1050 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1051 			    (void *)B_TRUE;
1052 			mutex_exit(&ds->ds_lock);
1053 		}
1054 
1055 		dmu_tx_commit(tx);
1056 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1057 	} else {
1058 		/*
1059 		 * This branch covers the case where we enable the feature on a
1060 		 * zpool that has existing ZIL headers.
1061 		 */
1062 		zil_commit_activate_saxattr_feature(zilog);
1063 	}
1064 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1065 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1066 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1067 
1068 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1069 	IMPLY(error == 0, lwb != NULL);
1070 
1071 	return (lwb);
1072 }
1073 
1074 /*
1075  * In one tx, free all log blocks and clear the log header. If keep_first
1076  * is set, then we're replaying a log with no content. We want to keep the
1077  * first block, however, so that the first synchronous transaction doesn't
1078  * require a txg_wait_synced() in zil_create(). We don't need to
1079  * txg_wait_synced() here either when keep_first is set, because both
1080  * zil_create() and zil_destroy() will wait for any in-progress destroys
1081  * to complete.
1082  * Return B_TRUE if there were any entries to replay.
1083  */
1084 boolean_t
zil_destroy(zilog_t * zilog,boolean_t keep_first)1085 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1086 {
1087 	const zil_header_t *zh = zilog->zl_header;
1088 	lwb_t *lwb;
1089 	dmu_tx_t *tx;
1090 	uint64_t txg;
1091 
1092 	/*
1093 	 * Wait for any previous destroy to complete.
1094 	 */
1095 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1096 
1097 	zilog->zl_old_header = *zh;		/* debugging aid */
1098 
1099 	if (BP_IS_HOLE(&zh->zh_log))
1100 		return (B_FALSE);
1101 
1102 	tx = dmu_tx_create(zilog->zl_os);
1103 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1104 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1105 	txg = dmu_tx_get_txg(tx);
1106 
1107 	mutex_enter(&zilog->zl_lock);
1108 
1109 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1110 	zilog->zl_destroy_txg = txg;
1111 	zilog->zl_keep_first = keep_first;
1112 
1113 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1114 		ASSERT0(zh->zh_claim_txg);
1115 		VERIFY(!keep_first);
1116 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1117 			if (lwb->lwb_buf != NULL)
1118 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1119 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1120 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1121 			zil_free_lwb(zilog, lwb);
1122 		}
1123 	} else if (!keep_first) {
1124 		zil_destroy_sync(zilog, tx);
1125 	}
1126 	mutex_exit(&zilog->zl_lock);
1127 
1128 	dmu_tx_commit(tx);
1129 
1130 	return (B_TRUE);
1131 }
1132 
1133 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)1134 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1135 {
1136 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1137 	(void) zil_parse(zilog, zil_free_log_block,
1138 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1139 }
1140 
1141 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)1142 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1143 {
1144 	dmu_tx_t *tx = txarg;
1145 	zilog_t *zilog;
1146 	uint64_t first_txg;
1147 	zil_header_t *zh;
1148 	objset_t *os;
1149 	int error;
1150 
1151 	error = dmu_objset_own_obj(dp, ds->ds_object,
1152 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1153 	if (error != 0) {
1154 		/*
1155 		 * EBUSY indicates that the objset is inconsistent, in which
1156 		 * case it can not have a ZIL.
1157 		 */
1158 		if (error != EBUSY) {
1159 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1160 			    (unsigned long long)ds->ds_object, error);
1161 		}
1162 
1163 		return (0);
1164 	}
1165 
1166 	zilog = dmu_objset_zil(os);
1167 	zh = zil_header_in_syncing_context(zilog);
1168 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1169 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1170 
1171 	/*
1172 	 * If the spa_log_state is not set to be cleared, check whether
1173 	 * the current uberblock is a checkpoint one and if the current
1174 	 * header has been claimed before moving on.
1175 	 *
1176 	 * If the current uberblock is a checkpointed uberblock then
1177 	 * one of the following scenarios took place:
1178 	 *
1179 	 * 1] We are currently rewinding to the checkpoint of the pool.
1180 	 * 2] We crashed in the middle of a checkpoint rewind but we
1181 	 *    did manage to write the checkpointed uberblock to the
1182 	 *    vdev labels, so when we tried to import the pool again
1183 	 *    the checkpointed uberblock was selected from the import
1184 	 *    procedure.
1185 	 *
1186 	 * In both cases we want to zero out all the ZIL blocks, except
1187 	 * the ones that have been claimed at the time of the checkpoint
1188 	 * (their zh_claim_txg != 0). The reason is that these blocks
1189 	 * may be corrupted since we may have reused their locations on
1190 	 * disk after we took the checkpoint.
1191 	 *
1192 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1193 	 * when we first figure out whether the current uberblock is
1194 	 * checkpointed or not. Unfortunately, that would discard all
1195 	 * the logs, including the ones that are claimed, and we would
1196 	 * leak space.
1197 	 */
1198 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1199 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1200 	    zh->zh_claim_txg == 0)) {
1201 		if (!BP_IS_HOLE(&zh->zh_log)) {
1202 			(void) zil_parse(zilog, zil_clear_log_block,
1203 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1204 		}
1205 		BP_ZERO(&zh->zh_log);
1206 		if (os->os_encrypted)
1207 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1208 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1209 		dmu_objset_disown(os, B_FALSE, FTAG);
1210 		return (0);
1211 	}
1212 
1213 	/*
1214 	 * If we are not rewinding and opening the pool normally, then
1215 	 * the min_claim_txg should be equal to the first txg of the pool.
1216 	 */
1217 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1218 
1219 	/*
1220 	 * Claim all log blocks if we haven't already done so, and remember
1221 	 * the highest claimed sequence number.  This ensures that if we can
1222 	 * read only part of the log now (e.g. due to a missing device),
1223 	 * but we can read the entire log later, we will not try to replay
1224 	 * or destroy beyond the last block we successfully claimed.
1225 	 */
1226 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1227 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1228 		(void) zil_parse(zilog, zil_claim_log_block,
1229 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1230 		zh->zh_claim_txg = first_txg;
1231 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1232 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1233 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1234 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1235 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1236 		if (os->os_encrypted)
1237 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1238 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1239 	}
1240 
1241 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1242 	dmu_objset_disown(os, B_FALSE, FTAG);
1243 	return (0);
1244 }
1245 
1246 /*
1247  * Check the log by walking the log chain.
1248  * Checksum errors are ok as they indicate the end of the chain.
1249  * Any other error (no device or read failure) returns an error.
1250  */
1251 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)1252 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1253 {
1254 	(void) dp;
1255 	zilog_t *zilog;
1256 	objset_t *os;
1257 	blkptr_t *bp;
1258 	int error;
1259 
1260 	ASSERT0P(tx);
1261 
1262 	error = dmu_objset_from_ds(ds, &os);
1263 	if (error != 0) {
1264 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1265 		    (unsigned long long)ds->ds_object, error);
1266 		return (0);
1267 	}
1268 
1269 	zilog = dmu_objset_zil(os);
1270 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1271 
1272 	if (!BP_IS_HOLE(bp)) {
1273 		vdev_t *vd;
1274 		boolean_t valid = B_TRUE;
1275 
1276 		/*
1277 		 * Check the first block and determine if it's on a log device
1278 		 * which may have been removed or faulted prior to loading this
1279 		 * pool.  If so, there's no point in checking the rest of the
1280 		 * log as its content should have already been synced to the
1281 		 * pool.
1282 		 */
1283 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1284 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1285 		if (vd->vdev_islog && vdev_is_dead(vd))
1286 			valid = vdev_log_state_valid(vd);
1287 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1288 
1289 		if (!valid)
1290 			return (0);
1291 
1292 		/*
1293 		 * Check whether the current uberblock is checkpointed (e.g.
1294 		 * we are rewinding) and whether the current header has been
1295 		 * claimed or not. If it hasn't then skip verifying it. We
1296 		 * do this because its ZIL blocks may be part of the pool's
1297 		 * state before the rewind, which is no longer valid.
1298 		 */
1299 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1300 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1301 		    zh->zh_claim_txg == 0)
1302 			return (0);
1303 	}
1304 
1305 	/*
1306 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1307 	 * any blocks, but just determine whether it is possible to do so.
1308 	 * In addition to checking the log chain, zil_claim_log_block()
1309 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1310 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1311 	 */
1312 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1313 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1314 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1315 
1316 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1317 }
1318 
1319 /*
1320  * When an itx is "skipped", this function is used to properly mark the
1321  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1322  * be skipped (and not committed to an lwb) for a variety of reasons,
1323  * one of them being that the itx was committed via spa_sync(), prior to
1324  * it being committed to an lwb; this can happen if a thread calling
1325  * zil_commit() is racing with spa_sync().
1326  */
1327 static void
zil_commit_waiter_done(zil_commit_waiter_t * zcw,int err)1328 zil_commit_waiter_done(zil_commit_waiter_t *zcw, int err)
1329 {
1330 	mutex_enter(&zcw->zcw_lock);
1331 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1332 	zcw->zcw_lwb = NULL;
1333 	zcw->zcw_error = err;
1334 	zcw->zcw_done = B_TRUE;
1335 	cv_broadcast(&zcw->zcw_cv);
1336 	mutex_exit(&zcw->zcw_lock);
1337 }
1338 
1339 /*
1340  * This function is used when the given waiter is to be linked into an
1341  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1342  * At this point, the waiter will no longer be referenced by the itx,
1343  * and instead, will be referenced by the lwb.
1344  */
1345 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)1346 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1347 {
1348 	/*
1349 	 * The lwb_waiters field of the lwb is protected by the zilog's
1350 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1351 	 * zl_issuer_lock also protects leaving the open state.
1352 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1353 	 * flush_done, which transition is protected by zl_lock.
1354 	 */
1355 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1356 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1357 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1358 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1359 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1360 
1361 	ASSERT(!list_link_active(&zcw->zcw_node));
1362 	list_insert_tail(&lwb->lwb_waiters, zcw);
1363 	ASSERT0P(zcw->zcw_lwb);
1364 	zcw->zcw_lwb = lwb;
1365 }
1366 
1367 /*
1368  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1369  * block, and the given waiter must be linked to the "nolwb waiters"
1370  * list inside of zil_process_commit_list().
1371  */
1372 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)1373 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1374 {
1375 	ASSERT(!list_link_active(&zcw->zcw_node));
1376 	list_insert_tail(nolwb, zcw);
1377 	ASSERT0P(zcw->zcw_lwb);
1378 }
1379 
1380 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)1381 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1382 {
1383 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1384 	avl_index_t where;
1385 	zil_vdev_node_t *zv, zvsearch;
1386 	int ndvas = BP_GET_NDVAS(bp);
1387 	int i;
1388 
1389 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1390 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1391 
1392 	if (zil_nocacheflush)
1393 		return;
1394 
1395 	mutex_enter(&lwb->lwb_lock);
1396 	for (i = 0; i < ndvas; i++) {
1397 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1398 		if (avl_find(t, &zvsearch, &where) == NULL) {
1399 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1400 			zv->zv_vdev = zvsearch.zv_vdev;
1401 			avl_insert(t, zv, where);
1402 		}
1403 	}
1404 	mutex_exit(&lwb->lwb_lock);
1405 }
1406 
1407 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1408 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1409 {
1410 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1411 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1412 	void *cookie = NULL;
1413 	zil_vdev_node_t *zv;
1414 
1415 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1416 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1417 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1418 
1419 	/*
1420 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1421 	 * not need the protection of lwb_lock (it will only be modified
1422 	 * while holding zilog->zl_lock) as its writes and those of its
1423 	 * children have all completed.  The younger 'nlwb' may be waiting on
1424 	 * future writes to additional vdevs.
1425 	 */
1426 	mutex_enter(&nlwb->lwb_lock);
1427 	/*
1428 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1429 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1430 	 */
1431 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1432 		avl_index_t where;
1433 
1434 		if (avl_find(dst, zv, &where) == NULL) {
1435 			avl_insert(dst, zv, where);
1436 		} else {
1437 			kmem_free(zv, sizeof (*zv));
1438 		}
1439 	}
1440 	mutex_exit(&nlwb->lwb_lock);
1441 }
1442 
1443 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1444 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1445 {
1446 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1447 }
1448 
1449 /*
1450  * This function is a called after all vdevs associated with a given lwb write
1451  * have completed their flush command; or as soon as the lwb write completes,
1452  * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1453  * completed before this function is called; i.e. this function is called for
1454  * all previous lwbs before it's called for "this" lwb (enforced via zio the
1455  * dependencies configured in zil_lwb_set_zio_dependency()).
1456  *
1457  * The intention is for this function to be called as soon as the contents of
1458  * an lwb are considered "stable" on disk, and will survive any sudden loss of
1459  * power. At this point, any threads waiting for the lwb to reach this state
1460  * are signalled, and the "waiter" structures are marked "done".
1461  */
1462 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1463 zil_lwb_flush_vdevs_done(zio_t *zio)
1464 {
1465 	lwb_t *lwb = zio->io_private;
1466 	zilog_t *zilog = lwb->lwb_zilog;
1467 	zil_commit_waiter_t *zcw;
1468 	itx_t *itx;
1469 
1470 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1471 
1472 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1473 
1474 	mutex_enter(&zilog->zl_lock);
1475 
1476 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1477 
1478 	lwb->lwb_root_zio = NULL;
1479 
1480 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1481 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1482 
1483 	if (zilog->zl_last_lwb_opened == lwb) {
1484 		/*
1485 		 * Remember the highest committed log sequence number
1486 		 * for ztest. We only update this value when all the log
1487 		 * writes succeeded, because ztest wants to ASSERT that
1488 		 * it got the whole log chain.
1489 		 */
1490 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1491 	}
1492 
1493 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1494 		zil_itx_destroy(itx, 0);
1495 
1496 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1497 		/*
1498 		 * We expect any ZIO errors from child ZIOs to have been
1499 		 * propagated "up" to this specific LWB's root ZIO, in
1500 		 * order for this error handling to work correctly. This
1501 		 * includes ZIO errors from either this LWB's write or
1502 		 * flush, as well as any errors from other dependent LWBs
1503 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1504 		 *
1505 		 * With that said, it's important to note that LWB flush
1506 		 * errors are not propagated up to the LWB root ZIO.
1507 		 * This is incorrect behavior, and results in VDEV flush
1508 		 * errors not being handled correctly here. See the
1509 		 * comment above the call to "zio_flush" for details.
1510 		 */
1511 		zil_commit_waiter_done(zcw, zio->io_error);
1512 	}
1513 
1514 	uint64_t txg = lwb->lwb_issued_txg;
1515 
1516 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1517 	mutex_exit(&zilog->zl_lock);
1518 
1519 	mutex_enter(&zilog->zl_lwb_io_lock);
1520 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1521 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1522 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1523 		cv_broadcast(&zilog->zl_lwb_io_cv);
1524 	mutex_exit(&zilog->zl_lwb_io_lock);
1525 }
1526 
1527 /*
1528  * Wait for the completion of all issued write/flush of that txg provided.
1529  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1530  */
1531 static void
zil_lwb_flush_wait_all(zilog_t * zilog,uint64_t txg)1532 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1533 {
1534 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1535 
1536 	mutex_enter(&zilog->zl_lwb_io_lock);
1537 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1538 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1539 	mutex_exit(&zilog->zl_lwb_io_lock);
1540 
1541 #ifdef ZFS_DEBUG
1542 	mutex_enter(&zilog->zl_lock);
1543 	mutex_enter(&zilog->zl_lwb_io_lock);
1544 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1545 	while (lwb != NULL) {
1546 		if (lwb->lwb_issued_txg <= txg) {
1547 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1548 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1549 			IMPLY(lwb->lwb_issued_txg > 0,
1550 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1551 		}
1552 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1553 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1554 		    lwb->lwb_buf == NULL);
1555 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1556 	}
1557 	mutex_exit(&zilog->zl_lwb_io_lock);
1558 	mutex_exit(&zilog->zl_lock);
1559 #endif
1560 }
1561 
1562 /*
1563  * This is called when an lwb's write zio completes. The callback's purpose is
1564  * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1565  * tree will contain the vdevs involved in writing out this specific lwb's
1566  * data, and in the case that cache flushes have been deferred, vdevs involved
1567  * in writing the data for previous lwbs. The writes corresponding to all the
1568  * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1569  * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1570  * which takes deferred flushes into account. The lwb will be "done" once
1571  * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1572  * callback for the lwb's root zio.
1573  */
1574 static void
zil_lwb_write_done(zio_t * zio)1575 zil_lwb_write_done(zio_t *zio)
1576 {
1577 	lwb_t *lwb = zio->io_private;
1578 	spa_t *spa = zio->io_spa;
1579 	zilog_t *zilog = lwb->lwb_zilog;
1580 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1581 	void *cookie = NULL;
1582 	zil_vdev_node_t *zv;
1583 	lwb_t *nlwb = NULL;
1584 
1585 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1586 
1587 	abd_free(zio->io_abd);
1588 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1589 	lwb->lwb_buf = NULL;
1590 
1591 	mutex_enter(&zilog->zl_lock);
1592 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1593 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1594 	lwb->lwb_child_zio = NULL;
1595 	lwb->lwb_write_zio = NULL;
1596 
1597 	/*
1598 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1599 	 * called for it yet, and when it will be, it won't be able to make
1600 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1601 	 * our flushes or below may be a race between the done callbacks.
