1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright (c) 2018 Datto Inc.
27 */
28
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 #include <sys/zfs_context.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/zap.h>
36 #include <sys/arc.h>
37 #include <sys/stat.h>
38 #include <sys/zil.h>
39 #include <sys/zil_impl.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/metaslab.h>
45 #include <sys/trace_zfs.h>
46 #include <sys/abd.h>
47 #include <sys/brt.h>
48 #include <sys/wmsum.h>
49
50 /*
51 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
52 * calls that change the file system. Each itx has enough information to
53 * be able to replay them after a system crash, power loss, or
54 * equivalent failure mode. These are stored in memory until either:
55 *
56 * 1. they are committed to the pool by the DMU transaction group
57 * (txg), at which point they can be discarded; or
58 * 2. they are committed to the on-disk ZIL for the dataset being
59 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
60 * requirement).
61 *
62 * In the event of a crash or power loss, the itxs contained by each
63 * dataset's on-disk ZIL will be replayed when that dataset is first
64 * instantiated (e.g. if the dataset is a normal filesystem, when it is
65 * first mounted).
66 *
67 * As hinted at above, there is one ZIL per dataset (both the in-memory
68 * representation, and the on-disk representation). The on-disk format
69 * consists of 3 parts:
70 *
71 * - a single, per-dataset, ZIL header; which points to a chain of
72 * - zero or more ZIL blocks; each of which contains
73 * - zero or more ZIL records
74 *
75 * A ZIL record holds the information necessary to replay a single
76 * system call transaction. A ZIL block can hold many ZIL records, and
77 * the blocks are chained together, similarly to a singly linked list.
78 *
79 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
80 * block in the chain, and the ZIL header points to the first block in
81 * the chain.
82 *
83 * Note, there is not a fixed place in the pool to hold these ZIL
84 * blocks; they are dynamically allocated and freed as needed from the
85 * blocks available on the pool, though they can be preferentially
86 * allocated from a dedicated "log" vdev.
87 */
88
89 /*
90 * This controls the amount of time that a ZIL block (lwb) will remain
91 * "open" when it isn't "full", and it has a thread waiting for it to be
92 * committed to stable storage. Please refer to the zil_commit_waiter()
93 * function (and the comments within it) for more details.
94 */
95 static uint_t zfs_commit_timeout_pct = 10;
96
97 /*
98 * See zil.h for more information about these fields.
99 */
100 static zil_kstat_values_t zil_stats = {
101 { "zil_commit_count", KSTAT_DATA_UINT64 },
102 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
103 { "zil_commit_error_count", KSTAT_DATA_UINT64 },
104 { "zil_commit_stall_count", KSTAT_DATA_UINT64 },
105 { "zil_commit_suspend_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_count", KSTAT_DATA_UINT64 },
107 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
111 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
112 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
113 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
114 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
115 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
117 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
118 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
119 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
120 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
121 };
122
123 static zil_sums_t zil_sums_global;
124 static kstat_t *zil_kstats_global;
125
126 /*
127 * Disable intent logging replay. This global ZIL switch affects all pools.
128 */
129 int zil_replay_disable = 0;
130
131 /*
132 * Disable the flush commands that are normally sent to the disk(s) by the ZIL
133 * after an LWB write has completed. Setting this will cause ZIL corruption on
134 * power loss if a volatile out-of-order write cache is enabled.
135 */
136 static int zil_nocacheflush = 0;
137
138 /*
139 * Limit SLOG write size per commit executed with synchronous priority.
140 * Any writes above that will be executed with lower (asynchronous) priority
141 * to limit potential SLOG device abuse by single active ZIL writer.
142 */
143 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
144
145 static kmem_cache_t *zil_lwb_cache;
146 static kmem_cache_t *zil_zcw_cache;
147
148 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
149 static itx_t *zil_itx_clone(itx_t *oitx);
150 static uint64_t zil_max_waste_space(zilog_t *zilog);
151
152 static int
zil_bp_compare(const void * x1,const void * x2)153 zil_bp_compare(const void *x1, const void *x2)
154 {
155 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
156 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
157
158 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
159 if (likely(cmp))
160 return (cmp);
161
162 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
163 }
164
165 static void
zil_bp_tree_init(zilog_t * zilog)166 zil_bp_tree_init(zilog_t *zilog)
167 {
168 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
169 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
170 }
171
172 static void
zil_bp_tree_fini(zilog_t * zilog)173 zil_bp_tree_fini(zilog_t *zilog)
174 {
175 avl_tree_t *t = &zilog->zl_bp_tree;
176 zil_bp_node_t *zn;
177 void *cookie = NULL;
178
179 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
180 kmem_free(zn, sizeof (zil_bp_node_t));
181
182 avl_destroy(t);
183 }
184
185 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)186 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
187 {
188 avl_tree_t *t = &zilog->zl_bp_tree;
189 const dva_t *dva;
190 zil_bp_node_t *zn;
191 avl_index_t where;
192
193 if (BP_IS_EMBEDDED(bp))
194 return (0);
195
196 dva = BP_IDENTITY(bp);
197
198 if (avl_find(t, dva, &where) != NULL)
199 return (SET_ERROR(EEXIST));
200
201 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
202 zn->zn_dva = *dva;
203 avl_insert(t, zn, where);
204
205 return (0);
206 }
207
208 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)209 zil_header_in_syncing_context(zilog_t *zilog)
210 {
211 return ((zil_header_t *)zilog->zl_header);
212 }
213
214 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)215 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
216 {
217 zio_cksum_t *zc = &bp->blk_cksum;
218
219 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
220 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
221 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
222 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
223 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
224 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
225 }
226
227 static int
zil_kstats_global_update(kstat_t * ksp,int rw)228 zil_kstats_global_update(kstat_t *ksp, int rw)
229 {
230 zil_kstat_values_t *zs = ksp->ks_data;
231 ASSERT3P(&zil_stats, ==, zs);
232
233 if (rw == KSTAT_WRITE) {
234 return (SET_ERROR(EACCES));
235 }
236
237 zil_kstat_values_update(zs, &zil_sums_global);
238
239 return (0);
240 }
241
242 /*
243 * Read a log block and make sure it's valid.
244 */
245 static int
zil_read_log_block(zilog_t * zilog,boolean_t decrypt,const blkptr_t * bp,blkptr_t * nbp,char ** begin,char ** end,arc_buf_t ** abuf)246 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
247 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
248 {
249 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
250 arc_flags_t aflags = ARC_FLAG_WAIT;
251 zbookmark_phys_t zb;
252 int error;
253
254 if (zilog->zl_header->zh_claim_txg == 0)
255 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
256
257 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
258 zio_flags |= ZIO_FLAG_SPECULATIVE;
259
260 if (!decrypt)
261 zio_flags |= ZIO_FLAG_RAW;
262
263 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
264 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
265
266 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
267 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
268
269 if (error == 0) {
270 zio_cksum_t cksum = bp->blk_cksum;
271
272 /*
273 * Validate the checksummed log block.
274 *
275 * Sequence numbers should be... sequential. The checksum
276 * verifier for the next block should be bp's checksum plus 1.
277 *
278 * Also check the log chain linkage and size used.
279 */
280 cksum.zc_word[ZIL_ZC_SEQ]++;
281
282 uint64_t size = BP_GET_LSIZE(bp);
283 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
284 zil_chain_t *zilc = (*abuf)->b_data;
285 char *lr = (char *)(zilc + 1);
286
287 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
288 sizeof (cksum)) ||
289 zilc->zc_nused < sizeof (*zilc) ||
290 zilc->zc_nused > size) {
291 error = SET_ERROR(ECKSUM);
292 } else {
293 *begin = lr;
294 *end = lr + zilc->zc_nused - sizeof (*zilc);
295 *nbp = zilc->zc_next_blk;
296 }
297 } else {
298 char *lr = (*abuf)->b_data;
299 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
300
301 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
302 sizeof (cksum)) ||
303 (zilc->zc_nused > (size - sizeof (*zilc)))) {
304 error = SET_ERROR(ECKSUM);
305 } else {
306 *begin = lr;
307 *end = lr + zilc->zc_nused;
308 *nbp = zilc->zc_next_blk;
309 }
310 }
311 }
312
313 return (error);
314 }
315
316 /*
317 * Read a TX_WRITE log data block.
318 */
319 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)320 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
321 {
322 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
323 const blkptr_t *bp = &lr->lr_blkptr;
324 arc_flags_t aflags = ARC_FLAG_WAIT;
325 arc_buf_t *abuf = NULL;
326 zbookmark_phys_t zb;
327 int error;
328
329 if (BP_IS_HOLE(bp)) {
330 if (wbuf != NULL)
331 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
332 return (0);
333 }
334
335 if (zilog->zl_header->zh_claim_txg == 0)
336 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
337
338 /*
339 * If we are not using the resulting data, we are just checking that
340 * it hasn't been corrupted so we don't need to waste CPU time
341 * decompressing and decrypting it.
342 */
343 if (wbuf == NULL)
344 zio_flags |= ZIO_FLAG_RAW;
345
346 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
347 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
348 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
349
350 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
351 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
352
353 if (error == 0) {
354 if (wbuf != NULL)
355 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
356 arc_buf_destroy(abuf, &abuf);
357 }
358
359 return (error);
360 }
361
362 void
zil_sums_init(zil_sums_t * zs)363 zil_sums_init(zil_sums_t *zs)
364 {
365 wmsum_init(&zs->zil_commit_count, 0);
366 wmsum_init(&zs->zil_commit_writer_count, 0);
367 wmsum_init(&zs->zil_commit_error_count, 0);
368 wmsum_init(&zs->zil_commit_stall_count, 0);
369 wmsum_init(&zs->zil_commit_suspend_count, 0);
370 wmsum_init(&zs->zil_itx_count, 0);
371 wmsum_init(&zs->zil_itx_indirect_count, 0);
372 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
373 wmsum_init(&zs->zil_itx_copied_count, 0);
374 wmsum_init(&zs->zil_itx_copied_bytes, 0);
375 wmsum_init(&zs->zil_itx_needcopy_count, 0);
376 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
377 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
378 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
379 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
380 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
381 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
382 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
383 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
384 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
385 }
386
387 void
zil_sums_fini(zil_sums_t * zs)388 zil_sums_fini(zil_sums_t *zs)
389 {
390 wmsum_fini(&zs->zil_commit_count);
391 wmsum_fini(&zs->zil_commit_writer_count);
392 wmsum_fini(&zs->zil_commit_error_count);
393 wmsum_fini(&zs->zil_commit_stall_count);
394 wmsum_fini(&zs->zil_commit_suspend_count);
395 wmsum_fini(&zs->zil_itx_count);
396 wmsum_fini(&zs->zil_itx_indirect_count);
397 wmsum_fini(&zs->zil_itx_indirect_bytes);
398 wmsum_fini(&zs->zil_itx_copied_count);
399 wmsum_fini(&zs->zil_itx_copied_bytes);
400 wmsum_fini(&zs->zil_itx_needcopy_count);
401 wmsum_fini(&zs->zil_itx_needcopy_bytes);
402 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
403 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
404 wmsum_fini(&zs->zil_itx_metaslab_normal_write);
405 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
406 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
407 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
408 wmsum_fini(&zs->zil_itx_metaslab_slog_write);
409 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
410 }
411
412 void
zil_kstat_values_update(zil_kstat_values_t * zs,zil_sums_t * zil_sums)413 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
414 {
415 zs->zil_commit_count.value.ui64 =
416 wmsum_value(&zil_sums->zil_commit_count);
417 zs->zil_commit_writer_count.value.ui64 =
418 wmsum_value(&zil_sums->zil_commit_writer_count);
419 zs->zil_commit_error_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_commit_error_count);
421 zs->zil_commit_stall_count.value.ui64 =
422 wmsum_value(&zil_sums->zil_commit_stall_count);
423 zs->zil_commit_suspend_count.value.ui64 =
424 wmsum_value(&zil_sums->zil_commit_suspend_count);
425 zs->zil_itx_count.value.ui64 =
426 wmsum_value(&zil_sums->zil_itx_count);
427 zs->zil_itx_indirect_count.value.ui64 =
428 wmsum_value(&zil_sums->zil_itx_indirect_count);
429 zs->zil_itx_indirect_bytes.value.ui64 =
430 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
431 zs->zil_itx_copied_count.value.ui64 =
432 wmsum_value(&zil_sums->zil_itx_copied_count);
433 zs->zil_itx_copied_bytes.value.ui64 =
434 wmsum_value(&zil_sums->zil_itx_copied_bytes);
435 zs->zil_itx_needcopy_count.value.ui64 =
436 wmsum_value(&zil_sums->zil_itx_needcopy_count);
437 zs->zil_itx_needcopy_bytes.value.ui64 =
438 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
439 zs->zil_itx_metaslab_normal_count.value.ui64 =
440 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
441 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
442 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
443 zs->zil_itx_metaslab_normal_write.value.ui64 =
444 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
445 zs->zil_itx_metaslab_normal_alloc.value.ui64 =
446 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
447 zs->zil_itx_metaslab_slog_count.value.ui64 =
448 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
449 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
450 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
451 zs->zil_itx_metaslab_slog_write.value.ui64 =
452 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
453 zs->zil_itx_metaslab_slog_alloc.value.ui64 =
454 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
455 }
456
457 /*
458 * Parse the intent log, and call parse_func for each valid record within.
459 */
460 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg,boolean_t decrypt)461 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
462 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
463 boolean_t decrypt)
464 {
465 const zil_header_t *zh = zilog->zl_header;
466 boolean_t claimed = !!zh->zh_claim_txg;
467 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
468 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
469 uint64_t max_blk_seq = 0;
470 uint64_t max_lr_seq = 0;
471 uint64_t blk_count = 0;
472 uint64_t lr_count = 0;
473 blkptr_t blk, next_blk = {{{{0}}}};
474 int error = 0;
475
476 /*
477 * Old logs didn't record the maximum zh_claim_lr_seq.
478 */
479 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
480 claim_lr_seq = UINT64_MAX;
481
482 /*
483 * Starting at the block pointed to by zh_log we read the log chain.
484 * For each block in the chain we strongly check that block to
485 * ensure its validity. We stop when an invalid block is found.
486 * For each block pointer in the chain we call parse_blk_func().
487 * For each record in each valid block we call parse_lr_func().
488 * If the log has been claimed, stop if we encounter a sequence
489 * number greater than the highest claimed sequence number.
490 */
491 zil_bp_tree_init(zilog);
492
493 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
494 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
495 int reclen;
496 char *lrp, *end;
497 arc_buf_t *abuf = NULL;
498
499 if (blk_seq > claim_blk_seq)
500 break;
501
502 error = parse_blk_func(zilog, &blk, arg, txg);
503 if (error != 0)
504 break;
505 ASSERT3U(max_blk_seq, <, blk_seq);
506 max_blk_seq = blk_seq;
507 blk_count++;
508
509 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
510 break;
511
512 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
513 &lrp, &end, &abuf);
514 if (error != 0) {
515 if (abuf)
516 arc_buf_destroy(abuf, &abuf);
517 if (claimed) {
518 char name[ZFS_MAX_DATASET_NAME_LEN];
519
520 dmu_objset_name(zilog->zl_os, name);
521
522 cmn_err(CE_WARN, "ZFS read log block error %d, "
523 "dataset %s, seq 0x%llx\n", error, name,
524 (u_longlong_t)blk_seq);
525 }
526 break;
527 }
528
529 for (; lrp < end; lrp += reclen) {
530 lr_t *lr = (lr_t *)lrp;
531
532 /*
533 * Are the remaining bytes large enough to hold an
534 * log record?
535 */
536 if ((char *)(lr + 1) > end) {
537 cmn_err(CE_WARN, "zil_parse: lr_t overrun");
538 error = SET_ERROR(ECKSUM);
539 arc_buf_destroy(abuf, &abuf);
540 goto done;
541 }
542 reclen = lr->lrc_reclen;
543 if (reclen < sizeof (lr_t) || reclen > end - lrp) {
544 cmn_err(CE_WARN,
545 "zil_parse: lr_t has an invalid reclen");
546 error = SET_ERROR(ECKSUM);
547 arc_buf_destroy(abuf, &abuf);
548 goto done;
549 }
550
551 if (lr->lrc_seq > claim_lr_seq) {
552 arc_buf_destroy(abuf, &abuf);
553 goto done;
554 }
555
556 error = parse_lr_func(zilog, lr, arg, txg);
557 if (error != 0) {
558 arc_buf_destroy(abuf, &abuf);
559 goto done;
560 }
561 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
562 max_lr_seq = lr->lrc_seq;
563 lr_count++;
564 }
565 arc_buf_destroy(abuf, &abuf);
566 }
567 done:
568 zilog->zl_parse_error = error;
569 zilog->zl_parse_blk_seq = max_blk_seq;
570 zilog->zl_parse_lr_seq = max_lr_seq;
571 zilog->zl_parse_blk_count = blk_count;
572 zilog->zl_parse_lr_count = lr_count;
573
574 zil_bp_tree_fini(zilog);
575
576 return (error);
577 }
578
579 static int
zil_clear_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)580 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
581 uint64_t first_txg)
582 {
583 (void) tx;
584 ASSERT(!BP_IS_HOLE(bp));
585
586 /*
587 * As we call this function from the context of a rewind to a
588 * checkpoint, each ZIL block whose txg is later than the txg
589 * that we rewind to is invalid. Thus, we return -1 so
590 * zil_parse() doesn't attempt to read it.
591 */
592 if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg)
593 return (-1);
594
595 if (zil_bp_tree_add(zilog, bp) != 0)
596 return (0);
597
598 zio_free(zilog->zl_spa, first_txg, bp);
599 return (0);
600 }
601
602 static int
zil_noop_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)603 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
604 uint64_t first_txg)
605 {
606 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
607 return (0);
608 }
609
610 static int
zil_claim_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)611 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
612 uint64_t first_txg)
613 {
614 /*
615 * Claim log block if not already committed and not already claimed.
