xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision dd32d6b29d49838c99d38ba30846ade210b2e6f7)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, 2025, Klara, Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 static int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 char *
vdev_rt_name(vdev_t * vd,const char * name)247 vdev_rt_name(vdev_t *vd, const char *name)
248 {
249 	return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}",
250 	    spa_name(vd->vdev_spa),
251 	    (u_longlong_t)vd->vdev_guid,
252 	    name));
253 }
254 
255 static char *
vdev_rt_name_dtl(vdev_t * vd,const char * name,vdev_dtl_type_t dtl_type)256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type)
257 {
258 	return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}",
259 	    spa_name(vd->vdev_spa),
260 	    (u_longlong_t)vd->vdev_guid,
261 	    name,
262 	    dtl_type));
263 }
264 
265 /*
266  * Virtual device management.
267  */
268 
269 static vdev_ops_t *const vdev_ops_table[] = {
270 	&vdev_root_ops,
271 	&vdev_raidz_ops,
272 	&vdev_draid_ops,
273 	&vdev_draid_spare_ops,
274 	&vdev_mirror_ops,
275 	&vdev_replacing_ops,
276 	&vdev_spare_ops,
277 	&vdev_disk_ops,
278 	&vdev_file_ops,
279 	&vdev_missing_ops,
280 	&vdev_hole_ops,
281 	&vdev_indirect_ops,
282 	NULL
283 };
284 
285 /*
286  * Given a vdev type, return the appropriate ops vector.
287  */
288 static vdev_ops_t *
vdev_getops(const char * type)289 vdev_getops(const char *type)
290 {
291 	vdev_ops_t *ops, *const *opspp;
292 
293 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
294 		if (strcmp(ops->vdev_op_type, type) == 0)
295 			break;
296 
297 	return (ops);
298 }
299 
300 /*
301  * Given a vdev and a metaslab class, find which metaslab group we're
302  * interested in. All vdevs may belong to two different metaslab classes.
303  * Dedicated slog devices use only the primary metaslab group, rather than a
304  * separate log group.  For embedded slogs, vdev_log_mg will be non-NULL and
305  * will point to a metaslab group of either embedded_log_class (for normal
306  * vdevs) or special_embedded_log_class (for special vdevs).
307  */
308 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
310 {
311 	if ((mc == spa_embedded_log_class(vd->vdev_spa) ||
312 	    mc == spa_special_embedded_log_class(vd->vdev_spa)) &&
313 	    vd->vdev_log_mg != NULL)
314 		return (vd->vdev_log_mg);
315 	else
316 		return (vd->vdev_mg);
317 }
318 
319 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
321     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
322 {
323 	(void) vd, (void) remain_rs;
324 
325 	physical_rs->rs_start = logical_rs->rs_start;
326 	physical_rs->rs_end = logical_rs->rs_end;
327 }
328 
329 /*
330  * Derive the enumerated allocation bias from string input.
331  * String origin is either the per-vdev zap or zpool(8).
332  */
333 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)334 vdev_derive_alloc_bias(const char *bias)
335 {
336 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
337 
338 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
339 		alloc_bias = VDEV_BIAS_LOG;
340 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
341 		alloc_bias = VDEV_BIAS_SPECIAL;
342 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
343 		alloc_bias = VDEV_BIAS_DEDUP;
344 
345 	return (alloc_bias);
346 }
347 
348 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
350 {
351 	ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
352 	uint64_t csize, psize = asize;
353 	for (int c = 0; c < vd->vdev_children; c++) {
354 		csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
355 		psize = MIN(psize, csize);
356 	}
357 
358 	return (psize);
359 }
360 
361 /*
362  * Default asize function: return the MAX of psize with the asize of
363  * all children.  This is what's used by anything other than RAID-Z.
364  */
365 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
367 {
368 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
369 	uint64_t csize;
370 
371 	for (int c = 0; c < vd->vdev_children; c++) {
372 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
373 		asize = MAX(asize, csize);
374 	}
375 
376 	return (asize);
377 }
378 
379 uint64_t
vdev_default_min_asize(vdev_t * vd)380 vdev_default_min_asize(vdev_t *vd)
381 {
382 	return (vd->vdev_min_asize);
383 }
384 
385 /*
386  * Get the minimum allocatable size. We define the allocatable size as
387  * the vdev's asize rounded to the nearest metaslab. This allows us to
388  * replace or attach devices which don't have the same physical size but
389  * can still satisfy the same number of allocations.
390  */
391 uint64_t
vdev_get_min_asize(vdev_t * vd)392 vdev_get_min_asize(vdev_t *vd)
393 {
394 	vdev_t *pvd = vd->vdev_parent;
395 
396 	/*
397 	 * If our parent is NULL (inactive spare or cache) or is the root,
398 	 * just return our own asize.
399 	 */
400 	if (pvd == NULL)
401 		return (vd->vdev_asize);
402 
403 	/*
404 	 * The top-level vdev just returns the allocatable size rounded
405 	 * to the nearest metaslab.
406 	 */
407 	if (vd == vd->vdev_top)
408 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
409 		    uint64_t));
410 
411 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
412 }
413 
414 void
vdev_set_min_asize(vdev_t * vd)415 vdev_set_min_asize(vdev_t *vd)
416 {
417 	vd->vdev_min_asize = vdev_get_min_asize(vd);
418 
419 	for (int c = 0; c < vd->vdev_children; c++)
420 		vdev_set_min_asize(vd->vdev_child[c]);
421 }
422 
423 /*
424  * Get the minimal allocation size for the top-level vdev.
425  */
426 uint64_t
vdev_get_min_alloc(vdev_t * vd)427 vdev_get_min_alloc(vdev_t *vd)
428 {
429 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
430 
431 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
432 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
433 
434 	return (min_alloc);
435 }
436 
437 /*
438  * Get the parity level for a top-level vdev.
439  */
440 uint64_t
vdev_get_nparity(vdev_t * vd)441 vdev_get_nparity(vdev_t *vd)
442 {
443 	uint64_t nparity = 0;
444 
445 	if (vd->vdev_ops->vdev_op_nparity != NULL)
446 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
447 
448 	return (nparity);
449 }
450 
451 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)452 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
453 {
454 	spa_t *spa = vd->vdev_spa;
455 	objset_t *mos = spa->spa_meta_objset;
456 	uint64_t objid;
457 	int err;
458 
459 	if (vd->vdev_root_zap != 0) {
460 		objid = vd->vdev_root_zap;
461 	} else if (vd->vdev_top_zap != 0) {
462 		objid = vd->vdev_top_zap;
463 	} else if (vd->vdev_leaf_zap != 0) {
464 		objid = vd->vdev_leaf_zap;
465 	} else {
466 		return (EINVAL);
467 	}
468 
469 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
470 	    sizeof (uint64_t), 1, value);
471 
472 	if (err == ENOENT)
473 		*value = vdev_prop_default_numeric(prop);
474 
475 	return (err);
476 }
477 
478 /*
479  * Get the number of data disks for a top-level vdev.
480  */
481 uint64_t
vdev_get_ndisks(vdev_t * vd)482 vdev_get_ndisks(vdev_t *vd)
483 {
484 	uint64_t ndisks = 1;
485 
486 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
487 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
488 
489 	return (ndisks);
490 }
491 
492 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)493 vdev_lookup_top(spa_t *spa, uint64_t vdev)
494 {
495 	vdev_t *rvd = spa->spa_root_vdev;
496 
497 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
498 
499 	if (vdev < rvd->vdev_children) {
500 		ASSERT(rvd->vdev_child[vdev] != NULL);
501 		return (rvd->vdev_child[vdev]);
502 	}
503 
504 	return (NULL);
505 }
506 
507 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)508 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
509 {
510 	vdev_t *mvd;
511 
512 	if (vd->vdev_guid == guid)
513 		return (vd);
514 
515 	for (int c = 0; c < vd->vdev_children; c++)
516 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
517 		    NULL)
518 			return (mvd);
519 
520 	return (NULL);
521 }
522 
523 static int
vdev_count_leaves_impl(vdev_t * vd)524 vdev_count_leaves_impl(vdev_t *vd)
525 {
526 	int n = 0;
527 
528 	if (vd->vdev_ops->vdev_op_leaf)
529 		return (1);
530 
531 	for (int c = 0; c < vd->vdev_children; c++)
532 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
533 
534 	return (n);
535 }
536 
537 int
vdev_count_leaves(spa_t * spa)538 vdev_count_leaves(spa_t *spa)
539 {
540 	int rc;
541 
542 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
543 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
544 	spa_config_exit(spa, SCL_VDEV, FTAG);
545 
546 	return (rc);
547 }
548 
549 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)550 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
551 {
552 	size_t oldsize, newsize;
553 	uint64_t id = cvd->vdev_id;
554 	vdev_t **newchild;
555 
556 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
557 	ASSERT0P(cvd->vdev_parent);
558 
559 	cvd->vdev_parent = pvd;
560 
561 	if (pvd == NULL)
562 		return;
563 
564 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
565 
566 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
567 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
568 	newsize = pvd->vdev_children * sizeof (vdev_t *);
569 
570 	newchild = kmem_alloc(newsize, KM_SLEEP);
571 	if (pvd->vdev_child != NULL) {
572 		memcpy(newchild, pvd->vdev_child, oldsize);
573 		kmem_free(pvd->vdev_child, oldsize);
574 	}
575 
576 	pvd->vdev_child = newchild;
577 	pvd->vdev_child[id] = cvd;
578 	pvd->vdev_nonrot &= cvd->vdev_nonrot;
579 
580 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
581 	ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent);
582 
583 	/*
584 	 * Walk up all ancestors to update guid sum.
585 	 */
586 	for (; pvd != NULL; pvd = pvd->vdev_parent)
587 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
588 
589 	if (cvd->vdev_ops->vdev_op_leaf) {
590 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
591 		cvd->vdev_spa->spa_leaf_list_gen++;
592 	}
593 }
594 
595 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)596 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
597 {
598 	int c;
599 	uint_t id = cvd->vdev_id;
600 
601 	ASSERT(cvd->vdev_parent == pvd);
602 
603 	if (pvd == NULL)
604 		return;
605 
606 	ASSERT(id < pvd->vdev_children);
607 	ASSERT(pvd->vdev_child[id] == cvd);
608 
609 	pvd->vdev_child[id] = NULL;
610 	cvd->vdev_parent = NULL;
611 
612 	for (c = 0; c < pvd->vdev_children; c++)
613 		if (pvd->vdev_child[c])
614 			break;
615 
616 	if (c == pvd->vdev_children) {
617 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
618 		pvd->vdev_child = NULL;
619 		pvd->vdev_children = 0;
620 	}
621 
622 	if (cvd->vdev_ops->vdev_op_leaf) {
623 		spa_t *spa = cvd->vdev_spa;
624 		list_remove(&spa->spa_leaf_list, cvd);
625 		spa->spa_leaf_list_gen++;
626 	}
627 
628 	/*
629 	 * Walk up all ancestors to update guid sum.
630 	 */
631 	for (; pvd != NULL; pvd = pvd->vdev_parent)
632 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
633 }
634 
635 /*
636  * Remove any holes in the child array.