1602 	 */
1603 	if (!(lwb->lwb_flags & LWB_FLAG_CRASHED)) {
1604 		nlwb = list_next(&zilog->zl_lwb_list, lwb);
1605 		if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1606 			nlwb = NULL;
1607 	}
1608 	mutex_exit(&zilog->zl_lock);
1609 
1610 	if (avl_numnodes(t) == 0)
1611 		return;
1612 
1613 	/*
1614 	 * If there was an IO error, we're not going to call zio_flush()
1615 	 * on these vdevs, so we simply empty the tree and free the
1616 	 * nodes. We avoid calling zio_flush() since there isn't any
1617 	 * good reason for doing so, after the lwb block failed to be
1618 	 * written out.
1619 	 *
1620 	 * Additionally, we don't perform any further error handling at
1621 	 * this point (e.g. setting "zcw_error" appropriately), as we
1622 	 * expect that to occur in "zil_lwb_flush_vdevs_done" (thus, we
1623 	 * expect any error seen here, to have been propagated to that
1624 	 * function).
1625 	 *
1626 	 * Note that we treat a "crashed" LWB as though it was in error,
1627 	 * even if it did appear to succeed, because we've already
1628 	 * signaled error and cleaned up waiters and committers in
1629 	 * zil_crash(); we just want to clean up and get out of here.
1630 	 */
1631 	if (zio->io_error != 0 || (lwb->lwb_flags & LWB_FLAG_CRASHED)) {
1632 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1633 			kmem_free(zv, sizeof (*zv));
1634 		return;
1635 	}
1636 
1637 	/*
1638 	 * If this lwb does not have any threads waiting for it to complete, we
1639 	 * want to defer issuing the flush command to the vdevs written to by
1640 	 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1641 	 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1642 	 * with the vdev tree of the "next" lwb in the list, and assume the
1643 	 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1644 	 * again).
1645 	 *
1646 	 * This is a useful performance optimization, especially for workloads
1647 	 * with lots of async write activity and few sync write and/or fsync
1648 	 * activity, as it has the potential to coalesce multiple flush
1649 	 * commands to a vdev into one.
1650 	 */
1651 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1652 		zil_lwb_flush_defer(lwb, nlwb);
1653 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1654 		return;
1655 	}
1656 
1657 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1658 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1659 		if (vd != NULL) {
1660 			/*
1661 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1662 			 * always used within "zio_flush". This means,
1663 			 * any errors when flushing the vdev(s), will
1664 			 * (unfortunately) not be handled correctly,
1665 			 * since these "zio_flush" errors will not be
1666 			 * propagated up to "zil_lwb_flush_vdevs_done".
1667 			 */
1668 			zio_flush(lwb->lwb_root_zio, vd);
1669 		}
1670 		kmem_free(zv, sizeof (*zv));
1671 	}
1672 }
1673 
1674 /*
1675  * Build the zio dependency chain, which is used to preserve the ordering of
1676  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1677  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1678  * cannot complete until the previous lwb's zio completes.
1679  *
1680  * This is required by the semantics of zil_commit(): the commit waiters
1681  * attached to the lwbs will be woken in the lwb zio's completion callback,
1682  * so this zio dependency graph ensures the waiters are woken in the correct
1683  * order (the same order the lwbs were created).
1684  */
1685 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1686 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1687 {
1688 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1689 
1690 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1691 	if (prev_lwb == NULL ||
1692 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1693 		return;
1694 
1695 	/*
1696 	 * If the previous lwb's write hasn't already completed, we also want
1697 	 * to order the completion of the lwb write zios (above, we only order
1698 	 * the completion of the lwb root zios). This is required because of
1699 	 * how we can defer the flush commands for any lwb without waiters.
1700 	 *
1701 	 * When the flush commands are deferred, the previous lwb will rely on
1702 	 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1703 	 * we need to ensure this lwb doesn't issue the flush until after the
1704 	 * previous lwb's write completes. We ensure this ordering by setting
1705 	 * the zio parent/child relationship here.
1706 	 *
1707 	 * Without this relationship on the lwb's write zio, it's possible for
1708 	 * this lwb's write to complete prior to the previous lwb's write
1709 	 * completing; and thus, the vdevs for the previous lwb would be
1710 	 * flushed prior to that lwb's data being written to those vdevs (the
1711 	 * vdevs are flushed in the lwb write zio's completion handler,
1712 	 * zil_lwb_write_done()).
1713 	 */
1714 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1715 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1716 		if (list_is_empty(&prev_lwb->lwb_waiters)) {
1717 			zio_add_child(lwb->lwb_write_zio,
1718 			    prev_lwb->lwb_write_zio);
1719 		}
1720 	} else {
1721 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1722 	}
1723 
1724 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1725 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1726 }
1727 
1728 
1729 /*
1730  * This function's purpose is to "open" an lwb such that it is ready to
1731  * accept new itxs being committed to it. This function is idempotent; if
1732  * the passed in lwb has already been opened, it is essentially a no-op.
1733  */
1734 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1735 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1736 {
1737 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1738 
1739 	if (lwb->lwb_state != LWB_STATE_NEW) {
1740 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1741 		return;
1742 	}
1743 
1744 	mutex_enter(&lwb->lwb_lock);
1745 	mutex_enter(&zilog->zl_lock);
1746 	lwb->lwb_state = LWB_STATE_OPENED;
1747 	zilog->zl_last_lwb_opened = lwb;
1748 	mutex_exit(&zilog->zl_lock);
1749 	mutex_exit(&lwb->lwb_lock);
1750 
1751 	/*
1752 	 * Allocate buffer and set up LWB capacities.
1753 	 */
1754 	ASSERT0P(lwb->lwb_buf);
1755 	ASSERT3U(lwb->lwb_sz, >, 0);
1756 	lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
1757 	if (lwb->lwb_flags & LWB_FLAG_SLIM) {
1758 		lwb->lwb_nmax = lwb->lwb_sz;
1759 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
1760 	} else {
1761 		lwb->lwb_nmax = lwb->lwb_sz - sizeof (zil_chain_t);
1762 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
1763 	}
1764 }
1765 
1766 /*
1767  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1768  * initialized.  Otherwise this should not be used directly; see
1769  * zl_max_block_size instead.
1770  */
1771 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1772 
1773 /*
1774  * Plan splitting of the provided burst size between several blocks.
1775  */
1776 static uint_t
zil_lwb_plan(zilog_t * zilog,uint64_t size,uint_t * minsize)1777 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1778 {
1779 	uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1780 	uint_t waste = zil_max_waste_space(zilog);
1781 	waste = MAX(waste, zilog->zl_cur_max);
1782 
1783 	if (size <= md) {
1784 		/*
1785 		 * Small bursts are written as-is in one block.
1786 		 */
1787 		*minsize = size;
1788 		return (size);
1789 	} else if (size > 8 * md) {
1790 		/*
1791 		 * Big bursts use maximum blocks.  The first block size
1792 		 * is hard to predict, but we need at least enough space
1793 		 * to make reasonable progress.
1794 		 */
1795 		*minsize = waste;
1796 		return (md);
1797 	}
1798 
1799 	/*
1800 	 * Medium bursts try to divide evenly to better utilize several SLOG
1801 	 * VDEVs.  The first block size we predict assuming the worst case of
1802 	 * maxing out others.  Fall back to using maximum blocks if due to
1803 	 * large records or wasted space we can not predict anything better.
1804 	 */
1805 	uint_t s = size;
1806 	uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1807 	uint_t chunk = DIV_ROUND_UP(s, n);
1808 	if (chunk <= md - waste) {
1809 		*minsize = MAX(s - (md - waste) * (n - 1), waste);
1810 		return (chunk);
1811 	} else {
1812 		*minsize = waste;
1813 		return (md);
1814 	}
1815 }
1816 
1817 /*
1818  * Try to predict next block size based on previous history.  Make prediction
1819  * sufficient for 7 of 8 previous bursts, but don't try to save if the saving
1820  * is less then 50%.  Extra writes may cost more, but we don't want single
1821  * spike to badly affect our predictions.
1822  */
1823 static void
zil_lwb_predict(zilog_t * zilog,uint64_t * min_predict,uint64_t * max_predict)1824 zil_lwb_predict(zilog_t *zilog, uint64_t *min_predict, uint64_t *max_predict)
1825 {
1826 	uint_t m1 = 0, m2 = 0, o;
1827 
1828 	/* If we are in the middle of a burst, take it as another data point. */
1829 	if (zilog->zl_cur_size > 0)
1830 		o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m1);
1831 	else
1832 		o = UINT_MAX;
1833 
1834 	/* Find two largest minimal first block sizes. */
1835 	for (int i = 0; i < ZIL_BURSTS; i++) {
1836 		uint_t cur = zilog->zl_prev_min[i];
1837 		if (cur >= m1) {
1838 			m2 = m1;
1839 			m1 = cur;
1840 		} else if (cur > m2) {
1841 			m2 = cur;
1842 		}
1843 	}
1844 
1845 	/* Minimum should guarantee progress in most cases. */
1846 	*min_predict = (m1 < m2 * 2) ? m1 : m2;
1847 
1848 	/* Maximum doesn't need to go below the minimum optimal size. */
1849 	for (int i = 0; i < ZIL_BURSTS; i++)
1850 		o = MIN(o, zilog->zl_prev_opt[i]);
1851 	m1 = MAX(m1, o);
1852 	m2 = MAX(m2, o);
1853 	*max_predict = (m1 < m2 * 2) ? m1 : m2;
1854 }
1855 
1856 /*
1857  * Close the log block for being issued and allocate the next one.
1858  * Has to be called under zl_issuer_lock to chain more lwbs.
1859  */
1860 static lwb_t *
zil_lwb_write_close(zilog_t * zilog,lwb_t * lwb)1861 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb)
1862 {
1863 	uint64_t minbs, maxbs;
1864 
1865 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1866 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1867 	membar_producer();
1868 	lwb->lwb_state = LWB_STATE_CLOSED;
1869 
1870 	/*
1871 	 * If there was an allocation failure then returned NULL will trigger
1872 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1873 	 * since allocation may not have happened yet.
1874 	 */
1875 	if (lwb->lwb_error != 0)
1876 		return (NULL);
1877 
1878 	/*
1879 	 * Log blocks are pre-allocated.  Here we select the size of the next
1880 	 * block, based on what's left of this burst and the previous history.
1881 	 * While we try to only write used part of the block, we can't just
1882 	 * always allocate the maximum block size because we can exhaust all
1883 	 * available pool log space, so we try to be reasonable.
1884 	 */
1885 	if (zilog->zl_cur_left > 0) {
1886 		/*
1887 		 * We are in the middle of a burst and know how much is left.
1888 		 * But if workload is multi-threaded there may be more soon.
1889 		 * Try to predict what can it be and plan for the worst case.
1890 		 */
1891 		uint_t m;
1892 		maxbs = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1893 		minbs = m;
1894 		if (zilog->zl_parallel) {
1895 			uint64_t minp, maxp;
1896 			zil_lwb_predict(zilog, &minp, &maxp);
1897 			maxp = zil_lwb_plan(zilog, zilog->zl_cur_left + maxp,
1898 			    &m);
1899 			if (maxbs < maxp)
1900 				maxbs = maxp;
1901 		}
1902 	} else {
1903 		/*
1904 		 * The previous burst is done and we can only predict what
1905 		 * will come next.
1906 		 */
1907 		zil_lwb_predict(zilog, &minbs, &maxbs);
1908 	}
1909 
1910 	minbs += sizeof (zil_chain_t);
1911 	maxbs += sizeof (zil_chain_t);
1912 	minbs = P2ROUNDUP_TYPED(minbs, ZIL_MIN_BLKSZ, uint64_t);
1913 	maxbs = P2ROUNDUP_TYPED(maxbs, ZIL_MIN_BLKSZ, uint64_t);
1914 	maxbs = MIN(maxbs, zilog->zl_max_block_size);
1915 	minbs = MIN(minbs, maxbs);
1916 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, minbs,
1917 	    uint64_t, maxbs);
1918 
1919 	return (zil_alloc_lwb(zilog, NULL, minbs, maxbs, 0, 0));
1920 }
1921 
1922 /*
1923  * Finalize previously closed block and issue the write zio.
1924  */
1925 static int
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1926 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1927 {
1928 	spa_t *spa = zilog->zl_spa;
1929 	zil_chain_t *zilc;
1930 	boolean_t slog;
1931 	zbookmark_phys_t zb;
1932 	zio_priority_t prio;
1933 	int error;
1934 
1935 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1936 
1937 	/* Actually fill the lwb with the data. */
1938 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1939 	    itx = list_next(&lwb->lwb_itxs, itx)) {
1940 		error = zil_lwb_commit(zilog, lwb, itx);
1941 		if (error != 0) {
1942 			ASSERT3U(error, ==, ESHUTDOWN);
1943 			return (error);
1944 		}
1945 	}
1946 	lwb->lwb_nused = lwb->lwb_nfilled;
1947 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1948 
1949 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1950 	    ZIO_FLAG_CANFAIL);
1951 
1952 	/*
1953 	 * The lwb is now ready to be issued, but it can be only if it already
1954 	 * got its block pointer allocated or the allocation has failed.
1955 	 * Otherwise leave it as-is, relying on some other thread to issue it
1956 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1957 	 * for the previous lwb(s) in the chain.
1958 	 */
1959 	mutex_enter(&zilog->zl_lock);
1960 	lwb->lwb_state = LWB_STATE_READY;
1961 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1962 		mutex_exit(&zilog->zl_lock);
1963 		return (0);
1964 	}
1965 	mutex_exit(&zilog->zl_lock);
1966 
1967 next_lwb:
1968 	if (lwb->lwb_flags & LWB_FLAG_SLIM)
1969 		zilc = (zil_chain_t *)lwb->lwb_buf;
1970 	else
1971 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1972 	uint64_t alloc_size = BP_GET_LSIZE(&lwb->lwb_blk);
1973 	int wsz = alloc_size;
1974 	if (lwb->lwb_error == 0) {
1975 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1976 		if (!(lwb->lwb_flags & LWB_FLAG_SLOG) ||
1977 		    zilog->zl_cur_size <= zil_slog_bulk)
1978 			prio = ZIO_PRIORITY_SYNC_WRITE;
1979 		else
1980 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1981 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1982 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1983 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1984 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1985 		    &lwb->lwb_blk, lwb_abd, alloc_size, zil_lwb_write_done,
1986 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1987 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1988 
1989 		if (lwb->lwb_flags & LWB_FLAG_SLIM) {
1990 			/* For Slim ZIL only write what is used. */
1991 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1992 			    int);
1993 			ASSERT3S(wsz, <=, alloc_size);
1994 			if (wsz < alloc_size)
1995 				zio_shrink(lwb->lwb_write_zio, wsz);
1996 			wsz = lwb->lwb_write_zio->io_size;
1997 		}
1998 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1999 		zilc->zc_pad = 0;
2000 		zilc->zc_nused = lwb->lwb_nused;
2001 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
2002 	} else {
2003 		/*
2004 		 * We can't write the lwb if there was an allocation failure,
2005 		 * so create a null zio instead just to maintain dependencies.
2006 		 */
2007 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
2008 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
2009 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
2010 	}
2011 	if (lwb->lwb_child_zio)
2012 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
2013 
2014 	/*
2015 	 * Open transaction to allocate the next block pointer.
2016 	 */
2017 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2018 	VERIFY0(dmu_tx_assign(tx,
2019 	    DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
2020 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2021 	uint64_t txg = dmu_tx_get_txg(tx);
2022 
2023 	/*
2024 	 * Allocate next the block pointer unless we are already in error.
2025 	 */
2026 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
2027 	blkptr_t *bp = &zilc->zc_next_blk;
2028 	BP_ZERO(bp);
2029 	error = lwb->lwb_error;
2030 	if (error == 0) {
2031 		/*
2032 		 * Allocation flexibility depends on LWB state:
2033 		 * if NEW: allow range allocation and larger sizes;
2034 		 * if OPENED: use fixed predetermined allocation size;
2035 		 * if CLOSED + Slim: allocate precisely for actual usage.
2036 		 */
2037 		boolean_t flexible = (nlwb->lwb_state == LWB_STATE_NEW);
2038 		if (flexible) {
2039 			/* We need to prevent opening till we update lwb_sz. */
2040 			mutex_enter(&nlwb->lwb_lock);
2041 			flexible = (nlwb->lwb_state == LWB_STATE_NEW);
2042 			if (!flexible)
2043 				mutex_exit(&nlwb->lwb_lock); /* We lost. */
2044 		}
2045 		boolean_t closed_slim = (nlwb->lwb_state == LWB_STATE_CLOSED &&
2046 		    (lwb->lwb_flags & LWB_FLAG_SLIM));
2047 
2048 		uint64_t min_size, max_size;
2049 		if (closed_slim) {
2050 			/* This transition is racy, but only one way. */
2051 			membar_consumer();
2052 			min_size = max_size = P2ROUNDUP_TYPED(nlwb->lwb_nused,
2053 			    ZIL_MIN_BLKSZ, uint64_t);
2054 		} else if (flexible) {
2055 			min_size = nlwb->lwb_min_sz;
2056 			max_size = nlwb->lwb_sz;
2057 		} else {
2058 			min_size = max_size = nlwb->lwb_sz;
2059 		}
2060 
2061 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp,
2062 		    min_size, max_size, &slog, flexible);
2063 		if (error == 0) {
2064 			if (closed_slim)
2065 				ASSERT3U(BP_GET_LSIZE(bp), ==, max_size);
2066 			else if (flexible)
2067 				nlwb->lwb_sz = BP_GET_LSIZE(bp);
2068 			else
2069 				ASSERT3U(BP_GET_LSIZE(bp), ==, nlwb->lwb_sz);
2070 		}
2071 		if (flexible)
2072 			mutex_exit(&nlwb->lwb_lock);
2073 	}
2074 	if (error == 0) {
2075 		ASSERT3U(BP_GET_BIRTH(bp), ==, txg);
2076 		BP_SET_CHECKSUM(bp, (nlwb->lwb_flags & LWB_FLAG_SLIM) ?
2077 		    ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2078 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
2079 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
2080 	}
2081 
2082 	/*
2083 	 * Reduce TXG open time by incrementing inflight counter and committing
2084 	 * the transaciton.  zil_sync() will wait for it to return to zero.
