1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright (c) 2018 Datto Inc.
27 * Copyright (c) 2025, Klara, Inc.
28 */
29
30 /* Portions Copyright 2010 Robert Milkowski */
31
32 #include <sys/zfs_context.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/zap.h>
37 #include <sys/arc.h>
38 #include <sys/stat.h>
39 #include <sys/zil.h>
40 #include <sys/zil_impl.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/metaslab.h>
46 #include <sys/trace_zfs.h>
47 #include <sys/abd.h>
48 #include <sys/brt.h>
49 #include <sys/wmsum.h>
50
51 /*
52 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
53 * calls that change the file system. Each itx has enough information to
54 * be able to replay them after a system crash, power loss, or
55 * equivalent failure mode. These are stored in memory until either:
56 *
57 * 1. they are committed to the pool by the DMU transaction group
58 * (txg), at which point they can be discarded; or
59 * 2. they are committed to the on-disk ZIL for the dataset being
60 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
61 * requirement).
62 *
63 * In the event of a crash or power loss, the itxs contained by each
64 * dataset's on-disk ZIL will be replayed when that dataset is first
65 * instantiated (e.g. if the dataset is a normal filesystem, when it is
66 * first mounted).
67 *
68 * As hinted at above, there is one ZIL per dataset (both the in-memory
69 * representation, and the on-disk representation). The on-disk format
70 * consists of 3 parts:
71 *
72 * - a single, per-dataset, ZIL header; which points to a chain of
73 * - zero or more ZIL blocks; each of which contains
74 * - zero or more ZIL records
75 *
76 * A ZIL record holds the information necessary to replay a single
77 * system call transaction. A ZIL block can hold many ZIL records, and
78 * the blocks are chained together, similarly to a singly linked list.
79 *
80 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
81 * block in the chain, and the ZIL header points to the first block in
82 * the chain.
83 *
84 * Note, there is not a fixed place in the pool to hold these ZIL
85 * blocks; they are dynamically allocated and freed as needed from the
86 * blocks available on the pool, though they can be preferentially
87 * allocated from a dedicated "log" vdev.
88 */
89
90 /*
91 * This controls the amount of time that a ZIL block (lwb) will remain
92 * "open" when it isn't "full", and it has a thread waiting for it to be
93 * committed to stable storage. Please refer to the zil_commit_waiter()
94 * function (and the comments within it) for more details.
95 */
96 static uint_t zfs_commit_timeout_pct = 10;
97
98 /*
99 * See zil.h for more information about these fields.
100 */
101 static zil_kstat_values_t zil_stats = {
102 { "zil_commit_count", KSTAT_DATA_UINT64 },
103 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
104 { "zil_commit_error_count", KSTAT_DATA_UINT64 },
105 { "zil_commit_stall_count", KSTAT_DATA_UINT64 },
106 { "zil_commit_suspend_count", KSTAT_DATA_UINT64 },
107 { "zil_commit_crash_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_count", KSTAT_DATA_UINT64 },
109 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
111 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
112 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
113 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
114 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
115 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
117 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
118 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
119 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
120 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
121 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
122 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
123 };
124
125 static zil_sums_t zil_sums_global;
126 static kstat_t *zil_kstats_global;
127
128 /*
129 * Disable intent logging replay. This global ZIL switch affects all pools.
130 */
131 int zil_replay_disable = 0;
132
133 /*
134 * Disable the flush commands that are normally sent to the disk(s) by the ZIL
135 * after an LWB write has completed. Setting this will cause ZIL corruption on
136 * power loss if a volatile out-of-order write cache is enabled.
137 */
138 static int zil_nocacheflush = 0;
139
140 /*
141 * Limit SLOG write size per commit executed with synchronous priority.
142 * Any writes above that will be executed with lower (asynchronous) priority
143 * to limit potential SLOG device abuse by single active ZIL writer.
144 */
145 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
146
147 static kmem_cache_t *zil_lwb_cache;
148 static kmem_cache_t *zil_zcw_cache;
149
150 static int zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
151 static itx_t *zil_itx_clone(itx_t *oitx);
152 static uint64_t zil_max_waste_space(zilog_t *zilog);
153
154 static int
zil_bp_compare(const void * x1,const void * x2)155 zil_bp_compare(const void *x1, const void *x2)
156 {
157 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
158 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
159
160 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
161 if (likely(cmp))
162 return (cmp);
163
164 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
165 }
166
167 static void
zil_bp_tree_init(zilog_t * zilog)168 zil_bp_tree_init(zilog_t *zilog)
169 {
170 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
171 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
172 }
173
174 static void
zil_bp_tree_fini(zilog_t * zilog)175 zil_bp_tree_fini(zilog_t *zilog)
176 {
177 avl_tree_t *t = &zilog->zl_bp_tree;
178 zil_bp_node_t *zn;
179 void *cookie = NULL;
180
181 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
182 kmem_free(zn, sizeof (zil_bp_node_t));
183
184 avl_destroy(t);
185 }
186
187 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)188 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
189 {
190 avl_tree_t *t = &zilog->zl_bp_tree;
191 const dva_t *dva;
192 zil_bp_node_t *zn;
193 avl_index_t where;
194
195 if (BP_IS_EMBEDDED(bp))
196 return (0);
197
198 dva = BP_IDENTITY(bp);
199
200 if (avl_find(t, dva, &where) != NULL)
201 return (SET_ERROR(EEXIST));
202
203 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
204 zn->zn_dva = *dva;
205 avl_insert(t, zn, where);
206
207 return (0);
208 }
209
210 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)211 zil_header_in_syncing_context(zilog_t *zilog)
212 {
213 return ((zil_header_t *)zilog->zl_header);
214 }
215
216 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)217 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
218 {
219 zio_cksum_t *zc = &bp->blk_cksum;
220
221 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
222 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
223 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
224 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
225 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
226 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
227 }
228
229 static int
zil_kstats_global_update(kstat_t * ksp,int rw)230 zil_kstats_global_update(kstat_t *ksp, int rw)
231 {
232 zil_kstat_values_t *zs = ksp->ks_data;
233 ASSERT3P(&zil_stats, ==, zs);
234
235 if (rw == KSTAT_WRITE) {
236 return (SET_ERROR(EACCES));
237 }
238
239 zil_kstat_values_update(zs, &zil_sums_global);
240
241 return (0);
242 }
243
244 /*
245 * Read a log block and make sure it's valid.
246 */
247 static int
zil_read_log_block(zilog_t * zilog,boolean_t decrypt,const blkptr_t * bp,blkptr_t * nbp,char ** begin,char ** end,arc_buf_t ** abuf)248 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
249 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
250 {
251 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
252 arc_flags_t aflags = ARC_FLAG_WAIT;
253 zbookmark_phys_t zb;
254 int error;
255
256 if (zilog->zl_header->zh_claim_txg == 0)
257 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
258
259 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
260 zio_flags |= ZIO_FLAG_SPECULATIVE;
261
262 if (!decrypt)
263 zio_flags |= ZIO_FLAG_RAW;
264
265 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
266 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
267
268 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
269 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
270
271 if (error == 0) {
272 zio_cksum_t cksum = bp->blk_cksum;
273
274 /*
275 * Validate the checksummed log block.
276 *
277 * Sequence numbers should be... sequential. The checksum
278 * verifier for the next block should be bp's checksum plus 1.
279 *
280 * Also check the log chain linkage and size used.
281 */
282 cksum.zc_word[ZIL_ZC_SEQ]++;
283
284 uint64_t size = BP_GET_LSIZE(bp);
285 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
286 zil_chain_t *zilc = (*abuf)->b_data;
287 char *lr = (char *)(zilc + 1);
288
289 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
290 sizeof (cksum)) ||
291 zilc->zc_nused < sizeof (*zilc) ||
292 zilc->zc_nused > size) {
293 error = SET_ERROR(ECKSUM);
294 } else {
295 *begin = lr;
296 *end = lr + zilc->zc_nused - sizeof (*zilc);
297 *nbp = zilc->zc_next_blk;
298 }
299 } else {
300 char *lr = (*abuf)->b_data;
301 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
302
303 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
304 sizeof (cksum)) ||
305 (zilc->zc_nused > (size - sizeof (*zilc)))) {
306 error = SET_ERROR(ECKSUM);
307 } else {
308 *begin = lr;
309 *end = lr + zilc->zc_nused;
310 *nbp = zilc->zc_next_blk;
311 }
312 }
313 }
314
315 return (error);
316 }
317
318 /*
319 * Read a TX_WRITE log data block.
320 */
321 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)322 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
323 {
324 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
325 const blkptr_t *bp = &lr->lr_blkptr;
326 arc_flags_t aflags = ARC_FLAG_WAIT;
327 arc_buf_t *abuf = NULL;
328 zbookmark_phys_t zb;
329 int error;
330
331 if (BP_IS_HOLE(bp)) {
332 if (wbuf != NULL)
333 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
334 return (0);
335 }
336
337 if (zilog->zl_header->zh_claim_txg == 0)
338 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
339
340 /*
341 * If we are not using the resulting data, we are just checking that
342 * it hasn't been corrupted so we don't need to waste CPU time
343 * decompressing and decrypting it.
344 */
345 if (wbuf == NULL)
346 zio_flags |= ZIO_FLAG_RAW;
347
348 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
349 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
350 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
351
352 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
353 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
354
355 if (error == 0) {
356 if (wbuf != NULL)
357 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
358 arc_buf_destroy(abuf, &abuf);
359 }
360
361 return (error);
362 }
363
364 void
zil_sums_init(zil_sums_t * zs)365 zil_sums_init(zil_sums_t *zs)
366 {
367 wmsum_init(&zs->zil_commit_count, 0);
368 wmsum_init(&zs->zil_commit_writer_count, 0);
369 wmsum_init(&zs->zil_commit_error_count, 0);
370 wmsum_init(&zs->zil_commit_stall_count, 0);
371 wmsum_init(&zs->zil_commit_suspend_count, 0);
372 wmsum_init(&zs->zil_commit_crash_count, 0);
373 wmsum_init(&zs->zil_itx_count, 0);
374 wmsum_init(&zs->zil_itx_indirect_count, 0);
375 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
376 wmsum_init(&zs->zil_itx_copied_count, 0);
377 wmsum_init(&zs->zil_itx_copied_bytes, 0);
378 wmsum_init(&zs->zil_itx_needcopy_count, 0);
379 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
380 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
381 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
382 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
383 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
384 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
385 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
386 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
387 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
388 }
389
390 void
zil_sums_fini(zil_sums_t * zs)391 zil_sums_fini(zil_sums_t *zs)
392 {
393 wmsum_fini(&zs->zil_commit_count);
394 wmsum_fini(&zs->zil_commit_writer_count);
395 wmsum_fini(&zs->zil_commit_error_count);
396 wmsum_fini(&zs->zil_commit_stall_count);
397 wmsum_fini(&zs->zil_commit_suspend_count);
398 wmsum_fini(&zs->zil_commit_crash_count);
399 wmsum_fini(&zs->zil_itx_count);
400 wmsum_fini(&zs->zil_itx_indirect_count);
401 wmsum_fini(&zs->zil_itx_indirect_bytes);
402 wmsum_fini(&zs->zil_itx_copied_count);
403 wmsum_fini(&zs->zil_itx_copied_bytes);
404 wmsum_fini(&zs->zil_itx_needcopy_count);
405 wmsum_fini(&zs->zil_itx_needcopy_bytes);
406 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
407 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
408 wmsum_fini(&zs->zil_itx_metaslab_normal_write);
409 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
410 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
411 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
412 wmsum_fini(&zs->zil_itx_metaslab_slog_write);
413 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
414 }
415
416 void
zil_kstat_values_update(zil_kstat_values_t * zs,zil_sums_t * zil_sums)417 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
418 {
419 zs->zil_commit_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_commit_count);
421 zs->zil_commit_writer_count.value.ui64 =
422 wmsum_value(&zil_sums->zil_commit_writer_count);
423 zs->zil_commit_error_count.value.ui64 =
424 wmsum_value(&zil_sums->zil_commit_error_count);
425 zs->zil_commit_stall_count.value.ui64 =
426 wmsum_value(&zil_sums->zil_commit_stall_count);
427 zs->zil_commit_suspend_count.value.ui64 =
428 wmsum_value(&zil_sums->zil_commit_suspend_count);
429 zs->zil_commit_crash_count.value.ui64 =
430 wmsum_value(&zil_sums->zil_commit_crash_count);
431 zs->zil_itx_count.value.ui64 =
432 wmsum_value(&zil_sums->zil_itx_count);
433 zs->zil_itx_indirect_count.value.ui64 =
434 wmsum_value(&zil_sums->zil_itx_indirect_count);
435 zs->zil_itx_indirect_bytes.value.ui64 =
436 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
437 zs->zil_itx_copied_count.value.ui64 =
438 wmsum_value(&zil_sums->zil_itx_copied_count);
439 zs->zil_itx_copied_bytes.value.ui64 =
440 wmsum_value(&zil_sums->zil_itx_copied_bytes);
441 zs->zil_itx_needcopy_count.value.ui64 =
442 wmsum_value(&zil_sums->zil_itx_needcopy_count);
443 zs->zil_itx_needcopy_bytes.value.ui64 =
444 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
445 zs->zil_itx_metaslab_normal_count.value.ui64 =
446 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
447 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
448 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
449 zs->zil_itx_metaslab_normal_write.value.ui64 =
450 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
451 zs->zil_itx_metaslab_normal_alloc.value.ui64 =
452 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
453 zs->zil_itx_metaslab_slog_count.value.ui64 =
454 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
455 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
456 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
457 zs->zil_itx_metaslab_slog_write.value.ui64 =
458 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
459 zs->zil_itx_metaslab_slog_alloc.value.ui64 =
460 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
461 }
462
463 /*
464 * Parse the intent log, and call parse_func for each valid record within.
465 */
466 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg,boolean_t decrypt)467 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
468 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
469 boolean_t decrypt)
470 {
471 const zil_header_t *zh = zilog->zl_header;
472 boolean_t claimed = !!zh->zh_claim_txg;
473 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
474 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
475 uint64_t max_blk_seq = 0;
476 uint64_t max_lr_seq = 0;
477 uint64_t blk_count = 0;
478 uint64_t lr_count = 0;
479 blkptr_t blk, next_blk = {{{{0}}}};
480 int error = 0;
481
482 /*
483 * Old logs didn't record the maximum zh_claim_lr_seq.
484 */
485 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
486 claim_lr_seq = UINT64_MAX;
487
488 /*
489 * Starting at the block pointed to by zh_log we read the log chain.
490 * For each block in the chain we strongly check that block to
491 * ensure its validity. We stop when an invalid block is found.
492 * For each block pointer in the chain we call parse_blk_func().
493 * For each record in each valid block we call parse_lr_func().
494 * If the log has been claimed, stop if we encounter a sequence
495 * number greater than the highest claimed sequence number.
496 */
497 zil_bp_tree_init(zilog);
498
499 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
500 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
501 int reclen;
502 char *lrp, *end;
503 arc_buf_t *abuf = NULL;
504
505 if (blk_seq > claim_blk_seq)
506 break;
507
508 error = parse_blk_func(zilog, &blk, arg, txg);
509 if (error != 0)
510 break;
511 ASSERT3U(max_blk_seq, <, blk_seq);
512 max_blk_seq = blk_seq;
513 blk_count++;
514
515 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
516 break;
517
518 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
519 &lrp, &end, &abuf);
520 if (error != 0) {
521 if (abuf)
522 arc_buf_destroy(abuf, &abuf);
523 if (claimed) {
524 char name[ZFS_MAX_DATASET_NAME_LEN];
525
526 dmu_objset_name(zilog->zl_os, name);
527
528 cmn_err(CE_WARN, "ZFS read log block error %d, "
529 "dataset %s, seq 0x%llx\n", error, name,
530 (u_longlong_t)blk_seq);
531 }
532 break;
533 }
534
535 for (; lrp < end; lrp += reclen) {
536 lr_t *lr = (lr_t *)lrp;
537
538 /*
539 * Are the remaining bytes large enough to hold an
540 * log record?
541 */
542 if ((char *)(lr + 1) > end) {
543 cmn_err(CE_WARN, "zil_parse: lr_t overrun");
544 error = SET_ERROR(ECKSUM);
545 arc_buf_destroy(abuf, &abuf);
546 goto done;
547 }
548 reclen = lr->lrc_reclen;
549 if (reclen < sizeof (lr_t) || reclen > end - lrp) {
550 cmn_err(CE_WARN,
551 "zil_parse: lr_t has an invalid reclen");
552 error = SET_ERROR(ECKSUM);
553 arc_buf_destroy(abuf, &abuf);
554 goto done;
555 }
556
557 if (lr->lrc_seq > claim_lr_seq) {
558 arc_buf_destroy(abuf, &abuf);
559 goto done;
560 }
561
562 error = parse_lr_func(zilog, lr, arg, txg);
563 if (error != 0) {
564 arc_buf_destroy(abuf, &abuf);
565 goto done;
566 }
567 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
568 max_lr_seq = lr->lrc_seq;
569 lr_count++;
570 }
571 arc_buf_destroy(abuf, &abuf);
572 }
573 done:
574 zilog->zl_parse_error = error;
575 zilog->zl_parse_blk_seq = max_blk_seq;
576 zilog->zl_parse_lr_seq = max_lr_seq;
577 zilog->zl_parse_blk_count = blk_count;
578 zilog->zl_parse_lr_count = lr_count;
579
580 zil_bp_tree_fini(zilog);
581
582 return (error);
583 }
584
585 static int
zil_clear_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)586 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
587 uint64_t first_txg)
588 {
589 (void) tx;
590 ASSERT(!BP_IS_HOLE(bp));
591
592 /*
593 * As we call this function from the context of a rewind to a
594 * checkpoint, each ZIL block whose txg is later than the txg
595 * that we rewind to is invalid. Thus, we return -1 so
596 * zil_parse() doesn't attempt to read it.
597 */
598 if (BP_GET_BIRTH(bp) >= first_txg)
599 return (-1);
600
601 if (zil_bp_tree_add(zilog, bp) != 0)
602 return (0);
603
604 zio_free(zilog->zl_spa, first_txg, bp);
605 return (0);
606 }
607
608 static int
zil_noop_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)609 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
610 uint64_t first_txg)
611 {
612 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
613 return (0);
614 }
615
616 static int
zil_claim_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t first_txg)617 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
618 uint64_t first_txg)
619 {
620 /*
621 * Claim log block if not already committed and not already claimed.
622 * If tx == NULL, just verify that the block is claimable.
623 */
624 if (BP_IS_HOLE(bp) || BP_GET_BIRTH(bp) < first_txg ||
625 zil_bp_tree_add(zilog, bp) != 0)
626 return (0);
627
628 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
629 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
630 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
631 }
632
633 static int
zil_claim_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)634 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
635 {
636 lr_write_t *lr = (lr_write_t *)lrc;
637 int error;
638
639 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
640
641 /*
642 * If the block is not readable, don't claim it. This can happen
643 * in normal operation when a log block is written to disk before
644 * some of the dmu_sync() blocks it points to. In this case, the
645 * transaction cannot have been committed to anyone (we would have
646 * waited for all writes to be stable first), so it is semantically
647 * correct to declare this the end of the log.
648 */
649 if (BP_GET_BIRTH(&lr->lr_blkptr) >= first_txg) {
650 error = zil_read_log_data(zilog, lr, NULL);
651 if (error != 0)
652 return (error);
653 }
654
655 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
656 }
657
658 static int
zil_claim_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)659 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
660 uint64_t first_txg)
661 {
662 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
663 const blkptr_t *bp;
664 spa_t *spa = zilog->zl_spa;
665 uint_t ii;
666
667 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
668 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
669 lr_bps[lr->lr_nbps]));
670
671 if (tx == NULL) {
672 return (0);
673 }
674
675 /*
676 * XXX: Do we need to byteswap lr?
677 */
678
679 for (ii = 0; ii < lr->lr_nbps; ii++) {
680 bp = &lr->lr_bps[ii];
681
682 /*
683 * When data is embedded into the BP there is no need to create
684 * BRT entry as there is no data block. Just copy the BP as it
685 * contains the data.
686 */
687 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
688 continue;
689
690 /*
691 * We can not handle block pointers from the future, since they
692 * are not yet allocated. It should not normally happen, but
693 * just in case lets be safe and just stop here now instead of
694 * corrupting the pool.
695 */
696 if (BP_GET_PHYSICAL_BIRTH(bp) >= first_txg)
697 return (SET_ERROR(ENOENT));
698
699 /*
700 * Assert the block is really allocated before we reference it.
