1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/sysmacros.h>
32 #include <sys/mntent.h>
33 #include <sys/u8_textprep.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/kmem.h>
39 #include <sys/errno.h>
40 #include <sys/atomic.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zfs_acl.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zfs_rlock.h>
45 #include <sys/zfs_fuid.h>
46 #include <sys/zfs_vnops.h>
47 #include <sys/zfs_ctldir.h>
48 #include <sys/dnode.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zpl.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zfs_refcount.h>
55 #include <sys/stat.h>
56 #include <sys/zap.h>
57 #include <sys/zfs_znode.h>
58 #include <sys/sa.h>
59 #include <sys/zfs_sa.h>
60 #include <sys/zfs_stat.h>
61 #include <linux/mm_compat.h>
62
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65
66 static kmem_cache_t *znode_cache = NULL;
67 static kmem_cache_t *znode_hold_cache = NULL;
68 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
69
70 /*
71 * This is used by the test suite so that it can delay znodes from being
72 * freed in order to inspect the unlinked set.
73 */
74 static int zfs_unlink_suspend_progress = 0;
75
76 /*
77 * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
78 * z_rangelock. It will modify the offset and length of the lock to reflect
79 * znode-specific information, and convert RL_APPEND to RL_WRITER. This is
80 * called with the rangelock_t's rl_lock held, which avoids races.
81 */
82 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)83 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
84 {
85 znode_t *zp = arg;
86
87 /*
88 * If in append mode, convert to writer and lock starting at the
89 * current end of file.
90 */
91 if (new->lr_type == RL_APPEND) {
92 new->lr_offset = zp->z_size;
93 new->lr_type = RL_WRITER;
94 }
95
96 /*
97 * If we need to grow the block size then lock the whole file range.
98 */
99 uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
100 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
101 zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
102 new->lr_offset = 0;
103 new->lr_length = UINT64_MAX;
104 }
105 }
106
107 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)108 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
109 {
110 (void) arg, (void) kmflags;
111 znode_t *zp = buf;
112
113 inode_init_once(ZTOI(zp));
114 list_link_init(&zp->z_link_node);
115
116 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
117 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
118 rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
119 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
120 rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
121
122 zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
123
124 zp->z_dirlocks = NULL;
125 zp->z_acl_cached = NULL;
126 zp->z_xattr_cached = NULL;
127 zp->z_xattr_parent = 0;
128 zp->z_sync_writes_cnt = 0;
129 zp->z_async_writes_cnt = 0;
130
131 return (0);
132 }
133
134 static void
zfs_znode_cache_destructor(void * buf,void * arg)135 zfs_znode_cache_destructor(void *buf, void *arg)
136 {
137 (void) arg;
138 znode_t *zp = buf;
139
140 ASSERT(!list_link_active(&zp->z_link_node));
141 mutex_destroy(&zp->z_lock);
142 rw_destroy(&zp->z_parent_lock);
143 rw_destroy(&zp->z_name_lock);
144 mutex_destroy(&zp->z_acl_lock);
145 rw_destroy(&zp->z_xattr_lock);
146 zfs_rangelock_fini(&zp->z_rangelock);
147
148 ASSERT3P(zp->z_dirlocks, ==, NULL);
149 ASSERT3P(zp->z_acl_cached, ==, NULL);
150 ASSERT3P(zp->z_xattr_cached, ==, NULL);
151
152 ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
153 ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
154 }
155
156 static int
zfs_znode_hold_cache_constructor(void * buf,void * arg,int kmflags)157 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
158 {
159 (void) arg, (void) kmflags;
160 znode_hold_t *zh = buf;
161
162 mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
163 zh->zh_refcount = 0;
164
165 return (0);
166 }
167
168 static void
zfs_znode_hold_cache_destructor(void * buf,void * arg)169 zfs_znode_hold_cache_destructor(void *buf, void *arg)
170 {
171 (void) arg;
172 znode_hold_t *zh = buf;
173
174 mutex_destroy(&zh->zh_lock);
175 }
176
177 void
zfs_znode_init(void)178 zfs_znode_init(void)
179 {
180 /*
181 * Initialize zcache. The KMC_SLAB hint is used in order that it be
182 * backed by kmalloc() when on the Linux slab in order that any
183 * wait_on_bit() operations on the related inode operate properly.
184 */
185 ASSERT(znode_cache == NULL);
186 znode_cache = kmem_cache_create("zfs_znode_cache",
187 sizeof (znode_t), 0, zfs_znode_cache_constructor,
188 zfs_znode_cache_destructor, NULL, NULL, NULL,
189 KMC_SLAB | KMC_RECLAIMABLE);
190
191 ASSERT(znode_hold_cache == NULL);
192 znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
193 sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
194 zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
195 }
196
197 void
zfs_znode_fini(void)198 zfs_znode_fini(void)
199 {
200 /*
201 * Cleanup zcache
202 */
203 if (znode_cache)
204 kmem_cache_destroy(znode_cache);
205 znode_cache = NULL;
206
207 if (znode_hold_cache)
208 kmem_cache_destroy(znode_hold_cache);
209 znode_hold_cache = NULL;
210 }
211
212 /*
213 * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
214 * serialize access to a znode and its SA buffer while the object is being
215 * created or destroyed. This kind of locking would normally reside in the
216 * znode itself but in this case that's impossible because the znode and SA
217 * buffer may not yet exist. Therefore the locking is handled externally
218 * with an array of mutexes and AVLs trees which contain per-object locks.
219 *
220 * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
221 * in to the correct AVL tree and finally the per-object lock is held. In
222 * zfs_znode_hold_exit() the process is reversed. The per-object lock is
223 * released, removed from the AVL tree and destroyed if there are no waiters.
224 *
225 * This scheme has two important properties:
226 *
227 * 1) No memory allocations are performed while holding one of the z_hold_locks.
228 * This ensures evict(), which can be called from direct memory reclaim, will
229 * never block waiting on a z_hold_locks which just happens to have hashed
230 * to the same index.
231 *
232 * 2) All locks used to serialize access to an object are per-object and never
233 * shared. This minimizes lock contention without creating a large number
234 * of dedicated locks.
235 *
236 * On the downside it does require znode_lock_t structures to be frequently
237 * allocated and freed. However, because these are backed by a kmem cache
238 * and very short lived this cost is minimal.