2085 	 */
2086 	mutex_enter(&zilog->zl_lwb_io_lock);
2087 	lwb->lwb_issued_txg = txg;
2088 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
2089 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
2090 	mutex_exit(&zilog->zl_lwb_io_lock);
2091 	dmu_tx_commit(tx);
2092 
2093 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
2094 
2095 	/*
2096 	 * We've completed all potentially blocking operations.  Update the
2097 	 * nlwb and allow it proceed without possible lock order reversals.
2098 	 */
2099 	mutex_enter(&zilog->zl_lock);
2100 	zil_lwb_set_zio_dependency(zilog, lwb);
2101 	lwb->lwb_state = LWB_STATE_ISSUED;
2102 
2103 	if (nlwb) {
2104 		nlwb->lwb_blk = *bp;
2105 		nlwb->lwb_error = error;
2106 		if (slog)
2107 			nlwb->lwb_flags |= LWB_FLAG_SLOG;
2108 		nlwb->lwb_alloc_txg = txg;
2109 		if (nlwb->lwb_state != LWB_STATE_READY)
2110 			nlwb = NULL;
2111 	}
2112 	mutex_exit(&zilog->zl_lock);
2113 
2114 	if (lwb->lwb_flags & LWB_FLAG_SLOG) {
2115 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2116 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2117 		    lwb->lwb_nused);
2118 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2119 		    wsz);
2120 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2121 		    BP_GET_LSIZE(&lwb->lwb_blk));
2122 	} else {
2123 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2124 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2125 		    lwb->lwb_nused);
2126 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2127 		    wsz);
2128 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2129 		    BP_GET_LSIZE(&lwb->lwb_blk));
2130 	}
2131 	lwb->lwb_issued_timestamp = gethrtime();
2132 	if (lwb->lwb_child_zio)
2133 		zio_nowait(lwb->lwb_child_zio);
2134 	zio_nowait(lwb->lwb_write_zio);
2135 	zio_nowait(lwb->lwb_root_zio);
2136 
2137 	/*
2138 	 * If nlwb was ready when we gave it the block pointer,
2139 	 * it is on us to issue it and possibly following ones.
2140 	 */
2141 	lwb = nlwb;
2142 	if (lwb)
2143 		goto next_lwb;
2144 
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Maximum amount of data that can be put into single log block.
2150  */
2151 uint64_t
zil_max_log_data(zilog_t * zilog,size_t hdrsize)2152 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2153 {
2154 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2155 }
2156 
2157 /*
2158  * Maximum amount of log space we agree to waste to reduce number of
2159  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2160  */
2161 static inline uint64_t
zil_max_waste_space(zilog_t * zilog)2162 zil_max_waste_space(zilog_t *zilog)
2163 {
2164 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2165 }
2166 
2167 /*
2168  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
2169  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2170  * maximum sized log block, because each WR_COPIED record must fit in a
2171  * single log block.  Below that it is a tradeoff of additional memory copy
2172  * and possibly worse log space efficiency vs additional range lock/unlock.
2173  */
2174 static uint_t zil_maxcopied = 7680;
2175 
2176 /*
2177  * Largest write size to store the data directly into ZIL.
2178  */
2179 uint_t zfs_immediate_write_sz = 32768;
2180 
2181 /*
2182  * When enabled and blocks go to normal vdev, treat special vdevs as SLOG,
2183  * writing data to ZIL (WR_COPIED/WR_NEED_COPY).  Disabling this forces the
2184  * indirect writes (WR_INDIRECT) to preserve special vdev throughput and
2185  * endurance, likely at the cost of normal vdev latency.
2186  */
2187 int zil_special_is_slog = 1;
2188 
2189 uint64_t
zil_max_copied_data(zilog_t * zilog)2190 zil_max_copied_data(zilog_t *zilog)
2191 {
2192 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2193 	return (MIN(max_data, zil_maxcopied));
2194 }
2195 
2196 /*
2197  * Determine the appropriate write state for ZIL transactions based on
2198  * pool configuration, data placement, write size, and logbias settings.
2199  */
2200 itx_wr_state_t
zil_write_state(zilog_t * zilog,uint64_t size,uint32_t blocksize,boolean_t o_direct,boolean_t commit)2201 zil_write_state(zilog_t *zilog, uint64_t size, uint32_t blocksize,
2202     boolean_t o_direct, boolean_t commit)
2203 {
2204 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT || o_direct)
2205 		return (WR_INDIRECT);
2206 
2207 	/*
2208 	 * Don't use indirect for too small writes to reduce overhead.
2209 	 * Don't use indirect if written less than a half of a block if
2210 	 * we are going to commit it immediately, since next write might
2211 	 * rewrite the same block again, causing inflation.  If commit
2212 	 * is not planned, then next writes might coalesce, and so the
2213 	 * indirect may be perfect.
2214 	 */
2215 	boolean_t indirect = (size >= zfs_immediate_write_sz &&
2216 	    (size >= blocksize / 2 || !commit));
2217 
2218 	if (spa_has_slogs(zilog->zl_spa)) {
2219 		/* Dedicated slogs: never use indirect */
2220 		indirect = B_FALSE;
2221 	} else if (spa_has_special(zilog->zl_spa)) {
2222 		/* Special vdevs: only when beneficial */
2223 		boolean_t on_special = (blocksize <=
2224 		    zilog->zl_os->os_zpl_special_smallblock);
2225 		indirect &= (on_special || !zil_special_is_slog);
2226 	}
2227 
2228 	if (indirect)
2229 		return (WR_INDIRECT);
2230 	else if (commit)
2231 		return (WR_COPIED);
2232 	else
2233 		return (WR_NEED_COPY);
2234 }
2235 
2236 static uint64_t
zil_itx_record_size(itx_t * itx)2237 zil_itx_record_size(itx_t *itx)
2238 {
2239 	lr_t *lr = &itx->itx_lr;
2240 
2241 	if (lr->lrc_txtype == TX_COMMIT)
2242 		return (0);
2243 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2244 	return (lr->lrc_reclen);
2245 }
2246 
2247 static uint64_t
zil_itx_data_size(itx_t * itx)2248 zil_itx_data_size(itx_t *itx)
2249 {
2250 	lr_t *lr = &itx->itx_lr;
2251 	lr_write_t *lrw = (lr_write_t *)lr;
2252 
2253 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2254 		ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2255 		return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2256 		    uint64_t));
2257 	}
2258 	return (0);
2259 }
2260 
2261 static uint64_t
zil_itx_full_size(itx_t * itx)2262 zil_itx_full_size(itx_t *itx)
2263 {
2264 	lr_t *lr = &itx->itx_lr;
2265 
2266 	if (lr->lrc_txtype == TX_COMMIT)
2267 		return (0);
2268 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2269 	return (lr->lrc_reclen + zil_itx_data_size(itx));
2270 }
2271 
2272 /*
2273  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2274  * split the itx as needed, but don't touch the actual transaction data.
2275  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2276  * to chain more lwbs.
2277  */
2278 static lwb_t *
zil_lwb_assign(zilog_t * zilog,lwb_t * lwb,itx_t * itx,list_t * ilwbs)2279 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2280 {
2281 	itx_t *citx;
2282 	lr_t *lr, *clr;
2283 	lr_write_t *lrw;
2284 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2285 
2286 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2287 	ASSERT3P(lwb, !=, NULL);
2288 
2289 	zil_lwb_write_open(zilog, lwb);
2290 
2291 	lr = &itx->itx_lr;
2292 	lrw = (lr_write_t *)lr;
2293 
2294 	/*
2295 	 * A commit itx doesn't represent any on-disk state; instead
2296 	 * it's simply used as a place holder on the commit list, and
2297 	 * provides a mechanism for attaching a "commit waiter" onto the
2298 	 * correct lwb (such that the waiter can be signalled upon
2299 	 * completion of that lwb). Thus, we don't process this itx's
2300 	 * log record if it's a commit itx (these itx's don't have log
2301 	 * records), and instead link the itx's waiter onto the lwb's
2302 	 * list of waiters.
2303 	 *
2304 	 * For more details, see the comment above zil_commit().
2305 	 */
2306 	if (lr->lrc_txtype == TX_COMMIT) {
2307 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2308 		list_insert_tail(&lwb->lwb_itxs, itx);
2309 		return (lwb);
2310 	}
2311 
2312 	reclen = lr->lrc_reclen;
2313 	ASSERT3U(reclen, >=, sizeof (lr_t));
2314 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2315 	dlen = zil_itx_data_size(itx);
2316 
2317 cont:
2318 	/*
2319 	 * If this record won't fit in the current log block, start a new one.
2320 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2321 	 */
2322 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2323 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2324 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2325 	    lwb_sp < zil_max_waste_space(zilog) &&
2326 	    (dlen % max_log_data == 0 ||
2327 	    lwb_sp < reclen + dlen % max_log_data))) {
2328 		list_insert_tail(ilwbs, lwb);
2329 		lwb = zil_lwb_write_close(zilog, lwb);
2330 		if (lwb == NULL)
2331 			return (NULL);
2332 		zil_lwb_write_open(zilog, lwb);
2333 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2334 	}
2335 
2336 	/*
2337 	 * There must be enough space in the log block to hold reclen.
2338 	 * For WR_COPIED, we need to fit the whole record in one block,
2339 	 * and reclen is the write record header size + the data size.
2340 	 * For WR_NEED_COPY, we can create multiple records, splitting
2341 	 * the data into multiple blocks, so we only need to fit one
2342 	 * word of data per block; in this case reclen is just the header
2343 	 * size (no data).
2344 	 */
2345 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2346 
2347 	dnow = MIN(dlen, lwb_sp - reclen);
2348 	if (dlen > dnow) {
2349 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2350 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2351 		citx = zil_itx_clone(itx);
2352 		clr = &citx->itx_lr;
2353 		lr_write_t *clrw = (lr_write_t *)clr;
2354 		clrw->lr_length = dnow;
2355 		lrw->lr_offset += dnow;
2356 		lrw->lr_length -= dnow;
2357 		zilog->zl_cur_left -= dnow;
2358 	} else {
2359 		citx = itx;
2360 		clr = lr;
2361 	}
2362 
2363 	/*
2364 	 * We're actually making an entry, so update lrc_seq to be the
2365 	 * log record sequence number.  Note that this is generally not
2366 	 * equal to the itx sequence number because not all transactions
2367 	 * are synchronous, and sometimes spa_sync() gets there first.
2368 	 */
2369 	clr->lrc_seq = ++zilog->zl_lr_seq;
2370 
2371 	lwb->lwb_nused += reclen + dnow;
2372 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2373 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2374 
2375 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2376 	list_insert_tail(&lwb->lwb_itxs, citx);
2377 
2378 	dlen -= dnow;
2379 	if (dlen > 0)
2380 		goto cont;
2381 
2382 	if (lr->lrc_txtype == TX_WRITE &&
2383 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2384 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2385 
2386 	return (lwb);
2387 }
2388 
2389 static void zil_crash(zilog_t *zilog);
2390 
2391 /*
2392  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2393  * Does not require locking.
2394  */
2395 static int
zil_lwb_commit(zilog_t * zilog,lwb_t * lwb,itx_t * itx)2396 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2397 {
2398 	lr_t *lr, *lrb;
2399 	lr_write_t *lrw, *lrwb;
2400 	char *lr_buf;
2401 	uint64_t dlen, reclen;
2402 
2403 	lr = &itx->itx_lr;
2404 	lrw = (lr_write_t *)lr;
2405 
2406 	if (lr->lrc_txtype == TX_COMMIT)
2407 		return (0);
2408 
2409 	reclen = lr->lrc_reclen;
2410 	dlen = zil_itx_data_size(itx);
2411 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2412 
2413 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2414 	memcpy(lr_buf, lr, reclen);
2415 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2416 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2417 
2418 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2419 
2420 	/*
2421 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2422 	 */
2423 	if (lr->lrc_txtype == TX_WRITE) {
2424 		if (itx->itx_wr_state == WR_COPIED) {
2425 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2426 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2427 			    lrw->lr_length);
2428 		} else {
2429 			char *dbuf;
2430 			int error;
2431 
2432 			if (itx->itx_wr_state == WR_NEED_COPY) {
2433 				dbuf = lr_buf + reclen;
2434 				lrb->lrc_reclen += dlen;
2435 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2436 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2437 				    dlen);
2438 			} else {
2439 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2440 				dbuf = NULL;
2441 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2442 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2443 				    lrw->lr_length);
2444 				if (lwb->lwb_child_zio == NULL) {
2445 					lwb->lwb_child_zio = zio_null(NULL,
2446 					    zilog->zl_spa, NULL, NULL, NULL,
2447 					    ZIO_FLAG_CANFAIL);
2448 				}
2449 			}
2450 
2451 			/*
2452 			 * The "lwb_child_zio" we pass in will become a child of
2453 			 * "lwb_write_zio", when one is created, so one will be
2454 			 * a parent of any zio's created by the "zl_get_data".
2455 			 * This way "lwb_write_zio" will first wait for children
2456 			 * block pointers before own writing, and then for their
2457 			 * writing completion before the vdev cache flushing.
2458 			 */
2459 			error = zilog->zl_get_data(itx->itx_private,
2460 			    itx->itx_gen, lrwb, dbuf, lwb,
2461 			    lwb->lwb_child_zio);
2462 			if (dbuf != NULL && error == 0) {
2463 				/* Zero any padding bytes in the last block. */
2464 				memset((char *)dbuf + lrwb->lr_length, 0,
2465 				    dlen - lrwb->lr_length);
2466 			}
2467 
2468 			/*
2469 			 * Typically, the only return values we should see from
2470 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2471 			 *  EALREADY. However, it is also possible to see other
2472 			 *  error values such as ENOSPC or EINVAL from
2473 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2474 			 *  ENXIO as well as a multitude of others from the
2475 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2476 			 *  -> zio_wait(), as well as through dmu_read() ->
2477 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2478 			 *  zio_wait(). When these errors happen, we can assume
2479 			 *  that neither an immediate write nor an indirect
2480 			 *  write occurred, so we need to fall back to
2481 			 *  txg_wait_synced(). This is unusual, so we print to
2482 			 *  dmesg whenever one of these errors occurs.
2483 			 */
2484 			switch (error) {
2485 			case 0:
2486 				break;
2487 			default:
2488 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2489 				    "unexpected error %d from ->zl_get_data()"
2490 				    ". Falling back to txg_wait_synced().",
2491 				    error);
2492 				zfs_fallthrough;
2493 			case EIO: {
2494 				int error = txg_wait_synced_flags(
2495 				    zilog->zl_dmu_pool,
2496 				    lr->lrc_txg, TXG_WAIT_SUSPEND);
2497 				if (error != 0) {
2498 					ASSERT3U(error, ==, ESHUTDOWN);
2499 					/*
2500 					 * zil_lwb_commit() is called from a
2501 					 * loop over a list of itxs at the
2502 					 * top of zil_lwb_write_issue(), which
2503 					 * itself is called from a loop over a
2504 					 * list of lwbs in various places.
2505 					 * zil_crash() will free those itxs
2506 					 * and sometimes the lwbs, so they
2507 					 * are invalid when zil_crash() returns.
2508 					 * Callers must pretty much abort
2509 					 * immediately.