701 */
702 metaslab_check_free(spa, bp);
703 }
704
705 for (ii = 0; ii < lr->lr_nbps; ii++) {
706 bp = &lr->lr_bps[ii];
707 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
708 brt_pending_add(spa, bp, tx);
709 }
710
711 return (0);
712 }
713
714 static int
zil_claim_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t first_txg)715 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
716 uint64_t first_txg)
717 {
718
719 switch (lrc->lrc_txtype) {
720 case TX_WRITE:
721 return (zil_claim_write(zilog, lrc, tx, first_txg));
722 case TX_CLONE_RANGE:
723 return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
724 default:
725 return (0);
726 }
727 }
728
729 static int
zil_free_log_block(zilog_t * zilog,const blkptr_t * bp,void * tx,uint64_t claim_txg)730 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
731 uint64_t claim_txg)
732 {
733 (void) claim_txg;
734
735 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
736
737 return (0);
738 }
739
740 static int
zil_free_write(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)741 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
742 {
743 lr_write_t *lr = (lr_write_t *)lrc;
744 blkptr_t *bp = &lr->lr_blkptr;
745
746 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
747
748 /*
749 * If we previously claimed it, we need to free it.
750 */
751 if (BP_GET_BIRTH(bp) >= claim_txg &&
752 zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
753 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
754 }
755
756 return (0);
757 }
758
759 static int
zil_free_clone_range(zilog_t * zilog,const lr_t * lrc,void * tx)760 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
761 {
762 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
763 const blkptr_t *bp;
764 spa_t *spa;
765 uint_t ii;
766
767 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
768 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
769 lr_bps[lr->lr_nbps]));
770
771 if (tx == NULL) {
772 return (0);
773 }
774
775 spa = zilog->zl_spa;
776
777 for (ii = 0; ii < lr->lr_nbps; ii++) {
778 bp = &lr->lr_bps[ii];
779
780 if (!BP_IS_HOLE(bp)) {
781 zio_free(spa, dmu_tx_get_txg(tx), bp);
782 }
783 }
784
785 return (0);
786 }
787
788 static int
zil_free_log_record(zilog_t * zilog,const lr_t * lrc,void * tx,uint64_t claim_txg)789 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
790 uint64_t claim_txg)
791 {
792
793 if (claim_txg == 0) {
794 return (0);
795 }
796
797 switch (lrc->lrc_txtype) {
798 case TX_WRITE:
799 return (zil_free_write(zilog, lrc, tx, claim_txg));
800 case TX_CLONE_RANGE:
801 return (zil_free_clone_range(zilog, lrc, tx));
802 default:
803 return (0);
804 }
805 }
806
807 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)808 zil_lwb_vdev_compare(const void *x1, const void *x2)
809 {
810 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
811 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
812
813 return (TREE_CMP(v1, v2));
814 }
815
816 /*
817 * Allocate a new lwb. We may already have a block pointer for it, in which
818 * case we get size and version from there. Or we may not yet, in which case
819 * we choose them here and later make the block allocation match.
820 */
821 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,blkptr_t * bp,int min_sz,int sz,boolean_t slog,uint64_t txg)822 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, int min_sz, int sz,
823 boolean_t slog, uint64_t txg)
824 {
825 lwb_t *lwb;
826
827 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
828 lwb->lwb_flags = 0;
829 lwb->lwb_zilog = zilog;
830 if (bp) {
831 lwb->lwb_blk = *bp;
832 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2)
833 lwb->lwb_flags |= LWB_FLAG_SLIM;
834 sz = BP_GET_LSIZE(bp);
835 lwb->lwb_min_sz = sz;
836 } else {
837 BP_ZERO(&lwb->lwb_blk);
838 if (spa_version(zilog->zl_spa) >= SPA_VERSION_SLIM_ZIL)
839 lwb->lwb_flags |= LWB_FLAG_SLIM;
840 lwb->lwb_min_sz = min_sz;
841 }
842 if (slog)
843 lwb->lwb_flags |= LWB_FLAG_SLOG;
844 lwb->lwb_error = 0;
845 /*
846 * Buffer allocation and capacity setup will be done in
847 * zil_lwb_write_open() when the LWB is opened for ITX assignment.
848 */
849 lwb->lwb_nmax = lwb->lwb_nused = lwb->lwb_nfilled = 0;
850 lwb->lwb_sz = sz;
851 lwb->lwb_buf = NULL;
852 lwb->lwb_state = LWB_STATE_NEW;
853 lwb->lwb_child_zio = NULL;
854 lwb->lwb_write_zio = NULL;
855 lwb->lwb_root_zio = NULL;
856 lwb->lwb_issued_timestamp = 0;
857 lwb->lwb_issued_txg = 0;
858 lwb->lwb_alloc_txg = txg;
859 lwb->lwb_max_txg = 0;
860
861 mutex_enter(&zilog->zl_lock);
862 list_insert_tail(&zilog->zl_lwb_list, lwb);
863 mutex_exit(&zilog->zl_lock);
864
865 return (lwb);
866 }
867
868 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)869 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
870 {
871 ASSERT(MUTEX_HELD(&zilog->zl_lock));
872 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
873 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
874 ASSERT0P(lwb->lwb_child_zio);
875 ASSERT0P(lwb->lwb_write_zio);
876 ASSERT0P(lwb->lwb_root_zio);
877 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
878 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
879 VERIFY(list_is_empty(&lwb->lwb_itxs));
880 VERIFY(list_is_empty(&lwb->lwb_waiters));
881 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
882 ASSERT(!MUTEX_HELD(&lwb->lwb_lock));
883
884 /*
885 * Clear the zilog's field to indicate this lwb is no longer
886 * valid, and prevent use-after-free errors.
887 */
888 if (zilog->zl_last_lwb_opened == lwb)
889 zilog->zl_last_lwb_opened = NULL;
890
891 kmem_cache_free(zil_lwb_cache, lwb);
892 }
893
894 /*
895 * Called when we create in-memory log transactions so that we know
896 * to cleanup the itxs at the end of spa_sync().
897 */
898 static void
zilog_dirty(zilog_t * zilog,uint64_t txg)899 zilog_dirty(zilog_t *zilog, uint64_t txg)
900 {
901 dsl_pool_t *dp = zilog->zl_dmu_pool;
902 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
903
904 ASSERT(spa_writeable(zilog->zl_spa));
905
906 if (ds->ds_is_snapshot)
907 panic("dirtying snapshot!");
908
909 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
910 /* up the hold count until we can be written out */
911 dmu_buf_add_ref(ds->ds_dbuf, zilog);
912
913 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
914 }
915 }
916
917 /*
918 * Determine if the zil is dirty in the specified txg. Callers wanting to
919 * ensure that the dirty state does not change must hold the itxg_lock for
920 * the specified txg. Holding the lock will ensure that the zil cannot be
921 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
922 * state.
923 */
924 static boolean_t __maybe_unused
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)925 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
926 {
927 dsl_pool_t *dp = zilog->zl_dmu_pool;
928
929 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
930 return (B_TRUE);
931 return (B_FALSE);
932 }
933
934 /*
935 * Determine if the zil is dirty. The zil is considered dirty if it has
936 * any pending itx records that have not been cleaned by zil_clean().
937 */
938 static boolean_t
zilog_is_dirty(zilog_t * zilog)939 zilog_is_dirty(zilog_t *zilog)
940 {
941 dsl_pool_t *dp = zilog->zl_dmu_pool;
942
943 for (int t = 0; t < TXG_SIZE; t++) {
944 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
945 return (B_TRUE);
946 }
947 return (B_FALSE);
948 }
949
950 /*
951 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
952 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
953 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
954 * zil_commit.
955 */
956 static void
zil_commit_activate_saxattr_feature(zilog_t * zilog)957 zil_commit_activate_saxattr_feature(zilog_t *zilog)
958 {
959 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
960 uint64_t txg = 0;
961 dmu_tx_t *tx = NULL;
962
963 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
964 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
965 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
966 tx = dmu_tx_create(zilog->zl_os);
967 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
968 dsl_dataset_dirty(ds, tx);
969 txg = dmu_tx_get_txg(tx);
970
971 mutex_enter(&ds->ds_lock);
972 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
973 (void *)B_TRUE;
974 mutex_exit(&ds->ds_lock);
975 dmu_tx_commit(tx);
976 txg_wait_synced(zilog->zl_dmu_pool, txg);
977 }
978 }
979
980 /*
981 * Create an on-disk intent log.
982 */
983 static lwb_t *
zil_create(zilog_t * zilog)984 zil_create(zilog_t *zilog)
985 {
986 const zil_header_t *zh = zilog->zl_header;
987 lwb_t *lwb = NULL;
988 uint64_t txg = 0;
989 dmu_tx_t *tx = NULL;
990 blkptr_t blk;
991 int error = 0;
992 boolean_t slog = FALSE;
993 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
994
995
996 /*
997 * Wait for any previous destroy to complete.
998 */
999 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1000
1001 ASSERT0(zh->zh_claim_txg);
1002 ASSERT0(zh->zh_replay_seq);
1003
1004 blk = zh->zh_log;
1005
1006 /*
1007 * Allocate an initial log block if:
1008 * - there isn't one already
1009 * - the existing block is the wrong endianness
1010 */
1011 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
1012 tx = dmu_tx_create(zilog->zl_os);
1013 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1014 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1015 txg = dmu_tx_get_txg(tx);
1016
1017 if (!BP_IS_HOLE(&blk)) {
1018 zio_free(zilog->zl_spa, txg, &blk);
1019 BP_ZERO(&blk);
1020 }
1021
1022 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1023 ZIL_MIN_BLKSZ, ZIL_MIN_BLKSZ, &slog, B_TRUE);
1024 if (error == 0)
1025 zil_init_log_chain(zilog, &blk);
1026 }
1027
1028 /*
1029 * Allocate a log write block (lwb) for the first log block.
1030 */
1031 if (error == 0)
1032 lwb = zil_alloc_lwb(zilog, &blk, 0, 0, slog, txg);
1033
1034 /*
1035 * If we just allocated the first log block, commit our transaction
1036 * and wait for zil_sync() to stuff the block pointer into zh_log.
1037 * (zh is part of the MOS, so we cannot modify it in open context.)
1038 */
1039 if (tx != NULL) {
1040 /*
1041 * If "zilsaxattr" feature is enabled on zpool, then activate
1042 * it now when we're creating the ZIL chain. We can't wait with
1043 * this until we write the first xattr log record because we
1044 * need to wait for the feature activation to sync out.
1045 */
1046 if (spa_feature_is_enabled(zilog->zl_spa,
1047 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1048 DMU_OST_ZVOL) {
1049 mutex_enter(&ds->ds_lock);
1050 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1051 (void *)B_TRUE;
1052 mutex_exit(&ds->ds_lock);
1053 }
1054
1055 dmu_tx_commit(tx);
1056 txg_wait_synced(zilog->zl_dmu_pool, txg);
1057 } else {
1058 /*
1059 * This branch covers the case where we enable the feature on a
1060 * zpool that has existing ZIL headers.
1061 */
1062 zil_commit_activate_saxattr_feature(zilog);
1063 }
1064 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1065 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1066 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1067
1068 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1069 IMPLY(error == 0, lwb != NULL);
1070
1071 return (lwb);
1072 }
1073
1074 /*
1075 * In one tx, free all log blocks and clear the log header. If keep_first
1076 * is set, then we're replaying a log with no content. We want to keep the
1077 * first block, however, so that the first synchronous transaction doesn't
1078 * require a txg_wait_synced() in zil_create(). We don't need to
1079 * txg_wait_synced() here either when keep_first is set, because both
1080 * zil_create() and zil_destroy() will wait for any in-progress destroys
1081 * to complete.
1082 * Return B_TRUE if there were any entries to replay.
1083 */
1084 boolean_t
zil_destroy(zilog_t * zilog,boolean_t keep_first)1085 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1086 {
1087 const zil_header_t *zh = zilog->zl_header;
1088 lwb_t *lwb;
1089 dmu_tx_t *tx;
1090 uint64_t txg;
1091
1092 /*
1093 * Wait for any previous destroy to complete.
1094 */
1095 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1096
1097 zilog->zl_old_header = *zh; /* debugging aid */
1098
1099 if (BP_IS_HOLE(&zh->zh_log))
1100 return (B_FALSE);
1101
1102 tx = dmu_tx_create(zilog->zl_os);
1103 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1104 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1105 txg = dmu_tx_get_txg(tx);
1106
1107 mutex_enter(&zilog->zl_lock);
1108
1109 ASSERT3U(zilog->zl_destroy_txg, <, txg);
1110 zilog->zl_destroy_txg = txg;
1111 zilog->zl_keep_first = keep_first;
1112
1113 if (!list_is_empty(&zilog->zl_lwb_list)) {
1114 ASSERT0(zh->zh_claim_txg);
1115 VERIFY(!keep_first);
1116 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1117 if (lwb->lwb_buf != NULL)
1118 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1119 if (!BP_IS_HOLE(&lwb->lwb_blk))
1120 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1121 zil_free_lwb(zilog, lwb);
1122 }
1123 } else if (!keep_first) {
1124 zil_destroy_sync(zilog, tx);
1125 }
1126 mutex_exit(&zilog->zl_lock);
1127
1128 dmu_tx_commit(tx);
1129
1130 return (B_TRUE);
1131 }
1132
1133 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)1134 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1135 {
1136 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1137 (void) zil_parse(zilog, zil_free_log_block,
1138 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1139 }
1140
1141 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)1142 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1143 {
1144 dmu_tx_t *tx = txarg;
1145 zilog_t *zilog;
1146 uint64_t first_txg;
1147 zil_header_t *zh;
1148 objset_t *os;
1149 int error;
1150
1151 error = dmu_objset_own_obj(dp, ds->ds_object,
1152 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1153 if (error != 0) {
1154 /*
1155 * EBUSY indicates that the objset is inconsistent, in which
1156 * case it can not have a ZIL.
1157 */
1158 if (error != EBUSY) {
1159 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1160 (unsigned long long)ds->ds_object, error);
1161 }
1162
1163 return (0);
1164 }
1165
1166 zilog = dmu_objset_zil(os);
1167 zh = zil_header_in_syncing_context(zilog);
1168 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1169 first_txg = spa_min_claim_txg(zilog->zl_spa);
1170
1171 /*
1172 * If the spa_log_state is not set to be cleared, check whether
1173 * the current uberblock is a checkpoint one and if the current
1174 * header has been claimed before moving on.
1175 *
1176 * If the current uberblock is a checkpointed uberblock then
1177 * one of the following scenarios took place:
1178 *
1179 * 1] We are currently rewinding to the checkpoint of the pool.
1180 * 2] We crashed in the middle of a checkpoint rewind but we
1181 * did manage to write the checkpointed uberblock to the
1182 * vdev labels, so when we tried to import the pool again
1183 * the checkpointed uberblock was selected from the import
1184 * procedure.
1185 *
1186 * In both cases we want to zero out all the ZIL blocks, except
1187 * the ones that have been claimed at the time of the checkpoint
1188 * (their zh_claim_txg != 0). The reason is that these blocks
1189 * may be corrupted since we may have reused their locations on
1190 * disk after we took the checkpoint.
1191 *
1192 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1193 * when we first figure out whether the current uberblock is
1194 * checkpointed or not. Unfortunately, that would discard all
1195 * the logs, including the ones that are claimed, and we would
1196 * leak space.
1197 */
1198 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1199 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1200 zh->zh_claim_txg == 0)) {
1201 if (!BP_IS_HOLE(&zh->zh_log)) {
1202 (void) zil_parse(zilog, zil_clear_log_block,
1203 zil_noop_log_record, tx, first_txg, B_FALSE);
1204 }
1205 BP_ZERO(&zh->zh_log);
1206 if (os->os_encrypted)
1207 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1208 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1209 dmu_objset_disown(os, B_FALSE, FTAG);
1210 return (0);
1211 }
1212
1213 /*
1214 * If we are not rewinding and opening the pool normally, then
1215 * the min_claim_txg should be equal to the first txg of the pool.
1216 */
1217 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1218
1219 /*
1220 * Claim all log blocks if we haven't already done so, and remember
1221 * the highest claimed sequence number. This ensures that if we can
1222 * read only part of the log now (e.g. due to a missing device),
1223 * but we can read the entire log later, we will not try to replay
1224 * or destroy beyond the last block we successfully claimed.
1225 */
1226 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1227 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1228 (void) zil_parse(zilog, zil_claim_log_block,
1229 zil_claim_log_record, tx, first_txg, B_FALSE);
1230 zh->zh_claim_txg = first_txg;
1231 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1232 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1233 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1234 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1235 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1236 if (os->os_encrypted)
1237 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1238 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1239 }
1240
1241 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1242 dmu_objset_disown(os, B_FALSE, FTAG);
1243 return (0);
1244 }
1245
1246 /*
1247 * Check the log by walking the log chain.
1248 * Checksum errors are ok as they indicate the end of the chain.
1249 * Any other error (no device or read failure) returns an error.
1250 */
1251 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)1252 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1253 {
1254 (void) dp;
1255 zilog_t *zilog;
1256 objset_t *os;
1257 blkptr_t *bp;
1258 int error;
1259
1260 ASSERT0P(tx);
1261
1262 error = dmu_objset_from_ds(ds, &os);
1263 if (error != 0) {
1264 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1265 (unsigned long long)ds->ds_object, error);
1266 return (0);
1267 }
1268
1269 zilog = dmu_objset_zil(os);
1270 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1271
1272 if (!BP_IS_HOLE(bp)) {
1273 vdev_t *vd;
1274 boolean_t valid = B_TRUE;
1275
1276 /*
1277 * Check the first block and determine if it's on a log device
1278 * which may have been removed or faulted prior to loading this
1279 * pool. If so, there's no point in checking the rest of the
1280 * log as its content should have already been synced to the
1281 * pool.
1282 */
1283 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1284 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1285 if (vd->vdev_islog && vdev_is_dead(vd))
1286 valid = vdev_log_state_valid(vd);
1287 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1288
1289 if (!valid)
1290 return (0);
1291
1292 /*
1293 * Check whether the current uberblock is checkpointed (e.g.
1294 * we are rewinding) and whether the current header has been
1295 * claimed or not. If it hasn't then skip verifying it. We
1296 * do this because its ZIL blocks may be part of the pool's
1297 * state before the rewind, which is no longer valid.
1298 */
1299 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1300 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1301 zh->zh_claim_txg == 0)
1302 return (0);
1303 }
1304
1305 /*
1306 * Because tx == NULL, zil_claim_log_block() will not actually claim
1307 * any blocks, but just determine whether it is possible to do so.
1308 * In addition to checking the log chain, zil_claim_log_block()
1309 * will invoke zio_claim() with a done func of spa_claim_notify(),
1310 * which will update spa_max_claim_txg. See spa_load() for details.
1311 */
1312 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1313 zilog->zl_header->zh_claim_txg ? -1ULL :
1314 spa_min_claim_txg(os->os_spa), B_FALSE);
1315
1316 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1317 }
1318
1319 /*
1320 * When an itx is "skipped", this function is used to properly mark the
1321 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1322 * be skipped (and not committed to an lwb) for a variety of reasons,
1323 * one of them being that the itx was committed via spa_sync(), prior to
1324 * it being committed to an lwb; this can happen if a thread calling
1325 * zil_commit() is racing with spa_sync().
1326 */
1327 static void
zil_commit_waiter_done(zil_commit_waiter_t * zcw,int err)1328 zil_commit_waiter_done(zil_commit_waiter_t *zcw, int err)
1329 {
1330 mutex_enter(&zcw->zcw_lock);
1331 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1332 zcw->zcw_lwb = NULL;
1333 zcw->zcw_error = err;
1334 zcw->zcw_done = B_TRUE;
1335 cv_broadcast(&zcw->zcw_cv);
1336 mutex_exit(&zcw->zcw_lock);
1337 }
1338
1339 /*
1340 * This function is used when the given waiter is to be linked into an
1341 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1342 * At this point, the waiter will no longer be referenced by the itx,
1343 * and instead, will be referenced by the lwb.
1344 */
1345 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)1346 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1347 {
1348 /*
1349 * The lwb_waiters field of the lwb is protected by the zilog's
1350 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1351 * zl_issuer_lock also protects leaving the open state.
1352 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1353 * flush_done, which transition is protected by zl_lock.
1354 */
1355 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1356 IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1357 MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1358 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1359 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1360
1361 ASSERT(!list_link_active(&zcw->zcw_node));
1362 list_insert_tail(&lwb->lwb_waiters, zcw);
1363 ASSERT0P(zcw->zcw_lwb);
1364 zcw->zcw_lwb = lwb;
1365 }
1366
1367 /*
1368 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1369 * block, and the given waiter must be linked to the "nolwb waiters"
1370 * list inside of zil_process_commit_list().