616 * If tx == NULL, just verify that the block is claimable.
617 */
618 if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg ||
619 zil_bp_tree_add(zilog, bp) != 0)
620 return (0);
621
622 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
623 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
624 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
625 }
626
627 static int
zil_claim_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)628 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
629 {
630 lr_write_t *lr = (lr_write_t *)lrc;
631 int error;
632
633 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
634
635 /*
636 * If the block is not readable, don't claim it. This can happen
637 * in normal operation when a log block is written to disk before
638 * some of the dmu_sync() blocks it points to. In this case, the
639 * transaction cannot have been committed to anyone (we would have
640 * waited for all writes to be stable first), so it is semantically
641 * correct to declare this the end of the log.
642 */
643 if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) {
644 error = zil_read_log_data(zilog, lr, NULL);
645 if (error != 0)
646 return (error);
647 }
648
649 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
650 }
651
652 static int
zil_claim_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)653 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
654 uint64_t first_txg)
655 {
656 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
657 const blkptr_t *bp;
658 spa_t *spa = zilog->zl_spa;
659 uint_t ii;
660
661 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
662 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
663 lr_bps[lr->lr_nbps]));
664
665 if (tx == NULL) {
666 return (0);
667 }
668
669 /*
670 * XXX: Do we need to byteswap lr?
671 */
672
673 for (ii = 0; ii < lr->lr_nbps; ii++) {
674 bp = &lr->lr_bps[ii];
675
676 /*
677 * When data is embedded into the BP there is no need to create
678 * BRT entry as there is no data block. Just copy the BP as it
679 * contains the data.
680 */
681 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
682 continue;
683
684 /*
685 * We can not handle block pointers from the future, since they
686 * are not yet allocated. It should not normally happen, but
687 * just in case lets be safe and just stop here now instead of
688 * corrupting the pool.
689 */
690 if (BP_GET_BIRTH(bp) >= first_txg)
691 return (SET_ERROR(ENOENT));
692
693 /*
694 * Assert the block is really allocated before we reference it.
695 */
696 metaslab_check_free(spa, bp);
697 }
698
699 for (ii = 0; ii < lr->lr_nbps; ii++) {
700 bp = &lr->lr_bps[ii];
701 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
702 brt_pending_add(spa, bp, tx);
703 }
704
705 return (0);
706 }
707
708 static int
zil_claim_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)709 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
710 uint64_t first_txg)
711 {
712
713 switch (lrc->lrc_txtype) {
714 case TX_WRITE:
715 return (zil_claim_write(zilog, lrc, tx, first_txg));
716 case TX_CLONE_RANGE:
717 return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
718 default:
719 return (0);
720 }
721 }
722
723 static int
zil_free_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t claim_txg)724 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
725 uint64_t claim_txg)
726 {
727 (void) claim_txg;
728
729 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
730
731 return (0);
732 }
733
734 static int
zil_free_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)735 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
736 {
737 lr_write_t *lr = (lr_write_t *)lrc;
738 blkptr_t *bp = &lr->lr_blkptr;
739
740 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
741
742 /*
743 * If we previously claimed it, we need to free it.
744 */
745 if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg &&
746 zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
747 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
748 }
749
750 return (0);
751 }
752
753 static int
zil_free_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx)754 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
755 {
756 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
757 const blkptr_t *bp;
758 spa_t *spa;
759 uint_t ii;
760
761 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
762 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
763 lr_bps[lr->lr_nbps]));
764
765 if (tx == NULL) {
766 return (0);
767 }
768
769 spa = zilog->zl_spa;
770
771 for (ii = 0; ii < lr->lr_nbps; ii++) {
772 bp = &lr->lr_bps[ii];
773
774 if (!BP_IS_HOLE(bp)) {
775 zio_free(spa, dmu_tx_get_txg(tx), bp);
776 }
777 }
778
779 return (0);
780 }
781
782 static int
zil_free_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)783 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
784 uint64_t claim_txg)
785 {
786
787 if (claim_txg == 0) {
788 return (0);
789 }
790
791 switch (lrc->lrc_txtype) {
792 case TX_WRITE:
793 return (zil_free_write(zilog, lrc, tx, claim_txg));
794 case TX_CLONE_RANGE:
795 return (zil_free_clone_range(zilog, lrc, tx));
796 default:
797 return (0);
798 }
799 }
800
801 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)802 zil_lwb_vdev_compare(const void *x1, const void *x2)
803 {
804 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
805 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
806
807 return (TREE_CMP(v1, v2));
808 }
809
810 /*
811 * Allocate a new lwb. We may already have a block pointer for it, in which
812 * case we get size and version from there. Or we may not yet, in which case
813 * we choose them here and later make the block allocation match.
814 */
815 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,int sz,blkptr_t * bp,boolean_t slog,uint64_t txg,lwb_state_t state)816 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
817 uint64_t txg, lwb_state_t state)
818 {
819 lwb_t *lwb;
820
821 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
822 lwb->lwb_zilog = zilog;
823 if (bp) {
824 lwb->lwb_blk = *bp;
825 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
826 sz = BP_GET_LSIZE(bp);
827 } else {
828 BP_ZERO(&lwb->lwb_blk);
829 lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
830 SPA_VERSION_SLIM_ZIL);
831 }
832 lwb->lwb_slog = slog;
833 lwb->lwb_error = 0;
834 if (lwb->lwb_slim) {
835 lwb->lwb_nmax = sz;
836 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
837 } else {
838 lwb->lwb_nmax = sz - sizeof (zil_chain_t);
839 lwb->lwb_nused = lwb->lwb_nfilled = 0;
840 }
841 lwb->lwb_sz = sz;
842 lwb->lwb_state = state;
843 lwb->lwb_buf = zio_buf_alloc(sz);
844 lwb->lwb_child_zio = NULL;
845 lwb->lwb_write_zio = NULL;
846 lwb->lwb_root_zio = NULL;
847 lwb->lwb_issued_timestamp = 0;
848 lwb->lwb_issued_txg = 0;
849 lwb->lwb_alloc_txg = txg;
850 lwb->lwb_max_txg = 0;
851
852 mutex_enter(&zilog->zl_lock);
853 list_insert_tail(&zilog->zl_lwb_list, lwb);
854 if (state != LWB_STATE_NEW)
855 zilog->zl_last_lwb_opened = lwb;
856 mutex_exit(&zilog->zl_lock);
857
858 return (lwb);
859 }
860
861 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)862 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
863 {
864 ASSERT(MUTEX_HELD(&zilog->zl_lock));
865 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
866 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
867 ASSERT3P(lwb->lwb_child_zio, ==, NULL);
868 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
869 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
870 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
871 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
872 VERIFY(list_is_empty(&lwb->lwb_itxs));
873 VERIFY(list_is_empty(&lwb->lwb_waiters));
874 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
875 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
876
877 /*
878 * Clear the zilog's field to indicate this lwb is no longer
879 * valid, and prevent use-after-free errors.
880 */
881 if (zilog->zl_last_lwb_opened == lwb)
882 zilog->zl_last_lwb_opened = NULL;
883
884 kmem_cache_free(zil_lwb_cache, lwb);
885 }
886
887 /*
888 * Called when we create in-memory log transactions so that we know
889 * to cleanup the itxs at the end of spa_sync().
890 */
891 static void
zilog_dirty(zilog_t * zilog,uint64_t txg)892 zilog_dirty(zilog_t *zilog, uint64_t txg)
893 {
894 dsl_pool_t *dp = zilog->zl_dmu_pool;
895 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
896
897 ASSERT(spa_writeable(zilog->zl_spa));
898
899 if (ds->ds_is_snapshot)
900 panic("dirtying snapshot!");
901
902 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
903 /* up the hold count until we can be written out */
904 dmu_buf_add_ref(ds->ds_dbuf, zilog);
905
906 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
907 }
908 }
909
910 /*
911 * Determine if the zil is dirty in the specified txg. Callers wanting to
912 * ensure that the dirty state does not change must hold the itxg_lock for
913 * the specified txg. Holding the lock will ensure that the zil cannot be
914 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
915 * state.
916 */
917 static boolean_t __maybe_unused
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)918 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
919 {
920 dsl_pool_t *dp = zilog->zl_dmu_pool;
921
922 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
923 return (B_TRUE);
924 return (B_FALSE);
925 }
926
927 /*
928 * Determine if the zil is dirty. The zil is considered dirty if it has
929 * any pending itx records that have not been cleaned by zil_clean().
930 */
931 static boolean_t
zilog_is_dirty(zilog_t * zilog)932 zilog_is_dirty(zilog_t *zilog)
933 {
934 dsl_pool_t *dp = zilog->zl_dmu_pool;
935
936 for (int t = 0; t < TXG_SIZE; t++) {
937 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
938 return (B_TRUE);
939 }
940 return (B_FALSE);
941 }
942
943 /*
944 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
945 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
946 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
947 * zil_commit.
948 */
949 static void
zil_commit_activate_saxattr_feature(zilog_t * zilog)950 zil_commit_activate_saxattr_feature(zilog_t *zilog)
951 {
952 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
953 uint64_t txg = 0;
954 dmu_tx_t *tx = NULL;
955
956 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
957 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
958 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
959 tx = dmu_tx_create(zilog->zl_os);
960 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
961 dsl_dataset_dirty(ds, tx);
962 txg = dmu_tx_get_txg(tx);
963
964 mutex_enter(&ds->ds_lock);
965 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
966 (void *)B_TRUE;
967 mutex_exit(&ds->ds_lock);
968 dmu_tx_commit(tx);
969 txg_wait_synced(zilog->zl_dmu_pool, txg);
970 }
971 }
972
973 /*
974 * Create an on-disk intent log.
975 */
976 static lwb_t *
zil_create(zilog_t * zilog)977 zil_create(zilog_t *zilog)
978 {
979 const zil_header_t *zh = zilog->zl_header;
980 lwb_t *lwb = NULL;
981 uint64_t txg = 0;
982 dmu_tx_t *tx = NULL;
983 blkptr_t blk;
984 int error = 0;
985 boolean_t slog = FALSE;
986 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
987
988
989 /*
990 * Wait for any previous destroy to complete.
991 */
992 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
993
994 ASSERT(zh->zh_claim_txg == 0);
995 ASSERT(zh->zh_replay_seq == 0);
996
997 blk = zh->zh_log;
998
999 /*
1000 * Allocate an initial log block if:
1001 * - there isn't one already
1002 * - the existing block is the wrong endianness
1003 */
1004 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
1005 tx = dmu_tx_create(zilog->zl_os);
1006 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
1007 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1008 txg = dmu_tx_get_txg(tx);
1009
1010 if (!BP_IS_HOLE(&blk)) {
1011 zio_free(zilog->zl_spa, txg, &blk);
1012 BP_ZERO(&blk);
1013 }
1014
1015 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1016 ZIL_MIN_BLKSZ, &slog);
1017 if (error == 0)
1018 zil_init_log_chain(zilog, &blk);
1019 }
1020
1021 /*
1022 * Allocate a log write block (lwb) for the first log block.
1023 */
1024 if (error == 0)
1025 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
1026
1027 /*
1028 * If we just allocated the first log block, commit our transaction
1029 * and wait for zil_sync() to stuff the block pointer into zh_log.
1030 * (zh is part of the MOS, so we cannot modify it in open context.)
1031 */
1032 if (tx != NULL) {
1033 /*
1034 * If "zilsaxattr" feature is enabled on zpool, then activate
1035 * it now when we're creating the ZIL chain. We can't wait with
1036 * this until we write the first xattr log record because we
1037 * need to wait for the feature activation to sync out.
1038 */
1039 if (spa_feature_is_enabled(zilog->zl_spa,
1040 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1041 DMU_OST_ZVOL) {
1042 mutex_enter(&ds->ds_lock);
1043 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1044 (void *)B_TRUE;
1045 mutex_exit(&ds->ds_lock);
1046 }
1047
1048 dmu_tx_commit(tx);
1049 txg_wait_synced(zilog->zl_dmu_pool, txg);
1050 } else {
1051 /*
1052 * This branch covers the case where we enable the feature on a
1053 * zpool that has existing ZIL headers.
1054 */
1055 zil_commit_activate_saxattr_feature(zilog);
1056 }
1057 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1058 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1059 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1060
1061 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1062 IMPLY(error == 0, lwb != NULL);
1063
1064 return (lwb);
1065 }
1066
1067 /*
1068 * In one tx, free all log blocks and clear the log header. If keep_first
1069 * is set, then we're replaying a log with no content. We want to keep the
1070 * first block, however, so that the first synchronous transaction doesn't
1071 * require a txg_wait_synced() in zil_create(). We don't need to
1072 * txg_wait_synced() here either when keep_first is set, because both
1073 * zil_create() and zil_destroy() will wait for any in-progress destroys
1074 * to complete.
1075 * Return B_TRUE if there were any entries to replay.
1076 */
1077 boolean_t
zil_destroy(zilog_t * zilog,boolean_t keep_first)1078 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1079 {
1080 const zil_header_t *zh = zilog->zl_header;
1081 lwb_t *lwb;
1082 dmu_tx_t *tx;
1083 uint64_t txg;
1084
1085 /*
1086 * Wait for any previous destroy to complete.
1087 */
1088 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1089
1090 zilog->zl_old_header = *zh; /* debugging aid */
1091
1092 if (BP_IS_HOLE(&zh->zh_log))
1093 return (B_FALSE);
1094
1095 tx = dmu_tx_create(zilog->zl_os);
1096 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
1097 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1098 txg = dmu_tx_get_txg(tx);
1099
1100 mutex_enter(&zilog->zl_lock);
1101
1102 ASSERT3U(zilog->zl_destroy_txg, <, txg);
1103 zilog->zl_destroy_txg = txg;
1104 zilog->zl_keep_first = keep_first;
1105
1106 if (!list_is_empty(&zilog->zl_lwb_list)) {
1107 ASSERT(zh->zh_claim_txg == 0);
1108 VERIFY(!keep_first);
1109 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1110 if (lwb->lwb_buf != NULL)
1111 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1112 if (!BP_IS_HOLE(&lwb->lwb_blk))
1113 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1114 zil_free_lwb(zilog, lwb);
1115 }
1116 } else if (!keep_first) {
1117 zil_destroy_sync(zilog, tx);
1118 }
1119 mutex_exit(&zilog->zl_lock);
1120
1121 dmu_tx_commit(tx);
1122
1123 return (B_TRUE);
1124 }
1125
1126 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)1127 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1128 {
1129 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1130 (void) zil_parse(zilog, zil_free_log_block,
1131 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1132 }
1133
1134 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)1135 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1136 {
1137 dmu_tx_t *tx = txarg;
1138 zilog_t *zilog;
1139 uint64_t first_txg;
1140 zil_header_t *zh;
1141 objset_t *os;
1142 int error;
1143
1144 error = dmu_objset_own_obj(dp, ds->ds_object,
1145 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1146 if (error != 0) {
1147 /*
1148 * EBUSY indicates that the objset is inconsistent, in which
1149 * case it can not have a ZIL.
1150 */
1151 if (error != EBUSY) {
1152 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1153 (unsigned long long)ds->ds_object, error);
1154 }
1155
1156 return (0);
1157 }
1158
1159 zilog = dmu_objset_zil(os);
1160 zh = zil_header_in_syncing_context(zilog);
1161 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1162 first_txg = spa_min_claim_txg(zilog->zl_spa);
1163
1164 /*
1165 * If the spa_log_state is not set to be cleared, check whether
1166 * the current uberblock is a checkpoint one and if the current
1167 * header has been claimed before moving on.
1168 *
1169 * If the current uberblock is a checkpointed uberblock then
1170 * one of the following scenarios took place:
1171 *
1172 * 1] We are currently rewinding to the checkpoint of the pool.
1173 * 2] We crashed in the middle of a checkpoint rewind but we
1174 * did manage to write the checkpointed uberblock to the
1175 * vdev labels, so when we tried to import the pool again
1176 * the checkpointed uberblock was selected from the import
1177 * procedure.
1178 *
1179 * In both cases we want to zero out all the ZIL blocks, except
1180 * the ones that have been claimed at the time of the checkpoint
1181 * (their zh_claim_txg != 0). The reason is that these blocks
1182 * may be corrupted since we may have reused their locations on
1183 * disk after we took the checkpoint.
1184 *
1185 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1186 * when we first figure out whether the current uberblock is
1187 * checkpointed or not. Unfortunately, that would discard all
1188 * the logs, including the ones that are claimed, and we would
1189 * leak space.
1190 */
1191 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1192 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1193 zh->zh_claim_txg == 0)) {
1194 if (!BP_IS_HOLE(&zh->zh_log)) {
1195 (void) zil_parse(zilog, zil_clear_log_block,
1196 zil_noop_log_record, tx, first_txg, B_FALSE);
1197 }
1198 BP_ZERO(&zh->zh_log);
1199 if (os->os_encrypted)
1200 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1201 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1202 dmu_objset_disown(os, B_FALSE, FTAG);
1203 return (0);
1204 }
1205
1206 /*
1207 * If we are not rewinding and opening the pool normally, then
1208 * the min_claim_txg should be equal to the first txg of the pool.
1209 */
1210 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1211
1212 /*
1213 * Claim all log blocks if we haven't already done so, and remember
1214 * the highest claimed sequence number. This ensures that if we can
1215 * read only part of the log now (e.g. due to a missing device),
1216 * but we can read the entire log later, we will not try to replay
1217 * or destroy beyond the last block we successfully claimed.
