1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright (c) 2018 Datto Inc.
27 */
28
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 #include <sys/zfs_context.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/zap.h>
36 #include <sys/arc.h>
37 #include <sys/stat.h>
38 #include <sys/zil.h>
39 #include <sys/zil_impl.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/metaslab.h>
45 #include <sys/trace_zfs.h>
46 #include <sys/abd.h>
47 #include <sys/brt.h>
48 #include <sys/wmsum.h>
49
50 /*
51 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
52 * calls that change the file system. Each itx has enough information to
53 * be able to replay them after a system crash, power loss, or
54 * equivalent failure mode. These are stored in memory until either:
55 *
56 * 1. they are committed to the pool by the DMU transaction group
57 * (txg), at which point they can be discarded; or
58 * 2. they are committed to the on-disk ZIL for the dataset being
59 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
60 * requirement).
61 *
62 * In the event of a crash or power loss, the itxs contained by each
63 * dataset's on-disk ZIL will be replayed when that dataset is first
64 * instantiated (e.g. if the dataset is a normal filesystem, when it is
65 * first mounted).
66 *
67 * As hinted at above, there is one ZIL per dataset (both the in-memory
68 * representation, and the on-disk representation). The on-disk format
69 * consists of 3 parts:
70 *
71 * - a single, per-dataset, ZIL header; which points to a chain of
72 * - zero or more ZIL blocks; each of which contains
73 * - zero or more ZIL records
74 *
75 * A ZIL record holds the information necessary to replay a single
76 * system call transaction. A ZIL block can hold many ZIL records, and
77 * the blocks are chained together, similarly to a singly linked list.
78 *
79 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
80 * block in the chain, and the ZIL header points to the first block in
81 * the chain.
82 *
83 * Note, there is not a fixed place in the pool to hold these ZIL
84 * blocks; they are dynamically allocated and freed as needed from the
85 * blocks available on the pool, though they can be preferentially
86 * allocated from a dedicated "log" vdev.
87 */
88
89 /*
90 * This controls the amount of time that a ZIL block (lwb) will remain
91 * "open" when it isn't "full", and it has a thread waiting for it to be
92 * committed to stable storage. Please refer to the zil_commit_waiter()
93 * function (and the comments within it) for more details.
94 */
95 static uint_t zfs_commit_timeout_pct = 10;
96
97 /*
98 * See zil.h for more information about these fields.
99 */
100 static zil_kstat_values_t zil_stats = {
101 { "zil_commit_count", KSTAT_DATA_UINT64 },
102 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
103 { "zil_commit_error_count", KSTAT_DATA_UINT64 },
104 { "zil_commit_stall_count", KSTAT_DATA_UINT64 },
105 { "zil_commit_suspend_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_count", KSTAT_DATA_UINT64 },
107 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
111 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
112 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
113 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
114 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
115 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
117 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
118 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
119 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
120 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
121 };
122
123 static zil_sums_t zil_sums_global;
124 static kstat_t *zil_kstats_global;
125
126 /*
127 * Disable intent logging replay. This global ZIL switch affects all pools.
128 */
129 int zil_replay_disable = 0;
130
131 /*
132 * Disable the flush commands that are normally sent to the disk(s) by the ZIL
133 * after an LWB write has completed. Setting this will cause ZIL corruption on
134 * power loss if a volatile out-of-order write cache is enabled.
135 */
136 static int zil_nocacheflush = 0;
137
138 /*
139 * Limit SLOG write size per commit executed with synchronous priority.
140 * Any writes above that will be executed with lower (asynchronous) priority
141 * to limit potential SLOG device abuse by single active ZIL writer.
142 */
143 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
144
145 static kmem_cache_t *zil_lwb_cache;
146 static kmem_cache_t *zil_zcw_cache;
147
148 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
149 static itx_t *zil_itx_clone(itx_t *oitx);
150 static uint64_t zil_max_waste_space(zilog_t *zilog);
151
152 static int
zil_bp_compare(const void * x1,const void * x2)153 zil_bp_compare(const void *x1, const void *x2)
154 {
155 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
156 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
157
158 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
159 if (likely(cmp))
160 return (cmp);
161
162 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
163 }
164
165 static void
zil_bp_tree_init(zilog_t * zilog)166 zil_bp_tree_init(zilog_t *zilog)
167 {
168 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
169 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
170 }
171
172 static void
zil_bp_tree_fini(zilog_t * zilog)173 zil_bp_tree_fini(zilog_t *zilog)
174 {
175 avl_tree_t *t = &zilog->zl_bp_tree;
176 zil_bp_node_t *zn;
177 void *cookie = NULL;
178
179 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
180 kmem_free(zn, sizeof (zil_bp_node_t));
181
182 avl_destroy(t);
183 }
184
185 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)186 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
187 {
188 avl_tree_t *t = &zilog->zl_bp_tree;
189 const dva_t *dva;
190 zil_bp_node_t *zn;
191 avl_index_t where;
192
193 if (BP_IS_EMBEDDED(bp))
194 return (0);
195
196 dva = BP_IDENTITY(bp);
197
198 if (avl_find(t, dva, &where) != NULL)
199 return (SET_ERROR(EEXIST));
200
201 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
202 zn->zn_dva = *dva;
203 avl_insert(t, zn, where);
204
205 return (0);
206 }
207
208 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)209 zil_header_in_syncing_context(zilog_t *zilog)
210 {
211 return ((zil_header_t *)zilog->zl_header);
212 }
213
214 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)215 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
216 {
217 zio_cksum_t *zc = &bp->blk_cksum;
218
219 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
220 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
221 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
222 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
223 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
224 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
225 }
226
227 static int
zil_kstats_global_update(kstat_t * ksp,int rw)228 zil_kstats_global_update(kstat_t *ksp, int rw)
229 {
230 zil_kstat_values_t *zs = ksp->ks_data;
231 ASSERT3P(&zil_stats, ==, zs);
232
233 if (rw == KSTAT_WRITE) {
234 return (SET_ERROR(EACCES));
235 }
236
237 zil_kstat_values_update(zs, &zil_sums_global);
238
239 return (0);
240 }
241
242 /*
243 * Read a log block and make sure it's valid.
244 */
245 static int
zil_read_log_block(zilog_t * zilog,boolean_t decrypt,const blkptr_t * bp,blkptr_t * nbp,char ** begin,char ** end,arc_buf_t ** abuf)246 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
247 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
248 {
249 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
250 arc_flags_t aflags = ARC_FLAG_WAIT;
251 zbookmark_phys_t zb;
252 int error;
253
254 if (zilog->zl_header->zh_claim_txg == 0)
255 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
256
257 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
258 zio_flags |= ZIO_FLAG_SPECULATIVE;
259
260 if (!decrypt)
261 zio_flags |= ZIO_FLAG_RAW;
262
263 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
264 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
265
266 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
267 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
268
269 if (error == 0) {
270 zio_cksum_t cksum = bp->blk_cksum;
271
272 /*
273 * Validate the checksummed log block.
274 *
275 * Sequence numbers should be... sequential. The checksum
276 * verifier for the next block should be bp's checksum plus 1.
277 *
278 * Also check the log chain linkage and size used.
279 */
280 cksum.zc_word[ZIL_ZC_SEQ]++;
281
282 uint64_t size = BP_GET_LSIZE(bp);
283 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
284 zil_chain_t *zilc = (*abuf)->b_data;
285 char *lr = (char *)(zilc + 1);
286
287 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
288 sizeof (cksum)) ||
289 zilc->zc_nused < sizeof (*zilc) ||
290 zilc->zc_nused > size) {
291 error = SET_ERROR(ECKSUM);
292 } else {
293 *begin = lr;
294 *end = lr + zilc->zc_nused - sizeof (*zilc);
295 *nbp = zilc->zc_next_blk;
296 }
297 } else {
298 char *lr = (*abuf)->b_data;
299 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
300
301 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
302 sizeof (cksum)) ||
303 (zilc->zc_nused > (size - sizeof (*zilc)))) {
304 error = SET_ERROR(ECKSUM);
305 } else {
306 *begin = lr;
307 *end = lr + zilc->zc_nused;
308 *nbp = zilc->zc_next_blk;
309 }
310 }
311 }
312
313 return (error);
314 }
315
316 /*
317 * Read a TX_WRITE log data block.
318 */
319 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)320 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
321 {
322 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
323 const blkptr_t *bp = &lr->lr_blkptr;
324 arc_flags_t aflags = ARC_FLAG_WAIT;
325 arc_buf_t *abuf = NULL;
326 zbookmark_phys_t zb;
327 int error;
328
329 if (BP_IS_HOLE(bp)) {
330 if (wbuf != NULL)
331 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
332 return (0);
333 }
334
335 if (zilog->zl_header->zh_claim_txg == 0)
336 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
337
338 /*
339 * If we are not using the resulting data, we are just checking that
340 * it hasn't been corrupted so we don't need to waste CPU time
341 * decompressing and decrypting it.
342 */
343 if (wbuf == NULL)
344 zio_flags |= ZIO_FLAG_RAW;
345
346 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
347 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
348 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
349
350 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
351 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
352
353 if (error == 0) {
354 if (wbuf != NULL)
355 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
356 arc_buf_destroy(abuf, &abuf);
357 }
358
359 return (error);
360 }
361
362 void
zil_sums_init(zil_sums_t * zs)363 zil_sums_init(zil_sums_t *zs)
364 {
365 wmsum_init(&zs->zil_commit_count, 0);
366 wmsum_init(&zs->zil_commit_writer_count, 0);
367 wmsum_init(&zs->zil_commit_error_count, 0);
368 wmsum_init(&zs->zil_commit_stall_count, 0);
369 wmsum_init(&zs->zil_commit_suspend_count, 0);
370 wmsum_init(&zs->zil_itx_count, 0);
371 wmsum_init(&zs->zil_itx_indirect_count, 0);
372 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
373 wmsum_init(&zs->zil_itx_copied_count, 0);
374 wmsum_init(&zs->zil_itx_copied_bytes, 0);
375 wmsum_init(&zs->zil_itx_needcopy_count, 0);
376 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
377 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
378 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
379 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
380 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
381 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
382 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
383 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
384 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
385 }
386
387 void
zil_sums_fini(zil_sums_t * zs)388 zil_sums_fini(zil_sums_t *zs)
389 {
390 wmsum_fini(&zs->zil_commit_count);
391 wmsum_fini(&zs->zil_commit_writer_count);
392 wmsum_fini(&zs->zil_commit_error_count);
393 wmsum_fini(&zs->zil_commit_stall_count);
394 wmsum_fini(&zs->zil_commit_suspend_count);
395 wmsum_fini(&zs->zil_itx_count);
396 wmsum_fini(&zs->zil_itx_indirect_count);
397 wmsum_fini(&zs->zil_itx_indirect_bytes);
398 wmsum_fini(&zs->zil_itx_copied_count);
399 wmsum_fini(&zs->zil_itx_copied_bytes);
400 wmsum_fini(&zs->zil_itx_needcopy_count);
401 wmsum_fini(&zs->zil_itx_needcopy_bytes);
402 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
403 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
404 wmsum_fini(&zs->zil_itx_metaslab_normal_write);
405 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
406 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
407 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
408 wmsum_fini(&zs->zil_itx_metaslab_slog_write);
409 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
410 }
411
412 void
zil_kstat_values_update(zil_kstat_values_t * zs,zil_sums_t * zil_sums)413 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
414 {
415 zs->zil_commit_count.value.ui64 =
416 wmsum_value(&zil_sums->zil_commit_count);
417 zs->zil_commit_writer_count.value.ui64 =
418 wmsum_value(&zil_sums->zil_commit_writer_count);
419 zs->zil_commit_error_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_commit_error_count);
421 zs->zil_commit_stall_count.value.ui64 =
422 wmsum_value(&zil_sums->zil_commit_stall_count);
423 zs->zil_commit_suspend_count.value.ui64 =
424 wmsum_value(&zil_sums->zil_commit_suspend_count);
425 zs->zil_itx_count.value.ui64 =
426 wmsum_value(&zil_sums->zil_itx_count);
427 zs->zil_itx_indirect_count.value.ui64 =
428 wmsum_value(&zil_sums->zil_itx_indirect_count);
429 zs->zil_itx_indirect_bytes.value.ui64 =
430 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
431 zs->zil_itx_copied_count.value.ui64 =
432 wmsum_value(&zil_sums->zil_itx_copied_count);
433 zs->zil_itx_copied_bytes.value.ui64 =
434 wmsum_value(&zil_sums->zil_itx_copied_bytes);
435 zs->zil_itx_needcopy_count.value.ui64 =
436 wmsum_value(&zil_sums->zil_itx_needcopy_count);
437 zs->zil_itx_needcopy_bytes.value.ui64 =
438 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
439 zs->zil_itx_metaslab_normal_count.value.ui64 =
440 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
441 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
442 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
443 zs->zil_itx_metaslab_normal_write.value.ui64 =
444 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
445 zs->zil_itx_metaslab_normal_alloc.value.ui64 =
446 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
447 zs->zil_itx_metaslab_slog_count.value.ui64 =
448 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
449 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
450 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
451 zs->zil_itx_metaslab_slog_write.value.ui64 =
452 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
453 zs->zil_itx_metaslab_slog_alloc.value.ui64 =
454 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
455 }
456
457 /*
458 * Parse the intent log, and call parse_func for each valid record within.
459 */
460 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg,boolean_t decrypt)461 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
462 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
463 boolean_t decrypt)
464 {
465 const zil_header_t *zh = zilog->zl_header;
466 boolean_t claimed = !!zh->zh_claim_txg;
467 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
468 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
469 uint64_t max_blk_seq = 0;
470 uint64_t max_lr_seq = 0;
471 uint64_t blk_count = 0;
472 uint64_t lr_count = 0;
473 blkptr_t blk, next_blk = {{{{0}}}};
474 int error = 0;
475
476 /*
477 * Old logs didn't record the maximum zh_claim_lr_seq.
478 */
479 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
480 claim_lr_seq = UINT64_MAX;
481
482 /*
483 * Starting at the block pointed to by zh_log we read the log chain.
484 * For each block in the chain we strongly check that block to
485 * ensure its validity. We stop when an invalid block is found.
486 * For each block pointer in the chain we call parse_blk_func().
487 * For each record in each valid block we call parse_lr_func().
488 * If the log has been claimed, stop if we encounter a sequence
489 * number greater than the highest claimed sequence number.
490 */
491 zil_bp_tree_init(zilog);
492
493 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
494 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
495 int reclen;
496 char *lrp, *end;
497 arc_buf_t *abuf = NULL;
498
499 if (blk_seq > claim_blk_seq)
500 break;
501
502 error = parse_blk_func(zilog, &blk, arg, txg);
503 if (error != 0)
504 break;
505 ASSERT3U(max_blk_seq, <, blk_seq);
506 max_blk_seq = blk_seq;
507 blk_count++;
508
509 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
510 break;
511
512 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
513 &lrp, &end, &abuf);
514 if (error != 0) {
515 if (abuf)
516 arc_buf_destroy(abuf, &abuf);
517 if (claimed) {
518 char name[ZFS_MAX_DATASET_NAME_LEN];
519
520 dmu_objset_name(zilog->zl_os, name);
521
522 cmn_err(CE_WARN, "ZFS read log block error %d, "
523 "dataset %s, seq 0x%llx\n", error, name,
524 (u_longlong_t)blk_seq);
525 }
526 break;
527 }
528
529 for (; lrp < end; lrp += reclen) {
530 lr_t *lr = (lr_t *)lrp;
531
532 /*
533 * Are the remaining bytes large enough to hold an
534 * log record?
535 */
536 if ((char *)(lr + 1) > end) {
537 cmn_err(CE_WARN, "zil_parse: lr_t overrun");
538 error = SET_ERROR(ECKSUM);
539 arc_buf_destroy(abuf, &abuf);
540 goto done;
541 }
542 reclen = lr->lrc_reclen;
543 if (reclen < sizeof (lr_t) || reclen > end - lrp) {
544 cmn_err(CE_WARN,
545 "zil_parse: lr_t has an invalid reclen");
546 error = SET_ERROR(ECKSUM);
547 arc_buf_destroy(abuf, &abuf);
548 goto done;
549 }
550
551 if (lr->lrc_seq > claim_lr_seq) {
552 arc_buf_destroy(abuf, &abuf);
553 goto done;
554 }
555
556 error = parse_lr_func(zilog, lr, arg, txg);
557 if (error != 0) {
558 arc_buf_destroy(abuf, &abuf);
559 goto done;
560 }
561 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
562 max_lr_seq = lr->lrc_seq;
563 lr_count++;
564 }
565 arc_buf_destroy(abuf, &abuf);
566 }
567 done:
568 zilog->zl_parse_error = error;
569 zilog->zl_parse_blk_seq = max_blk_seq;
570 zilog->zl_parse_lr_seq = max_lr_seq;
571 zilog->zl_parse_blk_count = blk_count;
572 zilog->zl_parse_lr_count = lr_count;
573
574 zil_bp_tree_fini(zilog);
575
576 return (error);
577 }
578
579 static int
zil_clear_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)580 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
581 uint64_t first_txg)
582 {
583 (void) tx;
584 ASSERT(!BP_IS_HOLE(bp));
585
586 /*
587 * As we call this function from the context of a rewind to a
588 * checkpoint, each ZIL block whose txg is later than the txg
589 * that we rewind to is invalid. Thus, we return -1 so
590 * zil_parse() doesn't attempt to read it.
591 */
592 if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg)
593 return (-1);
594
595 if (zil_bp_tree_add(zilog, bp) != 0)
596 return (0);
597
598 zio_free(zilog->zl_spa, first_txg, bp);
599 return (0);
600 }
601
602 static int
zil_noop_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)603 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
604 uint64_t first_txg)
605 {
606 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
607 return (0);
608 }
609
610 static int
zil_claim_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)611 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
612 uint64_t first_txg)
613 {
614 /*
615 * Claim log block if not already committed and not already claimed.