1371 */
1372 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)1373 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1374 {
1375 ASSERT(!list_link_active(&zcw->zcw_node));
1376 list_insert_tail(nolwb, zcw);
1377 ASSERT0P(zcw->zcw_lwb);
1378 }
1379
1380 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)1381 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1382 {
1383 avl_tree_t *t = &lwb->lwb_vdev_tree;
1384 avl_index_t where;
1385 zil_vdev_node_t *zv, zvsearch;
1386 int ndvas = BP_GET_NDVAS(bp);
1387 int i;
1388
1389 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1390 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1391
1392 if (zil_nocacheflush)
1393 return;
1394
1395 mutex_enter(&lwb->lwb_lock);
1396 for (i = 0; i < ndvas; i++) {
1397 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1398 if (avl_find(t, &zvsearch, &where) == NULL) {
1399 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1400 zv->zv_vdev = zvsearch.zv_vdev;
1401 avl_insert(t, zv, where);
1402 }
1403 }
1404 mutex_exit(&lwb->lwb_lock);
1405 }
1406
1407 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1408 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1409 {
1410 avl_tree_t *src = &lwb->lwb_vdev_tree;
1411 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1412 void *cookie = NULL;
1413 zil_vdev_node_t *zv;
1414
1415 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1416 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1417 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1418
1419 /*
1420 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1421 * not need the protection of lwb_lock (it will only be modified
1422 * while holding zilog->zl_lock) as its writes and those of its
1423 * children have all completed. The younger 'nlwb' may be waiting on
1424 * future writes to additional vdevs.
1425 */
1426 mutex_enter(&nlwb->lwb_lock);
1427 /*
1428 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1429 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1430 */
1431 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1432 avl_index_t where;
1433
1434 if (avl_find(dst, zv, &where) == NULL) {
1435 avl_insert(dst, zv, where);
1436 } else {
1437 kmem_free(zv, sizeof (*zv));
1438 }
1439 }
1440 mutex_exit(&nlwb->lwb_lock);
1441 }
1442
1443 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1444 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1445 {
1446 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1447 }
1448
1449 /*
1450 * This function is a called after all vdevs associated with a given lwb write
1451 * have completed their flush command; or as soon as the lwb write completes,
1452 * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1453 * completed before this function is called; i.e. this function is called for
1454 * all previous lwbs before it's called for "this" lwb (enforced via zio the
1455 * dependencies configured in zil_lwb_set_zio_dependency()).
1456 *
1457 * The intention is for this function to be called as soon as the contents of
1458 * an lwb are considered "stable" on disk, and will survive any sudden loss of
1459 * power. At this point, any threads waiting for the lwb to reach this state
1460 * are signalled, and the "waiter" structures are marked "done".
1461 */
1462 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1463 zil_lwb_flush_vdevs_done(zio_t *zio)
1464 {
1465 lwb_t *lwb = zio->io_private;
1466 zilog_t *zilog = lwb->lwb_zilog;
1467 zil_commit_waiter_t *zcw;
1468 itx_t *itx;
1469
1470 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1471
1472 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1473
1474 mutex_enter(&zilog->zl_lock);
1475
1476 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1477
1478 lwb->lwb_root_zio = NULL;
1479
1480 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1481 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1482
1483 if (zilog->zl_last_lwb_opened == lwb) {
1484 /*
1485 * Remember the highest committed log sequence number
1486 * for ztest. We only update this value when all the log
1487 * writes succeeded, because ztest wants to ASSERT that
1488 * it got the whole log chain.
1489 */
1490 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1491 }
1492
1493 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1494 zil_itx_destroy(itx, 0);
1495
1496 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1497 /*
1498 * We expect any ZIO errors from child ZIOs to have been
1499 * propagated "up" to this specific LWB's root ZIO, in
1500 * order for this error handling to work correctly. This
1501 * includes ZIO errors from either this LWB's write or
1502 * flush, as well as any errors from other dependent LWBs
1503 * (e.g. a root LWB ZIO that might be a child of this LWB).
1504 *
1505 * With that said, it's important to note that LWB flush
1506 * errors are not propagated up to the LWB root ZIO.
1507 * This is incorrect behavior, and results in VDEV flush
1508 * errors not being handled correctly here. See the
1509 * comment above the call to "zio_flush" for details.
1510 */
1511 zil_commit_waiter_done(zcw, zio->io_error);
1512 }
1513
1514 uint64_t txg = lwb->lwb_issued_txg;
1515
1516 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1517 mutex_exit(&zilog->zl_lock);
1518
1519 mutex_enter(&zilog->zl_lwb_io_lock);
1520 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1521 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1522 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1523 cv_broadcast(&zilog->zl_lwb_io_cv);
1524 mutex_exit(&zilog->zl_lwb_io_lock);
1525 }
1526
1527 /*
1528 * Wait for the completion of all issued write/flush of that txg provided.
1529 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1530 */
1531 static void
zil_lwb_flush_wait_all(zilog_t * zilog,uint64_t txg)1532 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1533 {
1534 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1535
1536 mutex_enter(&zilog->zl_lwb_io_lock);
1537 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1538 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1539 mutex_exit(&zilog->zl_lwb_io_lock);
1540
1541 #ifdef ZFS_DEBUG
1542 mutex_enter(&zilog->zl_lock);
1543 mutex_enter(&zilog->zl_lwb_io_lock);
1544 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1545 while (lwb != NULL) {
1546 if (lwb->lwb_issued_txg <= txg) {
1547 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1548 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1549 IMPLY(lwb->lwb_issued_txg > 0,
1550 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1551 }
1552 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1553 lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1554 lwb->lwb_buf == NULL);
1555 lwb = list_next(&zilog->zl_lwb_list, lwb);
1556 }
1557 mutex_exit(&zilog->zl_lwb_io_lock);
1558 mutex_exit(&zilog->zl_lock);
1559 #endif
1560 }
1561
1562 /*
1563 * This is called when an lwb's write zio completes. The callback's purpose is
1564 * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1565 * tree will contain the vdevs involved in writing out this specific lwb's
1566 * data, and in the case that cache flushes have been deferred, vdevs involved
1567 * in writing the data for previous lwbs. The writes corresponding to all the
1568 * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1569 * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1570 * which takes deferred flushes into account. The lwb will be "done" once
1571 * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1572 * callback for the lwb's root zio.
1573 */
1574 static void
zil_lwb_write_done(zio_t * zio)1575 zil_lwb_write_done(zio_t *zio)
1576 {
1577 lwb_t *lwb = zio->io_private;
1578 spa_t *spa = zio->io_spa;
1579 zilog_t *zilog = lwb->lwb_zilog;
1580 avl_tree_t *t = &lwb->lwb_vdev_tree;
1581 void *cookie = NULL;
1582 zil_vdev_node_t *zv;
1583 lwb_t *nlwb = NULL;
1584
1585 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1586
1587 abd_free(zio->io_abd);
1588 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1589 lwb->lwb_buf = NULL;
1590
1591 mutex_enter(&zilog->zl_lock);
1592 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1593 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1594 lwb->lwb_child_zio = NULL;
1595 lwb->lwb_write_zio = NULL;
1596
1597 /*
1598 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1599 * called for it yet, and when it will be, it won't be able to make
1600 * its write ZIO a parent this ZIO. In such case we can not defer
1601 * our flushes or below may be a race between the done callbacks.
1602 */
1603 if (!(lwb->lwb_flags & LWB_FLAG_CRASHED)) {
1604 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1605 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1606 nlwb = NULL;
1607 }
1608 mutex_exit(&zilog->zl_lock);
1609
1610 if (avl_numnodes(t) == 0)
1611 return;
1612
1613 /*
1614 * If there was an IO error, we're not going to call zio_flush()
1615 * on these vdevs, so we simply empty the tree and free the
1616 * nodes. We avoid calling zio_flush() since there isn't any
1617 * good reason for doing so, after the lwb block failed to be
1618 * written out.
1619 *
1620 * Additionally, we don't perform any further error handling at
1621 * this point (e.g. setting "zcw_error" appropriately), as we
1622 * expect that to occur in "zil_lwb_flush_vdevs_done" (thus, we
1623 * expect any error seen here, to have been propagated to that
1624 * function).
1625 *
1626 * Note that we treat a "crashed" LWB as though it was in error,
1627 * even if it did appear to succeed, because we've already
1628 * signaled error and cleaned up waiters and committers in
1629 * zil_crash(); we just want to clean up and get out of here.
1630 */
1631 if (zio->io_error != 0 || (lwb->lwb_flags & LWB_FLAG_CRASHED)) {
1632 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1633 kmem_free(zv, sizeof (*zv));
1634 return;
1635 }
1636
1637 /*
1638 * If this lwb does not have any threads waiting for it to complete, we
1639 * want to defer issuing the flush command to the vdevs written to by
1640 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1641 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1642 * with the vdev tree of the "next" lwb in the list, and assume the
1643 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1644 * again).
1645 *
1646 * This is a useful performance optimization, especially for workloads
1647 * with lots of async write activity and few sync write and/or fsync
1648 * activity, as it has the potential to coalesce multiple flush
1649 * commands to a vdev into one.
1650 */
1651 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1652 zil_lwb_flush_defer(lwb, nlwb);
1653 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1654 return;
1655 }
1656
1657 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1658 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1659 if (vd != NULL) {
1660 /*
1661 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1662 * always used within "zio_flush". This means,
1663 * any errors when flushing the vdev(s), will
1664 * (unfortunately) not be handled correctly,
1665 * since these "zio_flush" errors will not be
1666 * propagated up to "zil_lwb_flush_vdevs_done".
1667 */
1668 zio_flush(lwb->lwb_root_zio, vd);
1669 }
1670 kmem_free(zv, sizeof (*zv));
1671 }
1672 }
1673
1674 /*
1675 * Build the zio dependency chain, which is used to preserve the ordering of
1676 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1677 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1678 * cannot complete until the previous lwb's zio completes.
1679 *
1680 * This is required by the semantics of zil_commit(): the commit waiters
1681 * attached to the lwbs will be woken in the lwb zio's completion callback,
1682 * so this zio dependency graph ensures the waiters are woken in the correct
1683 * order (the same order the lwbs were created).
1684 */
1685 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1686 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1687 {
1688 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1689
1690 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1691 if (prev_lwb == NULL ||
1692 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1693 return;
1694
1695 /*
1696 * If the previous lwb's write hasn't already completed, we also want
1697 * to order the completion of the lwb write zios (above, we only order
1698 * the completion of the lwb root zios). This is required because of
1699 * how we can defer the flush commands for any lwb without waiters.
1700 *
1701 * When the flush commands are deferred, the previous lwb will rely on
1702 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1703 * we need to ensure this lwb doesn't issue the flush until after the
1704 * previous lwb's write completes. We ensure this ordering by setting
1705 * the zio parent/child relationship here.
1706 *
1707 * Without this relationship on the lwb's write zio, it's possible for
1708 * this lwb's write to complete prior to the previous lwb's write
1709 * completing; and thus, the vdevs for the previous lwb would be
1710 * flushed prior to that lwb's data being written to those vdevs (the
1711 * vdevs are flushed in the lwb write zio's completion handler,
1712 * zil_lwb_write_done()).
1713 */
1714 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1715 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1716 if (list_is_empty(&prev_lwb->lwb_waiters)) {
1717 zio_add_child(lwb->lwb_write_zio,
1718 prev_lwb->lwb_write_zio);
1719 }
1720 } else {
1721 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1722 }
1723
1724 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1725 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1726 }
1727
1728
1729 /*
1730 * This function's purpose is to "open" an lwb such that it is ready to
1731 * accept new itxs being committed to it. This function is idempotent; if
1732 * the passed in lwb has already been opened, it is essentially a no-op.
1733 */
1734 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1735 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1736 {
1737 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1738
1739 if (lwb->lwb_state != LWB_STATE_NEW) {
1740 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1741 return;
1742 }
1743
1744 mutex_enter(&lwb->lwb_lock);
1745 mutex_enter(&zilog->zl_lock);
1746 lwb->lwb_state = LWB_STATE_OPENED;
1747 zilog->zl_last_lwb_opened = lwb;
1748 mutex_exit(&zilog->zl_lock);
1749 mutex_exit(&lwb->lwb_lock);
1750
1751 /*
1752 * Allocate buffer and set up LWB capacities.
1753 */
1754 ASSERT0P(lwb->lwb_buf);
1755 ASSERT3U(lwb->lwb_sz, >, 0);
1756 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
1757 if (lwb->lwb_flags & LWB_FLAG_SLIM) {
1758 lwb->lwb_nmax = lwb->lwb_sz;
1759 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
1760 } else {
1761 lwb->lwb_nmax = lwb->lwb_sz - sizeof (zil_chain_t);
1762 lwb->lwb_nused = lwb->lwb_nfilled = 0;
1763 }
1764 }
1765
1766 /*
1767 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1768 * initialized. Otherwise this should not be used directly; see
1769 * zl_max_block_size instead.
1770 */
1771 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1772
1773 /*
1774 * Plan splitting of the provided burst size between several blocks.
1775 */
1776 static uint_t
zil_lwb_plan(zilog_t * zilog,uint64_t size,uint_t * minsize)1777 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1778 {
1779 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1780 uint_t waste = zil_max_waste_space(zilog);
1781 waste = MAX(waste, zilog->zl_cur_max);
1782
1783 if (size <= md) {
1784 /*
1785 * Small bursts are written as-is in one block.
1786 */
1787 *minsize = size;
1788 return (size);
1789 } else if (size > 8 * md) {
1790 /*
1791 * Big bursts use maximum blocks. The first block size
1792 * is hard to predict, but we need at least enough space
1793 * to make reasonable progress.
1794 */
1795 *minsize = waste;
1796 return (md);
1797 }
1798
1799 /*
1800 * Medium bursts try to divide evenly to better utilize several SLOG
1801 * VDEVs. The first block size we predict assuming the worst case of
1802 * maxing out others. Fall back to using maximum blocks if due to
1803 * large records or wasted space we can not predict anything better.
1804 */
1805 uint_t s = size;
1806 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1807 uint_t chunk = DIV_ROUND_UP(s, n);
1808 if (chunk <= md - waste) {
1809 *minsize = MAX(s - (md - waste) * (n - 1), waste);
1810 return (chunk);
1811 } else {
1812 *minsize = waste;
1813 return (md);
1814 }
1815 }
1816
1817 /*
1818 * Try to predict next block size based on previous history. Make prediction
1819 * sufficient for 7 of 8 previous bursts, but don't try to save if the saving
1820 * is less then 50%. Extra writes may cost more, but we don't want single
1821 * spike to badly affect our predictions.
1822 */
1823 static void
zil_lwb_predict(zilog_t * zilog,uint64_t * min_predict,uint64_t * max_predict)1824 zil_lwb_predict(zilog_t *zilog, uint64_t *min_predict, uint64_t *max_predict)
1825 {
1826 uint_t m1 = 0, m2 = 0, o;
1827
1828 /* If we are in the middle of a burst, take it as another data point. */
1829 if (zilog->zl_cur_size > 0)
1830 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m1);
1831 else
1832 o = UINT_MAX;
1833
1834 /* Find two largest minimal first block sizes. */
1835 for (int i = 0; i < ZIL_BURSTS; i++) {
1836 uint_t cur = zilog->zl_prev_min[i];
1837 if (cur >= m1) {
1838 m2 = m1;
1839 m1 = cur;
1840 } else if (cur > m2) {
1841 m2 = cur;
1842 }
1843 }
1844
1845 /* Minimum should guarantee progress in most cases. */
1846 *min_predict = (m1 < m2 * 2) ? m1 : m2;
1847
1848 /* Maximum doesn't need to go below the minimum optimal size. */
1849 for (int i = 0; i < ZIL_BURSTS; i++)
1850 o = MIN(o, zilog->zl_prev_opt[i]);
1851 m1 = MAX(m1, o);
1852 m2 = MAX(m2, o);
1853 *max_predict = (m1 < m2 * 2) ? m1 : m2;
1854 }
1855
1856 /*
1857 * Close the log block for being issued and allocate the next one.
1858 * Has to be called under zl_issuer_lock to chain more lwbs.
1859 */
1860 static lwb_t *
zil_lwb_write_close(zilog_t * zilog,lwb_t * lwb)1861 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb)
1862 {
1863 uint64_t minbs, maxbs;
1864
1865 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1866 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1867 membar_producer();
1868 lwb->lwb_state = LWB_STATE_CLOSED;
1869
1870 /*
1871 * If there was an allocation failure then returned NULL will trigger
1872 * zil_commit_writer_stall() at the caller. This is inherently racy,
1873 * since allocation may not have happened yet.
1874 */
1875 if (lwb->lwb_error != 0)
1876 return (NULL);
1877
1878 /*
1879 * Log blocks are pre-allocated. Here we select the size of the next
1880 * block, based on what's left of this burst and the previous history.
1881 * While we try to only write used part of the block, we can't just
1882 * always allocate the maximum block size because we can exhaust all
1883 * available pool log space, so we try to be reasonable.
1884 */
1885 if (zilog->zl_cur_left > 0) {
1886 /*
1887 * We are in the middle of a burst and know how much is left.
1888 * But if workload is multi-threaded there may be more soon.
1889 * Try to predict what can it be and plan for the worst case.
1890 */
1891 uint_t m;
1892 maxbs = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1893 minbs = m;
1894 if (zilog->zl_parallel) {
1895 uint64_t minp, maxp;
1896 zil_lwb_predict(zilog, &minp, &maxp);
1897 maxp = zil_lwb_plan(zilog, zilog->zl_cur_left + maxp,
1898 &m);
1899 if (maxbs < maxp)
1900 maxbs = maxp;
1901 }
1902 } else {
1903 /*
1904 * The previous burst is done and we can only predict what
1905 * will come next.
1906 */
1907 zil_lwb_predict(zilog, &minbs, &maxbs);
1908 }
1909
1910 minbs += sizeof (zil_chain_t);
1911 maxbs += sizeof (zil_chain_t);
1912 minbs = P2ROUNDUP_TYPED(minbs, ZIL_MIN_BLKSZ, uint64_t);
1913 maxbs = P2ROUNDUP_TYPED(maxbs, ZIL_MIN_BLKSZ, uint64_t);
1914 maxbs = MIN(maxbs, zilog->zl_max_block_size);
1915 minbs = MIN(minbs, maxbs);
1916 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, minbs,
1917 uint64_t, maxbs);
1918
1919 return (zil_alloc_lwb(zilog, NULL, minbs, maxbs, 0, 0));
1920 }
1921
1922 /*
1923 * Finalize previously closed block and issue the write zio.
1924 */
1925 static int
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1926 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1927 {
1928 spa_t *spa = zilog->zl_spa;
1929 zil_chain_t *zilc;
1930 boolean_t slog;
1931 zbookmark_phys_t zb;
1932 zio_priority_t prio;
1933 int error;
1934
1935 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1936
1937 /* Actually fill the lwb with the data. */
1938 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1939 itx = list_next(&lwb->lwb_itxs, itx)) {
1940 error = zil_lwb_commit(zilog, lwb, itx);
1941 if (error != 0) {
1942 ASSERT3U(error, ==, ESHUTDOWN);
1943 return (error);
1944 }
1945 }
1946 lwb->lwb_nused = lwb->lwb_nfilled;
1947 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1948
1949 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1950 ZIO_FLAG_CANFAIL);
1951
1952 /*
1953 * The lwb is now ready to be issued, but it can be only if it already
1954 * got its block pointer allocated or the allocation has failed.
1955 * Otherwise leave it as-is, relying on some other thread to issue it
1956 * after allocating its block pointer via calling zil_lwb_write_issue()
1957 * for the previous lwb(s) in the chain.