637  */
638 void
vdev_compact_children(vdev_t * pvd)639 vdev_compact_children(vdev_t *pvd)
640 {
641 	vdev_t **newchild, *cvd;
642 	int oldc = pvd->vdev_children;
643 	int newc;
644 
645 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
646 
647 	if (oldc == 0)
648 		return;
649 
650 	for (int c = newc = 0; c < oldc; c++)
651 		if (pvd->vdev_child[c])
652 			newc++;
653 
654 	if (newc > 0) {
655 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
656 
657 		for (int c = newc = 0; c < oldc; c++) {
658 			if ((cvd = pvd->vdev_child[c]) != NULL) {
659 				newchild[newc] = cvd;
660 				cvd->vdev_id = newc++;
661 			}
662 		}
663 	} else {
664 		newchild = NULL;
665 	}
666 
667 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
668 	pvd->vdev_child = newchild;
669 	pvd->vdev_children = newc;
670 }
671 
672 /*
673  * Allocate and minimally initialize a vdev_t.
674  */
675 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)676 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
677 {
678 	vdev_t *vd;
679 	vdev_indirect_config_t *vic;
680 
681 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
682 	vic = &vd->vdev_indirect_config;
683 
684 	if (spa->spa_root_vdev == NULL) {
685 		ASSERT(ops == &vdev_root_ops);
686 		spa->spa_root_vdev = vd;
687 		spa->spa_load_guid = spa_generate_load_guid();
688 	}
689 
690 	if (guid == 0 && ops != &vdev_hole_ops) {
691 		if (spa->spa_root_vdev == vd) {
692 			/*
693 			 * The root vdev's guid will also be the pool guid,
694 			 * which must be unique among all pools.
695 			 */
696 			guid = spa_generate_guid(NULL);
697 		} else {
698 			/*
699 			 * Any other vdev's guid must be unique within the pool.
700 			 */
701 			guid = spa_generate_guid(spa);
702 		}
703 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
704 	}
705 
706 	vd->vdev_spa = spa;
707 	vd->vdev_id = id;
708 	vd->vdev_guid = guid;
709 	vd->vdev_guid_sum = guid;
710 	vd->vdev_ops = ops;
711 	vd->vdev_state = VDEV_STATE_CLOSED;
712 	vd->vdev_ishole = (ops == &vdev_hole_ops);
713 	vic->vic_prev_indirect_vdev = UINT64_MAX;
714 
715 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
716 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
717 	vd->vdev_obsolete_segments = zfs_range_tree_create_flags(
718 	    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
719 	    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments"));
720 
721 	/*
722 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
723 	 * and checksum events so that we don't overwhelm ZED with thousands
724 	 * of events when a disk is acting up.
725 	 */
726 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
727 	    1);
728 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
729 	    1);
730 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
731 	    &zfs_dio_write_verify_events_per_second, 1);
732 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
733 	    &zfs_checksum_events_per_second, 1);
734 
735 	/*
736 	 * Default Thresholds for tuning ZED
737 	 */
738 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
739 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
740 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
741 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
742 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
743 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
744 
745 	list_link_init(&vd->vdev_config_dirty_node);
746 	list_link_init(&vd->vdev_state_dirty_node);
747 	list_link_init(&vd->vdev_initialize_node);
748 	list_link_init(&vd->vdev_leaf_node);
749 	list_link_init(&vd->vdev_trim_node);
750 
751 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
752 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
753 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
754 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
755 
756 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
757 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
758 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
759 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
760 
761 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
762 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
763 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
764 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
765 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
766 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
767 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
768 
769 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
770 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
771 
772 	for (int t = 0; t < DTL_TYPES; t++) {
773 		vd->vdev_dtl[t] = zfs_range_tree_create_flags(
774 		    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
775 		    ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t));
776 	}
777 
778 	txg_list_create(&vd->vdev_ms_list, spa,
779 	    offsetof(struct metaslab, ms_txg_node));
780 	txg_list_create(&vd->vdev_dtl_list, spa,
781 	    offsetof(struct vdev, vdev_dtl_node));
782 	vd->vdev_stat.vs_timestamp = gethrtime();
783 	vdev_queue_init(vd);
784 
785 	return (vd);
786 }
787 
788 /*
789  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
790  * creating a new vdev or loading an existing one - the behavior is slightly
791  * different for each case.
792  */
793 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)794 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
795     int alloctype)
796 {
797 	vdev_ops_t *ops;
798 	const char *type;
799 	uint64_t guid = 0, islog;
800 	vdev_t *vd;
801 	vdev_indirect_config_t *vic;
802 	const char *tmp = NULL;
803 	int rc;
804 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
805 	boolean_t top_level = (parent && !parent->vdev_parent);
806 
807 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
808 
809 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
810 		return (SET_ERROR(EINVAL));
811 
812 	if ((ops = vdev_getops(type)) == NULL)
813 		return (SET_ERROR(EINVAL));
814 
815 	/*
816 	 * If this is a load, get the vdev guid from the nvlist.
817 	 * Otherwise, vdev_alloc_common() will generate one for us.
818 	 */
819 	if (alloctype == VDEV_ALLOC_LOAD) {
820 		uint64_t label_id;
821 
822 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
823 		    label_id != id)
824 			return (SET_ERROR(EINVAL));
825 
826 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
827 			return (SET_ERROR(EINVAL));
828 	} else if (alloctype == VDEV_ALLOC_SPARE) {
829 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
830 			return (SET_ERROR(EINVAL));
831 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
832 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
833 			return (SET_ERROR(EINVAL));
834 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
835 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
836 			return (SET_ERROR(EINVAL));
837 	}
838 
839 	/*
840 	 * The first allocated vdev must be of type 'root'.
841 	 */
842 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
843 		return (SET_ERROR(EINVAL));
844 
845 	/*
846 	 * Determine whether we're a log vdev.
847 	 */
848 	islog = 0;
849 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
850 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
851 		return (SET_ERROR(ENOTSUP));
852 
853 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
854 		return (SET_ERROR(ENOTSUP));
855 
856 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
857 		const char *bias;
858 
859 		/*
860 		 * If creating a top-level vdev, check for allocation
861 		 * classes input.
862 		 */
863 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
864 		    &bias) == 0) {
865 			alloc_bias = vdev_derive_alloc_bias(bias);
866 
867 			/* spa_vdev_add() expects feature to be enabled */
868 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
869 			    !spa_feature_is_enabled(spa,
870 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
871 				return (SET_ERROR(ENOTSUP));
872 			}
873 		}
874 
875 		/* spa_vdev_add() expects feature to be enabled */
876 		if (ops == &vdev_draid_ops &&
877 		    spa->spa_load_state != SPA_LOAD_CREATE &&
878 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
879 			return (SET_ERROR(ENOTSUP));
880 		}
881 	}
882 
883 	/*
884 	 * Initialize the vdev specific data.  This is done before calling
885 	 * vdev_alloc_common() since it may fail and this simplifies the
886 	 * error reporting and cleanup code paths.
887 	 */
888 	void *tsd = NULL;
889 	if (ops->vdev_op_init != NULL) {
890 		rc = ops->vdev_op_init(spa, nv, &tsd);
891 		if (rc != 0) {
892 			return (rc);
893 		}
894 	}
895 
896 	vd = vdev_alloc_common(spa, id, guid, ops);
897 	vd->vdev_tsd = tsd;
898 	vd->vdev_islog = islog;
899 
900 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
901 		vd->vdev_alloc_bias = alloc_bias;
902 
903 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
904 		vd->vdev_path = spa_strdup(tmp);
905 
906 	/*
907 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
908 	 * fault on a vdev and want it to persist across imports (like with
909 	 * zpool offline -f).
910 	 */
911 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
912 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
913 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
914 		vd->vdev_faulted = 1;
915 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
916 	}
917 
918 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
919 		vd->vdev_devid = spa_strdup(tmp);
920 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
921 		vd->vdev_physpath = spa_strdup(tmp);
922 
923 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
924 	    &tmp) == 0)
925 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
926 
927 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
928 		vd->vdev_fru = spa_strdup(tmp);
929 
930 	/*
931 	 * Set the whole_disk property.  If it's not specified, leave the value
932 	 * as -1.
933 	 */
934 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
935 	    &vd->vdev_wholedisk) != 0)
936 		vd->vdev_wholedisk = -1ULL;
937 
938 	vic = &vd->vdev_indirect_config;
939 
940 	ASSERT0(vic->vic_mapping_object);
941 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
942 	    &vic->vic_mapping_object);
943 	ASSERT0(vic->vic_births_object);
944 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
945 	    &vic->vic_births_object);
946 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
947 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
948 	    &vic->vic_prev_indirect_vdev);
949 
950 	/*
951 	 * Look for the 'not present' flag.  This will only be set if the device
952 	 * was not present at the time of import.
953 	 */
954 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
955 	    &vd->vdev_not_present);
956 
957 	/*
958 	 * Get the alignment requirement. Ignore pool ashift for vdev
959 	 * attach case.
960 	 */
961 	if (alloctype != VDEV_ALLOC_ATTACH) {
962 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
963 		    &vd->vdev_ashift);
964 	} else {
965 		vd->vdev_attaching = B_TRUE;
966 	}
967 
968 	/*
969 	 * Retrieve the vdev creation time.
970 	 */
971 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
972 	    &vd->vdev_crtxg);
973 
974 	if (vd->vdev_ops == &vdev_root_ops &&
975 	    (alloctype == VDEV_ALLOC_LOAD ||
976 	    alloctype == VDEV_ALLOC_SPLIT ||
977 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
978 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
979 		    &vd->vdev_root_zap);
980 	}
981 
982 	/*
983 	 * If we're a top-level vdev, try to load the allocation parameters.
984 	 */
985 	if (top_level &&
986 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
987 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
988 		    &vd->vdev_ms_array);
989 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
990 		    &vd->vdev_ms_shift);
991 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
992 		    &vd->vdev_asize);
993 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
994 		    &vd->vdev_noalloc);
995 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
996 		    &vd->vdev_removing);
997 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
998 		    &vd->vdev_top_zap);
999 		vd->vdev_rz_expanding = nvlist_exists(nv,
1000 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
1001 	} else {
1002 		ASSERT0(vd->vdev_top_zap);
1003 	}
1004 
1005 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
1006 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
1007 		    alloctype == VDEV_ALLOC_ADD ||
1008 		    alloctype == VDEV_ALLOC_SPLIT ||
1009 		    alloctype == VDEV_ALLOC_ROOTPOOL);
1010 		/* Note: metaslab_group_create() is now deferred */
1011 	}
1012 
1013 	if (vd->vdev_ops->vdev_op_leaf &&
1014 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1015 		(void) nvlist_lookup_uint64(nv,
1016 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
1017 	} else {
1018 		ASSERT0(vd->vdev_leaf_zap);
1019 	}
1020 
1021 	/*
1022 	 * If we're a leaf vdev, try to load the DTL object and other state.
1023 	 */
1024 
1025 	if (vd->vdev_ops->vdev_op_leaf &&
1026 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1027 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
1028 		if (alloctype == VDEV_ALLOC_LOAD) {
1029 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1030 			    &vd->vdev_dtl_object);
1031 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1032 			    &vd->vdev_unspare);
1033 		}
1034 
1035 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1036 			uint64_t spare = 0;
1037 
1038 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1039 			    &spare) == 0 && spare)
1040 				spa_spare_add(vd);
1041 		}
1042 
1043 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1044 		    &vd->vdev_offline);
1045 
1046 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1047 		    &vd->vdev_resilver_txg);
1048 
1049 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1050 		    &vd->vdev_rebuild_txg);
1051 
1052 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1053 			vdev_defer_resilver(vd);
1054 
1055 		/*
1056 		 * In general, when importing a pool we want to ignore the
1057 		 * persistent fault state, as the diagnosis made on another
1058 		 * system may not be valid in the current context.  The only
1059 		 * exception is if we forced a vdev to a persistently faulted
1060 		 * state with 'zpool offline -f'.  The persistent fault will
1061 		 * remain across imports until cleared.
1062 		 *
1063 		 * Local vdevs will remain in the faulted state.