2510 					 */
2511 					zil_crash(zilog);
2512 					return (error);
2513 				}
2514 				zfs_fallthrough;
2515 			}
2516 			case ENOENT:
2517 				zfs_fallthrough;
2518 			case EEXIST:
2519 				zfs_fallthrough;
2520 			case EALREADY:
2521 				return (0);
2522 			}
2523 		}
2524 	}
2525 
2526 	lwb->lwb_nfilled += reclen + dlen;
2527 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2528 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2529 
2530 	return (0);
2531 }
2532 
2533 itx_t *
zil_itx_create(uint64_t txtype,size_t olrsize)2534 zil_itx_create(uint64_t txtype, size_t olrsize)
2535 {
2536 	size_t itxsize, lrsize;
2537 	itx_t *itx;
2538 
2539 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2540 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2541 	ASSERT3U(lrsize, >=, olrsize);
2542 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2543 
2544 	itx = zio_data_buf_alloc(itxsize);
2545 	itx->itx_lr.lrc_txtype = txtype;
2546 	itx->itx_lr.lrc_reclen = lrsize;
2547 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2548 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2549 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2550 	itx->itx_callback = NULL;
2551 	itx->itx_callback_data = NULL;
2552 	itx->itx_size = itxsize;
2553 
2554 	return (itx);
2555 }
2556 
2557 static itx_t *
zil_itx_clone(itx_t * oitx)2558 zil_itx_clone(itx_t *oitx)
2559 {
2560 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2561 	ASSERT3U(oitx->itx_size, ==,
2562 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2563 
2564 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2565 	memcpy(itx, oitx, oitx->itx_size);
2566 	itx->itx_callback = NULL;
2567 	itx->itx_callback_data = NULL;
2568 	return (itx);
2569 }
2570 
2571 void
zil_itx_destroy(itx_t * itx,int err)2572 zil_itx_destroy(itx_t *itx, int err)
2573 {
2574 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2575 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2576 	    itx->itx_size - offsetof(itx_t, itx_lr));
2577 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2578 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2579 
2580 	if (itx->itx_callback != NULL)
2581 		itx->itx_callback(itx->itx_callback_data, err);
2582 
2583 	zio_data_buf_free(itx, itx->itx_size);
2584 }
2585 
2586 /*
2587  * Free up the sync and async itxs. The itxs_t has already been detached
2588  * so no locks are needed.
2589  */
2590 static void
zil_itxg_clean(void * arg)2591 zil_itxg_clean(void *arg)
2592 {
2593 	itx_t *itx;
2594 	list_t *list;
2595 	avl_tree_t *t;
2596 	void *cookie;
2597 	itxs_t *itxs = arg;
2598 	itx_async_node_t *ian;
2599 
2600 	list = &itxs->i_sync_list;
2601 	while ((itx = list_remove_head(list)) != NULL) {
2602 		/*
2603 		 * In the general case, commit itxs will not be found
2604 		 * here, as they'll be committed to an lwb via
2605 		 * zil_lwb_assign(), and free'd in that function. Having
2606 		 * said that, it is still possible for commit itxs to be
2607 		 * found here, due to the following race:
2608 		 *
2609 		 *	- a thread calls zil_commit() which assigns the
2610 		 *	  commit itx to a per-txg i_sync_list
2611 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2612 		 *	  while the waiter is still on the i_sync_list
2613 		 *
2614 		 * There's nothing to prevent syncing the txg while the
2615 		 * waiter is on the i_sync_list. This normally doesn't
2616 		 * happen because spa_sync() is slower than zil_commit(),
2617 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2618 		 * because zil_create() or zil_commit_writer_stall() is
2619 		 * called) we will hit this case.
2620 		 */
2621 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2622 			zil_commit_waiter_done(itx->itx_private, 0);
2623 
2624 		zil_itx_destroy(itx, 0);
2625 	}
2626 
2627 	cookie = NULL;
2628 	t = &itxs->i_async_tree;
2629 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2630 		list = &ian->ia_list;
2631 		while ((itx = list_remove_head(list)) != NULL) {
2632 			/* commit itxs should never be on the async lists. */
2633 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2634 			zil_itx_destroy(itx, 0);
2635 		}
2636 		list_destroy(list);
2637 		kmem_free(ian, sizeof (itx_async_node_t));
2638 	}
2639 	avl_destroy(t);
2640 
2641 	kmem_free(itxs, sizeof (itxs_t));
2642 }
2643 
2644 static int
zil_aitx_compare(const void * x1,const void * x2)2645 zil_aitx_compare(const void *x1, const void *x2)
2646 {
2647 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2648 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2649 
2650 	return (TREE_CMP(o1, o2));
2651 }
2652 
2653 /*
2654  * Remove all async itx with the given oid.
2655  */
2656 void
zil_remove_async(zilog_t * zilog,uint64_t oid)2657 zil_remove_async(zilog_t *zilog, uint64_t oid)
2658 {
2659 	uint64_t otxg, txg;
2660 	itx_async_node_t *ian, ian_search;
2661 	avl_tree_t *t;
2662 	avl_index_t where;
2663 	list_t clean_list;
2664 	itx_t *itx;
2665 
2666 	ASSERT(oid != 0);
2667 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2668 
2669 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2670 		otxg = ZILTEST_TXG;
2671 	else
2672 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2673 
2674 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2675 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2676 
2677 		mutex_enter(&itxg->itxg_lock);
2678 		if (itxg->itxg_txg != txg) {
2679 			mutex_exit(&itxg->itxg_lock);
2680 			continue;
2681 		}
2682 
2683 		/*
2684 		 * Locate the object node and append its list.
2685 		 */
2686 		t = &itxg->itxg_itxs->i_async_tree;
2687 		ian_search.ia_foid = oid;
2688 		ian = avl_find(t, &ian_search, &where);
2689 		if (ian != NULL)
2690 			list_move_tail(&clean_list, &ian->ia_list);
2691 		mutex_exit(&itxg->itxg_lock);
2692 	}
2693 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2694 		/* commit itxs should never be on the async lists. */
2695 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2696 		zil_itx_destroy(itx, 0);
2697 	}
2698 	list_destroy(&clean_list);
2699 }
2700 
2701 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)2702 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2703 {
2704 	uint64_t txg;
2705 	itxg_t *itxg;
2706 	itxs_t *itxs, *clean = NULL;
2707 
2708 	/*
2709 	 * Ensure the data of a renamed file is committed before the rename.
2710 	 */
2711 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2712 		zil_async_to_sync(zilog, itx->itx_oid);
2713 
2714 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2715 		txg = ZILTEST_TXG;
2716 	else
2717 		txg = dmu_tx_get_txg(tx);
2718 
2719 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2720 	mutex_enter(&itxg->itxg_lock);
2721 	itxs = itxg->itxg_itxs;
2722 	if (itxg->itxg_txg != txg) {
2723 		if (itxs != NULL) {
2724 			/*
2725 			 * The zil_clean callback hasn't got around to cleaning
2726 			 * this itxg. Save the itxs for release below.
2727 			 * This should be rare.
2728 			 */
2729 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2730 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2731 			clean = itxg->itxg_itxs;
2732 		}
2733 		itxg->itxg_txg = txg;
2734 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2735 		    KM_SLEEP);
2736 
2737 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2738 		    offsetof(itx_t, itx_node));
2739 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2740 		    sizeof (itx_async_node_t),
2741 		    offsetof(itx_async_node_t, ia_node));
2742 	}
2743 	if (itx->itx_sync) {
2744 		list_insert_tail(&itxs->i_sync_list, itx);
2745 	} else {
2746 		avl_tree_t *t = &itxs->i_async_tree;
2747 		uint64_t foid =
2748 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2749 		itx_async_node_t *ian;
2750 		avl_index_t where;
2751 
2752 		ian = avl_find(t, &foid, &where);
2753 		if (ian == NULL) {
2754 			ian = kmem_alloc(sizeof (itx_async_node_t),
2755 			    KM_SLEEP);
2756 			list_create(&ian->ia_list, sizeof (itx_t),
2757 			    offsetof(itx_t, itx_node));
2758 			ian->ia_foid = foid;
2759 			avl_insert(t, ian, where);
2760 		}
2761 		list_insert_tail(&ian->ia_list, itx);
2762 	}
2763 
2764 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2765 
2766 	/*
2767 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2768 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2769 	 * need to be careful to always dirty the ZIL using the "real"
2770 	 * TXG (not itxg_txg) even when the SPA is frozen.
2771 	 */
2772 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2773 	mutex_exit(&itxg->itxg_lock);
2774 
2775 	/* Release the old itxs now we've dropped the lock */
2776 	if (clean != NULL)
2777 		zil_itxg_clean(clean);
2778 }
2779 
2780 /*
2781  * Post-crash cleanup. This is called from zil_clean() because it needs to
2782  * do cleanup after every txg until the ZIL is restarted, and zilog_dirty()
2783  * can arrange that easily, unlike zil_sync() which is more complicated to
2784  * get a call to without actual dirty data.
2785  */
2786 static void
zil_crash_clean(zilog_t * zilog,uint64_t synced_txg)2787 zil_crash_clean(zilog_t *zilog, uint64_t synced_txg)
2788 {
2789 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
2790 	ASSERT3U(zilog->zl_restart_txg, >, 0);
2791 
2792 	/* Clean up anything on the crash list from earlier txgs */
2793 	lwb_t *lwb;
2794 	while ((lwb = list_head(&zilog->zl_lwb_crash_list)) != NULL) {
2795 		if (lwb->lwb_alloc_txg >= synced_txg ||
2796 		    lwb->lwb_max_txg >= synced_txg) {
2797 			/*
2798 			 * This lwb was allocated or updated on this txg, or
2799 			 * in the future. We stop processing here, to avoid
2800 			 * the strange situation of freeing a ZIL block on
2801 			 * on the same or earlier txg than what it was
2802 			 * allocated for.
2803 			 *
2804 			 * We'll take care of it on the next txg.
2805 			 */
2806 			break;
2807 		}
2808 
2809 		/* This LWB is from the past, so we can clean it up now. */
2810 		ASSERT(lwb->lwb_flags & LWB_FLAG_CRASHED);
2811 		list_remove(&zilog->zl_lwb_crash_list, lwb);
2812 		if (lwb->lwb_buf != NULL)
2813 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2814 		if (!BP_IS_HOLE(&lwb->lwb_blk))
2815 			/*
2816 			 * Free on the next txg, since zil_clean() is called
2817 			 * once synced_txg has already been completed.
2818 			 */
2819 			zio_free(zilog->zl_spa, synced_txg+1, &lwb->lwb_blk);
2820 		zil_free_lwb(zilog, lwb);
2821 	}
2822 
2823 	if (zilog->zl_restart_txg > synced_txg) {
2824 		/*
2825 		 * Not reached the restart txg yet, so mark the ZIL dirty for
2826 		 * the next txg and we'll consider it all again then.
2827 		 */
2828 		zilog_dirty(zilog, synced_txg+1);
2829 		return;
2830 	}
2831 
2832 	/*
2833 	 * Reached the restart txg, so we can allow new calls to zil_commit().
2834 	 * All ZIL txgs have long past so there should be no IO waiting.
2835 	 */
2836 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2837 	ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
2838 
2839 	zilog->zl_restart_txg = 0;
2840 }
2841 
2842 /*
2843  * If there are any in-memory intent log transactions which have now been
2844  * synced then start up a taskq to free them. We should only do this after we
2845  * have written out the uberblocks (i.e. txg has been committed) so that
2846  * don't inadvertently clean out in-memory log records that would be required
2847  * by zil_commit().
2848  */
2849 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)2850 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2851 {
2852 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2853 	itxs_t *clean_me;
2854 
2855 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2856 
2857 	/* Do cleanup and restart after crash. */
2858 	if (zilog->zl_restart_txg > 0) {
2859 		mutex_enter(&zilog->zl_lock);
2860 		/* Make sure we didn't lose a race. */
2861 		if (zilog->zl_restart_txg > 0)
2862 			zil_crash_clean(zilog, synced_txg);
2863 		mutex_exit(&zilog->zl_lock);
2864 	}
2865 
2866 	mutex_enter(&itxg->itxg_lock);
2867 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2868 		mutex_exit(&itxg->itxg_lock);
2869 		return;
2870 	}
2871 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2872 	ASSERT3U(itxg->itxg_txg, !=, 0);
2873 	clean_me = itxg->itxg_itxs;
2874 	itxg->itxg_itxs = NULL;
2875 	itxg->itxg_txg = 0;
2876 	mutex_exit(&itxg->itxg_lock);
2877 	/*
2878 	 * Preferably start a task queue to free up the old itxs but
2879 	 * if taskq_dispatch can't allocate resources to do that then
2880 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2881 	 * created a bad performance problem.
2882 	 */
2883 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2884 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2885 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2886 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2887 	if (id == TASKQID_INVALID)
2888 		zil_itxg_clean(clean_me);
2889 }
2890 
2891 /*
2892  * This function will traverse the queue of itxs that need to be
2893  * committed, and move them onto the ZIL's zl_itx_commit_list.
2894  */
2895 static uint64_t
zil_get_commit_list(zilog_t * zilog)2896 zil_get_commit_list(zilog_t *zilog)
2897 {
2898 	uint64_t otxg, txg, wtxg = 0;
2899 	list_t *commit_list = &zilog->zl_itx_commit_list;
2900 
2901 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2902 
2903 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2904 		otxg = ZILTEST_TXG;
2905 	else
2906 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2907 
2908 	/*
2909 	 * This is inherently racy, since there is nothing to prevent
2910 	 * the last synced txg from changing. That's okay since we'll
2911 	 * only commit things in the future.
2912 	 */
2913 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2914 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2915 
2916 		mutex_enter(&itxg->itxg_lock);
2917 		if (itxg->itxg_txg != txg) {
2918 			mutex_exit(&itxg->itxg_lock);
2919 			continue;
2920 		}
2921 
2922 		/*
2923 		 * If we're adding itx records to the zl_itx_commit_list,
2924 		 * then the zil better be dirty in this "txg". We can assert
2925 		 * that here since we're holding the itxg_lock which will
2926 		 * prevent spa_sync from cleaning it. Once we add the itxs
2927 		 * to the zl_itx_commit_list we must commit it to disk even
2928 		 * if it's unnecessary (i.e. the txg was synced).
2929 		 */
2930 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2931 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2932 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2933 		itx_t *itx = NULL;
2934 		if (unlikely(zilog->zl_suspend > 0)) {
2935 			/*
2936 			 * ZIL was just suspended, but we lost the race.
2937 			 * Allow all earlier itxs to be committed, but ask
2938 			 * caller to do txg_wait_synced(txg) for any new.
2939 			 */
2940 			if (!list_is_empty(sync_list))
2941 				wtxg = MAX(wtxg, txg);
2942 		} else {
2943 			itx = list_head(sync_list);
2944 			list_move_tail(commit_list, sync_list);
2945 		}
2946 
2947 		mutex_exit(&itxg->itxg_lock);
2948 
2949 		while (itx != NULL) {
2950 			uint64_t s = zil_itx_full_size(itx);
2951 			zilog->zl_cur_size += s;
2952 			zilog->zl_cur_left += s;
2953 			s = zil_itx_record_size(itx);
2954 			zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2955 			itx = list_next(commit_list, itx);
2956 		}
2957 	}
2958 	return (wtxg);
2959 }
2960 
2961 /*
2962  * Move the async itxs for a specified object to commit into sync lists.
2963  */
2964 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)2965 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2966 {
2967 	uint64_t otxg, txg;
2968 	itx_async_node_t *ian, ian_search;
2969 	avl_tree_t *t;
2970 	avl_index_t where;
2971 
2972 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2973 		otxg = ZILTEST_TXG;
2974 	else
2975 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2976 
2977 	/*
2978 	 * This is inherently racy, since there is nothing to prevent
2979 	 * the last synced txg from changing.
2980 	 */
2981 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2982 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2983 
2984 		mutex_enter(&itxg->itxg_lock);
2985 		if (itxg->itxg_txg != txg) {
2986 			mutex_exit(&itxg->itxg_lock);
2987 			continue;
2988 		}
2989 
2990 		/*
2991 		 * If a foid is specified then find that node and append its
2992 		 * list. Otherwise walk the tree appending all the lists
2993 		 * to the sync list. We add to the end rather than the
2994 		 * beginning to ensure the create has happened.
2995 		 */
2996 		t = &itxg->itxg_itxs->i_async_tree;
2997 		if (foid != 0) {
2998 			ian_search.ia_foid = foid;
2999 			ian = avl_find(t, &ian_search, &where);
3000 			if (ian != NULL) {
3001 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
3002 				    &ian->ia_list);
3003 			}
3004 		} else {
3005 			void *cookie = NULL;
3006 
3007 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
3008 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
3009 				    &ian->ia_list);
3010 				list_destroy(&ian->ia_list);
3011 				kmem_free(ian, sizeof (itx_async_node_t));
3012 			}
3013 		}
3014 		mutex_exit(&itxg->itxg_lock);
3015 	}
3016 }
3017 
3018 /*
3019  * This function will prune commit itxs that are at the head of the
3020  * commit list (it won't prune past the first non-commit itx), and
3021  * either: a) attach them to the last lwb that's still pending
3022  * completion, or b) skip them altogether.
3023  *
3024  * This is used as a performance optimization to prevent commit itxs
3025  * from generating new lwbs when it's unnecessary to do so.
3026  */
3027 static void
zil_prune_commit_list(zilog_t * zilog)3028 zil_prune_commit_list(zilog_t *zilog)
3029 {
3030 	itx_t *itx;
3031 
3032 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3033 
3034 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
3035 		lr_t *lrc = &itx->itx_lr;
3036 		if (lrc->lrc_txtype != TX_COMMIT)
3037 			break;
3038 
3039 		mutex_enter(&zilog->zl_lock);
3040 
3041 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
3042 		if (last_lwb == NULL ||
3043 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
3044 			/*
3045 			 * All of the itxs this waiter was waiting on
3046 			 * must have already completed (or there were
3047 			 * never any itx's for it to wait on), so it's
3048 			 * safe to skip this waiter and mark it done.