1958 */
1959 mutex_enter(&zilog->zl_lock);
1960 lwb->lwb_state = LWB_STATE_READY;
1961 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1962 mutex_exit(&zilog->zl_lock);
1963 return (0);
1964 }
1965 mutex_exit(&zilog->zl_lock);
1966
1967 next_lwb:
1968 if (lwb->lwb_flags & LWB_FLAG_SLIM)
1969 zilc = (zil_chain_t *)lwb->lwb_buf;
1970 else
1971 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1972 uint64_t alloc_size = BP_GET_LSIZE(&lwb->lwb_blk);
1973 int wsz = alloc_size;
1974 if (lwb->lwb_error == 0) {
1975 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1976 if (!(lwb->lwb_flags & LWB_FLAG_SLOG) ||
1977 zilog->zl_cur_size <= zil_slog_bulk)
1978 prio = ZIO_PRIORITY_SYNC_WRITE;
1979 else
1980 prio = ZIO_PRIORITY_ASYNC_WRITE;
1981 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1982 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1983 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1984 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1985 &lwb->lwb_blk, lwb_abd, alloc_size, zil_lwb_write_done,
1986 lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1987 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1988
1989 if (lwb->lwb_flags & LWB_FLAG_SLIM) {
1990 /* For Slim ZIL only write what is used. */
1991 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1992 int);
1993 ASSERT3S(wsz, <=, alloc_size);
1994 if (wsz < alloc_size)
1995 zio_shrink(lwb->lwb_write_zio, wsz);
1996 wsz = lwb->lwb_write_zio->io_size;
1997 }
1998 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1999 zilc->zc_pad = 0;
2000 zilc->zc_nused = lwb->lwb_nused;
2001 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
2002 } else {
2003 /*
2004 * We can't write the lwb if there was an allocation failure,
2005 * so create a null zio instead just to maintain dependencies.
2006 */
2007 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
2008 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
2009 lwb->lwb_write_zio->io_error = lwb->lwb_error;
2010 }
2011 if (lwb->lwb_child_zio)
2012 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
2013
2014 /*
2015 * Open transaction to allocate the next block pointer.
2016 */
2017 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2018 VERIFY0(dmu_tx_assign(tx,
2019 DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
2020 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2021 uint64_t txg = dmu_tx_get_txg(tx);
2022
2023 /*
2024 * Allocate next the block pointer unless we are already in error.
2025 */
2026 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
2027 blkptr_t *bp = &zilc->zc_next_blk;
2028 BP_ZERO(bp);
2029 error = lwb->lwb_error;
2030 if (error == 0) {
2031 /*
2032 * Allocation flexibility depends on LWB state:
2033 * if NEW: allow range allocation and larger sizes;
2034 * if OPENED: use fixed predetermined allocation size;
2035 * if CLOSED + Slim: allocate precisely for actual usage.
2036 */
2037 boolean_t flexible = (nlwb->lwb_state == LWB_STATE_NEW);
2038 if (flexible) {
2039 /* We need to prevent opening till we update lwb_sz. */
2040 mutex_enter(&nlwb->lwb_lock);
2041 flexible = (nlwb->lwb_state == LWB_STATE_NEW);
2042 if (!flexible)
2043 mutex_exit(&nlwb->lwb_lock); /* We lost. */
2044 }
2045 boolean_t closed_slim = (nlwb->lwb_state == LWB_STATE_CLOSED &&
2046 (lwb->lwb_flags & LWB_FLAG_SLIM));
2047
2048 uint64_t min_size, max_size;
2049 if (closed_slim) {
2050 /* This transition is racy, but only one way. */
2051 membar_consumer();
2052 min_size = max_size = P2ROUNDUP_TYPED(nlwb->lwb_nused,
2053 ZIL_MIN_BLKSZ, uint64_t);
2054 } else if (flexible) {
2055 min_size = nlwb->lwb_min_sz;
2056 max_size = nlwb->lwb_sz;
2057 } else {
2058 min_size = max_size = nlwb->lwb_sz;
2059 }
2060
2061 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp,
2062 min_size, max_size, &slog, flexible);
2063 if (error == 0) {
2064 if (closed_slim)
2065 ASSERT3U(BP_GET_LSIZE(bp), ==, max_size);
2066 else if (flexible)
2067 nlwb->lwb_sz = BP_GET_LSIZE(bp);
2068 else
2069 ASSERT3U(BP_GET_LSIZE(bp), ==, nlwb->lwb_sz);
2070 }
2071 if (flexible)
2072 mutex_exit(&nlwb->lwb_lock);
2073 }
2074 if (error == 0) {
2075 ASSERT3U(BP_GET_BIRTH(bp), ==, txg);
2076 BP_SET_CHECKSUM(bp, (nlwb->lwb_flags & LWB_FLAG_SLIM) ?
2077 ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2078 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
2079 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
2080 }
2081
2082 /*
2083 * Reduce TXG open time by incrementing inflight counter and committing
2084 * the transaciton. zil_sync() will wait for it to return to zero.
2085 */
2086 mutex_enter(&zilog->zl_lwb_io_lock);
2087 lwb->lwb_issued_txg = txg;
2088 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
2089 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
2090 mutex_exit(&zilog->zl_lwb_io_lock);
2091 dmu_tx_commit(tx);
2092
2093 spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
2094
2095 /*
2096 * We've completed all potentially blocking operations. Update the
2097 * nlwb and allow it proceed without possible lock order reversals.
2098 */
2099 mutex_enter(&zilog->zl_lock);
2100 zil_lwb_set_zio_dependency(zilog, lwb);
2101 lwb->lwb_state = LWB_STATE_ISSUED;
2102
2103 if (nlwb) {
2104 nlwb->lwb_blk = *bp;
2105 nlwb->lwb_error = error;
2106 if (slog)
2107 nlwb->lwb_flags |= LWB_FLAG_SLOG;
2108 nlwb->lwb_alloc_txg = txg;
2109 if (nlwb->lwb_state != LWB_STATE_READY)
2110 nlwb = NULL;
2111 }
2112 mutex_exit(&zilog->zl_lock);
2113
2114 if (lwb->lwb_flags & LWB_FLAG_SLOG) {
2115 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2116 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2117 lwb->lwb_nused);
2118 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2119 wsz);
2120 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2121 BP_GET_LSIZE(&lwb->lwb_blk));
2122 } else {
2123 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2124 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2125 lwb->lwb_nused);
2126 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2127 wsz);
2128 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2129 BP_GET_LSIZE(&lwb->lwb_blk));
2130 }
2131 lwb->lwb_issued_timestamp = gethrtime();
2132 if (lwb->lwb_child_zio)
2133 zio_nowait(lwb->lwb_child_zio);
2134 zio_nowait(lwb->lwb_write_zio);
2135 zio_nowait(lwb->lwb_root_zio);
2136
2137 /*
2138 * If nlwb was ready when we gave it the block pointer,
2139 * it is on us to issue it and possibly following ones.
2140 */
2141 lwb = nlwb;
2142 if (lwb)
2143 goto next_lwb;
2144
2145 return (0);
2146 }
2147
2148 /*
2149 * Maximum amount of data that can be put into single log block.
2150 */
2151 uint64_t
zil_max_log_data(zilog_t * zilog,size_t hdrsize)2152 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2153 {
2154 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2155 }
2156
2157 /*
2158 * Maximum amount of log space we agree to waste to reduce number of
2159 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2160 */
2161 static inline uint64_t
zil_max_waste_space(zilog_t * zilog)2162 zil_max_waste_space(zilog_t *zilog)
2163 {
2164 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2165 }
2166
2167 /*
2168 * Maximum amount of write data for WR_COPIED. For correctness, consumers
2169 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2170 * maximum sized log block, because each WR_COPIED record must fit in a
2171 * single log block. Below that it is a tradeoff of additional memory copy
2172 * and possibly worse log space efficiency vs additional range lock/unlock.
2173 */
2174 static uint_t zil_maxcopied = 7680;
2175
2176 /*
2177 * Largest write size to store the data directly into ZIL.
2178 */
2179 uint_t zfs_immediate_write_sz = 32768;
2180
2181 /*
2182 * When enabled and blocks go to normal vdev, treat special vdevs as SLOG,
2183 * writing data to ZIL (WR_COPIED/WR_NEED_COPY). Disabling this forces the
2184 * indirect writes (WR_INDIRECT) to preserve special vdev throughput and
2185 * endurance, likely at the cost of normal vdev latency.
2186 */
2187 int zil_special_is_slog = 1;
2188
2189 uint64_t
zil_max_copied_data(zilog_t * zilog)2190 zil_max_copied_data(zilog_t *zilog)
2191 {
2192 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2193 return (MIN(max_data, zil_maxcopied));
2194 }
2195
2196 /*
2197 * Determine the appropriate write state for ZIL transactions based on
2198 * pool configuration, data placement, write size, and logbias settings.
2199 */
2200 itx_wr_state_t
zil_write_state(zilog_t * zilog,uint64_t size,uint32_t blocksize,boolean_t o_direct,boolean_t commit)2201 zil_write_state(zilog_t *zilog, uint64_t size, uint32_t blocksize,
2202 boolean_t o_direct, boolean_t commit)
2203 {
2204 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT || o_direct)
2205 return (WR_INDIRECT);
2206
2207 /*
2208 * Don't use indirect for too small writes to reduce overhead.
2209 * Don't use indirect if written less than a half of a block if
2210 * we are going to commit it immediately, since next write might
2211 * rewrite the same block again, causing inflation. If commit
2212 * is not planned, then next writes might coalesce, and so the
2213 * indirect may be perfect.
2214 */
2215 boolean_t indirect = (size >= zfs_immediate_write_sz &&
2216 (size >= blocksize / 2 || !commit));
2217
2218 if (spa_has_slogs(zilog->zl_spa)) {
2219 /* Dedicated slogs: never use indirect */
2220 indirect = B_FALSE;
2221 } else if (spa_has_special(zilog->zl_spa)) {
2222 /* Special vdevs: only when beneficial */
2223 boolean_t on_special = (blocksize <=
2224 zilog->zl_os->os_zpl_special_smallblock);
2225 indirect &= (on_special || !zil_special_is_slog);
2226 }
2227
2228 if (indirect)
2229 return (WR_INDIRECT);
2230 else if (commit)
2231 return (WR_COPIED);
2232 else
2233 return (WR_NEED_COPY);
2234 }
2235
2236 static uint64_t
zil_itx_record_size(itx_t * itx)2237 zil_itx_record_size(itx_t *itx)
2238 {
2239 lr_t *lr = &itx->itx_lr;
2240
2241 if (lr->lrc_txtype == TX_COMMIT)
2242 return (0);
2243 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2244 return (lr->lrc_reclen);
2245 }
2246
2247 static uint64_t
zil_itx_data_size(itx_t * itx)2248 zil_itx_data_size(itx_t *itx)
2249 {
2250 lr_t *lr = &itx->itx_lr;
2251 lr_write_t *lrw = (lr_write_t *)lr;
2252
2253 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2254 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2255 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2256 uint64_t));
2257 }
2258 return (0);
2259 }
2260
2261 static uint64_t
zil_itx_full_size(itx_t * itx)2262 zil_itx_full_size(itx_t *itx)
2263 {
2264 lr_t *lr = &itx->itx_lr;
2265
2266 if (lr->lrc_txtype == TX_COMMIT)
2267 return (0);
2268 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2269 return (lr->lrc_reclen + zil_itx_data_size(itx));
2270 }
2271
2272 /*
2273 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2274 * split the itx as needed, but don't touch the actual transaction data.
2275 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2276 * to chain more lwbs.
2277 */
2278 static lwb_t *
zil_lwb_assign(zilog_t * zilog,lwb_t * lwb,itx_t * itx,list_t * ilwbs)2279 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2280 {
2281 itx_t *citx;
2282 lr_t *lr, *clr;
2283 lr_write_t *lrw;
2284 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2285
2286 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2287 ASSERT3P(lwb, !=, NULL);
2288
2289 zil_lwb_write_open(zilog, lwb);
2290
2291 lr = &itx->itx_lr;
2292 lrw = (lr_write_t *)lr;
2293
2294 /*
2295 * A commit itx doesn't represent any on-disk state; instead
2296 * it's simply used as a place holder on the commit list, and
2297 * provides a mechanism for attaching a "commit waiter" onto the
2298 * correct lwb (such that the waiter can be signalled upon
2299 * completion of that lwb). Thus, we don't process this itx's
2300 * log record if it's a commit itx (these itx's don't have log
2301 * records), and instead link the itx's waiter onto the lwb's
2302 * list of waiters.
2303 *
2304 * For more details, see the comment above zil_commit().
2305 */
2306 if (lr->lrc_txtype == TX_COMMIT) {
2307 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2308 list_insert_tail(&lwb->lwb_itxs, itx);
2309 return (lwb);
2310 }
2311
2312 reclen = lr->lrc_reclen;
2313 ASSERT3U(reclen, >=, sizeof (lr_t));
2314 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2315 dlen = zil_itx_data_size(itx);
2316
2317 cont:
2318 /*
2319 * If this record won't fit in the current log block, start a new one.
2320 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2321 */
2322 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2323 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2324 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2325 lwb_sp < zil_max_waste_space(zilog) &&
2326 (dlen % max_log_data == 0 ||
2327 lwb_sp < reclen + dlen % max_log_data))) {
2328 list_insert_tail(ilwbs, lwb);
2329 lwb = zil_lwb_write_close(zilog, lwb);
2330 if (lwb == NULL)
2331 return (NULL);
2332 zil_lwb_write_open(zilog, lwb);
2333 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2334 }
2335
2336 /*
2337 * There must be enough space in the log block to hold reclen.
2338 * For WR_COPIED, we need to fit the whole record in one block,
2339 * and reclen is the write record header size + the data size.
2340 * For WR_NEED_COPY, we can create multiple records, splitting
2341 * the data into multiple blocks, so we only need to fit one
2342 * word of data per block; in this case reclen is just the header
2343 * size (no data).
2344 */
2345 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2346
2347 dnow = MIN(dlen, lwb_sp - reclen);
2348 if (dlen > dnow) {
2349 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2350 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2351 citx = zil_itx_clone(itx);
2352 clr = &citx->itx_lr;
2353 lr_write_t *clrw = (lr_write_t *)clr;
2354 clrw->lr_length = dnow;
2355 lrw->lr_offset += dnow;
2356 lrw->lr_length -= dnow;
2357 zilog->zl_cur_left -= dnow;
2358 } else {
2359 citx = itx;
2360 clr = lr;
2361 }
2362
2363 /*
2364 * We're actually making an entry, so update lrc_seq to be the
2365 * log record sequence number. Note that this is generally not
2366 * equal to the itx sequence number because not all transactions
2367 * are synchronous, and sometimes spa_sync() gets there first.
2368 */
2369 clr->lrc_seq = ++zilog->zl_lr_seq;
2370
2371 lwb->lwb_nused += reclen + dnow;
2372 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2373 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2374
2375 zil_lwb_add_txg(lwb, lr->lrc_txg);
2376 list_insert_tail(&lwb->lwb_itxs, citx);
2377
2378 dlen -= dnow;
2379 if (dlen > 0)
2380 goto cont;
2381
2382 if (lr->lrc_txtype == TX_WRITE &&
2383 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2384 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2385
2386 return (lwb);
2387 }
2388
2389 static void zil_crash(zilog_t *zilog);
2390
2391 /*
2392 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2393 * Does not require locking.
2394 */
2395 static int
zil_lwb_commit(zilog_t * zilog,lwb_t * lwb,itx_t * itx)2396 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2397 {
2398 lr_t *lr, *lrb;
2399 lr_write_t *lrw, *lrwb;
2400 char *lr_buf;
2401 uint64_t dlen, reclen;
2402
2403 lr = &itx->itx_lr;
2404 lrw = (lr_write_t *)lr;
2405
2406 if (lr->lrc_txtype == TX_COMMIT)
2407 return (0);
2408
2409 reclen = lr->lrc_reclen;
2410 dlen = zil_itx_data_size(itx);
2411 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2412
2413 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2414 memcpy(lr_buf, lr, reclen);
2415 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
2416 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
2417
2418 ZIL_STAT_BUMP(zilog, zil_itx_count);
2419
2420 /*
2421 * If it's a write, fetch the data or get its blkptr as appropriate.
2422 */
2423 if (lr->lrc_txtype == TX_WRITE) {
2424 if (itx->itx_wr_state == WR_COPIED) {
2425 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2426 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2427 lrw->lr_length);
2428 } else {
2429 char *dbuf;
2430 int error;
2431
2432 if (itx->itx_wr_state == WR_NEED_COPY) {
2433 dbuf = lr_buf + reclen;
2434 lrb->lrc_reclen += dlen;
2435 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2436 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2437 dlen);
2438 } else {
2439 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2440 dbuf = NULL;
2441 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2442 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2443 lrw->lr_length);
2444 if (lwb->lwb_child_zio == NULL) {
2445 lwb->lwb_child_zio = zio_null(NULL,
2446 zilog->zl_spa, NULL, NULL, NULL,
2447 ZIO_FLAG_CANFAIL);
2448 }
2449 }
2450
2451 /*
2452 * The "lwb_child_zio" we pass in will become a child of
2453 * "lwb_write_zio", when one is created, so one will be
2454 * a parent of any zio's created by the "zl_get_data".
2455 * This way "lwb_write_zio" will first wait for children
2456 * block pointers before own writing, and then for their
2457 * writing completion before the vdev cache flushing.
2458 */
2459 error = zilog->zl_get_data(itx->itx_private,
2460 itx->itx_gen, lrwb, dbuf, lwb,
2461 lwb->lwb_child_zio);
2462 if (dbuf != NULL && error == 0) {
2463 /* Zero any padding bytes in the last block. */
2464 memset((char *)dbuf + lrwb->lr_length, 0,
2465 dlen - lrwb->lr_length);
2466 }
2467
2468 /*
2469 * Typically, the only return values we should see from
2470 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2471 * EALREADY. However, it is also possible to see other
2472 * error values such as ENOSPC or EINVAL from
2473 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2474 * ENXIO as well as a multitude of others from the
2475 * block layer through dmu_buf_hold() -> dbuf_read()
2476 * -> zio_wait(), as well as through dmu_read() ->
2477 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2478 * zio_wait(). When these errors happen, we can assume
2479 * that neither an immediate write nor an indirect
2480 * write occurred, so we need to fall back to
2481 * txg_wait_synced(). This is unusual, so we print to
2482 * dmesg whenever one of these errors occurs.
2483 */
2484 switch (error) {
2485 case 0:
2486 break;
2487 default:
2488 cmn_err(CE_WARN, "zil_lwb_commit() received "
2489 "unexpected error %d from ->zl_get_data()"
2490 ". Falling back to txg_wait_synced().",
2491 error);
2492 zfs_fallthrough;
2493 case EIO: {
2494 int error = txg_wait_synced_flags(
2495 zilog->zl_dmu_pool,
2496 lr->lrc_txg, TXG_WAIT_SUSPEND);
2497 if (error != 0) {
2498 ASSERT3U(error, ==, ESHUTDOWN);
2499 /*
2500 * zil_lwb_commit() is called from a
2501 * loop over a list of itxs at the
2502 * top of zil_lwb_write_issue(), which
2503 * itself is called from a loop over a
2504 * list of lwbs in various places.
2505 * zil_crash() will free those itxs
2506 * and sometimes the lwbs, so they
2507 * are invalid when zil_crash() returns.
2508 * Callers must pretty much abort
2509 * immediately.
2510 */
2511 zil_crash(zilog);
2512 return (error);
2513 }
2514 zfs_fallthrough;
2515 }
2516 case ENOENT:
2517 zfs_fallthrough;
2518 case EEXIST:
2519 zfs_fallthrough;
2520 case EALREADY:
2521 return (0);
2522 }
2523 }
2524 }
2525
2526 lwb->lwb_nfilled += reclen + dlen;
2527 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2528 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2529
2530 return (0);
2531 }
2532
2533 itx_t *
zil_itx_create(uint64_t txtype,size_t olrsize)2534 zil_itx_create(uint64_t txtype, size_t olrsize)
2535 {
2536 size_t itxsize, lrsize;
2537 itx_t *itx;
2538
2539 ASSERT3U(olrsize, >=, sizeof (lr_t));
2540 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2541 ASSERT3U(lrsize, >=, olrsize);
2542 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2543
2544 itx = zio_data_buf_alloc(itxsize);
2545 itx->itx_lr.lrc_txtype = txtype;
2546 itx->itx_lr.lrc_reclen = lrsize;
2547 itx->itx_lr.lrc_seq = 0; /* defensive */
2548 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2549 itx->itx_sync = B_TRUE; /* default is synchronous */
2550 itx->itx_callback = NULL;
2551 itx->itx_callback_data = NULL;
2552 itx->itx_size = itxsize;
2553
2554 return (itx);
2555 }
2556
2557 static itx_t *
zil_itx_clone(itx_t * oitx)2558 zil_itx_clone(itx_t *oitx)
2559 {
2560 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2561 ASSERT3U(oitx->itx_size, ==,
2562 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2563
2564 itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2565 memcpy(itx, oitx, oitx->itx_size);
2566 itx->itx_callback = NULL;
2567 itx->itx_callback_data = NULL;
2568 return (itx);
2569 }
2570
2571 void
zil_itx_destroy(itx_t * itx,int err)2572 zil_itx_destroy(itx_t *itx, int err)
2573 {
2574 ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2575 ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2576 itx->itx_size - offsetof(itx_t, itx_lr));
2577 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2578 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2579
2580 if (itx->itx_callback != NULL)
2581 itx->itx_callback(itx->itx_callback_data, err);
2582
2583 zio_data_buf_free(itx, itx->itx_size);
2584 }
2585
2586 /*
2587 * Free up the sync and async itxs. The itxs_t has already been detached
2588 * so no locks are needed.