1218 */
1219 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1220 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1221 (void) zil_parse(zilog, zil_claim_log_block,
1222 zil_claim_log_record, tx, first_txg, B_FALSE);
1223 zh->zh_claim_txg = first_txg;
1224 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1225 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1226 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1227 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1228 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1229 if (os->os_encrypted)
1230 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1231 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1232 }
1233
1234 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1235 dmu_objset_disown(os, B_FALSE, FTAG);
1236 return (0);
1237 }
1238
1239 /*
1240 * Check the log by walking the log chain.
1241 * Checksum errors are ok as they indicate the end of the chain.
1242 * Any other error (no device or read failure) returns an error.
1243 */
1244 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)1245 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1246 {
1247 (void) dp;
1248 zilog_t *zilog;
1249 objset_t *os;
1250 blkptr_t *bp;
1251 int error;
1252
1253 ASSERT(tx == NULL);
1254
1255 error = dmu_objset_from_ds(ds, &os);
1256 if (error != 0) {
1257 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1258 (unsigned long long)ds->ds_object, error);
1259 return (0);
1260 }
1261
1262 zilog = dmu_objset_zil(os);
1263 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1264
1265 if (!BP_IS_HOLE(bp)) {
1266 vdev_t *vd;
1267 boolean_t valid = B_TRUE;
1268
1269 /*
1270 * Check the first block and determine if it's on a log device
1271 * which may have been removed or faulted prior to loading this
1272 * pool. If so, there's no point in checking the rest of the
1273 * log as its content should have already been synced to the
1274 * pool.
1275 */
1276 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1277 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1278 if (vd->vdev_islog && vdev_is_dead(vd))
1279 valid = vdev_log_state_valid(vd);
1280 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1281
1282 if (!valid)
1283 return (0);
1284
1285 /*
1286 * Check whether the current uberblock is checkpointed (e.g.
1287 * we are rewinding) and whether the current header has been
1288 * claimed or not. If it hasn't then skip verifying it. We
1289 * do this because its ZIL blocks may be part of the pool's
1290 * state before the rewind, which is no longer valid.
1291 */
1292 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1293 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1294 zh->zh_claim_txg == 0)
1295 return (0);
1296 }
1297
1298 /*
1299 * Because tx == NULL, zil_claim_log_block() will not actually claim
1300 * any blocks, but just determine whether it is possible to do so.
1301 * In addition to checking the log chain, zil_claim_log_block()
1302 * will invoke zio_claim() with a done func of spa_claim_notify(),
1303 * which will update spa_max_claim_txg. See spa_load() for details.
1304 */
1305 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1306 zilog->zl_header->zh_claim_txg ? -1ULL :
1307 spa_min_claim_txg(os->os_spa), B_FALSE);
1308
1309 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1310 }
1311
1312 /*
1313 * When an itx is "skipped", this function is used to properly mark the
1314 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1315 * be skipped (and not committed to an lwb) for a variety of reasons,
1316 * one of them being that the itx was committed via spa_sync(), prior to
1317 * it being committed to an lwb; this can happen if a thread calling
1318 * zil_commit() is racing with spa_sync().
1319 */
1320 static void
zil_commit_waiter_skip(zil_commit_waiter_t * zcw)1321 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1322 {
1323 mutex_enter(&zcw->zcw_lock);
1324 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1325 zcw->zcw_done = B_TRUE;
1326 cv_broadcast(&zcw->zcw_cv);
1327 mutex_exit(&zcw->zcw_lock);
1328 }
1329
1330 /*
1331 * This function is used when the given waiter is to be linked into an
1332 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1333 * At this point, the waiter will no longer be referenced by the itx,
1334 * and instead, will be referenced by the lwb.
1335 */
1336 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)1337 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1338 {
1339 /*
1340 * The lwb_waiters field of the lwb is protected by the zilog's
1341 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1342 * zl_issuer_lock also protects leaving the open state.
1343 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1344 * flush_done, which transition is protected by zl_lock.
1345 */
1346 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1347 IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1348 MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1349 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1350 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1351
1352 ASSERT(!list_link_active(&zcw->zcw_node));
1353 list_insert_tail(&lwb->lwb_waiters, zcw);
1354 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1355 zcw->zcw_lwb = lwb;
1356 }
1357
1358 /*
1359 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1360 * block, and the given waiter must be linked to the "nolwb waiters"
1361 * list inside of zil_process_commit_list().
1362 */
1363 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)1364 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1365 {
1366 ASSERT(!list_link_active(&zcw->zcw_node));
1367 list_insert_tail(nolwb, zcw);
1368 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1369 }
1370
1371 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)1372 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1373 {
1374 avl_tree_t *t = &lwb->lwb_vdev_tree;
1375 avl_index_t where;
1376 zil_vdev_node_t *zv, zvsearch;
1377 int ndvas = BP_GET_NDVAS(bp);
1378 int i;
1379
1380 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1381 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1382
1383 if (zil_nocacheflush)
1384 return;
1385
1386 mutex_enter(&lwb->lwb_vdev_lock);
1387 for (i = 0; i < ndvas; i++) {
1388 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1389 if (avl_find(t, &zvsearch, &where) == NULL) {
1390 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1391 zv->zv_vdev = zvsearch.zv_vdev;
1392 avl_insert(t, zv, where);
1393 }
1394 }
1395 mutex_exit(&lwb->lwb_vdev_lock);
1396 }
1397
1398 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1399 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1400 {
1401 avl_tree_t *src = &lwb->lwb_vdev_tree;
1402 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1403 void *cookie = NULL;
1404 zil_vdev_node_t *zv;
1405
1406 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1407 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1408 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1409
1410 /*
1411 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1412 * not need the protection of lwb_vdev_lock (it will only be modified
1413 * while holding zilog->zl_lock) as its writes and those of its
1414 * children have all completed. The younger 'nlwb' may be waiting on
1415 * future writes to additional vdevs.
1416 */
1417 mutex_enter(&nlwb->lwb_vdev_lock);
1418 /*
1419 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1420 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1421 */
1422 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1423 avl_index_t where;
1424
1425 if (avl_find(dst, zv, &where) == NULL) {
1426 avl_insert(dst, zv, where);
1427 } else {
1428 kmem_free(zv, sizeof (*zv));
1429 }
1430 }
1431 mutex_exit(&nlwb->lwb_vdev_lock);
1432 }
1433
1434 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1435 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1436 {
1437 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1438 }
1439
1440 /*
1441 * This function is a called after all vdevs associated with a given lwb write
1442 * have completed their flush command; or as soon as the lwb write completes,
1443 * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1444 * completed before this function is called; i.e. this function is called for
1445 * all previous lwbs before it's called for "this" lwb (enforced via zio the
1446 * dependencies configured in zil_lwb_set_zio_dependency()).
1447 *
1448 * The intention is for this function to be called as soon as the contents of
1449 * an lwb are considered "stable" on disk, and will survive any sudden loss of
1450 * power. At this point, any threads waiting for the lwb to reach this state
1451 * are signalled, and the "waiter" structures are marked "done".
1452 */
1453 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1454 zil_lwb_flush_vdevs_done(zio_t *zio)
1455 {
1456 lwb_t *lwb = zio->io_private;
1457 zilog_t *zilog = lwb->lwb_zilog;
1458 zil_commit_waiter_t *zcw;
1459 itx_t *itx;
1460
1461 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1462
1463 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1464
1465 mutex_enter(&zilog->zl_lock);
1466
1467 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1468
1469 lwb->lwb_root_zio = NULL;
1470
1471 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1472 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1473
1474 if (zilog->zl_last_lwb_opened == lwb) {
1475 /*
1476 * Remember the highest committed log sequence number
1477 * for ztest. We only update this value when all the log
1478 * writes succeeded, because ztest wants to ASSERT that
1479 * it got the whole log chain.
1480 */
1481 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1482 }
1483
1484 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1485 zil_itx_destroy(itx);
1486
1487 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1488 mutex_enter(&zcw->zcw_lock);
1489
1490 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1491 zcw->zcw_lwb = NULL;
1492 /*
1493 * We expect any ZIO errors from child ZIOs to have been
1494 * propagated "up" to this specific LWB's root ZIO, in
1495 * order for this error handling to work correctly. This
1496 * includes ZIO errors from either this LWB's write or
1497 * flush, as well as any errors from other dependent LWBs
1498 * (e.g. a root LWB ZIO that might be a child of this LWB).
1499 *
1500 * With that said, it's important to note that LWB flush
1501 * errors are not propagated up to the LWB root ZIO.
1502 * This is incorrect behavior, and results in VDEV flush
1503 * errors not being handled correctly here. See the
1504 * comment above the call to "zio_flush" for details.
1505 */
1506
1507 zcw->zcw_zio_error = zio->io_error;
1508
1509 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1510 zcw->zcw_done = B_TRUE;
1511 cv_broadcast(&zcw->zcw_cv);
1512
1513 mutex_exit(&zcw->zcw_lock);
1514 }
1515
1516 uint64_t txg = lwb->lwb_issued_txg;
1517
1518 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1519 mutex_exit(&zilog->zl_lock);
1520
1521 mutex_enter(&zilog->zl_lwb_io_lock);
1522 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1523 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1524 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1525 cv_broadcast(&zilog->zl_lwb_io_cv);
1526 mutex_exit(&zilog->zl_lwb_io_lock);
1527 }
1528
1529 /*
1530 * Wait for the completion of all issued write/flush of that txg provided.
1531 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1532 */
1533 static void
zil_lwb_flush_wait_all(zilog_t * zilog,uint64_t txg)1534 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1535 {
1536 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1537
1538 mutex_enter(&zilog->zl_lwb_io_lock);
1539 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1540 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1541 mutex_exit(&zilog->zl_lwb_io_lock);
1542
1543 #ifdef ZFS_DEBUG
1544 mutex_enter(&zilog->zl_lock);
1545 mutex_enter(&zilog->zl_lwb_io_lock);
1546 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1547 while (lwb != NULL) {
1548 if (lwb->lwb_issued_txg <= txg) {
1549 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1550 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1551 IMPLY(lwb->lwb_issued_txg > 0,
1552 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1553 }
1554 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1555 lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1556 lwb->lwb_buf == NULL);
1557 lwb = list_next(&zilog->zl_lwb_list, lwb);
1558 }
1559 mutex_exit(&zilog->zl_lwb_io_lock);
1560 mutex_exit(&zilog->zl_lock);
1561 #endif
1562 }
1563
1564 /*
1565 * This is called when an lwb's write zio completes. The callback's purpose is
1566 * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1567 * tree will contain the vdevs involved in writing out this specific lwb's
1568 * data, and in the case that cache flushes have been deferred, vdevs involved
1569 * in writing the data for previous lwbs. The writes corresponding to all the
1570 * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1571 * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1572 * which takes deferred flushes into account. The lwb will be "done" once
1573 * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1574 * callback for the lwb's root zio.
1575 */
1576 static void
zil_lwb_write_done(zio_t * zio)1577 zil_lwb_write_done(zio_t *zio)
1578 {
1579 lwb_t *lwb = zio->io_private;
1580 spa_t *spa = zio->io_spa;
1581 zilog_t *zilog = lwb->lwb_zilog;
1582 avl_tree_t *t = &lwb->lwb_vdev_tree;
1583 void *cookie = NULL;
1584 zil_vdev_node_t *zv;
1585 lwb_t *nlwb;
1586
1587 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1588
1589 abd_free(zio->io_abd);
1590 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1591 lwb->lwb_buf = NULL;
1592
1593 mutex_enter(&zilog->zl_lock);
1594 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1595 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1596 lwb->lwb_child_zio = NULL;
1597 lwb->lwb_write_zio = NULL;
1598
1599 /*
1600 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1601 * called for it yet, and when it will be, it won't be able to make
1602 * its write ZIO a parent this ZIO. In such case we can not defer
1603 * our flushes or below may be a race between the done callbacks.
1604 */
1605 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1606 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1607 nlwb = NULL;
1608 mutex_exit(&zilog->zl_lock);
1609
1610 if (avl_numnodes(t) == 0)
1611 return;
1612
1613 /*
1614 * If there was an IO error, we're not going to call zio_flush()
1615 * on these vdevs, so we simply empty the tree and free the
1616 * nodes. We avoid calling zio_flush() since there isn't any
1617 * good reason for doing so, after the lwb block failed to be
1618 * written out.
1619 *
1620 * Additionally, we don't perform any further error handling at
1621 * this point (e.g. setting "zcw_zio_error" appropriately), as
1622 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1623 * we expect any error seen here, to have been propagated to
1624 * that function).
1625 */
1626 if (zio->io_error != 0) {
1627 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1628 kmem_free(zv, sizeof (*zv));
1629 return;
1630 }
1631
1632 /*
1633 * If this lwb does not have any threads waiting for it to complete, we
1634 * want to defer issuing the flush command to the vdevs written to by
1635 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1636 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1637 * with the vdev tree of the "next" lwb in the list, and assume the
1638 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1639 * again).
1640 *
1641 * This is a useful performance optimization, especially for workloads
1642 * with lots of async write activity and few sync write and/or fsync
1643 * activity, as it has the potential to coalesce multiple flush
1644 * commands to a vdev into one.
1645 */
1646 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1647 zil_lwb_flush_defer(lwb, nlwb);
1648 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1649 return;
1650 }
1651
1652 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1653 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1654 if (vd != NULL) {
1655 /*
1656 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1657 * always used within "zio_flush". This means,
1658 * any errors when flushing the vdev(s), will
1659 * (unfortunately) not be handled correctly,
1660 * since these "zio_flush" errors will not be
1661 * propagated up to "zil_lwb_flush_vdevs_done".
1662 */
1663 zio_flush(lwb->lwb_root_zio, vd);
1664 }
1665 kmem_free(zv, sizeof (*zv));
1666 }
1667 }
1668
1669 /*
1670 * Build the zio dependency chain, which is used to preserve the ordering of
1671 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1672 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1673 * cannot complete until the previous lwb's zio completes.
1674 *
1675 * This is required by the semantics of zil_commit(): the commit waiters
1676 * attached to the lwbs will be woken in the lwb zio's completion callback,
1677 * so this zio dependency graph ensures the waiters are woken in the correct
1678 * order (the same order the lwbs were created).
1679 */
1680 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1681 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1682 {
1683 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1684
1685 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1686 if (prev_lwb == NULL ||
1687 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1688 return;
1689
1690 /*
1691 * If the previous lwb's write hasn't already completed, we also want
1692 * to order the completion of the lwb write zios (above, we only order
1693 * the completion of the lwb root zios). This is required because of
1694 * how we can defer the flush commands for each lwb.
1695 *
1696 * When the flush commands are deferred, the previous lwb will rely on
1697 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1698 * we need to ensure this lwb doesn't issue the flush until after the
1699 * previous lwb's write completes. We ensure this ordering by setting
1700 * the zio parent/child relationship here.
1701 *
1702 * Without this relationship on the lwb's write zio, it's possible for
1703 * this lwb's write to complete prior to the previous lwb's write
1704 * completing; and thus, the vdevs for the previous lwb would be
1705 * flushed prior to that lwb's data being written to those vdevs (the
1706 * vdevs are flushed in the lwb write zio's completion handler,
1707 * zil_lwb_write_done()).
1708 */
1709 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1710 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1711 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1712 } else {
1713 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1714 }
1715
1716 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1717 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1718 }
1719
1720
1721 /*
1722 * This function's purpose is to "open" an lwb such that it is ready to
1723 * accept new itxs being committed to it. This function is idempotent; if
1724 * the passed in lwb has already been opened, it is essentially a no-op.
1725 */
1726 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1727 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1728 {
1729 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1730
1731 if (lwb->lwb_state != LWB_STATE_NEW) {
1732 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1733 return;
1734 }
1735
1736 mutex_enter(&zilog->zl_lock);
1737 lwb->lwb_state = LWB_STATE_OPENED;
1738 zilog->zl_last_lwb_opened = lwb;
1739 mutex_exit(&zilog->zl_lock);
1740 }
1741
1742 /*
1743 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1744 * initialized. Otherwise this should not be used directly; see
1745 * zl_max_block_size instead.
1746 */
1747 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1748
1749 /*
1750 * Plan splitting of the provided burst size between several blocks.
1751 */
1752 static uint_t
zil_lwb_plan(zilog_t * zilog,uint64_t size,uint_t * minsize)1753 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1754 {
1755 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1756
1757 if (size <= md) {
1758 /*
1759 * Small bursts are written as-is in one block.
1760 */
1761 *minsize = size;
1762 return (size);
1763 } else if (size > 8 * md) {
1764 /*
1765 * Big bursts use maximum blocks. The first block size
1766 * is hard to predict, but it does not really matter.
1767 */
1768 *minsize = 0;
1769 return (md);
1770 }
1771
1772 /*
1773 * Medium bursts try to divide evenly to better utilize several SLOG
1774 * VDEVs. The first block size we predict assuming the worst case of
1775 * maxing out others. Fall back to using maximum blocks if due to
1776 * large records or wasted space we can not predict anything better.
1777 */
1778 uint_t s = size;
1779 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1780 uint_t chunk = DIV_ROUND_UP(s, n);
1781 uint_t waste = zil_max_waste_space(zilog);
1782 waste = MAX(waste, zilog->zl_cur_max);
1783 if (chunk <= md - waste) {
1784 *minsize = MAX(s - (md - waste) * (n - 1), waste);
1785 return (chunk);
1786 } else {
1787 *minsize = 0;
1788 return (md);
1789 }
1790 }
1791
1792 /*
1793 * Try to predict next block size based on previous history. Make prediction
1794 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is
1795 * less then 50%, extra writes may cost more, but we don't want single spike
1796 * to badly affect our predictions.