616 * If tx == NULL, just verify that the block is claimable.
617 */
618 if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg ||
619 zil_bp_tree_add(zilog, bp) != 0)
620 return (0);
621
622 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
623 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
624 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
625 }
626
627 static int
zil_claim_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)628 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
629 {
630 lr_write_t *lr = (lr_write_t *)lrc;
631 int error;
632
633 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
634
635 /*
636 * If the block is not readable, don't claim it. This can happen
637 * in normal operation when a log block is written to disk before
638 * some of the dmu_sync() blocks it points to. In this case, the
639 * transaction cannot have been committed to anyone (we would have
640 * waited for all writes to be stable first), so it is semantically
641 * correct to declare this the end of the log.
642 */
643 if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) {
644 error = zil_read_log_data(zilog, lr, NULL);
645 if (error != 0)
646 return (error);
647 }
648
649 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
650 }
651
652 static int
zil_claim_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)653 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
654 uint64_t first_txg)
655 {
656 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
657 const blkptr_t *bp;
658 spa_t *spa = zilog->zl_spa;
659 uint_t ii;
660
661 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
662 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
663 lr_bps[lr->lr_nbps]));
664
665 if (tx == NULL) {
666 return (0);
667 }
668
669 /*
670 * XXX: Do we need to byteswap lr?
671 */
672
673 for (ii = 0; ii < lr->lr_nbps; ii++) {
674 bp = &lr->lr_bps[ii];
675
676 /*
677 * When data is embedded into the BP there is no need to create
678 * BRT entry as there is no data block. Just copy the BP as it
679 * contains the data.
680 */
681 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
682 continue;
683
684 /*
685 * We can not handle block pointers from the future, since they
686 * are not yet allocated. It should not normally happen, but
687 * just in case lets be safe and just stop here now instead of
688 * corrupting the pool.
689 */
690 if (BP_GET_BIRTH(bp) >= first_txg)
691 return (SET_ERROR(ENOENT));
692
693 /*
694 * Assert the block is really allocated before we reference it.
695 */
696 metaslab_check_free(spa, bp);
697 }
698
699 for (ii = 0; ii < lr->lr_nbps; ii++) {
700 bp = &lr->lr_bps[ii];
701 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
702 brt_pending_add(spa, bp, tx);
703 }
704
705 return (0);
706 }
707
708 static int
zil_claim_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)709 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
710 uint64_t first_txg)
711 {
712
713 switch (lrc->lrc_txtype) {
714 case TX_WRITE:
715 return (zil_claim_write(zilog, lrc, tx, first_txg));
716 case TX_CLONE_RANGE:
717 return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
718 default:
719 return (0);
720 }
721 }
722
723 static int
zil_free_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t claim_txg)724 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
725 uint64_t claim_txg)
726 {
727 (void) claim_txg;
728
729 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
730
731 return (0);
732 }
733
734 static int
zil_free_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)735 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
736 {
737 lr_write_t *lr = (lr_write_t *)lrc;
738 blkptr_t *bp = &lr->lr_blkptr;
739
740 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
741
742 /*
743 * If we previously claimed it, we need to free it.
744 */
745 if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg &&
746 zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
747 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
748 }
749
750 return (0);
751 }
752
753 static int
zil_free_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx)754 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
755 {
756 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
757 const blkptr_t *bp;
758 spa_t *spa;
759 uint_t ii;
760
761 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
762 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
763 lr_bps[lr->lr_nbps]));
764
765 if (tx == NULL) {
766 return (0);
767 }
768
769 spa = zilog->zl_spa;
770
771 for (ii = 0; ii < lr->lr_nbps; ii++) {
772 bp = &lr->lr_bps[ii];
773
774 if (!BP_IS_HOLE(bp)) {
775 zio_free(spa, dmu_tx_get_txg(tx), bp);
776 }
777 }
778
779 return (0);
780 }
781
782 static int
zil_free_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)783 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
784 uint64_t claim_txg)
785 {
786
787 if (claim_txg == 0) {
788 return (0);
789 }
790
791 switch (lrc->lrc_txtype) {
792 case TX_WRITE:
793 return (zil_free_write(zilog, lrc, tx, claim_txg));
794 case TX_CLONE_RANGE:
795 return (zil_free_clone_range(zilog, lrc, tx));
796 default:
797 return (0);
798 }
799 }
800
801 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)802 zil_lwb_vdev_compare(const void *x1, const void *x2)
803 {
804 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
805 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
806
807 return (TREE_CMP(v1, v2));
808 }
809
810 /*
811 * Allocate a new lwb. We may already have a block pointer for it, in which
812 * case we get size and version from there. Or we may not yet, in which case
813 * we choose them here and later make the block allocation match.
814 */
815 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,int sz,blkptr_t * bp,boolean_t slog,uint64_t txg,lwb_state_t state)816 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
817 uint64_t txg, lwb_state_t state)
818 {
819 lwb_t *lwb;
820
821 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
822 lwb->lwb_zilog = zilog;
823 if (bp) {
824 lwb->lwb_blk = *bp;
825 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
826 sz = BP_GET_LSIZE(bp);
827 } else {
828 BP_ZERO(&lwb->lwb_blk);
829 lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
830 SPA_VERSION_SLIM_ZIL);
831 }
832 lwb->lwb_slog = slog;
833 lwb->lwb_error = 0;
834 if (lwb->lwb_slim) {
835 lwb->lwb_nmax = sz;
836 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
837 } else {
838 lwb->lwb_nmax = sz - sizeof (zil_chain_t);
839 lwb->lwb_nused = lwb->lwb_nfilled = 0;
840 }
841 lwb->lwb_sz = sz;
842 lwb->lwb_state = state;
843 lwb->lwb_buf = zio_buf_alloc(sz);
844 lwb->lwb_child_zio = NULL;
845 lwb->lwb_write_zio = NULL;
846 lwb->lwb_root_zio = NULL;
847 lwb->lwb_issued_timestamp = 0;
848 lwb->lwb_issued_txg = 0;
849 lwb->lwb_alloc_txg = txg;
850 lwb->lwb_max_txg = 0;
851
852 mutex_enter(&zilog->zl_lock);
853 list_insert_tail(&zilog->zl_lwb_list, lwb);
854 if (state != LWB_STATE_NEW)
855 zilog->zl_last_lwb_opened = lwb;
856 mutex_exit(&zilog->zl_lock);
857
858 return (lwb);
859 }
860
861 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)862 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
863 {
864 ASSERT(MUTEX_HELD(&zilog->zl_lock));
865 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
866 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
867 ASSERT3P(lwb->lwb_child_zio, ==, NULL);
868 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
869 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
870 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
871 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
872 VERIFY(list_is_empty(&lwb->lwb_itxs));
873 VERIFY(list_is_empty(&lwb->lwb_waiters));
874 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
875 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
876
877 /*
878 * Clear the zilog's field to indicate this lwb is no longer
879 * valid, and prevent use-after-free errors.
880 */
881 if (zilog->zl_last_lwb_opened == lwb)
882 zilog->zl_last_lwb_opened = NULL;
883
884 kmem_cache_free(zil_lwb_cache, lwb);
885 }
886
887 /*
888 * Called when we create in-memory log transactions so that we know
889 * to cleanup the itxs at the end of spa_sync().
890 */
891 static void
zilog_dirty(zilog_t * zilog,uint64_t txg)892 zilog_dirty(zilog_t *zilog, uint64_t txg)
893 {
894 dsl_pool_t *dp = zilog->zl_dmu_pool;
895 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
896
897 ASSERT(spa_writeable(zilog->zl_spa));
898
899 if (ds->ds_is_snapshot)
900 panic("dirtying snapshot!");
901
902 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
903 /* up the hold count until we can be written out */
904 dmu_buf_add_ref(ds->ds_dbuf, zilog);
905
906 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
907 }
908 }
909
910 /*
911 * Determine if the zil is dirty in the specified txg. Callers wanting to
912 * ensure that the dirty state does not change must hold the itxg_lock for
913 * the specified txg. Holding the lock will ensure that the zil cannot be
914 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
915 * state.
916 */
917 static boolean_t __maybe_unused
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)918 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
919 {
920 dsl_pool_t *dp = zilog->zl_dmu_pool;
921
922 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
923 return (B_TRUE);
924 return (B_FALSE);
925 }
926
927 /*
928 * Determine if the zil is dirty. The zil is considered dirty if it has
929 * any pending itx records that have not been cleaned by zil_clean().
930 */
931 static boolean_t
zilog_is_dirty(zilog_t * zilog)932 zilog_is_dirty(zilog_t *zilog)
933 {
934 dsl_pool_t *dp = zilog->zl_dmu_pool;
935
936 for (int t = 0; t < TXG_SIZE; t++) {
937 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
938 return (B_TRUE);
939 }
940 return (B_FALSE);
941 }
942
943 /*
944 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
945 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
946 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
947 * zil_commit.
948 */
949 static void
zil_commit_activate_saxattr_feature(zilog_t * zilog)950 zil_commit_activate_saxattr_feature(zilog_t *zilog)
951 {
952 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
953 uint64_t txg = 0;
954 dmu_tx_t *tx = NULL;
955
956 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
957 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
958 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
959 tx = dmu_tx_create(zilog->zl_os);
960 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
961 dsl_dataset_dirty(ds, tx);
962 txg = dmu_tx_get_txg(tx);
963
964 mutex_enter(&ds->ds_lock);
965 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
966 (void *)B_TRUE;
967 mutex_exit(&ds->ds_lock);
968 dmu_tx_commit(tx);
969 txg_wait_synced(zilog->zl_dmu_pool, txg);
970 }
971 }
972
973 /*
974 * Create an on-disk intent log.
975 */
976 static lwb_t *
zil_create(zilog_t * zilog)977 zil_create(zilog_t *zilog)
978 {
979 const zil_header_t *zh = zilog->zl_header;
980 lwb_t *lwb = NULL;
981 uint64_t txg = 0;
982 dmu_tx_t *tx = NULL;
983 blkptr_t blk;
984 int error = 0;
985 boolean_t slog = FALSE;
986 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
987
988
989 /*
990 * Wait for any previous destroy to complete.
991 */
992 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
993
994 ASSERT(zh->zh_claim_txg == 0);
995 ASSERT(zh->zh_replay_seq == 0);
996
997 blk = zh->zh_log;
998
999 /*
1000 * Allocate an initial log block if:
1001 * - there isn't one already
1002 * - the existing block is the wrong endianness
1003 */
1004 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
1005 tx = dmu_tx_create(zilog->zl_os);
1006 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1007 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1008 txg = dmu_tx_get_txg(tx);
1009
1010 if (!BP_IS_HOLE(&blk)) {
1011 zio_free(zilog->zl_spa, txg, &blk);
1012 BP_ZERO(&blk);
1013 }
1014
1015 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1016 ZIL_MIN_BLKSZ, &slog);
1017 if (error == 0)
1018 zil_init_log_chain(zilog, &blk);
1019 }
1020
1021 /*
1022 * Allocate a log write block (lwb) for the first log block.
1023 */
1024 if (error == 0)
1025 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
1026
1027 /*
1028 * If we just allocated the first log block, commit our transaction
1029 * and wait for zil_sync() to stuff the block pointer into zh_log.
1030 * (zh is part of the MOS, so we cannot modify it in open context.)
1031 */
1032 if (tx != NULL) {
1033 /*
1034 * If "zilsaxattr" feature is enabled on zpool, then activate
1035 * it now when we're creating the ZIL chain. We can't wait with
1036 * this until we write the first xattr log record because we
1037 * need to wait for the feature activation to sync out.
1038 */
1039 if (spa_feature_is_enabled(zilog->zl_spa,
1040 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1041 DMU_OST_ZVOL) {
1042 mutex_enter(&ds->ds_lock);
1043 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1044 (void *)B_TRUE;
1045 mutex_exit(&ds->ds_lock);
1046 }
1047
1048 dmu_tx_commit(tx);
1049 txg_wait_synced(zilog->zl_dmu_pool, txg);
1050 } else {
1051 /*
1052 * This branch covers the case where we enable the feature on a
1053 * zpool that has existing ZIL headers.
1054 */
1055 zil_commit_activate_saxattr_feature(zilog);
1056 }
1057 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1058 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1059 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1060
1061 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1062 IMPLY(error == 0, lwb != NULL);
1063
1064 return (lwb);
1065 }
1066
1067 /*
1068 * In one tx, free all log blocks and clear the log header. If keep_first
1069 * is set, then we're replaying a log with no content. We want to keep the
1070 * first block, however, so that the first synchronous transaction doesn't
1071 * require a txg_wait_synced() in zil_create(). We don't need to
1072 * txg_wait_synced() here either when keep_first is set, because both
1073 * zil_create() and zil_destroy() will wait for any in-progress destroys
1074 * to complete.
1075 * Return B_TRUE if there were any entries to replay.
1076 */
1077 boolean_t
zil_destroy(zilog_t * zilog,boolean_t keep_first)1078 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1079 {
1080 const zil_header_t *zh = zilog->zl_header;
1081 lwb_t *lwb;
1082 dmu_tx_t *tx;
1083 uint64_t txg;
1084
1085 /*
1086 * Wait for any previous destroy to complete.
1087 */
1088 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1089
1090 zilog->zl_old_header = *zh; /* debugging aid */
1091
1092 if (BP_IS_HOLE(&zh->zh_log))
1093 return (B_FALSE);
1094
1095 tx = dmu_tx_create(zilog->zl_os);
1096 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1097 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1098 txg = dmu_tx_get_txg(tx);
1099
1100 mutex_enter(&zilog->zl_lock);
1101
1102 ASSERT3U(zilog->zl_destroy_txg, <, txg);
1103 zilog->zl_destroy_txg = txg;
1104 zilog->zl_keep_first = keep_first;
1105
1106 if (!list_is_empty(&zilog->zl_lwb_list)) {
1107 ASSERT(zh->zh_claim_txg == 0);
1108 VERIFY(!keep_first);
1109 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1110 if (lwb->lwb_buf != NULL)
1111 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1112 if (!BP_IS_HOLE(&lwb->lwb_blk))
1113 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1114 zil_free_lwb(zilog, lwb);
1115 }
1116 } else if (!keep_first) {
1117 zil_destroy_sync(zilog, tx);
1118 }
1119 mutex_exit(&zilog->zl_lock);
1120
1121 dmu_tx_commit(tx);
1122
1123 return (B_TRUE);
1124 }
1125
1126 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)1127 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1128 {
1129 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1130 (void) zil_parse(zilog, zil_free_log_block,
1131 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1132 }
1133
1134 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)1135 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1136 {
1137 dmu_tx_t *tx = txarg;
1138 zilog_t *zilog;
1139 uint64_t first_txg;
1140 zil_header_t *zh;
1141 objset_t *os;
1142 int error;
1143
1144 error = dmu_objset_own_obj(dp, ds->ds_object,
1145 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1146 if (error != 0) {
1147 /*
1148 * EBUSY indicates that the objset is inconsistent, in which
1149 * case it can not have a ZIL.
1150 */
1151 if (error != EBUSY) {
1152 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1153 (unsigned long long)ds->ds_object, error);
1154 }
1155
1156 return (0);
1157 }
1158
1159 zilog = dmu_objset_zil(os);
1160 zh = zil_header_in_syncing_context(zilog);
1161 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1162 first_txg = spa_min_claim_txg(zilog->zl_spa);
1163
1164 /*
1165 * If the spa_log_state is not set to be cleared, check whether
1166 * the current uberblock is a checkpoint one and if the current
1167 * header has been claimed before moving on.
1168 *
1169 * If the current uberblock is a checkpointed uberblock then
1170 * one of the following scenarios took place:
1171 *
1172 * 1] We are currently rewinding to the checkpoint of the pool.
1173 * 2] We crashed in the middle of a checkpoint rewind but we
1174 * did manage to write the checkpointed uberblock to the
1175 * vdev labels, so when we tried to import the pool again
1176 * the checkpointed uberblock was selected from the import
1177 * procedure.
1178 *
1179 * In both cases we want to zero out all the ZIL blocks, except
1180 * the ones that have been claimed at the time of the checkpoint
1181 * (their zh_claim_txg != 0). The reason is that these blocks
1182 * may be corrupted since we may have reused their locations on
1183 * disk after we took the checkpoint.
1184 *
1185 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1186 * when we first figure out whether the current uberblock is
1187 * checkpointed or not. Unfortunately, that would discard all
1188 * the logs, including the ones that are claimed, and we would
1189 * leak space.
1190 */
1191 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1192 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1193 zh->zh_claim_txg == 0)) {
1194 if (!BP_IS_HOLE(&zh->zh_log)) {
1195 (void) zil_parse(zilog, zil_clear_log_block,
1196 zil_noop_log_record, tx, first_txg, B_FALSE);
1197 }
1198 BP_ZERO(&zh->zh_log);
1199 if (os->os_encrypted)
1200 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1201 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1202 dmu_objset_disown(os, B_FALSE, FTAG);
1203 return (0);
1204 }
1205
1206 /*
1207 * If we are not rewinding and opening the pool normally, then
1208 * the min_claim_txg should be equal to the first txg of the pool.
1209 */
1210 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1211
1212 /*
1213 * Claim all log blocks if we haven't already done so, and remember
1214 * the highest claimed sequence number. This ensures that if we can
1215 * read only part of the log now (e.g. due to a missing device),
1216 * but we can read the entire log later, we will not try to replay
1217 * or destroy beyond the last block we successfully claimed.
