xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_ctldir.c (revision 66e85755595a451db490d2fe24267d85db4b09c2)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  *
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
26  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
27  * LLNL-CODE-403049.
28  * Rewritten for Linux by:
29  *   Rohan Puri <rohan.puri15@gmail.com>
30  *   Brian Behlendorf <behlendorf1@llnl.gov>
31  * Copyright (c) 2013 by Delphix. All rights reserved.
32  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
33  * Copyright (c) 2018 George Melikov. All Rights Reserved.
34  * Copyright (c) 2019 Datto, Inc. All rights reserved.
35  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
36  */
37 
38 /*
39  * ZFS control directory (a.k.a. ".zfs")
40  *
41  * This directory provides a common location for all ZFS meta-objects.
42  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
43  * expand in the future.  The elements are built dynamically, as the hierarchy
44  * does not actually exist on disk.
45  *
46  * For 'snapshot', we don't want to have all snapshots always mounted, because
47  * this would take up a huge amount of space in /etc/mnttab.  We have three
48  * types of objects:
49  *
50  *	ctldir ------> snapshotdir -------> snapshot
51  *                                             |
52  *                                             |
53  *                                             V
54  *                                         mounted fs
55  *
56  * The 'snapshot' node contains just enough information to lookup '..' and act
57  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
58  * perform an automount of the underlying filesystem and return the
59  * corresponding inode.
60  *
61  * All mounts are handled automatically by an user mode helper which invokes
62  * the mount procedure.  Unmounts are handled by allowing the mount
63  * point to expire so the kernel may automatically unmount it.
64  *
65  * The '.zfs', '.zfs/snapshot', and all directories created under
66  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
67  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
68  *
69  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
70  * (ie: snapshots) are complete ZFS filesystems and have their own unique
71  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
72  * as that used by the parent zfsvfs_t to make NFS happy.
73  */
74 
75 #include <sys/types.h>
76 #include <sys/param.h>
77 #include <sys/time.h>
78 #include <sys/sysmacros.h>
79 #include <sys/pathname.h>
80 #include <sys/vfs.h>
81 #include <sys/zfs_ctldir.h>
82 #include <sys/zfs_ioctl.h>
83 #include <sys/zfs_vfsops.h>
84 #include <sys/zfs_vnops.h>
85 #include <sys/stat.h>
86 #include <sys/dmu.h>
87 #include <sys/dmu_objset.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/dsl_deleg.h>
90 #include <sys/zpl.h>
91 #include <sys/mntent.h>
92 #include "zfs_namecheck.h"
93 
94 /*
95  * Two AVL trees are maintained which contain all currently automounted
96  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
97  * entry which MUST:
98  *
99  *   - be attached to both trees, and
100  *   - be unique, no duplicate entries are allowed.
101  *
102  * The zfs_snapshots_by_name tree is indexed by the full dataset name
103  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
104  * objsetid.  This allows for fast lookups either by name or objsetid.
105  */
106 static avl_tree_t zfs_snapshots_by_name;
107 static avl_tree_t zfs_snapshots_by_objsetid;
108 static krwlock_t zfs_snapshot_lock;
109 
110 /*
111  * Control Directory Tunables (.zfs)
112  */
113 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
114 static int zfs_admin_snapshot = 0;
115 static int zfs_snapshot_no_setuid = 0;
116 
117 typedef struct {
118 	char		*se_name;	/* full snapshot name */
119 	char		*se_path;	/* full mount path */
120 	spa_t		*se_spa;	/* pool spa */
121 	uint64_t	se_objsetid;	/* snapshot objset id */
122 	struct dentry   *se_root_dentry; /* snapshot root dentry */
123 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
124 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
125 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
126 	zfs_refcount_t	se_refcount;	/* reference count */
127 } zfs_snapentry_t;
128 
129 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
130 
131 /*
132  * Allocate a new zfs_snapentry_t being careful to make a copy of the
133  * the snapshot name and provided mount point.  No reference is taken.
134  */
135 static zfs_snapentry_t *
zfsctl_snapshot_alloc(const char * full_name,const char * full_path,spa_t * spa,uint64_t objsetid,struct dentry * root_dentry)136 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
137     uint64_t objsetid, struct dentry *root_dentry)
138 {
139 	zfs_snapentry_t *se;
140 
141 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
142 
143 	se->se_name = kmem_strdup(full_name);
144 	se->se_path = kmem_strdup(full_path);
145 	se->se_spa = spa;
146 	se->se_objsetid = objsetid;
147 	se->se_root_dentry = root_dentry;
148 	se->se_taskqid = TASKQID_INVALID;
149 
150 	zfs_refcount_create(&se->se_refcount);
151 
152 	return (se);
153 }
154 
155 /*
156  * Free a zfs_snapentry_t the caller must ensure there are no active
157  * references.
158  */
159 static void
zfsctl_snapshot_free(zfs_snapentry_t * se)160 zfsctl_snapshot_free(zfs_snapentry_t *se)
161 {
162 	zfs_refcount_destroy(&se->se_refcount);
163 	kmem_strfree(se->se_name);
164 	kmem_strfree(se->se_path);
165 
166 	kmem_free(se, sizeof (zfs_snapentry_t));
167 }
168 
169 /*
170  * Hold a reference on the zfs_snapentry_t.
171  */
172 static void
zfsctl_snapshot_hold(zfs_snapentry_t * se)173 zfsctl_snapshot_hold(zfs_snapentry_t *se)
174 {
175 	zfs_refcount_add(&se->se_refcount, NULL);
176 }
177 
178 /*
179  * Release a reference on the zfs_snapentry_t.  When the number of
180  * references drops to zero the structure will be freed.