1797 */
1798 static uint_t
zil_lwb_predict(zilog_t * zilog)1799 zil_lwb_predict(zilog_t *zilog)
1800 {
1801 uint_t m, o;
1802
1803 /* If we are in the middle of a burst, take it into account also. */
1804 if (zilog->zl_cur_size > 0) {
1805 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1806 } else {
1807 o = UINT_MAX;
1808 m = 0;
1809 }
1810
1811 /* Find minimum optimal size. We don't need to go below that. */
1812 for (int i = 0; i < ZIL_BURSTS; i++)
1813 o = MIN(o, zilog->zl_prev_opt[i]);
1814
1815 /* Find two biggest minimal first block sizes above the optimal. */
1816 uint_t m1 = MAX(m, o), m2 = o;
1817 for (int i = 0; i < ZIL_BURSTS; i++) {
1818 m = zilog->zl_prev_min[i];
1819 if (m >= m1) {
1820 m2 = m1;
1821 m1 = m;
1822 } else if (m > m2) {
1823 m2 = m;
1824 }
1825 }
1826
1827 /*
1828 * If second minimum size gives 50% saving -- use it. It may cost us
1829 * one additional write later, but the space saving is just too big.
1830 */
1831 return ((m1 < m2 * 2) ? m1 : m2);
1832 }
1833
1834 /*
1835 * Close the log block for being issued and allocate the next one.
1836 * Has to be called under zl_issuer_lock to chain more lwbs.
1837 */
1838 static lwb_t *
zil_lwb_write_close(zilog_t * zilog,lwb_t * lwb,lwb_state_t state)1839 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1840 {
1841 uint64_t blksz, plan, plan2;
1842
1843 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1844 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1845 lwb->lwb_state = LWB_STATE_CLOSED;
1846
1847 /*
1848 * If there was an allocation failure then returned NULL will trigger
1849 * zil_commit_writer_stall() at the caller. This is inherently racy,
1850 * since allocation may not have happened yet.
1851 */
1852 if (lwb->lwb_error != 0)
1853 return (NULL);
1854
1855 /*
1856 * Log blocks are pre-allocated. Here we select the size of the next
1857 * block, based on what's left of this burst and the previous history.
1858 * While we try to only write used part of the block, we can't just
1859 * always allocate the maximum block size because we can exhaust all
1860 * available pool log space, so we try to be reasonable.
1861 */
1862 if (zilog->zl_cur_left > 0) {
1863 /*
1864 * We are in the middle of a burst and know how much is left.
1865 * But if workload is multi-threaded there may be more soon.
1866 * Try to predict what can it be and plan for the worst case.
1867 */
1868 uint_t m;
1869 plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1870 if (zilog->zl_parallel) {
1871 plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1872 zil_lwb_predict(zilog), &m);
1873 if (plan < plan2)
1874 plan = plan2;
1875 }
1876 } else {
1877 /*
1878 * The previous burst is done and we can only predict what
1879 * will come next.
1880 */
1881 plan = zil_lwb_predict(zilog);
1882 }
1883 blksz = plan + sizeof (zil_chain_t);
1884 blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1885 blksz = MIN(blksz, zilog->zl_max_block_size);
1886 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1887 uint64_t, plan);
1888
1889 return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1890 }
1891
1892 /*
1893 * Finalize previously closed block and issue the write zio.
1894 */
1895 static void
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1896 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1897 {
1898 spa_t *spa = zilog->zl_spa;
1899 zil_chain_t *zilc;
1900 boolean_t slog;
1901 zbookmark_phys_t zb;
1902 zio_priority_t prio;
1903 int error;
1904
1905 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1906
1907 /* Actually fill the lwb with the data. */
1908 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1909 itx = list_next(&lwb->lwb_itxs, itx))
1910 zil_lwb_commit(zilog, lwb, itx);
1911 lwb->lwb_nused = lwb->lwb_nfilled;
1912 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1913
1914 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1915 ZIO_FLAG_CANFAIL);
1916
1917 /*
1918 * The lwb is now ready to be issued, but it can be only if it already
1919 * got its block pointer allocated or the allocation has failed.
1920 * Otherwise leave it as-is, relying on some other thread to issue it
1921 * after allocating its block pointer via calling zil_lwb_write_issue()
1922 * for the previous lwb(s) in the chain.
1923 */
1924 mutex_enter(&zilog->zl_lock);
1925 lwb->lwb_state = LWB_STATE_READY;
1926 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1927 mutex_exit(&zilog->zl_lock);
1928 return;
1929 }
1930 mutex_exit(&zilog->zl_lock);
1931
1932 next_lwb:
1933 if (lwb->lwb_slim)
1934 zilc = (zil_chain_t *)lwb->lwb_buf;
1935 else
1936 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1937 int wsz = lwb->lwb_sz;
1938 if (lwb->lwb_error == 0) {
1939 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1940 if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1941 prio = ZIO_PRIORITY_SYNC_WRITE;
1942 else
1943 prio = ZIO_PRIORITY_ASYNC_WRITE;
1944 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1945 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1946 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1947 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1948 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1949 lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1950 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1951
1952 if (lwb->lwb_slim) {
1953 /* For Slim ZIL only write what is used. */
1954 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1955 int);
1956 ASSERT3S(wsz, <=, lwb->lwb_sz);
1957 zio_shrink(lwb->lwb_write_zio, wsz);
1958 wsz = lwb->lwb_write_zio->io_size;
1959 }
1960 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1961 zilc->zc_pad = 0;
1962 zilc->zc_nused = lwb->lwb_nused;
1963 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1964 } else {
1965 /*
1966 * We can't write the lwb if there was an allocation failure,
1967 * so create a null zio instead just to maintain dependencies.
1968 */
1969 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1970 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1971 lwb->lwb_write_zio->io_error = lwb->lwb_error;
1972 }
1973 if (lwb->lwb_child_zio)
1974 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1975
1976 /*
1977 * Open transaction to allocate the next block pointer.
1978 */
1979 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1980 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_NOTHROTTLE));
1981 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1982 uint64_t txg = dmu_tx_get_txg(tx);
1983
1984 /*
1985 * Allocate next the block pointer unless we are already in error.
1986 */
1987 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1988 blkptr_t *bp = &zilc->zc_next_blk;
1989 BP_ZERO(bp);
1990 error = lwb->lwb_error;
1991 if (error == 0) {
1992 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1993 &slog);
1994 }
1995 if (error == 0) {
1996 ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg);
1997 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1998 ZIO_CHECKSUM_ZILOG);
1999 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
2000 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
2001 }
2002
2003 /*
2004 * Reduce TXG open time by incrementing inflight counter and committing
2005 * the transaciton. zil_sync() will wait for it to return to zero.
2006 */
2007 mutex_enter(&zilog->zl_lwb_io_lock);
2008 lwb->lwb_issued_txg = txg;
2009 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
2010 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
2011 mutex_exit(&zilog->zl_lwb_io_lock);
2012 dmu_tx_commit(tx);
2013
2014 spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
2015
2016 /*
2017 * We've completed all potentially blocking operations. Update the
2018 * nlwb and allow it proceed without possible lock order reversals.
2019 */
2020 mutex_enter(&zilog->zl_lock);
2021 zil_lwb_set_zio_dependency(zilog, lwb);
2022 lwb->lwb_state = LWB_STATE_ISSUED;
2023
2024 if (nlwb) {
2025 nlwb->lwb_blk = *bp;
2026 nlwb->lwb_error = error;
2027 nlwb->lwb_slog = slog;
2028 nlwb->lwb_alloc_txg = txg;
2029 if (nlwb->lwb_state != LWB_STATE_READY)
2030 nlwb = NULL;
2031 }
2032 mutex_exit(&zilog->zl_lock);
2033
2034 if (lwb->lwb_slog) {
2035 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2036 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2037 lwb->lwb_nused);
2038 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2039 wsz);
2040 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2041 BP_GET_LSIZE(&lwb->lwb_blk));
2042 } else {
2043 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2044 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2045 lwb->lwb_nused);
2046 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2047 wsz);
2048 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2049 BP_GET_LSIZE(&lwb->lwb_blk));
2050 }
2051 lwb->lwb_issued_timestamp = gethrtime();
2052 if (lwb->lwb_child_zio)
2053 zio_nowait(lwb->lwb_child_zio);
2054 zio_nowait(lwb->lwb_write_zio);
2055 zio_nowait(lwb->lwb_root_zio);
2056
2057 /*
2058 * If nlwb was ready when we gave it the block pointer,
2059 * it is on us to issue it and possibly following ones.
2060 */
2061 lwb = nlwb;
2062 if (lwb)
2063 goto next_lwb;
2064 }
2065
2066 /*
2067 * Maximum amount of data that can be put into single log block.
2068 */
2069 uint64_t
zil_max_log_data(zilog_t * zilog,size_t hdrsize)2070 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2071 {
2072 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2073 }
2074
2075 /*
2076 * Maximum amount of log space we agree to waste to reduce number of
2077 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2078 */
2079 static inline uint64_t
zil_max_waste_space(zilog_t * zilog)2080 zil_max_waste_space(zilog_t *zilog)
2081 {
2082 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2083 }
2084
2085 /*
2086 * Maximum amount of write data for WR_COPIED. For correctness, consumers
2087 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2088 * maximum sized log block, because each WR_COPIED record must fit in a
2089 * single log block. Below that it is a tradeoff of additional memory copy
2090 * and possibly worse log space efficiency vs additional range lock/unlock.
2091 */
2092 static uint_t zil_maxcopied = 7680;
2093
2094 uint64_t
zil_max_copied_data(zilog_t * zilog)2095 zil_max_copied_data(zilog_t *zilog)
2096 {
2097 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2098 return (MIN(max_data, zil_maxcopied));
2099 }
2100
2101 static uint64_t
zil_itx_record_size(itx_t * itx)2102 zil_itx_record_size(itx_t *itx)
2103 {
2104 lr_t *lr = &itx->itx_lr;
2105
2106 if (lr->lrc_txtype == TX_COMMIT)
2107 return (0);
2108 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2109 return (lr->lrc_reclen);
2110 }
2111
2112 static uint64_t
zil_itx_data_size(itx_t * itx)2113 zil_itx_data_size(itx_t *itx)
2114 {
2115 lr_t *lr = &itx->itx_lr;
2116 lr_write_t *lrw = (lr_write_t *)lr;
2117
2118 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2119 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2120 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2121 uint64_t));
2122 }
2123 return (0);
2124 }
2125
2126 static uint64_t
zil_itx_full_size(itx_t * itx)2127 zil_itx_full_size(itx_t *itx)
2128 {
2129 lr_t *lr = &itx->itx_lr;
2130
2131 if (lr->lrc_txtype == TX_COMMIT)
2132 return (0);
2133 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2134 return (lr->lrc_reclen + zil_itx_data_size(itx));
2135 }
2136
2137 /*
2138 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2139 * split the itx as needed, but don't touch the actual transaction data.
2140 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2141 * to chain more lwbs.
2142 */
2143 static lwb_t *
zil_lwb_assign(zilog_t * zilog,lwb_t * lwb,itx_t * itx,list_t * ilwbs)2144 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2145 {
2146 itx_t *citx;
2147 lr_t *lr, *clr;
2148 lr_write_t *lrw;
2149 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2150
2151 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2152 ASSERT3P(lwb, !=, NULL);
2153 ASSERT3P(lwb->lwb_buf, !=, NULL);
2154
2155 zil_lwb_write_open(zilog, lwb);
2156
2157 lr = &itx->itx_lr;
2158 lrw = (lr_write_t *)lr;
2159
2160 /*
2161 * A commit itx doesn't represent any on-disk state; instead
2162 * it's simply used as a place holder on the commit list, and
2163 * provides a mechanism for attaching a "commit waiter" onto the
2164 * correct lwb (such that the waiter can be signalled upon
2165 * completion of that lwb). Thus, we don't process this itx's
2166 * log record if it's a commit itx (these itx's don't have log
2167 * records), and instead link the itx's waiter onto the lwb's
2168 * list of waiters.
2169 *
2170 * For more details, see the comment above zil_commit().
2171 */
2172 if (lr->lrc_txtype == TX_COMMIT) {
2173 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2174 list_insert_tail(&lwb->lwb_itxs, itx);
2175 return (lwb);
2176 }
2177
2178 reclen = lr->lrc_reclen;
2179 ASSERT3U(reclen, >=, sizeof (lr_t));
2180 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2181 dlen = zil_itx_data_size(itx);
2182
2183 cont:
2184 /*
2185 * If this record won't fit in the current log block, start a new one.
2186 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2187 */
2188 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2189 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2190 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2191 lwb_sp < zil_max_waste_space(zilog) &&
2192 (dlen % max_log_data == 0 ||
2193 lwb_sp < reclen + dlen % max_log_data))) {
2194 list_insert_tail(ilwbs, lwb);
2195 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2196 if (lwb == NULL)
2197 return (NULL);
2198 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2199 }
2200
2201 /*
2202 * There must be enough space in the log block to hold reclen.
2203 * For WR_COPIED, we need to fit the whole record in one block,
2204 * and reclen is the write record header size + the data size.
2205 * For WR_NEED_COPY, we can create multiple records, splitting
2206 * the data into multiple blocks, so we only need to fit one
2207 * word of data per block; in this case reclen is just the header
2208 * size (no data).
2209 */
2210 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2211
2212 dnow = MIN(dlen, lwb_sp - reclen);
2213 if (dlen > dnow) {
2214 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2215 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2216 citx = zil_itx_clone(itx);
2217 clr = &citx->itx_lr;
2218 lr_write_t *clrw = (lr_write_t *)clr;
2219 clrw->lr_length = dnow;
2220 lrw->lr_offset += dnow;
2221 lrw->lr_length -= dnow;
2222 zilog->zl_cur_left -= dnow;
2223 } else {
2224 citx = itx;
2225 clr = lr;
2226 }
2227
2228 /*
2229 * We're actually making an entry, so update lrc_seq to be the
2230 * log record sequence number. Note that this is generally not
2231 * equal to the itx sequence number because not all transactions
2232 * are synchronous, and sometimes spa_sync() gets there first.
2233 */
2234 clr->lrc_seq = ++zilog->zl_lr_seq;
2235
2236 lwb->lwb_nused += reclen + dnow;
2237 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2238 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2239
2240 zil_lwb_add_txg(lwb, lr->lrc_txg);
2241 list_insert_tail(&lwb->lwb_itxs, citx);
2242
2243 dlen -= dnow;
2244 if (dlen > 0)
2245 goto cont;
2246
2247 if (lr->lrc_txtype == TX_WRITE &&
2248 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2249 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2250
2251 return (lwb);
2252 }
2253
2254 /*
2255 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2256 * Does not require locking.
2257 */
2258 static void
zil_lwb_commit(zilog_t * zilog,lwb_t * lwb,itx_t * itx)2259 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2260 {
2261 lr_t *lr, *lrb;
2262 lr_write_t *lrw, *lrwb;
2263 char *lr_buf;
2264 uint64_t dlen, reclen;
2265
2266 lr = &itx->itx_lr;
2267 lrw = (lr_write_t *)lr;
2268
2269 if (lr->lrc_txtype == TX_COMMIT)
2270 return;
2271
2272 reclen = lr->lrc_reclen;
2273 dlen = zil_itx_data_size(itx);
2274 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2275
2276 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2277 memcpy(lr_buf, lr, reclen);
2278 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
2279 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
2280
2281 ZIL_STAT_BUMP(zilog, zil_itx_count);
2282
2283 /*
2284 * If it's a write, fetch the data or get its blkptr as appropriate.
2285 */
2286 if (lr->lrc_txtype == TX_WRITE) {
2287 if (itx->itx_wr_state == WR_COPIED) {
2288 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2289 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2290 lrw->lr_length);
2291 } else {
2292 char *dbuf;
2293 int error;
2294
2295 if (itx->itx_wr_state == WR_NEED_COPY) {
2296 dbuf = lr_buf + reclen;
2297 lrb->lrc_reclen += dlen;
2298 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2299 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2300 dlen);
2301 } else {
2302 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2303 dbuf = NULL;
2304 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2305 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2306 lrw->lr_length);
2307 if (lwb->lwb_child_zio == NULL) {
2308 lwb->lwb_child_zio = zio_null(NULL,
2309 zilog->zl_spa, NULL, NULL, NULL,
2310 ZIO_FLAG_CANFAIL);
2311 }
2312 }
2313
2314 /*
2315 * The "lwb_child_zio" we pass in will become a child of
2316 * "lwb_write_zio", when one is created, so one will be
2317 * a parent of any zio's created by the "zl_get_data".
2318 * This way "lwb_write_zio" will first wait for children
2319 * block pointers before own writing, and then for their
2320 * writing completion before the vdev cache flushing.
2321 */
2322 error = zilog->zl_get_data(itx->itx_private,
2323 itx->itx_gen, lrwb, dbuf, lwb,
2324 lwb->lwb_child_zio);
2325 if (dbuf != NULL && error == 0) {
2326 /* Zero any padding bytes in the last block. */
2327 memset((char *)dbuf + lrwb->lr_length, 0,
2328 dlen - lrwb->lr_length);
2329 }
2330
2331 /*
2332 * Typically, the only return values we should see from
2333 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2334 * EALREADY. However, it is also possible to see other
2335 * error values such as ENOSPC or EINVAL from
2336 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2337 * ENXIO as well as a multitude of others from the
2338 * block layer through dmu_buf_hold() -> dbuf_read()
2339 * -> zio_wait(), as well as through dmu_read() ->
2340 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2341 * zio_wait(). When these errors happen, we can assume
2342 * that neither an immediate write nor an indirect
2343 * write occurred, so we need to fall back to
2344 * txg_wait_synced(). This is unusual, so we print to
2345 * dmesg whenever one of these errors occurs.