1218 */
1219 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1220 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1221 (void) zil_parse(zilog, zil_claim_log_block,
1222 zil_claim_log_record, tx, first_txg, B_FALSE);
1223 zh->zh_claim_txg = first_txg;
1224 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1225 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1226 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1227 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1228 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1229 if (os->os_encrypted)
1230 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1231 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1232 }
1233
1234 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1235 dmu_objset_disown(os, B_FALSE, FTAG);
1236 return (0);
1237 }
1238
1239 /*
1240 * Check the log by walking the log chain.
1241 * Checksum errors are ok as they indicate the end of the chain.
1242 * Any other error (no device or read failure) returns an error.
1243 */
1244 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)1245 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1246 {
1247 (void) dp;
1248 zilog_t *zilog;
1249 objset_t *os;
1250 blkptr_t *bp;
1251 int error;
1252
1253 ASSERT(tx == NULL);
1254
1255 error = dmu_objset_from_ds(ds, &os);
1256 if (error != 0) {
1257 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1258 (unsigned long long)ds->ds_object, error);
1259 return (0);
1260 }
1261
1262 zilog = dmu_objset_zil(os);
1263 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1264
1265 if (!BP_IS_HOLE(bp)) {
1266 vdev_t *vd;
1267 boolean_t valid = B_TRUE;
1268
1269 /*
1270 * Check the first block and determine if it's on a log device
1271 * which may have been removed or faulted prior to loading this
1272 * pool. If so, there's no point in checking the rest of the
1273 * log as its content should have already been synced to the
1274 * pool.
1275 */
1276 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1277 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1278 if (vd->vdev_islog && vdev_is_dead(vd))
1279 valid = vdev_log_state_valid(vd);
1280 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1281
1282 if (!valid)
1283 return (0);
1284
1285 /*
1286 * Check whether the current uberblock is checkpointed (e.g.
1287 * we are rewinding) and whether the current header has been
1288 * claimed or not. If it hasn't then skip verifying it. We
1289 * do this because its ZIL blocks may be part of the pool's
1290 * state before the rewind, which is no longer valid.
1291 */
1292 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1293 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1294 zh->zh_claim_txg == 0)
1295 return (0);
1296 }
1297
1298 /*
1299 * Because tx == NULL, zil_claim_log_block() will not actually claim
1300 * any blocks, but just determine whether it is possible to do so.
1301 * In addition to checking the log chain, zil_claim_log_block()
1302 * will invoke zio_claim() with a done func of spa_claim_notify(),
1303 * which will update spa_max_claim_txg. See spa_load() for details.
1304 */
1305 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1306 zilog->zl_header->zh_claim_txg ? -1ULL :
1307 spa_min_claim_txg(os->os_spa), B_FALSE);
1308
1309 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1310 }
1311
1312 /*
1313 * When an itx is "skipped", this function is used to properly mark the
1314 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1315 * be skipped (and not committed to an lwb) for a variety of reasons,
1316 * one of them being that the itx was committed via spa_sync(), prior to
1317 * it being committed to an lwb; this can happen if a thread calling
1318 * zil_commit() is racing with spa_sync().
1319 */
1320 static void
zil_commit_waiter_skip(zil_commit_waiter_t * zcw)1321 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1322 {
1323 mutex_enter(&zcw->zcw_lock);
1324 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1325 zcw->zcw_done = B_TRUE;
1326 cv_broadcast(&zcw->zcw_cv);
1327 mutex_exit(&zcw->zcw_lock);
1328 }
1329
1330 /*
1331 * This function is used when the given waiter is to be linked into an
1332 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1333 * At this point, the waiter will no longer be referenced by the itx,
1334 * and instead, will be referenced by the lwb.
1335 */
1336 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)1337 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1338 {
1339 /*
1340 * The lwb_waiters field of the lwb is protected by the zilog's
1341 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1342 * zl_issuer_lock also protects leaving the open state.
1343 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1344 * flush_done, which transition is protected by zl_lock.
1345 */
1346 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1347 IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1348 MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1349 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1350 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1351
1352 ASSERT(!list_link_active(&zcw->zcw_node));
1353 list_insert_tail(&lwb->lwb_waiters, zcw);
1354 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1355 zcw->zcw_lwb = lwb;
1356 }
1357
1358 /*
1359 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1360 * block, and the given waiter must be linked to the "nolwb waiters"
1361 * list inside of zil_process_commit_list().
1362 */
1363 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)1364 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1365 {
1366 ASSERT(!list_link_active(&zcw->zcw_node));
1367 list_insert_tail(nolwb, zcw);
1368 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1369 }
1370
1371 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)1372 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1373 {
1374 avl_tree_t *t = &lwb->lwb_vdev_tree;
1375 avl_index_t where;
1376 zil_vdev_node_t *zv, zvsearch;
1377 int ndvas = BP_GET_NDVAS(bp);
1378 int i;
1379
1380 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1381 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1382
1383 if (zil_nocacheflush)
1384 return;
1385
1386 mutex_enter(&lwb->lwb_vdev_lock);
1387 for (i = 0; i < ndvas; i++) {
1388 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1389 if (avl_find(t, &zvsearch, &where) == NULL) {
1390 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1391 zv->zv_vdev = zvsearch.zv_vdev;
1392 avl_insert(t, zv, where);
1393 }
1394 }
1395 mutex_exit(&lwb->lwb_vdev_lock);
1396 }
1397
1398 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1399 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1400 {
1401 avl_tree_t *src = &lwb->lwb_vdev_tree;
1402 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1403 void *cookie = NULL;
1404 zil_vdev_node_t *zv;
1405
1406 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1407 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1408 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1409
1410 /*
1411 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1412 * not need the protection of lwb_vdev_lock (it will only be modified
1413 * while holding zilog->zl_lock) as its writes and those of its
1414 * children have all completed. The younger 'nlwb' may be waiting on
1415 * future writes to additional vdevs.
1416 */
1417 mutex_enter(&nlwb->lwb_vdev_lock);
1418 /*
1419 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1420 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1421 */
1422 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1423 avl_index_t where;
1424
1425 if (avl_find(dst, zv, &where) == NULL) {
1426 avl_insert(dst, zv, where);
1427 } else {
1428 kmem_free(zv, sizeof (*zv));
1429 }
1430 }
1431 mutex_exit(&nlwb->lwb_vdev_lock);
1432 }
1433
1434 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1435 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1436 {
1437 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1438 }
1439
1440 /*
1441 * This function is a called after all vdevs associated with a given lwb write
1442 * have completed their flush command; or as soon as the lwb write completes,
1443 * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1444 * completed before this function is called; i.e. this function is called for
1445 * all previous lwbs before it's called for "this" lwb (enforced via zio the
1446 * dependencies configured in zil_lwb_set_zio_dependency()).
1447 *
1448 * The intention is for this function to be called as soon as the contents of
1449 * an lwb are considered "stable" on disk, and will survive any sudden loss of
1450 * power. At this point, any threads waiting for the lwb to reach this state
1451 * are signalled, and the "waiter" structures are marked "done".
1452 */
1453 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1454 zil_lwb_flush_vdevs_done(zio_t *zio)
1455 {
1456 lwb_t *lwb = zio->io_private;
1457 zilog_t *zilog = lwb->lwb_zilog;
1458 zil_commit_waiter_t *zcw;
1459 itx_t *itx;
1460
1461 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1462
1463 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1464
1465 mutex_enter(&zilog->zl_lock);
1466
1467 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1468
1469 lwb->lwb_root_zio = NULL;
1470
1471 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1472 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1473
1474 if (zilog->zl_last_lwb_opened == lwb) {
1475 /*
1476 * Remember the highest committed log sequence number
1477 * for ztest. We only update this value when all the log
1478 * writes succeeded, because ztest wants to ASSERT that
1479 * it got the whole log chain.
1480 */
1481 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1482 }
1483
1484 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1485 zil_itx_destroy(itx);
1486
1487 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1488 mutex_enter(&zcw->zcw_lock);
1489
1490 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1491 zcw->zcw_lwb = NULL;
1492 /*
1493 * We expect any ZIO errors from child ZIOs to have been
1494 * propagated "up" to this specific LWB's root ZIO, in
1495 * order for this error handling to work correctly. This
1496 * includes ZIO errors from either this LWB's write or
1497 * flush, as well as any errors from other dependent LWBs
1498 * (e.g. a root LWB ZIO that might be a child of this LWB).
1499 *
1500 * With that said, it's important to note that LWB flush
1501 * errors are not propagated up to the LWB root ZIO.
1502 * This is incorrect behavior, and results in VDEV flush
1503 * errors not being handled correctly here. See the
1504 * comment above the call to "zio_flush" for details.
1505 */
1506
1507 zcw->zcw_zio_error = zio->io_error;
1508
1509 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1510 zcw->zcw_done = B_TRUE;
1511 cv_broadcast(&zcw->zcw_cv);
1512
1513 mutex_exit(&zcw->zcw_lock);
1514 }
1515
1516 uint64_t txg = lwb->lwb_issued_txg;
1517
1518 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1519 mutex_exit(&zilog->zl_lock);
1520
1521 mutex_enter(&zilog->zl_lwb_io_lock);
1522 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1523 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1524 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1525 cv_broadcast(&zilog->zl_lwb_io_cv);
1526 mutex_exit(&zilog->zl_lwb_io_lock);
1527 }
1528
1529 /*
1530 * Wait for the completion of all issued write/flush of that txg provided.
1531 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1532 */
1533 static void
zil_lwb_flush_wait_all(zilog_t * zilog,uint64_t txg)1534 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1535 {
1536 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1537
1538 mutex_enter(&zilog->zl_lwb_io_lock);
1539 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1540 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1541 mutex_exit(&zilog->zl_lwb_io_lock);
1542
1543 #ifdef ZFS_DEBUG
1544 mutex_enter(&zilog->zl_lock);
1545 mutex_enter(&zilog->zl_lwb_io_lock);
1546 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1547 while (lwb != NULL) {
1548 if (lwb->lwb_issued_txg <= txg) {
1549 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1550 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1551 IMPLY(lwb->lwb_issued_txg > 0,
1552 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1553 }
1554 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1555 lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1556 lwb->lwb_buf == NULL);
1557 lwb = list_next(&zilog->zl_lwb_list, lwb);
1558 }
1559 mutex_exit(&zilog->zl_lwb_io_lock);
1560 mutex_exit(&zilog->zl_lock);
1561 #endif
1562 }
1563
1564 /*
1565 * This is called when an lwb's write zio completes. The callback's purpose is
1566 * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1567 * tree will contain the vdevs involved in writing out this specific lwb's
1568 * data, and in the case that cache flushes have been deferred, vdevs involved
1569 * in writing the data for previous lwbs. The writes corresponding to all the
1570 * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1571 * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1572 * which takes deferred flushes into account. The lwb will be "done" once
1573 * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1574 * callback for the lwb's root zio.
1575 */
1576 static void
zil_lwb_write_done(zio_t * zio)1577 zil_lwb_write_done(zio_t *zio)
1578 {
1579 lwb_t *lwb = zio->io_private;
1580 spa_t *spa = zio->io_spa;
1581 zilog_t *zilog = lwb->lwb_zilog;
1582 avl_tree_t *t = &lwb->lwb_vdev_tree;
1583 void *cookie = NULL;
1584 zil_vdev_node_t *zv;
1585 lwb_t *nlwb;
1586
1587 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1588
1589 abd_free(zio->io_abd);
1590 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1591 lwb->lwb_buf = NULL;
1592
1593 mutex_enter(&zilog->zl_lock);
1594 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1595 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1596 lwb->lwb_child_zio = NULL;
1597 lwb->lwb_write_zio = NULL;
1598
1599 /*
1600 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1601 * called for it yet, and when it will be, it won't be able to make
1602 * its write ZIO a parent this ZIO. In such case we can not defer
1603 * our flushes or below may be a race between the done callbacks.
1604 */
1605 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1606 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1607 nlwb = NULL;
1608 mutex_exit(&zilog->zl_lock);
1609
1610 if (avl_numnodes(t) == 0)
1611 return;
1612
1613 /*
1614 * If there was an IO error, we're not going to call zio_flush()
1615 * on these vdevs, so we simply empty the tree and free the
1616 * nodes. We avoid calling zio_flush() since there isn't any
1617 * good reason for doing so, after the lwb block failed to be
1618 * written out.
1619 *
1620 * Additionally, we don't perform any further error handling at
1621 * this point (e.g. setting "zcw_zio_error" appropriately), as
1622 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1623 * we expect any error seen here, to have been propagated to
1624 * that function).
1625 */
1626 if (zio->io_error != 0) {
1627 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1628 kmem_free(zv, sizeof (*zv));
1629 return;
1630 }
1631
1632 /*
1633 * If this lwb does not have any threads waiting for it to complete, we
1634 * want to defer issuing the flush command to the vdevs written to by
1635 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1636 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1637 * with the vdev tree of the "next" lwb in the list, and assume the
1638 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1639 * again).
1640 *
1641 * This is a useful performance optimization, especially for workloads
1642 * with lots of async write activity and few sync write and/or fsync
1643 * activity, as it has the potential to coalesce multiple flush
1644 * commands to a vdev into one.
1645 */
1646 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1647 zil_lwb_flush_defer(lwb, nlwb);
1648 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1649 return;
1650 }
1651
1652 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1653 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1654 if (vd != NULL) {
1655 /*
1656 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1657 * always used within "zio_flush". This means,
1658 * any errors when flushing the vdev(s), will
1659 * (unfortunately) not be handled correctly,
1660 * since these "zio_flush" errors will not be
1661 * propagated up to "zil_lwb_flush_vdevs_done".
1662 */
1663 zio_flush(lwb->lwb_root_zio, vd);
1664 }
1665 kmem_free(zv, sizeof (*zv));
1666 }
1667 }
1668
1669 /*
1670 * Build the zio dependency chain, which is used to preserve the ordering of
1671 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1672 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1673 * cannot complete until the previous lwb's zio completes.
1674 *
1675 * This is required by the semantics of zil_commit(): the commit waiters
1676 * attached to the lwbs will be woken in the lwb zio's completion callback,
1677 * so this zio dependency graph ensures the waiters are woken in the correct
1678 * order (the same order the lwbs were created).
1679 */
1680 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1681 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1682 {
1683 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1684
1685 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1686 if (prev_lwb == NULL ||
1687 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1688 return;
1689
1690 /*
1691 * If the previous lwb's write hasn't already completed, we also want
1692 * to order the completion of the lwb write zios (above, we only order
1693 * the completion of the lwb root zios). This is required because of
1694 * how we can defer the flush commands for any lwb without waiters.
1695 *
1696 * When the flush commands are deferred, the previous lwb will rely on
1697 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1698 * we need to ensure this lwb doesn't issue the flush until after the
1699 * previous lwb's write completes. We ensure this ordering by setting
1700 * the zio parent/child relationship here.
1701 *
1702 * Without this relationship on the lwb's write zio, it's possible for
1703 * this lwb's write to complete prior to the previous lwb's write
1704 * completing; and thus, the vdevs for the previous lwb would be
1705 * flushed prior to that lwb's data being written to those vdevs (the
1706 * vdevs are flushed in the lwb write zio's completion handler,
1707 * zil_lwb_write_done()).
1708 */
1709 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1710 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1711 if (list_is_empty(&prev_lwb->lwb_waiters)) {
1712 zio_add_child(lwb->lwb_write_zio,
1713 prev_lwb->lwb_write_zio);
1714 }
1715 } else {
1716 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1717 }
1718
1719 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1720 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1721 }
1722
1723
1724 /*
1725 * This function's purpose is to "open" an lwb such that it is ready to
1726 * accept new itxs being committed to it. This function is idempotent; if
1727 * the passed in lwb has already been opened, it is essentially a no-op.
1728 */
1729 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1730 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1731 {
1732 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1733
1734 if (lwb->lwb_state != LWB_STATE_NEW) {
1735 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1736 return;
1737 }
1738
1739 mutex_enter(&zilog->zl_lock);
1740 lwb->lwb_state = LWB_STATE_OPENED;
1741 zilog->zl_last_lwb_opened = lwb;
1742 mutex_exit(&zilog->zl_lock);
1743 }
1744
1745 /*
1746 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1747 * initialized. Otherwise this should not be used directly; see
1748 * zl_max_block_size instead.
1749 */
1750 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1751
1752 /*
1753 * Plan splitting of the provided burst size between several blocks.
1754 */
1755 static uint_t
zil_lwb_plan(zilog_t * zilog,uint64_t size,uint_t * minsize)1756 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1757 {
1758 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1759
1760 if (size <= md) {
1761 /*
1762 * Small bursts are written as-is in one block.
1763 */
1764 *minsize = size;
1765 return (size);
1766 } else if (size > 8 * md) {
1767 /*
1768 * Big bursts use maximum blocks. The first block size
1769 * is hard to predict, but it does not really matter.
1770 */
1771 *minsize = 0;
1772 return (md);
1773 }
1774
1775 /*
1776 * Medium bursts try to divide evenly to better utilize several SLOG
1777 * VDEVs. The first block size we predict assuming the worst case of
1778 * maxing out others. Fall back to using maximum blocks if due to
1779 * large records or wasted space we can not predict anything better.
1780 */
1781 uint_t s = size;
1782 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1783 uint_t chunk = DIV_ROUND_UP(s, n);
1784 uint_t waste = zil_max_waste_space(zilog);
1785 waste = MAX(waste, zilog->zl_cur_max);
1786 if (chunk <= md - waste) {
1787 *minsize = MAX(s - (md - waste) * (n - 1), waste);
1788 return (chunk);
1789 } else {
1790 *minsize = 0;
1791 return (md);
1792 }
1793 }
1794
1795 /*
1796 * Try to predict next block size based on previous history. Make prediction
1797 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is
1798 * less then 50%, extra writes may cost more, but we don't want single spike
1799 * to badly affect our predictions.