1064 		 */
1065 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1066 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1067 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1068 			    &vd->vdev_faulted);
1069 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1070 			    &vd->vdev_degraded);
1071 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1072 			    &vd->vdev_removed);
1073 
1074 			if (vd->vdev_faulted || vd->vdev_degraded) {
1075 				const char *aux;
1076 
1077 				vd->vdev_label_aux =
1078 				    VDEV_AUX_ERR_EXCEEDED;
1079 				if (nvlist_lookup_string(nv,
1080 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1081 				    strcmp(aux, "external") == 0)
1082 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1083 				else
1084 					vd->vdev_faulted = 0ULL;
1085 			}
1086 		}
1087 	}
1088 
1089 	if (top_level && (ops == &vdev_raidz_ops || ops == &vdev_draid_ops))
1090 		vd->vdev_autosit =
1091 		    vdev_prop_default_numeric(VDEV_PROP_AUTOSIT);
1092 
1093 	/*
1094 	 * Add ourselves to the parent's list of children.
1095 	 */
1096 	vdev_add_child(parent, vd);
1097 
1098 	*vdp = vd;
1099 
1100 	return (0);
1101 }
1102 
1103 void
vdev_free(vdev_t * vd)1104 vdev_free(vdev_t *vd)
1105 {
1106 	spa_t *spa = vd->vdev_spa;
1107 
1108 	ASSERT0P(vd->vdev_initialize_thread);
1109 	ASSERT0P(vd->vdev_trim_thread);
1110 	ASSERT0P(vd->vdev_autotrim_thread);
1111 	ASSERT0P(vd->vdev_rebuild_thread);
1112 
1113 	/*
1114 	 * Scan queues are normally destroyed at the end of a scan. If the
1115 	 * queue exists here, that implies the vdev is being removed while
1116 	 * the scan is still running.
1117 	 */
1118 	if (vd->vdev_scan_io_queue != NULL) {
1119 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1120 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1121 		vd->vdev_scan_io_queue = NULL;
1122 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1123 	}
1124 
1125 	/*
1126 	 * vdev_free() implies closing the vdev first.  This is simpler than
1127 	 * trying to ensure complicated semantics for all callers.
1128 	 */
1129 	vdev_close(vd);
1130 
1131 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1132 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1133 
1134 	/*
1135 	 * Free all children.
1136 	 */
1137 	for (int c = 0; c < vd->vdev_children; c++)
1138 		vdev_free(vd->vdev_child[c]);
1139 
1140 	ASSERT0P(vd->vdev_child);
1141 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1142 
1143 	if (vd->vdev_ops->vdev_op_fini != NULL)
1144 		vd->vdev_ops->vdev_op_fini(vd);
1145 
1146 	/*
1147 	 * Discard allocation state.
1148 	 */
1149 	if (vd->vdev_mg != NULL) {
1150 		vdev_metaslab_fini(vd);
1151 		metaslab_group_destroy(vd->vdev_mg);
1152 		vd->vdev_mg = NULL;
1153 	}
1154 	if (vd->vdev_log_mg != NULL) {
1155 		ASSERT0(vd->vdev_ms_count);
1156 		metaslab_group_destroy(vd->vdev_log_mg);
1157 		vd->vdev_log_mg = NULL;
1158 	}
1159 
1160 	ASSERT0(vd->vdev_stat.vs_space);
1161 	ASSERT0(vd->vdev_stat.vs_dspace);
1162 	ASSERT0(vd->vdev_stat.vs_alloc);
1163 
1164 	/*
1165 	 * Remove this vdev from its parent's child list.
1166 	 */
1167 	vdev_remove_child(vd->vdev_parent, vd);
1168 
1169 	ASSERT0P(vd->vdev_parent);
1170 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1171 
1172 	/*
1173 	 * Clean up vdev structure.
1174 	 */
1175 	vdev_queue_fini(vd);
1176 
1177 	if (vd->vdev_path)
1178 		spa_strfree(vd->vdev_path);
1179 	if (vd->vdev_devid)
1180 		spa_strfree(vd->vdev_devid);
1181 	if (vd->vdev_physpath)
1182 		spa_strfree(vd->vdev_physpath);
1183 
1184 	if (vd->vdev_enc_sysfs_path)
1185 		spa_strfree(vd->vdev_enc_sysfs_path);
1186 
1187 	if (vd->vdev_fru)
1188 		spa_strfree(vd->vdev_fru);
1189 
1190 	if (vd->vdev_isspare)
1191 		spa_spare_remove(vd);
1192 	if (vd->vdev_isl2cache)
1193 		spa_l2cache_remove(vd);
1194 	if (vd->vdev_prev_histo)
1195 		kmem_free(vd->vdev_prev_histo,
1196 		    sizeof (uint64_t) * VDEV_L_HISTO_BUCKETS);
1197 
1198 	txg_list_destroy(&vd->vdev_ms_list);
1199 	txg_list_destroy(&vd->vdev_dtl_list);
1200 
1201 	mutex_enter(&vd->vdev_dtl_lock);
1202 	space_map_close(vd->vdev_dtl_sm);
1203 	for (int t = 0; t < DTL_TYPES; t++) {
1204 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1205 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1206 	}
1207 	mutex_exit(&vd->vdev_dtl_lock);
1208 
1209 	EQUIV(vd->vdev_indirect_births != NULL,
1210 	    vd->vdev_indirect_mapping != NULL);
1211 	if (vd->vdev_indirect_births != NULL) {
1212 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1213 		vdev_indirect_births_close(vd->vdev_indirect_births);
1214 	}
1215 
1216 	if (vd->vdev_obsolete_sm != NULL) {
1217 		ASSERT(vd->vdev_removing ||
1218 		    vd->vdev_ops == &vdev_indirect_ops);
1219 		space_map_close(vd->vdev_obsolete_sm);
1220 		vd->vdev_obsolete_sm = NULL;
1221 	}
1222 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1223 	rw_destroy(&vd->vdev_indirect_rwlock);
1224 	mutex_destroy(&vd->vdev_obsolete_lock);
1225 
1226 	mutex_destroy(&vd->vdev_dtl_lock);
1227 	mutex_destroy(&vd->vdev_stat_lock);
1228 	mutex_destroy(&vd->vdev_probe_lock);
1229 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1230 
1231 	mutex_destroy(&vd->vdev_initialize_lock);
1232 	mutex_destroy(&vd->vdev_initialize_io_lock);
1233 	cv_destroy(&vd->vdev_initialize_io_cv);
1234 	cv_destroy(&vd->vdev_initialize_cv);
1235 
1236 	mutex_destroy(&vd->vdev_trim_lock);
1237 	mutex_destroy(&vd->vdev_autotrim_lock);
1238 	mutex_destroy(&vd->vdev_trim_io_lock);
1239 	cv_destroy(&vd->vdev_trim_cv);
1240 	cv_destroy(&vd->vdev_autotrim_cv);
1241 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1242 	cv_destroy(&vd->vdev_trim_io_cv);
1243 
1244 	mutex_destroy(&vd->vdev_rebuild_lock);
1245 	cv_destroy(&vd->vdev_rebuild_cv);
1246 
1247 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1248 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1249 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1250 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1251 
1252 	if (vd == spa->spa_root_vdev)
1253 		spa->spa_root_vdev = NULL;
1254 
1255 	kmem_free(vd, sizeof (vdev_t));
1256 }
1257 
1258 /*
1259  * Transfer top-level vdev state from svd to tvd.
1260  */
1261 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1262 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1263 {
1264 	spa_t *spa = svd->vdev_spa;
1265 	metaslab_t *msp;
1266 	vdev_t *vd;
1267 	int t;
1268 
1269 	ASSERT(tvd == tvd->vdev_top);
1270 
1271 	tvd->vdev_ms_array = svd->vdev_ms_array;
1272 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1273 	tvd->vdev_ms_count = svd->vdev_ms_count;
1274 	tvd->vdev_top_zap = svd->vdev_top_zap;
1275 
1276 	svd->vdev_ms_array = 0;
1277 	svd->vdev_ms_shift = 0;
1278 	svd->vdev_ms_count = 0;
1279 	svd->vdev_top_zap = 0;
1280 
1281 	if (tvd->vdev_mg)
1282 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1283 	if (tvd->vdev_log_mg)
1284 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1285 	tvd->vdev_mg = svd->vdev_mg;
1286 	tvd->vdev_log_mg = svd->vdev_log_mg;
1287 	tvd->vdev_ms = svd->vdev_ms;
1288 
1289 	svd->vdev_mg = NULL;
1290 	svd->vdev_log_mg = NULL;
1291 	svd->vdev_ms = NULL;
1292 
1293 	if (tvd->vdev_mg != NULL)
1294 		tvd->vdev_mg->mg_vd = tvd;
1295 	if (tvd->vdev_log_mg != NULL)
1296 		tvd->vdev_log_mg->mg_vd = tvd;
1297 
1298 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1299 	svd->vdev_checkpoint_sm = NULL;
1300 
1301 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1302 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1303 
1304 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1305 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1306 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1307 
1308 	svd->vdev_stat.vs_alloc = 0;
1309 	svd->vdev_stat.vs_space = 0;
1310 	svd->vdev_stat.vs_dspace = 0;
1311 
1312 	/*
1313 	 * State which may be set on a top-level vdev that's in the
1314 	 * process of being removed.
1315 	 */
1316 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1317 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1318 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1319 	ASSERT0P(tvd->vdev_indirect_mapping);
1320 	ASSERT0P(tvd->vdev_indirect_births);
1321 	ASSERT0P(tvd->vdev_obsolete_sm);
1322 	ASSERT0(tvd->vdev_noalloc);
1323 	ASSERT0(tvd->vdev_removing);
1324 	ASSERT0(tvd->vdev_rebuilding);
1325 	tvd->vdev_noalloc = svd->vdev_noalloc;
1326 	tvd->vdev_removing = svd->vdev_removing;
1327 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1328 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1329 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1330 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1331 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1332 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1333 	    &tvd->vdev_obsolete_segments);
1334 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1335 	svd->vdev_indirect_config.vic_mapping_object = 0;
1336 	svd->vdev_indirect_config.vic_births_object = 0;
1337 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1338 	svd->vdev_indirect_mapping = NULL;
1339 	svd->vdev_indirect_births = NULL;
1340 	svd->vdev_obsolete_sm = NULL;
1341 	svd->vdev_noalloc = 0;
1342 	svd->vdev_removing = 0;
1343 	svd->vdev_rebuilding = 0;
1344 
1345 	for (t = 0; t < TXG_SIZE; t++) {
1346 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1347 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1348 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1349 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1350 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1351 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1352 	}
1353 
1354 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1355 		vdev_config_clean(svd);
1356 		vdev_config_dirty(tvd);
1357 	}
1358 
1359 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1360 		vdev_state_clean(svd);
1361 		vdev_state_dirty(tvd);
1362 	}
1363 
1364 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1365 	svd->vdev_deflate_ratio = 0;
1366 
1367 	tvd->vdev_islog = svd->vdev_islog;
1368 	svd->vdev_islog = 0;
1369 
1370 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1371 }
1372 
1373 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1374 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1375 {
1376 	if (vd == NULL)
1377 		return;
1378 
1379 	vd->vdev_top = tvd;
1380 
1381 	for (int c = 0; c < vd->vdev_children; c++)
1382 		vdev_top_update(tvd, vd->vdev_child[c]);
1383 }
1384 
1385 /*
1386  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1387  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1388  */
1389 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1390 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1391 {
1392 	spa_t *spa = cvd->vdev_spa;
1393 	vdev_t *pvd = cvd->vdev_parent;
1394 	vdev_t *mvd;
1395 
1396 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1397 
1398 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1399 
1400 	mvd->vdev_asize = cvd->vdev_asize;
1401 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1402 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1403 	mvd->vdev_psize = cvd->vdev_psize;
1404 	mvd->vdev_ashift = cvd->vdev_ashift;
1405 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1406 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1407 	mvd->vdev_state = cvd->vdev_state;
1408 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1409 	mvd->vdev_nonrot = cvd->vdev_nonrot;
1410 
1411 	vdev_remove_child(pvd, cvd);
1412 	vdev_add_child(pvd, mvd);
1413 	cvd->vdev_id = mvd->vdev_children;
1414 	vdev_add_child(mvd, cvd);
1415 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1416 
1417 	if (mvd == mvd->vdev_top)
1418 		vdev_top_transfer(cvd, mvd);
1419 
1420 	return (mvd);
1421 }
1422 
1423 /*
1424  * Remove a 1-way mirror/replacing vdev from the tree.