2346 */
2347 switch (error) {
2348 case 0:
2349 break;
2350 default:
2351 cmn_err(CE_WARN, "zil_lwb_commit() received "
2352 "unexpected error %d from ->zl_get_data()"
2353 ". Falling back to txg_wait_synced().",
2354 error);
2355 zfs_fallthrough;
2356 case EIO:
2357 txg_wait_synced(zilog->zl_dmu_pool,
2358 lr->lrc_txg);
2359 zfs_fallthrough;
2360 case ENOENT:
2361 zfs_fallthrough;
2362 case EEXIST:
2363 zfs_fallthrough;
2364 case EALREADY:
2365 return;
2366 }
2367 }
2368 }
2369
2370 lwb->lwb_nfilled += reclen + dlen;
2371 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2372 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2373 }
2374
2375 itx_t *
zil_itx_create(uint64_t txtype,size_t olrsize)2376 zil_itx_create(uint64_t txtype, size_t olrsize)
2377 {
2378 size_t itxsize, lrsize;
2379 itx_t *itx;
2380
2381 ASSERT3U(olrsize, >=, sizeof (lr_t));
2382 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2383 ASSERT3U(lrsize, >=, olrsize);
2384 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2385
2386 itx = zio_data_buf_alloc(itxsize);
2387 itx->itx_lr.lrc_txtype = txtype;
2388 itx->itx_lr.lrc_reclen = lrsize;
2389 itx->itx_lr.lrc_seq = 0; /* defensive */
2390 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2391 itx->itx_sync = B_TRUE; /* default is synchronous */
2392 itx->itx_callback = NULL;
2393 itx->itx_callback_data = NULL;
2394 itx->itx_size = itxsize;
2395
2396 return (itx);
2397 }
2398
2399 static itx_t *
zil_itx_clone(itx_t * oitx)2400 zil_itx_clone(itx_t *oitx)
2401 {
2402 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2403 ASSERT3U(oitx->itx_size, ==,
2404 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2405
2406 itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2407 memcpy(itx, oitx, oitx->itx_size);
2408 itx->itx_callback = NULL;
2409 itx->itx_callback_data = NULL;
2410 return (itx);
2411 }
2412
2413 void
zil_itx_destroy(itx_t * itx)2414 zil_itx_destroy(itx_t *itx)
2415 {
2416 ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2417 ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2418 itx->itx_size - offsetof(itx_t, itx_lr));
2419 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2420 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2421
2422 if (itx->itx_callback != NULL)
2423 itx->itx_callback(itx->itx_callback_data);
2424
2425 zio_data_buf_free(itx, itx->itx_size);
2426 }
2427
2428 /*
2429 * Free up the sync and async itxs. The itxs_t has already been detached
2430 * so no locks are needed.
2431 */
2432 static void
zil_itxg_clean(void * arg)2433 zil_itxg_clean(void *arg)
2434 {
2435 itx_t *itx;
2436 list_t *list;
2437 avl_tree_t *t;
2438 void *cookie;
2439 itxs_t *itxs = arg;
2440 itx_async_node_t *ian;
2441
2442 list = &itxs->i_sync_list;
2443 while ((itx = list_remove_head(list)) != NULL) {
2444 /*
2445 * In the general case, commit itxs will not be found
2446 * here, as they'll be committed to an lwb via
2447 * zil_lwb_assign(), and free'd in that function. Having
2448 * said that, it is still possible for commit itxs to be
2449 * found here, due to the following race:
2450 *
2451 * - a thread calls zil_commit() which assigns the
2452 * commit itx to a per-txg i_sync_list
2453 * - zil_itxg_clean() is called (e.g. via spa_sync())
2454 * while the waiter is still on the i_sync_list
2455 *
2456 * There's nothing to prevent syncing the txg while the
2457 * waiter is on the i_sync_list. This normally doesn't
2458 * happen because spa_sync() is slower than zil_commit(),
2459 * but if zil_commit() calls txg_wait_synced() (e.g.
2460 * because zil_create() or zil_commit_writer_stall() is
2461 * called) we will hit this case.
2462 */
2463 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2464 zil_commit_waiter_skip(itx->itx_private);
2465
2466 zil_itx_destroy(itx);
2467 }
2468
2469 cookie = NULL;
2470 t = &itxs->i_async_tree;
2471 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2472 list = &ian->ia_list;
2473 while ((itx = list_remove_head(list)) != NULL) {
2474 /* commit itxs should never be on the async lists. */
2475 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2476 zil_itx_destroy(itx);
2477 }
2478 list_destroy(list);
2479 kmem_free(ian, sizeof (itx_async_node_t));
2480 }
2481 avl_destroy(t);
2482
2483 kmem_free(itxs, sizeof (itxs_t));
2484 }
2485
2486 static int
zil_aitx_compare(const void * x1,const void * x2)2487 zil_aitx_compare(const void *x1, const void *x2)
2488 {
2489 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2490 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2491
2492 return (TREE_CMP(o1, o2));
2493 }
2494
2495 /*
2496 * Remove all async itx with the given oid.
2497 */
2498 void
zil_remove_async(zilog_t * zilog,uint64_t oid)2499 zil_remove_async(zilog_t *zilog, uint64_t oid)
2500 {
2501 uint64_t otxg, txg;
2502 itx_async_node_t *ian, ian_search;
2503 avl_tree_t *t;
2504 avl_index_t where;
2505 list_t clean_list;
2506 itx_t *itx;
2507
2508 ASSERT(oid != 0);
2509 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2510
2511 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2512 otxg = ZILTEST_TXG;
2513 else
2514 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2515
2516 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2517 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2518
2519 mutex_enter(&itxg->itxg_lock);
2520 if (itxg->itxg_txg != txg) {
2521 mutex_exit(&itxg->itxg_lock);
2522 continue;
2523 }
2524
2525 /*
2526 * Locate the object node and append its list.
2527 */
2528 t = &itxg->itxg_itxs->i_async_tree;
2529 ian_search.ia_foid = oid;
2530 ian = avl_find(t, &ian_search, &where);
2531 if (ian != NULL)
2532 list_move_tail(&clean_list, &ian->ia_list);
2533 mutex_exit(&itxg->itxg_lock);
2534 }
2535 while ((itx = list_remove_head(&clean_list)) != NULL) {
2536 /* commit itxs should never be on the async lists. */
2537 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2538 zil_itx_destroy(itx);
2539 }
2540 list_destroy(&clean_list);
2541 }
2542
2543 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)2544 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2545 {
2546 uint64_t txg;
2547 itxg_t *itxg;
2548 itxs_t *itxs, *clean = NULL;
2549
2550 /*
2551 * Ensure the data of a renamed file is committed before the rename.
2552 */
2553 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2554 zil_async_to_sync(zilog, itx->itx_oid);
2555
2556 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2557 txg = ZILTEST_TXG;
2558 else
2559 txg = dmu_tx_get_txg(tx);
2560
2561 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2562 mutex_enter(&itxg->itxg_lock);
2563 itxs = itxg->itxg_itxs;
2564 if (itxg->itxg_txg != txg) {
2565 if (itxs != NULL) {
2566 /*
2567 * The zil_clean callback hasn't got around to cleaning
2568 * this itxg. Save the itxs for release below.
2569 * This should be rare.
2570 */
2571 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2572 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2573 clean = itxg->itxg_itxs;
2574 }
2575 itxg->itxg_txg = txg;
2576 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2577 KM_SLEEP);
2578
2579 list_create(&itxs->i_sync_list, sizeof (itx_t),
2580 offsetof(itx_t, itx_node));
2581 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2582 sizeof (itx_async_node_t),
2583 offsetof(itx_async_node_t, ia_node));
2584 }
2585 if (itx->itx_sync) {
2586 list_insert_tail(&itxs->i_sync_list, itx);
2587 } else {
2588 avl_tree_t *t = &itxs->i_async_tree;
2589 uint64_t foid =
2590 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2591 itx_async_node_t *ian;
2592 avl_index_t where;
2593
2594 ian = avl_find(t, &foid, &where);
2595 if (ian == NULL) {
2596 ian = kmem_alloc(sizeof (itx_async_node_t),
2597 KM_SLEEP);
2598 list_create(&ian->ia_list, sizeof (itx_t),
2599 offsetof(itx_t, itx_node));
2600 ian->ia_foid = foid;
2601 avl_insert(t, ian, where);
2602 }
2603 list_insert_tail(&ian->ia_list, itx);
2604 }
2605
2606 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2607
2608 /*
2609 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2610 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2611 * need to be careful to always dirty the ZIL using the "real"
2612 * TXG (not itxg_txg) even when the SPA is frozen.
2613 */
2614 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2615 mutex_exit(&itxg->itxg_lock);
2616
2617 /* Release the old itxs now we've dropped the lock */
2618 if (clean != NULL)
2619 zil_itxg_clean(clean);
2620 }
2621
2622 /*
2623 * If there are any in-memory intent log transactions which have now been
2624 * synced then start up a taskq to free them. We should only do this after we
2625 * have written out the uberblocks (i.e. txg has been committed) so that
2626 * don't inadvertently clean out in-memory log records that would be required
2627 * by zil_commit().
2628 */
2629 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)2630 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2631 {
2632 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2633 itxs_t *clean_me;
2634
2635 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2636
2637 mutex_enter(&itxg->itxg_lock);
2638 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2639 mutex_exit(&itxg->itxg_lock);
2640 return;
2641 }
2642 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2643 ASSERT3U(itxg->itxg_txg, !=, 0);
2644 clean_me = itxg->itxg_itxs;
2645 itxg->itxg_itxs = NULL;
2646 itxg->itxg_txg = 0;
2647 mutex_exit(&itxg->itxg_lock);
2648 /*
2649 * Preferably start a task queue to free up the old itxs but
2650 * if taskq_dispatch can't allocate resources to do that then
2651 * free it in-line. This should be rare. Note, using TQ_SLEEP
2652 * created a bad performance problem.
2653 */
2654 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2655 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2656 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2657 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2658 if (id == TASKQID_INVALID)
2659 zil_itxg_clean(clean_me);
2660 }
2661
2662 /*
2663 * This function will traverse the queue of itxs that need to be
2664 * committed, and move them onto the ZIL's zl_itx_commit_list.
2665 */
2666 static uint64_t
zil_get_commit_list(zilog_t * zilog)2667 zil_get_commit_list(zilog_t *zilog)
2668 {
2669 uint64_t otxg, txg, wtxg = 0;
2670 list_t *commit_list = &zilog->zl_itx_commit_list;
2671
2672 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2673
2674 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2675 otxg = ZILTEST_TXG;
2676 else
2677 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2678
2679 /*
2680 * This is inherently racy, since there is nothing to prevent
2681 * the last synced txg from changing. That's okay since we'll
2682 * only commit things in the future.
2683 */
2684 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2685 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2686
2687 mutex_enter(&itxg->itxg_lock);
2688 if (itxg->itxg_txg != txg) {
2689 mutex_exit(&itxg->itxg_lock);
2690 continue;
2691 }
2692
2693 /*
2694 * If we're adding itx records to the zl_itx_commit_list,
2695 * then the zil better be dirty in this "txg". We can assert
2696 * that here since we're holding the itxg_lock which will
2697 * prevent spa_sync from cleaning it. Once we add the itxs
2698 * to the zl_itx_commit_list we must commit it to disk even
2699 * if it's unnecessary (i.e. the txg was synced).
2700 */
2701 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2702 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2703 list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2704 itx_t *itx = NULL;
2705 if (unlikely(zilog->zl_suspend > 0)) {
2706 /*
2707 * ZIL was just suspended, but we lost the race.
2708 * Allow all earlier itxs to be committed, but ask
2709 * caller to do txg_wait_synced(txg) for any new.
2710 */
2711 if (!list_is_empty(sync_list))
2712 wtxg = MAX(wtxg, txg);
2713 } else {
2714 itx = list_head(sync_list);
2715 list_move_tail(commit_list, sync_list);
2716 }
2717
2718 mutex_exit(&itxg->itxg_lock);
2719
2720 while (itx != NULL) {
2721 uint64_t s = zil_itx_full_size(itx);
2722 zilog->zl_cur_size += s;
2723 zilog->zl_cur_left += s;
2724 s = zil_itx_record_size(itx);
2725 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2726 itx = list_next(commit_list, itx);
2727 }
2728 }
2729 return (wtxg);
2730 }
2731
2732 /*
2733 * Move the async itxs for a specified object to commit into sync lists.
2734 */
2735 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)2736 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2737 {
2738 uint64_t otxg, txg;
2739 itx_async_node_t *ian, ian_search;
2740 avl_tree_t *t;
2741 avl_index_t where;
2742
2743 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2744 otxg = ZILTEST_TXG;
2745 else
2746 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2747
2748 /*
2749 * This is inherently racy, since there is nothing to prevent
2750 * the last synced txg from changing.
2751 */
2752 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2753 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2754
2755 mutex_enter(&itxg->itxg_lock);
2756 if (itxg->itxg_txg != txg) {
2757 mutex_exit(&itxg->itxg_lock);
2758 continue;
2759 }
2760
2761 /*
2762 * If a foid is specified then find that node and append its
2763 * list. Otherwise walk the tree appending all the lists
2764 * to the sync list. We add to the end rather than the
2765 * beginning to ensure the create has happened.
2766 */
2767 t = &itxg->itxg_itxs->i_async_tree;
2768 if (foid != 0) {
2769 ian_search.ia_foid = foid;
2770 ian = avl_find(t, &ian_search, &where);
2771 if (ian != NULL) {
2772 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2773 &ian->ia_list);
2774 }
2775 } else {
2776 void *cookie = NULL;
2777
2778 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2779 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2780 &ian->ia_list);
2781 list_destroy(&ian->ia_list);
2782 kmem_free(ian, sizeof (itx_async_node_t));
2783 }
2784 }
2785 mutex_exit(&itxg->itxg_lock);
2786 }
2787 }
2788
2789 /*
2790 * This function will prune commit itxs that are at the head of the
2791 * commit list (it won't prune past the first non-commit itx), and
2792 * either: a) attach them to the last lwb that's still pending
2793 * completion, or b) skip them altogether.
2794 *
2795 * This is used as a performance optimization to prevent commit itxs
2796 * from generating new lwbs when it's unnecessary to do so.
2797 */
2798 static void
zil_prune_commit_list(zilog_t * zilog)2799 zil_prune_commit_list(zilog_t *zilog)
2800 {
2801 itx_t *itx;
2802
2803 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2804
2805 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2806 lr_t *lrc = &itx->itx_lr;
2807 if (lrc->lrc_txtype != TX_COMMIT)
2808 break;
2809
2810 mutex_enter(&zilog->zl_lock);
2811
2812 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2813 if (last_lwb == NULL ||
2814 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2815 /*
2816 * All of the itxs this waiter was waiting on
2817 * must have already completed (or there were
2818 * never any itx's for it to wait on), so it's
2819 * safe to skip this waiter and mark it done.
2820 */
2821 zil_commit_waiter_skip(itx->itx_private);
2822 } else {
2823 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2824 }
2825
2826 mutex_exit(&zilog->zl_lock);
2827
2828 list_remove(&zilog->zl_itx_commit_list, itx);
2829 zil_itx_destroy(itx);
2830 }
2831
2832 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2833 }
2834
2835 static void
zil_commit_writer_stall(zilog_t * zilog)2836 zil_commit_writer_stall(zilog_t *zilog)
2837 {
2838 /*
2839 * When zio_alloc_zil() fails to allocate the next lwb block on
2840 * disk, we must call txg_wait_synced() to ensure all of the
2841 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2842 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2843 * to zil_process_commit_list()) will have to call zil_create(),
2844 * and start a new ZIL chain.
2845 *
2846 * Since zil_alloc_zil() failed, the lwb that was previously
2847 * issued does not have a pointer to the "next" lwb on disk.
2848 * Thus, if another ZIL writer thread was to allocate the "next"
2849 * on-disk lwb, that block could be leaked in the event of a
2850 * crash (because the previous lwb on-disk would not point to
2851 * it).
2852 *
2853 * We must hold the zilog's zl_issuer_lock while we do this, to
2854 * ensure no new threads enter zil_process_commit_list() until
2855 * all lwb's in the zl_lwb_list have been synced and freed
2856 * (which is achieved via the txg_wait_synced() call).
2857 */
2858 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2859 ZIL_STAT_BUMP(zilog, zil_commit_stall_count);
2860 txg_wait_synced(zilog->zl_dmu_pool, 0);
2861 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2862 }
2863
2864 static void
zil_burst_done(zilog_t * zilog)2865 zil_burst_done(zilog_t *zilog)
2866 {
2867 if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2868 zilog->zl_cur_size == 0)
2869 return;
2870
2871 if (zilog->zl_parallel)
2872 zilog->zl_parallel--;
2873
2874 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2875 zilog->zl_prev_rotor = r;
2876 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2877 &zilog->zl_prev_min[r]);
2878
2879 zilog->zl_cur_size = 0;
2880 zilog->zl_cur_max = 0;
2881 zilog->zl_cur_left = 0;
2882 }
2883
2884 /*
2885 * This function will traverse the commit list, creating new lwbs as
2886 * needed, and committing the itxs from the commit list to these newly
2887 * created lwbs. Additionally, as a new lwb is created, the previous
2888 * lwb will be issued to the zio layer to be written to disk.
2889 */
2890 static void
zil_process_commit_list(zilog_t * zilog,zil_commit_waiter_t * zcw,list_t * ilwbs)2891 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2892 {
2893 spa_t *spa = zilog->zl_spa;
2894 list_t nolwb_itxs;
2895 list_t nolwb_waiters;
2896 lwb_t *lwb, *plwb;
2897 itx_t *itx;
2898
2899 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2900
2901 /*
2902 * Return if there's nothing to commit before we dirty the fs by
2903 * calling zil_create().