1800 */
1801 static uint_t
zil_lwb_predict(zilog_t * zilog)1802 zil_lwb_predict(zilog_t *zilog)
1803 {
1804 uint_t m, o;
1805
1806 /* If we are in the middle of a burst, take it into account also. */
1807 if (zilog->zl_cur_size > 0) {
1808 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1809 } else {
1810 o = UINT_MAX;
1811 m = 0;
1812 }
1813
1814 /* Find minimum optimal size. We don't need to go below that. */
1815 for (int i = 0; i < ZIL_BURSTS; i++)
1816 o = MIN(o, zilog->zl_prev_opt[i]);
1817
1818 /* Find two biggest minimal first block sizes above the optimal. */
1819 uint_t m1 = MAX(m, o), m2 = o;
1820 for (int i = 0; i < ZIL_BURSTS; i++) {
1821 m = zilog->zl_prev_min[i];
1822 if (m >= m1) {
1823 m2 = m1;
1824 m1 = m;
1825 } else if (m > m2) {
1826 m2 = m;
1827 }
1828 }
1829
1830 /*
1831 * If second minimum size gives 50% saving -- use it. It may cost us
1832 * one additional write later, but the space saving is just too big.
1833 */
1834 return ((m1 < m2 * 2) ? m1 : m2);
1835 }
1836
1837 /*
1838 * Close the log block for being issued and allocate the next one.
1839 * Has to be called under zl_issuer_lock to chain more lwbs.
1840 */
1841 static lwb_t *
zil_lwb_write_close(zilog_t * zilog,lwb_t * lwb,lwb_state_t state)1842 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1843 {
1844 uint64_t blksz, plan, plan2;
1845
1846 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1847 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1848 lwb->lwb_state = LWB_STATE_CLOSED;
1849
1850 /*
1851 * If there was an allocation failure then returned NULL will trigger
1852 * zil_commit_writer_stall() at the caller. This is inherently racy,
1853 * since allocation may not have happened yet.
1854 */
1855 if (lwb->lwb_error != 0)
1856 return (NULL);
1857
1858 /*
1859 * Log blocks are pre-allocated. Here we select the size of the next
1860 * block, based on what's left of this burst and the previous history.
1861 * While we try to only write used part of the block, we can't just
1862 * always allocate the maximum block size because we can exhaust all
1863 * available pool log space, so we try to be reasonable.
1864 */
1865 if (zilog->zl_cur_left > 0) {
1866 /*
1867 * We are in the middle of a burst and know how much is left.
1868 * But if workload is multi-threaded there may be more soon.
1869 * Try to predict what can it be and plan for the worst case.
1870 */
1871 uint_t m;
1872 plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1873 if (zilog->zl_parallel) {
1874 plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1875 zil_lwb_predict(zilog), &m);
1876 if (plan < plan2)
1877 plan = plan2;
1878 }
1879 } else {
1880 /*
1881 * The previous burst is done and we can only predict what
1882 * will come next.
1883 */
1884 plan = zil_lwb_predict(zilog);
1885 }
1886 blksz = plan + sizeof (zil_chain_t);
1887 blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1888 blksz = MIN(blksz, zilog->zl_max_block_size);
1889 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1890 uint64_t, plan);
1891
1892 return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1893 }
1894
1895 /*
1896 * Finalize previously closed block and issue the write zio.
1897 */
1898 static void
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1899 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1900 {
1901 spa_t *spa = zilog->zl_spa;
1902 zil_chain_t *zilc;
1903 boolean_t slog;
1904 zbookmark_phys_t zb;
1905 zio_priority_t prio;
1906 int error;
1907
1908 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1909
1910 /* Actually fill the lwb with the data. */
1911 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1912 itx = list_next(&lwb->lwb_itxs, itx))
1913 zil_lwb_commit(zilog, lwb, itx);
1914 lwb->lwb_nused = lwb->lwb_nfilled;
1915 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1916
1917 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1918 ZIO_FLAG_CANFAIL);
1919
1920 /*
1921 * The lwb is now ready to be issued, but it can be only if it already
1922 * got its block pointer allocated or the allocation has failed.
1923 * Otherwise leave it as-is, relying on some other thread to issue it
1924 * after allocating its block pointer via calling zil_lwb_write_issue()
1925 * for the previous lwb(s) in the chain.
1926 */
1927 mutex_enter(&zilog->zl_lock);
1928 lwb->lwb_state = LWB_STATE_READY;
1929 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1930 mutex_exit(&zilog->zl_lock);
1931 return;
1932 }
1933 mutex_exit(&zilog->zl_lock);
1934
1935 next_lwb:
1936 if (lwb->lwb_slim)
1937 zilc = (zil_chain_t *)lwb->lwb_buf;
1938 else
1939 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1940 int wsz = lwb->lwb_sz;
1941 if (lwb->lwb_error == 0) {
1942 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1943 if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1944 prio = ZIO_PRIORITY_SYNC_WRITE;
1945 else
1946 prio = ZIO_PRIORITY_ASYNC_WRITE;
1947 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1948 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1949 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1950 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1951 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1952 lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1953 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1954
1955 if (lwb->lwb_slim) {
1956 /* For Slim ZIL only write what is used. */
1957 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1958 int);
1959 ASSERT3S(wsz, <=, lwb->lwb_sz);
1960 zio_shrink(lwb->lwb_write_zio, wsz);
1961 wsz = lwb->lwb_write_zio->io_size;
1962 }
1963 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1964 zilc->zc_pad = 0;
1965 zilc->zc_nused = lwb->lwb_nused;
1966 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1967 } else {
1968 /*
1969 * We can't write the lwb if there was an allocation failure,
1970 * so create a null zio instead just to maintain dependencies.
1971 */
1972 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1973 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1974 lwb->lwb_write_zio->io_error = lwb->lwb_error;
1975 }
1976 if (lwb->lwb_child_zio)
1977 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1978
1979 /*
1980 * Open transaction to allocate the next block pointer.
1981 */
1982 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1983 VERIFY0(dmu_tx_assign(tx,
1984 DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
1985 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1986 uint64_t txg = dmu_tx_get_txg(tx);
1987
1988 /*
1989 * Allocate next the block pointer unless we are already in error.
1990 */
1991 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1992 blkptr_t *bp = &zilc->zc_next_blk;
1993 BP_ZERO(bp);
1994 error = lwb->lwb_error;
1995 if (error == 0) {
1996 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1997 &slog);
1998 }
1999 if (error == 0) {
2000 ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg);
2001 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
2002 ZIO_CHECKSUM_ZILOG);
2003 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
2004 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
2005 }
2006
2007 /*
2008 * Reduce TXG open time by incrementing inflight counter and committing
2009 * the transaciton. zil_sync() will wait for it to return to zero.
2010 */
2011 mutex_enter(&zilog->zl_lwb_io_lock);
2012 lwb->lwb_issued_txg = txg;
2013 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
2014 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
2015 mutex_exit(&zilog->zl_lwb_io_lock);
2016 dmu_tx_commit(tx);
2017
2018 spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
2019
2020 /*
2021 * We've completed all potentially blocking operations. Update the
2022 * nlwb and allow it proceed without possible lock order reversals.
2023 */
2024 mutex_enter(&zilog->zl_lock);
2025 zil_lwb_set_zio_dependency(zilog, lwb);
2026 lwb->lwb_state = LWB_STATE_ISSUED;
2027
2028 if (nlwb) {
2029 nlwb->lwb_blk = *bp;
2030 nlwb->lwb_error = error;
2031 nlwb->lwb_slog = slog;
2032 nlwb->lwb_alloc_txg = txg;
2033 if (nlwb->lwb_state != LWB_STATE_READY)
2034 nlwb = NULL;
2035 }
2036 mutex_exit(&zilog->zl_lock);
2037
2038 if (lwb->lwb_slog) {
2039 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2040 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2041 lwb->lwb_nused);
2042 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2043 wsz);
2044 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2045 BP_GET_LSIZE(&lwb->lwb_blk));
2046 } else {
2047 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2048 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2049 lwb->lwb_nused);
2050 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2051 wsz);
2052 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2053 BP_GET_LSIZE(&lwb->lwb_blk));
2054 }
2055 lwb->lwb_issued_timestamp = gethrtime();
2056 if (lwb->lwb_child_zio)
2057 zio_nowait(lwb->lwb_child_zio);
2058 zio_nowait(lwb->lwb_write_zio);
2059 zio_nowait(lwb->lwb_root_zio);
2060
2061 /*
2062 * If nlwb was ready when we gave it the block pointer,
2063 * it is on us to issue it and possibly following ones.
2064 */
2065 lwb = nlwb;
2066 if (lwb)
2067 goto next_lwb;
2068 }
2069
2070 /*
2071 * Maximum amount of data that can be put into single log block.
2072 */
2073 uint64_t
zil_max_log_data(zilog_t * zilog,size_t hdrsize)2074 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2075 {
2076 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2077 }
2078
2079 /*
2080 * Maximum amount of log space we agree to waste to reduce number of
2081 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2082 */
2083 static inline uint64_t
zil_max_waste_space(zilog_t * zilog)2084 zil_max_waste_space(zilog_t *zilog)
2085 {
2086 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2087 }
2088
2089 /*
2090 * Maximum amount of write data for WR_COPIED. For correctness, consumers
2091 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2092 * maximum sized log block, because each WR_COPIED record must fit in a
2093 * single log block. Below that it is a tradeoff of additional memory copy
2094 * and possibly worse log space efficiency vs additional range lock/unlock.
2095 */
2096 static uint_t zil_maxcopied = 7680;
2097
2098 uint64_t
zil_max_copied_data(zilog_t * zilog)2099 zil_max_copied_data(zilog_t *zilog)
2100 {
2101 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2102 return (MIN(max_data, zil_maxcopied));
2103 }
2104
2105 static uint64_t
zil_itx_record_size(itx_t * itx)2106 zil_itx_record_size(itx_t *itx)
2107 {
2108 lr_t *lr = &itx->itx_lr;
2109
2110 if (lr->lrc_txtype == TX_COMMIT)
2111 return (0);
2112 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2113 return (lr->lrc_reclen);
2114 }
2115
2116 static uint64_t
zil_itx_data_size(itx_t * itx)2117 zil_itx_data_size(itx_t *itx)
2118 {
2119 lr_t *lr = &itx->itx_lr;
2120 lr_write_t *lrw = (lr_write_t *)lr;
2121
2122 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2123 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2124 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2125 uint64_t));
2126 }
2127 return (0);
2128 }
2129
2130 static uint64_t
zil_itx_full_size(itx_t * itx)2131 zil_itx_full_size(itx_t *itx)
2132 {
2133 lr_t *lr = &itx->itx_lr;
2134
2135 if (lr->lrc_txtype == TX_COMMIT)
2136 return (0);
2137 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2138 return (lr->lrc_reclen + zil_itx_data_size(itx));
2139 }
2140
2141 /*
2142 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2143 * split the itx as needed, but don't touch the actual transaction data.
2144 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2145 * to chain more lwbs.
2146 */
2147 static lwb_t *
zil_lwb_assign(zilog_t * zilog,lwb_t * lwb,itx_t * itx,list_t * ilwbs)2148 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2149 {
2150 itx_t *citx;
2151 lr_t *lr, *clr;
2152 lr_write_t *lrw;
2153 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2154
2155 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2156 ASSERT3P(lwb, !=, NULL);
2157 ASSERT3P(lwb->lwb_buf, !=, NULL);
2158
2159 zil_lwb_write_open(zilog, lwb);
2160
2161 lr = &itx->itx_lr;
2162 lrw = (lr_write_t *)lr;
2163
2164 /*
2165 * A commit itx doesn't represent any on-disk state; instead
2166 * it's simply used as a place holder on the commit list, and
2167 * provides a mechanism for attaching a "commit waiter" onto the
2168 * correct lwb (such that the waiter can be signalled upon
2169 * completion of that lwb). Thus, we don't process this itx's
2170 * log record if it's a commit itx (these itx's don't have log
2171 * records), and instead link the itx's waiter onto the lwb's
2172 * list of waiters.
2173 *
2174 * For more details, see the comment above zil_commit().
2175 */
2176 if (lr->lrc_txtype == TX_COMMIT) {
2177 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2178 list_insert_tail(&lwb->lwb_itxs, itx);
2179 return (lwb);
2180 }
2181
2182 reclen = lr->lrc_reclen;
2183 ASSERT3U(reclen, >=, sizeof (lr_t));
2184 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2185 dlen = zil_itx_data_size(itx);
2186
2187 cont:
2188 /*
2189 * If this record won't fit in the current log block, start a new one.
2190 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2191 */
2192 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2193 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2194 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2195 lwb_sp < zil_max_waste_space(zilog) &&
2196 (dlen % max_log_data == 0 ||
2197 lwb_sp < reclen + dlen % max_log_data))) {
2198 list_insert_tail(ilwbs, lwb);
2199 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2200 if (lwb == NULL)
2201 return (NULL);
2202 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2203 }
2204
2205 /*
2206 * There must be enough space in the log block to hold reclen.
2207 * For WR_COPIED, we need to fit the whole record in one block,
2208 * and reclen is the write record header size + the data size.
2209 * For WR_NEED_COPY, we can create multiple records, splitting
2210 * the data into multiple blocks, so we only need to fit one
2211 * word of data per block; in this case reclen is just the header
2212 * size (no data).
2213 */
2214 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2215
2216 dnow = MIN(dlen, lwb_sp - reclen);
2217 if (dlen > dnow) {
2218 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2219 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2220 citx = zil_itx_clone(itx);
2221 clr = &citx->itx_lr;
2222 lr_write_t *clrw = (lr_write_t *)clr;
2223 clrw->lr_length = dnow;
2224 lrw->lr_offset += dnow;
2225 lrw->lr_length -= dnow;
2226 zilog->zl_cur_left -= dnow;
2227 } else {
2228 citx = itx;
2229 clr = lr;
2230 }
2231
2232 /*
2233 * We're actually making an entry, so update lrc_seq to be the
2234 * log record sequence number. Note that this is generally not
2235 * equal to the itx sequence number because not all transactions
2236 * are synchronous, and sometimes spa_sync() gets there first.
2237 */
2238 clr->lrc_seq = ++zilog->zl_lr_seq;
2239
2240 lwb->lwb_nused += reclen + dnow;
2241 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2242 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2243
2244 zil_lwb_add_txg(lwb, lr->lrc_txg);
2245 list_insert_tail(&lwb->lwb_itxs, citx);
2246
2247 dlen -= dnow;
2248 if (dlen > 0)
2249 goto cont;
2250
2251 if (lr->lrc_txtype == TX_WRITE &&
2252 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2253 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2254
2255 return (lwb);
2256 }
2257
2258 /*
2259 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2260 * Does not require locking.
2261 */
2262 static void
zil_lwb_commit(zilog_t * zilog,lwb_t * lwb,itx_t * itx)2263 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2264 {
2265 lr_t *lr, *lrb;
2266 lr_write_t *lrw, *lrwb;
2267 char *lr_buf;
2268 uint64_t dlen, reclen;
2269
2270 lr = &itx->itx_lr;
2271 lrw = (lr_write_t *)lr;
2272
2273 if (lr->lrc_txtype == TX_COMMIT)
2274 return;
2275
2276 reclen = lr->lrc_reclen;
2277 dlen = zil_itx_data_size(itx);
2278 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2279
2280 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2281 memcpy(lr_buf, lr, reclen);
2282 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
2283 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
2284
2285 ZIL_STAT_BUMP(zilog, zil_itx_count);
2286
2287 /*
2288 * If it's a write, fetch the data or get its blkptr as appropriate.
2289 */
2290 if (lr->lrc_txtype == TX_WRITE) {
2291 if (itx->itx_wr_state == WR_COPIED) {
2292 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2293 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2294 lrw->lr_length);
2295 } else {
2296 char *dbuf;
2297 int error;
2298
2299 if (itx->itx_wr_state == WR_NEED_COPY) {
2300 dbuf = lr_buf + reclen;
2301 lrb->lrc_reclen += dlen;
2302 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2303 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2304 dlen);
2305 } else {
2306 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2307 dbuf = NULL;
2308 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2309 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2310 lrw->lr_length);
2311 if (lwb->lwb_child_zio == NULL) {
2312 lwb->lwb_child_zio = zio_null(NULL,
2313 zilog->zl_spa, NULL, NULL, NULL,
2314 ZIO_FLAG_CANFAIL);
2315 }
2316 }
2317
2318 /*
2319 * The "lwb_child_zio" we pass in will become a child of
2320 * "lwb_write_zio", when one is created, so one will be
2321 * a parent of any zio's created by the "zl_get_data".
2322 * This way "lwb_write_zio" will first wait for children
2323 * block pointers before own writing, and then for their
2324 * writing completion before the vdev cache flushing.
2325 */
2326 error = zilog->zl_get_data(itx->itx_private,
2327 itx->itx_gen, lrwb, dbuf, lwb,
2328 lwb->lwb_child_zio);
2329 if (dbuf != NULL && error == 0) {
2330 /* Zero any padding bytes in the last block. */
2331 memset((char *)dbuf + lrwb->lr_length, 0,
2332 dlen - lrwb->lr_length);
2333 }
2334
2335 /*
2336 * Typically, the only return values we should see from
2337 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2338 * EALREADY. However, it is also possible to see other
2339 * error values such as ENOSPC or EINVAL from
2340 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2341 * ENXIO as well as a multitude of others from the
2342 * block layer through dmu_buf_hold() -> dbuf_read()
2343 * -> zio_wait(), as well as through dmu_read() ->
2344 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2345 * zio_wait(). When these errors happen, we can assume
2346 * that neither an immediate write nor an indirect
2347 * write occurred, so we need to fall back to
2348 * txg_wait_synced(). This is unusual, so we print to
2349 * dmesg whenever one of these errors occurs.