1425  */
1426 void
vdev_remove_parent(vdev_t * cvd)1427 vdev_remove_parent(vdev_t *cvd)
1428 {
1429 	vdev_t *mvd = cvd->vdev_parent;
1430 	vdev_t *pvd = mvd->vdev_parent;
1431 
1432 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1433 
1434 	ASSERT(mvd->vdev_children == 1);
1435 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1436 	    mvd->vdev_ops == &vdev_replacing_ops ||
1437 	    mvd->vdev_ops == &vdev_spare_ops);
1438 	cvd->vdev_ashift = mvd->vdev_ashift;
1439 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1440 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1441 	vdev_remove_child(mvd, cvd);
1442 	vdev_remove_child(pvd, mvd);
1443 
1444 	/*
1445 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1446 	 * Otherwise, we could have detached an offline device, and when we
1447 	 * go to import the pool we'll think we have two top-level vdevs,
1448 	 * instead of a different version of the same top-level vdev.
1449 	 */
1450 	if (mvd->vdev_top == mvd) {
1451 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1452 		cvd->vdev_orig_guid = cvd->vdev_guid;
1453 		cvd->vdev_guid += guid_delta;
1454 		cvd->vdev_guid_sum += guid_delta;
1455 
1456 		/*
1457 		 * If pool not set for autoexpand, we need to also preserve
1458 		 * mvd's asize to prevent automatic expansion of cvd.
1459 		 * Otherwise if we are adjusting the mirror by attaching and
1460 		 * detaching children of non-uniform sizes, the mirror could
1461 		 * autoexpand, unexpectedly requiring larger devices to
1462 		 * re-establish the mirror.
1463 		 */
1464 		if (!cvd->vdev_spa->spa_autoexpand)
1465 			cvd->vdev_asize = mvd->vdev_asize;
1466 	}
1467 	cvd->vdev_id = mvd->vdev_id;
1468 	vdev_add_child(pvd, cvd);
1469 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1470 
1471 	if (cvd == cvd->vdev_top)
1472 		vdev_top_transfer(mvd, cvd);
1473 
1474 	ASSERT0(mvd->vdev_children);
1475 	vdev_free(mvd);
1476 }
1477 
1478 /*
1479  * Choose GCD for spa_gcd_alloc.
1480  */
1481 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1482 vdev_gcd(uint64_t a, uint64_t b)
1483 {
1484 	while (b != 0) {
1485 		uint64_t t = b;
1486 		b = a % b;
1487 		a = t;
1488 	}
1489 	return (a);
1490 }
1491 
1492 /*
1493  * Set spa_min_alloc and spa_gcd_alloc.
1494  */
1495 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1496 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1497 {
1498 	if (min_alloc < spa->spa_min_alloc)
1499 		spa->spa_min_alloc = min_alloc;
1500 	if (spa->spa_gcd_alloc == INT_MAX) {
1501 		spa->spa_gcd_alloc = min_alloc;
1502 	} else {
1503 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1504 		    spa->spa_gcd_alloc);
1505 	}
1506 }
1507 
1508 void
vdev_metaslab_group_create(vdev_t * vd)1509 vdev_metaslab_group_create(vdev_t *vd)
1510 {
1511 	spa_t *spa = vd->vdev_spa;
1512 
1513 	/*
1514 	 * metaslab_group_create was delayed until allocation bias was available
1515 	 */
1516 	if (vd->vdev_mg == NULL) {
1517 		metaslab_class_t *mc;
1518 
1519 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1520 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1521 
1522 		ASSERT3U(vd->vdev_islog, ==,
1523 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1524 
1525 		switch (vd->vdev_alloc_bias) {
1526 		case VDEV_BIAS_LOG:
1527 			mc = spa_log_class(spa);
1528 			break;
1529 		case VDEV_BIAS_SPECIAL:
1530 			mc = spa_special_class(spa);
1531 			break;
1532 		case VDEV_BIAS_DEDUP:
1533 			mc = spa_dedup_class(spa);
1534 			break;
1535 		default:
1536 			mc = spa_normal_class(spa);
1537 		}
1538 
1539 		vd->vdev_mg = metaslab_group_create(mc, vd);
1540 
1541 		if (!vd->vdev_islog) {
1542 			if (mc == spa_special_class(spa)) {
1543 				vd->vdev_log_mg = metaslab_group_create(
1544 				    spa_special_embedded_log_class(spa), vd);
1545 			} else {
1546 				vd->vdev_log_mg = metaslab_group_create(
1547 				    spa_embedded_log_class(spa), vd);
1548 			}
1549 		}
1550 
1551 		/*
1552 		 * The spa ashift min/max only apply for the normal metaslab
1553 		 * class. Class destination is late binding so ashift boundary
1554 		 * setting had to wait until now.
1555 		 */
1556 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1557 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1558 			if (vd->vdev_ashift > spa->spa_max_ashift)
1559 				spa->spa_max_ashift = vd->vdev_ashift;
1560 			if (vd->vdev_ashift < spa->spa_min_ashift)
1561 				spa->spa_min_ashift = vd->vdev_ashift;
1562 
1563 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1564 			vdev_spa_set_alloc(spa, min_alloc);
1565 		}
1566 	}
1567 }
1568 
1569 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1570 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1571 {
1572 	spa_t *spa = vd->vdev_spa;
1573 
1574 	if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1575 		return;
1576 
1577 	uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1578 	uint64_t dspace = spa_deflate(spa) ?
1579 	    vdev_deflated_space(vd, raw_space) : raw_space;
1580 	if (add) {
1581 		spa->spa_nonallocating_dspace += dspace;
1582 	} else {
1583 		ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1584 		spa->spa_nonallocating_dspace -= dspace;
1585 	}
1586 }
1587 
1588 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1589 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1590 {
1591 	spa_t *spa = vd->vdev_spa;
1592 	uint64_t oldc = vd->vdev_ms_count;
1593 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1594 	metaslab_t **mspp;
1595 	int error;
1596 	boolean_t expanding = (oldc != 0);
1597 
1598 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1599 
1600 	/*
1601 	 * This vdev is not being allocated from yet or is a hole.
1602 	 */
1603 	if (vd->vdev_ms_shift == 0)
1604 		return (0);
1605 
1606 	ASSERT(!vd->vdev_ishole);
1607 
1608 	ASSERT(oldc <= newc);
1609 
1610 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1611 
1612 	if (expanding) {
1613 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1614 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1615 	}
1616 
1617 	vd->vdev_ms = mspp;
1618 	vd->vdev_ms_count = newc;
1619 
1620 	/*
1621 	 * Weighting algorithms can depend on the number of metaslabs in the
1622 	 * vdev. In order to ensure that all weights are correct at all times,
1623 	 * we need to recalculate here.
1624 	 */
1625 	for (uint64_t m = 0; m < oldc; m++) {
1626 		metaslab_t *msp = vd->vdev_ms[m];
1627 		mutex_enter(&msp->ms_lock);
1628 		metaslab_recalculate_weight_and_sort(msp);
1629 		mutex_exit(&msp->ms_lock);
1630 	}
1631 
1632 	for (uint64_t m = oldc; m < newc; m++) {
1633 		uint64_t object = 0;
1634 		/*
1635 		 * vdev_ms_array may be 0 if we are creating the "fake"
1636 		 * metaslabs for an indirect vdev for zdb's leak detection.
1637 		 * See zdb_leak_init().
1638 		 */
1639 		if (txg == 0 && vd->vdev_ms_array != 0) {
1640 			error = dmu_read(spa->spa_meta_objset,
1641 			    vd->vdev_ms_array,
1642 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1643 			    DMU_READ_PREFETCH);
1644 			if (error != 0) {
1645 				vdev_dbgmsg(vd, "unable to read the metaslab "
1646 				    "array [error=%d]", error);
1647 				return (error);
1648 			}
1649 		}
1650 
1651 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1652 		    &(vd->vdev_ms[m]));
1653 		if (error != 0) {
1654 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1655 			    error);
1656 			return (error);
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Find the emptiest metaslab on the vdev and mark it for use for
1662 	 * embedded slog by moving it from the regular to the log metaslab
1663 	 * group.  This works for normal and special vdevs.
1664 	 */
1665 	if ((vd->vdev_mg->mg_class == spa_normal_class(spa) ||
1666 	    vd->vdev_mg->mg_class == spa_special_class(spa)) &&
1667 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1668 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1669 		uint64_t slog_msid = 0;
1670 		uint64_t smallest = UINT64_MAX;
1671 
1672 		/*
1673 		 * Note, we only search the new metaslabs, because the old
1674 		 * (pre-existing) ones may be active (e.g. have non-empty
1675 		 * range_tree's), and we don't move them to the new
1676 		 * metaslab_t.
1677 		 */
1678 		for (uint64_t m = oldc; m < newc; m++) {
1679 			uint64_t alloc =
1680 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1681 			if (alloc < smallest) {
1682 				slog_msid = m;
1683 				smallest = alloc;
1684 			}
1685 		}
1686 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1687 		/*
1688 		 * The metaslab was marked as dirty at the end of
1689 		 * metaslab_init(). Remove it from the dirty list so that we
1690 		 * can uninitialize and reinitialize it to the new class.
1691 		 */
1692 		if (txg != 0) {
1693 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1694 			    slog_ms, txg);
1695 		}
1696 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1697 		metaslab_fini(slog_ms);
1698 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1699 		    &vd->vdev_ms[slog_msid]));
1700 	}
1701 
1702 	if (txg == 0)
1703 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1704 
1705 	/*
1706 	 * If the vdev is marked as non-allocating then don't
1707 	 * activate the metaslabs since we want to ensure that
1708 	 * no allocations are performed on this device.
1709 	 */
1710 	if (vd->vdev_noalloc) {
1711 		/* track non-allocating vdev space */
1712 		vdev_update_nonallocating_space(vd, B_TRUE);
1713 	} else if (!expanding) {
1714 		metaslab_group_activate(vd->vdev_mg);
1715 		if (vd->vdev_log_mg != NULL)
1716 			metaslab_group_activate(vd->vdev_log_mg);
1717 	}
1718 
1719 	if (txg == 0)
1720 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1721 
1722 	return (0);
1723 }
1724 
1725 void
vdev_metaslab_fini(vdev_t * vd)1726 vdev_metaslab_fini(vdev_t *vd)
1727 {
1728 	if (vd->vdev_checkpoint_sm != NULL) {
1729 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1730 		    SPA_FEATURE_POOL_CHECKPOINT));
1731 		space_map_close(vd->vdev_checkpoint_sm);
1732 		/*
1733 		 * Even though we close the space map, we need to set its
1734 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1735 		 * may be called multiple times for certain operations
1736 		 * (i.e. when destroying a pool) so we need to ensure that
1737 		 * this clause never executes twice. This logic is similar
1738 		 * to the one used for the vdev_ms clause below.