239 */
240 int
zfs_znode_hold_compare(const void * a,const void * b)241 zfs_znode_hold_compare(const void *a, const void *b)
242 {
243 const znode_hold_t *zh_a = (const znode_hold_t *)a;
244 const znode_hold_t *zh_b = (const znode_hold_t *)b;
245
246 return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
247 }
248
249 static boolean_t __maybe_unused
zfs_znode_held(zfsvfs_t * zfsvfs,uint64_t obj)250 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
251 {
252 znode_hold_t *zh, search;
253 int i = ZFS_OBJ_HASH(zfsvfs, obj);
254 boolean_t held;
255
256 search.zh_obj = obj;
257
258 mutex_enter(&zfsvfs->z_hold_locks[i]);
259 zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
260 held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
261 mutex_exit(&zfsvfs->z_hold_locks[i]);
262
263 return (held);
264 }
265
266 znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t * zfsvfs,uint64_t obj)267 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
268 {
269 znode_hold_t *zh, *zh_new, search;
270 int i = ZFS_OBJ_HASH(zfsvfs, obj);
271 boolean_t found = B_FALSE;
272
273 zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
274 search.zh_obj = obj;
275
276 mutex_enter(&zfsvfs->z_hold_locks[i]);
277 zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
278 if (likely(zh == NULL)) {
279 zh = zh_new;
280 zh->zh_obj = obj;
281 avl_add(&zfsvfs->z_hold_trees[i], zh);
282 } else {
283 ASSERT3U(zh->zh_obj, ==, obj);
284 found = B_TRUE;
285 }
286 zh->zh_refcount++;
287 ASSERT3S(zh->zh_refcount, >, 0);
288 mutex_exit(&zfsvfs->z_hold_locks[i]);
289
290 if (found == B_TRUE)
291 kmem_cache_free(znode_hold_cache, zh_new);
292
293 ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
294 mutex_enter(&zh->zh_lock);
295
296 return (zh);
297 }
298
299 void
zfs_znode_hold_exit(zfsvfs_t * zfsvfs,znode_hold_t * zh)300 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
301 {
302 int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
303 boolean_t remove = B_FALSE;
304
305 ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
306 mutex_exit(&zh->zh_lock);
307
308 mutex_enter(&zfsvfs->z_hold_locks[i]);
309 ASSERT3S(zh->zh_refcount, >, 0);
310 if (--zh->zh_refcount == 0) {
311 avl_remove(&zfsvfs->z_hold_trees[i], zh);
312 remove = B_TRUE;
313 }
314 mutex_exit(&zfsvfs->z_hold_locks[i]);
315
316 if (remove == B_TRUE)
317 kmem_cache_free(znode_hold_cache, zh);
318 }
319
320 dev_t
zfs_cmpldev(uint64_t dev)321 zfs_cmpldev(uint64_t dev)
322 {
323 return (dev);
324 }
325
326 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)327 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
328 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
329 {
330 ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
331
332 mutex_enter(&zp->z_lock);
333
334 ASSERT(zp->z_sa_hdl == NULL);
335 ASSERT(zp->z_acl_cached == NULL);
336 if (sa_hdl == NULL) {
337 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
338 SA_HDL_SHARED, &zp->z_sa_hdl));
339 } else {
340 zp->z_sa_hdl = sa_hdl;
341 sa_set_userp(sa_hdl, zp);
342 }
343
344 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
345
346 mutex_exit(&zp->z_lock);
347 }
348
349 void
zfs_znode_dmu_fini(znode_t * zp)350 zfs_znode_dmu_fini(znode_t *zp)
351 {
352 ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
353 RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
354
355 sa_handle_destroy(zp->z_sa_hdl);
356 zp->z_sa_hdl = NULL;
357 }
358
359 /*
360 * Called by new_inode() to allocate a new inode.
361 */
362 int
zfs_inode_alloc(struct super_block * sb,struct inode ** ip)363 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
364 {
365 znode_t *zp;
366
367 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
368 *ip = ZTOI(zp);
369
370 return (0);
371 }
372
373 /*
374 * Called in multiple places when an inode should be destroyed.
375 */
376 void
zfs_inode_destroy(struct inode * ip)377 zfs_inode_destroy(struct inode *ip)
378 {
379 znode_t *zp = ITOZ(ip);
380 zfsvfs_t *zfsvfs = ZTOZSB(zp);
381
382 mutex_enter(&zfsvfs->z_znodes_lock);
383 if (list_link_active(&zp->z_link_node)) {
384 list_remove(&zfsvfs->z_all_znodes, zp);
385 }
386 mutex_exit(&zfsvfs->z_znodes_lock);
387
388 if (zp->z_acl_cached) {
389 zfs_acl_free(zp->z_acl_cached);
390 zp->z_acl_cached = NULL;
391 }
392
393 if (zp->z_xattr_cached) {
394 nvlist_free(zp->z_xattr_cached);
395 zp->z_xattr_cached = NULL;
396 }
397
398 kmem_cache_free(znode_cache, zp);
399 }
400
401 static void
zfs_inode_set_ops(zfsvfs_t * zfsvfs,struct inode * ip)402 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
403 {
404 uint64_t rdev = 0;
405
406 switch (ip->i_mode & S_IFMT) {
407 case S_IFREG:
408 ip->i_op = &zpl_inode_operations;
409 ip->i_fop = &zpl_file_operations;
410 ip->i_mapping->a_ops = &zpl_address_space_operations;
411 break;
412
413 case S_IFDIR:
414 ip->i_op = &zpl_dir_inode_operations;
415 ip->i_fop = &zpl_dir_file_operations;
416 ITOZ(ip)->z_zn_prefetch = B_TRUE;
417 break;
418
419 case S_IFLNK:
420 ip->i_op = &zpl_symlink_inode_operations;
421 break;
422
423 /*
424 * rdev is only stored in a SA only for device files.
425 */
426 case S_IFCHR:
427 case S_IFBLK:
428 (void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
429 sizeof (rdev));
430 zfs_fallthrough;
431 case S_IFIFO:
432 case S_IFSOCK:
433 init_special_inode(ip, ip->i_mode, rdev);
434 ip->i_op = &zpl_special_inode_operations;
435 break;
436
437 default:
438 zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
439 (u_longlong_t)ip->i_ino, ip->i_mode);
440
441 /* Assume the inode is a file and attempt to continue */
442 ip->i_mode = S_IFREG | 0644;
443 ip->i_op = &zpl_inode_operations;
444 ip->i_fop = &zpl_file_operations;
445 ip->i_mapping->a_ops = &zpl_address_space_operations;
446 break;
447 }
448 }
449
450 static void
zfs_set_inode_flags(znode_t * zp,struct inode * ip)451 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
452 {
453 /*
454 * Linux and Solaris have different sets of file attributes, so we
455 * restrict this conversion to the intersection of the two.
456 */
457 unsigned int flags = 0;
458 if (zp->z_pflags & ZFS_IMMUTABLE)
459 flags |= S_IMMUTABLE;
460 if (zp->z_pflags & ZFS_APPENDONLY)
461 flags |= S_APPEND;
462
463 inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
464 }
465
466 /*
467 * Update the embedded inode given the znode.
468 */
469 void
zfs_znode_update_vfs(znode_t * zp)470 zfs_znode_update_vfs(znode_t *zp)
471 {
472 struct inode *ip;
473 uint32_t blksize;
474 u_longlong_t i_blocks;
475
476 ASSERT(zp != NULL);
477 ip = ZTOI(zp);
478
479 /* Skip .zfs control nodes which do not exist on disk. */
480 if (zfsctl_is_node(ip))
481 return;
482
483 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
484
485 spin_lock(&ip->i_lock);
486 ip->i_mode = zp->z_mode;
487 ip->i_blocks = i_blocks;
488 i_size_write(ip, zp->z_size);
489 spin_unlock(&ip->i_lock);
490 }
491
492
493 /*
494 * Construct a znode+inode and initialize.