181  */
182 static void
zfsctl_snapshot_rele(zfs_snapentry_t * se)183 zfsctl_snapshot_rele(zfs_snapentry_t *se)
184 {
185 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
186 		zfsctl_snapshot_free(se);
187 }
188 
189 /*
190  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
191  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
192  * of the trees a reference is held.
193  */
194 static void
zfsctl_snapshot_add(zfs_snapentry_t * se)195 zfsctl_snapshot_add(zfs_snapentry_t *se)
196 {
197 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
198 	zfsctl_snapshot_hold(se);
199 	avl_add(&zfs_snapshots_by_name, se);
200 	avl_add(&zfs_snapshots_by_objsetid, se);
201 }
202 
203 /*
204  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
205  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
206  * this can result in the structure being freed if that was the last
207  * remaining reference.
208  */
209 static void
zfsctl_snapshot_remove(zfs_snapentry_t * se)210 zfsctl_snapshot_remove(zfs_snapentry_t *se)
211 {
212 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
213 	avl_remove(&zfs_snapshots_by_name, se);
214 	avl_remove(&zfs_snapshots_by_objsetid, se);
215 	zfsctl_snapshot_rele(se);
216 }
217 
218 /*
219  * Snapshot name comparison function for the zfs_snapshots_by_name.
220  */
221 static int
snapentry_compare_by_name(const void * a,const void * b)222 snapentry_compare_by_name(const void *a, const void *b)
223 {
224 	const zfs_snapentry_t *se_a = a;
225 	const zfs_snapentry_t *se_b = b;
226 	int ret;
227 
228 	ret = strcmp(se_a->se_name, se_b->se_name);
229 
230 	if (ret < 0)
231 		return (-1);
232 	else if (ret > 0)
233 		return (1);
234 	else
235 		return (0);
236 }
237 
238 /*
239  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
240  */
241 static int
snapentry_compare_by_objsetid(const void * a,const void * b)242 snapentry_compare_by_objsetid(const void *a, const void *b)
243 {
244 	const zfs_snapentry_t *se_a = a;
245 	const zfs_snapentry_t *se_b = b;
246 
247 	if (se_a->se_spa != se_b->se_spa)
248 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
249 
250 	if (se_a->se_objsetid < se_b->se_objsetid)
251 		return (-1);
252 	else if (se_a->se_objsetid > se_b->se_objsetid)
253 		return (1);
254 	else
255 		return (0);
256 }
257 
258 /*
259  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
260  * is found a pointer to the zfs_snapentry_t is returned and a reference
261  * taken on the structure.  The caller is responsible for dropping the
262  * reference with zfsctl_snapshot_rele().  If the snapname is not found
263  * NULL will be returned.
264  */
265 static zfs_snapentry_t *
zfsctl_snapshot_find_by_name(const char * snapname)266 zfsctl_snapshot_find_by_name(const char *snapname)
267 {
268 	zfs_snapentry_t *se, search;
269 
270 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
271 
272 	search.se_name = (char *)snapname;
273 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
274 	if (se)
275 		zfsctl_snapshot_hold(se);
276 
277 	return (se);
278 }
279 
280 /*
281  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
282  * rather than the snapname.  In all other respects it behaves the same
283  * as zfsctl_snapshot_find_by_name().
284  */
285 static zfs_snapentry_t *
zfsctl_snapshot_find_by_objsetid(spa_t * spa,uint64_t objsetid)286 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
287 {
288 	zfs_snapentry_t *se, search;
289 
290 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
291 
292 	search.se_spa = spa;
293 	search.se_objsetid = objsetid;
294 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
295 	if (se)
296 		zfsctl_snapshot_hold(se);
297 
298 	return (se);
299 }
300 
301 /*
302  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
303  * removed, renamed, and added back to the new correct location in the tree.
304  */
305 static int
zfsctl_snapshot_rename(const char * old_snapname,const char * new_snapname)306 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
307 {
308 	zfs_snapentry_t *se;
309 
310 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
311 
312 	se = zfsctl_snapshot_find_by_name(old_snapname);
313 	if (se == NULL)
314 		return (SET_ERROR(ENOENT));
315 
316 	zfsctl_snapshot_remove(se);
317 	kmem_strfree(se->se_name);
318 	se->se_name = kmem_strdup(new_snapname);
319 	zfsctl_snapshot_add(se);
320 	zfsctl_snapshot_rele(se);
321 
322 	return (0);
323 }
324 
325 /*
326  * Delayed task responsible for unmounting an expired automounted snapshot.
327  */
328 static void
snapentry_expire(void * data)329 snapentry_expire(void *data)
330 {
331 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
332 	spa_t *spa = se->se_spa;
333 	uint64_t objsetid = se->se_objsetid;
334 
335 	if (zfs_expire_snapshot <= 0) {
336 		zfsctl_snapshot_rele(se);
337 		return;
338 	}
339 
340 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
341 
342 	/*
343 	 * Clear taskqid and reschedule if the snapshot wasn't removed.
344 	 * This can occur when the snapshot is busy.
345 	 */
346 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
347 	se->se_taskqid = TASKQID_INVALID;
348 	zfsctl_snapshot_rele(se);
349 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
350 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
351 		zfsctl_snapshot_rele(se);
352 	}
353 	rw_exit(&zfs_snapshot_lock);
354 }
355 
356 /*
357  * Cancel an automatic unmount of a snapname.  This callback is responsible
358  * for dropping the reference on the zfs_snapentry_t which was taken when
359  * during dispatch.