1739 		 */
1740 		vd->vdev_checkpoint_sm = NULL;
1741 	}
1742 
1743 	if (vd->vdev_ms != NULL) {
1744 		metaslab_group_t *mg = vd->vdev_mg;
1745 
1746 		metaslab_group_passivate(mg);
1747 		if (vd->vdev_log_mg != NULL) {
1748 			ASSERT(!vd->vdev_islog);
1749 			metaslab_group_passivate(vd->vdev_log_mg);
1750 		}
1751 
1752 		uint64_t count = vd->vdev_ms_count;
1753 		for (uint64_t m = 0; m < count; m++) {
1754 			metaslab_t *msp = vd->vdev_ms[m];
1755 			if (msp != NULL)
1756 				metaslab_fini(msp);
1757 		}
1758 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1759 		vd->vdev_ms = NULL;
1760 		vd->vdev_ms_count = 0;
1761 
1762 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1763 			ASSERT0(mg->mg_histogram[i]);
1764 			if (vd->vdev_log_mg != NULL)
1765 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1766 		}
1767 	}
1768 	ASSERT0(vd->vdev_ms_count);
1769 }
1770 
1771 typedef struct vdev_probe_stats {
1772 	boolean_t	vps_readable;
1773 	boolean_t	vps_writeable;
1774 	boolean_t	vps_zio_done_probe;
1775 	int		vps_flags;
1776 } vdev_probe_stats_t;
1777 
1778 static void
vdev_probe_done(zio_t * zio)1779 vdev_probe_done(zio_t *zio)
1780 {
1781 	spa_t *spa = zio->io_spa;
1782 	vdev_t *vd = zio->io_vd;
1783 	vdev_probe_stats_t *vps = zio->io_private;
1784 
1785 	ASSERT(vd->vdev_probe_zio != NULL);
1786 
1787 	if (zio->io_type == ZIO_TYPE_READ) {
1788 		if (zio->io_error == 0)
1789 			vps->vps_readable = 1;
1790 		if (zio->io_error == 0 && spa_writeable(spa)) {
1791 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1792 			    zio->io_offset, zio->io_size, zio->io_abd,
1793 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1794 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1795 		} else {
1796 			abd_free(zio->io_abd);
1797 		}
1798 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1799 		if (zio->io_error == 0)
1800 			vps->vps_writeable = 1;
1801 		abd_free(zio->io_abd);
1802 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1803 		zio_t *pio;
1804 		zio_link_t *zl;
1805 
1806 		vd->vdev_cant_read |= !vps->vps_readable;
1807 		vd->vdev_cant_write |= !vps->vps_writeable;
1808 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1809 		    vd->vdev_cant_read, vd->vdev_cant_write);
1810 
1811 		if (vdev_readable(vd) &&
1812 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1813 			zio->io_error = 0;
1814 		} else {
1815 			ASSERT(zio->io_error != 0);
1816 			vdev_dbgmsg(vd, "failed probe");
1817 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1818 			    spa, vd, NULL, NULL, 0);
1819 			zio->io_error = SET_ERROR(ENXIO);
1820 
1821 			/*
1822 			 * If this probe was initiated from zio pipeline, then
1823 			 * change the state in a spa_async_request. Probes that
1824 			 * were initiated from a vdev_open can change the state
1825 			 * as part of the open call.
1826 			 * Skip fault injection if this vdev is already removed
1827 			 * or a removal is pending.
1828 			 */
1829 			if (vps->vps_zio_done_probe &&
1830 			    !vd->vdev_remove_wanted && !vd->vdev_removed) {
1831 				vd->vdev_fault_wanted = B_TRUE;
1832 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1833 			}
1834 		}
1835 
1836 		mutex_enter(&vd->vdev_probe_lock);
1837 		ASSERT(vd->vdev_probe_zio == zio);
1838 		vd->vdev_probe_zio = NULL;
1839 		mutex_exit(&vd->vdev_probe_lock);
1840 
1841 		zl = NULL;
1842 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1843 			if (!vdev_accessible(vd, pio))
1844 				pio->io_error = SET_ERROR(ENXIO);
1845 
1846 		kmem_free(vps, sizeof (*vps));
1847 	}
1848 }
1849 
1850 /*
1851  * Determine whether this device is accessible.
1852  *
1853  * Read and write to several known locations: the pad regions of each
1854  * vdev label but the first, which we leave alone in case it contains
1855  * a VTOC.
1856  */
1857 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1858 vdev_probe(vdev_t *vd, zio_t *zio)
1859 {
1860 	spa_t *spa = vd->vdev_spa;
1861 	vdev_probe_stats_t *vps = NULL;
1862 	zio_t *pio;
1863 
1864 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1865 
1866 	/*
1867 	 * Don't probe the probe.
1868 	 */
1869 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1870 		return (NULL);
1871 
1872 	/*
1873 	 * To prevent 'probe storms' when a device fails, we create
1874 	 * just one probe i/o at a time.  All zios that want to probe
1875 	 * this vdev will become parents of the probe io.
1876 	 */
1877 	mutex_enter(&vd->vdev_probe_lock);
1878 
1879 	if ((pio = vd->vdev_probe_zio) == NULL) {
1880 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1881 
1882 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1883 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1884 		vps->vps_zio_done_probe = (zio != NULL);
1885 
1886 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1887 			/*
1888 			 * vdev_cant_read and vdev_cant_write can only
1889 			 * transition from TRUE to FALSE when we have the
1890 			 * SCL_ZIO lock as writer; otherwise they can only
1891 			 * transition from FALSE to TRUE.  This ensures that
1892 			 * any zio looking at these values can assume that
1893 			 * failures persist for the life of the I/O.  That's
1894 			 * important because when a device has intermittent
1895 			 * connectivity problems, we want to ensure that
1896 			 * they're ascribed to the device (ENXIO) and not
1897 			 * the zio (EIO).
1898 			 *
1899 			 * Since we hold SCL_ZIO as writer here, clear both
1900 			 * values so the probe can reevaluate from first
1901 			 * principles.
1902 			 */
1903 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1904 			vd->vdev_cant_read = B_FALSE;
1905 			vd->vdev_cant_write = B_FALSE;
1906 		}
1907 
1908 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1909 		    vdev_probe_done, vps,
1910 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1911 	}
1912 
1913 	if (zio != NULL)
1914 		zio_add_child(zio, pio);
1915 
1916 	mutex_exit(&vd->vdev_probe_lock);
1917 
1918 	if (vps == NULL) {
1919 		ASSERT(zio != NULL);
1920 		return (NULL);
1921 	}
1922 
1923 	for (int l = 1; l < VDEV_LABELS; l++) {
1924 		zio_nowait(zio_read_phys(pio, vd,
1925 		    vdev_label_offset(vd->vdev_psize, l,
1926 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1927 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1928 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1929 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1930 	}
1931 
1932 	if (zio == NULL)
1933 		return (pio);
1934 
1935 	zio_nowait(pio);
1936 	return (NULL);
1937 }
1938 
1939 static void
vdev_load_child(void * arg)1940 vdev_load_child(void *arg)
1941 {
1942 	vdev_t *vd = arg;
1943 
1944 	vd->vdev_load_error = vdev_load(vd);
1945 }
1946 
1947 static void
vdev_open_child(void * arg)1948 vdev_open_child(void *arg)
1949 {
1950 	vdev_t *vd = arg;
1951 
1952 	vd->vdev_open_thread = curthread;
1953 	vd->vdev_open_error = vdev_open(vd);
1954 	vd->vdev_open_thread = NULL;
1955 }
1956 
1957 static boolean_t
vdev_uses_zvols(vdev_t * vd)1958 vdev_uses_zvols(vdev_t *vd)
1959 {
1960 #ifdef _KERNEL
1961 	if (zvol_is_zvol(vd->vdev_path))
1962 		return (B_TRUE);
1963 #endif
1964 
1965 	for (int c = 0; c < vd->vdev_children; c++)
1966 		if (vdev_uses_zvols(vd->vdev_child[c]))
1967 			return (B_TRUE);
1968 
1969 	return (B_FALSE);
1970 }
1971 
1972 /*
1973  * Returns B_TRUE if the passed child should be opened.
1974  */
1975 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1976 vdev_default_open_children_func(vdev_t *vd)
1977 {
1978 	(void) vd;
1979 	return (B_TRUE);
1980 }
1981 
1982 /*
1983  * Open the requested child vdevs.  If any of the leaf vdevs are using
1984  * a ZFS volume then do the opens in a single thread.  This avoids a
1985  * deadlock when the current thread is holding the spa_namespace_lock.
1986  */
1987 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1988 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1989 {
1990 	int children = vd->vdev_children;
1991 
1992 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1993 	    children, children, TASKQ_PREPOPULATE);
1994 	vd->vdev_nonrot = B_TRUE;
1995 
1996 	for (int c = 0; c < children; c++) {
1997 		vdev_t *cvd = vd->vdev_child[c];
1998 
1999 		if (open_func(cvd) == B_FALSE)
2000 			continue;
2001 
2002 		if (tq == NULL || vdev_uses_zvols(vd)) {
2003 			cvd->vdev_open_error = vdev_open(cvd);
2004 		} else {
2005 			VERIFY(taskq_dispatch(tq, vdev_open_child,
2006 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
2007 		}
2008 	}
2009 
2010 	if (tq != NULL)
2011 		taskq_wait(tq);
2012 	for (int c = 0; c < children; c++) {
2013 		vdev_t *cvd = vd->vdev_child[c];
2014 
2015 		if (open_func(cvd) == B_FALSE ||
2016 		    cvd->vdev_state <= VDEV_STATE_FAULTED)
2017 			continue;
2018 		vd->vdev_nonrot &= cvd->vdev_nonrot;
2019 	}
2020 
2021 	if (tq != NULL)
2022 		taskq_destroy(tq);
2023 }
2024 
2025 /*
2026  * Open all child vdevs.
2027  */
2028 void
vdev_open_children(vdev_t * vd)2029 vdev_open_children(vdev_t *vd)
2030 {
2031 	vdev_open_children_impl(vd, vdev_default_open_children_func);
2032 }
2033 
2034 /*
2035  * Conditionally open a subset of child vdevs.
2036  */
2037 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2038 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2039 {
2040 	vdev_open_children_impl(vd, open_func);
2041 }
2042 
2043 /*
2044  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
2045  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
2046  * changed, this algorithm can not change, otherwise it would inconsistently
2047  * account for existing bp's.  We also hard-code txg 0 for the same reason
2048  * since expanded RAIDZ vdevs can use a different asize for different birth
2049  * txg's.
2050  */
2051 static void
vdev_set_deflate_ratio(vdev_t * vd)2052 vdev_set_deflate_ratio(vdev_t *vd)
2053 {
2054 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2055 		vd->vdev_deflate_ratio = (1 << 17) /
2056 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2057 		    SPA_MINBLOCKSHIFT);
2058 	}
2059 }
2060 
2061 /*
2062  * Choose the best of two ashifts, preferring one between logical ashift
2063  * (absolute minimum) and administrator defined maximum, otherwise take
2064  * the biggest of the two.
2065  */
2066 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2067 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2068 {
2069 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2070 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
2071 			return (a);
2072 		else
2073 			return (MAX(a, b));
2074 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2075 		return (MAX(a, b));
2076 	return (b);
2077 }
2078 
2079 /*
2080  * Maximize performance by inflating the configured ashift for top level
2081  * vdevs to be as close to the physical ashift as possible while maintaining
2082  * administrator defined limits and ensuring it doesn't go below the
2083  * logical ashift.