495 *
496 * This does not do a call to dmu_set_user() that is
497 * up to the caller to do, in case you don't want to
498 * return the znode
499 */
500 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)501 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
502 dmu_object_type_t obj_type, sa_handle_t *hdl)
503 {
504 znode_t *zp;
505 struct inode *ip;
506 uint64_t mode;
507 uint64_t parent;
508 uint64_t tmp_gen;
509 uint64_t links;
510 uint64_t z_uid, z_gid;
511 uint64_t atime[2], mtime[2], ctime[2], btime[2];
512 inode_timespec_t tmp_ts;
513 uint64_t projid = ZFS_DEFAULT_PROJID;
514 sa_bulk_attr_t bulk[12];
515 int count = 0;
516
517 ASSERT(zfsvfs != NULL);
518
519 ip = new_inode(zfsvfs->z_sb);
520 if (ip == NULL)
521 return (NULL);
522
523 zp = ITOZ(ip);
524 ASSERT(zp->z_dirlocks == NULL);
525 ASSERT3P(zp->z_acl_cached, ==, NULL);
526 ASSERT3P(zp->z_xattr_cached, ==, NULL);
527 zp->z_unlinked = B_FALSE;
528 zp->z_atime_dirty = B_FALSE;
529 zp->z_is_ctldir = B_FALSE;
530 zp->z_suspended = B_FALSE;
531 zp->z_sa_hdl = NULL;
532 zp->z_mapcnt = 0;
533 zp->z_id = db->db_object;
534 zp->z_blksz = blksz;
535 zp->z_seq = 0x7A4653;
536 zp->z_sync_cnt = 0;
537 zp->z_sync_writes_cnt = 0;
538 zp->z_async_writes_cnt = 0;
539
540 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
541
542 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
543 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
544 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
545 &zp->z_size, 8);
546 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
547 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
548 &zp->z_pflags, 8);
549 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
550 &parent, 8);
551 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
552 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
553 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
554 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
555 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
556 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
557
558 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
559 (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
560 (zp->z_pflags & ZFS_PROJID) &&
561 sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
562 if (hdl == NULL)
563 sa_handle_destroy(zp->z_sa_hdl);
564 zp->z_sa_hdl = NULL;
565 goto error;
566 }
567
568 zp->z_projid = projid;
569 zp->z_mode = ip->i_mode = mode;
570 ip->i_generation = (uint32_t)tmp_gen;
571 ip->i_blkbits = SPA_MINBLOCKSHIFT;
572 set_nlink(ip, (uint32_t)links);
573 zfs_uid_write(ip, z_uid);
574 zfs_gid_write(ip, z_gid);
575 zfs_set_inode_flags(zp, ip);
576
577 /* Cache the xattr parent id */
578 if (zp->z_pflags & ZFS_XATTR)
579 zp->z_xattr_parent = parent;
580
581 ZFS_TIME_DECODE(&tmp_ts, atime);
582 zpl_inode_set_atime_to_ts(ip, tmp_ts);
583 ZFS_TIME_DECODE(&tmp_ts, mtime);
584 zpl_inode_set_mtime_to_ts(ip, tmp_ts);
585 ZFS_TIME_DECODE(&tmp_ts, ctime);
586 zpl_inode_set_ctime_to_ts(ip, tmp_ts);
587 ZFS_TIME_DECODE(&zp->z_btime, btime);
588
589 ip->i_ino = zp->z_id;
590 zfs_znode_update_vfs(zp);
591 zfs_inode_set_ops(zfsvfs, ip);
592
593 /*
594 * The only way insert_inode_locked() can fail is if the ip->i_ino
595 * number is already hashed for this super block. This can never
596 * happen because the inode numbers map 1:1 with the object numbers.
597 *
598 * Exceptions include rolling back a mounted file system, either
599 * from the zfs rollback or zfs recv command.
600 *
601 * Active inodes are unhashed during the rollback, but since zrele
602 * can happen asynchronously, we can't guarantee they've been
603 * unhashed. This can cause hash collisions in unlinked drain
604 * processing so do not hash unlinked znodes.
605 */
606 if (links > 0)
607 VERIFY3S(insert_inode_locked(ip), ==, 0);
608
609 mutex_enter(&zfsvfs->z_znodes_lock);
610 list_insert_tail(&zfsvfs->z_all_znodes, zp);
611 mutex_exit(&zfsvfs->z_znodes_lock);
612
613 if (links > 0)
614 unlock_new_inode(ip);
615 return (zp);
616
617 error:
618 iput(ip);
619 return (NULL);
620 }
621
622 /*
623 * Safely mark an inode dirty. Inodes which are part of a read-only
624 * file system or snapshot may not be dirtied.
625 */
626 void
zfs_mark_inode_dirty(struct inode * ip)627 zfs_mark_inode_dirty(struct inode *ip)
628 {
629 zfsvfs_t *zfsvfs = ITOZSB(ip);
630
631 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
632 return;
633
634 mark_inode_dirty(ip);
635 }
636
637 static uint64_t empty_xattr;
638 static uint64_t pad[4];
639 static zfs_acl_phys_t acl_phys;
640 /*
641 * Create a new DMU object to hold a zfs znode.
642 *
643 * IN: dzp - parent directory for new znode
644 * vap - file attributes for new znode
645 * tx - dmu transaction id for zap operations
646 * cr - credentials of caller
647 * flag - flags:
648 * IS_ROOT_NODE - new object will be root
649 * IS_TMPFILE - new object is of O_TMPFILE
650 * IS_XATTR - new object is an attribute
651 * acl_ids - ACL related attributes
652 *
653 * OUT: zpp - allocated znode (set to dzp if IS_ROOT_NODE)
654 *
655 */
656 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)657 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
658 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
659 {
660 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
661 uint64_t mode, size, links, parent, pflags;
662 uint64_t projid = ZFS_DEFAULT_PROJID;
663 uint64_t rdev = 0;
664 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
665 dmu_buf_t *db;
666 inode_timespec_t now;
667 uint64_t gen, obj;
668 int bonuslen;
669 int dnodesize;
670 sa_handle_t *sa_hdl;
671 dmu_object_type_t obj_type;
672 sa_bulk_attr_t *sa_attrs;
673 int cnt = 0;
674 zfs_acl_locator_cb_t locate = { 0 };
675 znode_hold_t *zh;
676
677 if (zfsvfs->z_replay) {
678 obj = vap->va_nodeid;
679 now = vap->va_ctime; /* see zfs_replay_create() */
680 gen = vap->va_nblocks; /* ditto */
681 dnodesize = vap->va_fsid; /* ditto */
682 } else {
683 obj = 0;
684 gethrestime(&now);
685 gen = dmu_tx_get_txg(tx);
686 dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
687 }
688
689 if (dnodesize == 0)
690 dnodesize = DNODE_MIN_SIZE;
691
692 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
693
694 bonuslen = (obj_type == DMU_OT_SA) ?
695 DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
696
697 /*
698 * Create a new DMU object.
699 */
700 /*
701 * There's currently no mechanism for pre-reading the blocks that will
702 * be needed to allocate a new object, so we accept the small chance
703 * that there will be an i/o error and we will fail one of the
704 * assertions below.
705 */
706 if (S_ISDIR(vap->va_mode)) {
707 if (zfsvfs->z_replay) {
708 VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
709 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
710 obj_type, bonuslen, dnodesize, tx));
711 } else {
712 obj = zap_create_norm_dnsize(zfsvfs->z_os,
713 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
714 obj_type, bonuslen, dnodesize, tx);
715 }
716 } else {
717 if (zfsvfs->z_replay) {
718 VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
719 DMU_OT_PLAIN_FILE_CONTENTS, 0,
720 obj_type, bonuslen, dnodesize, tx));
721 } else {
722 obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
723 DMU_OT_PLAIN_FILE_CONTENTS, 0,
724 obj_type, bonuslen, dnodesize, tx);
725 }
726 }
727
728 zh = zfs_znode_hold_enter(zfsvfs, obj);
729 VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
730
731 /*
732 * If this is the root, fix up the half-initialized parent pointer
733 * to reference the just-allocated physical data area.