360  */
361 static void
zfsctl_snapshot_unmount_cancel(zfs_snapentry_t * se)362 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
363 {
364 	int err = 0;
365 
366 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
367 
368 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid, B_FALSE);
369 	/*
370 	 * Clear taskqid only if we successfully cancelled before execution.
371 	 * For ENOENT, task already cleared it. For EBUSY, task will clear
372 	 * it when done.
373 	 */
374 	if (err == 0) {
375 		se->se_taskqid = TASKQID_INVALID;
376 		zfsctl_snapshot_rele(se);
377 	}
378 }
379 
380 /*
381  * Dispatch the unmount task for delayed handling with a hold protecting it.
382  */
383 static void
zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t * se,int delay)384 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
385 {
386 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
387 
388 	if (delay <= 0)
389 		return;
390 
391 	/*
392 	 * If this condition happens, we managed to:
393 	 * - dispatch once
394 	 * - want to dispatch _again_ before it returned
395 	 *
396 	 * So let's just return - if that task fails at unmounting,
397 	 * we'll eventually dispatch again, and if it succeeds,
398 	 * no problem.
399 	 */
400 	if (se->se_taskqid != TASKQID_INVALID) {
401 		return;
402 	}
403 
404 	zfsctl_snapshot_hold(se);
405 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
406 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
407 }
408 
409 /*
410  * Schedule an automatic unmount of objset id to occur in delay seconds from
411  * now.  Any previous delayed unmount will be cancelled in favor of the
412  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
413  * and held until the outstanding task is handled or cancelled.
414  */
415 int
zfsctl_snapshot_unmount_delay(spa_t * spa,uint64_t objsetid,int delay)416 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
417 {
418 	zfs_snapentry_t *se;
419 	int error = ENOENT;
420 
421 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
422 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
423 		zfsctl_snapshot_unmount_cancel(se);
424 		zfsctl_snapshot_unmount_delay_impl(se, delay);
425 		zfsctl_snapshot_rele(se);
426 		error = 0;
427 	}
428 	rw_exit(&zfs_snapshot_lock);
429 
430 	return (error);
431 }
432 
433 /*
434  * Check if snapname is currently mounted.  Returned non-zero when mounted
435  * and zero when unmounted.
436  */
437 static boolean_t
zfsctl_snapshot_ismounted(const char * snapname)438 zfsctl_snapshot_ismounted(const char *snapname)
439 {
440 	zfs_snapentry_t *se;
441 	boolean_t ismounted = B_FALSE;
442 
443 	rw_enter(&zfs_snapshot_lock, RW_READER);
444 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
445 		zfsctl_snapshot_rele(se);
446 		ismounted = B_TRUE;
447 	}
448 	rw_exit(&zfs_snapshot_lock);
449 
450 	return (ismounted);
451 }
452 
453 /*
454  * Check if the given inode is a part of the virtual .zfs directory.
455  */
456 boolean_t
zfsctl_is_node(struct inode * ip)457 zfsctl_is_node(struct inode *ip)
458 {
459 	return (ITOZ(ip)->z_is_ctldir);
460 }
461 
462 /*
463  * Check if the given inode is a .zfs/snapshots/snapname directory.
464  */
465 boolean_t
zfsctl_is_snapdir(struct inode * ip)466 zfsctl_is_snapdir(struct inode *ip)
467 {
468 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
469 }
470 
471 /*
472  * Allocate a new inode with the passed id and ops.
473  */
474 static struct inode *
zfsctl_inode_alloc(zfsvfs_t * zfsvfs,uint64_t id,const struct file_operations * fops,const struct inode_operations * ops,uint64_t creation)475 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
476     const struct file_operations *fops, const struct inode_operations *ops,
477     uint64_t creation)
478 {
479 	struct inode *ip;
480 	znode_t *zp;
481 	inode_timespec_t now = {.tv_sec = creation};
482 
483 	ip = new_inode(zfsvfs->z_sb);
484 	if (ip == NULL)
485 		return (NULL);
486 
487 	if (!creation)
488 		now = current_time(ip);
489 	zp = ITOZ(ip);
490 	ASSERT0P(zp->z_dirlocks);
491 	ASSERT0P(zp->z_acl_cached);
492 	ASSERT0P(zp->z_xattr_cached);
493 	zp->z_id = id;
494 	zp->z_unlinked = B_FALSE;
495 	zp->z_atime_dirty = B_FALSE;
496 	zp->z_zn_prefetch = B_FALSE;
497 	zp->z_is_sa = B_FALSE;
498 	zp->z_is_ctldir = B_TRUE;
499 	zp->z_sa_hdl = NULL;
500 	zp->z_blksz = 0;
501 	zp->z_seq = 0;
502 	zp->z_mapcnt = 0;
503 	zp->z_size = 0;
504 	zp->z_pflags = 0;
505 	zp->z_mode = 0;
506 	zp->z_sync_cnt = 0;
507 	ip->i_generation = 0;
508 	ip->i_ino = id;
509 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
510 	ip->i_uid = SUID_TO_KUID(0);
511 	ip->i_gid = SGID_TO_KGID(0);
512 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
513 	zpl_inode_set_atime_to_ts(ip, now);
514 	zpl_inode_set_mtime_to_ts(ip, now);
515 	zpl_inode_set_ctime_to_ts(ip, now);
516 	ip->i_fop = fops;
517 	ip->i_op = ops;
518 #if defined(IOP_XATTR)
519 	ip->i_opflags &= ~IOP_XATTR;
520 #endif
521 
522 	if (insert_inode_locked(ip)) {
523 		unlock_new_inode(ip);
524 		iput(ip);
525 		return (NULL);
526 	}
527 
528 	mutex_enter(&zfsvfs->z_znodes_lock);
529 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
530 	membar_producer();
531 	mutex_exit(&zfsvfs->z_znodes_lock);
532 
533 	unlock_new_inode(ip);
534 
535 	return (ip);
536 }
537 
538 /*
539  * Lookup the inode with given id, it will be allocated if needed.