2350 */
2351 switch (error) {
2352 case 0:
2353 break;
2354 default:
2355 cmn_err(CE_WARN, "zil_lwb_commit() received "
2356 "unexpected error %d from ->zl_get_data()"
2357 ". Falling back to txg_wait_synced().",
2358 error);
2359 zfs_fallthrough;
2360 case EIO:
2361 txg_wait_synced(zilog->zl_dmu_pool,
2362 lr->lrc_txg);
2363 zfs_fallthrough;
2364 case ENOENT:
2365 zfs_fallthrough;
2366 case EEXIST:
2367 zfs_fallthrough;
2368 case EALREADY:
2369 return;
2370 }
2371 }
2372 }
2373
2374 lwb->lwb_nfilled += reclen + dlen;
2375 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2376 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2377 }
2378
2379 itx_t *
zil_itx_create(uint64_t txtype,size_t olrsize)2380 zil_itx_create(uint64_t txtype, size_t olrsize)
2381 {
2382 size_t itxsize, lrsize;
2383 itx_t *itx;
2384
2385 ASSERT3U(olrsize, >=, sizeof (lr_t));
2386 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2387 ASSERT3U(lrsize, >=, olrsize);
2388 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2389
2390 itx = zio_data_buf_alloc(itxsize);
2391 itx->itx_lr.lrc_txtype = txtype;
2392 itx->itx_lr.lrc_reclen = lrsize;
2393 itx->itx_lr.lrc_seq = 0; /* defensive */
2394 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2395 itx->itx_sync = B_TRUE; /* default is synchronous */
2396 itx->itx_callback = NULL;
2397 itx->itx_callback_data = NULL;
2398 itx->itx_size = itxsize;
2399
2400 return (itx);
2401 }
2402
2403 static itx_t *
zil_itx_clone(itx_t * oitx)2404 zil_itx_clone(itx_t *oitx)
2405 {
2406 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2407 ASSERT3U(oitx->itx_size, ==,
2408 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2409
2410 itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2411 memcpy(itx, oitx, oitx->itx_size);
2412 itx->itx_callback = NULL;
2413 itx->itx_callback_data = NULL;
2414 return (itx);
2415 }
2416
2417 void
zil_itx_destroy(itx_t * itx)2418 zil_itx_destroy(itx_t *itx)
2419 {
2420 ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2421 ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2422 itx->itx_size - offsetof(itx_t, itx_lr));
2423 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2424 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2425
2426 if (itx->itx_callback != NULL)
2427 itx->itx_callback(itx->itx_callback_data);
2428
2429 zio_data_buf_free(itx, itx->itx_size);
2430 }
2431
2432 /*
2433 * Free up the sync and async itxs. The itxs_t has already been detached
2434 * so no locks are needed.
2435 */
2436 static void
zil_itxg_clean(void * arg)2437 zil_itxg_clean(void *arg)
2438 {
2439 itx_t *itx;
2440 list_t *list;
2441 avl_tree_t *t;
2442 void *cookie;
2443 itxs_t *itxs = arg;
2444 itx_async_node_t *ian;
2445
2446 list = &itxs->i_sync_list;
2447 while ((itx = list_remove_head(list)) != NULL) {
2448 /*
2449 * In the general case, commit itxs will not be found
2450 * here, as they'll be committed to an lwb via
2451 * zil_lwb_assign(), and free'd in that function. Having
2452 * said that, it is still possible for commit itxs to be
2453 * found here, due to the following race:
2454 *
2455 * - a thread calls zil_commit() which assigns the
2456 * commit itx to a per-txg i_sync_list
2457 * - zil_itxg_clean() is called (e.g. via spa_sync())
2458 * while the waiter is still on the i_sync_list
2459 *
2460 * There's nothing to prevent syncing the txg while the
2461 * waiter is on the i_sync_list. This normally doesn't
2462 * happen because spa_sync() is slower than zil_commit(),
2463 * but if zil_commit() calls txg_wait_synced() (e.g.
2464 * because zil_create() or zil_commit_writer_stall() is
2465 * called) we will hit this case.
2466 */
2467 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2468 zil_commit_waiter_skip(itx->itx_private);
2469
2470 zil_itx_destroy(itx);
2471 }
2472
2473 cookie = NULL;
2474 t = &itxs->i_async_tree;
2475 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2476 list = &ian->ia_list;
2477 while ((itx = list_remove_head(list)) != NULL) {
2478 /* commit itxs should never be on the async lists. */
2479 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2480 zil_itx_destroy(itx);
2481 }
2482 list_destroy(list);
2483 kmem_free(ian, sizeof (itx_async_node_t));
2484 }
2485 avl_destroy(t);
2486
2487 kmem_free(itxs, sizeof (itxs_t));
2488 }
2489
2490 static int
zil_aitx_compare(const void * x1,const void * x2)2491 zil_aitx_compare(const void *x1, const void *x2)
2492 {
2493 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2494 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2495
2496 return (TREE_CMP(o1, o2));
2497 }
2498
2499 /*
2500 * Remove all async itx with the given oid.
2501 */
2502 void
zil_remove_async(zilog_t * zilog,uint64_t oid)2503 zil_remove_async(zilog_t *zilog, uint64_t oid)
2504 {
2505 uint64_t otxg, txg;
2506 itx_async_node_t *ian, ian_search;
2507 avl_tree_t *t;
2508 avl_index_t where;
2509 list_t clean_list;
2510 itx_t *itx;
2511
2512 ASSERT(oid != 0);
2513 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2514
2515 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2516 otxg = ZILTEST_TXG;
2517 else
2518 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2519
2520 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2521 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2522
2523 mutex_enter(&itxg->itxg_lock);
2524 if (itxg->itxg_txg != txg) {
2525 mutex_exit(&itxg->itxg_lock);
2526 continue;
2527 }
2528
2529 /*
2530 * Locate the object node and append its list.
2531 */
2532 t = &itxg->itxg_itxs->i_async_tree;
2533 ian_search.ia_foid = oid;
2534 ian = avl_find(t, &ian_search, &where);
2535 if (ian != NULL)
2536 list_move_tail(&clean_list, &ian->ia_list);
2537 mutex_exit(&itxg->itxg_lock);
2538 }
2539 while ((itx = list_remove_head(&clean_list)) != NULL) {
2540 /* commit itxs should never be on the async lists. */
2541 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2542 zil_itx_destroy(itx);
2543 }
2544 list_destroy(&clean_list);
2545 }
2546
2547 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)2548 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2549 {
2550 uint64_t txg;
2551 itxg_t *itxg;
2552 itxs_t *itxs, *clean = NULL;
2553
2554 /*
2555 * Ensure the data of a renamed file is committed before the rename.
2556 */
2557 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2558 zil_async_to_sync(zilog, itx->itx_oid);
2559
2560 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2561 txg = ZILTEST_TXG;
2562 else
2563 txg = dmu_tx_get_txg(tx);
2564
2565 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2566 mutex_enter(&itxg->itxg_lock);
2567 itxs = itxg->itxg_itxs;
2568 if (itxg->itxg_txg != txg) {
2569 if (itxs != NULL) {
2570 /*
2571 * The zil_clean callback hasn't got around to cleaning
2572 * this itxg. Save the itxs for release below.
2573 * This should be rare.
2574 */
2575 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2576 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2577 clean = itxg->itxg_itxs;
2578 }
2579 itxg->itxg_txg = txg;
2580 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2581 KM_SLEEP);
2582
2583 list_create(&itxs->i_sync_list, sizeof (itx_t),
2584 offsetof(itx_t, itx_node));
2585 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2586 sizeof (itx_async_node_t),
2587 offsetof(itx_async_node_t, ia_node));
2588 }
2589 if (itx->itx_sync) {
2590 list_insert_tail(&itxs->i_sync_list, itx);
2591 } else {
2592 avl_tree_t *t = &itxs->i_async_tree;
2593 uint64_t foid =
2594 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2595 itx_async_node_t *ian;
2596 avl_index_t where;
2597
2598 ian = avl_find(t, &foid, &where);
2599 if (ian == NULL) {
2600 ian = kmem_alloc(sizeof (itx_async_node_t),
2601 KM_SLEEP);
2602 list_create(&ian->ia_list, sizeof (itx_t),
2603 offsetof(itx_t, itx_node));
2604 ian->ia_foid = foid;
2605 avl_insert(t, ian, where);
2606 }
2607 list_insert_tail(&ian->ia_list, itx);
2608 }
2609
2610 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2611
2612 /*
2613 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2614 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2615 * need to be careful to always dirty the ZIL using the "real"
2616 * TXG (not itxg_txg) even when the SPA is frozen.
2617 */
2618 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2619 mutex_exit(&itxg->itxg_lock);
2620
2621 /* Release the old itxs now we've dropped the lock */
2622 if (clean != NULL)
2623 zil_itxg_clean(clean);
2624 }
2625
2626 /*
2627 * If there are any in-memory intent log transactions which have now been
2628 * synced then start up a taskq to free them. We should only do this after we
2629 * have written out the uberblocks (i.e. txg has been committed) so that
2630 * don't inadvertently clean out in-memory log records that would be required
2631 * by zil_commit().
2632 */
2633 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)2634 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2635 {
2636 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2637 itxs_t *clean_me;
2638
2639 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2640
2641 mutex_enter(&itxg->itxg_lock);
2642 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2643 mutex_exit(&itxg->itxg_lock);
2644 return;
2645 }
2646 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2647 ASSERT3U(itxg->itxg_txg, !=, 0);
2648 clean_me = itxg->itxg_itxs;
2649 itxg->itxg_itxs = NULL;
2650 itxg->itxg_txg = 0;
2651 mutex_exit(&itxg->itxg_lock);
2652 /*
2653 * Preferably start a task queue to free up the old itxs but
2654 * if taskq_dispatch can't allocate resources to do that then
2655 * free it in-line. This should be rare. Note, using TQ_SLEEP
2656 * created a bad performance problem.
2657 */
2658 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2659 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2660 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2661 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2662 if (id == TASKQID_INVALID)
2663 zil_itxg_clean(clean_me);
2664 }
2665
2666 /*
2667 * This function will traverse the queue of itxs that need to be
2668 * committed, and move them onto the ZIL's zl_itx_commit_list.
2669 */
2670 static uint64_t
zil_get_commit_list(zilog_t * zilog)2671 zil_get_commit_list(zilog_t *zilog)
2672 {
2673 uint64_t otxg, txg, wtxg = 0;
2674 list_t *commit_list = &zilog->zl_itx_commit_list;
2675
2676 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2677
2678 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2679 otxg = ZILTEST_TXG;
2680 else
2681 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2682
2683 /*
2684 * This is inherently racy, since there is nothing to prevent
2685 * the last synced txg from changing. That's okay since we'll
2686 * only commit things in the future.
2687 */
2688 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2689 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2690
2691 mutex_enter(&itxg->itxg_lock);
2692 if (itxg->itxg_txg != txg) {
2693 mutex_exit(&itxg->itxg_lock);
2694 continue;
2695 }
2696
2697 /*
2698 * If we're adding itx records to the zl_itx_commit_list,
2699 * then the zil better be dirty in this "txg". We can assert
2700 * that here since we're holding the itxg_lock which will
2701 * prevent spa_sync from cleaning it. Once we add the itxs
2702 * to the zl_itx_commit_list we must commit it to disk even
2703 * if it's unnecessary (i.e. the txg was synced).
2704 */
2705 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2706 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2707 list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2708 itx_t *itx = NULL;
2709 if (unlikely(zilog->zl_suspend > 0)) {
2710 /*
2711 * ZIL was just suspended, but we lost the race.
2712 * Allow all earlier itxs to be committed, but ask
2713 * caller to do txg_wait_synced(txg) for any new.
2714 */
2715 if (!list_is_empty(sync_list))
2716 wtxg = MAX(wtxg, txg);
2717 } else {
2718 itx = list_head(sync_list);
2719 list_move_tail(commit_list, sync_list);
2720 }
2721
2722 mutex_exit(&itxg->itxg_lock);
2723
2724 while (itx != NULL) {
2725 uint64_t s = zil_itx_full_size(itx);
2726 zilog->zl_cur_size += s;
2727 zilog->zl_cur_left += s;
2728 s = zil_itx_record_size(itx);
2729 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2730 itx = list_next(commit_list, itx);
2731 }
2732 }
2733 return (wtxg);
2734 }
2735
2736 /*
2737 * Move the async itxs for a specified object to commit into sync lists.
2738 */
2739 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)2740 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2741 {
2742 uint64_t otxg, txg;
2743 itx_async_node_t *ian, ian_search;
2744 avl_tree_t *t;
2745 avl_index_t where;
2746
2747 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2748 otxg = ZILTEST_TXG;
2749 else
2750 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2751
2752 /*
2753 * This is inherently racy, since there is nothing to prevent
2754 * the last synced txg from changing.
2755 */
2756 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2757 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2758
2759 mutex_enter(&itxg->itxg_lock);
2760 if (itxg->itxg_txg != txg) {
2761 mutex_exit(&itxg->itxg_lock);
2762 continue;
2763 }
2764
2765 /*
2766 * If a foid is specified then find that node and append its
2767 * list. Otherwise walk the tree appending all the lists
2768 * to the sync list. We add to the end rather than the
2769 * beginning to ensure the create has happened.
2770 */
2771 t = &itxg->itxg_itxs->i_async_tree;
2772 if (foid != 0) {
2773 ian_search.ia_foid = foid;
2774 ian = avl_find(t, &ian_search, &where);
2775 if (ian != NULL) {
2776 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2777 &ian->ia_list);
2778 }
2779 } else {
2780 void *cookie = NULL;
2781
2782 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2783 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2784 &ian->ia_list);
2785 list_destroy(&ian->ia_list);
2786 kmem_free(ian, sizeof (itx_async_node_t));
2787 }
2788 }
2789 mutex_exit(&itxg->itxg_lock);
2790 }
2791 }
2792
2793 /*
2794 * This function will prune commit itxs that are at the head of the
2795 * commit list (it won't prune past the first non-commit itx), and
2796 * either: a) attach them to the last lwb that's still pending
2797 * completion, or b) skip them altogether.
2798 *
2799 * This is used as a performance optimization to prevent commit itxs
2800 * from generating new lwbs when it's unnecessary to do so.
2801 */
2802 static void
zil_prune_commit_list(zilog_t * zilog)2803 zil_prune_commit_list(zilog_t *zilog)
2804 {
2805 itx_t *itx;
2806
2807 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2808
2809 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2810 lr_t *lrc = &itx->itx_lr;
2811 if (lrc->lrc_txtype != TX_COMMIT)
2812 break;
2813
2814 mutex_enter(&zilog->zl_lock);
2815
2816 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2817 if (last_lwb == NULL ||
2818 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2819 /*
2820 * All of the itxs this waiter was waiting on
2821 * must have already completed (or there were
2822 * never any itx's for it to wait on), so it's
2823 * safe to skip this waiter and mark it done.
2824 */
2825 zil_commit_waiter_skip(itx->itx_private);
2826 } else {
2827 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2828 }
2829
2830 mutex_exit(&zilog->zl_lock);
2831
2832 list_remove(&zilog->zl_itx_commit_list, itx);
2833 zil_itx_destroy(itx);
2834 }
2835
2836 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2837 }
2838
2839 static void
zil_commit_writer_stall(zilog_t * zilog)2840 zil_commit_writer_stall(zilog_t *zilog)
2841 {
2842 /*
2843 * When zio_alloc_zil() fails to allocate the next lwb block on
2844 * disk, we must call txg_wait_synced() to ensure all of the
2845 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2846 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2847 * to zil_process_commit_list()) will have to call zil_create(),
2848 * and start a new ZIL chain.
2849 *
2850 * Since zil_alloc_zil() failed, the lwb that was previously
2851 * issued does not have a pointer to the "next" lwb on disk.
2852 * Thus, if another ZIL writer thread was to allocate the "next"
2853 * on-disk lwb, that block could be leaked in the event of a
2854 * crash (because the previous lwb on-disk would not point to
2855 * it).
2856 *
2857 * We must hold the zilog's zl_issuer_lock while we do this, to
2858 * ensure no new threads enter zil_process_commit_list() until
2859 * all lwb's in the zl_lwb_list have been synced and freed
2860 * (which is achieved via the txg_wait_synced() call).
2861 */
2862 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2863 ZIL_STAT_BUMP(zilog, zil_commit_stall_count);
2864 txg_wait_synced(zilog->zl_dmu_pool, 0);
2865 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2866 }
2867
2868 static void
zil_burst_done(zilog_t * zilog)2869 zil_burst_done(zilog_t *zilog)
2870 {
2871 if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2872 zilog->zl_cur_size == 0)
2873 return;
2874
2875 if (zilog->zl_parallel)
2876 zilog->zl_parallel--;
2877
2878 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2879 zilog->zl_prev_rotor = r;
2880 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2881 &zilog->zl_prev_min[r]);
2882
2883 zilog->zl_cur_size = 0;
2884 zilog->zl_cur_max = 0;
2885 zilog->zl_cur_left = 0;
2886 }
2887
2888 /*
2889 * This function will traverse the commit list, creating new lwbs as
2890 * needed, and committing the itxs from the commit list to these newly
2891 * created lwbs. Additionally, as a new lwb is created, the previous
2892 * lwb will be issued to the zio layer to be written to disk.
2893 */
2894 static void
zil_process_commit_list(zilog_t * zilog,zil_commit_waiter_t * zcw,list_t * ilwbs)2895 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2896 {
2897 spa_t *spa = zilog->zl_spa;
2898 list_t nolwb_itxs;
2899 list_t nolwb_waiters;
2900 lwb_t *lwb, *plwb;
2901 itx_t *itx;
2902
2903 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2904
2905 /*
2906 * Return if there's nothing to commit before we dirty the fs by
2907 * calling zil_create().