734 */
735 if (flag & IS_ROOT_NODE) {
736 dzp->z_id = obj;
737 }
738
739 /*
740 * If parent is an xattr, so am I.
741 */
742 if (dzp->z_pflags & ZFS_XATTR) {
743 flag |= IS_XATTR;
744 }
745
746 if (zfsvfs->z_use_fuids)
747 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
748 else
749 pflags = 0;
750
751 if (S_ISDIR(vap->va_mode)) {
752 size = 2; /* contents ("." and "..") */
753 links = 2;
754 } else {
755 size = 0;
756 links = (flag & IS_TMPFILE) ? 0 : 1;
757 }
758
759 if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
760 rdev = vap->va_rdev;
761
762 parent = dzp->z_id;
763 mode = acl_ids->z_mode;
764 if (flag & IS_XATTR)
765 pflags |= ZFS_XATTR;
766
767 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
768 /*
769 * With ZFS_PROJID flag, we can easily know whether there is
770 * project ID stored on disk or not. See zfs_space_delta_cb().
771 */
772 if (obj_type != DMU_OT_ZNODE &&
773 dmu_objset_projectquota_enabled(zfsvfs->z_os))
774 pflags |= ZFS_PROJID;
775
776 /*
777 * Inherit project ID from parent if required.
778 */
779 projid = zfs_inherit_projid(dzp);
780 if (dzp->z_pflags & ZFS_PROJINHERIT)
781 pflags |= ZFS_PROJINHERIT;
782 }
783
784 /*
785 * No execs denied will be determined when zfs_mode_compute() is called.
786 */
787 pflags |= acl_ids->z_aclp->z_hints &
788 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
789 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
790
791 ZFS_TIME_ENCODE(&now, crtime);
792 ZFS_TIME_ENCODE(&now, ctime);
793
794 if (vap->va_mask & ATTR_ATIME) {
795 ZFS_TIME_ENCODE(&vap->va_atime, atime);
796 } else {
797 ZFS_TIME_ENCODE(&now, atime);
798 }
799
800 if (vap->va_mask & ATTR_MTIME) {
801 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
802 } else {
803 ZFS_TIME_ENCODE(&now, mtime);
804 }
805
806 /* Now add in all of the "SA" attributes */
807 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
808 &sa_hdl));
809
810 /*
811 * Setup the array of attributes to be replaced/set on the new file
812 *
813 * order for DMU_OT_ZNODE is critical since it needs to be constructed
814 * in the old znode_phys_t format. Don't change this ordering
815 */
816 sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
817
818 if (obj_type == DMU_OT_ZNODE) {
819 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
820 NULL, &atime, 16);
821 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
822 NULL, &mtime, 16);
823 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
824 NULL, &ctime, 16);
825 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
826 NULL, &crtime, 16);
827 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
828 NULL, &gen, 8);
829 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
830 NULL, &mode, 8);
831 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
832 NULL, &size, 8);
833 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
834 NULL, &parent, 8);
835 } else {
836 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
837 NULL, &mode, 8);
838 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
839 NULL, &size, 8);
840 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
841 NULL, &gen, 8);
842 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
843 NULL, &acl_ids->z_fuid, 8);
844 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
845 NULL, &acl_ids->z_fgid, 8);
846 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
847 NULL, &parent, 8);
848 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
849 NULL, &pflags, 8);
850 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
851 NULL, &atime, 16);
852 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
853 NULL, &mtime, 16);
854 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
855 NULL, &ctime, 16);
856 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
857 NULL, &crtime, 16);
858 }
859
860 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
861
862 if (obj_type == DMU_OT_ZNODE) {
863 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
864 &empty_xattr, 8);
865 } else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
866 pflags & ZFS_PROJID) {
867 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
868 NULL, &projid, 8);
869 }
870 if (obj_type == DMU_OT_ZNODE ||
871 (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
872 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
873 NULL, &rdev, 8);
874 }
875 if (obj_type == DMU_OT_ZNODE) {
876 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
877 NULL, &pflags, 8);
878 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
879 &acl_ids->z_fuid, 8);
880 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
881 &acl_ids->z_fgid, 8);
882 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
883 sizeof (uint64_t) * 4);
884 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
885 &acl_phys, sizeof (zfs_acl_phys_t));
886 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
887 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
888 &acl_ids->z_aclp->z_acl_count, 8);
889 locate.cb_aclp = acl_ids->z_aclp;
890 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
891 zfs_acl_data_locator, &locate,
892 acl_ids->z_aclp->z_acl_bytes);
893 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
894 acl_ids->z_fuid, acl_ids->z_fgid);
895 }
896
897 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
898
899 if (!(flag & IS_ROOT_NODE)) {
900 /*
901 * The call to zfs_znode_alloc() may fail if memory is low
902 * via the call path: alloc_inode() -> inode_init_always() ->
903 * security_inode_alloc() -> inode_alloc_security(). Since
904 * the existing code is written such that zfs_mknode() can
905 * not fail retry until sufficient memory has been reclaimed.
906 */
907 do {
908 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
909 } while (*zpp == NULL);
910
911 VERIFY(*zpp != NULL);
912 VERIFY(dzp != NULL);
913 } else {
914 /*
915 * If we are creating the root node, the "parent" we
916 * passed in is the znode for the root.
917 */
918 *zpp = dzp;
919
920 (*zpp)->z_sa_hdl = sa_hdl;
921 }
922
923 (*zpp)->z_pflags = pflags;
924 (*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
925 (*zpp)->z_dnodesize = dnodesize;
926 (*zpp)->z_projid = projid;
927
928 if (obj_type == DMU_OT_ZNODE ||
929 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
930 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
931 }
932 kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
933 zfs_znode_hold_exit(zfsvfs, zh);
934 }
935
936 /*
937 * Update in-core attributes. It is assumed the caller will be doing an
938 * sa_bulk_update to push the changes out.