540  */
541 static struct inode *
zfsctl_inode_lookup(zfsvfs_t * zfsvfs,uint64_t id,const struct file_operations * fops,const struct inode_operations * ops)542 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
543     const struct file_operations *fops, const struct inode_operations *ops)
544 {
545 	struct inode *ip = NULL;
546 	uint64_t creation = 0;
547 	dsl_dataset_t *snap_ds;
548 	dsl_pool_t *pool;
549 
550 	while (ip == NULL) {
551 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
552 		if (ip)
553 			break;
554 
555 		if (id <= ZFSCTL_INO_SNAPDIRS && !creation) {
556 			pool = dmu_objset_pool(zfsvfs->z_os);
557 			dsl_pool_config_enter(pool, FTAG);
558 			if (!dsl_dataset_hold_obj(pool,
559 			    ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) {
560 				creation = dsl_get_creation(snap_ds);
561 				dsl_dataset_rele(snap_ds, FTAG);
562 			}
563 			dsl_pool_config_exit(pool, FTAG);
564 		}
565 
566 		/* May fail due to concurrent zfsctl_inode_alloc() */
567 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation);
568 	}
569 
570 	return (ip);
571 }
572 
573 /*
574  * Create the '.zfs' directory.  This directory is cached as part of the VFS
575  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
576  * therefore checks against a vfs_count of 2 instead of 1.  This reference
577  * is removed when the ctldir is destroyed in the unmount.  All other entities
578  * under the '.zfs' directory are created dynamically as needed.
579  *
580  * Because the dynamically created '.zfs' directory entries assume the use
581  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
582  */
583 int
zfsctl_create(zfsvfs_t * zfsvfs)584 zfsctl_create(zfsvfs_t *zfsvfs)
585 {
586 	ASSERT0P(zfsvfs->z_ctldir);
587 
588 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
589 	    &zpl_fops_root, &zpl_ops_root, 0);
590 	if (zfsvfs->z_ctldir == NULL)
591 		return (SET_ERROR(ENOENT));
592 
593 	return (0);
594 }
595 
596 /*
597  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
598  * Only called when the filesystem is unmounted.
599  */
600 void
zfsctl_destroy(zfsvfs_t * zfsvfs)601 zfsctl_destroy(zfsvfs_t *zfsvfs)
602 {
603 	if (zfsvfs->z_issnap) {
604 		zfs_snapentry_t *se;
605 		spa_t *spa = zfsvfs->z_os->os_spa;
606 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
607 
608 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
609 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
610 		if (se != NULL) {
611 			zfsctl_snapshot_remove(se);
612 			/*
613 			 * Don't wait if snapentry_expire task is calling
614 			 * umount, which may have resulted in this destroy
615 			 * call. Waiting would deadlock: snapentry_expire
616 			 * waits for umount while umount waits for task.
617 			 */
618 			zfsctl_snapshot_unmount_cancel(se);
619 			zfsctl_snapshot_rele(se);
620 		}
621 		rw_exit(&zfs_snapshot_lock);
622 	} else if (zfsvfs->z_ctldir) {
623 		iput(zfsvfs->z_ctldir);
624 		zfsvfs->z_ctldir = NULL;
625 	}
626 }
627 
628 /*
629  * Given a root znode, retrieve the associated .zfs directory.
630  * Add a hold to the vnode and return it.
631  */
632 struct inode *
zfsctl_root(znode_t * zp)633 zfsctl_root(znode_t *zp)
634 {
635 	ASSERT(zfs_has_ctldir(zp));
636 	/* Must have an existing ref, so igrab() cannot return NULL */
637 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
638 	return (ZTOZSB(zp)->z_ctldir);
639 }
640 
641 /*
642  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
643  * already mounted in gen field. We do this because nfsd lookup will not
644  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
645  * this and do automount and return ESTALE to force nfsd revalidate and follow
646  * mount.
647  */
648 static int
zfsctl_snapdir_fid(struct inode * ip,fid_t * fidp)649 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
650 {
651 	zfid_short_t *zfid = (zfid_short_t *)fidp;
652 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
653 	uint32_t gen = 0;
654 	uint64_t object;
655 	uint64_t objsetid;
656 	int i;
657 	struct dentry *dentry;
658 
659 	if (fidp->fid_len < LONG_FID_LEN) {
660 		fidp->fid_len = LONG_FID_LEN;
661 		return (SET_ERROR(ENOSPC));
662 	}
663 
664 	object = ip->i_ino;
665 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
666 	zfid->zf_len = LONG_FID_LEN;
667 
668 	dentry = d_obtain_alias(igrab(ip));
669 	if (!IS_ERR(dentry)) {
670 		gen = !!d_mountpoint(dentry);
671 		dput(dentry);
672 	}
673 
674 	for (i = 0; i < sizeof (zfid->zf_object); i++)
675 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
676 
677 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
678 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
679 
680 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
681 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
682 
683 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
684 		zlfid->zf_setgen[i] = 0;
685 
686 	return (0);
687 }
688 
689 /*
690  * Generate an appropriate fid for an entry in the .zfs directory.