2589 */
2590 static void
zil_itxg_clean(void * arg)2591 zil_itxg_clean(void *arg)
2592 {
2593 itx_t *itx;
2594 list_t *list;
2595 avl_tree_t *t;
2596 void *cookie;
2597 itxs_t *itxs = arg;
2598 itx_async_node_t *ian;
2599
2600 list = &itxs->i_sync_list;
2601 while ((itx = list_remove_head(list)) != NULL) {
2602 /*
2603 * In the general case, commit itxs will not be found
2604 * here, as they'll be committed to an lwb via
2605 * zil_lwb_assign(), and free'd in that function. Having
2606 * said that, it is still possible for commit itxs to be
2607 * found here, due to the following race:
2608 *
2609 * - a thread calls zil_commit() which assigns the
2610 * commit itx to a per-txg i_sync_list
2611 * - zil_itxg_clean() is called (e.g. via spa_sync())
2612 * while the waiter is still on the i_sync_list
2613 *
2614 * There's nothing to prevent syncing the txg while the
2615 * waiter is on the i_sync_list. This normally doesn't
2616 * happen because spa_sync() is slower than zil_commit(),
2617 * but if zil_commit() calls txg_wait_synced() (e.g.
2618 * because zil_create() or zil_commit_writer_stall() is
2619 * called) we will hit this case.
2620 */
2621 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2622 zil_commit_waiter_done(itx->itx_private, 0);
2623
2624 zil_itx_destroy(itx, 0);
2625 }
2626
2627 cookie = NULL;
2628 t = &itxs->i_async_tree;
2629 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2630 list = &ian->ia_list;
2631 while ((itx = list_remove_head(list)) != NULL) {
2632 /* commit itxs should never be on the async lists. */
2633 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2634 zil_itx_destroy(itx, 0);
2635 }
2636 list_destroy(list);
2637 kmem_free(ian, sizeof (itx_async_node_t));
2638 }
2639 avl_destroy(t);
2640
2641 kmem_free(itxs, sizeof (itxs_t));
2642 }
2643
2644 static int
zil_aitx_compare(const void * x1,const void * x2)2645 zil_aitx_compare(const void *x1, const void *x2)
2646 {
2647 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2648 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2649
2650 return (TREE_CMP(o1, o2));
2651 }
2652
2653 /*
2654 * Remove all async itx with the given oid.
2655 */
2656 void
zil_remove_async(zilog_t * zilog,uint64_t oid)2657 zil_remove_async(zilog_t *zilog, uint64_t oid)
2658 {
2659 uint64_t otxg, txg;
2660 itx_async_node_t *ian, ian_search;
2661 avl_tree_t *t;
2662 avl_index_t where;
2663 list_t clean_list;
2664 itx_t *itx;
2665
2666 ASSERT(oid != 0);
2667 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2668
2669 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2670 otxg = ZILTEST_TXG;
2671 else
2672 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2673
2674 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2675 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2676
2677 mutex_enter(&itxg->itxg_lock);
2678 if (itxg->itxg_txg != txg) {
2679 mutex_exit(&itxg->itxg_lock);
2680 continue;
2681 }
2682
2683 /*
2684 * Locate the object node and append its list.
2685 */
2686 t = &itxg->itxg_itxs->i_async_tree;
2687 ian_search.ia_foid = oid;
2688 ian = avl_find(t, &ian_search, &where);
2689 if (ian != NULL)
2690 list_move_tail(&clean_list, &ian->ia_list);
2691 mutex_exit(&itxg->itxg_lock);
2692 }
2693 while ((itx = list_remove_head(&clean_list)) != NULL) {
2694 /* commit itxs should never be on the async lists. */
2695 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2696 zil_itx_destroy(itx, 0);
2697 }
2698 list_destroy(&clean_list);
2699 }
2700
2701 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)2702 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2703 {
2704 uint64_t txg;
2705 itxg_t *itxg;
2706 itxs_t *itxs, *clean = NULL;
2707
2708 /*
2709 * Ensure the data of a renamed file is committed before the rename.
2710 */
2711 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2712 zil_async_to_sync(zilog, itx->itx_oid);
2713
2714 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2715 txg = ZILTEST_TXG;
2716 else
2717 txg = dmu_tx_get_txg(tx);
2718
2719 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2720 mutex_enter(&itxg->itxg_lock);
2721 itxs = itxg->itxg_itxs;
2722 if (itxg->itxg_txg != txg) {
2723 if (itxs != NULL) {
2724 /*
2725 * The zil_clean callback hasn't got around to cleaning
2726 * this itxg. Save the itxs for release below.
2727 * This should be rare.
2728 */
2729 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2730 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2731 clean = itxg->itxg_itxs;
2732 }
2733 itxg->itxg_txg = txg;
2734 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2735 KM_SLEEP);
2736
2737 list_create(&itxs->i_sync_list, sizeof (itx_t),
2738 offsetof(itx_t, itx_node));
2739 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2740 sizeof (itx_async_node_t),
2741 offsetof(itx_async_node_t, ia_node));
2742 }
2743 if (itx->itx_sync) {
2744 list_insert_tail(&itxs->i_sync_list, itx);
2745 } else {
2746 avl_tree_t *t = &itxs->i_async_tree;
2747 uint64_t foid =
2748 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2749 itx_async_node_t *ian;
2750 avl_index_t where;
2751
2752 ian = avl_find(t, &foid, &where);
2753 if (ian == NULL) {
2754 ian = kmem_alloc(sizeof (itx_async_node_t),
2755 KM_SLEEP);
2756 list_create(&ian->ia_list, sizeof (itx_t),
2757 offsetof(itx_t, itx_node));
2758 ian->ia_foid = foid;
2759 avl_insert(t, ian, where);
2760 }
2761 list_insert_tail(&ian->ia_list, itx);
2762 }
2763
2764 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2765
2766 /*
2767 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2768 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2769 * need to be careful to always dirty the ZIL using the "real"
2770 * TXG (not itxg_txg) even when the SPA is frozen.
2771 */
2772 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2773 mutex_exit(&itxg->itxg_lock);
2774
2775 /* Release the old itxs now we've dropped the lock */
2776 if (clean != NULL)
2777 zil_itxg_clean(clean);
2778 }
2779
2780 /*
2781 * Post-crash cleanup. This is called from zil_clean() because it needs to
2782 * do cleanup after every txg until the ZIL is restarted, and zilog_dirty()
2783 * can arrange that easily, unlike zil_sync() which is more complicated to
2784 * get a call to without actual dirty data.
2785 */
2786 static void
zil_crash_clean(zilog_t * zilog,uint64_t synced_txg)2787 zil_crash_clean(zilog_t *zilog, uint64_t synced_txg)
2788 {
2789 ASSERT(MUTEX_HELD(&zilog->zl_lock));
2790 ASSERT3U(zilog->zl_restart_txg, >, 0);
2791
2792 /* Clean up anything on the crash list from earlier txgs */
2793 lwb_t *lwb;
2794 while ((lwb = list_head(&zilog->zl_lwb_crash_list)) != NULL) {
2795 if (lwb->lwb_alloc_txg >= synced_txg ||
2796 lwb->lwb_max_txg >= synced_txg) {
2797 /*
2798 * This lwb was allocated or updated on this txg, or
2799 * in the future. We stop processing here, to avoid
2800 * the strange situation of freeing a ZIL block on
2801 * on the same or earlier txg than what it was
2802 * allocated for.
2803 *
2804 * We'll take care of it on the next txg.
2805 */
2806 break;
2807 }
2808
2809 /* This LWB is from the past, so we can clean it up now. */
2810 ASSERT(lwb->lwb_flags & LWB_FLAG_CRASHED);
2811 list_remove(&zilog->zl_lwb_crash_list, lwb);
2812 if (lwb->lwb_buf != NULL)
2813 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2814 if (!BP_IS_HOLE(&lwb->lwb_blk))
2815 /*
2816 * Free on the next txg, since zil_clean() is called
2817 * once synced_txg has already been completed.
2818 */
2819 zio_free(zilog->zl_spa, synced_txg+1, &lwb->lwb_blk);
2820 zil_free_lwb(zilog, lwb);
2821 }
2822
2823 if (zilog->zl_restart_txg > synced_txg) {
2824 /*
2825 * Not reached the restart txg yet, so mark the ZIL dirty for
2826 * the next txg and we'll consider it all again then.
2827 */
2828 zilog_dirty(zilog, synced_txg+1);
2829 return;
2830 }
2831
2832 /*
2833 * Reached the restart txg, so we can allow new calls to zil_commit().
2834 * All ZIL txgs have long past so there should be no IO waiting.
2835 */
2836 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2837 ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
2838
2839 zilog->zl_restart_txg = 0;
2840 }
2841
2842 /*
2843 * If there are any in-memory intent log transactions which have now been
2844 * synced then start up a taskq to free them. We should only do this after we
2845 * have written out the uberblocks (i.e. txg has been committed) so that
2846 * don't inadvertently clean out in-memory log records that would be required
2847 * by zil_commit().
2848 */
2849 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)2850 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2851 {
2852 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2853 itxs_t *clean_me;
2854
2855 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2856
2857 /* Do cleanup and restart after crash. */
2858 if (zilog->zl_restart_txg > 0) {
2859 mutex_enter(&zilog->zl_lock);
2860 /* Make sure we didn't lose a race. */
2861 if (zilog->zl_restart_txg > 0)
2862 zil_crash_clean(zilog, synced_txg);
2863 mutex_exit(&zilog->zl_lock);
2864 }
2865
2866 mutex_enter(&itxg->itxg_lock);
2867 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2868 mutex_exit(&itxg->itxg_lock);
2869 return;
2870 }
2871 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2872 ASSERT3U(itxg->itxg_txg, !=, 0);
2873 clean_me = itxg->itxg_itxs;
2874 itxg->itxg_itxs = NULL;
2875 itxg->itxg_txg = 0;
2876 mutex_exit(&itxg->itxg_lock);
2877 /*
2878 * Preferably start a task queue to free up the old itxs but
2879 * if taskq_dispatch can't allocate resources to do that then
2880 * free it in-line. This should be rare. Note, using TQ_SLEEP
2881 * created a bad performance problem.
2882 */
2883 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2884 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2885 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2886 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2887 if (id == TASKQID_INVALID)
2888 zil_itxg_clean(clean_me);
2889 }
2890
2891 /*
2892 * This function will traverse the queue of itxs that need to be
2893 * committed, and move them onto the ZIL's zl_itx_commit_list.
2894 */
2895 static uint64_t
zil_get_commit_list(zilog_t * zilog)2896 zil_get_commit_list(zilog_t *zilog)
2897 {
2898 uint64_t otxg, txg, wtxg = 0;
2899 list_t *commit_list = &zilog->zl_itx_commit_list;
2900
2901 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2902
2903 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2904 otxg = ZILTEST_TXG;
2905 else
2906 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2907
2908 /*
2909 * This is inherently racy, since there is nothing to prevent
2910 * the last synced txg from changing. That's okay since we'll
2911 * only commit things in the future.
2912 */
2913 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2914 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2915
2916 mutex_enter(&itxg->itxg_lock);
2917 if (itxg->itxg_txg != txg) {
2918 mutex_exit(&itxg->itxg_lock);
2919 continue;
2920 }
2921
2922 /*
2923 * If we're adding itx records to the zl_itx_commit_list,
2924 * then the zil better be dirty in this "txg". We can assert
2925 * that here since we're holding the itxg_lock which will
2926 * prevent spa_sync from cleaning it. Once we add the itxs
2927 * to the zl_itx_commit_list we must commit it to disk even
2928 * if it's unnecessary (i.e. the txg was synced).
2929 */
2930 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2931 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2932 list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2933 itx_t *itx = NULL;
2934 if (unlikely(zilog->zl_suspend > 0)) {
2935 /*
2936 * ZIL was just suspended, but we lost the race.
2937 * Allow all earlier itxs to be committed, but ask
2938 * caller to do txg_wait_synced(txg) for any new.
2939 */
2940 if (!list_is_empty(sync_list))
2941 wtxg = MAX(wtxg, txg);
2942 } else {
2943 itx = list_head(sync_list);
2944 list_move_tail(commit_list, sync_list);
2945 }
2946
2947 mutex_exit(&itxg->itxg_lock);
2948
2949 while (itx != NULL) {
2950 uint64_t s = zil_itx_full_size(itx);
2951 zilog->zl_cur_size += s;
2952 zilog->zl_cur_left += s;
2953 s = zil_itx_record_size(itx);
2954 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2955 itx = list_next(commit_list, itx);
2956 }
2957 }
2958 return (wtxg);
2959 }
2960
2961 /*
2962 * Move the async itxs for a specified object to commit into sync lists.
2963 */
2964 void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)2965 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2966 {
2967 uint64_t otxg, txg;
2968 itx_async_node_t *ian, ian_search;
2969 avl_tree_t *t;
2970 avl_index_t where;
2971
2972 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2973 otxg = ZILTEST_TXG;
2974 else
2975 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2976
2977 /*
2978 * This is inherently racy, since there is nothing to prevent
2979 * the last synced txg from changing.
2980 */
2981 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2982 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2983
2984 mutex_enter(&itxg->itxg_lock);
2985 if (itxg->itxg_txg != txg) {
2986 mutex_exit(&itxg->itxg_lock);
2987 continue;
2988 }
2989
2990 /*
2991 * If a foid is specified then find that node and append its
2992 * list. Otherwise walk the tree appending all the lists
2993 * to the sync list. We add to the end rather than the
2994 * beginning to ensure the create has happened.
2995 */
2996 t = &itxg->itxg_itxs->i_async_tree;
2997 if (foid != 0) {
2998 ian_search.ia_foid = foid;
2999 ian = avl_find(t, &ian_search, &where);
3000 if (ian != NULL) {
3001 list_move_tail(&itxg->itxg_itxs->i_sync_list,
3002 &ian->ia_list);
3003 }
3004 } else {
3005 void *cookie = NULL;
3006
3007 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
3008 list_move_tail(&itxg->itxg_itxs->i_sync_list,
3009 &ian->ia_list);
3010 list_destroy(&ian->ia_list);
3011 kmem_free(ian, sizeof (itx_async_node_t));
3012 }
3013 }
3014 mutex_exit(&itxg->itxg_lock);
3015 }
3016 }
3017
3018 /*
3019 * This function will prune commit itxs that are at the head of the
3020 * commit list (it won't prune past the first non-commit itx), and
3021 * either: a) attach them to the last lwb that's still pending
3022 * completion, or b) skip them altogether.
3023 *
3024 * This is used as a performance optimization to prevent commit itxs
3025 * from generating new lwbs when it's unnecessary to do so.
3026 */
3027 static void
zil_prune_commit_list(zilog_t * zilog)3028 zil_prune_commit_list(zilog_t *zilog)
3029 {
3030 itx_t *itx;
3031
3032 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3033
3034 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
3035 lr_t *lrc = &itx->itx_lr;
3036 if (lrc->lrc_txtype != TX_COMMIT)
3037 break;
3038
3039 mutex_enter(&zilog->zl_lock);
3040
3041 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
3042 if (last_lwb == NULL ||
3043 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
3044 /*
3045 * All of the itxs this waiter was waiting on
3046 * must have already completed (or there were
3047 * never any itx's for it to wait on), so it's
3048 * safe to skip this waiter and mark it done.
3049 */
3050 zil_commit_waiter_done(itx->itx_private, 0);
3051 } else {
3052 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
3053 }
3054
3055 mutex_exit(&zilog->zl_lock);
3056
3057 list_remove(&zilog->zl_itx_commit_list, itx);
3058 zil_itx_destroy(itx, 0);
3059 }
3060
3061 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
3062 }
3063
3064 static int
zil_commit_writer_stall(zilog_t * zilog)3065 zil_commit_writer_stall(zilog_t *zilog)
3066 {
3067 /*
3068 * When zio_alloc_zil() fails to allocate the next lwb block on
3069 * disk, we must call txg_wait_synced() to ensure all of the
3070 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
3071 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
3072 * to zil_process_commit_list()) will have to call zil_create(),
3073 * and start a new ZIL chain.
3074 *
3075 * Since zil_alloc_zil() failed, the lwb that was previously
3076 * issued does not have a pointer to the "next" lwb on disk.
3077 * Thus, if another ZIL writer thread was to allocate the "next"
3078 * on-disk lwb, that block could be leaked in the event of a
3079 * crash (because the previous lwb on-disk would not point to
3080 * it).
3081 *
3082 * We must hold the zilog's zl_issuer_lock while we do this, to
3083 * ensure no new threads enter zil_process_commit_list() until
3084 * all lwb's in the zl_lwb_list have been synced and freed
3085 * (which is achieved via the txg_wait_synced() call).
3086 */
3087 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3088 ZIL_STAT_BUMP(zilog, zil_commit_stall_count);
3089
3090 int err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
3091 TXG_WAIT_SUSPEND);
3092 if (err != 0) {
3093 ASSERT3U(err, ==, ESHUTDOWN);
3094 zil_crash(zilog);
3095 }
3096
3097 /*
3098 * Either zil_sync() has been called to wait for and clean up any
3099 * in-flight LWBs, or zil_crash() has emptied out the list and arranged
3100 * for them to be cleaned up later.
3101 */
3102 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3103
3104 return (err);
3105 }
3106
3107 static void
zil_burst_done(zilog_t * zilog)3108 zil_burst_done(zilog_t *zilog)
3109 {
3110 if (!list_is_empty(&zilog->zl_itx_commit_list) ||
3111 zilog->zl_cur_size == 0)
3112 return;
3113
3114 if (zilog->zl_parallel)
3115 zilog->zl_parallel--;
3116
3117 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
3118 zilog->zl_prev_rotor = r;
3119 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
3120 &zilog->zl_prev_min[r]);
3121
3122 zilog->zl_cur_size = 0;
3123 zilog->zl_cur_max = 0;
3124 zilog->zl_cur_left = 0;
3125 }
3126
3127 /*
3128 * This function will traverse the commit list, creating new lwbs as
3129 * needed, and committing the itxs from the commit list to these newly
3130 * created lwbs. Additionally, as a new lwb is created, the previous
3131 * lwb will be issued to the zio layer to be written to disk.
3132 */
3133 static void
zil_process_commit_list(zilog_t * zilog,zil_commit_waiter_t * zcw,list_t * ilwbs)3134 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
3135 {
3136 spa_t *spa = zilog->zl_spa;
3137 list_t nolwb_itxs;
3138 list_t nolwb_waiters;
3139 lwb_t *lwb, *plwb;
3140 itx_t *itx;
3141
3142 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
3143
3144 lwb = list_tail(&zilog->zl_lwb_list);
3145 if (lwb == NULL) {
3146 /*
3147 * Return if there's nothing to commit before we dirty the fs.
3148 */
3149 if (list_is_empty(&zilog->zl_itx_commit_list))
3150 return;
3151
3152 lwb = zil_create(zilog);
3153 } else {
3154 /*
3155 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
3156 * have already been created (zl_lwb_list not empty).
3157 */
3158 zil_commit_activate_saxattr_feature(zilog);
3159 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3160 lwb->lwb_state == LWB_STATE_OPENED);
3161
3162 /*
3163 * If the lwb is still opened, it means the workload is really
3164 * multi-threaded and we won the chance of write aggregation.
3165 * If it is not opened yet, but previous lwb is still not
3166 * flushed, it still means the workload is multi-threaded, but
3167 * there was too much time between the commits to aggregate, so
3168 * we try aggregation next times, but without too much hopes.
3169 */
3170 if (lwb->lwb_state == LWB_STATE_OPENED) {
3171 zilog->zl_parallel = ZIL_BURSTS;
3172 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
3173 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
3174 zilog->zl_parallel = MAX(zilog->zl_parallel,
3175 ZIL_BURSTS / 2);
3176 }
3177 }
3178
3179 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3180 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
3181 offsetof(zil_commit_waiter_t, zcw_node));
3182
3183 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
3184 lr_t *lrc = &itx->itx_lr;
3185 uint64_t txg = lrc->lrc_txg;
3186
3187 ASSERT3U(txg, !=, 0);
3188
3189 if (lrc->lrc_txtype == TX_COMMIT) {
3190 DTRACE_PROBE2(zil__process__commit__itx,
3191 zilog_t *, zilog, itx_t *, itx);
3192 } else {
3193 DTRACE_PROBE2(zil__process__normal__itx,
3194 zilog_t *, zilog, itx_t *, itx);
3195 }
3196
3197 boolean_t synced = txg <= spa_last_synced_txg(spa);
3198 boolean_t frozen = txg > spa_freeze_txg(spa);
3199
3200 /*
3201 * If the txg of this itx has already been synced out, then
3202 * we don't need to commit this itx to an lwb. This is
3203 * because the data of this itx will have already been
3204 * written to the main pool. This is inherently racy, and
3205 * it's still ok to commit an itx whose txg has already
3206 * been synced; this will result in a write that's
3207 * unnecessary, but will do no harm.