2904 */
2905 if (list_is_empty(&zilog->zl_itx_commit_list))
2906 return;
2907
2908 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2909 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2910 offsetof(zil_commit_waiter_t, zcw_node));
2911
2912 lwb = list_tail(&zilog->zl_lwb_list);
2913 if (lwb == NULL) {
2914 lwb = zil_create(zilog);
2915 } else {
2916 /*
2917 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2918 * have already been created (zl_lwb_list not empty).
2919 */
2920 zil_commit_activate_saxattr_feature(zilog);
2921 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2922 lwb->lwb_state == LWB_STATE_OPENED);
2923
2924 /*
2925 * If the lwb is still opened, it means the workload is really
2926 * multi-threaded and we won the chance of write aggregation.
2927 * If it is not opened yet, but previous lwb is still not
2928 * flushed, it still means the workload is multi-threaded, but
2929 * there was too much time between the commits to aggregate, so
2930 * we try aggregation next times, but without too much hopes.
2931 */
2932 if (lwb->lwb_state == LWB_STATE_OPENED) {
2933 zilog->zl_parallel = ZIL_BURSTS;
2934 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2935 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2936 zilog->zl_parallel = MAX(zilog->zl_parallel,
2937 ZIL_BURSTS / 2);
2938 }
2939 }
2940
2941 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2942 lr_t *lrc = &itx->itx_lr;
2943 uint64_t txg = lrc->lrc_txg;
2944
2945 ASSERT3U(txg, !=, 0);
2946
2947 if (lrc->lrc_txtype == TX_COMMIT) {
2948 DTRACE_PROBE2(zil__process__commit__itx,
2949 zilog_t *, zilog, itx_t *, itx);
2950 } else {
2951 DTRACE_PROBE2(zil__process__normal__itx,
2952 zilog_t *, zilog, itx_t *, itx);
2953 }
2954
2955 boolean_t synced = txg <= spa_last_synced_txg(spa);
2956 boolean_t frozen = txg > spa_freeze_txg(spa);
2957
2958 /*
2959 * If the txg of this itx has already been synced out, then
2960 * we don't need to commit this itx to an lwb. This is
2961 * because the data of this itx will have already been
2962 * written to the main pool. This is inherently racy, and
2963 * it's still ok to commit an itx whose txg has already
2964 * been synced; this will result in a write that's
2965 * unnecessary, but will do no harm.
2966 *
2967 * With that said, we always want to commit TX_COMMIT itxs
2968 * to an lwb, regardless of whether or not that itx's txg
2969 * has been synced out. We do this to ensure any OPENED lwb
2970 * will always have at least one zil_commit_waiter_t linked
2971 * to the lwb.
2972 *
2973 * As a counter-example, if we skipped TX_COMMIT itx's
2974 * whose txg had already been synced, the following
2975 * situation could occur if we happened to be racing with
2976 * spa_sync:
2977 *
2978 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2979 * itx's txg is 10 and the last synced txg is 9.
2980 * 2. spa_sync finishes syncing out txg 10.
2981 * 3. We move to the next itx in the list, it's a TX_COMMIT
2982 * whose txg is 10, so we skip it rather than committing
2983 * it to the lwb used in (1).
2984 *
2985 * If the itx that is skipped in (3) is the last TX_COMMIT
2986 * itx in the commit list, than it's possible for the lwb
2987 * used in (1) to remain in the OPENED state indefinitely.
2988 *
2989 * To prevent the above scenario from occurring, ensuring
2990 * that once an lwb is OPENED it will transition to ISSUED
2991 * and eventually DONE, we always commit TX_COMMIT itx's to
2992 * an lwb here, even if that itx's txg has already been
2993 * synced.
2994 *
2995 * Finally, if the pool is frozen, we _always_ commit the
2996 * itx. The point of freezing the pool is to prevent data
2997 * from being written to the main pool via spa_sync, and
2998 * instead rely solely on the ZIL to persistently store the
2999 * data; i.e. when the pool is frozen, the last synced txg
3000 * value can't be trusted.
3001 */
3002 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
3003 if (lwb != NULL) {
3004 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
3005 if (lwb == NULL) {
3006 list_insert_tail(&nolwb_itxs, itx);
3007 } else if ((zcw->zcw_lwb != NULL &&
3008 zcw->zcw_lwb != lwb) || zcw->zcw_done) {
3009 /*
3010 * Our lwb is done, leave the rest of
3011 * itx list to somebody else who care.
3012 */
3013 zilog->zl_parallel = ZIL_BURSTS;
3014 zilog->zl_cur_left -=
3015 zil_itx_full_size(itx);
3016 break;
3017 }
3018 } else {
3019 if (lrc->lrc_txtype == TX_COMMIT) {
3020 zil_commit_waiter_link_nolwb(
3021 itx->itx_private, &nolwb_waiters);
3022 }
3023 list_insert_tail(&nolwb_itxs, itx);
3024 }
3025 zilog->zl_cur_left -= zil_itx_full_size(itx);
3026 } else {
3027 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
3028 zilog->zl_cur_left -= zil_itx_full_size(itx);
3029 zil_itx_destroy(itx);
3030 }
3031 }
3032
3033 if (lwb == NULL) {
3034 /*
3035 * This indicates zio_alloc_zil() failed to allocate the
3036 * "next" lwb on-disk. When this happens, we must stall
3037 * the ZIL write pipeline; see the comment within
3038 * zil_commit_writer_stall() for more details.
3039 */
3040 while ((lwb = list_remove_head(ilwbs)) != NULL)
3041 zil_lwb_write_issue(zilog, lwb);
3042 zil_commit_writer_stall(zilog);
3043
3044 /*
3045 * Additionally, we have to signal and mark the "nolwb"
3046 * waiters as "done" here, since without an lwb, we
3047 * can't do this via zil_lwb_flush_vdevs_done() like
3048 * normal.
3049 */
3050 zil_commit_waiter_t *zcw;
3051 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3052 zil_commit_waiter_skip(zcw);
3053
3054 /*
3055 * And finally, we have to destroy the itx's that
3056 * couldn't be committed to an lwb; this will also call
3057 * the itx's callback if one exists for the itx.
3058 */
3059 while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3060 zil_itx_destroy(itx);
3061 } else {
3062 ASSERT(list_is_empty(&nolwb_waiters));
3063 ASSERT3P(lwb, !=, NULL);
3064 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3065 lwb->lwb_state == LWB_STATE_OPENED);
3066
3067 /*
3068 * At this point, the ZIL block pointed at by the "lwb"
3069 * variable is in "new" or "opened" state.
3070 *
3071 * If it's "new", then no itxs have been committed to it, so
3072 * there's no point in issuing its zio (i.e. it's "empty").
3073 *
3074 * If it's "opened", then it contains one or more itxs that
3075 * eventually need to be committed to stable storage. In
3076 * this case we intentionally do not issue the lwb's zio
3077 * to disk yet, and instead rely on one of the following
3078 * two mechanisms for issuing the zio:
3079 *
3080 * 1. Ideally, there will be more ZIL activity occurring on
3081 * the system, such that this function will be immediately
3082 * called again by different thread and this lwb will be
3083 * closed by zil_lwb_assign(). This way, the lwb will be
3084 * "full" when it is issued to disk, and we'll make use of
3085 * the lwb's size the best we can.
3086 *
3087 * 2. If there isn't sufficient ZIL activity occurring on
3088 * the system, zil_commit_waiter() will close it and issue
3089 * the zio. If this occurs, the lwb is not guaranteed
3090 * to be "full" by the time its zio is issued, and means
3091 * the size of the lwb was "too large" given the amount
3092 * of ZIL activity occurring on the system at that time.
3093 *
3094 * We do this for a couple of reasons:
3095 *
3096 * 1. To try and reduce the number of IOPs needed to
3097 * write the same number of itxs. If an lwb has space
3098 * available in its buffer for more itxs, and more itxs
3099 * will be committed relatively soon (relative to the
3100 * latency of performing a write), then it's beneficial
3101 * to wait for these "next" itxs. This way, more itxs
3102 * can be committed to stable storage with fewer writes.
3103 *
3104 * 2. To try and use the largest lwb block size that the
3105 * incoming rate of itxs can support. Again, this is to
3106 * try and pack as many itxs into as few lwbs as
3107 * possible, without significantly impacting the latency
3108 * of each individual itx.
3109 */
3110 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3111 zil_burst_done(zilog);
3112 list_insert_tail(ilwbs, lwb);
3113 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3114 if (lwb == NULL) {
3115 while ((lwb = list_remove_head(ilwbs)) != NULL)
3116 zil_lwb_write_issue(zilog, lwb);
3117 zil_commit_writer_stall(zilog);
3118 }
3119 }
3120 }
3121 }
3122
3123 /*
3124 * This function is responsible for ensuring the passed in commit waiter
3125 * (and associated commit itx) is committed to an lwb. If the waiter is
3126 * not already committed to an lwb, all itxs in the zilog's queue of
3127 * itxs will be processed. The assumption is the passed in waiter's
3128 * commit itx will found in the queue just like the other non-commit
3129 * itxs, such that when the entire queue is processed, the waiter will
3130 * have been committed to an lwb.
3131 *
3132 * The lwb associated with the passed in waiter is not guaranteed to
3133 * have been issued by the time this function completes. If the lwb is
3134 * not issued, we rely on future calls to zil_commit_writer() to issue
3135 * the lwb, or the timeout mechanism found in zil_commit_waiter().
3136 */
3137 static uint64_t
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)3138 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3139 {
3140 list_t ilwbs;
3141 lwb_t *lwb;
3142 uint64_t wtxg = 0;
3143
3144 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3145 ASSERT(spa_writeable(zilog->zl_spa));
3146
3147 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3148 mutex_enter(&zilog->zl_issuer_lock);
3149
3150 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3151 /*
3152 * It's possible that, while we were waiting to acquire
3153 * the "zl_issuer_lock", another thread committed this
3154 * waiter to an lwb. If that occurs, we bail out early,
3155 * without processing any of the zilog's queue of itxs.
3156 *
3157 * On certain workloads and system configurations, the
3158 * "zl_issuer_lock" can become highly contended. In an
3159 * attempt to reduce this contention, we immediately drop
3160 * the lock if the waiter has already been processed.
3161 *
3162 * We've measured this optimization to reduce CPU spent
3163 * contending on this lock by up to 5%, using a system
3164 * with 32 CPUs, low latency storage (~50 usec writes),
3165 * and 1024 threads performing sync writes.
3166 */
3167 goto out;
3168 }
3169
3170 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3171
3172 wtxg = zil_get_commit_list(zilog);
3173 zil_prune_commit_list(zilog);
3174 zil_process_commit_list(zilog, zcw, &ilwbs);
3175
3176 out:
3177 mutex_exit(&zilog->zl_issuer_lock);
3178 while ((lwb = list_remove_head(&ilwbs)) != NULL)
3179 zil_lwb_write_issue(zilog, lwb);
3180 list_destroy(&ilwbs);
3181 return (wtxg);
3182 }
3183
3184 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)3185 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3186 {
3187 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3188 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3189 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3190
3191 lwb_t *lwb = zcw->zcw_lwb;
3192 ASSERT3P(lwb, !=, NULL);
3193 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3194
3195 /*
3196 * If the lwb has already been issued by another thread, we can
3197 * immediately return since there's no work to be done (the
3198 * point of this function is to issue the lwb). Additionally, we
3199 * do this prior to acquiring the zl_issuer_lock, to avoid
3200 * acquiring it when it's not necessary to do so.
3201 */
3202 if (lwb->lwb_state != LWB_STATE_OPENED)
3203 return;
3204
3205 /*
3206 * In order to call zil_lwb_write_close() we must hold the
3207 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3208 * since we're already holding the commit waiter's "zcw_lock",
3209 * and those two locks are acquired in the opposite order
3210 * elsewhere.
3211 */
3212 mutex_exit(&zcw->zcw_lock);
3213 mutex_enter(&zilog->zl_issuer_lock);
3214 mutex_enter(&zcw->zcw_lock);
3215
3216 /*
3217 * Since we just dropped and re-acquired the commit waiter's
3218 * lock, we have to re-check to see if the waiter was marked
3219 * "done" during that process. If the waiter was marked "done",
3220 * the "lwb" pointer is no longer valid (it can be free'd after
3221 * the waiter is marked "done"), so without this check we could
3222 * wind up with a use-after-free error below.
3223 */
3224 if (zcw->zcw_done) {
3225 mutex_exit(&zilog->zl_issuer_lock);
3226 return;
3227 }
3228
3229 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3230
3231 /*
3232 * We've already checked this above, but since we hadn't acquired
3233 * the zilog's zl_issuer_lock, we have to perform this check a
3234 * second time while holding the lock.
3235 *
3236 * We don't need to hold the zl_lock since the lwb cannot transition
3237 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3238 * _can_ transition from CLOSED to DONE, but it's OK to race with
3239 * that transition since we treat the lwb the same, whether it's in
3240 * the CLOSED, ISSUED or DONE states.
3241 *
3242 * The important thing, is we treat the lwb differently depending on
3243 * if it's OPENED or CLOSED, and block any other threads that might
3244 * attempt to close/issue this lwb. For that reason we hold the
3245 * zl_issuer_lock when checking the lwb_state; we must not call
3246 * zil_lwb_write_close() if the lwb had already been closed/issued.
3247 *
3248 * See the comment above the lwb_state_t structure definition for
3249 * more details on the lwb states, and locking requirements.
3250 */
3251 if (lwb->lwb_state != LWB_STATE_OPENED) {
3252 mutex_exit(&zilog->zl_issuer_lock);
3253 return;
3254 }
3255
3256 /*
3257 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3258 * is still open. But we have to drop it to avoid a deadlock in case
3259 * callback of zio issued by zil_lwb_write_issue() try to get it,
3260 * while zil_lwb_write_issue() is blocked on attempt to issue next
3261 * lwb it found in LWB_STATE_READY state.
3262 */
3263 mutex_exit(&zcw->zcw_lock);
3264
3265 /*
3266 * As described in the comments above zil_commit_waiter() and
3267 * zil_process_commit_list(), we need to issue this lwb's zio
3268 * since we've reached the commit waiter's timeout and it still
3269 * hasn't been issued.
3270 */
3271 zil_burst_done(zilog);
3272 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3273
3274 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3275
3276 if (nlwb == NULL) {
3277 /*
3278 * When zil_lwb_write_close() returns NULL, this
3279 * indicates zio_alloc_zil() failed to allocate the
3280 * "next" lwb on-disk. When this occurs, the ZIL write
3281 * pipeline must be stalled; see the comment within the
3282 * zil_commit_writer_stall() function for more details.
3283 */
3284 zil_lwb_write_issue(zilog, lwb);
3285 zil_commit_writer_stall(zilog);
3286 mutex_exit(&zilog->zl_issuer_lock);
3287 } else {
3288 mutex_exit(&zilog->zl_issuer_lock);
3289 zil_lwb_write_issue(zilog, lwb);
3290 }
3291 mutex_enter(&zcw->zcw_lock);
3292 }
3293
3294 /*
3295 * This function is responsible for performing the following two tasks:
3296 *
3297 * 1. its primary responsibility is to block until the given "commit
3298 * waiter" is considered "done".
3299 *
3300 * 2. its secondary responsibility is to issue the zio for the lwb that
3301 * the given "commit waiter" is waiting on, if this function has
3302 * waited "long enough" and the lwb is still in the "open" state.
3303 *
3304 * Given a sufficient amount of itxs being generated and written using
3305 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3306 * function. If this does not occur, this secondary responsibility will
3307 * ensure the lwb is issued even if there is not other synchronous
3308 * activity on the system.
3309 *
3310 * For more details, see zil_process_commit_list(); more specifically,
3311 * the comment at the bottom of that function.
3312 */
3313 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)3314 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3315 {
3316 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3317 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3318 ASSERT(spa_writeable(zilog->zl_spa));
3319
3320 mutex_enter(&zcw->zcw_lock);
3321
3322 /*
3323 * The timeout is scaled based on the lwb latency to avoid
3324 * significantly impacting the latency of each individual itx.
3325 * For more details, see the comment at the bottom of the
3326 * zil_process_commit_list() function.
3327 */
3328 int pct = MAX(zfs_commit_timeout_pct, 1);
3329 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3330 hrtime_t wakeup = gethrtime() + sleep;
3331 boolean_t timedout = B_FALSE;
3332
3333 while (!zcw->zcw_done) {
3334 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3335
3336 lwb_t *lwb = zcw->zcw_lwb;
3337
3338 /*
3339 * Usually, the waiter will have a non-NULL lwb field here,
3340 * but it's possible for it to be NULL as a result of
3341 * zil_commit() racing with spa_sync().
3342 *
3343 * When zil_clean() is called, it's possible for the itxg
3344 * list (which may be cleaned via a taskq) to contain
3345 * commit itxs. When this occurs, the commit waiters linked
3346 * off of these commit itxs will not be committed to an
3347 * lwb. Additionally, these commit waiters will not be
3348 * marked done until zil_commit_waiter_skip() is called via
3349 * zil_itxg_clean().
3350 *
3351 * Thus, it's possible for this commit waiter (i.e. the
3352 * "zcw" variable) to be found in this "in between" state;
3353 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3354 * been skipped, so it's "zcw_done" field is still B_FALSE.
3355 */
3356 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3357
3358 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3359 ASSERT3B(timedout, ==, B_FALSE);
3360
3361 /*
3362 * If the lwb hasn't been issued yet, then we
3363 * need to wait with a timeout, in case this
3364 * function needs to issue the lwb after the
3365 * timeout is reached; responsibility (2) from
3366 * the comment above this function.