939 */
940 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)941 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
942 {
943 xoptattr_t *xoap;
944 boolean_t update_inode = B_FALSE;
945
946 xoap = xva_getxoptattr(xvap);
947 ASSERT(xoap);
948
949 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
950 uint64_t times[2];
951 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
952 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
953 ×, sizeof (times), tx);
954 XVA_SET_RTN(xvap, XAT_CREATETIME);
955 }
956 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
957 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
958 zp->z_pflags, tx);
959 XVA_SET_RTN(xvap, XAT_READONLY);
960 }
961 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
962 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
963 zp->z_pflags, tx);
964 XVA_SET_RTN(xvap, XAT_HIDDEN);
965 }
966 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
967 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
968 zp->z_pflags, tx);
969 XVA_SET_RTN(xvap, XAT_SYSTEM);
970 }
971 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
972 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
973 zp->z_pflags, tx);
974 XVA_SET_RTN(xvap, XAT_ARCHIVE);
975 }
976 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
977 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
978 zp->z_pflags, tx);
979 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
980
981 update_inode = B_TRUE;
982 }
983 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
984 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
985 zp->z_pflags, tx);
986 XVA_SET_RTN(xvap, XAT_NOUNLINK);
987 }
988 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
989 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
990 zp->z_pflags, tx);
991 XVA_SET_RTN(xvap, XAT_APPENDONLY);
992
993 update_inode = B_TRUE;
994 }
995 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
996 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
997 zp->z_pflags, tx);
998 XVA_SET_RTN(xvap, XAT_NODUMP);
999 }
1000 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1001 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1002 zp->z_pflags, tx);
1003 XVA_SET_RTN(xvap, XAT_OPAQUE);
1004 }
1005 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1006 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1007 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1008 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1009 }
1010 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1011 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1012 zp->z_pflags, tx);
1013 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1014 }
1015 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1016 zfs_sa_set_scanstamp(zp, xvap, tx);
1017 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1018 }
1019 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1020 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1021 zp->z_pflags, tx);
1022 XVA_SET_RTN(xvap, XAT_REPARSE);
1023 }
1024 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1025 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1026 zp->z_pflags, tx);
1027 XVA_SET_RTN(xvap, XAT_OFFLINE);
1028 }
1029 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1030 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1031 zp->z_pflags, tx);
1032 XVA_SET_RTN(xvap, XAT_SPARSE);
1033 }
1034 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1035 ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1036 zp->z_pflags, tx);
1037 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1038 }
1039
1040 if (update_inode)
1041 zfs_set_inode_flags(zp, ZTOI(zp));
1042 }
1043
1044 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)1045 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1046 {
1047 dmu_object_info_t doi;
1048 dmu_buf_t *db;
1049 znode_t *zp;
1050 znode_hold_t *zh;
1051 int err;
1052 sa_handle_t *hdl;
1053
1054 *zpp = NULL;
1055
1056 again:
1057 zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1058
1059 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1060 if (err) {
1061 zfs_znode_hold_exit(zfsvfs, zh);
1062 return (err);
1063 }
1064
1065 dmu_object_info_from_db(db, &doi);
1066 if (doi.doi_bonus_type != DMU_OT_SA &&
1067 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1068 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1069 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1070 sa_buf_rele(db, NULL);
1071 zfs_znode_hold_exit(zfsvfs, zh);
1072 return (SET_ERROR(EINVAL));
1073 }
1074
1075 hdl = dmu_buf_get_user(db);
1076 if (hdl != NULL) {
1077 zp = sa_get_userdata(hdl);
1078
1079
1080 /*
1081 * Since "SA" does immediate eviction we
1082 * should never find a sa handle that doesn't
1083 * know about the znode.
1084 */
1085
1086 ASSERT3P(zp, !=, NULL);
1087
1088 mutex_enter(&zp->z_lock);
1089 ASSERT3U(zp->z_id, ==, obj_num);
1090 /*
1091 * If zp->z_unlinked is set, the znode is already marked
1092 * for deletion and should not be discovered. Check this
1093 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1094 *
1095 * If igrab() returns NULL the VFS has independently
1096 * determined the inode should be evicted and has
1097 * called iput_final() to start the eviction process.
1098 * The SA handle is still valid but because the VFS
1099 * requires that the eviction succeed we must drop
1100 * our locks and references to allow the eviction to
1101 * complete. The zfs_zget() may then be retried.
1102 *
1103 * This unlikely case could be optimized by registering
1104 * a sops->drop_inode() callback. The callback would
1105 * need to detect the active SA hold thereby informing
1106 * the VFS that this inode should not be evicted.
1107 */
1108 if (igrab(ZTOI(zp)) == NULL) {
1109 if (zp->z_unlinked)
1110 err = SET_ERROR(ENOENT);
1111 else
1112 err = SET_ERROR(EAGAIN);
1113 } else {
1114 *zpp = zp;
1115 err = 0;
1116 }
1117
1118 mutex_exit(&zp->z_lock);
1119 sa_buf_rele(db, NULL);
1120 zfs_znode_hold_exit(zfsvfs, zh);
1121
1122 if (err == EAGAIN) {
1123 /* inode might need this to finish evict */
1124 cond_resched();
1125 goto again;
1126 }
1127 return (err);
1128 }
1129
1130 /*
1131 * Not found create new znode/vnode but only if file exists.
1132 *
1133 * There is a small window where zfs_vget() could
1134 * find this object while a file create is still in
1135 * progress. This is checked for in zfs_znode_alloc()
1136 *
1137 * if zfs_znode_alloc() fails it will drop the hold on the
1138 * bonus buffer.
1139 */
1140 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1141 doi.doi_bonus_type, NULL);
1142 if (zp == NULL) {
1143 err = SET_ERROR(ENOENT);
1144 } else {
1145 *zpp = zp;
1146 }
1147 zfs_znode_hold_exit(zfsvfs, zh);
1148 return (err);
1149 }
1150
1151 int
zfs_rezget(znode_t * zp)1152 zfs_rezget(znode_t *zp)
1153 {
1154 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1155 dmu_object_info_t doi;
1156 dmu_buf_t *db;
1157 uint64_t obj_num = zp->z_id;
1158 uint64_t mode;
1159 uint64_t links;
1160 sa_bulk_attr_t bulk[11];
1161 int err;
1162 int count = 0;
1163 uint64_t gen;
1164 uint64_t z_uid, z_gid;
1165 uint64_t atime[2], mtime[2], ctime[2], btime[2];
1166 inode_timespec_t tmp_ts;
1167 uint64_t projid = ZFS_DEFAULT_PROJID;
1168 znode_hold_t *zh;
1169
1170 /*
1171 * skip ctldir, otherwise they will always get invalidated. This will
1172 * cause funny behaviour for the mounted snapdirs. Especially for
1173 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1174 * anyone automount it again as long as someone is still using the
1175 * detached mount.
1176 */
1177 if (zp->z_is_ctldir)
1178 return (0);
1179
1180 zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1181
1182 mutex_enter(&zp->z_acl_lock);
1183 if (zp->z_acl_cached) {
1184 zfs_acl_free(zp->z_acl_cached);
1185 zp->z_acl_cached = NULL;
1186 }
1187 mutex_exit(&zp->z_acl_lock);
1188
1189 rw_enter(&zp->z_xattr_lock, RW_WRITER);
1190 if (zp->z_xattr_cached) {
1191 nvlist_free(zp->z_xattr_cached);
1192 zp->z_xattr_cached = NULL;
1193 }
1194 rw_exit(&zp->z_xattr_lock);
1195
1196 ASSERT(zp->z_sa_hdl == NULL);
1197 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1198 if (err) {
1199 zfs_znode_hold_exit(zfsvfs, zh);
1200 return (err);
1201 }
1202
1203 dmu_object_info_from_db(db, &doi);
1204 if (doi.doi_bonus_type != DMU_OT_SA &&
1205 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1206 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1207 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1208 sa_buf_rele(db, NULL);
1209 zfs_znode_hold_exit(zfsvfs, zh);
1210 return (SET_ERROR(EINVAL));
1211 }
1212
1213 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1214
1215 /* reload cached values */
1216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1217 &gen, sizeof (gen));
1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1219 &zp->z_size, sizeof (zp->z_size));
1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1221 &links, sizeof (links));
1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1223 &zp->z_pflags, sizeof (zp->z_pflags));
1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1225 &z_uid, sizeof (z_uid));
1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1227 &z_gid, sizeof (z_gid));
1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1229 &mode, sizeof (mode));
1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1231 &atime, 16);
1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1233 &mtime, 16);
1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1235 &ctime, 16);
1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
1237
1238 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1239 zfs_znode_dmu_fini(zp);
1240 zfs_znode_hold_exit(zfsvfs, zh);
1241 return (SET_ERROR(EIO));
1242 }
1243
1244 if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1245 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1246 &projid, 8);
1247 if (err != 0 && err != ENOENT) {
1248 zfs_znode_dmu_fini(zp);
1249 zfs_znode_hold_exit(zfsvfs, zh);
1250 return (SET_ERROR(err));
1251 }
1252 }
1253
1254 zp->z_projid = projid;
1255 zp->z_mode = ZTOI(zp)->i_mode = mode;
1256 zfs_uid_write(ZTOI(zp), z_uid);
1257 zfs_gid_write(ZTOI(zp), z_gid);
1258
1259 ZFS_TIME_DECODE(&tmp_ts, atime);
1260 zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
1261 ZFS_TIME_DECODE(&tmp_ts, mtime);
1262 zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1263 ZFS_TIME_DECODE(&tmp_ts, ctime);
1264 zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1265 ZFS_TIME_DECODE(&zp->z_btime, btime);
1266
1267 if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1268 zfs_znode_dmu_fini(zp);
1269 zfs_znode_hold_exit(zfsvfs, zh);
1270 return (SET_ERROR(EIO));
1271 }
1272
1273 set_nlink(ZTOI(zp), (uint32_t)links);
1274 zfs_set_inode_flags(zp, ZTOI(zp));
1275
1276 zp->z_blksz = doi.doi_data_block_size;
1277 zp->z_atime_dirty = B_FALSE;
1278 zfs_znode_update_vfs(zp);
1279
1280 /*
1281 * If the file has zero links, then it has been unlinked on the send
1282 * side and it must be in the received unlinked set.