2084  */
2085 static void
vdev_ashift_optimize(vdev_t * vd)2086 vdev_ashift_optimize(vdev_t *vd)
2087 {
2088 	ASSERT(vd == vd->vdev_top);
2089 
2090 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2091 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2092 		vd->vdev_ashift = MIN(
2093 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2094 		    MAX(zfs_vdev_min_auto_ashift,
2095 		    vd->vdev_physical_ashift));
2096 	} else {
2097 		/*
2098 		 * If the logical and physical ashifts are the same, then
2099 		 * we ensure that the top-level vdev's ashift is not smaller
2100 		 * than our minimum ashift value. For the unusual case
2101 		 * where logical ashift > physical ashift, we can't cap
2102 		 * the calculated ashift based on max ashift as that
2103 		 * would cause failures.
2104 		 * We still check if we need to increase it to match
2105 		 * the min ashift.
2106 		 */
2107 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2108 		    vd->vdev_ashift);
2109 	}
2110 }
2111 
2112 /*
2113  * Prepare a virtual device for access.
2114  */
2115 int
vdev_open(vdev_t * vd)2116 vdev_open(vdev_t *vd)
2117 {
2118 	spa_t *spa = vd->vdev_spa;
2119 	int error;
2120 	uint64_t osize = 0;
2121 	uint64_t max_osize = 0;
2122 	uint64_t asize, max_asize, psize;
2123 	uint64_t logical_ashift = 0;
2124 	uint64_t physical_ashift = 0;
2125 
2126 	ASSERT(vd->vdev_open_thread == curthread ||
2127 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2128 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2129 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2130 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2131 
2132 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2133 	vd->vdev_cant_read = B_FALSE;
2134 	vd->vdev_cant_write = B_FALSE;
2135 	vd->vdev_fault_wanted = B_FALSE;
2136 	vd->vdev_remove_wanted = B_FALSE;
2137 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2138 
2139 	/*
2140 	 * If this vdev is not removed, check its fault status.  If it's
2141 	 * faulted, bail out of the open.
2142 	 */
2143 	if (!vd->vdev_removed && vd->vdev_faulted) {
2144 		ASSERT0(vd->vdev_children);
2145 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2146 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2147 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2148 		    vd->vdev_label_aux);
2149 		return (SET_ERROR(ENXIO));
2150 	} else if (vd->vdev_offline) {
2151 		ASSERT0(vd->vdev_children);
2152 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2153 		return (SET_ERROR(ENXIO));
2154 	}
2155 
2156 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2157 	    &logical_ashift, &physical_ashift);
2158 
2159 	/* Keep the device in removed state if unplugged */
2160 	if (error == ENOENT && vd->vdev_removed) {
2161 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2162 		    VDEV_AUX_NONE);
2163 		return (error);
2164 	}
2165 
2166 	/*
2167 	 * Physical volume size should never be larger than its max size, unless
2168 	 * the disk has shrunk while we were reading it or the device is buggy
2169 	 * or damaged: either way it's not safe for use, bail out of the open.
2170 	 */
2171 	if (osize > max_osize) {
2172 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2173 		    VDEV_AUX_OPEN_FAILED);
2174 		return (SET_ERROR(ENXIO));
2175 	}
2176 
2177 	/*
2178 	 * Reset the vdev_reopening flag so that we actually close
2179 	 * the vdev on error.
2180 	 */
2181 	vd->vdev_reopening = B_FALSE;
2182 	if (zio_injection_enabled && error == 0)
2183 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2184 
2185 	if (error) {
2186 		if (vd->vdev_removed &&
2187 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2188 			vd->vdev_removed = B_FALSE;
2189 
2190 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2191 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2192 			    vd->vdev_stat.vs_aux);
2193 		} else {
2194 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2195 			    vd->vdev_stat.vs_aux);
2196 		}
2197 		return (error);
2198 	}
2199 
2200 	vd->vdev_removed = B_FALSE;
2201 
2202 	/*
2203 	 * Recheck the faulted flag now that we have confirmed that
2204 	 * the vdev is accessible.  If we're faulted, bail.
2205 	 */
2206 	if (vd->vdev_faulted) {
2207 		ASSERT0(vd->vdev_children);
2208 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2209 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2210 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2211 		    vd->vdev_label_aux);
2212 		return (SET_ERROR(ENXIO));
2213 	}
2214 
2215 	if (vd->vdev_degraded) {
2216 		ASSERT0(vd->vdev_children);
2217 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2218 		    VDEV_AUX_ERR_EXCEEDED);
2219 	} else {
2220 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2221 	}
2222 
2223 	/*
2224 	 * For hole or missing vdevs we just return success.
2225 	 */
2226 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2227 		return (0);
2228 
2229 	for (int c = 0; c < vd->vdev_children; c++) {
2230 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2231 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2232 			    VDEV_AUX_NONE);
2233 			break;
2234 		}
2235 	}
2236 
2237 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2238 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2239 
2240 	if (vd->vdev_children == 0) {
2241 		if (osize < SPA_MINDEVSIZE) {
2242 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2243 			    VDEV_AUX_TOO_SMALL);
2244 			return (SET_ERROR(EOVERFLOW));
2245 		}
2246 		psize = osize;
2247 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2248 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2249 		    VDEV_LABEL_END_SIZE);
2250 	} else {
2251 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2252 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2253 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2254 			    VDEV_AUX_TOO_SMALL);
2255 			return (SET_ERROR(EOVERFLOW));
2256 		}
2257 		psize = 0;
2258 		asize = osize;
2259 		max_asize = max_osize;
2260 	}
2261 
2262 	/*
2263 	 * If the vdev was expanded, record this so that we can re-create the
2264 	 * uberblock rings in labels {2,3}, during the next sync.
2265 	 */
2266 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2267 		vd->vdev_copy_uberblocks = B_TRUE;
2268 
2269 	vd->vdev_psize = psize;
2270 
2271 	/*
2272 	 * Make sure the allocatable size hasn't shrunk too much.
2273 	 */
2274 	if (asize < vd->vdev_min_asize) {
2275 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2276 		    VDEV_AUX_BAD_LABEL);
2277 		return (SET_ERROR(EINVAL));
2278 	}
2279 
2280 	/*
2281 	 * We can always set the logical/physical ashift members since
2282 	 * their values are only used to calculate the vdev_ashift when
2283 	 * the device is first added to the config. These values should
2284 	 * not be used for anything else since they may change whenever
2285 	 * the device is reopened and we don't store them in the label.
2286 	 */
2287 	vd->vdev_physical_ashift =
2288 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2289 	vd->vdev_logical_ashift = MAX(logical_ashift,
2290 	    vd->vdev_logical_ashift);
2291 
2292 	if (vd->vdev_asize == 0) {
2293 		/*
2294 		 * This is the first-ever open, so use the computed values.
2295 		 * For compatibility, a different ashift can be requested.
2296 		 */
2297 		vd->vdev_asize = asize;
2298 		vd->vdev_max_asize = max_asize;
2299 
2300 		/*
2301 		 * If the vdev_ashift was not overridden at creation time
2302 		 * (0) or the override value is impossible for the device,
2303 		 * then set it the logical ashift and optimize the ashift.
2304 		 */
2305 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2306 			vd->vdev_ashift = vd->vdev_logical_ashift;
2307 
2308 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2309 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2310 				    VDEV_AUX_ASHIFT_TOO_BIG);
2311 				return (SET_ERROR(EDOM));
2312 			}
2313 
2314 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2315 				vdev_ashift_optimize(vd);
2316 			vd->vdev_attaching = B_FALSE;
2317 		}
2318 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2319 		    vd->vdev_ashift > ASHIFT_MAX)) {
2320 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2321 			    VDEV_AUX_BAD_ASHIFT);
2322 			return (SET_ERROR(EDOM));
2323 		}
2324 	} else {
2325 		/*
2326 		 * Make sure the alignment required hasn't increased.
2327 		 */
2328 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2329 		    vd->vdev_ops->vdev_op_leaf) {
2330 			(void) zfs_ereport_post(
2331 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2332 			    spa, vd, NULL, NULL, 0);
2333 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2334 			    VDEV_AUX_BAD_LABEL);
2335 			return (SET_ERROR(EDOM));
2336 		}
2337 		vd->vdev_max_asize = max_asize;
2338 	}
2339 
2340 	/*
2341 	 * If all children are healthy we update asize if either:
2342 	 * The asize has increased, due to a device expansion caused by dynamic
2343 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2344 	 * making the additional space available.
2345 	 *
2346 	 * The asize has decreased, due to a device shrink usually caused by a
2347 	 * vdev replace with a smaller device. This ensures that calculations
2348 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2349 	 * to do this as we've already validated that asize is greater than
2350 	 * vdev_min_asize.
2351 	 */
2352 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2353 	    ((asize > vd->vdev_asize &&
2354 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2355 	    (asize < vd->vdev_asize)))
2356 		vd->vdev_asize = asize;
2357 
2358 	vdev_set_min_asize(vd);
2359 
2360 	/*
2361 	 * Ensure we can issue some IO before declaring the
2362 	 * vdev open for business.
2363 	 */
2364 	if (vd->vdev_ops->vdev_op_leaf &&
2365 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2366 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2367 		    VDEV_AUX_ERR_EXCEEDED);
2368 		return (error);
2369 	}
2370 
2371 	/*
2372 	 * Track the minimum allocation size.
2373 	 */
2374 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2375 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2376 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2377 		vdev_spa_set_alloc(spa, min_alloc);
2378 	}
2379 
2380 	/*
2381 	 * If this is a leaf vdev, assess whether a resilver is needed.
2382 	 * But don't do this if we are doing a reopen for a scrub, since
2383 	 * this would just restart the scrub we are already doing.
2384 	 */
2385 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2386 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2387 
2388 	return (0);
2389 }
2390 
2391 static void
vdev_validate_child(void * arg)2392 vdev_validate_child(void *arg)
2393 {
2394 	vdev_t *vd = arg;
2395 
2396 	vd->vdev_validate_thread = curthread;
2397 	vd->vdev_validate_error = vdev_validate(vd);
2398 	vd->vdev_validate_thread = NULL;
2399 }
2400 
2401 /*
2402  * Called once the vdevs are all opened, this routine validates the label
2403  * contents. This needs to be done before vdev_load() so that we don't
2404  * inadvertently do repair I/Os to the wrong device.
2405  *
2406  * This function will only return failure if one of the vdevs indicates that it
2407  * has since been destroyed or exported.  This is only possible if
2408  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2409  * will be updated but the function will return 0.
2410  */
2411 int
vdev_validate(vdev_t * vd)2412 vdev_validate(vdev_t *vd)
2413 {
2414 	spa_t *spa = vd->vdev_spa;
2415 	taskq_t *tq = NULL;
2416 	nvlist_t *label;
2417 	uint64_t guid = 0, aux_guid = 0, top_guid;
2418 	uint64_t state;
2419 	nvlist_t *nvl;
2420 	uint64_t txg;
2421 	int children = vd->vdev_children;
2422 
2423 	if (vdev_validate_skip)
2424 		return (0);
2425 
2426 	if (children > 0) {
2427 		tq = taskq_create("vdev_validate", children, minclsyspri,
2428 		    children, children, TASKQ_PREPOPULATE);
2429 	}
2430 
2431 	for (uint64_t c = 0; c < children; c++) {
2432 		vdev_t *cvd = vd->vdev_child[c];
2433 
2434 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2435 			vdev_validate_child(cvd);
2436 		} else {
2437 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2438 			    TQ_SLEEP) != TASKQID_INVALID);
2439 		}
2440 	}
2441 	if (tq != NULL) {
2442 		taskq_wait(tq);
2443 		taskq_destroy(tq);
2444 	}
2445 	for (int c = 0; c < children; c++) {
2446 		int error = vd->vdev_child[c]->vdev_validate_error;
2447 
2448 		if (error != 0)
2449 			return (SET_ERROR(EBADF));
2450 	}
2451 
2452 
2453 	/*
2454 	 * If the device has already failed, or was marked offline, don't do
2455 	 * any further validation.  Otherwise, label I/O will fail and we will
2456 	 * overwrite the previous state.