691  */
692 int
zfsctl_fid(struct inode * ip,fid_t * fidp)693 zfsctl_fid(struct inode *ip, fid_t *fidp)
694 {
695 	znode_t		*zp = ITOZ(ip);
696 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
697 	uint64_t	object = zp->z_id;
698 	zfid_short_t	*zfid;
699 	int		i;
700 	int		error;
701 
702 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
703 		return (error);
704 
705 	if (zfsctl_is_snapdir(ip)) {
706 		zfs_exit(zfsvfs, FTAG);
707 		return (zfsctl_snapdir_fid(ip, fidp));
708 	}
709 
710 	if (fidp->fid_len < SHORT_FID_LEN) {
711 		fidp->fid_len = SHORT_FID_LEN;
712 		zfs_exit(zfsvfs, FTAG);
713 		return (SET_ERROR(ENOSPC));
714 	}
715 
716 	zfid = (zfid_short_t *)fidp;
717 
718 	zfid->zf_len = SHORT_FID_LEN;
719 
720 	for (i = 0; i < sizeof (zfid->zf_object); i++)
721 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
722 
723 	/* .zfs znodes always have a generation number of 0 */
724 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
725 		zfid->zf_gen[i] = 0;
726 
727 	zfs_exit(zfsvfs, FTAG);
728 	return (0);
729 }
730 
731 /*
732  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
733  */
734 static int
zfsctl_snapshot_name(zfsvfs_t * zfsvfs,const char * snap_name,int len,char * full_name)735 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
736     char *full_name)
737 {
738 	objset_t *os = zfsvfs->z_os;
739 
740 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
741 		return (SET_ERROR(EILSEQ));
742 
743 	dmu_objset_name(os, full_name);
744 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
745 		return (SET_ERROR(ENAMETOOLONG));
746 
747 	(void) strcat(full_name, "@");
748 	(void) strcat(full_name, snap_name);
749 
750 	return (0);
751 }
752 
753 /*
754  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
755  */
756 static int
zfsctl_snapshot_path_objset(zfsvfs_t * zfsvfs,uint64_t objsetid,int path_len,char * full_path)757 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
758     int path_len, char *full_path)
759 {
760 	objset_t *os = zfsvfs->z_os;
761 	fstrans_cookie_t cookie;
762 	char *snapname;
763 	boolean_t case_conflict;
764 	uint64_t id, pos = 0;
765 	int error = 0;
766 
767 	cookie = spl_fstrans_mark();
768 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
769 
770 	while (error == 0) {
771 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
772 		error = dmu_snapshot_list_next(zfsvfs->z_os,
773 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
774 		    &case_conflict);
775 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
776 		if (error)
777 			goto out;
778 
779 		if (id == objsetid)
780 			break;
781 	}
782 
783 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
784 	if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
785 		snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
786 		    zfsvfs->z_vfs->vfs_mntpoint, snapname);
787 	} else
788 		error = SET_ERROR(ENOENT);
789 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
790 
791 out:
792 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
793 	spl_fstrans_unmark(cookie);
794 
795 	return (error);
796 }
797 
798 /*
799  * Special case the handling of "..".
800  */
801 int
zfsctl_root_lookup(struct inode * dip,const char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)802 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
803     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
804 {
805 	zfsvfs_t *zfsvfs = ITOZSB(dip);
806 	int error = 0;
807 
808 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
809 		return (error);
810 
811 	if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
812 		*ipp = NULL;
813 	} else if (strcmp(name, "..") == 0) {
814 		*ipp = dip->i_sb->s_root->d_inode;
815 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
816 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
817 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
818 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
819 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
820 		    &zpl_fops_shares, &zpl_ops_shares);
821 	} else {
822 		*ipp = NULL;
823 	}
824 
825 	if (*ipp == NULL)
826 		error = SET_ERROR(ENOENT);
827 
828 	zfs_exit(zfsvfs, FTAG);
829 
830 	return (error);
831 }
832 
833 /*
834  * Lookup entry point for the 'snapshot' directory.  Try to open the
835  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
836  */
837 int
zfsctl_snapdir_lookup(struct inode * dip,const char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)838 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
839     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
840 {
841 	zfsvfs_t *zfsvfs = ITOZSB(dip);
842 	uint64_t id;
843 	int error;
844 
845 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
846 		return (error);
847 
848 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
849 	if (error) {
850 		zfs_exit(zfsvfs, FTAG);
851 		return (error);
852 	}
853 
854 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
855 	    &simple_dir_operations, &simple_dir_inode_operations);
856 	if (*ipp == NULL)
857 		error = SET_ERROR(ENOENT);
858 
859 	zfs_exit(zfsvfs, FTAG);
860 
861 	return (error);
862 }
863 
864 /*
865  * Renaming a directory under '.zfs/snapshot' will automatically trigger
866  * a rename of the snapshot to the new given name.  The rename is confined
867  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
868  */
869 int
zfsctl_snapdir_rename(struct inode * sdip,const char * snm,struct inode * tdip,const char * tnm,cred_t * cr,int flags)870 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
871     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
872 {
873 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
874 	char *to, *from, *real, *fsname;
875 	int error;
876 
877 	if (!zfs_admin_snapshot)
878 		return (SET_ERROR(EACCES));
879 
880 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
881 		return (error);
882 
883 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
884 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
885 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
886 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
887 
888 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
889 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
890 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
891 		if (error == 0) {
892 			snm = real;
893 		} else if (error != ENOTSUP) {
894 			goto out;
895 		}
896 	}
897 
898 	dmu_objset_name(zfsvfs->z_os, fsname);
899 
900 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
901 	    ZFS_MAX_DATASET_NAME_LEN, from);
902 	if (error == 0)
903 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
904 		    ZFS_MAX_DATASET_NAME_LEN, to);
905 	if (error == 0)
906 		error = zfs_secpolicy_rename_perms(from, to, cr);
907 	if (error != 0)
908 		goto out;
909 
910 	/*
911 	 * Cannot move snapshots out of the snapdir.