3208 *
3209 * With that said, we always want to commit TX_COMMIT itxs
3210 * to an lwb, regardless of whether or not that itx's txg
3211 * has been synced out. We do this to ensure any OPENED lwb
3212 * will always have at least one zil_commit_waiter_t linked
3213 * to the lwb.
3214 *
3215 * As a counter-example, if we skipped TX_COMMIT itx's
3216 * whose txg had already been synced, the following
3217 * situation could occur if we happened to be racing with
3218 * spa_sync:
3219 *
3220 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
3221 * itx's txg is 10 and the last synced txg is 9.
3222 * 2. spa_sync finishes syncing out txg 10.
3223 * 3. We move to the next itx in the list, it's a TX_COMMIT
3224 * whose txg is 10, so we skip it rather than committing
3225 * it to the lwb used in (1).
3226 *
3227 * If the itx that is skipped in (3) is the last TX_COMMIT
3228 * itx in the commit list, than it's possible for the lwb
3229 * used in (1) to remain in the OPENED state indefinitely.
3230 *
3231 * To prevent the above scenario from occurring, ensuring
3232 * that once an lwb is OPENED it will transition to ISSUED
3233 * and eventually DONE, we always commit TX_COMMIT itx's to
3234 * an lwb here, even if that itx's txg has already been
3235 * synced.
3236 *
3237 * Finally, if the pool is frozen, we _always_ commit the
3238 * itx. The point of freezing the pool is to prevent data
3239 * from being written to the main pool via spa_sync, and
3240 * instead rely solely on the ZIL to persistently store the
3241 * data; i.e. when the pool is frozen, the last synced txg
3242 * value can't be trusted.
3243 */
3244 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
3245 if (lwb != NULL) {
3246 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
3247 if (lwb == NULL) {
3248 list_insert_tail(&nolwb_itxs, itx);
3249 } else if ((zcw->zcw_lwb != NULL &&
3250 zcw->zcw_lwb != lwb) || zcw->zcw_done) {
3251 /*
3252 * Our lwb is done, leave the rest of
3253 * itx list to somebody else who care.
3254 */
3255 zilog->zl_parallel = ZIL_BURSTS;
3256 zilog->zl_cur_left -=
3257 zil_itx_full_size(itx);
3258 break;
3259 }
3260 } else {
3261 if (lrc->lrc_txtype == TX_COMMIT) {
3262 zil_commit_waiter_link_nolwb(
3263 itx->itx_private, &nolwb_waiters);
3264 }
3265 list_insert_tail(&nolwb_itxs, itx);
3266 }
3267 zilog->zl_cur_left -= zil_itx_full_size(itx);
3268 } else {
3269 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
3270 zilog->zl_cur_left -= zil_itx_full_size(itx);
3271 zil_itx_destroy(itx, 0);
3272 }
3273 }
3274
3275 if (lwb == NULL) {
3276 /*
3277 * This indicates zio_alloc_zil() failed to allocate the
3278 * "next" lwb on-disk. When this happens, we must stall
3279 * the ZIL write pipeline; see the comment within
3280 * zil_commit_writer_stall() for more details.
3281 *
3282 * ESHUTDOWN has to be handled carefully here. If we get it,
3283 * then the pool suspended and zil_crash() was called, so we
3284 * need to stop trying and just get an error back to the
3285 * callers.
3286 */
3287 int err = 0;
3288 while ((lwb = list_remove_head(ilwbs)) != NULL) {
3289 if (err == 0)
3290 err = zil_lwb_write_issue(zilog, lwb);
3291 }
3292 if (err != ESHUTDOWN)
3293 err = zil_commit_writer_stall(zilog);
3294 if (err == ESHUTDOWN)
3295 err = SET_ERROR(EIO);
3296
3297 /*
3298 * Additionally, we have to signal and mark the "nolwb"
3299 * waiters as "done" here, since without an lwb, we
3300 * can't do this via zil_lwb_flush_vdevs_done() like
3301 * normal.
3302 */
3303 zil_commit_waiter_t *zcw;
3304 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3305 zil_commit_waiter_done(zcw, err);
3306
3307 /*
3308 * And finally, we have to destroy the itx's that
3309 * couldn't be committed to an lwb; this will also call
3310 * the itx's callback if one exists for the itx.
3311 */
3312 while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3313 zil_itx_destroy(itx, err);
3314 } else {
3315 ASSERT(list_is_empty(&nolwb_waiters));
3316 ASSERT3P(lwb, !=, NULL);
3317 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3318 lwb->lwb_state == LWB_STATE_OPENED);
3319
3320 /*
3321 * At this point, the ZIL block pointed at by the "lwb"
3322 * variable is in "new" or "opened" state.
3323 *
3324 * If it's "new", then no itxs have been committed to it, so
3325 * there's no point in issuing its zio (i.e. it's "empty").
3326 *
3327 * If it's "opened", then it contains one or more itxs that
3328 * eventually need to be committed to stable storage. In
3329 * this case we intentionally do not issue the lwb's zio
3330 * to disk yet, and instead rely on one of the following
3331 * two mechanisms for issuing the zio:
3332 *
3333 * 1. Ideally, there will be more ZIL activity occurring on
3334 * the system, such that this function will be immediately
3335 * called again by different thread and this lwb will be
3336 * closed by zil_lwb_assign(). This way, the lwb will be
3337 * "full" when it is issued to disk, and we'll make use of
3338 * the lwb's size the best we can.
3339 *
3340 * 2. If there isn't sufficient ZIL activity occurring on
3341 * the system, zil_commit_waiter() will close it and issue
3342 * the zio. If this occurs, the lwb is not guaranteed
3343 * to be "full" by the time its zio is issued, and means
3344 * the size of the lwb was "too large" given the amount
3345 * of ZIL activity occurring on the system at that time.
3346 *
3347 * We do this for a couple of reasons:
3348 *
3349 * 1. To try and reduce the number of IOPs needed to
3350 * write the same number of itxs. If an lwb has space
3351 * available in its buffer for more itxs, and more itxs
3352 * will be committed relatively soon (relative to the
3353 * latency of performing a write), then it's beneficial
3354 * to wait for these "next" itxs. This way, more itxs
3355 * can be committed to stable storage with fewer writes.
3356 *
3357 * 2. To try and use the largest lwb block size that the
3358 * incoming rate of itxs can support. Again, this is to
3359 * try and pack as many itxs into as few lwbs as
3360 * possible, without significantly impacting the latency
3361 * of each individual itx.
3362 */
3363 if (lwb->lwb_state == LWB_STATE_OPENED &&
3364 (!zilog->zl_parallel || zilog->zl_suspend > 0)) {
3365 zil_burst_done(zilog);
3366 list_insert_tail(ilwbs, lwb);
3367 lwb = zil_lwb_write_close(zilog, lwb);
3368 if (lwb == NULL) {
3369 int err = 0;
3370 while ((lwb =
3371 list_remove_head(ilwbs)) != NULL) {
3372 if (err == 0)
3373 err = zil_lwb_write_issue(
3374 zilog, lwb);
3375 }
3376 if (err != ESHUTDOWN)
3377 (void) zil_commit_writer_stall(zilog);
3378 }
3379 }
3380 }
3381 }
3382
3383 /*
3384 * This function is responsible for ensuring the passed in commit waiter
3385 * (and associated commit itx) is committed to an lwb. If the waiter is
3386 * not already committed to an lwb, all itxs in the zilog's queue of
3387 * itxs will be processed. The assumption is the passed in waiter's
3388 * commit itx will found in the queue just like the other non-commit
3389 * itxs, such that when the entire queue is processed, the waiter will
3390 * have been committed to an lwb.
3391 *
3392 * The lwb associated with the passed in waiter is not guaranteed to
3393 * have been issued by the time this function completes. If the lwb is
3394 * not issued, we rely on future calls to zil_commit_writer() to issue
3395 * the lwb, or the timeout mechanism found in zil_commit_waiter().
3396 */
3397 static uint64_t
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)3398 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3399 {
3400 list_t ilwbs;
3401 lwb_t *lwb;
3402 uint64_t wtxg = 0;
3403
3404 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3405 ASSERT(spa_writeable(zilog->zl_spa));
3406
3407 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3408 mutex_enter(&zilog->zl_issuer_lock);
3409
3410 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3411 /*
3412 * It's possible that, while we were waiting to acquire
3413 * the "zl_issuer_lock", another thread committed this
3414 * waiter to an lwb. If that occurs, we bail out early,
3415 * without processing any of the zilog's queue of itxs.
3416 *
3417 * On certain workloads and system configurations, the
3418 * "zl_issuer_lock" can become highly contended. In an
3419 * attempt to reduce this contention, we immediately drop
3420 * the lock if the waiter has already been processed.
3421 *
3422 * We've measured this optimization to reduce CPU spent
3423 * contending on this lock by up to 5%, using a system
3424 * with 32 CPUs, low latency storage (~50 usec writes),
3425 * and 1024 threads performing sync writes.
3426 */
3427 goto out;
3428 }
3429
3430 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3431
3432 wtxg = zil_get_commit_list(zilog);
3433 zil_prune_commit_list(zilog);
3434 zil_process_commit_list(zilog, zcw, &ilwbs);
3435
3436 /*
3437 * If the ZIL failed somewhere inside zil_process_commit_list(), it's
3438 * will be because a fallback to txg_wait_sync_flags() happened at some
3439 * point (eg zil_commit_writer_stall()). All cases should issue and
3440 * empty ilwbs, so there will be nothing to in the issue loop below.
3441 * That's why we don't have to plumb the error value back from
3442 * zil_process_commit_list(), and don't have to skip it.
3443 */
3444 IMPLY(zilog->zl_restart_txg > 0, list_is_empty(&ilwbs));
3445
3446 out:
3447 mutex_exit(&zilog->zl_issuer_lock);
3448 int err = 0;
3449 while ((lwb = list_remove_head(&ilwbs)) != NULL) {
3450 if (err == 0)
3451 err = zil_lwb_write_issue(zilog, lwb);
3452 }
3453 list_destroy(&ilwbs);
3454 return (wtxg);
3455 }
3456
3457 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)3458 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3459 {
3460 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3461 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3462 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3463
3464 lwb_t *lwb = zcw->zcw_lwb;
3465 ASSERT3P(lwb, !=, NULL);
3466 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3467
3468 /*
3469 * If the lwb has already been issued by another thread, we can
3470 * immediately return since there's no work to be done (the
3471 * point of this function is to issue the lwb). Additionally, we
3472 * do this prior to acquiring the zl_issuer_lock, to avoid
3473 * acquiring it when it's not necessary to do so.
3474 */
3475 if (lwb->lwb_state != LWB_STATE_OPENED)
3476 return;
3477
3478 /*
3479 * In order to call zil_lwb_write_close() we must hold the
3480 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3481 * since we're already holding the commit waiter's "zcw_lock",
3482 * and those two locks are acquired in the opposite order
3483 * elsewhere.
3484 */
3485 mutex_exit(&zcw->zcw_lock);
3486 mutex_enter(&zilog->zl_issuer_lock);
3487 mutex_enter(&zcw->zcw_lock);
3488
3489 /*
3490 * Since we just dropped and re-acquired the commit waiter's
3491 * lock, we have to re-check to see if the waiter was marked
3492 * "done" during that process. If the waiter was marked "done",
3493 * the "lwb" pointer is no longer valid (it can be free'd after
3494 * the waiter is marked "done"), so without this check we could
3495 * wind up with a use-after-free error below.
3496 */
3497 if (zcw->zcw_done) {
3498 mutex_exit(&zilog->zl_issuer_lock);
3499 return;
3500 }
3501
3502 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3503
3504 /*
3505 * We've already checked this above, but since we hadn't acquired
3506 * the zilog's zl_issuer_lock, we have to perform this check a
3507 * second time while holding the lock.
3508 *
3509 * We don't need to hold the zl_lock since the lwb cannot transition
3510 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3511 * _can_ transition from CLOSED to DONE, but it's OK to race with
3512 * that transition since we treat the lwb the same, whether it's in
3513 * the CLOSED, ISSUED or DONE states.
3514 *
3515 * The important thing, is we treat the lwb differently depending on
3516 * if it's OPENED or CLOSED, and block any other threads that might
3517 * attempt to close/issue this lwb. For that reason we hold the
3518 * zl_issuer_lock when checking the lwb_state; we must not call
3519 * zil_lwb_write_close() if the lwb had already been closed/issued.
3520 *
3521 * See the comment above the lwb_state_t structure definition for
3522 * more details on the lwb states, and locking requirements.
3523 */
3524 if (lwb->lwb_state != LWB_STATE_OPENED) {
3525 mutex_exit(&zilog->zl_issuer_lock);
3526 return;
3527 }
3528
3529 /*
3530 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3531 * is still open. But we have to drop it to avoid a deadlock in case
3532 * callback of zio issued by zil_lwb_write_issue() try to get it,
3533 * while zil_lwb_write_issue() is blocked on attempt to issue next
3534 * lwb it found in LWB_STATE_READY state.
3535 */
3536 mutex_exit(&zcw->zcw_lock);
3537
3538 /*
3539 * As described in the comments above zil_commit_waiter() and
3540 * zil_process_commit_list(), we need to issue this lwb's zio
3541 * since we've reached the commit waiter's timeout and it still
3542 * hasn't been issued.
3543 */
3544 zil_burst_done(zilog);
3545 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb);
3546
3547 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3548
3549 if (nlwb == NULL) {
3550 /*
3551 * When zil_lwb_write_close() returns NULL, this
3552 * indicates zio_alloc_zil() failed to allocate the
3553 * "next" lwb on-disk. When this occurs, the ZIL write
3554 * pipeline must be stalled; see the comment within the
3555 * zil_commit_writer_stall() function for more details.
3556 */
3557 zil_lwb_write_issue(zilog, lwb);
3558 zil_commit_writer_stall(zilog);
3559 mutex_exit(&zilog->zl_issuer_lock);
3560 } else {
3561 mutex_exit(&zilog->zl_issuer_lock);
3562 zil_lwb_write_issue(zilog, lwb);
3563 }
3564 mutex_enter(&zcw->zcw_lock);
3565 }
3566
3567 /*
3568 * This function is responsible for performing the following two tasks:
3569 *
3570 * 1. its primary responsibility is to block until the given "commit
3571 * waiter" is considered "done".
3572 *
3573 * 2. its secondary responsibility is to issue the zio for the lwb that
3574 * the given "commit waiter" is waiting on, if this function has
3575 * waited "long enough" and the lwb is still in the "open" state.
3576 *
3577 * Given a sufficient amount of itxs being generated and written using
3578 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3579 * function. If this does not occur, this secondary responsibility will
3580 * ensure the lwb is issued even if there is not other synchronous
3581 * activity on the system.
3582 *
3583 * For more details, see zil_process_commit_list(); more specifically,
3584 * the comment at the bottom of that function.
3585 */
3586 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)3587 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3588 {
3589 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3590 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3591 ASSERT(spa_writeable(zilog->zl_spa));
3592
3593 mutex_enter(&zcw->zcw_lock);
3594
3595 /*
3596 * The timeout is scaled based on the lwb latency to avoid
3597 * significantly impacting the latency of each individual itx.
3598 * For more details, see the comment at the bottom of the
3599 * zil_process_commit_list() function.
3600 */
3601 int pct = MAX(zfs_commit_timeout_pct, 1);
3602 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3603 hrtime_t wakeup = gethrtime() + sleep;
3604 boolean_t timedout = B_FALSE;
3605
3606 while (!zcw->zcw_done) {
3607 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3608
3609 lwb_t *lwb = zcw->zcw_lwb;
3610
3611 /*
3612 * Usually, the waiter will have a non-NULL lwb field here,
3613 * but it's possible for it to be NULL as a result of
3614 * zil_commit() racing with spa_sync().
3615 *
3616 * When zil_clean() is called, it's possible for the itxg
3617 * list (which may be cleaned via a taskq) to contain
3618 * commit itxs. When this occurs, the commit waiters linked
3619 * off of these commit itxs will not be committed to an
3620 * lwb. Additionally, these commit waiters will not be
3621 * marked done until zil_commit_waiter_done() is called via
3622 * zil_itxg_clean().
3623 *
3624 * Thus, it's possible for this commit waiter (i.e. the
3625 * "zcw" variable) to be found in this "in between" state;
3626 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3627 * been skipped, so it's "zcw_done" field is still B_FALSE.
3628 */
3629 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3630
3631 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3632 ASSERT3B(timedout, ==, B_FALSE);
3633
3634 /*
3635 * If the lwb hasn't been issued yet, then we
3636 * need to wait with a timeout, in case this
3637 * function needs to issue the lwb after the
3638 * timeout is reached; responsibility (2) from
3639 * the comment above this function.
3640 */
3641 int rc = cv_timedwait_hires(&zcw->zcw_cv,
3642 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3643 CALLOUT_FLAG_ABSOLUTE);
3644
3645 if (rc != -1 || zcw->zcw_done)
3646 continue;
3647
3648 timedout = B_TRUE;
3649 zil_commit_waiter_timeout(zilog, zcw);
3650
3651 if (!zcw->zcw_done) {
3652 /*
3653 * If the commit waiter has already been
3654 * marked "done", it's possible for the
3655 * waiter's lwb structure to have already
3656 * been freed. Thus, we can only reliably
3657 * make these assertions if the waiter
3658 * isn't done.
3659 */
3660 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3661 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3662 }
3663 } else {
3664 /*
3665 * If the lwb isn't open, then it must have already
3666 * been issued. In that case, there's no need to
3667 * use a timeout when waiting for the lwb to
3668 * complete.
3669 *
3670 * Additionally, if the lwb is NULL, the waiter
3671 * will soon be signaled and marked done via
3672 * zil_clean() and zil_itxg_clean(), so no timeout
3673 * is required.
3674 */
3675
3676 IMPLY(lwb != NULL,
3677 lwb->lwb_state == LWB_STATE_CLOSED ||
3678 lwb->lwb_state == LWB_STATE_READY ||
3679 lwb->lwb_state == LWB_STATE_ISSUED ||
3680 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3681 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3682 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3683 }
3684 }
3685
3686 mutex_exit(&zcw->zcw_lock);
3687 }
3688
3689 static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)3690 zil_alloc_commit_waiter(void)
3691 {
3692 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3693
3694 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3695 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3696 list_link_init(&zcw->zcw_node);
3697 zcw->zcw_lwb = NULL;
3698 zcw->zcw_done = B_FALSE;
3699 zcw->zcw_error = 0;
3700
3701 return (zcw);
3702 }
3703
3704 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)3705 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3706 {
3707 ASSERT(!list_link_active(&zcw->zcw_node));
3708 ASSERT0P(zcw->zcw_lwb);
3709 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3710 mutex_destroy(&zcw->zcw_lock);
3711 cv_destroy(&zcw->zcw_cv);
3712 kmem_cache_free(zil_zcw_cache, zcw);
3713 }
3714
3715 /*
3716 * This function is used to create a TX_COMMIT itx and assign it. This
3717 * way, it will be linked into the ZIL's list of synchronous itxs, and
3718 * then later committed to an lwb (or skipped) when
3719 * zil_process_commit_list() is called.
3720 */
3721 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)3722 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3723 {
3724 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3725
3726 /*
3727 * Since we are not going to create any new dirty data, and we
3728 * can even help with clearing the existing dirty data, we
3729 * should not be subject to the dirty data based delays. We
3730 * use DMU_TX_NOTHROTTLE to bypass the delay mechanism.
3731 */
3732 VERIFY0(dmu_tx_assign(tx,
3733 DMU_TX_WAIT | DMU_TX_NOTHROTTLE | DMU_TX_SUSPEND));
3734
3735 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3736 itx->itx_sync = B_TRUE;
3737 itx->itx_private = zcw;
3738
3739 zil_itx_assign(zilog, itx, tx);
3740
3741 dmu_tx_commit(tx);
3742 }
3743
3744 /*
3745 * Crash the ZIL. This is something like suspending, but abandons the ZIL
3746 * without further IO until the wanted txg completes. No effort is made to
3747 * close the on-disk chain or do any other on-disk work, as the pool may
3748 * have suspended. zil_sync() will handle cleanup as normal and restart the
3749 * ZIL once enough txgs have passed.