1283 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1284 * stale data and to prevent automatic removal of the file in
1285 * zfs_zinactive(). The file will be removed either when it is removed
1286 * on the send side and the next incremental stream is received or
1287 * when the unlinked set gets processed.
1288 */
1289 zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1290 if (zp->z_unlinked)
1291 zfs_znode_dmu_fini(zp);
1292
1293 zfs_znode_hold_exit(zfsvfs, zh);
1294
1295 return (0);
1296 }
1297
1298 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1299 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1300 {
1301 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1302 objset_t *os = zfsvfs->z_os;
1303 uint64_t obj = zp->z_id;
1304 uint64_t acl_obj = zfs_external_acl(zp);
1305 znode_hold_t *zh;
1306
1307 zh = zfs_znode_hold_enter(zfsvfs, obj);
1308 if (acl_obj) {
1309 VERIFY(!zp->z_is_sa);
1310 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1311 }
1312 VERIFY(0 == dmu_object_free(os, obj, tx));
1313 zfs_znode_dmu_fini(zp);
1314 zfs_znode_hold_exit(zfsvfs, zh);
1315 }
1316
1317 void
zfs_zinactive(znode_t * zp)1318 zfs_zinactive(znode_t *zp)
1319 {
1320 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1321 uint64_t z_id = zp->z_id;
1322 znode_hold_t *zh;
1323
1324 ASSERT(zp->z_sa_hdl);
1325
1326 /*
1327 * Don't allow a zfs_zget() while were trying to release this znode.
1328 */
1329 zh = zfs_znode_hold_enter(zfsvfs, z_id);
1330
1331 mutex_enter(&zp->z_lock);
1332
1333 /*
1334 * If this was the last reference to a file with no links, remove
1335 * the file from the file system unless the file system is mounted
1336 * read-only. That can happen, for example, if the file system was
1337 * originally read-write, the file was opened, then unlinked and
1338 * the file system was made read-only before the file was finally
1339 * closed. The file will remain in the unlinked set.
1340 */
1341 if (zp->z_unlinked) {
1342 ASSERT(!zfsvfs->z_issnap);
1343 if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1344 mutex_exit(&zp->z_lock);
1345 zfs_znode_hold_exit(zfsvfs, zh);
1346 zfs_rmnode(zp);
1347 return;
1348 }
1349 }
1350
1351 mutex_exit(&zp->z_lock);
1352 zfs_znode_dmu_fini(zp);
1353
1354 zfs_znode_hold_exit(zfsvfs, zh);
1355 }
1356
1357 /*
1358 * Determine whether the znode's atime must be updated. The logic mostly
1359 * duplicates the Linux kernel's relatime_need_update() functionality.
1360 * This function is only called if the underlying filesystem actually has
1361 * atime updates enabled.
1362 */
1363 boolean_t
zfs_relatime_need_update(const struct inode * ip)1364 zfs_relatime_need_update(const struct inode *ip)
1365 {
1366 inode_timespec_t now, tmp_atime, tmp_ts;
1367
1368 gethrestime(&now);
1369 tmp_atime = zpl_inode_get_atime(ip);
1370 /*
1371 * In relatime mode, only update the atime if the previous atime
1372 * is earlier than either the ctime or mtime or if at least a day
1373 * has passed since the last update of atime.
1374 */
1375 tmp_ts = zpl_inode_get_mtime(ip);
1376 if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1377 return (B_TRUE);
1378
1379 tmp_ts = zpl_inode_get_ctime(ip);
1380 if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1381 return (B_TRUE);
1382
1383 if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
1384 return (B_TRUE);
1385
1386 return (B_FALSE);
1387 }
1388
1389 /*
1390 * Prepare to update znode time stamps.
1391 *
1392 * IN: zp - znode requiring timestamp update
1393 * flag - ATTR_MTIME, ATTR_CTIME flags
1394 *
1395 * OUT: zp - z_seq
1396 * mtime - new mtime
1397 * ctime - new ctime
1398 *
1399 * Note: We don't update atime here, because we rely on Linux VFS to do
1400 * atime updating.
1401 */
1402 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1403 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1404 uint64_t ctime[2])
1405 {
1406 inode_timespec_t now, tmp_ts;
1407
1408 gethrestime(&now);
1409
1410 zp->z_seq++;
1411
1412 if (flag & ATTR_MTIME) {
1413 ZFS_TIME_ENCODE(&now, mtime);
1414 ZFS_TIME_DECODE(&tmp_ts, mtime);
1415 zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1416 if (ZTOZSB(zp)->z_use_fuids) {
1417 zp->z_pflags |= (ZFS_ARCHIVE |
1418 ZFS_AV_MODIFIED);
1419 }
1420 }
1421
1422 if (flag & ATTR_CTIME) {
1423 ZFS_TIME_ENCODE(&now, ctime);
1424 ZFS_TIME_DECODE(&tmp_ts, ctime);
1425 zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1426 if (ZTOZSB(zp)->z_use_fuids)
1427 zp->z_pflags |= ZFS_ARCHIVE;
1428 }
1429 }
1430
1431 /*
1432 * Grow the block size for a file.
1433 *
1434 * IN: zp - znode of file to free data in.
1435 * size - requested block size
1436 * tx - open transaction.
1437 *
1438 * NOTE: this function assumes that the znode is write locked.
1439 */
1440 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1441 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1442 {
1443 int error;
1444 u_longlong_t dummy;
1445
1446 if (size <= zp->z_blksz)
1447 return;
1448 /*
1449 * If the file size is already greater than the current blocksize,
1450 * we will not grow. If there is more than one block in a file,
1451 * the blocksize cannot change.