3367 */
3368 int rc = cv_timedwait_hires(&zcw->zcw_cv,
3369 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3370 CALLOUT_FLAG_ABSOLUTE);
3371
3372 if (rc != -1 || zcw->zcw_done)
3373 continue;
3374
3375 timedout = B_TRUE;
3376 zil_commit_waiter_timeout(zilog, zcw);
3377
3378 if (!zcw->zcw_done) {
3379 /*
3380 * If the commit waiter has already been
3381 * marked "done", it's possible for the
3382 * waiter's lwb structure to have already
3383 * been freed. Thus, we can only reliably
3384 * make these assertions if the waiter
3385 * isn't done.
3386 */
3387 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3388 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3389 }
3390 } else {
3391 /*
3392 * If the lwb isn't open, then it must have already
3393 * been issued. In that case, there's no need to
3394 * use a timeout when waiting for the lwb to
3395 * complete.
3396 *
3397 * Additionally, if the lwb is NULL, the waiter
3398 * will soon be signaled and marked done via
3399 * zil_clean() and zil_itxg_clean(), so no timeout
3400 * is required.
3401 */
3402
3403 IMPLY(lwb != NULL,
3404 lwb->lwb_state == LWB_STATE_CLOSED ||
3405 lwb->lwb_state == LWB_STATE_READY ||
3406 lwb->lwb_state == LWB_STATE_ISSUED ||
3407 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3408 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3409 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3410 }
3411 }
3412
3413 mutex_exit(&zcw->zcw_lock);
3414 }
3415
3416 static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)3417 zil_alloc_commit_waiter(void)
3418 {
3419 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3420
3421 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3422 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3423 list_link_init(&zcw->zcw_node);
3424 zcw->zcw_lwb = NULL;
3425 zcw->zcw_done = B_FALSE;
3426 zcw->zcw_zio_error = 0;
3427
3428 return (zcw);
3429 }
3430
3431 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)3432 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3433 {
3434 ASSERT(!list_link_active(&zcw->zcw_node));
3435 ASSERT3P(zcw->zcw_lwb, ==, NULL);
3436 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3437 mutex_destroy(&zcw->zcw_lock);
3438 cv_destroy(&zcw->zcw_cv);
3439 kmem_cache_free(zil_zcw_cache, zcw);
3440 }
3441
3442 /*
3443 * This function is used to create a TX_COMMIT itx and assign it. This
3444 * way, it will be linked into the ZIL's list of synchronous itxs, and
3445 * then later committed to an lwb (or skipped) when
3446 * zil_process_commit_list() is called.
3447 */
3448 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)3449 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3450 {
3451 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3452
3453 /*
3454 * Since we are not going to create any new dirty data, and we
3455 * can even help with clearing the existing dirty data, we
3456 * should not be subject to the dirty data based delays. We
3457 * use DMU_TX_NOTHROTTLE to bypass the delay mechanism.
3458 */
3459 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_NOTHROTTLE));
3460
3461 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3462 itx->itx_sync = B_TRUE;
3463 itx->itx_private = zcw;
3464
3465 zil_itx_assign(zilog, itx, tx);
3466
3467 dmu_tx_commit(tx);
3468 }
3469
3470 /*
3471 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3472 *
3473 * When writing ZIL transactions to the on-disk representation of the
3474 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3475 * itxs can be committed to a single lwb. Once a lwb is written and
3476 * committed to stable storage (i.e. the lwb is written, and vdevs have
3477 * been flushed), each itx that was committed to that lwb is also
3478 * considered to be committed to stable storage.
3479 *
3480 * When an itx is committed to an lwb, the log record (lr_t) contained
3481 * by the itx is copied into the lwb's zio buffer, and once this buffer
3482 * is written to disk, it becomes an on-disk ZIL block.
3483 *
3484 * As itxs are generated, they're inserted into the ZIL's queue of
3485 * uncommitted itxs. The semantics of zil_commit() are such that it will
3486 * block until all itxs that were in the queue when it was called, are
3487 * committed to stable storage.
3488 *
3489 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3490 * itxs, for all objects in the dataset, will be committed to stable
3491 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3492 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3493 * that correspond to the foid passed in, will be committed to stable
3494 * storage prior to zil_commit() returning.
3495 *
3496 * Generally speaking, when zil_commit() is called, the consumer doesn't
3497 * actually care about _all_ of the uncommitted itxs. Instead, they're
3498 * simply trying to waiting for a specific itx to be committed to disk,
3499 * but the interface(s) for interacting with the ZIL don't allow such
3500 * fine-grained communication. A better interface would allow a consumer
3501 * to create and assign an itx, and then pass a reference to this itx to
3502 * zil_commit(); such that zil_commit() would return as soon as that
3503 * specific itx was committed to disk (instead of waiting for _all_
3504 * itxs to be committed).
3505 *
3506 * When a thread calls zil_commit() a special "commit itx" will be
3507 * generated, along with a corresponding "waiter" for this commit itx.
3508 * zil_commit() will wait on this waiter's CV, such that when the waiter
3509 * is marked done, and signaled, zil_commit() will return.
3510 *
3511 * This commit itx is inserted into the queue of uncommitted itxs. This
3512 * provides an easy mechanism for determining which itxs were in the
3513 * queue prior to zil_commit() having been called, and which itxs were
3514 * added after zil_commit() was called.
3515 *
3516 * The commit itx is special; it doesn't have any on-disk representation.
3517 * When a commit itx is "committed" to an lwb, the waiter associated
3518 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3519 * completes, each waiter on the lwb's list is marked done and signaled
3520 * -- allowing the thread waiting on the waiter to return from zil_commit().
3521 *
3522 * It's important to point out a few critical factors that allow us
3523 * to make use of the commit itxs, commit waiters, per-lwb lists of
3524 * commit waiters, and zio completion callbacks like we're doing:
3525 *
3526 * 1. The list of waiters for each lwb is traversed, and each commit
3527 * waiter is marked "done" and signaled, in the zio completion
3528 * callback of the lwb's zio[*].
3529 *
3530 * * Actually, the waiters are signaled in the zio completion
3531 * callback of the root zio for the flush commands that are sent to
3532 * the vdevs upon completion of the lwb zio.
3533 *
3534 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3535 * itxs, the order in which they are inserted is preserved[*]; as
3536 * itxs are added to the queue, they are added to the tail of
3537 * in-memory linked lists.
3538 *
3539 * When committing the itxs to lwbs (to be written to disk), they
3540 * are committed in the same order in which the itxs were added to
3541 * the uncommitted queue's linked list(s); i.e. the linked list of
3542 * itxs to commit is traversed from head to tail, and each itx is
3543 * committed to an lwb in that order.
3544 *
3545 * * To clarify:
3546 *
3547 * - the order of "sync" itxs is preserved w.r.t. other
3548 * "sync" itxs, regardless of the corresponding objects.
3549 * - the order of "async" itxs is preserved w.r.t. other
3550 * "async" itxs corresponding to the same object.
3551 * - the order of "async" itxs is *not* preserved w.r.t. other
3552 * "async" itxs corresponding to different objects.
3553 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3554 * versa) is *not* preserved, even for itxs that correspond
3555 * to the same object.
3556 *
3557 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3558 * zil_get_commit_list(), and zil_process_commit_list().
3559 *
3560 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3561 * lwb cannot be considered committed to stable storage, until its
3562 * "previous" lwb is also committed to stable storage. This fact,
3563 * coupled with the fact described above, means that itxs are
3564 * committed in (roughly) the order in which they were generated.
3565 * This is essential because itxs are dependent on prior itxs.
3566 * Thus, we *must not* deem an itx as being committed to stable
3567 * storage, until *all* prior itxs have also been committed to
3568 * stable storage.
3569 *
3570 * To enforce this ordering of lwb zio's, while still leveraging as
3571 * much of the underlying storage performance as possible, we rely
3572 * on two fundamental concepts:
3573 *
3574 * 1. The creation and issuance of lwb zio's is protected by
3575 * the zilog's "zl_issuer_lock", which ensures only a single
3576 * thread is creating and/or issuing lwb's at a time
3577 * 2. The "previous" lwb is a child of the "current" lwb
3578 * (leveraging the zio parent-child dependency graph)
3579 *
3580 * By relying on this parent-child zio relationship, we can have
3581 * many lwb zio's concurrently issued to the underlying storage,
3582 * but the order in which they complete will be the same order in
3583 * which they were created.
3584 */
3585 void
zil_commit(zilog_t * zilog,uint64_t foid)3586 zil_commit(zilog_t *zilog, uint64_t foid)
3587 {
3588 /*
3589 * We should never attempt to call zil_commit on a snapshot for
3590 * a couple of reasons:
3591 *
3592 * 1. A snapshot may never be modified, thus it cannot have any
3593 * in-flight itxs that would have modified the dataset.
3594 *
3595 * 2. By design, when zil_commit() is called, a commit itx will
3596 * be assigned to this zilog; as a result, the zilog will be
3597 * dirtied. We must not dirty the zilog of a snapshot; there's
3598 * checks in the code that enforce this invariant, and will
3599 * cause a panic if it's not upheld.
3600 */
3601 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3602
3603 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3604 return;
3605
3606 if (!spa_writeable(zilog->zl_spa)) {
3607 /*
3608 * If the SPA is not writable, there should never be any
3609 * pending itxs waiting to be committed to disk. If that
3610 * weren't true, we'd skip writing those itxs out, and
3611 * would break the semantics of zil_commit(); thus, we're
3612 * verifying that truth before we return to the caller.
3613 */
3614 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3615 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3616 for (int i = 0; i < TXG_SIZE; i++)
3617 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3618 return;
3619 }
3620
3621 /*
3622 * If the ZIL is suspended, we don't want to dirty it by calling
3623 * zil_commit_itx_assign() below, nor can we write out
3624 * lwbs like would be done in zil_commit_write(). Thus, we
3625 * simply rely on txg_wait_synced() to maintain the necessary
3626 * semantics, and avoid calling those functions altogether.
3627 */
3628 if (zilog->zl_suspend > 0) {
3629 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3630 txg_wait_synced(zilog->zl_dmu_pool, 0);
3631 return;
3632 }
3633
3634 zil_commit_impl(zilog, foid);
3635 }
3636
3637 void
zil_commit_impl(zilog_t * zilog,uint64_t foid)3638 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3639 {
3640 ZIL_STAT_BUMP(zilog, zil_commit_count);
3641
3642 /*
3643 * Move the "async" itxs for the specified foid to the "sync"
3644 * queues, such that they will be later committed (or skipped)
3645 * to an lwb when zil_process_commit_list() is called.
3646 *
3647 * Since these "async" itxs must be committed prior to this
3648 * call to zil_commit returning, we must perform this operation
3649 * before we call zil_commit_itx_assign().
3650 */
3651 zil_async_to_sync(zilog, foid);
3652
3653 /*
3654 * We allocate a new "waiter" structure which will initially be
3655 * linked to the commit itx using the itx's "itx_private" field.
3656 * Since the commit itx doesn't represent any on-disk state,
3657 * when it's committed to an lwb, rather than copying the its
3658 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3659 * added to the lwb's list of waiters. Then, when the lwb is
3660 * committed to stable storage, each waiter in the lwb's list of
3661 * waiters will be marked "done", and signalled.
3662 *
3663 * We must create the waiter and assign the commit itx prior to
3664 * calling zil_commit_writer(), or else our specific commit itx
3665 * is not guaranteed to be committed to an lwb prior to calling
3666 * zil_commit_waiter().
3667 */
3668 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3669 zil_commit_itx_assign(zilog, zcw);
3670
3671 uint64_t wtxg = zil_commit_writer(zilog, zcw);
3672 zil_commit_waiter(zilog, zcw);
3673
3674 if (zcw->zcw_zio_error != 0) {
3675 /*
3676 * If there was an error writing out the ZIL blocks that
3677 * this thread is waiting on, then we fallback to
3678 * relying on spa_sync() to write out the data this
3679 * thread is waiting on. Obviously this has performance
3680 * implications, but the expectation is for this to be
3681 * an exceptional case, and shouldn't occur often.
3682 */
3683 ZIL_STAT_BUMP(zilog, zil_commit_error_count);
3684 DTRACE_PROBE2(zil__commit__io__error,
3685 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3686 txg_wait_synced(zilog->zl_dmu_pool, 0);
3687 } else if (wtxg != 0) {
3688 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3689 txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3690 }
3691
3692 zil_free_commit_waiter(zcw);
3693 }
3694
3695 /*
3696 * Called in syncing context to free committed log blocks and update log header.
3697 */
3698 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)3699 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3700 {
3701 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3702 uint64_t txg = dmu_tx_get_txg(tx);
3703 spa_t *spa = zilog->zl_spa;
3704 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3705 lwb_t *lwb;
3706
3707 /*
3708 * We don't zero out zl_destroy_txg, so make sure we don't try
3709 * to destroy it twice.
3710 */
3711 if (spa_sync_pass(spa) != 1)
3712 return;
3713
3714 zil_lwb_flush_wait_all(zilog, txg);
3715
3716 mutex_enter(&zilog->zl_lock);
3717
3718 ASSERT(zilog->zl_stop_sync == 0);
3719
3720 if (*replayed_seq != 0) {
3721 ASSERT(zh->zh_replay_seq < *replayed_seq);
3722 zh->zh_replay_seq = *replayed_seq;
3723 *replayed_seq = 0;
3724 }
3725
3726 if (zilog->zl_destroy_txg == txg) {
3727 blkptr_t blk = zh->zh_log;
3728 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3729
3730 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3731
3732 memset(zh, 0, sizeof (zil_header_t));
3733 memset(zilog->zl_replayed_seq, 0,
3734 sizeof (zilog->zl_replayed_seq));
3735
3736 if (zilog->zl_keep_first) {
3737 /*
3738 * If this block was part of log chain that couldn't
3739 * be claimed because a device was missing during
3740 * zil_claim(), but that device later returns,
3741 * then this block could erroneously appear valid.
3742 * To guard against this, assign a new GUID to the new
3743 * log chain so it doesn't matter what blk points to.
3744 */
3745 zil_init_log_chain(zilog, &blk);
3746 zh->zh_log = blk;
3747 } else {
3748 /*
3749 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3750 * records. So, deactivate the feature for this dataset.
3751 * We activate it again when we start a new ZIL chain.
3752 */
3753 if (dsl_dataset_feature_is_active(ds,
3754 SPA_FEATURE_ZILSAXATTR))
3755 dsl_dataset_deactivate_feature(ds,
3756 SPA_FEATURE_ZILSAXATTR, tx);
3757 }
3758 }
3759
3760 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3761 zh->zh_log = lwb->lwb_blk;
3762 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3763 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3764 break;
3765 list_remove(&zilog->zl_lwb_list, lwb);
3766 if (!BP_IS_HOLE(&lwb->lwb_blk))
3767 zio_free(spa, txg, &lwb->lwb_blk);
3768 zil_free_lwb(zilog, lwb);
3769
3770 /*
3771 * If we don't have anything left in the lwb list then
3772 * we've had an allocation failure and we need to zero
3773 * out the zil_header blkptr so that we don't end
3774 * up freeing the same block twice.
3775 */
3776 if (list_is_empty(&zilog->zl_lwb_list))
3777 BP_ZERO(&zh->zh_log);
3778 }
3779
3780 mutex_exit(&zilog->zl_lock);
3781 }
3782
3783 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)3784 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3785 {
3786 (void) unused, (void) kmflag;
3787 lwb_t *lwb = vbuf;
3788 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3789 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3790 offsetof(zil_commit_waiter_t, zcw_node));
3791 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3792 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3793 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3794 return (0);
3795 }
3796
3797 static void
zil_lwb_dest(void * vbuf,void * unused)3798 zil_lwb_dest(void *vbuf, void *unused)
3799 {
3800 (void) unused;
3801 lwb_t *lwb = vbuf;
3802 mutex_destroy(&lwb->lwb_vdev_lock);
3803 avl_destroy(&lwb->lwb_vdev_tree);
3804 list_destroy(&lwb->lwb_waiters);
3805 list_destroy(&lwb->lwb_itxs);
3806 }
3807
3808 void
zil_init(void)3809 zil_init(void)
3810 {
3811 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3812 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3813
3814 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3815 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3816
3817 zil_sums_init(&zil_sums_global);
3818 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3819 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3820 KSTAT_FLAG_VIRTUAL);
3821
3822 if (zil_kstats_global != NULL) {
3823 zil_kstats_global->ks_data = &zil_stats;
3824 zil_kstats_global->ks_update = zil_kstats_global_update;
3825 zil_kstats_global->ks_private = NULL;
3826 kstat_install(zil_kstats_global);
3827 }
3828 }
3829
3830 void
zil_fini(void)3831 zil_fini(void)
3832 {
3833 kmem_cache_destroy(zil_zcw_cache);
3834 kmem_cache_destroy(zil_lwb_cache);
3835
3836 if (zil_kstats_global != NULL) {
3837 kstat_delete(zil_kstats_global);
3838 zil_kstats_global = NULL;
3839 }
3840
3841 zil_sums_fini(&zil_sums_global);
3842 }
3843
3844 void
zil_set_sync(zilog_t * zilog,uint64_t sync)3845 zil_set_sync(zilog_t *zilog, uint64_t sync)
3846 {
3847 zilog->zl_sync = sync;
3848 }
3849
3850 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)3851 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3852 {
3853 zilog->zl_logbias = logbias;
3854 }
3855
3856 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)3857 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3858 {
3859 zilog_t *zilog;
3860
3861 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3862
3863 zilog->zl_header = zh_phys;
3864 zilog->zl_os = os;
3865 zilog->zl_spa = dmu_objset_spa(os);
3866 zilog->zl_dmu_pool = dmu_objset_pool(os);
3867 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3868 zilog->zl_logbias = dmu_objset_logbias(os);
3869 zilog->zl_sync = dmu_objset_syncprop(os);
3870 zilog->zl_dirty_max_txg = 0;
3871 zilog->zl_last_lwb_opened = NULL;
3872 zilog->zl_last_lwb_latency = 0;
3873 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3874 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3875 spa_maxblocksize(dmu_objset_spa(os)));
3876
3877 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3878 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3879 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3880
3881 for (int i = 0; i < TXG_SIZE; i++) {
3882 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3883 MUTEX_DEFAULT, NULL);
3884 }
3885
3886 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3887 offsetof(lwb_t, lwb_node));
3888
3889 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3890 offsetof(itx_t, itx_node));
3891
3892 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3893 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3894
3895 for (int i = 0; i < ZIL_BURSTS; i++) {
3896 zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3897 sizeof (zil_chain_t);
3898 }
3899
3900 return (zilog);
3901 }
3902
3903 void
zil_free(zilog_t * zilog)3904 zil_free(zilog_t *zilog)
3905 {
3906 int i;
3907
3908 zilog->zl_stop_sync = 1;
3909
3910 ASSERT0(zilog->zl_suspend);
3911 ASSERT0(zilog->zl_suspending);
3912
3913 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3914 list_destroy(&zilog->zl_lwb_list);
3915
3916 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3917 list_destroy(&zilog->zl_itx_commit_list);
3918
3919 for (i = 0; i < TXG_SIZE; i++) {
3920 /*
3921 * It's possible for an itx to be generated that doesn't dirty
3922 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3923 * callback to remove the entry. We remove those here.