3049 			 */
3050 			zil_commit_waiter_done(itx->itx_private, 0);
3051 		} else {
3052 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
3053 		}
3054 
3055 		mutex_exit(&zilog->zl_lock);
3056 
3057 		list_remove(&zilog->zl_itx_commit_list, itx);
3058 		zil_itx_destroy(itx, 0);
3059 	}
3060 
3061 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
3062 }
3063 
3064 static int
zil_commit_writer_stall(zilog_t * zilog)3065 zil_commit_writer_stall(zilog_t *zilog)
3066 {
3067 	/*
3068 	 * When zio_alloc_zil() fails to allocate the next lwb block on
3069 	 * disk, we must call txg_wait_synced() to ensure all of the
3070 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
3071 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
3072 	 * to zil_process_commit_list()) will have to call zil_create(),
3073 	 * and start a new ZIL chain.
3074 	 *
3075 	 * Since zil_alloc_zil() failed, the lwb that was previously
3076 	 * issued does not have a pointer to the "next" lwb on disk.
3077 	 * Thus, if another ZIL writer thread was to allocate the "next"
3078 	 * on-disk lwb, that block could be leaked in the event of a
3079 	 * crash (because the previous lwb on-disk would not point to
3080 	 * it).
3081 	 *
3082 	 * We must hold the zilog's zl_issuer_lock while we do this, to
3083 	 * ensure no new threads enter zil_process_commit_list() until
3084 	 * all lwb's in the zl_lwb_list have been synced and freed
3085 	 * (which is achieved via the txg_wait_synced() call).
3086 	 */
3087 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3088 	ZIL_STAT_BUMP(zilog, zil_commit_stall_count);
3089 
3090 	int err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
3091 	    TXG_WAIT_SUSPEND);
3092 	if (err != 0) {
3093 		ASSERT3U(err, ==, ESHUTDOWN);
3094 		zil_crash(zilog);
3095 	}
3096 
3097 	/*
3098 	 * Either zil_sync() has been called to wait for and clean up any
3099 	 * in-flight LWBs, or zil_crash() has emptied out the list and arranged
3100 	 * for them to be cleaned up later.
3101 	 */
3102 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3103 
3104 	return (err);
3105 }
3106 
3107 static void
zil_burst_done(zilog_t * zilog)3108 zil_burst_done(zilog_t *zilog)
3109 {
3110 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
3111 	    zilog->zl_cur_size == 0)
3112 		return;
3113 
3114 	if (zilog->zl_parallel)
3115 		zilog->zl_parallel--;
3116 
3117 	uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
3118 	zilog->zl_prev_rotor = r;
3119 	zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
3120 	    &zilog->zl_prev_min[r]);
3121 
3122 	zilog->zl_cur_size = 0;
3123 	zilog->zl_cur_max = 0;
3124 	zilog->zl_cur_left = 0;
3125 }
3126 
3127 /*
3128  * This function will traverse the commit list, creating new lwbs as
3129  * needed, and committing the itxs from the commit list to these newly
3130  * created lwbs. Additionally, as a new lwb is created, the previous
3131  * lwb will be issued to the zio layer to be written to disk.
3132  */
3133 static void
zil_process_commit_list(zilog_t * zilog,zil_commit_waiter_t * zcw,list_t * ilwbs)3134 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
3135 {
3136 	spa_t *spa = zilog->zl_spa;
3137 	list_t nolwb_itxs;
3138 	list_t nolwb_waiters;
3139 	lwb_t *lwb, *plwb;
3140 	itx_t *itx;
3141 
3142 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3143 
3144 	lwb = list_tail(&zilog->zl_lwb_list);
3145 	if (lwb == NULL) {
3146 		/*
3147 		 * Return if there's nothing to commit before we dirty the fs.
3148 		 */
3149 		if (list_is_empty(&zilog->zl_itx_commit_list))
3150 			return;
3151 
3152 		lwb = zil_create(zilog);
3153 	} else {
3154 		/*
3155 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
3156 		 * have already been created (zl_lwb_list not empty).
3157 		 */
3158 		zil_commit_activate_saxattr_feature(zilog);
3159 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3160 		    lwb->lwb_state == LWB_STATE_OPENED);
3161 
3162 		/*
3163 		 * If the lwb is still opened, it means the workload is really
3164 		 * multi-threaded and we won the chance of write aggregation.
3165 		 * If it is not opened yet, but previous lwb is still not
3166 		 * flushed, it still means the workload is multi-threaded, but
3167 		 * there was too much time between the commits to aggregate, so
3168 		 * we try aggregation next times, but without too much hopes.
3169 		 */
3170 		if (lwb->lwb_state == LWB_STATE_OPENED) {
3171 			zilog->zl_parallel = ZIL_BURSTS;
3172 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
3173 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
3174 			zilog->zl_parallel = MAX(zilog->zl_parallel,
3175 			    ZIL_BURSTS / 2);
3176 		}
3177 	}
3178 
3179 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3180 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
3181 	    offsetof(zil_commit_waiter_t, zcw_node));
3182 
3183 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
3184 		lr_t *lrc = &itx->itx_lr;
3185 		uint64_t txg = lrc->lrc_txg;
3186 
3187 		ASSERT3U(txg, !=, 0);
3188 
3189 		if (lrc->lrc_txtype == TX_COMMIT) {
3190 			DTRACE_PROBE2(zil__process__commit__itx,
3191 			    zilog_t *, zilog, itx_t *, itx);
3192 		} else {
3193 			DTRACE_PROBE2(zil__process__normal__itx,
3194 			    zilog_t *, zilog, itx_t *, itx);
3195 		}
3196 
3197 		boolean_t synced = txg <= spa_last_synced_txg(spa);
3198 		boolean_t frozen = txg > spa_freeze_txg(spa);
3199 
3200 		/*
3201 		 * If the txg of this itx has already been synced out, then
3202 		 * we don't need to commit this itx to an lwb. This is
3203 		 * because the data of this itx will have already been
3204 		 * written to the main pool. This is inherently racy, and
3205 		 * it's still ok to commit an itx whose txg has already
3206 		 * been synced; this will result in a write that's
3207 		 * unnecessary, but will do no harm.
3208 		 *
3209 		 * With that said, we always want to commit TX_COMMIT itxs
3210 		 * to an lwb, regardless of whether or not that itx's txg
3211 		 * has been synced out. We do this to ensure any OPENED lwb
3212 		 * will always have at least one zil_commit_waiter_t linked
3213 		 * to the lwb.
3214 		 *
3215 		 * As a counter-example, if we skipped TX_COMMIT itx's
3216 		 * whose txg had already been synced, the following
3217 		 * situation could occur if we happened to be racing with
3218 		 * spa_sync:
3219 		 *
3220 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
3221 		 *    itx's txg is 10 and the last synced txg is 9.
3222 		 * 2. spa_sync finishes syncing out txg 10.
3223 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
3224 		 *    whose txg is 10, so we skip it rather than committing
3225 		 *    it to the lwb used in (1).
3226 		 *
3227 		 * If the itx that is skipped in (3) is the last TX_COMMIT
3228 		 * itx in the commit list, than it's possible for the lwb
3229 		 * used in (1) to remain in the OPENED state indefinitely.
3230 		 *
3231 		 * To prevent the above scenario from occurring, ensuring
3232 		 * that once an lwb is OPENED it will transition to ISSUED
3233 		 * and eventually DONE, we always commit TX_COMMIT itx's to
3234 		 * an lwb here, even if that itx's txg has already been
3235 		 * synced.
3236 		 *
3237 		 * Finally, if the pool is frozen, we _always_ commit the
3238 		 * itx.  The point of freezing the pool is to prevent data
3239 		 * from being written to the main pool via spa_sync, and
3240 		 * instead rely solely on the ZIL to persistently store the
3241 		 * data; i.e.  when the pool is frozen, the last synced txg
3242 		 * value can't be trusted.
3243 		 */
3244 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
3245 			if (lwb != NULL) {
3246 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
3247 				if (lwb == NULL) {
3248 					list_insert_tail(&nolwb_itxs, itx);
3249 				} else if ((zcw->zcw_lwb != NULL &&
3250 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
3251 					/*
3252 					 * Our lwb is done, leave the rest of
3253 					 * itx list to somebody else who care.
3254 					 */
3255 					zilog->zl_parallel = ZIL_BURSTS;
3256 					zilog->zl_cur_left -=
3257 					    zil_itx_full_size(itx);
3258 					break;
3259 				}
3260 			} else {
3261 				if (lrc->lrc_txtype == TX_COMMIT) {
3262 					zil_commit_waiter_link_nolwb(
3263 					    itx->itx_private, &nolwb_waiters);
3264 				}
3265 				list_insert_tail(&nolwb_itxs, itx);
3266 			}
3267 			zilog->zl_cur_left -= zil_itx_full_size(itx);
3268 		} else {
3269 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
3270 			zilog->zl_cur_left -= zil_itx_full_size(itx);
3271 			zil_itx_destroy(itx, 0);
3272 		}
3273 	}
3274 
3275 	if (lwb == NULL) {
3276 		/*
3277 		 * This indicates zio_alloc_zil() failed to allocate the
3278 		 * "next" lwb on-disk. When this happens, we must stall
3279 		 * the ZIL write pipeline; see the comment within
3280 		 * zil_commit_writer_stall() for more details.
3281 		 *
3282 		 * ESHUTDOWN has to be handled carefully here. If we get it,
3283 		 * then the pool suspended and zil_crash() was called, so we
3284 		 * need to stop trying and just get an error back to the
3285 		 * callers.
3286 		 */
3287 		int err = 0;
3288 		while ((lwb = list_remove_head(ilwbs)) != NULL) {
3289 			if (err == 0)
3290 				err = zil_lwb_write_issue(zilog, lwb);
3291 		}
3292 		if (err != ESHUTDOWN)
3293 			err = zil_commit_writer_stall(zilog);
3294 		if (err == ESHUTDOWN)
3295 			err = SET_ERROR(EIO);
3296 
3297 		/*
3298 		 * Additionally, we have to signal and mark the "nolwb"
3299 		 * waiters as "done" here, since without an lwb, we
3300 		 * can't do this via zil_lwb_flush_vdevs_done() like
3301 		 * normal.
3302 		 */
3303 		zil_commit_waiter_t *zcw;
3304 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3305 			zil_commit_waiter_done(zcw, err);
3306 
3307 		/*
3308 		 * And finally, we have to destroy the itx's that
3309 		 * couldn't be committed to an lwb; this will also call
3310 		 * the itx's callback if one exists for the itx.
3311 		 */
3312 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3313 			zil_itx_destroy(itx, err);
3314 	} else {
3315 		ASSERT(list_is_empty(&nolwb_waiters));
3316 		ASSERT3P(lwb, !=, NULL);
3317 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3318 		    lwb->lwb_state == LWB_STATE_OPENED);
3319 
3320 		/*
3321 		 * At this point, the ZIL block pointed at by the "lwb"
3322 		 * variable is in "new" or "opened" state.
3323 		 *
3324 		 * If it's "new", then no itxs have been committed to it, so
3325 		 * there's no point in issuing its zio (i.e. it's "empty").
3326 		 *
3327 		 * If it's "opened", then it contains one or more itxs that
3328 		 * eventually need to be committed to stable storage. In
3329 		 * this case we intentionally do not issue the lwb's zio
3330 		 * to disk yet, and instead rely on one of the following
3331 		 * two mechanisms for issuing the zio:
3332 		 *
3333 		 * 1. Ideally, there will be more ZIL activity occurring on
3334 		 * the system, such that this function will be immediately
3335 		 * called again by different thread and this lwb will be
3336 		 * closed by zil_lwb_assign().  This way, the lwb will be
3337 		 * "full" when it is issued to disk, and we'll make use of
3338 		 * the lwb's size the best we can.
3339 		 *
3340 		 * 2. If there isn't sufficient ZIL activity occurring on
3341 		 * the system, zil_commit_waiter() will close it and issue
3342 		 * the zio.  If this occurs, the lwb is not guaranteed
3343 		 * to be "full" by the time its zio is issued, and means
3344 		 * the size of the lwb was "too large" given the amount
3345 		 * of ZIL activity occurring on the system at that time.
3346 		 *
3347 		 * We do this for a couple of reasons:
3348 		 *
3349 		 * 1. To try and reduce the number of IOPs needed to
3350 		 * write the same number of itxs. If an lwb has space
3351 		 * available in its buffer for more itxs, and more itxs
3352 		 * will be committed relatively soon (relative to the
3353 		 * latency of performing a write), then it's beneficial
3354 		 * to wait for these "next" itxs. This way, more itxs
3355 		 * can be committed to stable storage with fewer writes.
3356 		 *
3357 		 * 2. To try and use the largest lwb block size that the
3358 		 * incoming rate of itxs can support. Again, this is to
3359 		 * try and pack as many itxs into as few lwbs as
3360 		 * possible, without significantly impacting the latency
3361 		 * of each individual itx.
3362 		 */
3363 		if (lwb->lwb_state == LWB_STATE_OPENED &&
3364 		    (!zilog->zl_parallel || zilog->zl_suspend > 0)) {
3365 			zil_burst_done(zilog);
3366 			list_insert_tail(ilwbs, lwb);
3367 			lwb = zil_lwb_write_close(zilog, lwb);
3368 			if (lwb == NULL) {
3369 				int err = 0;
3370 				while ((lwb =
3371 				    list_remove_head(ilwbs)) != NULL) {
3372 					if (err == 0)
3373 						err = zil_lwb_write_issue(
3374 						    zilog, lwb);
3375 				}
3376 				if (err != ESHUTDOWN)
3377 					(void) zil_commit_writer_stall(zilog);
3378 			}
3379 		}
3380 	}
3381 }
3382 
3383 /*
3384  * This function is responsible for ensuring the passed in commit waiter
3385  * (and associated commit itx) is committed to an lwb. If the waiter is
3386  * not already committed to an lwb, all itxs in the zilog's queue of
3387  * itxs will be processed. The assumption is the passed in waiter's
3388  * commit itx will found in the queue just like the other non-commit
3389  * itxs, such that when the entire queue is processed, the waiter will
3390  * have been committed to an lwb.
3391  *
3392  * The lwb associated with the passed in waiter is not guaranteed to
3393  * have been issued by the time this function completes. If the lwb is
3394  * not issued, we rely on future calls to zil_commit_writer() to issue
3395  * the lwb, or the timeout mechanism found in zil_commit_waiter().
3396  */
3397 static uint64_t
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)3398 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3399 {
3400 	list_t ilwbs;
3401 	lwb_t *lwb;
3402 	uint64_t wtxg = 0;
3403 
3404 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3405 	ASSERT(spa_writeable(zilog->zl_spa));
3406 
3407 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3408 	mutex_enter(&zilog->zl_issuer_lock);
3409 
3410 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3411 		/*
3412 		 * It's possible that, while we were waiting to acquire
3413 		 * the "zl_issuer_lock", another thread committed this
3414 		 * waiter to an lwb. If that occurs, we bail out early,
3415 		 * without processing any of the zilog's queue of itxs.
3416 		 *
3417 		 * On certain workloads and system configurations, the
3418 		 * "zl_issuer_lock" can become highly contended. In an
3419 		 * attempt to reduce this contention, we immediately drop
3420 		 * the lock if the waiter has already been processed.
3421 		 *
3422 		 * We've measured this optimization to reduce CPU spent
3423 		 * contending on this lock by up to 5%, using a system
3424 		 * with 32 CPUs, low latency storage (~50 usec writes),
3425 		 * and 1024 threads performing sync writes.
3426 		 */
3427 		goto out;
3428 	}
3429 
3430 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3431 
3432 	wtxg = zil_get_commit_list(zilog);
3433 	zil_prune_commit_list(zilog);
3434 	zil_process_commit_list(zilog, zcw, &ilwbs);
3435 
3436 	/*
3437 	 * If the ZIL failed somewhere inside zil_process_commit_list(), it's
3438 	 * will be because a fallback to txg_wait_sync_flags() happened at some
3439 	 * point (eg zil_commit_writer_stall()). All cases should issue and
3440 	 * empty ilwbs, so there will be nothing to in the issue loop below.
3441 	 * That's why we don't have to plumb the error value back from
3442 	 * zil_process_commit_list(), and don't have to skip it.
3443 	 */
3444 	IMPLY(zilog->zl_restart_txg > 0, list_is_empty(&ilwbs));
3445 
3446 out:
3447 	mutex_exit(&zilog->zl_issuer_lock);
3448 	int err = 0;
3449 	while ((lwb = list_remove_head(&ilwbs)) != NULL) {
3450 		if (err == 0)
3451 			err = zil_lwb_write_issue(zilog, lwb);
3452 	}
3453 	list_destroy(&ilwbs);
3454 	return (wtxg);
3455 }
3456 
3457 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)3458 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3459 {
3460 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3461 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3462 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3463 
3464 	lwb_t *lwb = zcw->zcw_lwb;
3465 	ASSERT3P(lwb, !=, NULL);
3466 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3467 
3468 	/*
3469 	 * If the lwb has already been issued by another thread, we can
3470 	 * immediately return since there's no work to be done (the
3471 	 * point of this function is to issue the lwb). Additionally, we
3472 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3473 	 * acquiring it when it's not necessary to do so.
3474 	 */
3475 	if (lwb->lwb_state != LWB_STATE_OPENED)
3476 		return;
3477 
3478 	/*
3479 	 * In order to call zil_lwb_write_close() we must hold the
3480 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3481 	 * since we're already holding the commit waiter's "zcw_lock",
3482 	 * and those two locks are acquired in the opposite order
3483 	 * elsewhere.