1452 */
1453 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1454 return;
1455
1456 error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1457 size, 0, tx);
1458
1459 if (error == ENOTSUP)
1460 return;
1461 ASSERT0(error);
1462
1463 /* What blocksize did we actually get? */
1464 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1465 }
1466
1467 /*
1468 * Increase the file length
1469 *
1470 * IN: zp - znode of file to free data in.
1471 * end - new end-of-file
1472 *
1473 * RETURN: 0 on success, error code on failure
1474 */
1475 static int
zfs_extend(znode_t * zp,uint64_t end)1476 zfs_extend(znode_t *zp, uint64_t end)
1477 {
1478 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1479 dmu_tx_t *tx;
1480 zfs_locked_range_t *lr;
1481 uint64_t newblksz;
1482 int error;
1483
1484 /*
1485 * We will change zp_size, lock the whole file.
1486 */
1487 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1488
1489 /*
1490 * Nothing to do if file already at desired length.
1491 */
1492 if (end <= zp->z_size) {
1493 zfs_rangelock_exit(lr);
1494 return (0);
1495 }
1496 tx = dmu_tx_create(zfsvfs->z_os);
1497 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1498 zfs_sa_upgrade_txholds(tx, zp);
1499 if (end > zp->z_blksz &&
1500 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1501 /*
1502 * We are growing the file past the current block size.
1503 */
1504 if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1505 /*
1506 * File's blocksize is already larger than the
1507 * "recordsize" property. Only let it grow to
1508 * the next power of 2.
1509 */
1510 ASSERT(!ISP2(zp->z_blksz));
1511 newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1512 } else {
1513 newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1514 }
1515 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1516 } else {
1517 newblksz = 0;
1518 }
1519
1520 error = dmu_tx_assign(tx, TXG_WAIT);
1521 if (error) {
1522 dmu_tx_abort(tx);
1523 zfs_rangelock_exit(lr);
1524 return (error);
1525 }
1526
1527 if (newblksz)
1528 zfs_grow_blocksize(zp, newblksz, tx);
1529
1530 zp->z_size = end;
1531
1532 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1533 &zp->z_size, sizeof (zp->z_size), tx));
1534
1535 zfs_rangelock_exit(lr);
1536
1537 dmu_tx_commit(tx);
1538
1539 return (0);
1540 }
1541
1542 /*
1543 * zfs_zero_partial_page - Modeled after update_pages() but
1544 * with different arguments and semantics for use by zfs_freesp().
1545 *
1546 * Zeroes a piece of a single page cache entry for zp at offset
1547 * start and length len.
1548 *
1549 * Caller must acquire a range lock on the file for the region
1550 * being zeroed in order that the ARC and page cache stay in sync.
1551 */
1552 static void
zfs_zero_partial_page(znode_t * zp,uint64_t start,uint64_t len)1553 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1554 {
1555 struct address_space *mp = ZTOI(zp)->i_mapping;
1556 struct page *pp;
1557 int64_t off;
1558 void *pb;
1559
1560 ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1561
1562 off = start & (PAGE_SIZE - 1);
1563 start &= PAGE_MASK;
1564
1565 pp = find_lock_page(mp, start >> PAGE_SHIFT);
1566 if (pp) {
1567 if (mapping_writably_mapped(mp))
1568 flush_dcache_page(pp);
1569
1570 pb = kmap(pp);
1571 memset(pb + off, 0, len);
1572 kunmap(pp);
1573
1574 if (mapping_writably_mapped(mp))
1575 flush_dcache_page(pp);
1576
1577 mark_page_accessed(pp);
1578 SetPageUptodate(pp);
1579 ClearPageError(pp);
1580 unlock_page(pp);
1581 put_page(pp);
1582 }
1583 }
1584
1585 /*
1586 * Free space in a file.
1587 *
1588 * IN: zp - znode of file to free data in.
1589 * off - start of section to free.
1590 * len - length of section to free.
1591 *
1592 * RETURN: 0 on success, error code on failure
1593 */
1594 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1595 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1596 {
1597 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1598 zfs_locked_range_t *lr;
1599 int error;
1600
1601 /*
1602 * Lock the range being freed.
1603 */
1604 lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1605
1606 /*
1607 * Nothing to do if file already at desired length.
1608 */
1609 if (off >= zp->z_size) {
1610 zfs_rangelock_exit(lr);
1611 return (0);
1612 }
1613
1614 if (off + len > zp->z_size)
1615 len = zp->z_size - off;
1616
1617 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1618
1619 /*
1620 * Zero partial page cache entries. This must be done under a
1621 * range lock in order to keep the ARC and page cache in sync.
1622 */
1623 if (zn_has_cached_data(zp, off, off + len - 1)) {
1624 loff_t first_page, last_page, page_len;
1625 loff_t first_page_offset, last_page_offset;
1626
1627 /* first possible full page in hole */
1628 first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1629 /* last page of hole */
1630 last_page = (off + len) >> PAGE_SHIFT;
1631
1632 /* offset of first_page */
1633 first_page_offset = first_page << PAGE_SHIFT;
1634 /* offset of last_page */
1635 last_page_offset = last_page << PAGE_SHIFT;
1636
1637 /* truncate whole pages */
1638 if (last_page_offset > first_page_offset) {
1639 truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1640 first_page_offset, last_page_offset - 1);
1641 }
1642
1643 /* truncate sub-page ranges */
1644 if (first_page > last_page) {
1645 /* entire punched area within a single page */
1646 zfs_zero_partial_page(zp, off, len);
1647 } else {
1648 /* beginning of punched area at the end of a page */
1649 page_len = first_page_offset - off;
1650 if (page_len > 0)
1651 zfs_zero_partial_page(zp, off, page_len);
1652
1653 /* end of punched area at the beginning of a page */
1654 page_len = off + len - last_page_offset;
1655 if (page_len > 0)
1656 zfs_zero_partial_page(zp, last_page_offset,
1657 page_len);
1658 }
1659 }
1660 zfs_rangelock_exit(lr);
1661
1662 return (error);
1663 }
1664
1665 /*
1666 * Truncate a file
1667 *
1668 * IN: zp - znode of file to free data in.
1669 * end - new end-of-file.
1670 *
1671 * RETURN: 0 on success, error code on failure
1672 */
1673 static int
zfs_trunc(znode_t * zp,uint64_t end)1674 zfs_trunc(znode_t *zp, uint64_t end)
1675 {
1676 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1677 dmu_tx_t *tx;
1678 zfs_locked_range_t *lr;
1679 int error;
1680 sa_bulk_attr_t bulk[2];
1681 int count = 0;
1682
1683 /*
1684 * We will change zp_size, lock the whole file.
1685 */
1686 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1687
1688 /*
1689 * Nothing to do if file already at desired length.
1690 */
1691 if (end >= zp->z_size) {
1692 zfs_rangelock_exit(lr);
1693 return (0);
1694 }
1695
1696 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1697 DMU_OBJECT_END);
1698 if (error) {
1699 zfs_rangelock_exit(lr);
1700 return (error);
1701 }
1702 tx = dmu_tx_create(zfsvfs->z_os);
1703 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1704 zfs_sa_upgrade_txholds(tx, zp);
1705 dmu_tx_mark_netfree(tx);
1706 error = dmu_tx_assign(tx, TXG_WAIT);
1707 if (error) {
1708 dmu_tx_abort(tx);
1709 zfs_rangelock_exit(lr);
1710 return (error);
1711 }
1712
1713 zp->z_size = end;
1714 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1715 NULL, &zp->z_size, sizeof (zp->z_size));
1716
1717 if (end == 0) {
1718 zp->z_pflags &= ~ZFS_SPARSE;
1719 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1720 NULL, &zp->z_pflags, 8);
1721 }
1722 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1723
1724 dmu_tx_commit(tx);
1725 zfs_rangelock_exit(lr);
1726
1727 return (0);
1728 }
1729
1730 /*
1731 * Free space in a file
1732 *
1733 * IN: zp - znode of file to free data in.