2457 	 */
2458 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2459 		return (0);
2460 
2461 	/*
2462 	 * If we are performing an extreme rewind, we allow for a label that
2463 	 * was modified at a point after the current txg.
2464 	 * If config lock is not held do not check for the txg. spa_sync could
2465 	 * be updating the vdev's label before updating spa_last_synced_txg.
2466 	 */
2467 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2468 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2469 		txg = UINT64_MAX;
2470 	else
2471 		txg = spa_last_synced_txg(spa);
2472 
2473 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2474 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2475 		    VDEV_AUX_BAD_LABEL);
2476 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2477 		    "txg %llu", (u_longlong_t)txg);
2478 		return (0);
2479 	}
2480 
2481 	/*
2482 	 * Determine if this vdev has been split off into another
2483 	 * pool.  If so, then refuse to open it.
2484 	 */
2485 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2486 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2487 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2488 		    VDEV_AUX_SPLIT_POOL);
2489 		nvlist_free(label);
2490 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2491 		return (0);
2492 	}
2493 
2494 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2495 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2496 		    VDEV_AUX_CORRUPT_DATA);
2497 		nvlist_free(label);
2498 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2499 		    ZPOOL_CONFIG_POOL_GUID);
2500 		return (0);
2501 	}
2502 
2503 	/*
2504 	 * If config is not trusted then ignore the spa guid check. This is
2505 	 * necessary because if the machine crashed during a re-guid the new
2506 	 * guid might have been written to all of the vdev labels, but not the
2507 	 * cached config. The check will be performed again once we have the
2508 	 * trusted config from the MOS.
2509 	 */
2510 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2511 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2512 		    VDEV_AUX_CORRUPT_DATA);
2513 		nvlist_free(label);
2514 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2515 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2516 		    (u_longlong_t)spa_guid(spa));
2517 		return (0);
2518 	}
2519 
2520 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2521 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2522 	    &aux_guid) != 0)
2523 		aux_guid = 0;
2524 
2525 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2526 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2527 		    VDEV_AUX_CORRUPT_DATA);
2528 		nvlist_free(label);
2529 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2530 		    ZPOOL_CONFIG_GUID);
2531 		return (0);
2532 	}
2533 
2534 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2535 	    != 0) {
2536 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2537 		    VDEV_AUX_CORRUPT_DATA);
2538 		nvlist_free(label);
2539 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2540 		    ZPOOL_CONFIG_TOP_GUID);
2541 		return (0);
2542 	}
2543 
2544 	/*
2545 	 * If this vdev just became a top-level vdev because its sibling was
2546 	 * detached, it will have adopted the parent's vdev guid -- but the
2547 	 * label may or may not be on disk yet. Fortunately, either version
2548 	 * of the label will have the same top guid, so if we're a top-level
2549 	 * vdev, we can safely compare to that instead.
2550 	 * However, if the config comes from a cachefile that failed to update
2551 	 * after the detach, a top-level vdev will appear as a non top-level
2552 	 * vdev in the config. Also relax the constraints if we perform an
2553 	 * extreme rewind.
2554 	 *
2555 	 * If we split this vdev off instead, then we also check the
2556 	 * original pool's guid. We don't want to consider the vdev
2557 	 * corrupt if it is partway through a split operation.
2558 	 */
2559 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2560 		boolean_t mismatch = B_FALSE;
2561 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2562 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2563 				mismatch = B_TRUE;
2564 		} else {
2565 			if (vd->vdev_guid != top_guid &&
2566 			    vd->vdev_top->vdev_guid != guid)
2567 				mismatch = B_TRUE;
2568 		}
2569 
2570 		if (mismatch) {
2571 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2572 			    VDEV_AUX_CORRUPT_DATA);
2573 			nvlist_free(label);
2574 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2575 			    "doesn't match label guid");
2576 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2577 			    (u_longlong_t)vd->vdev_guid,
2578 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2579 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2580 			    "aux_guid %llu", (u_longlong_t)guid,
2581 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2582 			return (0);
2583 		}
2584 	}
2585 
2586 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2587 	    &state) != 0) {
2588 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2589 		    VDEV_AUX_CORRUPT_DATA);
2590 		nvlist_free(label);
2591 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2592 		    ZPOOL_CONFIG_POOL_STATE);
2593 		return (0);
2594 	}
2595 
2596 	nvlist_free(label);
2597 
2598 	/*
2599 	 * If this is a verbatim import, no need to check the
2600 	 * state of the pool.
2601 	 */
2602 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2603 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2604 	    state != POOL_STATE_ACTIVE) {
2605 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2606 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2607 		return (SET_ERROR(EBADF));
2608 	}
2609 
2610 	/*
2611 	 * If we were able to open and validate a vdev that was
2612 	 * previously marked permanently unavailable, clear that state
2613 	 * now.
2614 	 */
2615 	if (vd->vdev_not_present)
2616 		vd->vdev_not_present = 0;
2617 
2618 	return (0);
2619 }
2620 
2621 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2622 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2623 {
2624 	if (svd != NULL && *dvd != NULL) {
2625 		if (strcmp(svd, *dvd) != 0) {
2626 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2627 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2628 			    *dvd, svd);
2629 			spa_strfree(*dvd);
2630 			*dvd = spa_strdup(svd);
2631 		}
2632 	} else if (svd != NULL) {
2633 		*dvd = spa_strdup(svd);
2634 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2635 		    (u_longlong_t)guid, *dvd);
2636 	}
2637 }
2638 
2639 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2640 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2641 {
2642 	char *old, *new;
2643 
2644 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2645 	    dvd->vdev_guid);
2646 
2647 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2648 	    dvd->vdev_guid);
2649 
2650 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2651 	    &dvd->vdev_physpath, dvd->vdev_guid);
2652 
2653 	/*
2654 	 * Our enclosure sysfs path may have changed between imports
2655 	 */
2656 	old = dvd->vdev_enc_sysfs_path;
2657 	new = svd->vdev_enc_sysfs_path;
2658 	if ((old != NULL && new == NULL) ||
2659 	    (old == NULL && new != NULL) ||
2660 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2661 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2662 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2663 		    old, new);
2664 
2665 		if (dvd->vdev_enc_sysfs_path)
2666 			spa_strfree(dvd->vdev_enc_sysfs_path);
2667 
2668 		if (svd->vdev_enc_sysfs_path) {
2669 			dvd->vdev_enc_sysfs_path = spa_strdup(
2670 			    svd->vdev_enc_sysfs_path);
2671 		} else {
2672 			dvd->vdev_enc_sysfs_path = NULL;
2673 		}
2674 	}
2675 }
2676 
2677 /*
2678  * Recursively copy vdev paths from one vdev to another. Source and destination
2679  * vdev trees must have same geometry otherwise return error. Intended to copy
2680  * paths from userland config into MOS config.
2681  */
2682 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2683 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2684 {
2685 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2686 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2687 	    (dvd->vdev_ops == &vdev_indirect_ops))
2688 		return (0);
2689 
2690 	if (svd->vdev_ops != dvd->vdev_ops) {
2691 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2692 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2693 		return (SET_ERROR(EINVAL));
2694 	}
2695 
2696 	if (svd->vdev_guid != dvd->vdev_guid) {
2697 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2698 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2699 		    (u_longlong_t)dvd->vdev_guid);
2700 		return (SET_ERROR(EINVAL));
2701 	}
2702 
2703 	if (svd->vdev_children != dvd->vdev_children) {
2704 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2705 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2706 		    (u_longlong_t)dvd->vdev_children);
2707 		return (SET_ERROR(EINVAL));
2708 	}
2709 
2710 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2711 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2712 		    dvd->vdev_child[i]);
2713 		if (error != 0)
2714 			return (error);
2715 	}
2716 
2717 	if (svd->vdev_ops->vdev_op_leaf)
2718 		vdev_copy_path_impl(svd, dvd);
2719 
2720 	return (0);
2721 }
2722 
2723 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2724 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2725 {
2726 	ASSERT(stvd->vdev_top == stvd);
2727 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2728 
2729 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2730 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2731 	}
2732 
2733 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2734 		return;
2735 
2736 	/*
2737 	 * The idea here is that while a vdev can shift positions within
2738 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2739 	 * step outside of it.
2740 	 */
2741 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2742 
2743 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2744 		return;
2745 
2746 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2747 
2748 	vdev_copy_path_impl(vd, dvd);
2749 }
2750 
2751 /*
2752  * Recursively copy vdev paths from one root vdev to another. Source and
2753  * destination vdev trees may differ in geometry. For each destination leaf
2754  * vdev, search a vdev with the same guid and top vdev id in the source.
2755  * Intended to copy paths from userland config into MOS config.
2756  */
2757 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2758 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2759 {
2760 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2761 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2762 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2763 
2764 	for (uint64_t i = 0; i < children; i++) {
2765 		vdev_copy_path_search(srvd->vdev_child[i],
2766 		    drvd->vdev_child[i]);
2767 	}
2768 }
2769 
2770 /*
2771  * Close a virtual device.
2772  */
2773 void
vdev_close(vdev_t * vd)2774 vdev_close(vdev_t *vd)
2775 {
2776 	vdev_t *pvd = vd->vdev_parent;
2777 	spa_t *spa __maybe_unused = vd->vdev_spa;
2778 
2779 	ASSERT(vd != NULL);
2780 	ASSERT(vd->vdev_open_thread == curthread ||
2781 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2782 
2783 	/*
2784 	 * If our parent is reopening, then we are as well, unless we are
2785 	 * going offline.
2786 	 */
2787 	if (pvd != NULL && pvd->vdev_reopening)
2788 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2789 
2790 	vd->vdev_ops->vdev_op_close(vd);
2791 
2792 	/*
2793 	 * We record the previous state before we close it, so that if we are
2794 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2795 	 * it's still faulted.
2796 	 */
2797 	vd->vdev_prevstate = vd->vdev_state;
2798 
2799 	if (vd->vdev_offline)
2800 		vd->vdev_state = VDEV_STATE_OFFLINE;
2801 	else
2802 		vd->vdev_state = VDEV_STATE_CLOSED;
2803 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2804 }
2805 
2806 void
vdev_hold(vdev_t * vd)2807 vdev_hold(vdev_t *vd)
2808 {
2809 	spa_t *spa = vd->vdev_spa;
2810 
2811 	ASSERT(spa_is_root(spa));
2812 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2813 		return;
2814 
2815 	for (int c = 0; c < vd->vdev_children; c++)
2816 		vdev_hold(vd->vdev_child[c]);
2817 
2818 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2819 		vd->vdev_ops->vdev_op_hold(vd);
2820 }
2821 
2822 void
vdev_rele(vdev_t * vd)2823 vdev_rele(vdev_t *vd)
2824 {
2825 	ASSERT(spa_is_root(vd->vdev_spa));
2826 	for (int c = 0; c < vd->vdev_children; c++)
2827 		vdev_rele(vd->vdev_child[c]);
2828 
2829 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2830 		vd->vdev_ops->vdev_op_rele(vd);
2831 }
2832 
2833 /*
2834  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2835  * reopen leaf vdevs which had previously been opened as they might deadlock
2836  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2837  * If the leaf has never been opened then open it, as usual.