3484 	 */
3485 	mutex_exit(&zcw->zcw_lock);
3486 	mutex_enter(&zilog->zl_issuer_lock);
3487 	mutex_enter(&zcw->zcw_lock);
3488 
3489 	/*
3490 	 * Since we just dropped and re-acquired the commit waiter's
3491 	 * lock, we have to re-check to see if the waiter was marked
3492 	 * "done" during that process. If the waiter was marked "done",
3493 	 * the "lwb" pointer is no longer valid (it can be free'd after
3494 	 * the waiter is marked "done"), so without this check we could
3495 	 * wind up with a use-after-free error below.
3496 	 */
3497 	if (zcw->zcw_done) {
3498 		mutex_exit(&zilog->zl_issuer_lock);
3499 		return;
3500 	}
3501 
3502 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3503 
3504 	/*
3505 	 * We've already checked this above, but since we hadn't acquired
3506 	 * the zilog's zl_issuer_lock, we have to perform this check a
3507 	 * second time while holding the lock.
3508 	 *
3509 	 * We don't need to hold the zl_lock since the lwb cannot transition
3510 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3511 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3512 	 * that transition since we treat the lwb the same, whether it's in
3513 	 * the CLOSED, ISSUED or DONE states.
3514 	 *
3515 	 * The important thing, is we treat the lwb differently depending on
3516 	 * if it's OPENED or CLOSED, and block any other threads that might
3517 	 * attempt to close/issue this lwb. For that reason we hold the
3518 	 * zl_issuer_lock when checking the lwb_state; we must not call
3519 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3520 	 *
3521 	 * See the comment above the lwb_state_t structure definition for
3522 	 * more details on the lwb states, and locking requirements.
3523 	 */
3524 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3525 		mutex_exit(&zilog->zl_issuer_lock);
3526 		return;
3527 	}
3528 
3529 	/*
3530 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3531 	 * is still open.  But we have to drop it to avoid a deadlock in case
3532 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3533 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3534 	 * lwb it found in LWB_STATE_READY state.
3535 	 */
3536 	mutex_exit(&zcw->zcw_lock);
3537 
3538 	/*
3539 	 * As described in the comments above zil_commit_waiter() and
3540 	 * zil_process_commit_list(), we need to issue this lwb's zio
3541 	 * since we've reached the commit waiter's timeout and it still
3542 	 * hasn't been issued.
3543 	 */
3544 	zil_burst_done(zilog);
3545 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb);
3546 
3547 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3548 
3549 	if (nlwb == NULL) {
3550 		/*
3551 		 * When zil_lwb_write_close() returns NULL, this
3552 		 * indicates zio_alloc_zil() failed to allocate the
3553 		 * "next" lwb on-disk. When this occurs, the ZIL write
3554 		 * pipeline must be stalled; see the comment within the
3555 		 * zil_commit_writer_stall() function for more details.
3556 		 */
3557 		zil_lwb_write_issue(zilog, lwb);
3558 		zil_commit_writer_stall(zilog);
3559 		mutex_exit(&zilog->zl_issuer_lock);
3560 	} else {
3561 		mutex_exit(&zilog->zl_issuer_lock);
3562 		zil_lwb_write_issue(zilog, lwb);
3563 	}
3564 	mutex_enter(&zcw->zcw_lock);
3565 }
3566 
3567 /*
3568  * This function is responsible for performing the following two tasks:
3569  *
3570  * 1. its primary responsibility is to block until the given "commit
3571  *    waiter" is considered "done".
3572  *
3573  * 2. its secondary responsibility is to issue the zio for the lwb that
3574  *    the given "commit waiter" is waiting on, if this function has
3575  *    waited "long enough" and the lwb is still in the "open" state.
3576  *
3577  * Given a sufficient amount of itxs being generated and written using
3578  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3579  * function. If this does not occur, this secondary responsibility will
3580  * ensure the lwb is issued even if there is not other synchronous
3581  * activity on the system.
3582  *
3583  * For more details, see zil_process_commit_list(); more specifically,
3584  * the comment at the bottom of that function.
3585  */
3586 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)3587 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3588 {
3589 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3590 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3591 	ASSERT(spa_writeable(zilog->zl_spa));
3592 
3593 	mutex_enter(&zcw->zcw_lock);
3594 
3595 	/*
3596 	 * The timeout is scaled based on the lwb latency to avoid
3597 	 * significantly impacting the latency of each individual itx.
3598 	 * For more details, see the comment at the bottom of the
3599 	 * zil_process_commit_list() function.
3600 	 */
3601 	int pct = MAX(zfs_commit_timeout_pct, 1);
3602 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3603 	hrtime_t wakeup = gethrtime() + sleep;
3604 	boolean_t timedout = B_FALSE;
3605 
3606 	while (!zcw->zcw_done) {
3607 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3608 
3609 		lwb_t *lwb = zcw->zcw_lwb;
3610 
3611 		/*
3612 		 * Usually, the waiter will have a non-NULL lwb field here,
3613 		 * but it's possible for it to be NULL as a result of
3614 		 * zil_commit() racing with spa_sync().
3615 		 *
3616 		 * When zil_clean() is called, it's possible for the itxg
3617 		 * list (which may be cleaned via a taskq) to contain
3618 		 * commit itxs. When this occurs, the commit waiters linked
3619 		 * off of these commit itxs will not be committed to an
3620 		 * lwb.  Additionally, these commit waiters will not be
3621 		 * marked done until zil_commit_waiter_done() is called via
3622 		 * zil_itxg_clean().
3623 		 *
3624 		 * Thus, it's possible for this commit waiter (i.e. the
3625 		 * "zcw" variable) to be found in this "in between" state;
3626 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3627 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3628 		 */
3629 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3630 
3631 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3632 			ASSERT3B(timedout, ==, B_FALSE);
3633 
3634 			/*
3635 			 * If the lwb hasn't been issued yet, then we
3636 			 * need to wait with a timeout, in case this
3637 			 * function needs to issue the lwb after the
3638 			 * timeout is reached; responsibility (2) from
3639 			 * the comment above this function.
3640 			 */
3641 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3642 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3643 			    CALLOUT_FLAG_ABSOLUTE);
3644 
3645 			if (rc != -1 || zcw->zcw_done)
3646 				continue;
3647 
3648 			timedout = B_TRUE;
3649 			zil_commit_waiter_timeout(zilog, zcw);
3650 
3651 			if (!zcw->zcw_done) {
3652 				/*
3653 				 * If the commit waiter has already been
3654 				 * marked "done", it's possible for the
3655 				 * waiter's lwb structure to have already
3656 				 * been freed.  Thus, we can only reliably
3657 				 * make these assertions if the waiter
3658 				 * isn't done.
3659 				 */
3660 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3661 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3662 			}
3663 		} else {
3664 			/*
3665 			 * If the lwb isn't open, then it must have already
3666 			 * been issued. In that case, there's no need to
3667 			 * use a timeout when waiting for the lwb to
3668 			 * complete.
3669 			 *
3670 			 * Additionally, if the lwb is NULL, the waiter
3671 			 * will soon be signaled and marked done via
3672 			 * zil_clean() and zil_itxg_clean(), so no timeout
3673 			 * is required.
3674 			 */
3675 
3676 			IMPLY(lwb != NULL,
3677 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3678 			    lwb->lwb_state == LWB_STATE_READY ||
3679 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3680 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3681 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3682 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3683 		}
3684 	}
3685 
3686 	mutex_exit(&zcw->zcw_lock);
3687 }
3688 
3689 static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)3690 zil_alloc_commit_waiter(void)
3691 {
3692 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3693 
3694 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3695 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3696 	list_link_init(&zcw->zcw_node);
3697 	zcw->zcw_lwb = NULL;
3698 	zcw->zcw_done = B_FALSE;
3699 	zcw->zcw_error = 0;
3700 
3701 	return (zcw);
3702 }
3703 
3704 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)3705 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3706 {
3707 	ASSERT(!list_link_active(&zcw->zcw_node));
3708 	ASSERT0P(zcw->zcw_lwb);
3709 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3710 	mutex_destroy(&zcw->zcw_lock);
3711 	cv_destroy(&zcw->zcw_cv);
3712 	kmem_cache_free(zil_zcw_cache, zcw);
3713 }
3714 
3715 /*
3716  * This function is used to create a TX_COMMIT itx and assign it. This
3717  * way, it will be linked into the ZIL's list of synchronous itxs, and
3718  * then later committed to an lwb (or skipped) when
3719  * zil_process_commit_list() is called.
3720  */
3721 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)3722 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3723 {
3724 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3725 
3726 	/*
3727 	 * Since we are not going to create any new dirty data, and we
3728 	 * can even help with clearing the existing dirty data, we
3729 	 * should not be subject to the dirty data based delays. We
3730 	 * use DMU_TX_NOTHROTTLE to bypass the delay mechanism.
3731 	 */
3732 	VERIFY0(dmu_tx_assign(tx,
3733 	    DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
3734 
3735 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3736 	itx->itx_sync = B_TRUE;
3737 	itx->itx_private = zcw;
3738 
3739 	zil_itx_assign(zilog, itx, tx);
3740 
3741 	dmu_tx_commit(tx);
3742 }
3743 
3744 /*
3745  * Crash the ZIL. This is something like suspending, but abandons the ZIL
3746  * without further IO until the wanted txg completes. No effort is made to
3747  * close the on-disk chain or do any other on-disk work, as the pool may
3748  * have suspended. zil_sync() will handle cleanup as normal and restart the
3749  * ZIL once enough txgs have passed.
3750  */
3751 static void
zil_crash(zilog_t * zilog)3752 zil_crash(zilog_t *zilog)
3753 {
3754 	mutex_enter(&zilog->zl_lock);
3755 
3756 	uint64_t txg = spa_syncing_txg(zilog->zl_spa);
3757 	uint64_t restart_txg =
3758 	    spa_syncing_txg(zilog->zl_spa) + TXG_CONCURRENT_STATES;
3759 
3760 	if (zilog->zl_restart_txg > 0) {
3761 		/*
3762 		 * If the ZIL is already crashed, it's almost certainly because
3763 		 * we lost a race involving multiple callers from
3764 		 * zil_commit_impl().
3765 		 */
3766 
3767 		/*
3768 		 * This sanity check is to support my understanding that in the
3769 		 * event of multiple callers to zil_crash(), only one of them
3770 		 * can possibly be in the codepath to issue lwbs; the rest
3771 		 * should be calling from zil_commit_impl() after their waiters
3772 		 * have completed. As I understand it, a second thread trying
3773 		 * to issue will eventually wait on zl_issuer_lock, and then
3774 		 * have no work to do and leave.
3775 		 *
3776 		 * If more lwbs had been created an issued between zil_crash()
3777 		 * calls, then we probably just need to take those too, add
3778 		 * them to the crash list and clean them up, but it complicates
3779 		 * this function and I don't think it can happend.
3780 		 */
3781 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3782 
3783 		mutex_exit(&zilog->zl_lock);
3784 		return;
3785 	}
3786 
3787 	zilog->zl_restart_txg = restart_txg;
3788 
3789 	/*
3790 	 * Capture any live LWBs. Depending on the state of the pool they may
3791 	 * represent in-flight IO that won't return for some time, and we want
3792 	 * to make sure they don't get in the way of normal ZIL operation.
3793 	 */
3794 	ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
3795 	list_move_tail(&zilog->zl_lwb_crash_list, &zilog->zl_lwb_list);
3796 
3797 	/*
3798 	 * Run through the LWB list; erroring all itxes and signalling error
3799 	 * to all waiters.
3800 	 */
3801 	for (lwb_t *lwb = list_head(&zilog->zl_lwb_crash_list); lwb != NULL;
3802 	    lwb = list_next(&zilog->zl_lwb_crash_list, lwb)) {
3803 		ASSERT(!(lwb->lwb_flags & LWB_FLAG_CRASHED));
3804 		lwb->lwb_flags |= LWB_FLAG_CRASHED;
3805 
3806 		itx_t *itx;
3807 		while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
3808 			zil_itx_destroy(itx, EIO);
3809 
3810 		zil_commit_waiter_t *zcw;
3811 		while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
3812 			mutex_enter(&zcw->zcw_lock);
3813 			zcw->zcw_lwb = NULL;
3814 			zcw->zcw_error = EIO;
3815 			zcw->zcw_done = B_TRUE;
3816 			cv_broadcast(&zcw->zcw_cv);
3817 			mutex_exit(&zcw->zcw_lock);
3818 		}
3819 	}
3820 
3821 	/*
3822 	 * Zero the ZIL header bp after the ZIL restarts. We'll free it in
3823 	 * zil_clean() when we clean up the lwbs.
3824 	 */
3825 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3826 	BP_ZERO(&zh->zh_log);
3827 
3828 	/*
3829 	 * Mark this ZIL dirty on the next txg, so that zil_clean() will be
3830 	 * called for cleanup.
3831 	 */
3832 	zilog_dirty(zilog, txg+1);
3833 
3834 	mutex_exit(&zilog->zl_lock);
3835 }
3836 
3837 /*
3838  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3839  *
3840  * When writing ZIL transactions to the on-disk representation of the
3841  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3842  * itxs can be committed to a single lwb. Once a lwb is written and
3843  * committed to stable storage (i.e. the lwb is written, and vdevs have
3844  * been flushed), each itx that was committed to that lwb is also
3845  * considered to be committed to stable storage.
3846  *
3847  * When an itx is committed to an lwb, the log record (lr_t) contained
3848  * by the itx is copied into the lwb's zio buffer, and once this buffer
3849  * is written to disk, it becomes an on-disk ZIL block.
3850  *
3851  * As itxs are generated, they're inserted into the ZIL's queue of
3852  * uncommitted itxs. The semantics of zil_commit() are such that it will
3853  * block until all itxs that were in the queue when it was called, are
3854  * committed to stable storage.
3855  *
3856  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3857  * itxs, for all objects in the dataset, will be committed to stable
3858  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3859  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3860  * that correspond to the foid passed in, will be committed to stable
3861  * storage prior to zil_commit() returning.
3862  *
3863  * Generally speaking, when zil_commit() is called, the consumer doesn't
3864  * actually care about _all_ of the uncommitted itxs. Instead, they're
3865  * simply trying to waiting for a specific itx to be committed to disk,
3866  * but the interface(s) for interacting with the ZIL don't allow such
3867  * fine-grained communication. A better interface would allow a consumer
3868  * to create and assign an itx, and then pass a reference to this itx to
3869  * zil_commit(); such that zil_commit() would return as soon as that
3870  * specific itx was committed to disk (instead of waiting for _all_
3871  * itxs to be committed).
3872  *
3873  * When a thread calls zil_commit() a special "commit itx" will be
3874  * generated, along with a corresponding "waiter" for this commit itx.
3875  * zil_commit() will wait on this waiter's CV, such that when the waiter
3876  * is marked done, and signaled, zil_commit() will return.
3877  *
3878  * This commit itx is inserted into the queue of uncommitted itxs. This
3879  * provides an easy mechanism for determining which itxs were in the
3880  * queue prior to zil_commit() having been called, and which itxs were
3881  * added after zil_commit() was called.
3882  *
3883  * The commit itx is special; it doesn't have any on-disk representation.
3884  * When a commit itx is "committed" to an lwb, the waiter associated
3885  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3886  * completes, each waiter on the lwb's list is marked done and signaled
3887  * -- allowing the thread waiting on the waiter to return from zil_commit().
3888  *
3889  * It's important to point out a few critical factors that allow us
3890  * to make use of the commit itxs, commit waiters, per-lwb lists of
3891  * commit waiters, and zio completion callbacks like we're doing:
3892  *
3893  *   1. The list of waiters for each lwb is traversed, and each commit
3894  *      waiter is marked "done" and signaled, in the zio completion
3895  *      callback of the lwb's zio[*].
3896  *
3897  *      * Actually, the waiters are signaled in the zio completion
3898  *        callback of the root zio for the flush commands that are sent to
3899  *        the vdevs upon completion of the lwb zio.
3900  *
3901  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3902  *      itxs, the order in which they are inserted is preserved[*]; as
3903  *      itxs are added to the queue, they are added to the tail of
3904  *      in-memory linked lists.
3905  *
3906  *      When committing the itxs to lwbs (to be written to disk), they
3907  *      are committed in the same order in which the itxs were added to
3908  *      the uncommitted queue's linked list(s); i.e. the linked list of
3909  *      itxs to commit is traversed from head to tail, and each itx is
3910  *      committed to an lwb in that order.
3911  *
3912  *      * To clarify:
3913  *
3914  *        - the order of "sync" itxs is preserved w.r.t. other
3915  *          "sync" itxs, regardless of the corresponding objects.
3916  *        - the order of "async" itxs is preserved w.r.t. other
3917  *          "async" itxs corresponding to the same object.
3918  *        - the order of "async" itxs is *not* preserved w.r.t. other
3919  *          "async" itxs corresponding to different objects.
3920  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3921  *          versa) is *not* preserved, even for itxs that correspond
3922  *          to the same object.
3923  *
3924  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3925  *      zil_get_commit_list(), and zil_process_commit_list().
3926  *
3927  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3928  *      lwb cannot be considered committed to stable storage, until its
3929  *      "previous" lwb is also committed to stable storage. This fact,
3930  *      coupled with the fact described above, means that itxs are
3931  *      committed in (roughly) the order in which they were generated.
3932  *      This is essential because itxs are dependent on prior itxs.
3933  *      Thus, we *must not* deem an itx as being committed to stable
3934  *      storage, until *all* prior itxs have also been committed to
3935  *      stable storage.