3750 */
3751 static void
zil_crash(zilog_t * zilog)3752 zil_crash(zilog_t *zilog)
3753 {
3754 mutex_enter(&zilog->zl_lock);
3755
3756 uint64_t txg = spa_syncing_txg(zilog->zl_spa);
3757 uint64_t restart_txg =
3758 spa_syncing_txg(zilog->zl_spa) + TXG_CONCURRENT_STATES;
3759
3760 if (zilog->zl_restart_txg > 0) {
3761 /*
3762 * If the ZIL is already crashed, it's almost certainly because
3763 * we lost a race involving multiple callers from
3764 * zil_commit_impl().
3765 */
3766
3767 /*
3768 * This sanity check is to support my understanding that in the
3769 * event of multiple callers to zil_crash(), only one of them
3770 * can possibly be in the codepath to issue lwbs; the rest
3771 * should be calling from zil_commit_impl() after their waiters
3772 * have completed. As I understand it, a second thread trying
3773 * to issue will eventually wait on zl_issuer_lock, and then
3774 * have no work to do and leave.
3775 *
3776 * If more lwbs had been created an issued between zil_crash()
3777 * calls, then we probably just need to take those too, add
3778 * them to the crash list and clean them up, but it complicates
3779 * this function and I don't think it can happend.
3780 */
3781 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3782
3783 mutex_exit(&zilog->zl_lock);
3784 return;
3785 }
3786
3787 zilog->zl_restart_txg = restart_txg;
3788
3789 /*
3790 * Capture any live LWBs. Depending on the state of the pool they may
3791 * represent in-flight IO that won't return for some time, and we want
3792 * to make sure they don't get in the way of normal ZIL operation.
3793 */
3794 ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
3795 list_move_tail(&zilog->zl_lwb_crash_list, &zilog->zl_lwb_list);
3796
3797 /*
3798 * Run through the LWB list; erroring all itxes and signalling error
3799 * to all waiters.
3800 */
3801 for (lwb_t *lwb = list_head(&zilog->zl_lwb_crash_list); lwb != NULL;
3802 lwb = list_next(&zilog->zl_lwb_crash_list, lwb)) {
3803 ASSERT(!(lwb->lwb_flags & LWB_FLAG_CRASHED));
3804 lwb->lwb_flags |= LWB_FLAG_CRASHED;
3805
3806 itx_t *itx;
3807 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
3808 zil_itx_destroy(itx, EIO);
3809
3810 zil_commit_waiter_t *zcw;
3811 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
3812 mutex_enter(&zcw->zcw_lock);
3813 zcw->zcw_lwb = NULL;
3814 zcw->zcw_error = EIO;
3815 zcw->zcw_done = B_TRUE;
3816 cv_broadcast(&zcw->zcw_cv);
3817 mutex_exit(&zcw->zcw_lock);
3818 }
3819 }
3820
3821 /*
3822 * Zero the ZIL header bp after the ZIL restarts. We'll free it in
3823 * zil_clean() when we clean up the lwbs.
3824 */
3825 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3826 BP_ZERO(&zh->zh_log);
3827
3828 /*
3829 * Mark this ZIL dirty on the next txg, so that zil_clean() will be
3830 * called for cleanup.
3831 */
3832 zilog_dirty(zilog, txg+1);
3833
3834 mutex_exit(&zilog->zl_lock);
3835 }
3836
3837 /*
3838 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3839 *
3840 * When writing ZIL transactions to the on-disk representation of the
3841 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3842 * itxs can be committed to a single lwb. Once a lwb is written and
3843 * committed to stable storage (i.e. the lwb is written, and vdevs have
3844 * been flushed), each itx that was committed to that lwb is also
3845 * considered to be committed to stable storage.
3846 *
3847 * When an itx is committed to an lwb, the log record (lr_t) contained
3848 * by the itx is copied into the lwb's zio buffer, and once this buffer
3849 * is written to disk, it becomes an on-disk ZIL block.
3850 *
3851 * As itxs are generated, they're inserted into the ZIL's queue of
3852 * uncommitted itxs. The semantics of zil_commit() are such that it will
3853 * block until all itxs that were in the queue when it was called, are
3854 * committed to stable storage.
3855 *
3856 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3857 * itxs, for all objects in the dataset, will be committed to stable
3858 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3859 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3860 * that correspond to the foid passed in, will be committed to stable
3861 * storage prior to zil_commit() returning.
3862 *
3863 * Generally speaking, when zil_commit() is called, the consumer doesn't
3864 * actually care about _all_ of the uncommitted itxs. Instead, they're
3865 * simply trying to waiting for a specific itx to be committed to disk,
3866 * but the interface(s) for interacting with the ZIL don't allow such
3867 * fine-grained communication. A better interface would allow a consumer
3868 * to create and assign an itx, and then pass a reference to this itx to
3869 * zil_commit(); such that zil_commit() would return as soon as that
3870 * specific itx was committed to disk (instead of waiting for _all_
3871 * itxs to be committed).
3872 *
3873 * When a thread calls zil_commit() a special "commit itx" will be
3874 * generated, along with a corresponding "waiter" for this commit itx.
3875 * zil_commit() will wait on this waiter's CV, such that when the waiter
3876 * is marked done, and signaled, zil_commit() will return.
3877 *
3878 * This commit itx is inserted into the queue of uncommitted itxs. This
3879 * provides an easy mechanism for determining which itxs were in the
3880 * queue prior to zil_commit() having been called, and which itxs were
3881 * added after zil_commit() was called.
3882 *
3883 * The commit itx is special; it doesn't have any on-disk representation.
3884 * When a commit itx is "committed" to an lwb, the waiter associated
3885 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3886 * completes, each waiter on the lwb's list is marked done and signaled
3887 * -- allowing the thread waiting on the waiter to return from zil_commit().
3888 *
3889 * It's important to point out a few critical factors that allow us
3890 * to make use of the commit itxs, commit waiters, per-lwb lists of
3891 * commit waiters, and zio completion callbacks like we're doing:
3892 *
3893 * 1. The list of waiters for each lwb is traversed, and each commit
3894 * waiter is marked "done" and signaled, in the zio completion
3895 * callback of the lwb's zio[*].
3896 *
3897 * * Actually, the waiters are signaled in the zio completion
3898 * callback of the root zio for the flush commands that are sent to
3899 * the vdevs upon completion of the lwb zio.
3900 *
3901 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3902 * itxs, the order in which they are inserted is preserved[*]; as
3903 * itxs are added to the queue, they are added to the tail of
3904 * in-memory linked lists.
3905 *
3906 * When committing the itxs to lwbs (to be written to disk), they
3907 * are committed in the same order in which the itxs were added to
3908 * the uncommitted queue's linked list(s); i.e. the linked list of
3909 * itxs to commit is traversed from head to tail, and each itx is
3910 * committed to an lwb in that order.
3911 *
3912 * * To clarify:
3913 *
3914 * - the order of "sync" itxs is preserved w.r.t. other
3915 * "sync" itxs, regardless of the corresponding objects.
3916 * - the order of "async" itxs is preserved w.r.t. other
3917 * "async" itxs corresponding to the same object.
3918 * - the order of "async" itxs is *not* preserved w.r.t. other
3919 * "async" itxs corresponding to different objects.
3920 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3921 * versa) is *not* preserved, even for itxs that correspond
3922 * to the same object.
3923 *
3924 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3925 * zil_get_commit_list(), and zil_process_commit_list().
3926 *
3927 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3928 * lwb cannot be considered committed to stable storage, until its
3929 * "previous" lwb is also committed to stable storage. This fact,
3930 * coupled with the fact described above, means that itxs are
3931 * committed in (roughly) the order in which they were generated.
3932 * This is essential because itxs are dependent on prior itxs.
3933 * Thus, we *must not* deem an itx as being committed to stable
3934 * storage, until *all* prior itxs have also been committed to
3935 * stable storage.
3936 *
3937 * To enforce this ordering of lwb zio's, while still leveraging as
3938 * much of the underlying storage performance as possible, we rely
3939 * on two fundamental concepts:
3940 *
3941 * 1. The creation and issuance of lwb zio's is protected by
3942 * the zilog's "zl_issuer_lock", which ensures only a single
3943 * thread is creating and/or issuing lwb's at a time
3944 * 2. The "previous" lwb is a child of the "current" lwb
3945 * (leveraging the zio parent-child dependency graph)
3946 *
3947 * By relying on this parent-child zio relationship, we can have
3948 * many lwb zio's concurrently issued to the underlying storage,
3949 * but the order in which they complete will be the same order in
3950 * which they were created.
3951 */
3952 static int zil_commit_impl(zilog_t *zilog, uint64_t foid);
3953
3954 int
zil_commit(zilog_t * zilog,uint64_t foid)3955 zil_commit(zilog_t *zilog, uint64_t foid)
3956 {
3957 return (zil_commit_flags(zilog, foid, ZIL_COMMIT_FAILMODE));
3958 }
3959
3960 int
zil_commit_flags(zilog_t * zilog,uint64_t foid,zil_commit_flag_t flags)3961 zil_commit_flags(zilog_t *zilog, uint64_t foid, zil_commit_flag_t flags)
3962 {
3963 /*
3964 * We should never attempt to call zil_commit on a snapshot for
3965 * a couple of reasons:
3966 *
3967 * 1. A snapshot may never be modified, thus it cannot have any
3968 * in-flight itxs that would have modified the dataset.
3969 *
3970 * 2. By design, when zil_commit() is called, a commit itx will
3971 * be assigned to this zilog; as a result, the zilog will be
3972 * dirtied. We must not dirty the zilog of a snapshot; there's
3973 * checks in the code that enforce this invariant, and will
3974 * cause a panic if it's not upheld.
3975 */
3976 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3977
3978 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3979 return (0);
3980
3981 if (!spa_writeable(zilog->zl_spa)) {
3982 /*
3983 * If the SPA is not writable, there should never be any
3984 * pending itxs waiting to be committed to disk. If that
3985 * weren't true, we'd skip writing those itxs out, and
3986 * would break the semantics of zil_commit(); thus, we're
3987 * verifying that truth before we return to the caller.
3988 */
3989 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3990 ASSERT0P(zilog->zl_last_lwb_opened);
3991 for (int i = 0; i < TXG_SIZE; i++)
3992 ASSERT0P(zilog->zl_itxg[i].itxg_itxs);
3993 return (0);
3994 }
3995
3996 int err = 0;
3997
3998 /*
3999 * If the ZIL crashed, bypass it entirely, and rely on txg_wait_sync()
4000 * to get the data out to disk.
4001 */
4002 if (zilog->zl_restart_txg > 0) {
4003 ZIL_STAT_BUMP(zilog, zil_commit_crash_count);
4004 err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4005 TXG_WAIT_SUSPEND);
4006 goto out;
4007 }
4008
4009 /*
4010 * If the ZIL is suspended, we don't want to dirty it by calling
4011 * zil_commit_itx_assign() below, nor can we write out
4012 * lwbs like would be done in zil_commit_write(). Thus, we
4013 * simply rely on txg_wait_synced() to maintain the necessary
4014 * semantics, and avoid calling those functions altogether.
4015 */
4016 if (zilog->zl_suspend > 0) {
4017 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
4018 err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4019 TXG_WAIT_SUSPEND);
4020 if (err != 0) {
4021 ASSERT3U(err, ==, ESHUTDOWN);
4022 zil_crash(zilog);
4023 }
4024 goto out;
4025 }
4026
4027 err = zil_commit_impl(zilog, foid);
4028
4029 out:
4030 if (err == 0)
4031 return (0);
4032
4033 /*
4034 * The ZIL write failed and the pool is suspended. There's nothing else
4035 * we can do except return or block.
4036 */
4037 ASSERT3U(err, ==, ESHUTDOWN);
4038
4039 /*
4040 * Return error if failmode=continue or caller will handle directly.
4041 */
4042 if (!(flags & ZIL_COMMIT_FAILMODE) ||
4043 spa_get_failmode(zilog->zl_spa) == ZIO_FAILURE_MODE_CONTINUE)
4044 return (SET_ERROR(EIO));
4045
4046 /*
4047 * Block until the pool returns. We assume that the data will make
4048 * it out to disk in the end, and so return success.
4049 */
4050 txg_wait_synced(zilog->zl_dmu_pool, 0);
4051 return (0);
4052 }
4053
4054 static int
zil_commit_impl(zilog_t * zilog,uint64_t foid)4055 zil_commit_impl(zilog_t *zilog, uint64_t foid)
4056 {
4057 ZIL_STAT_BUMP(zilog, zil_commit_count);
4058
4059 /*
4060 * Move the "async" itxs for the specified foid to the "sync"
4061 * queues, such that they will be later committed (or skipped)
4062 * to an lwb when zil_process_commit_list() is called.
4063 *
4064 * Since these "async" itxs must be committed prior to this
4065 * call to zil_commit returning, we must perform this operation
4066 * before we call zil_commit_itx_assign().
4067 */
4068 zil_async_to_sync(zilog, foid);
4069
4070 /*
4071 * We allocate a new "waiter" structure which will initially be
4072 * linked to the commit itx using the itx's "itx_private" field.
4073 * Since the commit itx doesn't represent any on-disk state,
4074 * when it's committed to an lwb, rather than copying the its
4075 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
4076 * added to the lwb's list of waiters. Then, when the lwb is
4077 * committed to stable storage, each waiter in the lwb's list of
4078 * waiters will be marked "done", and signalled.
4079 *
4080 * We must create the waiter and assign the commit itx prior to
4081 * calling zil_commit_writer(), or else our specific commit itx
4082 * is not guaranteed to be committed to an lwb prior to calling
4083 * zil_commit_waiter().
4084 */
4085 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
4086 zil_commit_itx_assign(zilog, zcw);
4087
4088 uint64_t wtxg = zil_commit_writer(zilog, zcw);
4089 zil_commit_waiter(zilog, zcw);
4090
4091 int err = 0;
4092 if (zcw->zcw_error != 0) {
4093 /*
4094 * If there was an error writing out the ZIL blocks that
4095 * this thread is waiting on, then we fallback to
4096 * relying on spa_sync() to write out the data this
4097 * thread is waiting on. Obviously this has performance
4098 * implications, but the expectation is for this to be
4099 * an exceptional case, and shouldn't occur often.
4100 */
4101 ZIL_STAT_BUMP(zilog, zil_commit_error_count);
4102 DTRACE_PROBE2(zil__commit__io__error,
4103 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
4104 err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4105 TXG_WAIT_SUSPEND);
4106 } else if (wtxg != 0) {
4107 ZIL_STAT_BUMP(zilog, zil_commit_suspend_count);
4108 err = txg_wait_synced_flags(zilog->zl_dmu_pool, wtxg,
4109 TXG_WAIT_SUSPEND);
4110 }
4111
4112 zil_free_commit_waiter(zcw);
4113
4114 if (err == 0)
4115 return (0);
4116
4117 /*
4118 * ZIL write failed and pool failed in the fallback to
4119 * txg_wait_synced_flags(). Right now we have no idea if the data is on
4120 * disk and the pool is probably suspended so we have no idea when it's
4121 * coming back. All we can do is shut down and return error to the
4122 * caller.
4123 */
4124 ASSERT3U(err, ==, ESHUTDOWN);
4125 zil_crash(zilog);
4126 return (err);
4127 }
4128
4129 /*
4130 * Called in syncing context to free committed log blocks and update log header.
4131 */
4132 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)4133 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
4134 {
4135 zil_header_t *zh = zil_header_in_syncing_context(zilog);
4136 uint64_t txg = dmu_tx_get_txg(tx);
4137 spa_t *spa = zilog->zl_spa;
4138 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
4139 lwb_t *lwb;
4140
4141 /*
4142 * We don't zero out zl_destroy_txg, so make sure we don't try
4143 * to destroy it twice.
4144 */
4145 if (spa_sync_pass(spa) != 1)
4146 return;
4147
4148 zil_lwb_flush_wait_all(zilog, txg);
4149
4150 mutex_enter(&zilog->zl_lock);
4151
4152 ASSERT0(zilog->zl_stop_sync);
4153
4154 if (*replayed_seq != 0) {
4155 ASSERT(zh->zh_replay_seq < *replayed_seq);
4156 zh->zh_replay_seq = *replayed_seq;
4157 *replayed_seq = 0;
4158 }
4159
4160 if (zilog->zl_destroy_txg == txg) {
4161 blkptr_t blk = zh->zh_log;
4162 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
4163
4164 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4165
4166 memset(zh, 0, sizeof (zil_header_t));
4167 memset(zilog->zl_replayed_seq, 0,
4168 sizeof (zilog->zl_replayed_seq));
4169
4170 if (zilog->zl_keep_first) {
4171 /*
4172 * If this block was part of log chain that couldn't
4173 * be claimed because a device was missing during
4174 * zil_claim(), but that device later returns,
4175 * then this block could erroneously appear valid.
4176 * To guard against this, assign a new GUID to the new
4177 * log chain so it doesn't matter what blk points to.
4178 */
4179 zil_init_log_chain(zilog, &blk);
4180 zh->zh_log = blk;
4181 } else {
4182 /*
4183 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
4184 * records. So, deactivate the feature for this dataset.
4185 * We activate it again when we start a new ZIL chain.
4186 */
4187 if (dsl_dataset_feature_is_active(ds,
4188 SPA_FEATURE_ZILSAXATTR))
4189 dsl_dataset_deactivate_feature(ds,
4190 SPA_FEATURE_ZILSAXATTR, tx);
4191 }
4192 }
4193
4194 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
4195 zh->zh_log = lwb->lwb_blk;
4196 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
4197 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
4198 break;
4199 list_remove(&zilog->zl_lwb_list, lwb);
4200 if (!BP_IS_HOLE(&lwb->lwb_blk))
4201 zio_free(spa, txg, &lwb->lwb_blk);
4202 zil_free_lwb(zilog, lwb);
4203
4204 /*
4205 * If we don't have anything left in the lwb list then
4206 * we've had an allocation failure and we need to zero
4207 * out the zil_header blkptr so that we don't end
4208 * up freeing the same block twice.
4209 */
4210 if (list_is_empty(&zilog->zl_lwb_list))
4211 BP_ZERO(&zh->zh_log);
4212 }
4213
4214 mutex_exit(&zilog->zl_lock);
4215 }
4216
4217 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)4218 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
4219 {
4220 (void) unused, (void) kmflag;
4221 lwb_t *lwb = vbuf;
4222 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
4223 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
4224 offsetof(zil_commit_waiter_t, zcw_node));
4225 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
4226 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
4227 mutex_init(&lwb->lwb_lock, NULL, MUTEX_DEFAULT, NULL);
4228 return (0);
4229 }
4230
4231 static void
zil_lwb_dest(void * vbuf,void * unused)4232 zil_lwb_dest(void *vbuf, void *unused)
4233 {
4234 (void) unused;
4235 lwb_t *lwb = vbuf;
4236 mutex_destroy(&lwb->lwb_lock);
4237 avl_destroy(&lwb->lwb_vdev_tree);
4238 list_destroy(&lwb->lwb_waiters);
4239 list_destroy(&lwb->lwb_itxs);
4240 }
4241
4242 void
zil_init(void)4243 zil_init(void)
4244 {
4245 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
4246 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
4247
4248 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
4249 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
4250
4251 zil_sums_init(&zil_sums_global);
4252 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
4253 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
4254 KSTAT_FLAG_VIRTUAL);
4255
4256 if (zil_kstats_global != NULL) {
4257 zil_kstats_global->ks_data = &zil_stats;
4258 zil_kstats_global->ks_update = zil_kstats_global_update;
4259 zil_kstats_global->ks_private = NULL;
4260 kstat_install(zil_kstats_global);
4261 }
4262 }
4263
4264 void
zil_fini(void)4265 zil_fini(void)
4266 {
4267 kmem_cache_destroy(zil_zcw_cache);
4268 kmem_cache_destroy(zil_lwb_cache);
4269
4270 if (zil_kstats_global != NULL) {
4271 kstat_delete(zil_kstats_global);
4272 zil_kstats_global = NULL;
4273 }
4274
4275 zil_sums_fini(&zil_sums_global);
4276 }
4277
4278 void
zil_set_sync(zilog_t * zilog,uint64_t sync)4279 zil_set_sync(zilog_t *zilog, uint64_t sync)
4280 {
4281 zilog->zl_sync = sync;
4282 }
4283
4284 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)4285 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
4286 {
4287 zilog->zl_logbias = logbias;
4288 }
4289
4290 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)4291 zil_alloc(objset_t *os, zil_header_t *zh_phys)
4292 {
4293 zilog_t *zilog;
4294
4295 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
4296
4297 zilog->zl_header = zh_phys;
4298 zilog->zl_os = os;
4299 zilog->zl_spa = dmu_objset_spa(os);
4300 zilog->zl_dmu_pool = dmu_objset_pool(os);
4301 zilog->zl_destroy_txg = TXG_INITIAL - 1;
4302 zilog->zl_logbias = dmu_objset_logbias(os);
4303 zilog->zl_sync = dmu_objset_syncprop(os);
4304 zilog->zl_dirty_max_txg = 0;
4305 zilog->zl_last_lwb_opened = NULL;
4306 zilog->zl_last_lwb_latency = 0;
4307 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
4308 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
4309 spa_maxblocksize(dmu_objset_spa(os)));
4310
4311 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
4312 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
4313 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
4314
4315 for (int i = 0; i < TXG_SIZE; i++) {
4316 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
4317 MUTEX_DEFAULT, NULL);
4318 }
4319
4320 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
4321 offsetof(lwb_t, lwb_node));
4322 list_create(&zilog->zl_lwb_crash_list, sizeof (lwb_t),
4323 offsetof(lwb_t, lwb_node));
4324
4325 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
4326 offsetof(itx_t, itx_node));
4327
4328 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
4329 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
4330
4331 for (int i = 0; i < ZIL_BURSTS; i++) {
4332 zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
4333 sizeof (zil_chain_t);
4334 }
4335
4336 return (zilog);
4337 }
4338
4339 void
zil_free(zilog_t * zilog)4340 zil_free(zilog_t *zilog)
4341 {
4342 int i;
4343
4344 zilog->zl_stop_sync = 1;
4345
4346 ASSERT0(zilog->zl_suspend);
4347 ASSERT0(zilog->zl_suspending);
4348 ASSERT0(zilog->zl_restart_txg);
4349
4350 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4351 list_destroy(&zilog->zl_lwb_list);
4352 ASSERT(list_is_empty(&zilog->zl_lwb_crash_list));
4353 list_destroy(&zilog->zl_lwb_crash_list);
4354
4355 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
4356 list_destroy(&zilog->zl_itx_commit_list);
4357
4358 for (i = 0; i < TXG_SIZE; i++) {
4359 /*
4360 * It's possible for an itx to be generated that doesn't dirty
4361 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
4362 * callback to remove the entry. We remove those here.