912 	 */
913 	if (sdip != tdip) {
914 		error = SET_ERROR(EINVAL);
915 		goto out;
916 	}
917 
918 	/*
919 	 * No-op when names are identical.
920 	 */
921 	if (strcmp(snm, tnm) == 0) {
922 		error = 0;
923 		goto out;
924 	}
925 
926 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
927 
928 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
929 	if (error == 0)
930 		(void) zfsctl_snapshot_rename(snm, tnm);
931 
932 	rw_exit(&zfs_snapshot_lock);
933 out:
934 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
935 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
936 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
937 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
938 
939 	zfs_exit(zfsvfs, FTAG);
940 
941 	return (error);
942 }
943 
944 /*
945  * Removing a directory under '.zfs/snapshot' will automatically trigger
946  * the removal of the snapshot with the given name.
947  */
948 int
zfsctl_snapdir_remove(struct inode * dip,const char * name,cred_t * cr,int flags)949 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
950     int flags)
951 {
952 	zfsvfs_t *zfsvfs = ITOZSB(dip);
953 	char *snapname, *real;
954 	int error;
955 
956 	if (!zfs_admin_snapshot)
957 		return (SET_ERROR(EACCES));
958 
959 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
960 		return (error);
961 
962 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
963 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
964 
965 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
966 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
967 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
968 		if (error == 0) {
969 			name = real;
970 		} else if (error != ENOTSUP) {
971 			goto out;
972 		}
973 	}
974 
975 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
976 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
977 	if (error == 0)
978 		error = zfs_secpolicy_destroy_perms(snapname, cr);
979 	if (error != 0)
980 		goto out;
981 
982 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
983 	if ((error == 0) || (error == ENOENT))
984 		error = dsl_destroy_snapshot(snapname, B_FALSE);
985 out:
986 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
987 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
988 
989 	zfs_exit(zfsvfs, FTAG);
990 
991 	return (error);
992 }
993 
994 /*
995  * Creating a directory under '.zfs/snapshot' will automatically trigger
996  * the creation of a new snapshot with the given name.
997  */
998 int
zfsctl_snapdir_mkdir(struct inode * dip,const char * dirname,vattr_t * vap,struct inode ** ipp,cred_t * cr,int flags)999 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
1000     struct inode **ipp, cred_t *cr, int flags)
1001 {
1002 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1003 	char *dsname;
1004 	int error;
1005 
1006 	if (!zfs_admin_snapshot)
1007 		return (SET_ERROR(EACCES));
1008 
1009 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1010 
1011 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
1012 		error = SET_ERROR(EILSEQ);
1013 		goto out;
1014 	}
1015 
1016 	dmu_objset_name(zfsvfs->z_os, dsname);
1017 
1018 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
1019 	if (error != 0)
1020 		goto out;
1021 
1022 	if (error == 0) {
1023 		error = dmu_objset_snapshot_one(dsname, dirname);
1024 		if (error != 0)
1025 			goto out;
1026 
1027 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1028 		    0, cr, NULL, NULL);
1029 	}
1030 out:
1031 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1032 
1033 	return (error);
1034 }
1035 
1036 /*
1037  * Flush everything out of the kernel's export table and such.
1038  * This is needed as once the snapshot is used over NFS, its
1039  * entries in svc_export and svc_expkey caches hold reference
1040  * to the snapshot mount point. There is no known way of flushing
1041  * only the entries related to the snapshot.
1042  */
1043 static void
exportfs_flush(void)1044 exportfs_flush(void)
1045 {
1046 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1047 	char *envp[] = { NULL };
1048 
1049 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1050 }
1051 
1052 /*
1053  * Returns the path in char format for given struct path. Uses
1054  * d_path exported by kernel to convert struct path to char
1055  * format. Returns the correct path for mountpoints and chroot
1056  * environments.
1057  *
1058  * If chroot environment has directories that are mounted with
1059  * --bind or --rbind flag, d_path returns the complete path inside
1060  * chroot environment but does not return the absolute path, i.e.
1061  * the path to chroot environment is missing.
1062  */
1063 static int
get_root_path(struct path * path,char * buff,int len)1064 get_root_path(struct path *path, char *buff, int len)
1065 {
1066 	char *path_buffer, *path_ptr;
1067 	int error = 0;
1068 
1069 	path_get(path);
1070 	path_buffer = kmem_zalloc(len, KM_SLEEP);
1071 	path_ptr = d_path(path, path_buffer, len);
1072 	if (IS_ERR(path_ptr))
1073 		error = SET_ERROR(-PTR_ERR(path_ptr));
1074 	else
1075 		strcpy(buff, path_ptr);
1076 
1077 	kmem_free(path_buffer, len);
1078 	path_put(path);
1079 	return (error);
1080 }
1081 
1082 /*
1083  * Returns if the current process root is chrooted or not. Linux
1084  * kernel exposes the task_struct for current process and init.