3936  *
3937  *      To enforce this ordering of lwb zio's, while still leveraging as
3938  *      much of the underlying storage performance as possible, we rely
3939  *      on two fundamental concepts:
3940  *
3941  *          1. The creation and issuance of lwb zio's is protected by
3942  *             the zilog's "zl_issuer_lock", which ensures only a single
3943  *             thread is creating and/or issuing lwb's at a time
3944  *          2. The "previous" lwb is a child of the "current" lwb
3945  *             (leveraging the zio parent-child dependency graph)
3946  *
3947  *      By relying on this parent-child zio relationship, we can have
3948  *      many lwb zio's concurrently issued to the underlying storage,
3949  *      but the order in which they complete will be the same order in
3950  *      which they were created.
3951  */
3952 static int zil_commit_impl(zilog_t *zilog, uint64_t foid);
3953 
3954 int
zil_commit(zilog_t * zilog,uint64_t foid)3955 zil_commit(zilog_t *zilog, uint64_t foid)
3956 {
3957 	return (zil_commit_flags(zilog, foid, ZIL_COMMIT_FAILMODE));
3958 }
3959 
3960 int
zil_commit_flags(zilog_t * zilog,uint64_t foid,zil_commit_flag_t flags)3961 zil_commit_flags(zilog_t *zilog, uint64_t foid, zil_commit_flag_t flags)
3962 {
3963 	/*
3964 	 * We should never attempt to call zil_commit on a snapshot for
3965 	 * a couple of reasons:
3966 	 *
3967 	 * 1. A snapshot may never be modified, thus it cannot have any
3968 	 *    in-flight itxs that would have modified the dataset.
3969 	 *
3970 	 * 2. By design, when zil_commit() is called, a commit itx will
3971 	 *    be assigned to this zilog; as a result, the zilog will be
3972 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3973 	 *    checks in the code that enforce this invariant, and will
3974 	 *    cause a panic if it's not upheld.
3975 	 */
3976 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3977 
3978 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3979 		return (0);
3980 
3981 	if (!spa_writeable(zilog->zl_spa)) {
3982 		/*
3983 		 * If the SPA is not writable, there should never be any
3984 		 * pending itxs waiting to be committed to disk. If that
3985 		 * weren't true, we'd skip writing those itxs out, and
3986 		 * would break the semantics of zil_commit(); thus, we're
3987 		 * verifying that truth before we return to the caller.
3988 		 */
3989 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3990 		ASSERT0P(zilog->zl_last_lwb_opened);
3991 		for (int i = 0; i < TXG_SIZE; i++)
3992 			ASSERT0P(zilog->zl_itxg[i].itxg_itxs);
3993 		return (0);
3994 	}
3995 
3996 	int err = 0;
3997 
3998 	/*
3999 	 * If the ZIL crashed, bypass it entirely, and rely on txg_wait_sync()
4000 	 * to get the data out to disk.
4001 	 */
4002 	if (zilog->zl_restart_txg > 0) {
4003 		ZIL_STAT_BUMP(zilog, zil_commit_crash_count);
4004 		err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4005 		    TXG_WAIT_SUSPEND);
4006 		goto out;
4007 	}
4008 
4009 	/*
4010 	 * If the ZIL is suspended, we don't want to dirty it by calling
4011 	 * zil_commit_itx_assign() below, nor can we write out
4012 	 * lwbs like would be done in zil_commit_write(). Thus, we
4013 	 * simply rely on txg_wait_synced() to maintain the necessary
4014 	 * semantics, and avoid calling those functions altogether.
4015 	 */
4016 	if (zilog->zl_suspend > 0) {
4017 		ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
4018 		err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4019 		    TXG_WAIT_SUSPEND);
4020 		if (err != 0) {
4021 			ASSERT3U(err, ==, ESHUTDOWN);
4022 			zil_crash(zilog);
4023 		}
4024 		goto out;
4025 	}
4026 
4027 	err = zil_commit_impl(zilog, foid);
4028 
4029 out:
4030 	if (err == 0)
4031 		return (0);
4032 
4033 	/*
4034 	 * The ZIL write failed and the pool is suspended. There's nothing else
4035 	 * we can do except return or block.
4036 	 */
4037 	ASSERT3U(err, ==, ESHUTDOWN);
4038 
4039 	/*
4040 	 * Return error if failmode=continue or caller will handle directly.
4041 	 */
4042 	if (!(flags & ZIL_COMMIT_FAILMODE) ||
4043 	    spa_get_failmode(zilog->zl_spa) == ZIO_FAILURE_MODE_CONTINUE)
4044 		return (SET_ERROR(EIO));
4045 
4046 	/*
4047 	 * Block until the pool returns. We assume that the data will make
4048 	 * it out to disk in the end, and so return success.
4049 	 */
4050 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4051 	return (0);
4052 }
4053 
4054 static int
zil_commit_impl(zilog_t * zilog,uint64_t foid)4055 zil_commit_impl(zilog_t *zilog, uint64_t foid)
4056 {
4057 	ZIL_STAT_BUMP(zilog, zil_commit_count);
4058 
4059 	/*
4060 	 * Move the "async" itxs for the specified foid to the "sync"
4061 	 * queues, such that they will be later committed (or skipped)
4062 	 * to an lwb when zil_process_commit_list() is called.
4063 	 *
4064 	 * Since these "async" itxs must be committed prior to this
4065 	 * call to zil_commit returning, we must perform this operation
4066 	 * before we call zil_commit_itx_assign().
4067 	 */
4068 	zil_async_to_sync(zilog, foid);
4069 
4070 	/*
4071 	 * We allocate a new "waiter" structure which will initially be
4072 	 * linked to the commit itx using the itx's "itx_private" field.
4073 	 * Since the commit itx doesn't represent any on-disk state,
4074 	 * when it's committed to an lwb, rather than copying the its
4075 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
4076 	 * added to the lwb's list of waiters. Then, when the lwb is
4077 	 * committed to stable storage, each waiter in the lwb's list of
4078 	 * waiters will be marked "done", and signalled.
4079 	 *
4080 	 * We must create the waiter and assign the commit itx prior to
4081 	 * calling zil_commit_writer(), or else our specific commit itx
4082 	 * is not guaranteed to be committed to an lwb prior to calling
4083 	 * zil_commit_waiter().
4084 	 */
4085 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
4086 	zil_commit_itx_assign(zilog, zcw);
4087 
4088 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
4089 	zil_commit_waiter(zilog, zcw);
4090 
4091 	int err = 0;
4092 	if (zcw->zcw_error != 0) {
4093 		/*
4094 		 * If there was an error writing out the ZIL blocks that
4095 		 * this thread is waiting on, then we fallback to
4096 		 * relying on spa_sync() to write out the data this
4097 		 * thread is waiting on. Obviously this has performance
4098 		 * implications, but the expectation is for this to be
4099 		 * an exceptional case, and shouldn't occur often.
4100 		 */
4101 		ZIL_STAT_BUMP(zilog, zil_commit_error_count);
4102 		DTRACE_PROBE2(zil__commit__io__error,
4103 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
4104 		err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4105 		    TXG_WAIT_SUSPEND);
4106 	} else if (wtxg != 0) {
4107 		ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
4108 		err = txg_wait_synced_flags(zilog->zl_dmu_pool, wtxg,
4109 		    TXG_WAIT_SUSPEND);
4110 	}
4111 
4112 	zil_free_commit_waiter(zcw);
4113 
4114 	if (err == 0)
4115 		return (0);
4116 
4117 	/*
4118 	 * ZIL write failed and pool failed in the fallback to
4119 	 * txg_wait_synced_flags(). Right now we have no idea if the data is on
4120 	 * disk and the pool is probably suspended so we have no idea when it's
4121 	 * coming back. All we can do is shut down and return error to the
4122 	 * caller.
4123 	 */
4124 	ASSERT3U(err, ==, ESHUTDOWN);
4125 	zil_crash(zilog);
4126 	return (err);
4127 }
4128 
4129 /*
4130  * Called in syncing context to free committed log blocks and update log header.
4131  */
4132 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)4133 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
4134 {
4135 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
4136 	uint64_t txg = dmu_tx_get_txg(tx);
4137 	spa_t *spa = zilog->zl_spa;
4138 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
4139 	lwb_t *lwb;
4140 
4141 	/*
4142 	 * We don't zero out zl_destroy_txg, so make sure we don't try
4143 	 * to destroy it twice.
4144 	 */
4145 	if (spa_sync_pass(spa) != 1)
4146 		return;
4147 
4148 	zil_lwb_flush_wait_all(zilog, txg);
4149 
4150 	mutex_enter(&zilog->zl_lock);
4151 
4152 	ASSERT0(zilog->zl_stop_sync);
4153 
4154 	if (*replayed_seq != 0) {
4155 		ASSERT(zh->zh_replay_seq < *replayed_seq);
4156 		zh->zh_replay_seq = *replayed_seq;
4157 		*replayed_seq = 0;
4158 	}
4159 
4160 	if (zilog->zl_destroy_txg == txg) {
4161 		blkptr_t blk = zh->zh_log;
4162 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
4163 
4164 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
4165 
4166 		memset(zh, 0, sizeof (zil_header_t));
4167 		memset(zilog->zl_replayed_seq, 0,
4168 		    sizeof (zilog->zl_replayed_seq));
4169 
4170 		if (zilog->zl_keep_first) {
4171 			/*
4172 			 * If this block was part of log chain that couldn't
4173 			 * be claimed because a device was missing during
4174 			 * zil_claim(), but that device later returns,
4175 			 * then this block could erroneously appear valid.
4176 			 * To guard against this, assign a new GUID to the new
4177 			 * log chain so it doesn't matter what blk points to.
4178 			 */
4179 			zil_init_log_chain(zilog, &blk);
4180 			zh->zh_log = blk;
4181 		} else {
4182 			/*
4183 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
4184 			 * records. So, deactivate the feature for this dataset.
4185 			 * We activate it again when we start a new ZIL chain.
4186 			 */
4187 			if (dsl_dataset_feature_is_active(ds,
4188 			    SPA_FEATURE_ZILSAXATTR))
4189 				dsl_dataset_deactivate_feature(ds,
4190 				    SPA_FEATURE_ZILSAXATTR, tx);
4191 		}
4192 	}
4193 
4194 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
4195 		zh->zh_log = lwb->lwb_blk;
4196 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
4197 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
4198 			break;
4199 		list_remove(&zilog->zl_lwb_list, lwb);
4200 		if (!BP_IS_HOLE(&lwb->lwb_blk))
4201 			zio_free(spa, txg, &lwb->lwb_blk);
4202 		zil_free_lwb(zilog, lwb);
4203 
4204 		/*
4205 		 * If we don't have anything left in the lwb list then
4206 		 * we've had an allocation failure and we need to zero
4207 		 * out the zil_header blkptr so that we don't end
4208 		 * up freeing the same block twice.
4209 		 */
4210 		if (list_is_empty(&zilog->zl_lwb_list))
4211 			BP_ZERO(&zh->zh_log);
4212 	}
4213 
4214 	mutex_exit(&zilog->zl_lock);
4215 }
4216 
4217 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)4218 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
4219 {
4220 	(void) unused, (void) kmflag;
4221 	lwb_t *lwb = vbuf;
4222 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
4223 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
4224 	    offsetof(zil_commit_waiter_t, zcw_node));
4225 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
4226 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
4227 	mutex_init(&lwb->lwb_lock, NULL, MUTEX_DEFAULT, NULL);
4228 	return (0);
4229 }
4230 
4231 static void
zil_lwb_dest(void * vbuf,void * unused)4232 zil_lwb_dest(void *vbuf, void *unused)
4233 {
4234 	(void) unused;
4235 	lwb_t *lwb = vbuf;
4236 	mutex_destroy(&lwb->lwb_lock);
4237 	avl_destroy(&lwb->lwb_vdev_tree);
4238 	list_destroy(&lwb->lwb_waiters);
4239 	list_destroy(&lwb->lwb_itxs);
4240 }
4241 
4242 void
zil_init(void)4243 zil_init(void)
4244 {
4245 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
4246 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
4247 
4248 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
4249 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
4250 
4251 	zil_sums_init(&zil_sums_global);
4252 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
4253 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
4254 	    KSTAT_FLAG_VIRTUAL);
4255 
4256 	if (zil_kstats_global != NULL) {
4257 		zil_kstats_global->ks_data = &zil_stats;
4258 		zil_kstats_global->ks_update = zil_kstats_global_update;
4259 		zil_kstats_global->ks_private = NULL;
4260 		kstat_install(zil_kstats_global);
4261 	}
4262 }
4263 
4264 void
zil_fini(void)4265 zil_fini(void)
4266 {
4267 	kmem_cache_destroy(zil_zcw_cache);
4268 	kmem_cache_destroy(zil_lwb_cache);
4269 
4270 	if (zil_kstats_global != NULL) {
4271 		kstat_delete(zil_kstats_global);
4272 		zil_kstats_global = NULL;
4273 	}
4274 
4275 	zil_sums_fini(&zil_sums_global);
4276 }
4277 
4278 void
zil_set_sync(zilog_t * zilog,uint64_t sync)4279 zil_set_sync(zilog_t *zilog, uint64_t sync)
4280 {
4281 	zilog->zl_sync = sync;
4282 }
4283 
4284 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)4285 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
4286 {
4287 	zilog->zl_logbias = logbias;
4288 }
4289 
4290 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)4291 zil_alloc(objset_t *os, zil_header_t *zh_phys)
4292 {
4293 	zilog_t *zilog;
4294 
4295 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
4296 
4297 	zilog->zl_header = zh_phys;
4298 	zilog->zl_os = os;
4299 	zilog->zl_spa = dmu_objset_spa(os);
4300 	zilog->zl_dmu_pool = dmu_objset_pool(os);
4301 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
4302 	zilog->zl_logbias = dmu_objset_logbias(os);
4303 	zilog->zl_sync = dmu_objset_syncprop(os);
4304 	zilog->zl_dirty_max_txg = 0;
4305 	zilog->zl_last_lwb_opened = NULL;
4306 	zilog->zl_last_lwb_latency = 0;
4307 	zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
4308 	    ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
4309 	    spa_maxblocksize(dmu_objset_spa(os)));
4310 
4311 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
4312 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
4313 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
4314 
4315 	for (int i = 0; i < TXG_SIZE; i++) {
4316 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
4317 		    MUTEX_DEFAULT, NULL);
4318 	}
4319 
4320 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
4321 	    offsetof(lwb_t, lwb_node));
4322 	list_create(&zilog->zl_lwb_crash_list, sizeof (lwb_t),
4323 	    offsetof(lwb_t, lwb_node));
4324 
4325 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
4326 	    offsetof(itx_t, itx_node));
4327 
4328 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
4329 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
4330 
4331 	for (int i = 0; i < ZIL_BURSTS; i++) {
4332 		zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
4333 		    sizeof (zil_chain_t);
4334 	}
4335 
4336 	return (zilog);
4337 }
4338 
4339 void
zil_free(zilog_t * zilog)4340 zil_free(zilog_t *zilog)
4341 {
4342 	int i;
4343 
4344 	zilog->zl_stop_sync = 1;
4345 
4346 	ASSERT0(zilog->zl_suspend);
4347 	ASSERT0(zilog->zl_suspending);
4348 	ASSERT0(zilog->zl_restart_txg);
4349 
4350 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
4351 	list_destroy(&zilog->zl_lwb_list);
4352 	ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
4353 	list_destroy(&zilog->zl_lwb_crash_list);
4354 
4355 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
4356 	list_destroy(&zilog->zl_itx_commit_list);
4357 
4358 	for (i = 0; i < TXG_SIZE; i++) {
4359 		/*
4360 		 * It's possible for an itx to be generated that doesn't dirty
4361 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
4362 		 * callback to remove the entry. We remove those here.
4363 		 *
4364 		 * Also free up the ziltest itxs.
4365 		 */
4366 		if (zilog->zl_itxg[i].itxg_itxs)
4367 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
4368 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
4369 	}
4370 
4371 	mutex_destroy(&zilog->zl_issuer_lock);
4372 	mutex_destroy(&zilog->zl_lock);
4373 	mutex_destroy(&zilog->zl_lwb_io_lock);
4374 
4375 	cv_destroy(&zilog->zl_cv_suspend);
4376 	cv_destroy(&zilog->zl_lwb_io_cv);
4377 
4378 	kmem_free(zilog, sizeof (zilog_t));
4379 }
4380 
4381 /*
4382  * Open an intent log.
4383  */
4384 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data,zil_sums_t * zil_sums)4385 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
4386 {
4387 	zilog_t *zilog = dmu_objset_zil(os);
4388 
4389 	ASSERT0P(zilog->zl_get_data);
4390 	ASSERT0P(zilog->zl_last_lwb_opened);
4391 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
4392 
4393 	zilog->zl_get_data = get_data;
4394 	zilog->zl_sums = zil_sums;
4395 
4396 	return (zilog);
4397 }
4398 
4399 /*
4400  * Close an intent log.