2908 */
2909 if (list_is_empty(&zilog->zl_itx_commit_list))
2910 return;
2911
2912 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2913 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2914 offsetof(zil_commit_waiter_t, zcw_node));
2915
2916 lwb = list_tail(&zilog->zl_lwb_list);
2917 if (lwb == NULL) {
2918 lwb = zil_create(zilog);
2919 } else {
2920 /*
2921 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2922 * have already been created (zl_lwb_list not empty).
2923 */
2924 zil_commit_activate_saxattr_feature(zilog);
2925 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2926 lwb->lwb_state == LWB_STATE_OPENED);
2927
2928 /*
2929 * If the lwb is still opened, it means the workload is really
2930 * multi-threaded and we won the chance of write aggregation.
2931 * If it is not opened yet, but previous lwb is still not
2932 * flushed, it still means the workload is multi-threaded, but
2933 * there was too much time between the commits to aggregate, so
2934 * we try aggregation next times, but without too much hopes.
2935 */
2936 if (lwb->lwb_state == LWB_STATE_OPENED) {
2937 zilog->zl_parallel = ZIL_BURSTS;
2938 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2939 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2940 zilog->zl_parallel = MAX(zilog->zl_parallel,
2941 ZIL_BURSTS / 2);
2942 }
2943 }
2944
2945 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2946 lr_t *lrc = &itx->itx_lr;
2947 uint64_t txg = lrc->lrc_txg;
2948
2949 ASSERT3U(txg, !=, 0);
2950
2951 if (lrc->lrc_txtype == TX_COMMIT) {
2952 DTRACE_PROBE2(zil__process__commit__itx,
2953 zilog_t *, zilog, itx_t *, itx);
2954 } else {
2955 DTRACE_PROBE2(zil__process__normal__itx,
2956 zilog_t *, zilog, itx_t *, itx);
2957 }
2958
2959 boolean_t synced = txg <= spa_last_synced_txg(spa);
2960 boolean_t frozen = txg > spa_freeze_txg(spa);
2961
2962 /*
2963 * If the txg of this itx has already been synced out, then
2964 * we don't need to commit this itx to an lwb. This is
2965 * because the data of this itx will have already been
2966 * written to the main pool. This is inherently racy, and
2967 * it's still ok to commit an itx whose txg has already
2968 * been synced; this will result in a write that's
2969 * unnecessary, but will do no harm.
2970 *
2971 * With that said, we always want to commit TX_COMMIT itxs
2972 * to an lwb, regardless of whether or not that itx's txg
2973 * has been synced out. We do this to ensure any OPENED lwb
2974 * will always have at least one zil_commit_waiter_t linked
2975 * to the lwb.
2976 *
2977 * As a counter-example, if we skipped TX_COMMIT itx's
2978 * whose txg had already been synced, the following
2979 * situation could occur if we happened to be racing with
2980 * spa_sync:
2981 *
2982 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2983 * itx's txg is 10 and the last synced txg is 9.
2984 * 2. spa_sync finishes syncing out txg 10.
2985 * 3. We move to the next itx in the list, it's a TX_COMMIT
2986 * whose txg is 10, so we skip it rather than committing
2987 * it to the lwb used in (1).
2988 *
2989 * If the itx that is skipped in (3) is the last TX_COMMIT
2990 * itx in the commit list, than it's possible for the lwb
2991 * used in (1) to remain in the OPENED state indefinitely.
2992 *
2993 * To prevent the above scenario from occurring, ensuring
2994 * that once an lwb is OPENED it will transition to ISSUED
2995 * and eventually DONE, we always commit TX_COMMIT itx's to
2996 * an lwb here, even if that itx's txg has already been
2997 * synced.
2998 *
2999 * Finally, if the pool is frozen, we _always_ commit the
3000 * itx. The point of freezing the pool is to prevent data
3001 * from being written to the main pool via spa_sync, and
3002 * instead rely solely on the ZIL to persistently store the
3003 * data; i.e. when the pool is frozen, the last synced txg
3004 * value can't be trusted.
3005 */
3006 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
3007 if (lwb != NULL) {
3008 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
3009 if (lwb == NULL) {
3010 list_insert_tail(&nolwb_itxs, itx);
3011 } else if ((zcw->zcw_lwb != NULL &&
3012 zcw->zcw_lwb != lwb) || zcw->zcw_done) {
3013 /*
3014 * Our lwb is done, leave the rest of
3015 * itx list to somebody else who care.
3016 */
3017 zilog->zl_parallel = ZIL_BURSTS;
3018 zilog->zl_cur_left -=
3019 zil_itx_full_size(itx);
3020 break;
3021 }
3022 } else {
3023 if (lrc->lrc_txtype == TX_COMMIT) {
3024 zil_commit_waiter_link_nolwb(
3025 itx->itx_private, &nolwb_waiters);
3026 }
3027 list_insert_tail(&nolwb_itxs, itx);
3028 }
3029 zilog->zl_cur_left -= zil_itx_full_size(itx);
3030 } else {
3031 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
3032 zilog->zl_cur_left -= zil_itx_full_size(itx);
3033 zil_itx_destroy(itx);
3034 }
3035 }
3036
3037 if (lwb == NULL) {
3038 /*
3039 * This indicates zio_alloc_zil() failed to allocate the
3040 * "next" lwb on-disk. When this happens, we must stall
3041 * the ZIL write pipeline; see the comment within
3042 * zil_commit_writer_stall() for more details.
3043 */
3044 while ((lwb = list_remove_head(ilwbs)) != NULL)
3045 zil_lwb_write_issue(zilog, lwb);
3046 zil_commit_writer_stall(zilog);
3047
3048 /*
3049 * Additionally, we have to signal and mark the "nolwb"
3050 * waiters as "done" here, since without an lwb, we
3051 * can't do this via zil_lwb_flush_vdevs_done() like
3052 * normal.
3053 */
3054 zil_commit_waiter_t *zcw;
3055 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3056 zil_commit_waiter_skip(zcw);
3057
3058 /*
3059 * And finally, we have to destroy the itx's that
3060 * couldn't be committed to an lwb; this will also call
3061 * the itx's callback if one exists for the itx.
3062 */
3063 while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3064 zil_itx_destroy(itx);
3065 } else {
3066 ASSERT(list_is_empty(&nolwb_waiters));
3067 ASSERT3P(lwb, !=, NULL);
3068 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3069 lwb->lwb_state == LWB_STATE_OPENED);
3070
3071 /*
3072 * At this point, the ZIL block pointed at by the "lwb"
3073 * variable is in "new" or "opened" state.
3074 *
3075 * If it's "new", then no itxs have been committed to it, so
3076 * there's no point in issuing its zio (i.e. it's "empty").
3077 *
3078 * If it's "opened", then it contains one or more itxs that
3079 * eventually need to be committed to stable storage. In
3080 * this case we intentionally do not issue the lwb's zio
3081 * to disk yet, and instead rely on one of the following
3082 * two mechanisms for issuing the zio:
3083 *
3084 * 1. Ideally, there will be more ZIL activity occurring on
3085 * the system, such that this function will be immediately
3086 * called again by different thread and this lwb will be
3087 * closed by zil_lwb_assign(). This way, the lwb will be
3088 * "full" when it is issued to disk, and we'll make use of
3089 * the lwb's size the best we can.
3090 *
3091 * 2. If there isn't sufficient ZIL activity occurring on
3092 * the system, zil_commit_waiter() will close it and issue
3093 * the zio. If this occurs, the lwb is not guaranteed
3094 * to be "full" by the time its zio is issued, and means
3095 * the size of the lwb was "too large" given the amount
3096 * of ZIL activity occurring on the system at that time.
3097 *
3098 * We do this for a couple of reasons:
3099 *
3100 * 1. To try and reduce the number of IOPs needed to
3101 * write the same number of itxs. If an lwb has space
3102 * available in its buffer for more itxs, and more itxs
3103 * will be committed relatively soon (relative to the
3104 * latency of performing a write), then it's beneficial
3105 * to wait for these "next" itxs. This way, more itxs
3106 * can be committed to stable storage with fewer writes.
3107 *
3108 * 2. To try and use the largest lwb block size that the
3109 * incoming rate of itxs can support. Again, this is to
3110 * try and pack as many itxs into as few lwbs as
3111 * possible, without significantly impacting the latency
3112 * of each individual itx.
3113 */
3114 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3115 zil_burst_done(zilog);
3116 list_insert_tail(ilwbs, lwb);
3117 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3118 if (lwb == NULL) {
3119 while ((lwb = list_remove_head(ilwbs)) != NULL)
3120 zil_lwb_write_issue(zilog, lwb);
3121 zil_commit_writer_stall(zilog);
3122 }
3123 }
3124 }
3125 }
3126
3127 /*
3128 * This function is responsible for ensuring the passed in commit waiter
3129 * (and associated commit itx) is committed to an lwb. If the waiter is
3130 * not already committed to an lwb, all itxs in the zilog's queue of
3131 * itxs will be processed. The assumption is the passed in waiter's
3132 * commit itx will found in the queue just like the other non-commit
3133 * itxs, such that when the entire queue is processed, the waiter will
3134 * have been committed to an lwb.
3135 *
3136 * The lwb associated with the passed in waiter is not guaranteed to
3137 * have been issued by the time this function completes. If the lwb is
3138 * not issued, we rely on future calls to zil_commit_writer() to issue
3139 * the lwb, or the timeout mechanism found in zil_commit_waiter().
3140 */
3141 static uint64_t
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)3142 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3143 {
3144 list_t ilwbs;
3145 lwb_t *lwb;
3146 uint64_t wtxg = 0;
3147
3148 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3149 ASSERT(spa_writeable(zilog->zl_spa));
3150
3151 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3152 mutex_enter(&zilog->zl_issuer_lock);
3153
3154 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3155 /*
3156 * It's possible that, while we were waiting to acquire
3157 * the "zl_issuer_lock", another thread committed this
3158 * waiter to an lwb. If that occurs, we bail out early,
3159 * without processing any of the zilog's queue of itxs.
3160 *
3161 * On certain workloads and system configurations, the
3162 * "zl_issuer_lock" can become highly contended. In an
3163 * attempt to reduce this contention, we immediately drop
3164 * the lock if the waiter has already been processed.
3165 *
3166 * We've measured this optimization to reduce CPU spent
3167 * contending on this lock by up to 5%, using a system
3168 * with 32 CPUs, low latency storage (~50 usec writes),
3169 * and 1024 threads performing sync writes.
3170 */
3171 goto out;
3172 }
3173
3174 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3175
3176 wtxg = zil_get_commit_list(zilog);
3177 zil_prune_commit_list(zilog);
3178 zil_process_commit_list(zilog, zcw, &ilwbs);
3179
3180 out:
3181 mutex_exit(&zilog->zl_issuer_lock);
3182 while ((lwb = list_remove_head(&ilwbs)) != NULL)
3183 zil_lwb_write_issue(zilog, lwb);
3184 list_destroy(&ilwbs);
3185 return (wtxg);
3186 }
3187
3188 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)3189 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3190 {
3191 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3192 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3193 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3194
3195 lwb_t *lwb = zcw->zcw_lwb;
3196 ASSERT3P(lwb, !=, NULL);
3197 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3198
3199 /*
3200 * If the lwb has already been issued by another thread, we can
3201 * immediately return since there's no work to be done (the
3202 * point of this function is to issue the lwb). Additionally, we
3203 * do this prior to acquiring the zl_issuer_lock, to avoid
3204 * acquiring it when it's not necessary to do so.
3205 */
3206 if (lwb->lwb_state != LWB_STATE_OPENED)
3207 return;
3208
3209 /*
3210 * In order to call zil_lwb_write_close() we must hold the
3211 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3212 * since we're already holding the commit waiter's "zcw_lock",
3213 * and those two locks are acquired in the opposite order
3214 * elsewhere.
3215 */
3216 mutex_exit(&zcw->zcw_lock);
3217 mutex_enter(&zilog->zl_issuer_lock);
3218 mutex_enter(&zcw->zcw_lock);
3219
3220 /*
3221 * Since we just dropped and re-acquired the commit waiter's
3222 * lock, we have to re-check to see if the waiter was marked
3223 * "done" during that process. If the waiter was marked "done",
3224 * the "lwb" pointer is no longer valid (it can be free'd after
3225 * the waiter is marked "done"), so without this check we could
3226 * wind up with a use-after-free error below.
3227 */
3228 if (zcw->zcw_done) {
3229 mutex_exit(&zilog->zl_issuer_lock);
3230 return;
3231 }
3232
3233 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3234
3235 /*
3236 * We've already checked this above, but since we hadn't acquired
3237 * the zilog's zl_issuer_lock, we have to perform this check a
3238 * second time while holding the lock.
3239 *
3240 * We don't need to hold the zl_lock since the lwb cannot transition
3241 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3242 * _can_ transition from CLOSED to DONE, but it's OK to race with
3243 * that transition since we treat the lwb the same, whether it's in
3244 * the CLOSED, ISSUED or DONE states.
3245 *
3246 * The important thing, is we treat the lwb differently depending on
3247 * if it's OPENED or CLOSED, and block any other threads that might
3248 * attempt to close/issue this lwb. For that reason we hold the
3249 * zl_issuer_lock when checking the lwb_state; we must not call
3250 * zil_lwb_write_close() if the lwb had already been closed/issued.
3251 *
3252 * See the comment above the lwb_state_t structure definition for
3253 * more details on the lwb states, and locking requirements.
3254 */
3255 if (lwb->lwb_state != LWB_STATE_OPENED) {
3256 mutex_exit(&zilog->zl_issuer_lock);
3257 return;
3258 }
3259
3260 /*
3261 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3262 * is still open. But we have to drop it to avoid a deadlock in case
3263 * callback of zio issued by zil_lwb_write_issue() try to get it,
3264 * while zil_lwb_write_issue() is blocked on attempt to issue next
3265 * lwb it found in LWB_STATE_READY state.
3266 */
3267 mutex_exit(&zcw->zcw_lock);
3268
3269 /*
3270 * As described in the comments above zil_commit_waiter() and
3271 * zil_process_commit_list(), we need to issue this lwb's zio
3272 * since we've reached the commit waiter's timeout and it still
3273 * hasn't been issued.
3274 */
3275 zil_burst_done(zilog);
3276 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3277
3278 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3279
3280 if (nlwb == NULL) {
3281 /*
3282 * When zil_lwb_write_close() returns NULL, this
3283 * indicates zio_alloc_zil() failed to allocate the
3284 * "next" lwb on-disk. When this occurs, the ZIL write
3285 * pipeline must be stalled; see the comment within the
3286 * zil_commit_writer_stall() function for more details.
3287 */
3288 zil_lwb_write_issue(zilog, lwb);
3289 zil_commit_writer_stall(zilog);
3290 mutex_exit(&zilog->zl_issuer_lock);
3291 } else {
3292 mutex_exit(&zilog->zl_issuer_lock);
3293 zil_lwb_write_issue(zilog, lwb);
3294 }
3295 mutex_enter(&zcw->zcw_lock);
3296 }
3297
3298 /*
3299 * This function is responsible for performing the following two tasks:
3300 *
3301 * 1. its primary responsibility is to block until the given "commit
3302 * waiter" is considered "done".
3303 *
3304 * 2. its secondary responsibility is to issue the zio for the lwb that
3305 * the given "commit waiter" is waiting on, if this function has
3306 * waited "long enough" and the lwb is still in the "open" state.
3307 *
3308 * Given a sufficient amount of itxs being generated and written using
3309 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3310 * function. If this does not occur, this secondary responsibility will
3311 * ensure the lwb is issued even if there is not other synchronous
3312 * activity on the system.
3313 *
3314 * For more details, see zil_process_commit_list(); more specifically,
3315 * the comment at the bottom of that function.
3316 */
3317 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)3318 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3319 {
3320 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3321 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3322 ASSERT(spa_writeable(zilog->zl_spa));
3323
3324 mutex_enter(&zcw->zcw_lock);
3325
3326 /*
3327 * The timeout is scaled based on the lwb latency to avoid
3328 * significantly impacting the latency of each individual itx.
3329 * For more details, see the comment at the bottom of the
3330 * zil_process_commit_list() function.
3331 */
3332 int pct = MAX(zfs_commit_timeout_pct, 1);
3333 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3334 hrtime_t wakeup = gethrtime() + sleep;
3335 boolean_t timedout = B_FALSE;
3336
3337 while (!zcw->zcw_done) {
3338 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3339
3340 lwb_t *lwb = zcw->zcw_lwb;
3341
3342 /*
3343 * Usually, the waiter will have a non-NULL lwb field here,
3344 * but it's possible for it to be NULL as a result of
3345 * zil_commit() racing with spa_sync().
3346 *
3347 * When zil_clean() is called, it's possible for the itxg
3348 * list (which may be cleaned via a taskq) to contain
3349 * commit itxs. When this occurs, the commit waiters linked
3350 * off of these commit itxs will not be committed to an
3351 * lwb. Additionally, these commit waiters will not be
3352 * marked done until zil_commit_waiter_skip() is called via
3353 * zil_itxg_clean().
3354 *
3355 * Thus, it's possible for this commit waiter (i.e. the
3356 * "zcw" variable) to be found in this "in between" state;
3357 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3358 * been skipped, so it's "zcw_done" field is still B_FALSE.
3359 */
3360 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3361
3362 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3363 ASSERT3B(timedout, ==, B_FALSE);
3364
3365 /*
3366 * If the lwb hasn't been issued yet, then we
3367 * need to wait with a timeout, in case this
3368 * function needs to issue the lwb after the
3369 * timeout is reached; responsibility (2) from
3370 * the comment above this function.