3924 *
3925 * Also free up the ziltest itxs.
3926 */
3927 if (zilog->zl_itxg[i].itxg_itxs)
3928 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3929 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3930 }
3931
3932 mutex_destroy(&zilog->zl_issuer_lock);
3933 mutex_destroy(&zilog->zl_lock);
3934 mutex_destroy(&zilog->zl_lwb_io_lock);
3935
3936 cv_destroy(&zilog->zl_cv_suspend);
3937 cv_destroy(&zilog->zl_lwb_io_cv);
3938
3939 kmem_free(zilog, sizeof (zilog_t));
3940 }
3941
3942 /*
3943 * Open an intent log.
3944 */
3945 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data,zil_sums_t * zil_sums)3946 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3947 {
3948 zilog_t *zilog = dmu_objset_zil(os);
3949
3950 ASSERT3P(zilog->zl_get_data, ==, NULL);
3951 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3952 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3953
3954 zilog->zl_get_data = get_data;
3955 zilog->zl_sums = zil_sums;
3956
3957 return (zilog);
3958 }
3959
3960 /*
3961 * Close an intent log.
3962 */
3963 void
zil_close(zilog_t * zilog)3964 zil_close(zilog_t *zilog)
3965 {
3966 lwb_t *lwb;
3967 uint64_t txg;
3968
3969 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3970 zil_commit(zilog, 0);
3971 } else {
3972 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3973 ASSERT0(zilog->zl_dirty_max_txg);
3974 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3975 }
3976
3977 mutex_enter(&zilog->zl_lock);
3978 txg = zilog->zl_dirty_max_txg;
3979 lwb = list_tail(&zilog->zl_lwb_list);
3980 if (lwb != NULL) {
3981 txg = MAX(txg, lwb->lwb_alloc_txg);
3982 txg = MAX(txg, lwb->lwb_max_txg);
3983 }
3984 mutex_exit(&zilog->zl_lock);
3985
3986 /*
3987 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3988 * on the time when the dmu_tx transaction is assigned in
3989 * zil_lwb_write_issue().
3990 */
3991 mutex_enter(&zilog->zl_lwb_io_lock);
3992 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3993 mutex_exit(&zilog->zl_lwb_io_lock);
3994
3995 /*
3996 * We need to use txg_wait_synced() to wait until that txg is synced.
3997 * zil_sync() will guarantee all lwbs up to that txg have been
3998 * written out, flushed, and cleaned.
3999 */
4000 if (txg != 0)
4001 txg_wait_synced(zilog->zl_dmu_pool, txg);
4002
4003 if (zilog_is_dirty(zilog))
4004 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
4005 (u_longlong_t)txg);
4006 if (txg < spa_freeze_txg(zilog->zl_spa))
4007 VERIFY(!zilog_is_dirty(zilog));
4008
4009 zilog->zl_get_data = NULL;
4010
4011 /*
4012 * We should have only one lwb left on the list; remove it now.
4013 */
4014 mutex_enter(&zilog->zl_lock);
4015 lwb = list_remove_head(&zilog->zl_lwb_list);
4016 if (lwb != NULL) {
4017 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4018 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
4019 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
4020 zil_free_lwb(zilog, lwb);
4021 }
4022 mutex_exit(&zilog->zl_lock);
4023 }
4024
4025 static const char *suspend_tag = "zil suspending";
4026
4027 /*
4028 * Suspend an intent log. While in suspended mode, we still honor
4029 * synchronous semantics, but we rely on txg_wait_synced() to do it.
4030 * On old version pools, we suspend the log briefly when taking a
4031 * snapshot so that it will have an empty intent log.
4032 *
4033 * Long holds are not really intended to be used the way we do here --
4034 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
4035 * could fail. Therefore we take pains to only put a long hold if it is
4036 * actually necessary. Fortunately, it will only be necessary if the
4037 * objset is currently mounted (or the ZVOL equivalent). In that case it
4038 * will already have a long hold, so we are not really making things any worse.
4039 *
4040 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4041 * zvol_state_t), and use their mechanism to prevent their hold from being
4042 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
4043 * very little gain.
4044 *
4045 * if cookiep == NULL, this does both the suspend & resume.
4046 * Otherwise, it returns with the dataset "long held", and the cookie
4047 * should be passed into zil_resume().
4048 */
4049 int
zil_suspend(const char * osname,void ** cookiep)4050 zil_suspend(const char *osname, void **cookiep)
4051 {
4052 objset_t *os;
4053 zilog_t *zilog;
4054 const zil_header_t *zh;
4055 int error;
4056
4057 error = dmu_objset_hold(osname, suspend_tag, &os);
4058 if (error != 0)
4059 return (error);
4060 zilog = dmu_objset_zil(os);
4061
4062 mutex_enter(&zilog->zl_lock);
4063 zh = zilog->zl_header;
4064
4065 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
4066 mutex_exit(&zilog->zl_lock);
4067 dmu_objset_rele(os, suspend_tag);
4068 return (SET_ERROR(EBUSY));
4069 }
4070
4071 /*
4072 * Don't put a long hold in the cases where we can avoid it. This
4073 * is when there is no cookie so we are doing a suspend & resume
4074 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4075 * for the suspend because it's already suspended, or there's no ZIL.
4076 */
4077 if (cookiep == NULL && !zilog->zl_suspending &&
4078 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4079 mutex_exit(&zilog->zl_lock);
4080 dmu_objset_rele(os, suspend_tag);
4081 return (0);
4082 }
4083
4084 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4085 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4086
4087 zilog->zl_suspend++;
4088
4089 if (zilog->zl_suspend > 1) {
4090 /*
4091 * Someone else is already suspending it.
4092 * Just wait for them to finish.
4093 */
4094
4095 while (zilog->zl_suspending)
4096 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4097 mutex_exit(&zilog->zl_lock);
4098
4099 if (cookiep == NULL)
4100 zil_resume(os);
4101 else
4102 *cookiep = os;
4103 return (0);
4104 }
4105
4106 /*
4107 * If there is no pointer to an on-disk block, this ZIL must not
4108 * be active (e.g. filesystem not mounted), so there's nothing
4109 * to clean up.
4110 */
4111 if (BP_IS_HOLE(&zh->zh_log)) {
4112 ASSERT(cookiep != NULL); /* fast path already handled */
4113
4114 *cookiep = os;
4115 mutex_exit(&zilog->zl_lock);
4116 return (0);
4117 }
4118
4119 /*
4120 * The ZIL has work to do. Ensure that the associated encryption
4121 * key will remain mapped while we are committing the log by
4122 * grabbing a reference to it. If the key isn't loaded we have no
4123 * choice but to return an error until the wrapping key is loaded.
4124 */
4125 if (os->os_encrypted &&
4126 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4127 zilog->zl_suspend--;
4128 mutex_exit(&zilog->zl_lock);
4129 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4130 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4131 return (SET_ERROR(EACCES));
4132 }
4133
4134 zilog->zl_suspending = B_TRUE;
4135 mutex_exit(&zilog->zl_lock);
4136
4137 /*
4138 * We need to use zil_commit_impl to ensure we wait for all
4139 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4140 * to disk before proceeding. If we used zil_commit instead, it
4141 * would just call txg_wait_synced(), because zl_suspend is set.
4142 * txg_wait_synced() doesn't wait for these lwb's to be
4143 * LWB_STATE_FLUSH_DONE before returning.
4144 */
4145 zil_commit_impl(zilog, 0);
4146
4147 /*
4148 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4149 * use txg_wait_synced() to ensure the data from the zilog has
4150 * migrated to the main pool before calling zil_destroy().
4151 */
4152 txg_wait_synced(zilog->zl_dmu_pool, 0);
4153
4154 zil_destroy(zilog, B_FALSE);
4155
4156 mutex_enter(&zilog->zl_lock);
4157 zilog->zl_suspending = B_FALSE;
4158 cv_broadcast(&zilog->zl_cv_suspend);
4159 mutex_exit(&zilog->zl_lock);
4160
4161 if (os->os_encrypted)
4162 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4163
4164 if (cookiep == NULL)
4165 zil_resume(os);
4166 else
4167 *cookiep = os;
4168 return (0);
4169 }
4170
4171 void
zil_resume(void * cookie)4172 zil_resume(void *cookie)
4173 {
4174 objset_t *os = cookie;
4175 zilog_t *zilog = dmu_objset_zil(os);
4176
4177 mutex_enter(&zilog->zl_lock);
4178 ASSERT(zilog->zl_suspend != 0);
4179 zilog->zl_suspend--;
4180 mutex_exit(&zilog->zl_lock);
4181 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4182 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4183 }
4184
4185 typedef struct zil_replay_arg {
4186 zil_replay_func_t *const *zr_replay;
4187 void *zr_arg;
4188 boolean_t zr_byteswap;
4189 char *zr_lr;
4190 } zil_replay_arg_t;
4191
4192 static int
zil_replay_error(zilog_t * zilog,const lr_t * lr,int error)4193 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4194 {
4195 char name[ZFS_MAX_DATASET_NAME_LEN];
4196
4197 zilog->zl_replaying_seq--; /* didn't actually replay this one */
4198
4199 dmu_objset_name(zilog->zl_os, name);
4200
4201 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4202 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4203 (u_longlong_t)lr->lrc_seq,
4204 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4205 (lr->lrc_txtype & TX_CI) ? "CI" : "");
4206
4207 return (error);
4208 }
4209
4210 static int
zil_replay_log_record(zilog_t * zilog,const lr_t * lr,void * zra,uint64_t claim_txg)4211 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4212 uint64_t claim_txg)
4213 {
4214 zil_replay_arg_t *zr = zra;
4215 const zil_header_t *zh = zilog->zl_header;
4216 uint64_t reclen = lr->lrc_reclen;
4217 uint64_t txtype = lr->lrc_txtype;
4218 int error = 0;
4219
4220 zilog->zl_replaying_seq = lr->lrc_seq;
4221
4222 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
4223 return (0);
4224
4225 if (lr->lrc_txg < claim_txg) /* already committed */
4226 return (0);
4227
4228 /* Strip case-insensitive bit, still present in log record */
4229 txtype &= ~TX_CI;
4230
4231 if (txtype == 0 || txtype >= TX_MAX_TYPE)
4232 return (zil_replay_error(zilog, lr, EINVAL));
4233
4234 /*
4235 * If this record type can be logged out of order, the object
4236 * (lr_foid) may no longer exist. That's legitimate, not an error.
4237 */
4238 if (TX_OOO(txtype)) {
4239 error = dmu_object_info(zilog->zl_os,
4240 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4241 if (error == ENOENT || error == EEXIST)
4242 return (0);
4243 }
4244
4245 /*
4246 * Make a copy of the data so we can revise and extend it.
4247 */
4248 memcpy(zr->zr_lr, lr, reclen);
4249
4250 /*
4251 * If this is a TX_WRITE with a blkptr, suck in the data.
4252 */
4253 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4254 error = zil_read_log_data(zilog, (lr_write_t *)lr,
4255 zr->zr_lr + reclen);
4256 if (error != 0)
4257 return (zil_replay_error(zilog, lr, error));
4258 }
4259
4260 /*
4261 * The log block containing this lr may have been byteswapped
4262 * so that we can easily examine common fields like lrc_txtype.
4263 * However, the log is a mix of different record types, and only the
4264 * replay vectors know how to byteswap their records. Therefore, if
4265 * the lr was byteswapped, undo it before invoking the replay vector.
4266 */
4267 if (zr->zr_byteswap)
4268 byteswap_uint64_array(zr->zr_lr, reclen);
4269
4270 /*
4271 * We must now do two things atomically: replay this log record,
4272 * and update the log header sequence number to reflect the fact that
4273 * we did so. At the end of each replay function the sequence number
4274 * is updated if we are in replay mode.
4275 */
4276 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4277 if (error != 0) {
4278 /*
4279 * The DMU's dnode layer doesn't see removes until the txg
4280 * commits, so a subsequent claim can spuriously fail with
4281 * EEXIST. So if we receive any error we try syncing out
4282 * any removes then retry the transaction. Note that we
4283 * specify B_FALSE for byteswap now, so we don't do it twice.
4284 */
4285 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4286 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4287 if (error != 0)
4288 return (zil_replay_error(zilog, lr, error));
4289 }
4290 return (0);
4291 }
4292
4293 static int
zil_incr_blks(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)4294 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4295 {
4296 (void) bp, (void) arg, (void) claim_txg;
4297
4298 zilog->zl_replay_blks++;
4299
4300 return (0);
4301 }
4302
4303 /*
4304 * If this dataset has a non-empty intent log, replay it and destroy it.
4305 * Return B_TRUE if there were any entries to replay.
4306 */
4307 boolean_t
zil_replay(objset_t * os,void * arg,zil_replay_func_t * const replay_func[TX_MAX_TYPE])4308 zil_replay(objset_t *os, void *arg,
4309 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4310 {
4311 zilog_t *zilog = dmu_objset_zil(os);
4312 const zil_header_t *zh = zilog->zl_header;
4313 zil_replay_arg_t zr;
4314
4315 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4316 return (zil_destroy(zilog, B_TRUE));
4317 }
4318
4319 zr.zr_replay = replay_func;
4320 zr.zr_arg = arg;
4321 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4322 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4323
4324 /*
4325 * Wait for in-progress removes to sync before starting replay.
4326 */
4327 txg_wait_synced(zilog->zl_dmu_pool, 0);
4328
4329 zilog->zl_replay = B_TRUE;
4330 zilog->zl_replay_time = ddi_get_lbolt();
4331 ASSERT(zilog->zl_replay_blks == 0);
4332 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4333 zh->zh_claim_txg, B_TRUE);
4334 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4335
4336 zil_destroy(zilog, B_FALSE);
4337 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4338 zilog->zl_replay = B_FALSE;
4339
4340 return (B_TRUE);
4341 }
4342
4343 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)4344 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4345 {
4346 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4347 return (B_TRUE);
4348
4349 if (zilog->zl_replay) {
4350 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4351 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4352 zilog->zl_replaying_seq;
4353 return (B_TRUE);
4354 }
4355
4356 return (B_FALSE);
4357 }
4358
4359 int
zil_reset(const char * osname,void * arg)4360 zil_reset(const char *osname, void *arg)
4361 {
4362 (void) arg;
4363
4364 int error = zil_suspend(osname, NULL);
4365 /* EACCES means crypto key not loaded */
4366 if ((error == EACCES) || (error == EBUSY))
4367 return (SET_ERROR(error));
4368 if (error != 0)
4369 return (SET_ERROR(EEXIST));
4370 return (0);
4371 }
4372
4373 EXPORT_SYMBOL(zil_alloc);
4374 EXPORT_SYMBOL(zil_free);
4375 EXPORT_SYMBOL(zil_open);
4376 EXPORT_SYMBOL(zil_close);
4377 EXPORT_SYMBOL(zil_replay);
4378 EXPORT_SYMBOL(zil_replaying);
4379 EXPORT_SYMBOL(zil_destroy);
4380 EXPORT_SYMBOL(zil_destroy_sync);
4381 EXPORT_SYMBOL(zil_itx_create);
4382 EXPORT_SYMBOL(zil_itx_destroy);
4383 EXPORT_SYMBOL(zil_itx_assign);
4384 EXPORT_SYMBOL(zil_commit);
4385 EXPORT_SYMBOL(zil_claim);
4386 EXPORT_SYMBOL(zil_check_log_chain);
4387 EXPORT_SYMBOL(zil_sync);
4388 EXPORT_SYMBOL(zil_clean);
4389 EXPORT_SYMBOL(zil_suspend);
4390 EXPORT_SYMBOL(zil_resume);
4391 EXPORT_SYMBOL(zil_lwb_add_block);
4392 EXPORT_SYMBOL(zil_bp_tree_add);
4393 EXPORT_SYMBOL(zil_set_sync);
4394 EXPORT_SYMBOL(zil_set_logbias);
4395 EXPORT_SYMBOL(zil_sums_init);
4396 EXPORT_SYMBOL(zil_sums_fini);
4397 EXPORT_SYMBOL(zil_kstat_values_update);
4398
4399 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4400 "ZIL block open timeout percentage");
4401
4402 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4403 "Disable intent logging replay");
4404
4405 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4406 "Disable ZIL cache flushes");
4407
4408 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4409 "Limit in bytes slog sync writes per commit");
4410
4411 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4412 "Limit in bytes of ZIL log block size");
4413
4414 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4415 "Limit in bytes WR_COPIED size");
4416