4401  */
4402 void
zil_close(zilog_t * zilog)4403 zil_close(zilog_t *zilog)
4404 {
4405 	lwb_t *lwb;
4406 	uint64_t txg;
4407 
4408 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
4409 		if (zil_commit_flags(zilog, 0, ZIL_COMMIT_NOW) != 0)
4410 			txg_wait_synced(zilog->zl_dmu_pool, 0);
4411 	} else {
4412 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
4413 		ASSERT0(zilog->zl_dirty_max_txg);
4414 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
4415 	}
4416 
4417 	mutex_enter(&zilog->zl_lock);
4418 	txg = zilog->zl_dirty_max_txg;
4419 	lwb = list_tail(&zilog->zl_lwb_list);
4420 	if (lwb != NULL) {
4421 		txg = MAX(txg, lwb->lwb_alloc_txg);
4422 		txg = MAX(txg, lwb->lwb_max_txg);
4423 	}
4424 	mutex_exit(&zilog->zl_lock);
4425 
4426 	/*
4427 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
4428 	 * on the time when the dmu_tx transaction is assigned in
4429 	 * zil_lwb_write_issue().
4430 	 */
4431 	mutex_enter(&zilog->zl_lwb_io_lock);
4432 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
4433 	mutex_exit(&zilog->zl_lwb_io_lock);
4434 
4435 	/*
4436 	 * We need to use txg_wait_synced() to wait until that txg is synced.
4437 	 * zil_sync() will guarantee all lwbs up to that txg have been
4438 	 * written out, flushed, and cleaned.
4439 	 */
4440 	if (txg != 0)
4441 		txg_wait_synced(zilog->zl_dmu_pool, txg);
4442 
4443 	if (zilog_is_dirty(zilog))
4444 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
4445 		    (u_longlong_t)txg);
4446 	if (txg < spa_freeze_txg(zilog->zl_spa))
4447 		VERIFY(!zilog_is_dirty(zilog));
4448 
4449 	zilog->zl_get_data = NULL;
4450 
4451 	/*
4452 	 * We should have only one lwb left on the list; remove it now.
4453 	 */
4454 	mutex_enter(&zilog->zl_lock);
4455 	lwb = list_remove_head(&zilog->zl_lwb_list);
4456 	if (lwb != NULL) {
4457 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
4458 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
4459 		ASSERT0P(lwb->lwb_buf);
4460 		zil_free_lwb(zilog, lwb);
4461 	}
4462 	mutex_exit(&zilog->zl_lock);
4463 }
4464 
4465 static const char *suspend_tag = "zil suspending";
4466 
4467 /*
4468  * Suspend an intent log.  While in suspended mode, we still honor
4469  * synchronous semantics, but we rely on txg_wait_synced() to do it.
4470  * On old version pools, we suspend the log briefly when taking a
4471  * snapshot so that it will have an empty intent log.
4472  *
4473  * Long holds are not really intended to be used the way we do here --
4474  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
4475  * could fail.  Therefore we take pains to only put a long hold if it is
4476  * actually necessary.  Fortunately, it will only be necessary if the
4477  * objset is currently mounted (or the ZVOL equivalent).  In that case it
4478  * will already have a long hold, so we are not really making things any worse.
4479  *
4480  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4481  * zvol_state_t), and use their mechanism to prevent their hold from being
4482  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
4483  * very little gain.
4484  *
4485  * if cookiep == NULL, this does both the suspend & resume.
4486  * Otherwise, it returns with the dataset "long held", and the cookie
4487  * should be passed into zil_resume().
4488  */
4489 int
zil_suspend(const char * osname,void ** cookiep)4490 zil_suspend(const char *osname, void **cookiep)
4491 {
4492 	objset_t *os;
4493 	zilog_t *zilog;
4494 	const zil_header_t *zh;
4495 	int error;
4496 
4497 	error = dmu_objset_hold(osname, suspend_tag, &os);
4498 	if (error != 0)
4499 		return (error);
4500 	zilog = dmu_objset_zil(os);
4501 
4502 	mutex_enter(&zilog->zl_lock);
4503 	zh = zilog->zl_header;
4504 
4505 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
4506 		mutex_exit(&zilog->zl_lock);
4507 		dmu_objset_rele(os, suspend_tag);
4508 		return (SET_ERROR(EBUSY));
4509 	}
4510 
4511 	if (zilog->zl_restart_txg > 0) {
4512 		/*
4513 		 * ZIL crashed. It effectively _is_ suspended, but callers
4514 		 * are usually trying to make sure it's empty on-disk, which
4515 		 * we can't guarantee right now.
4516 		 */
4517 		mutex_exit(&zilog->zl_lock);
4518 		dmu_objset_rele(os, suspend_tag);
4519 		return (SET_ERROR(EBUSY));
4520 	}
4521 
4522 	/*
4523 	 * Don't put a long hold in the cases where we can avoid it.  This
4524 	 * is when there is no cookie so we are doing a suspend & resume
4525 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4526 	 * for the suspend because it's already suspended, or there's no ZIL.
4527 	 */
4528 	if (cookiep == NULL && !zilog->zl_suspending &&
4529 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4530 		mutex_exit(&zilog->zl_lock);
4531 		dmu_objset_rele(os, suspend_tag);
4532 		return (0);
4533 	}
4534 
4535 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4536 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4537 
4538 	zilog->zl_suspend++;
4539 
4540 	if (zilog->zl_suspend > 1) {
4541 		/*
4542 		 * Someone else is already suspending it.
4543 		 * Just wait for them to finish.
4544 		 */
4545 
4546 		while (zilog->zl_suspending)
4547 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4548 		mutex_exit(&zilog->zl_lock);
4549 
4550 		if (zilog->zl_restart_txg > 0) {
4551 			/* ZIL crashed while we were waiting. */
4552 			zil_resume(os);
4553 			error = SET_ERROR(EBUSY);
4554 		} else if (cookiep == NULL)
4555 			zil_resume(os);
4556 		else
4557 			*cookiep = os;
4558 
4559 		return (error);
4560 	}
4561 
4562 	/*
4563 	 * If there is no pointer to an on-disk block, this ZIL must not
4564 	 * be active (e.g. filesystem not mounted), so there's nothing
4565 	 * to clean up.
4566 	 */
4567 	if (BP_IS_HOLE(&zh->zh_log)) {
4568 		ASSERT(cookiep != NULL); /* fast path already handled */
4569 
4570 		*cookiep = os;
4571 		mutex_exit(&zilog->zl_lock);
4572 		return (0);
4573 	}
4574 
4575 	/*
4576 	 * The ZIL has work to do. Ensure that the associated encryption
4577 	 * key will remain mapped while we are committing the log by
4578 	 * grabbing a reference to it. If the key isn't loaded we have no
4579 	 * choice but to return an error until the wrapping key is loaded.
4580 	 */
4581 	if (os->os_encrypted &&
4582 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4583 		zilog->zl_suspend--;
4584 		mutex_exit(&zilog->zl_lock);
4585 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4586 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4587 		return (SET_ERROR(EACCES));
4588 	}
4589 
4590 	zilog->zl_suspending = B_TRUE;
4591 	mutex_exit(&zilog->zl_lock);
4592 
4593 	/*
4594 	 * We need to use zil_commit_impl to ensure we wait for all
4595 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4596 	 * to disk before proceeding. If we used zil_commit instead, it
4597 	 * would just call txg_wait_synced(), because zl_suspend is set.
4598 	 * txg_wait_synced() doesn't wait for these lwb's to be
4599 	 * LWB_STATE_FLUSH_DONE before returning.
4600 	 *
4601 	 * However, zil_commit_impl() itself can return an error if any of the
4602 	 * lwbs fail, or the pool suspends in the fallback
4603 	 * txg_wait_sync_flushed(), which affects what we do next, so we
4604 	 * capture that error.
4605 	 */
4606 	error = zil_commit_impl(zilog, 0);
4607 	if (error == ESHUTDOWN)
4608 		/* zil_commit_impl() has called zil_crash() already */
4609 		error = SET_ERROR(EBUSY);
4610 
4611 	/*
4612 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4613 	 * use txg_wait_synced() to ensure the data from the zilog has
4614 	 * migrated to the main pool before calling zil_destroy().
4615 	 */
4616 	if (error == 0) {
4617 		error = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4618 		    TXG_WAIT_SUSPEND);
4619 		if (error != 0) {
4620 			ASSERT3U(error, ==, ESHUTDOWN);
4621 			zil_crash(zilog);
4622 			error = SET_ERROR(EBUSY);
4623 		}
4624 	}
4625 
4626 	if (error == 0)
4627 		zil_destroy(zilog, B_FALSE);
4628 
4629 	mutex_enter(&zilog->zl_lock);
4630 	zilog->zl_suspending = B_FALSE;
4631 	cv_broadcast(&zilog->zl_cv_suspend);
4632 	mutex_exit(&zilog->zl_lock);
4633 
4634 	if (os->os_encrypted)
4635 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4636 
4637 	if (cookiep == NULL)
4638 		zil_resume(os);
4639 	else
4640 		*cookiep = os;
4641 
4642 	return (error);
4643 }
4644 
4645 void
zil_resume(void * cookie)4646 zil_resume(void *cookie)
4647 {
4648 	objset_t *os = cookie;
4649 	zilog_t *zilog = dmu_objset_zil(os);
4650 
4651 	mutex_enter(&zilog->zl_lock);
4652 	ASSERT(zilog->zl_suspend != 0);
4653 	zilog->zl_suspend--;
4654 	mutex_exit(&zilog->zl_lock);
4655 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4656 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4657 }
4658 
4659 typedef struct zil_replay_arg {
4660 	zil_replay_func_t *const *zr_replay;
4661 	void		*zr_arg;
4662 	boolean_t	zr_byteswap;
4663 	char		*zr_lr;
4664 } zil_replay_arg_t;
4665 
4666 static int
zil_replay_error(zilog_t * zilog,const lr_t * lr,int error)4667 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4668 {
4669 	char name[ZFS_MAX_DATASET_NAME_LEN];
4670 
4671 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4672 
4673 	dmu_objset_name(zilog->zl_os, name);
4674 
4675 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4676 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4677 	    (u_longlong_t)lr->lrc_seq,
4678 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4679 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4680 
4681 	return (error);
4682 }
4683 
4684 static int
zil_replay_log_record(zilog_t * zilog,const lr_t * lr,void * zra,uint64_t claim_txg)4685 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4686     uint64_t claim_txg)
4687 {
4688 	zil_replay_arg_t *zr = zra;
4689 	const zil_header_t *zh = zilog->zl_header;
4690 	uint64_t reclen = lr->lrc_reclen;
4691 	uint64_t txtype = lr->lrc_txtype;
4692 	int error = 0;
4693 
4694 	zilog->zl_replaying_seq = lr->lrc_seq;
4695 
4696 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4697 		return (0);
4698 
4699 	if (lr->lrc_txg < claim_txg)		/* already committed */
4700 		return (0);
4701 
4702 	/* Strip case-insensitive bit, still present in log record */
4703 	txtype &= ~TX_CI;
4704 
4705 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4706 		return (zil_replay_error(zilog, lr, EINVAL));
4707 
4708 	/*
4709 	 * If this record type can be logged out of order, the object
4710 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4711 	 */
4712 	if (TX_OOO(txtype)) {
4713 		error = dmu_object_info(zilog->zl_os,
4714 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4715 		if (error == ENOENT || error == EEXIST)
4716 			return (0);
4717 	}
4718 
4719 	/*
4720 	 * Make a copy of the data so we can revise and extend it.
4721 	 */
4722 	memcpy(zr->zr_lr, lr, reclen);
4723 
4724 	/*
4725 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4726 	 */
4727 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4728 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4729 		    zr->zr_lr + reclen);
4730 		if (error != 0)
4731 			return (zil_replay_error(zilog, lr, error));
4732 	}
4733 
4734 	/*
4735 	 * The log block containing this lr may have been byteswapped
4736 	 * so that we can easily examine common fields like lrc_txtype.
4737 	 * However, the log is a mix of different record types, and only the
4738 	 * replay vectors know how to byteswap their records.  Therefore, if
4739 	 * the lr was byteswapped, undo it before invoking the replay vector.
4740 	 */
4741 	if (zr->zr_byteswap)
4742 		byteswap_uint64_array(zr->zr_lr, reclen);
4743 
4744 	/*
4745 	 * We must now do two things atomically: replay this log record,
4746 	 * and update the log header sequence number to reflect the fact that
4747 	 * we did so. At the end of each replay function the sequence number
4748 	 * is updated if we are in replay mode.
4749 	 */
4750 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4751 	if (error != 0) {
4752 		/*
4753 		 * The DMU's dnode layer doesn't see removes until the txg
4754 		 * commits, so a subsequent claim can spuriously fail with
4755 		 * EEXIST. So if we receive any error we try syncing out
4756 		 * any removes then retry the transaction.  Note that we
4757 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4758 		 */
4759 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4760 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4761 		if (error != 0)
4762 			return (zil_replay_error(zilog, lr, error));
4763 	}
4764 	return (0);
4765 }
4766 
4767 static int
zil_incr_blks(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)4768 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4769 {
4770 	(void) bp, (void) arg, (void) claim_txg;
4771 
4772 	zilog->zl_replay_blks++;
4773 
4774 	return (0);
4775 }
4776 
4777 /*
4778  * If this dataset has a non-empty intent log, replay it and destroy it.
4779  * Return B_TRUE if there were any entries to replay.
4780  */
4781 boolean_t
zil_replay(objset_t * os,void * arg,zil_replay_func_t * const replay_func[TX_MAX_TYPE])4782 zil_replay(objset_t *os, void *arg,
4783     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4784 {
4785 	zilog_t *zilog = dmu_objset_zil(os);
4786 	const zil_header_t *zh = zilog->zl_header;
4787 	zil_replay_arg_t zr;
4788 
4789 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4790 		return (zil_destroy(zilog, B_TRUE));
4791 	}
4792 
4793 	zr.zr_replay = replay_func;
4794 	zr.zr_arg = arg;
4795 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4796 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4797 
4798 	/*
4799 	 * Wait for in-progress removes to sync before starting replay.
4800 	 */
4801 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4802 
4803 	zilog->zl_replay = B_TRUE;
4804 	zilog->zl_replay_time = ddi_get_lbolt();
4805 	ASSERT0(zilog->zl_replay_blks);
4806 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4807 	    zh->zh_claim_txg, B_TRUE);
4808 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4809 
4810 	zil_destroy(zilog, B_FALSE);
4811 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4812 	zilog->zl_replay = B_FALSE;
4813 
4814 	return (B_TRUE);
4815 }
4816 
4817 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)4818 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4819 {
4820 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4821 		return (B_TRUE);
4822 
4823 	if (zilog->zl_replay) {
4824 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4825 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4826 		    zilog->zl_replaying_seq;
4827 		return (B_TRUE);
4828 	}
4829 
4830 	return (B_FALSE);
4831 }
4832 
4833 int
zil_reset(const char * osname,void * arg)4834 zil_reset(const char *osname, void *arg)
4835 {
4836 	(void) arg;
4837 
4838 	int error = zil_suspend(osname, NULL);
4839 	/* EACCES means crypto key not loaded */
4840 	if ((error == EACCES) || (error == EBUSY))
4841 		return (SET_ERROR(error));
4842 	if (error != 0)
4843 		return (SET_ERROR(EEXIST));
4844 	return (0);
4845 }
4846 
4847 EXPORT_SYMBOL(zil_alloc);
4848 EXPORT_SYMBOL(zil_free);
4849 EXPORT_SYMBOL(zil_open);
4850 EXPORT_SYMBOL(zil_close);
4851 EXPORT_SYMBOL(zil_replay);
4852 EXPORT_SYMBOL(zil_replaying);
4853 EXPORT_SYMBOL(zil_destroy);
4854 EXPORT_SYMBOL(zil_destroy_sync);
4855 EXPORT_SYMBOL(zil_itx_create);
4856 EXPORT_SYMBOL(zil_itx_destroy);
4857 EXPORT_SYMBOL(zil_itx_assign);
4858 EXPORT_SYMBOL(zil_commit);
4859 EXPORT_SYMBOL(zil_claim);
4860 EXPORT_SYMBOL(zil_check_log_chain);
4861 EXPORT_SYMBOL(zil_sync);
4862 EXPORT_SYMBOL(zil_clean);
4863 EXPORT_SYMBOL(zil_suspend);
4864 EXPORT_SYMBOL(zil_resume);
4865 EXPORT_SYMBOL(zil_lwb_add_block);
4866 EXPORT_SYMBOL(zil_bp_tree_add);
4867 EXPORT_SYMBOL(zil_set_sync);
4868 EXPORT_SYMBOL(zil_set_logbias);
4869 EXPORT_SYMBOL(zil_sums_init);
4870 EXPORT_SYMBOL(zil_sums_fini);
4871 EXPORT_SYMBOL(zil_kstat_values_update);
4872 
4873 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4874 	"ZIL block open timeout percentage");
4875 
4876 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4877 	"Disable intent logging replay");
4878 
4879 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4880 	"Disable ZIL cache flushes");
4881 
4882 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4883 	"Limit in bytes slog sync writes per commit");
4884 
4885 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4886 	"Limit in bytes of ZIL log block size");
4887 
4888 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4889 	"Limit in bytes WR_COPIED size");
4890 
4891 ZFS_MODULE_PARAM(zfs, zfs_, immediate_write_sz, UINT, ZMOD_RW,
4892 	"Largest write size to store data into ZIL");
4893 
4894 ZFS_MODULE_PARAM(zfs_zil, zil_, special_is_slog, INT, ZMOD_RW,
4895 	"Treat special vdevs as SLOG");
4896