3371 */
3372 int rc = cv_timedwait_hires(&zcw->zcw_cv,
3373 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3374 CALLOUT_FLAG_ABSOLUTE);
3375
3376 if (rc != -1 || zcw->zcw_done)
3377 continue;
3378
3379 timedout = B_TRUE;
3380 zil_commit_waiter_timeout(zilog, zcw);
3381
3382 if (!zcw->zcw_done) {
3383 /*
3384 * If the commit waiter has already been
3385 * marked "done", it's possible for the
3386 * waiter's lwb structure to have already
3387 * been freed. Thus, we can only reliably
3388 * make these assertions if the waiter
3389 * isn't done.
3390 */
3391 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3392 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3393 }
3394 } else {
3395 /*
3396 * If the lwb isn't open, then it must have already
3397 * been issued. In that case, there's no need to
3398 * use a timeout when waiting for the lwb to
3399 * complete.
3400 *
3401 * Additionally, if the lwb is NULL, the waiter
3402 * will soon be signaled and marked done via
3403 * zil_clean() and zil_itxg_clean(), so no timeout
3404 * is required.
3405 */
3406
3407 IMPLY(lwb != NULL,
3408 lwb->lwb_state == LWB_STATE_CLOSED ||
3409 lwb->lwb_state == LWB_STATE_READY ||
3410 lwb->lwb_state == LWB_STATE_ISSUED ||
3411 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3412 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3413 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3414 }
3415 }
3416
3417 mutex_exit(&zcw->zcw_lock);
3418 }
3419
3420 static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)3421 zil_alloc_commit_waiter(void)
3422 {
3423 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3424
3425 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3426 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3427 list_link_init(&zcw->zcw_node);
3428 zcw->zcw_lwb = NULL;
3429 zcw->zcw_done = B_FALSE;
3430 zcw->zcw_zio_error = 0;
3431
3432 return (zcw);
3433 }
3434
3435 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)3436 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3437 {
3438 ASSERT(!list_link_active(&zcw->zcw_node));
3439 ASSERT3P(zcw->zcw_lwb, ==, NULL);
3440 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3441 mutex_destroy(&zcw->zcw_lock);
3442 cv_destroy(&zcw->zcw_cv);
3443 kmem_cache_free(zil_zcw_cache, zcw);
3444 }
3445
3446 /*
3447 * This function is used to create a TX_COMMIT itx and assign it. This
3448 * way, it will be linked into the ZIL's list of synchronous itxs, and
3449 * then later committed to an lwb (or skipped) when
3450 * zil_process_commit_list() is called.
3451 */
3452 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)3453 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3454 {
3455 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3456
3457 /*
3458 * Since we are not going to create any new dirty data, and we
3459 * can even help with clearing the existing dirty data, we
3460 * should not be subject to the dirty data based delays. We
3461 * use DMU_TX_NOTHROTTLE to bypass the delay mechanism.
3462 */
3463 VERIFY0(dmu_tx_assign(tx,
3464 DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
3465
3466 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3467 itx->itx_sync = B_TRUE;
3468 itx->itx_private = zcw;
3469
3470 zil_itx_assign(zilog, itx, tx);
3471
3472 dmu_tx_commit(tx);
3473 }
3474
3475 /*
3476 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3477 *
3478 * When writing ZIL transactions to the on-disk representation of the
3479 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3480 * itxs can be committed to a single lwb. Once a lwb is written and
3481 * committed to stable storage (i.e. the lwb is written, and vdevs have
3482 * been flushed), each itx that was committed to that lwb is also
3483 * considered to be committed to stable storage.
3484 *
3485 * When an itx is committed to an lwb, the log record (lr_t) contained
3486 * by the itx is copied into the lwb's zio buffer, and once this buffer
3487 * is written to disk, it becomes an on-disk ZIL block.
3488 *
3489 * As itxs are generated, they're inserted into the ZIL's queue of
3490 * uncommitted itxs. The semantics of zil_commit() are such that it will
3491 * block until all itxs that were in the queue when it was called, are
3492 * committed to stable storage.
3493 *
3494 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3495 * itxs, for all objects in the dataset, will be committed to stable
3496 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3497 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3498 * that correspond to the foid passed in, will be committed to stable
3499 * storage prior to zil_commit() returning.
3500 *
3501 * Generally speaking, when zil_commit() is called, the consumer doesn't
3502 * actually care about _all_ of the uncommitted itxs. Instead, they're
3503 * simply trying to waiting for a specific itx to be committed to disk,
3504 * but the interface(s) for interacting with the ZIL don't allow such
3505 * fine-grained communication. A better interface would allow a consumer
3506 * to create and assign an itx, and then pass a reference to this itx to
3507 * zil_commit(); such that zil_commit() would return as soon as that
3508 * specific itx was committed to disk (instead of waiting for _all_
3509 * itxs to be committed).
3510 *
3511 * When a thread calls zil_commit() a special "commit itx" will be
3512 * generated, along with a corresponding "waiter" for this commit itx.
3513 * zil_commit() will wait on this waiter's CV, such that when the waiter
3514 * is marked done, and signaled, zil_commit() will return.
3515 *
3516 * This commit itx is inserted into the queue of uncommitted itxs. This
3517 * provides an easy mechanism for determining which itxs were in the
3518 * queue prior to zil_commit() having been called, and which itxs were
3519 * added after zil_commit() was called.
3520 *
3521 * The commit itx is special; it doesn't have any on-disk representation.
3522 * When a commit itx is "committed" to an lwb, the waiter associated
3523 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3524 * completes, each waiter on the lwb's list is marked done and signaled
3525 * -- allowing the thread waiting on the waiter to return from zil_commit().
3526 *
3527 * It's important to point out a few critical factors that allow us
3528 * to make use of the commit itxs, commit waiters, per-lwb lists of
3529 * commit waiters, and zio completion callbacks like we're doing:
3530 *
3531 * 1. The list of waiters for each lwb is traversed, and each commit
3532 * waiter is marked "done" and signaled, in the zio completion
3533 * callback of the lwb's zio[*].
3534 *
3535 * * Actually, the waiters are signaled in the zio completion
3536 * callback of the root zio for the flush commands that are sent to
3537 * the vdevs upon completion of the lwb zio.
3538 *
3539 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3540 * itxs, the order in which they are inserted is preserved[*]; as
3541 * itxs are added to the queue, they are added to the tail of
3542 * in-memory linked lists.
3543 *
3544 * When committing the itxs to lwbs (to be written to disk), they
3545 * are committed in the same order in which the itxs were added to
3546 * the uncommitted queue's linked list(s); i.e. the linked list of
3547 * itxs to commit is traversed from head to tail, and each itx is
3548 * committed to an lwb in that order.
3549 *
3550 * * To clarify:
3551 *
3552 * - the order of "sync" itxs is preserved w.r.t. other
3553 * "sync" itxs, regardless of the corresponding objects.
3554 * - the order of "async" itxs is preserved w.r.t. other
3555 * "async" itxs corresponding to the same object.
3556 * - the order of "async" itxs is *not* preserved w.r.t. other
3557 * "async" itxs corresponding to different objects.
3558 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3559 * versa) is *not* preserved, even for itxs that correspond
3560 * to the same object.
3561 *
3562 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3563 * zil_get_commit_list(), and zil_process_commit_list().
3564 *
3565 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3566 * lwb cannot be considered committed to stable storage, until its
3567 * "previous" lwb is also committed to stable storage. This fact,
3568 * coupled with the fact described above, means that itxs are
3569 * committed in (roughly) the order in which they were generated.
3570 * This is essential because itxs are dependent on prior itxs.
3571 * Thus, we *must not* deem an itx as being committed to stable
3572 * storage, until *all* prior itxs have also been committed to
3573 * stable storage.
3574 *
3575 * To enforce this ordering of lwb zio's, while still leveraging as
3576 * much of the underlying storage performance as possible, we rely
3577 * on two fundamental concepts:
3578 *
3579 * 1. The creation and issuance of lwb zio's is protected by
3580 * the zilog's "zl_issuer_lock", which ensures only a single
3581 * thread is creating and/or issuing lwb's at a time
3582 * 2. The "previous" lwb is a child of the "current" lwb
3583 * (leveraging the zio parent-child dependency graph)
3584 *
3585 * By relying on this parent-child zio relationship, we can have
3586 * many lwb zio's concurrently issued to the underlying storage,
3587 * but the order in which they complete will be the same order in
3588 * which they were created.
3589 */
3590 void
zil_commit(zilog_t * zilog,uint64_t foid)3591 zil_commit(zilog_t *zilog, uint64_t foid)
3592 {
3593 /*
3594 * We should never attempt to call zil_commit on a snapshot for
3595 * a couple of reasons:
3596 *
3597 * 1. A snapshot may never be modified, thus it cannot have any
3598 * in-flight itxs that would have modified the dataset.
3599 *
3600 * 2. By design, when zil_commit() is called, a commit itx will
3601 * be assigned to this zilog; as a result, the zilog will be
3602 * dirtied. We must not dirty the zilog of a snapshot; there's
3603 * checks in the code that enforce this invariant, and will
3604 * cause a panic if it's not upheld.
3605 */
3606 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3607
3608 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3609 return;
3610
3611 if (!spa_writeable(zilog->zl_spa)) {
3612 /*
3613 * If the SPA is not writable, there should never be any
3614 * pending itxs waiting to be committed to disk. If that
3615 * weren't true, we'd skip writing those itxs out, and
3616 * would break the semantics of zil_commit(); thus, we're
3617 * verifying that truth before we return to the caller.
3618 */
3619 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3620 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3621 for (int i = 0; i < TXG_SIZE; i++)
3622 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3623 return;
3624 }
3625
3626 /*
3627 * If the ZIL is suspended, we don't want to dirty it by calling
3628 * zil_commit_itx_assign() below, nor can we write out
3629 * lwbs like would be done in zil_commit_write(). Thus, we
3630 * simply rely on txg_wait_synced() to maintain the necessary
3631 * semantics, and avoid calling those functions altogether.
3632 */
3633 if (zilog->zl_suspend > 0) {
3634 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3635 txg_wait_synced(zilog->zl_dmu_pool, 0);
3636 return;
3637 }
3638
3639 zil_commit_impl(zilog, foid);
3640 }
3641
3642 void
zil_commit_impl(zilog_t * zilog,uint64_t foid)3643 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3644 {
3645 ZIL_STAT_BUMP(zilog, zil_commit_count);
3646
3647 /*
3648 * Move the "async" itxs for the specified foid to the "sync"
3649 * queues, such that they will be later committed (or skipped)
3650 * to an lwb when zil_process_commit_list() is called.
3651 *
3652 * Since these "async" itxs must be committed prior to this
3653 * call to zil_commit returning, we must perform this operation
3654 * before we call zil_commit_itx_assign().
3655 */
3656 zil_async_to_sync(zilog, foid);
3657
3658 /*
3659 * We allocate a new "waiter" structure which will initially be
3660 * linked to the commit itx using the itx's "itx_private" field.
3661 * Since the commit itx doesn't represent any on-disk state,
3662 * when it's committed to an lwb, rather than copying the its
3663 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3664 * added to the lwb's list of waiters. Then, when the lwb is
3665 * committed to stable storage, each waiter in the lwb's list of
3666 * waiters will be marked "done", and signalled.
3667 *
3668 * We must create the waiter and assign the commit itx prior to
3669 * calling zil_commit_writer(), or else our specific commit itx
3670 * is not guaranteed to be committed to an lwb prior to calling
3671 * zil_commit_waiter().
3672 */
3673 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3674 zil_commit_itx_assign(zilog, zcw);
3675
3676 uint64_t wtxg = zil_commit_writer(zilog, zcw);
3677 zil_commit_waiter(zilog, zcw);
3678
3679 if (zcw->zcw_zio_error != 0) {
3680 /*
3681 * If there was an error writing out the ZIL blocks that
3682 * this thread is waiting on, then we fallback to
3683 * relying on spa_sync() to write out the data this
3684 * thread is waiting on. Obviously this has performance
3685 * implications, but the expectation is for this to be
3686 * an exceptional case, and shouldn't occur often.
3687 */
3688 ZIL_STAT_BUMP(zilog, zil_commit_error_count);
3689 DTRACE_PROBE2(zil__commit__io__error,
3690 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3691 txg_wait_synced(zilog->zl_dmu_pool, 0);
3692 } else if (wtxg != 0) {
3693 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
3694 txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3695 }
3696
3697 zil_free_commit_waiter(zcw);
3698 }
3699
3700 /*
3701 * Called in syncing context to free committed log blocks and update log header.
3702 */
3703 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)3704 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3705 {
3706 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3707 uint64_t txg = dmu_tx_get_txg(tx);
3708 spa_t *spa = zilog->zl_spa;
3709 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3710 lwb_t *lwb;
3711
3712 /*
3713 * We don't zero out zl_destroy_txg, so make sure we don't try
3714 * to destroy it twice.
3715 */
3716 if (spa_sync_pass(spa) != 1)
3717 return;
3718
3719 zil_lwb_flush_wait_all(zilog, txg);
3720
3721 mutex_enter(&zilog->zl_lock);
3722
3723 ASSERT(zilog->zl_stop_sync == 0);
3724
3725 if (*replayed_seq != 0) {
3726 ASSERT(zh->zh_replay_seq < *replayed_seq);
3727 zh->zh_replay_seq = *replayed_seq;
3728 *replayed_seq = 0;
3729 }
3730
3731 if (zilog->zl_destroy_txg == txg) {
3732 blkptr_t blk = zh->zh_log;
3733 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3734
3735 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3736
3737 memset(zh, 0, sizeof (zil_header_t));
3738 memset(zilog->zl_replayed_seq, 0,
3739 sizeof (zilog->zl_replayed_seq));
3740
3741 if (zilog->zl_keep_first) {
3742 /*
3743 * If this block was part of log chain that couldn't
3744 * be claimed because a device was missing during
3745 * zil_claim(), but that device later returns,
3746 * then this block could erroneously appear valid.
3747 * To guard against this, assign a new GUID to the new
3748 * log chain so it doesn't matter what blk points to.
3749 */
3750 zil_init_log_chain(zilog, &blk);
3751 zh->zh_log = blk;
3752 } else {
3753 /*
3754 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3755 * records. So, deactivate the feature for this dataset.
3756 * We activate it again when we start a new ZIL chain.
3757 */
3758 if (dsl_dataset_feature_is_active(ds,
3759 SPA_FEATURE_ZILSAXATTR))
3760 dsl_dataset_deactivate_feature(ds,
3761 SPA_FEATURE_ZILSAXATTR, tx);
3762 }
3763 }
3764
3765 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3766 zh->zh_log = lwb->lwb_blk;
3767 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3768 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3769 break;
3770 list_remove(&zilog->zl_lwb_list, lwb);
3771 if (!BP_IS_HOLE(&lwb->lwb_blk))
3772 zio_free(spa, txg, &lwb->lwb_blk);
3773 zil_free_lwb(zilog, lwb);
3774
3775 /*
3776 * If we don't have anything left in the lwb list then
3777 * we've had an allocation failure and we need to zero
3778 * out the zil_header blkptr so that we don't end
3779 * up freeing the same block twice.
3780 */
3781 if (list_is_empty(&zilog->zl_lwb_list))
3782 BP_ZERO(&zh->zh_log);
3783 }
3784
3785 mutex_exit(&zilog->zl_lock);
3786 }
3787
3788 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)3789 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3790 {
3791 (void) unused, (void) kmflag;
3792 lwb_t *lwb = vbuf;
3793 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3794 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3795 offsetof(zil_commit_waiter_t, zcw_node));
3796 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3797 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3798 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3799 return (0);
3800 }
3801
3802 static void
zil_lwb_dest(void * vbuf,void * unused)3803 zil_lwb_dest(void *vbuf, void *unused)
3804 {
3805 (void) unused;
3806 lwb_t *lwb = vbuf;
3807 mutex_destroy(&lwb->lwb_vdev_lock);
3808 avl_destroy(&lwb->lwb_vdev_tree);
3809 list_destroy(&lwb->lwb_waiters);
3810 list_destroy(&lwb->lwb_itxs);
3811 }
3812
3813 void
zil_init(void)3814 zil_init(void)
3815 {
3816 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3817 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3818
3819 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3820 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3821
3822 zil_sums_init(&zil_sums_global);
3823 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3824 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3825 KSTAT_FLAG_VIRTUAL);
3826
3827 if (zil_kstats_global != NULL) {
3828 zil_kstats_global->ks_data = &zil_stats;
3829 zil_kstats_global->ks_update = zil_kstats_global_update;
3830 zil_kstats_global->ks_private = NULL;
3831 kstat_install(zil_kstats_global);
3832 }
3833 }
3834
3835 void
zil_fini(void)3836 zil_fini(void)
3837 {
3838 kmem_cache_destroy(zil_zcw_cache);
3839 kmem_cache_destroy(zil_lwb_cache);
3840
3841 if (zil_kstats_global != NULL) {
3842 kstat_delete(zil_kstats_global);
3843 zil_kstats_global = NULL;
3844 }
3845
3846 zil_sums_fini(&zil_sums_global);
3847 }
3848
3849 void
zil_set_sync(zilog_t * zilog,uint64_t sync)3850 zil_set_sync(zilog_t *zilog, uint64_t sync)
3851 {
3852 zilog->zl_sync = sync;
3853 }
3854
3855 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)3856 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3857 {
3858 zilog->zl_logbias = logbias;
3859 }
3860
3861 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)3862 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3863 {
3864 zilog_t *zilog;
3865
3866 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3867
3868 zilog->zl_header = zh_phys;
3869 zilog->zl_os = os;
3870 zilog->zl_spa = dmu_objset_spa(os);
3871 zilog->zl_dmu_pool = dmu_objset_pool(os);
3872 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3873 zilog->zl_logbias = dmu_objset_logbias(os);
3874 zilog->zl_sync = dmu_objset_syncprop(os);
3875 zilog->zl_dirty_max_txg = 0;
3876 zilog->zl_last_lwb_opened = NULL;
3877 zilog->zl_last_lwb_latency = 0;
3878 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3879 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3880 spa_maxblocksize(dmu_objset_spa(os)));
3881
3882 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3883 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3884 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3885
3886 for (int i = 0; i < TXG_SIZE; i++) {
3887 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3888 MUTEX_DEFAULT, NULL);
3889 }
3890
3891 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3892 offsetof(lwb_t, lwb_node));
3893
3894 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3895 offsetof(itx_t, itx_node));
3896
3897 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3898 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3899
3900 for (int i = 0; i < ZIL_BURSTS; i++) {
3901 zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3902 sizeof (zil_chain_t);
3903 }
3904
3905 return (zilog);
3906 }
3907
3908 void
zil_free(zilog_t * zilog)3909 zil_free(zilog_t *zilog)
3910 {
3911 int i;
3912
3913 zilog->zl_stop_sync = 1;
3914
3915 ASSERT0(zilog->zl_suspend);
3916 ASSERT0(zilog->zl_suspending);
3917
3918 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3919 list_destroy(&zilog->zl_lwb_list);
3920
3921 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3922 list_destroy(&zilog->zl_itx_commit_list);
3923
3924 for (i = 0; i < TXG_SIZE; i++) {
3925 /*
3926 * It's possible for an itx to be generated that doesn't dirty
3927 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3928 * callback to remove the entry. We remove those here.