1085  * Since init process root points to actual root filesystem when
1086  * Linux runtime is reached, we can compare the current process
1087  * root with init process root to determine if root of the current
1088  * process is different from init, which can reliably determine if
1089  * current process is in chroot context or not.
1090  */
1091 static int
is_current_chrooted(void)1092 is_current_chrooted(void)
1093 {
1094 	struct task_struct *curr = current, *global = &init_task;
1095 	struct path cr_root, gl_root;
1096 
1097 	task_lock(curr);
1098 	get_fs_root(curr->fs, &cr_root);
1099 	task_unlock(curr);
1100 
1101 	task_lock(global);
1102 	get_fs_root(global->fs, &gl_root);
1103 	task_unlock(global);
1104 
1105 	int chrooted = !path_equal(&cr_root, &gl_root);
1106 	path_put(&gl_root);
1107 	path_put(&cr_root);
1108 
1109 	return (chrooted);
1110 }
1111 
1112 /*
1113  * Attempt to unmount a snapshot by making a call to user space.
1114  * There is no assurance that this can or will succeed, is just a
1115  * best effort.  In the case where it does fail, perhaps because
1116  * it's in use, the unmount will fail harmlessly.
1117  */
1118 int
zfsctl_snapshot_unmount(const char * snapname,int flags)1119 zfsctl_snapshot_unmount(const char *snapname, int flags)
1120 {
1121 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1122 	    NULL };
1123 	char *envp[] = { NULL };
1124 	zfs_snapentry_t *se;
1125 	int error;
1126 
1127 	rw_enter(&zfs_snapshot_lock, RW_READER);
1128 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1129 		rw_exit(&zfs_snapshot_lock);
1130 		return (SET_ERROR(ENOENT));
1131 	}
1132 	rw_exit(&zfs_snapshot_lock);
1133 
1134 	exportfs_flush();
1135 
1136 	if (flags & MNT_FORCE)
1137 		argv[4] = "-fn";
1138 	argv[5] = se->se_path;
1139 	dprintf("unmount; path=%s\n", se->se_path);
1140 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1141 	zfsctl_snapshot_rele(se);
1142 
1143 
1144 	/*
1145 	 * The umount system utility will return 256 on error.  We must
1146 	 * assume this error is because the file system is busy so it is
1147 	 * converted to the more sensible EBUSY.
1148 	 */
1149 	if (error)
1150 		error = SET_ERROR(EBUSY);
1151 
1152 	return (error);
1153 }
1154 
1155 int
zfsctl_snapshot_mount(struct path * path,int flags)1156 zfsctl_snapshot_mount(struct path *path, int flags)
1157 {
1158 	struct dentry *dentry = path->dentry;
1159 	struct inode *ip = dentry->d_inode;
1160 	zfsvfs_t *zfsvfs;
1161 	zfsvfs_t *snap_zfsvfs;
1162 	zfs_snapentry_t *se;
1163 	char *full_name, *full_path, *options;
1164 	char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n",
1165 	    "-o", NULL, NULL, NULL, NULL };
1166 	char *envp[] = { NULL };
1167 	int error;
1168 	struct path spath;
1169 
1170 	if (ip == NULL)
1171 		return (SET_ERROR(EISDIR));
1172 
1173 	zfsvfs = ITOZSB(ip);
1174 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1175 		return (error);
1176 
1177 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1178 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1179 	options = kmem_zalloc(7, KM_SLEEP);
1180 
1181 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1182 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1183 	if (error)
1184 		goto error;
1185 
1186 	if (is_current_chrooted() == 0) {
1187 		/*
1188 		 * Current process is not in chroot context
1189 		 */
1190 
1191 		char *m = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1192 		struct path mnt_path;
1193 		mnt_path.mnt = path->mnt;
1194 		mnt_path.dentry = path->mnt->mnt_root;
1195 
1196 		/*
1197 		 * Get path to current mountpoint
1198 		 */
1199 		error = get_root_path(&mnt_path, m, MAXPATHLEN);
1200 		if (error != 0) {
1201 			kmem_free(m, MAXPATHLEN);
1202 			goto error;
1203 		}
1204 		mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1205 		if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
1206 			/*
1207 			 * If current mnountpoint and vfs_mntpoint are not same,
1208 			 * store current mountpoint in vfs_mntpoint.
1209 			 */
1210 			if (strcmp(zfsvfs->z_vfs->vfs_mntpoint, m) != 0) {
1211 				kmem_strfree(zfsvfs->z_vfs->vfs_mntpoint);
1212 				zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1213 			}
1214 		} else
1215 			zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1216 		mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1217 		kmem_free(m, MAXPATHLEN);
1218 	}
1219 
1220 	/*
1221 	 * Construct a mount point path from sb of the ctldir inode and dirent
1222 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1223 	 * on mount.zfs(8).
1224 	 */
1225 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1226 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1227 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1228 	    dname(dentry));
1229 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1230 
1231 	snprintf(options, 7, "%s",
1232 	    zfs_snapshot_no_setuid ? "nosuid" : "suid");
1233 
1234 	/*
1235 	 * Multiple concurrent automounts of a snapshot are never allowed.
1236 	 * The snapshot may be manually mounted as many times as desired.
1237 	 */
1238 	if (zfsctl_snapshot_ismounted(full_name)) {
1239 		error = 0;
1240 		goto error;
1241 	}
1242 
1243 	/*
1244 	 * Attempt to mount the snapshot from user space.  Normally this
1245 	 * would be done using the vfs_kern_mount() function, however that
1246 	 * function is marked GPL-only and cannot be used.  On error we
1247 	 * careful to log the real error to the console and return EISDIR
1248 	 * to safely abort the automount.  This should be very rare.