4363 *
4364 * Also free up the ziltest itxs.
4365 */
4366 if (zilog->zl_itxg[i].itxg_itxs)
4367 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
4368 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
4369 }
4370
4371 mutex_destroy(&zilog->zl_issuer_lock);
4372 mutex_destroy(&zilog->zl_lock);
4373 mutex_destroy(&zilog->zl_lwb_io_lock);
4374
4375 cv_destroy(&zilog->zl_cv_suspend);
4376 cv_destroy(&zilog->zl_lwb_io_cv);
4377
4378 kmem_free(zilog, sizeof (zilog_t));
4379 }
4380
4381 /*
4382 * Open an intent log.
4383 */
4384 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data,zil_sums_t * zil_sums)4385 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
4386 {
4387 zilog_t *zilog = dmu_objset_zil(os);
4388
4389 ASSERT0P(zilog->zl_get_data);
4390 ASSERT0P(zilog->zl_last_lwb_opened);
4391 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4392
4393 zilog->zl_get_data = get_data;
4394 zilog->zl_sums = zil_sums;
4395
4396 return (zilog);
4397 }
4398
4399 /*
4400 * Close an intent log.
4401 */
4402 void
zil_close(zilog_t * zilog)4403 zil_close(zilog_t *zilog)
4404 {
4405 lwb_t *lwb;
4406 uint64_t txg;
4407
4408 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
4409 if (zil_commit_flags(zilog, 0, ZIL_COMMIT_NOW) != 0)
4410 txg_wait_synced(zilog->zl_dmu_pool, 0);
4411 } else {
4412 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4413 ASSERT0(zilog->zl_dirty_max_txg);
4414 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
4415 }
4416
4417 mutex_enter(&zilog->zl_lock);
4418 txg = zilog->zl_dirty_max_txg;
4419 lwb = list_tail(&zilog->zl_lwb_list);
4420 if (lwb != NULL) {
4421 txg = MAX(txg, lwb->lwb_alloc_txg);
4422 txg = MAX(txg, lwb->lwb_max_txg);
4423 }
4424 mutex_exit(&zilog->zl_lock);
4425
4426 /*
4427 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
4428 * on the time when the dmu_tx transaction is assigned in
4429 * zil_lwb_write_issue().
4430 */
4431 mutex_enter(&zilog->zl_lwb_io_lock);
4432 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
4433 mutex_exit(&zilog->zl_lwb_io_lock);
4434
4435 /*
4436 * We need to use txg_wait_synced() to wait until that txg is synced.
4437 * zil_sync() will guarantee all lwbs up to that txg have been
4438 * written out, flushed, and cleaned.
4439 */
4440 if (txg != 0)
4441 txg_wait_synced(zilog->zl_dmu_pool, txg);
4442
4443 if (zilog_is_dirty(zilog))
4444 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
4445 (u_longlong_t)txg);
4446 if (txg < spa_freeze_txg(zilog->zl_spa))
4447 VERIFY(!zilog_is_dirty(zilog));
4448
4449 zilog->zl_get_data = NULL;
4450
4451 /*
4452 * We should have only one lwb left on the list; remove it now.
4453 */
4454 mutex_enter(&zilog->zl_lock);
4455 lwb = list_remove_head(&zilog->zl_lwb_list);
4456 if (lwb != NULL) {
4457 ASSERT(list_is_empty(&zilog->zl_lwb_list));
4458 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
4459 ASSERT0P(lwb->lwb_buf);
4460 zil_free_lwb(zilog, lwb);
4461 }
4462 mutex_exit(&zilog->zl_lock);
4463 }
4464
4465 static const char *suspend_tag = "zil suspending";
4466
4467 /*
4468 * Suspend an intent log. While in suspended mode, we still honor
4469 * synchronous semantics, but we rely on txg_wait_synced() to do it.
4470 * On old version pools, we suspend the log briefly when taking a
4471 * snapshot so that it will have an empty intent log.
4472 *
4473 * Long holds are not really intended to be used the way we do here --
4474 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
4475 * could fail. Therefore we take pains to only put a long hold if it is
4476 * actually necessary. Fortunately, it will only be necessary if the
4477 * objset is currently mounted (or the ZVOL equivalent). In that case it
4478 * will already have a long hold, so we are not really making things any worse.
4479 *
4480 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4481 * zvol_state_t), and use their mechanism to prevent their hold from being
4482 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
4483 * very little gain.
4484 *
4485 * if cookiep == NULL, this does both the suspend & resume.
4486 * Otherwise, it returns with the dataset "long held", and the cookie
4487 * should be passed into zil_resume().
4488 */
4489 int
zil_suspend(const char * osname,void ** cookiep)4490 zil_suspend(const char *osname, void **cookiep)
4491 {
4492 objset_t *os;
4493 zilog_t *zilog;
4494 const zil_header_t *zh;
4495 int error;
4496
4497 error = dmu_objset_hold(osname, suspend_tag, &os);
4498 if (error != 0)
4499 return (error);
4500 zilog = dmu_objset_zil(os);
4501
4502 mutex_enter(&zilog->zl_lock);
4503 zh = zilog->zl_header;
4504
4505 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
4506 mutex_exit(&zilog->zl_lock);
4507 dmu_objset_rele(os, suspend_tag);
4508 return (SET_ERROR(EBUSY));
4509 }
4510
4511 if (zilog->zl_restart_txg > 0) {
4512 /*
4513 * ZIL crashed. It effectively _is_ suspended, but callers
4514 * are usually trying to make sure it's empty on-disk, which
4515 * we can't guarantee right now.
4516 */
4517 mutex_exit(&zilog->zl_lock);
4518 dmu_objset_rele(os, suspend_tag);
4519 return (SET_ERROR(EBUSY));
4520 }
4521
4522 /*
4523 * Don't put a long hold in the cases where we can avoid it. This
4524 * is when there is no cookie so we are doing a suspend & resume
4525 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4526 * for the suspend because it's already suspended, or there's no ZIL.
4527 */
4528 if (cookiep == NULL && !zilog->zl_suspending &&
4529 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4530 mutex_exit(&zilog->zl_lock);
4531 dmu_objset_rele(os, suspend_tag);
4532 return (0);
4533 }
4534
4535 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4536 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4537
4538 zilog->zl_suspend++;
4539
4540 if (zilog->zl_suspend > 1) {
4541 /*
4542 * Someone else is already suspending it.
4543 * Just wait for them to finish.
4544 */
4545
4546 while (zilog->zl_suspending)
4547 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4548 mutex_exit(&zilog->zl_lock);
4549
4550 if (zilog->zl_restart_txg > 0) {
4551 /* ZIL crashed while we were waiting. */
4552 zil_resume(os);
4553 error = SET_ERROR(EBUSY);
4554 } else if (cookiep == NULL)
4555 zil_resume(os);
4556 else
4557 *cookiep = os;
4558
4559 return (error);
4560 }
4561
4562 /*
4563 * If there is no pointer to an on-disk block, this ZIL must not
4564 * be active (e.g. filesystem not mounted), so there's nothing
4565 * to clean up.
4566 */
4567 if (BP_IS_HOLE(&zh->zh_log)) {
4568 ASSERT(cookiep != NULL); /* fast path already handled */
4569
4570 *cookiep = os;
4571 mutex_exit(&zilog->zl_lock);
4572 return (0);
4573 }
4574
4575 /*
4576 * The ZIL has work to do. Ensure that the associated encryption
4577 * key will remain mapped while we are committing the log by
4578 * grabbing a reference to it. If the key isn't loaded we have no
4579 * choice but to return an error until the wrapping key is loaded.
4580 */
4581 if (os->os_encrypted &&
4582 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4583 zilog->zl_suspend--;
4584 mutex_exit(&zilog->zl_lock);
4585 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4586 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4587 return (SET_ERROR(EACCES));
4588 }
4589
4590 zilog->zl_suspending = B_TRUE;
4591 mutex_exit(&zilog->zl_lock);
4592
4593 /*
4594 * We need to use zil_commit_impl to ensure we wait for all
4595 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4596 * to disk before proceeding. If we used zil_commit instead, it
4597 * would just call txg_wait_synced(), because zl_suspend is set.
4598 * txg_wait_synced() doesn't wait for these lwb's to be
4599 * LWB_STATE_FLUSH_DONE before returning.
4600 *
4601 * However, zil_commit_impl() itself can return an error if any of the
4602 * lwbs fail, or the pool suspends in the fallback
4603 * txg_wait_sync_flushed(), which affects what we do next, so we
4604 * capture that error.
4605 */
4606 error = zil_commit_impl(zilog, 0);
4607 if (error == ESHUTDOWN)
4608 /* zil_commit_impl() has called zil_crash() already */
4609 error = SET_ERROR(EBUSY);
4610
4611 /*
4612 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4613 * use txg_wait_synced() to ensure the data from the zilog has
4614 * migrated to the main pool before calling zil_destroy().
4615 */
4616 if (error == 0) {
4617 error = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
4618 TXG_WAIT_SUSPEND);
4619 if (error != 0) {
4620 ASSERT3U(error, ==, ESHUTDOWN);
4621 zil_crash(zilog);
4622 error = SET_ERROR(EBUSY);
4623 }
4624 }
4625
4626 if (error == 0)
4627 zil_destroy(zilog, B_FALSE);
4628
4629 mutex_enter(&zilog->zl_lock);
4630 zilog->zl_suspending = B_FALSE;
4631 cv_broadcast(&zilog->zl_cv_suspend);
4632 mutex_exit(&zilog->zl_lock);
4633
4634 if (os->os_encrypted)
4635 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4636
4637 if (cookiep == NULL)
4638 zil_resume(os);
4639 else
4640 *cookiep = os;
4641
4642 return (error);
4643 }
4644
4645 void
zil_resume(void * cookie)4646 zil_resume(void *cookie)
4647 {
4648 objset_t *os = cookie;
4649 zilog_t *zilog = dmu_objset_zil(os);
4650
4651 mutex_enter(&zilog->zl_lock);
4652 ASSERT(zilog->zl_suspend != 0);
4653 zilog->zl_suspend--;
4654 mutex_exit(&zilog->zl_lock);
4655 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4656 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4657 }
4658
4659 typedef struct zil_replay_arg {
4660 zil_replay_func_t *const *zr_replay;
4661 void *zr_arg;
4662 boolean_t zr_byteswap;
4663 char *zr_lr;
4664 } zil_replay_arg_t;
4665
4666 static int
zil_replay_error(zilog_t * zilog,const lr_t * lr,int error)4667 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4668 {
4669 char name[ZFS_MAX_DATASET_NAME_LEN];
4670
4671 zilog->zl_replaying_seq--; /* didn't actually replay this one */
4672
4673 dmu_objset_name(zilog->zl_os, name);
4674
4675 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4676 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4677 (u_longlong_t)lr->lrc_seq,
4678 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4679 (lr->lrc_txtype & TX_CI) ? "CI" : "");
4680
4681 return (error);
4682 }
4683
4684 static int
zil_replay_log_record(zilog_t * zilog,const lr_t * lr,void * zra,uint64_t claim_txg)4685 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4686 uint64_t claim_txg)
4687 {
4688 zil_replay_arg_t *zr = zra;
4689 const zil_header_t *zh = zilog->zl_header;
4690 uint64_t reclen = lr->lrc_reclen;
4691 uint64_t txtype = lr->lrc_txtype;
4692 int error = 0;
4693
4694 zilog->zl_replaying_seq = lr->lrc_seq;
4695
4696 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
4697 return (0);
4698
4699 if (lr->lrc_txg < claim_txg) /* already committed */
4700 return (0);
4701
4702 /* Strip case-insensitive bit, still present in log record */
4703 txtype &= ~TX_CI;
4704
4705 if (txtype == 0 || txtype >= TX_MAX_TYPE)
4706 return (zil_replay_error(zilog, lr, EINVAL));
4707
4708 /*
4709 * If this record type can be logged out of order, the object
4710 * (lr_foid) may no longer exist. That's legitimate, not an error.
4711 */
4712 if (TX_OOO(txtype)) {
4713 error = dmu_object_info(zilog->zl_os,
4714 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4715 if (error == ENOENT || error == EEXIST)
4716 return (0);
4717 }
4718
4719 /*
4720 * Make a copy of the data so we can revise and extend it.
4721 */
4722 memcpy(zr->zr_lr, lr, reclen);
4723
4724 /*
4725 * If this is a TX_WRITE with a blkptr, suck in the data.
4726 */
4727 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4728 error = zil_read_log_data(zilog, (lr_write_t *)lr,
4729 zr->zr_lr + reclen);
4730 if (error != 0)
4731 return (zil_replay_error(zilog, lr, error));
4732 }
4733
4734 /*
4735 * The log block containing this lr may have been byteswapped
4736 * so that we can easily examine common fields like lrc_txtype.
4737 * However, the log is a mix of different record types, and only the
4738 * replay vectors know how to byteswap their records. Therefore, if
4739 * the lr was byteswapped, undo it before invoking the replay vector.
4740 */
4741 if (zr->zr_byteswap)
4742 byteswap_uint64_array(zr->zr_lr, reclen);
4743
4744 /*
4745 * We must now do two things atomically: replay this log record,
4746 * and update the log header sequence number to reflect the fact that
4747 * we did so. At the end of each replay function the sequence number
4748 * is updated if we are in replay mode.
4749 */
4750 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4751 if (error != 0) {
4752 /*
4753 * The DMU's dnode layer doesn't see removes until the txg
4754 * commits, so a subsequent claim can spuriously fail with
4755 * EEXIST. So if we receive any error we try syncing out
4756 * any removes then retry the transaction. Note that we
4757 * specify B_FALSE for byteswap now, so we don't do it twice.
4758 */
4759 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4760 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4761 if (error != 0)
4762 return (zil_replay_error(zilog, lr, error));
4763 }
4764 return (0);
4765 }
4766
4767 static int
zil_incr_blks(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)4768 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4769 {
4770 (void) bp, (void) arg, (void) claim_txg;
4771
4772 zilog->zl_replay_blks++;
4773
4774 return (0);
4775 }
4776
4777 /*
4778 * If this dataset has a non-empty intent log, replay it and destroy it.
4779 * Return B_TRUE if there were any entries to replay.
4780 */
4781 boolean_t
zil_replay(objset_t * os,void * arg,zil_replay_func_t * const replay_func[TX_MAX_TYPE])4782 zil_replay(objset_t *os, void *arg,
4783 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4784 {
4785 zilog_t *zilog = dmu_objset_zil(os);
4786 const zil_header_t *zh = zilog->zl_header;
4787 zil_replay_arg_t zr;
4788
4789 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4790 return (zil_destroy(zilog, B_TRUE));
4791 }
4792
4793 zr.zr_replay = replay_func;
4794 zr.zr_arg = arg;
4795 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4796 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4797
4798 /*
4799 * Wait for in-progress removes to sync before starting replay.
4800 */
4801 txg_wait_synced(zilog->zl_dmu_pool, 0);
4802
4803 zilog->zl_replay = B_TRUE;
4804 zilog->zl_replay_time = ddi_get_lbolt();
4805 ASSERT0(zilog->zl_replay_blks);
4806 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4807 zh->zh_claim_txg, B_TRUE);
4808 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4809
4810 zil_destroy(zilog, B_FALSE);
4811 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4812 zilog->zl_replay = B_FALSE;
4813
4814 return (B_TRUE);
4815 }
4816
4817 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)4818 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4819 {
4820 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4821 return (B_TRUE);
4822
4823 if (zilog->zl_replay) {
4824 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4825 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4826 zilog->zl_replaying_seq;
4827 return (B_TRUE);
4828 }
4829
4830 return (B_FALSE);
4831 }
4832
4833 int
zil_reset(const char * osname,void * arg)4834 zil_reset(const char *osname, void *arg)
4835 {
4836 (void) arg;
4837
4838 int error = zil_suspend(osname, NULL);
4839 /* EACCES means crypto key not loaded */
4840 if ((error == EACCES) || (error == EBUSY))
4841 return (SET_ERROR(error));
4842 if (error != 0)
4843 return (SET_ERROR(EEXIST));
4844 return (0);
4845 }
4846
4847 EXPORT_SYMBOL(zil_alloc);
4848 EXPORT_SYMBOL(zil_free);
4849 EXPORT_SYMBOL(zil_open);
4850 EXPORT_SYMBOL(zil_close);
4851 EXPORT_SYMBOL(zil_replay);
4852 EXPORT_SYMBOL(zil_replaying);
4853 EXPORT_SYMBOL(zil_destroy);
4854 EXPORT_SYMBOL(zil_destroy_sync);
4855 EXPORT_SYMBOL(zil_itx_create);
4856 EXPORT_SYMBOL(zil_itx_destroy);
4857 EXPORT_SYMBOL(zil_itx_assign);
4858 EXPORT_SYMBOL(zil_commit);
4859 EXPORT_SYMBOL(zil_claim);
4860 EXPORT_SYMBOL(zil_check_log_chain);
4861 EXPORT_SYMBOL(zil_sync);
4862 EXPORT_SYMBOL(zil_clean);
4863 EXPORT_SYMBOL(zil_suspend);
4864 EXPORT_SYMBOL(zil_resume);
4865 EXPORT_SYMBOL(zil_lwb_add_block);
4866 EXPORT_SYMBOL(zil_bp_tree_add);
4867 EXPORT_SYMBOL(zil_set_sync);
4868 EXPORT_SYMBOL(zil_set_logbias);
4869 EXPORT_SYMBOL(zil_sums_init);
4870 EXPORT_SYMBOL(zil_sums_fini);
4871 EXPORT_SYMBOL(zil_kstat_values_update);
4872
4873 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4874 "ZIL block open timeout percentage");
4875
4876 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4877 "Disable intent logging replay");
4878
4879 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4880 "Disable ZIL cache flushes");
4881
4882 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4883 "Limit in bytes slog sync writes per commit");
4884
4885 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4886 "Limit in bytes of ZIL log block size");
4887
4888 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4889 "Limit in bytes WR_COPIED size");
4890
4891 ZFS_MODULE_PARAM(zfs, zfs_, immediate_write_sz, UINT, ZMOD_RW,
4892 "Largest write size to store data into ZIL");
4893
4894 ZFS_MODULE_PARAM(zfs_zil, zil_, special_is_slog, INT, ZMOD_RW,
4895 "Treat special vdevs as SLOG");
4896