3929 *
3930 * Also free up the ziltest itxs.
3931 */
3932 if (zilog->zl_itxg[i].itxg_itxs)
3933 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3934 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3935 }
3936
3937 mutex_destroy(&zilog->zl_issuer_lock);
3938 mutex_destroy(&zilog->zl_lock);
3939 mutex_destroy(&zilog->zl_lwb_io_lock);
3940
3941 cv_destroy(&zilog->zl_cv_suspend);
3942 cv_destroy(&zilog->zl_lwb_io_cv);
3943
3944 kmem_free(zilog, sizeof (zilog_t));
3945 }
3946
3947 /*
3948 * Open an intent log.
3949 */
3950 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data,zil_sums_t * zil_sums)3951 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3952 {
3953 zilog_t *zilog = dmu_objset_zil(os);
3954
3955 ASSERT3P(zilog->zl_get_data, ==, NULL);
3956 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3957 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3958
3959 zilog->zl_get_data = get_data;
3960 zilog->zl_sums = zil_sums;
3961
3962 return (zilog);
3963 }
3964
3965 /*
3966 * Close an intent log.
3967 */
3968 void
zil_close(zilog_t * zilog)3969 zil_close(zilog_t *zilog)
3970 {
3971 lwb_t *lwb;
3972 uint64_t txg;
3973
3974 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3975 zil_commit(zilog, 0);
3976 } else {
3977 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3978 ASSERT0(zilog->zl_dirty_max_txg);
3979 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3980 }
3981
3982 mutex_enter(&zilog->zl_lock);
3983 txg = zilog->zl_dirty_max_txg;
3984 lwb = list_tail(&zilog->zl_lwb_list);
3985 if (lwb != NULL) {
3986 txg = MAX(txg, lwb->lwb_alloc_txg);
3987 txg = MAX(txg, lwb->lwb_max_txg);
3988 }
3989 mutex_exit(&zilog->zl_lock);
3990
3991 /*
3992 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3993 * on the time when the dmu_tx transaction is assigned in
3994 * zil_lwb_write_issue().
3995 */
3996 mutex_enter(&zilog->zl_lwb_io_lock);
3997 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3998 mutex_exit(&zilog->zl_lwb_io_lock);
3999
4000 /*
4001 * We need to use txg_wait_synced() to wait until that txg is synced.
4002 * zil_sync() will guarantee all lwbs up to that txg have been
4003 * written out, flushed, and cleaned.
4004 */
4005 if (txg != 0)
4006 txg_wait_synced(zilog->zl_dmu_pool, txg);
4007
4008 if (zilog_is_dirty(zilog))
4009 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
4010 (u_longlong_t)txg);
4011 if (txg < spa_freeze_txg(zilog->zl_spa))
4012 VERIFY(!zilog_is_dirty(zilog));
4013
4014 zilog->zl_get_data = NULL;
4015
4016 /*
4017 * We should have only one lwb left on the list; remove it now.
4018 */
4019 mutex_enter(&zilog->zl_lock);
4020 lwb = list_remove_head(&zilog->zl_lwb_list);
4021 if (lwb != NULL) {
4022 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4023 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
4024 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
4025 zil_free_lwb(zilog, lwb);
4026 }
4027 mutex_exit(&zilog->zl_lock);
4028 }
4029
4030 static const char *suspend_tag = "zil suspending";
4031
4032 /*
4033 * Suspend an intent log. While in suspended mode, we still honor
4034 * synchronous semantics, but we rely on txg_wait_synced() to do it.
4035 * On old version pools, we suspend the log briefly when taking a
4036 * snapshot so that it will have an empty intent log.
4037 *
4038 * Long holds are not really intended to be used the way we do here --
4039 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
4040 * could fail. Therefore we take pains to only put a long hold if it is
4041 * actually necessary. Fortunately, it will only be necessary if the
4042 * objset is currently mounted (or the ZVOL equivalent). In that case it
4043 * will already have a long hold, so we are not really making things any worse.
4044 *
4045 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4046 * zvol_state_t), and use their mechanism to prevent their hold from being
4047 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
4048 * very little gain.
4049 *
4050 * if cookiep == NULL, this does both the suspend & resume.
4051 * Otherwise, it returns with the dataset "long held", and the cookie
4052 * should be passed into zil_resume().
4053 */
4054 int
zil_suspend(const char * osname,void ** cookiep)4055 zil_suspend(const char *osname, void **cookiep)
4056 {
4057 objset_t *os;
4058 zilog_t *zilog;
4059 const zil_header_t *zh;
4060 int error;
4061
4062 error = dmu_objset_hold(osname, suspend_tag, &os);
4063 if (error != 0)
4064 return (error);
4065 zilog = dmu_objset_zil(os);
4066
4067 mutex_enter(&zilog->zl_lock);
4068 zh = zilog->zl_header;
4069
4070 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
4071 mutex_exit(&zilog->zl_lock);
4072 dmu_objset_rele(os, suspend_tag);
4073 return (SET_ERROR(EBUSY));
4074 }
4075
4076 /*
4077 * Don't put a long hold in the cases where we can avoid it. This
4078 * is when there is no cookie so we are doing a suspend & resume
4079 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4080 * for the suspend because it's already suspended, or there's no ZIL.
4081 */
4082 if (cookiep == NULL && !zilog->zl_suspending &&
4083 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4084 mutex_exit(&zilog->zl_lock);
4085 dmu_objset_rele(os, suspend_tag);
4086 return (0);
4087 }
4088
4089 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4090 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4091
4092 zilog->zl_suspend++;
4093
4094 if (zilog->zl_suspend > 1) {
4095 /*
4096 * Someone else is already suspending it.
4097 * Just wait for them to finish.
4098 */
4099
4100 while (zilog->zl_suspending)
4101 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4102 mutex_exit(&zilog->zl_lock);
4103
4104 if (cookiep == NULL)
4105 zil_resume(os);
4106 else
4107 *cookiep = os;
4108 return (0);
4109 }
4110
4111 /*
4112 * If there is no pointer to an on-disk block, this ZIL must not
4113 * be active (e.g. filesystem not mounted), so there's nothing
4114 * to clean up.
4115 */
4116 if (BP_IS_HOLE(&zh->zh_log)) {
4117 ASSERT(cookiep != NULL); /* fast path already handled */
4118
4119 *cookiep = os;
4120 mutex_exit(&zilog->zl_lock);
4121 return (0);
4122 }
4123
4124 /*
4125 * The ZIL has work to do. Ensure that the associated encryption
4126 * key will remain mapped while we are committing the log by
4127 * grabbing a reference to it. If the key isn't loaded we have no
4128 * choice but to return an error until the wrapping key is loaded.
4129 */
4130 if (os->os_encrypted &&
4131 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4132 zilog->zl_suspend--;
4133 mutex_exit(&zilog->zl_lock);
4134 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4135 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4136 return (SET_ERROR(EACCES));
4137 }
4138
4139 zilog->zl_suspending = B_TRUE;
4140 mutex_exit(&zilog->zl_lock);
4141
4142 /*
4143 * We need to use zil_commit_impl to ensure we wait for all
4144 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4145 * to disk before proceeding. If we used zil_commit instead, it
4146 * would just call txg_wait_synced(), because zl_suspend is set.
4147 * txg_wait_synced() doesn't wait for these lwb's to be
4148 * LWB_STATE_FLUSH_DONE before returning.
4149 */
4150 zil_commit_impl(zilog, 0);
4151
4152 /*
4153 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4154 * use txg_wait_synced() to ensure the data from the zilog has
4155 * migrated to the main pool before calling zil_destroy().
4156 */
4157 txg_wait_synced(zilog->zl_dmu_pool, 0);
4158
4159 zil_destroy(zilog, B_FALSE);
4160
4161 mutex_enter(&zilog->zl_lock);
4162 zilog->zl_suspending = B_FALSE;
4163 cv_broadcast(&zilog->zl_cv_suspend);
4164 mutex_exit(&zilog->zl_lock);
4165
4166 if (os->os_encrypted)
4167 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4168
4169 if (cookiep == NULL)
4170 zil_resume(os);
4171 else
4172 *cookiep = os;
4173 return (0);
4174 }
4175
4176 void
zil_resume(void * cookie)4177 zil_resume(void *cookie)
4178 {
4179 objset_t *os = cookie;
4180 zilog_t *zilog = dmu_objset_zil(os);
4181
4182 mutex_enter(&zilog->zl_lock);
4183 ASSERT(zilog->zl_suspend != 0);
4184 zilog->zl_suspend--;
4185 mutex_exit(&zilog->zl_lock);
4186 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4187 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4188 }
4189
4190 typedef struct zil_replay_arg {
4191 zil_replay_func_t *const *zr_replay;
4192 void *zr_arg;
4193 boolean_t zr_byteswap;
4194 char *zr_lr;
4195 } zil_replay_arg_t;
4196
4197 static int
zil_replay_error(zilog_t * zilog,const lr_t * lr,int error)4198 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4199 {
4200 char name[ZFS_MAX_DATASET_NAME_LEN];
4201
4202 zilog->zl_replaying_seq--; /* didn't actually replay this one */
4203
4204 dmu_objset_name(zilog->zl_os, name);
4205
4206 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4207 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4208 (u_longlong_t)lr->lrc_seq,
4209 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4210 (lr->lrc_txtype & TX_CI) ? "CI" : "");
4211
4212 return (error);
4213 }
4214
4215 static int
zil_replay_log_record(zilog_t * zilog,const lr_t * lr,void * zra,uint64_t claim_txg)4216 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4217 uint64_t claim_txg)
4218 {
4219 zil_replay_arg_t *zr = zra;
4220 const zil_header_t *zh = zilog->zl_header;
4221 uint64_t reclen = lr->lrc_reclen;
4222 uint64_t txtype = lr->lrc_txtype;
4223 int error = 0;
4224
4225 zilog->zl_replaying_seq = lr->lrc_seq;
4226
4227 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
4228 return (0);
4229
4230 if (lr->lrc_txg < claim_txg) /* already committed */
4231 return (0);
4232
4233 /* Strip case-insensitive bit, still present in log record */
4234 txtype &= ~TX_CI;
4235
4236 if (txtype == 0 || txtype >= TX_MAX_TYPE)
4237 return (zil_replay_error(zilog, lr, EINVAL));
4238
4239 /*
4240 * If this record type can be logged out of order, the object
4241 * (lr_foid) may no longer exist. That's legitimate, not an error.
4242 */
4243 if (TX_OOO(txtype)) {
4244 error = dmu_object_info(zilog->zl_os,
4245 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4246 if (error == ENOENT || error == EEXIST)
4247 return (0);
4248 }
4249
4250 /*
4251 * Make a copy of the data so we can revise and extend it.
4252 */
4253 memcpy(zr->zr_lr, lr, reclen);
4254
4255 /*
4256 * If this is a TX_WRITE with a blkptr, suck in the data.
4257 */
4258 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4259 error = zil_read_log_data(zilog, (lr_write_t *)lr,
4260 zr->zr_lr + reclen);
4261 if (error != 0)
4262 return (zil_replay_error(zilog, lr, error));
4263 }
4264
4265 /*
4266 * The log block containing this lr may have been byteswapped
4267 * so that we can easily examine common fields like lrc_txtype.
4268 * However, the log is a mix of different record types, and only the
4269 * replay vectors know how to byteswap their records. Therefore, if
4270 * the lr was byteswapped, undo it before invoking the replay vector.
4271 */
4272 if (zr->zr_byteswap)
4273 byteswap_uint64_array(zr->zr_lr, reclen);
4274
4275 /*
4276 * We must now do two things atomically: replay this log record,
4277 * and update the log header sequence number to reflect the fact that
4278 * we did so. At the end of each replay function the sequence number
4279 * is updated if we are in replay mode.
4280 */
4281 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4282 if (error != 0) {
4283 /*
4284 * The DMU's dnode layer doesn't see removes until the txg
4285 * commits, so a subsequent claim can spuriously fail with
4286 * EEXIST. So if we receive any error we try syncing out
4287 * any removes then retry the transaction. Note that we
4288 * specify B_FALSE for byteswap now, so we don't do it twice.
4289 */
4290 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4291 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4292 if (error != 0)
4293 return (zil_replay_error(zilog, lr, error));
4294 }
4295 return (0);
4296 }
4297
4298 static int
zil_incr_blks(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)4299 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4300 {
4301 (void) bp, (void) arg, (void) claim_txg;
4302
4303 zilog->zl_replay_blks++;
4304
4305 return (0);
4306 }
4307
4308 /*
4309 * If this dataset has a non-empty intent log, replay it and destroy it.
4310 * Return B_TRUE if there were any entries to replay.
4311 */
4312 boolean_t
zil_replay(objset_t * os,void * arg,zil_replay_func_t * const replay_func[TX_MAX_TYPE])4313 zil_replay(objset_t *os, void *arg,
4314 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4315 {
4316 zilog_t *zilog = dmu_objset_zil(os);
4317 const zil_header_t *zh = zilog->zl_header;
4318 zil_replay_arg_t zr;
4319
4320 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4321 return (zil_destroy(zilog, B_TRUE));
4322 }
4323
4324 zr.zr_replay = replay_func;
4325 zr.zr_arg = arg;
4326 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4327 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4328
4329 /*
4330 * Wait for in-progress removes to sync before starting replay.
4331 */
4332 txg_wait_synced(zilog->zl_dmu_pool, 0);
4333
4334 zilog->zl_replay = B_TRUE;
4335 zilog->zl_replay_time = ddi_get_lbolt();
4336 ASSERT(zilog->zl_replay_blks == 0);
4337 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4338 zh->zh_claim_txg, B_TRUE);
4339 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4340
4341 zil_destroy(zilog, B_FALSE);
4342 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4343 zilog->zl_replay = B_FALSE;
4344
4345 return (B_TRUE);
4346 }
4347
4348 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)4349 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4350 {
4351 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4352 return (B_TRUE);
4353
4354 if (zilog->zl_replay) {
4355 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4356 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4357 zilog->zl_replaying_seq;
4358 return (B_TRUE);
4359 }
4360
4361 return (B_FALSE);
4362 }
4363
4364 int
zil_reset(const char * osname,void * arg)4365 zil_reset(const char *osname, void *arg)
4366 {
4367 (void) arg;
4368
4369 int error = zil_suspend(osname, NULL);
4370 /* EACCES means crypto key not loaded */
4371 if ((error == EACCES) || (error == EBUSY))
4372 return (SET_ERROR(error));
4373 if (error != 0)
4374 return (SET_ERROR(EEXIST));
4375 return (0);
4376 }
4377
4378 EXPORT_SYMBOL(zil_alloc);
4379 EXPORT_SYMBOL(zil_free);
4380 EXPORT_SYMBOL(zil_open);
4381 EXPORT_SYMBOL(zil_close);
4382 EXPORT_SYMBOL(zil_replay);
4383 EXPORT_SYMBOL(zil_replaying);
4384 EXPORT_SYMBOL(zil_destroy);
4385 EXPORT_SYMBOL(zil_destroy_sync);
4386 EXPORT_SYMBOL(zil_itx_create);
4387 EXPORT_SYMBOL(zil_itx_destroy);
4388 EXPORT_SYMBOL(zil_itx_assign);
4389 EXPORT_SYMBOL(zil_commit);
4390 EXPORT_SYMBOL(zil_claim);
4391 EXPORT_SYMBOL(zil_check_log_chain);
4392 EXPORT_SYMBOL(zil_sync);
4393 EXPORT_SYMBOL(zil_clean);
4394 EXPORT_SYMBOL(zil_suspend);
4395 EXPORT_SYMBOL(zil_resume);
4396 EXPORT_SYMBOL(zil_lwb_add_block);
4397 EXPORT_SYMBOL(zil_bp_tree_add);
4398 EXPORT_SYMBOL(zil_set_sync);
4399 EXPORT_SYMBOL(zil_set_logbias);
4400 EXPORT_SYMBOL(zil_sums_init);
4401 EXPORT_SYMBOL(zil_sums_fini);
4402 EXPORT_SYMBOL(zil_kstat_values_update);
4403
4404 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4405 "ZIL block open timeout percentage");
4406
4407 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4408 "Disable intent logging replay");
4409
4410 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4411 "Disable ZIL cache flushes");
4412
4413 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4414 "Limit in bytes slog sync writes per commit");
4415
4416 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4417 "Limit in bytes of ZIL log block size");
4418
4419 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4420 "Limit in bytes WR_COPIED size");
4421