1249 	 *
1250 	 * If the user mode helper happens to return EBUSY, a concurrent
1251 	 * mount is already in progress in which case the error is ignored.
1252 	 * Take note that if the program was executed successfully the return
1253 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1254 	 */
1255 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1256 	argv[7] = options;
1257 	argv[8] = full_name;
1258 	argv[9] = full_path;
1259 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1260 	if (error) {
1261 		if (!(error & MOUNT_BUSY << 8)) {
1262 			zfs_dbgmsg("Unable to automount %s error=%d",
1263 			    full_path, error);
1264 			error = SET_ERROR(EISDIR);
1265 		} else {
1266 			/*
1267 			 * EBUSY, this could mean a concurrent mount, or the
1268 			 * snapshot has already been mounted at completely
1269 			 * different place. We return 0 so VFS will retry. For
1270 			 * the latter case the VFS will retry several times
1271 			 * and return ELOOP, which is probably not a very good
1272 			 * behavior.
1273 			 */
1274 			error = 0;
1275 		}
1276 		goto error;
1277 	}
1278 
1279 	/*
1280 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1281 	 * to identify this as an automounted filesystem.
1282 	 */
1283 	spath = *path;
1284 	path_get(&spath);
1285 	if (follow_down_one(&spath)) {
1286 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1287 		snap_zfsvfs->z_parent = zfsvfs;
1288 		dentry = spath.dentry;
1289 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1290 
1291 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1292 		se = zfsctl_snapshot_alloc(full_name, full_path,
1293 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1294 		    dentry);
1295 		zfsctl_snapshot_add(se);
1296 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1297 		rw_exit(&zfs_snapshot_lock);
1298 	}
1299 	path_put(&spath);
1300 error:
1301 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1302 	kmem_free(full_path, MAXPATHLEN);
1303 
1304 	zfs_exit(zfsvfs, FTAG);
1305 
1306 	return (error);
1307 }
1308 
1309 /*
1310  * Get the snapdir inode from fid
1311  */
1312 int
zfsctl_snapdir_vget(struct super_block * sb,uint64_t objsetid,int gen,struct inode ** ipp)1313 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1314     struct inode **ipp)
1315 {
1316 	int error;
1317 	struct path path;
1318 	char *mnt;
1319 	struct dentry *dentry;
1320 
1321 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1322 
1323 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1324 	    MAXPATHLEN, mnt);
1325 	if (error)
1326 		goto out;
1327 
1328 	/* Trigger automount */
1329 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1330 	if (error)
1331 		goto out;
1332 
1333 	path_put(&path);
1334 	/*
1335 	 * Get the snapdir inode. Note, we don't want to use the above
1336 	 * path because it contains the root of the snapshot rather
1337 	 * than the snapdir.
1338 	 */
1339 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1340 	if (*ipp == NULL) {
1341 		error = SET_ERROR(ENOENT);
1342 		goto out;
1343 	}
1344 
1345 	/* check gen, see zfsctl_snapdir_fid */
1346 	dentry = d_obtain_alias(igrab(*ipp));
1347 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1348 		iput(*ipp);
1349 		*ipp = NULL;
1350 		error = SET_ERROR(ENOENT);
1351 	}
1352 	if (!IS_ERR(dentry))
1353 		dput(dentry);
1354 out:
1355 	kmem_free(mnt, MAXPATHLEN);
1356 	return (error);
1357 }
1358 
1359 int
zfsctl_shares_lookup(struct inode * dip,char * name,struct inode ** ipp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)1360 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1361     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1362 {
1363 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1364 	znode_t *zp;
1365 	znode_t *dzp;
1366 	int error;
1367 
1368 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1369 		return (error);
1370 
1371 	if (zfsvfs->z_shares_dir == 0) {
1372 		zfs_exit(zfsvfs, FTAG);
1373 		return (SET_ERROR(ENOTSUP));
1374 	}
1375 
1376 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1377 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1378 		zrele(dzp);
1379 	}
1380 
1381 	zfs_exit(zfsvfs, FTAG);
1382 
1383 	return (error);
1384 }
1385 
1386 /*
1387  * Initialize the various pieces we'll need to create and manipulate .zfs
1388  * directories.  Currently this is unused but available.
1389  */
1390 void
zfsctl_init(void)1391 zfsctl_init(void)
1392 {
1393 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1394 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1395 	    se_node_name));
1396 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1397 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1398 	    se_node_objsetid));
1399 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1400 }
1401 
1402 /*
1403  * Cleanup the various pieces we needed for .zfs directories.  In particular
1404  * ensure the expiry timer is canceled safely.
1405  */
1406 void
zfsctl_fini(void)1407 zfsctl_fini(void)
1408 {
1409 	avl_destroy(&zfs_snapshots_by_name);
1410 	avl_destroy(&zfs_snapshots_by_objsetid);
1411 	rw_destroy(&zfs_snapshot_lock);
1412 }
1413 
1414 module_param(zfs_admin_snapshot, int, 0644);
1415 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1416 
1417 module_param(zfs_expire_snapshot, int, 0644);
1418 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1419 
1420 module_param(zfs_snapshot_no_setuid, int, 0644);
1421 MODULE_PARM_DESC(zfs_snapshot_no_setuid,
1422 	"Disable setuid/setgid for automounts in .zfs/snapshot");
1423