1734 * off - start of range
1735 * len - end of range (0 => EOF)
1736 * flag - current file open mode flags.
1737 * log - TRUE if this action should be logged
1738 *
1739 * RETURN: 0 on success, error code on failure
1740 */
1741 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1742 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1743 {
1744 dmu_tx_t *tx;
1745 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1746 zilog_t *zilog = zfsvfs->z_log;
1747 uint64_t mode;
1748 uint64_t mtime[2], ctime[2];
1749 sa_bulk_attr_t bulk[3];
1750 int count = 0;
1751 int error;
1752
1753 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1754 sizeof (mode))) != 0)
1755 return (error);
1756
1757 if (off > zp->z_size) {
1758 error = zfs_extend(zp, off+len);
1759 if (error == 0 && log)
1760 goto log;
1761 goto out;
1762 }
1763
1764 if (len == 0) {
1765 error = zfs_trunc(zp, off);
1766 } else {
1767 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1768 off + len > zp->z_size)
1769 error = zfs_extend(zp, off+len);
1770 }
1771 if (error || !log)
1772 goto out;
1773 log:
1774 tx = dmu_tx_create(zfsvfs->z_os);
1775 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1776 zfs_sa_upgrade_txholds(tx, zp);
1777 error = dmu_tx_assign(tx, TXG_WAIT);
1778 if (error) {
1779 dmu_tx_abort(tx);
1780 goto out;
1781 }
1782
1783 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1784 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1785 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1786 NULL, &zp->z_pflags, 8);
1787 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1788 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1789 ASSERT(error == 0);
1790
1791 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1792
1793 dmu_tx_commit(tx);
1794
1795 zfs_znode_update_vfs(zp);
1796 error = 0;
1797
1798 out:
1799 /*
1800 * Truncate the page cache - for file truncate operations, use
1801 * the purpose-built API for truncations. For punching operations,
1802 * the truncation is handled under a range lock in zfs_free_range.
1803 */
1804 if (len == 0)
1805 truncate_setsize(ZTOI(zp), off);
1806 return (error);
1807 }
1808
1809 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1810 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1811 {
1812 struct super_block *sb;
1813 zfsvfs_t *zfsvfs;
1814 uint64_t moid, obj, sa_obj, version;
1815 uint64_t sense = ZFS_CASE_SENSITIVE;
1816 uint64_t norm = 0;
1817 nvpair_t *elem;
1818 int size;
1819 int error;
1820 int i;
1821 znode_t *rootzp = NULL;
1822 vattr_t vattr;
1823 znode_t *zp;
1824 zfs_acl_ids_t acl_ids;
1825
1826 /*
1827 * First attempt to create master node.
1828 */
1829 /*
1830 * In an empty objset, there are no blocks to read and thus
1831 * there can be no i/o errors (which we assert below).
1832 */
1833 moid = MASTER_NODE_OBJ;
1834 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1835 DMU_OT_NONE, 0, tx);
1836 ASSERT(error == 0);
1837
1838 /*
1839 * Set starting attributes.
1840 */
1841 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1842 elem = NULL;
1843 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1844 /* For the moment we expect all zpl props to be uint64_ts */
1845 uint64_t val;
1846 const char *name;
1847
1848 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1849 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1850 name = nvpair_name(elem);
1851 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1852 if (val < version)
1853 version = val;
1854 } else {
1855 error = zap_update(os, moid, name, 8, 1, &val, tx);
1856 }
1857 ASSERT(error == 0);
1858 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1859 norm = val;
1860 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1861 sense = val;
1862 }
1863 ASSERT(version != 0);
1864 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1865 ASSERT(error == 0);
1866
1867 /*
1868 * Create zap object used for SA attribute registration
1869 */
1870
1871 if (version >= ZPL_VERSION_SA) {
1872 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1873 DMU_OT_NONE, 0, tx);
1874 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1875 ASSERT(error == 0);
1876 } else {
1877 sa_obj = 0;
1878 }
1879 /*
1880 * Create a delete queue.
1881 */
1882 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1883
1884 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1885 ASSERT(error == 0);
1886
1887 /*
1888 * Create root znode. Create minimal znode/inode/zfsvfs/sb
1889 * to allow zfs_mknode to work.
1890 */
1891 vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1892 vattr.va_mode = S_IFDIR|0755;
1893 vattr.va_uid = crgetuid(cr);
1894 vattr.va_gid = crgetgid(cr);
1895
1896 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1897 rootzp->z_unlinked = B_FALSE;
1898 rootzp->z_atime_dirty = B_FALSE;
1899 rootzp->z_is_sa = USE_SA(version, os);
1900 rootzp->z_pflags = 0;
1901
1902 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1903 zfsvfs->z_os = os;
1904 zfsvfs->z_parent = zfsvfs;
1905 zfsvfs->z_version = version;
1906 zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1907 zfsvfs->z_use_sa = USE_SA(version, os);
1908 zfsvfs->z_norm = norm;
1909
1910 sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1911 sb->s_fs_info = zfsvfs;
1912
1913 ZTOI(rootzp)->i_sb = sb;
1914
1915 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1916 &zfsvfs->z_attr_table);
1917
1918 ASSERT(error == 0);
1919
1920 /*
1921 * Fold case on file systems that are always or sometimes case
1922 * insensitive.
1923 */
1924 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1925 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1926
1927 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1928 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1929 offsetof(znode_t, z_link_node));
1930
1931 size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1932 zfsvfs->z_hold_size = size;
1933 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1934 KM_SLEEP);
1935 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1936 for (i = 0; i != size; i++) {
1937 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1938 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1939 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1940 }
1941
1942 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1943 cr, NULL, &acl_ids, zfs_init_idmap));
1944 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1945 ASSERT3P(zp, ==, rootzp);
1946 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1947 ASSERT(error == 0);
1948 zfs_acl_ids_free(&acl_ids);
1949
1950 atomic_set(&ZTOI(rootzp)->i_count, 0);
1951 sa_handle_destroy(rootzp->z_sa_hdl);
1952 kmem_cache_free(znode_cache, rootzp);
1953
1954 for (i = 0; i != size; i++) {
1955 avl_destroy(&zfsvfs->z_hold_trees[i]);
1956 mutex_destroy(&zfsvfs->z_hold_locks[i]);
1957 }
1958
1959 mutex_destroy(&zfsvfs->z_znodes_lock);
1960
1961 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1962 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1963 kmem_free(sb, sizeof (struct super_block));
1964 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1965 }
1966
1967 EXPORT_SYMBOL(zfs_create_fs);
1968 EXPORT_SYMBOL(zfs_obj_to_path);
1969
1970 /* CSTYLED */
1971 module_param(zfs_object_mutex_size, uint, 0644);
1972 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
1973 module_param(zfs_unlink_suspend_progress, int, 0644);
1974 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
1975 "(debug - leaks space into the unlinked set)");
1976