2838  */
2839 void
vdev_reopen(vdev_t * vd)2840 vdev_reopen(vdev_t *vd)
2841 {
2842 	spa_t *spa = vd->vdev_spa;
2843 
2844 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2845 
2846 	/* set the reopening flag unless we're taking the vdev offline */
2847 	vd->vdev_reopening = !vd->vdev_offline;
2848 	vdev_close(vd);
2849 	(void) vdev_open(vd);
2850 
2851 	/*
2852 	 * Call vdev_validate() here to make sure we have the same device.
2853 	 * Otherwise, a device with an invalid label could be successfully
2854 	 * opened in response to vdev_reopen().
2855 	 */
2856 	if (vd->vdev_aux) {
2857 		(void) vdev_validate_aux(vd);
2858 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2859 		    vd->vdev_aux == &spa->spa_l2cache) {
2860 			/*
2861 			 * In case the vdev is present we should evict all ARC
2862 			 * buffers and pointers to log blocks and reclaim their
2863 			 * space before restoring its contents to L2ARC.
2864 			 */
2865 			if (l2arc_vdev_present(vd)) {
2866 				l2arc_rebuild_vdev(vd, B_TRUE);
2867 			} else {
2868 				l2arc_add_vdev(spa, vd);
2869 			}
2870 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2871 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2872 		}
2873 	} else {
2874 		(void) vdev_validate(vd);
2875 	}
2876 
2877 	/*
2878 	 * Recheck if resilver is still needed and cancel any
2879 	 * scheduled resilver if resilver is unneeded.
2880 	 */
2881 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2882 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2883 		mutex_enter(&spa->spa_async_lock);
2884 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2885 		mutex_exit(&spa->spa_async_lock);
2886 	}
2887 
2888 	/*
2889 	 * Reassess parent vdev's health.
2890 	 */
2891 	vdev_propagate_state(vd);
2892 }
2893 
2894 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2895 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2896 {
2897 	int error;
2898 
2899 	/*
2900 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2901 	 * For a create, however, we want to fail the request if
2902 	 * there are any components we can't open.
2903 	 */
2904 	error = vdev_open(vd);
2905 
2906 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2907 		vdev_close(vd);
2908 		return (error ? error : SET_ERROR(ENXIO));
2909 	}
2910 
2911 	/*
2912 	 * Recursively load DTLs and initialize all labels.
2913 	 */
2914 	if ((error = vdev_dtl_load(vd)) != 0 ||
2915 	    (error = vdev_label_init(vd, txg, isreplacing ?
2916 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2917 		vdev_close(vd);
2918 		return (error);
2919 	}
2920 
2921 	return (0);
2922 }
2923 
2924 void
vdev_metaslab_set_size(vdev_t * vd)2925 vdev_metaslab_set_size(vdev_t *vd)
2926 {
2927 	uint64_t asize = vd->vdev_asize;
2928 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2929 	uint64_t ms_shift;
2930 
2931 	/*
2932 	 * There are two dimensions to the metaslab sizing calculation:
2933 	 * the size of the metaslab and the count of metaslabs per vdev.
2934 	 *
2935 	 * The default values used below are a good balance between memory
2936 	 * usage (larger metaslab size means more memory needed for loaded
2937 	 * metaslabs; more metaslabs means more memory needed for the
2938 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2939 	 * longer to load), and metaslab sync time (more metaslabs means
2940 	 * more time spent syncing all of them).
2941 	 *
2942 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2943 	 * The range of the dimensions are as follows:
2944 	 *
2945 	 *	2^29 <= ms_size  <= 2^34
2946 	 *	  16 <= ms_count <= 131,072
2947 	 *
2948 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2949 	 * at least 512MB (2^29) to minimize fragmentation effects when
2950 	 * testing with smaller devices.  However, the count constraint
2951 	 * of at least 16 metaslabs will override this minimum size goal.
2952 	 *
2953 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2954 	 * size of 16GB.  However, we will cap the total count to 2^17
2955 	 * metaslabs to keep our memory footprint in check and let the
2956 	 * metaslab size grow from there if that limit is hit.
2957 	 *
2958 	 * The net effect of applying above constrains is summarized below.
2959 	 *
2960 	 *   vdev size       metaslab count
2961 	 *  --------------|-----------------
2962 	 *      < 8GB        ~16
2963 	 *  8GB   - 100GB   one per 512MB
2964 	 *  100GB - 3TB     ~200
2965 	 *  3TB   - 2PB     one per 16GB
2966 	 *      > 2PB       ~131,072
2967 	 *  --------------------------------
2968 	 *
2969 	 *  Finally, note that all of the above calculate the initial
2970 	 *  number of metaslabs. Expanding a top-level vdev will result
2971 	 *  in additional metaslabs being allocated making it possible
2972 	 *  to exceed the zfs_vdev_ms_count_limit.
2973 	 */
2974 
2975 	if (ms_count < zfs_vdev_min_ms_count)
2976 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2977 	else if (ms_count > zfs_vdev_default_ms_count)
2978 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2979 	else
2980 		ms_shift = zfs_vdev_default_ms_shift;
2981 
2982 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2983 		ms_shift = SPA_MAXBLOCKSHIFT;
2984 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2985 		ms_shift = zfs_vdev_max_ms_shift;
2986 		/* cap the total count to constrain memory footprint */
2987 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2988 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2989 	}
2990 
2991 	vd->vdev_ms_shift = ms_shift;
2992 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2993 }
2994 
2995 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2996 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2997 {
2998 	ASSERT(vd == vd->vdev_top);
2999 	/* indirect vdevs don't have metaslabs or dtls */
3000 	ASSERT(vdev_is_concrete(vd) || flags == 0);
3001 	ASSERT(ISP2(flags));
3002 	ASSERT(spa_writeable(vd->vdev_spa));
3003 
3004 	if (flags & VDD_METASLAB)
3005 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
3006 
3007 	if (flags & VDD_DTL)
3008 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
3009 
3010 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
3011 }
3012 
3013 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)3014 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
3015 {
3016 	for (int c = 0; c < vd->vdev_children; c++)
3017 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
3018 
3019 	if (vd->vdev_ops->vdev_op_leaf)
3020 		vdev_dirty(vd->vdev_top, flags, vd, txg);
3021 }
3022 
3023 /*
3024  * DTLs.
3025  *
3026  * A vdev's DTL (dirty time log) is the set of transaction groups for which
3027  * the vdev has less than perfect replication.  There are four kinds of DTL:
3028  *
3029  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
3030  *
3031  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
3032  *
3033  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
3034  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
3035  *	txgs that was scrubbed.
3036  *
3037  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3038  *	persistent errors or just some device being offline.
3039  *	Unlike the other three, the DTL_OUTAGE map is not generally
3040  *	maintained; it's only computed when needed, typically to
3041  *	determine whether a device can be detached.
3042  *
3043  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3044  * either has the data or it doesn't.
3045  *
3046  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3047  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3048  * if any child is less than fully replicated, then so is its parent.
3049  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3050  * comprising only those txgs which appear in 'maxfaults' or more children;
3051  * those are the txgs we don't have enough replication to read.  For example,
3052  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3053  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3054  * two child DTL_MISSING maps.
3055  *
3056  * It should be clear from the above that to compute the DTLs and outage maps
3057  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3058  * Therefore, that is all we keep on disk.  When loading the pool, or after
3059  * a configuration change, we generate all other DTLs from first principles.
3060  */
3061 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3062 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3063 {
3064 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3065 
3066 	ASSERT(t < DTL_TYPES);
3067 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3068 	ASSERT(spa_writeable(vd->vdev_spa));
3069 
3070 	mutex_enter(&vd->vdev_dtl_lock);
3071 	if (!zfs_range_tree_contains(rt, txg, size))
3072 		zfs_range_tree_add(rt, txg, size);
3073 	mutex_exit(&vd->vdev_dtl_lock);
3074 }
3075 
3076 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3077 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3078 {
3079 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3080 	boolean_t dirty = B_FALSE;
3081 
3082 	ASSERT(t < DTL_TYPES);
3083 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3084 
3085 	/*
3086 	 * While we are loading the pool, the DTLs have not been loaded yet.
3087 	 * This isn't a problem but it can result in devices being tried
3088 	 * which are known to not have the data.  In which case, the import
3089 	 * is relying on the checksum to ensure that we get the right data.
3090 	 * Note that while importing we are only reading the MOS, which is
3091 	 * always checksummed.
3092 	 */
3093 	mutex_enter(&vd->vdev_dtl_lock);
3094 	if (!zfs_range_tree_is_empty(rt))
3095 		dirty = zfs_range_tree_contains(rt, txg, size);
3096 	mutex_exit(&vd->vdev_dtl_lock);
3097 
3098 	return (dirty);
3099 }
3100 
3101 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3102 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3103 {
3104 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3105 	boolean_t empty;
3106 
3107 	mutex_enter(&vd->vdev_dtl_lock);
3108 	empty = zfs_range_tree_is_empty(rt);
3109 	mutex_exit(&vd->vdev_dtl_lock);
3110 
3111 	return (empty);
3112 }
3113 
3114 /*
3115  * Check if the txg falls within the range which must be
3116  * resilvered.  DVAs outside this range can always be skipped.
3117  */
3118 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3119 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3120     uint64_t phys_birth)
3121 {
3122 	(void) dva, (void) psize;
3123 
3124 	/* Set by sequential resilver. */
3125 	if (phys_birth == TXG_UNKNOWN)
3126 		return (B_TRUE);
3127 
3128 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3129 }
3130 
3131 /*
3132  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3133  */
3134 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3135 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3136     uint64_t phys_birth)
3137 {
3138 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3139 
3140 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3141 	    vd->vdev_ops->vdev_op_leaf)
3142 		return (B_TRUE);
3143 
3144 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3145 	    phys_birth));
3146 }
3147 
3148 /*
3149  * Returns the lowest txg in the DTL range.
3150  */
3151 static uint64_t
vdev_dtl_min(vdev_t * vd)3152 vdev_dtl_min(vdev_t *vd)
3153 {
3154 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3155 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3156 	ASSERT0(vd->vdev_children);
3157 
3158 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3159 }
3160 
3161 /*
3162  * Returns the highest txg in the DTL.
3163  */
3164 static uint64_t
vdev_dtl_max(vdev_t * vd)3165 vdev_dtl_max(vdev_t *vd)
3166 {
3167 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3168 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3169 	ASSERT0(vd->vdev_children);
3170 
3171 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3172 }
3173 
3174 /*
3175  * Determine if a resilvering vdev should remove any DTL entries from
3176  * its range. If the vdev was resilvering for the entire duration of the
3177  * scan then it should excise that range from its DTLs. Otherwise, this
3178  * vdev is considered partially resilvered and should leave its DTL
3179  * entries intact. The comment in vdev_dtl_reassess() describes how we
3180  * excise the DTLs.
3181  */
3182 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3183 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3184 {
3185 	ASSERT0(vd->vdev_children);
3186 
3187 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3188 		return (B_FALSE);
3189 
3190 	if (vd->vdev_resilver_deferred)
3191 		return (B_FALSE);
3192 
3193 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3194 		return (B_TRUE);
3195 
3196 	if (rebuild_done) {
3197 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3198 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3199 
3200 		/* Rebuild not initiated by attach */
3201 		if (vd->vdev_rebuild_txg == 0)
3202 			return (B_TRUE);
3203 
3204 		/*
3205 		 * When a rebuild completes without error then all missing data
3206 		 * up to the rebuild max txg has been reconstructed and the DTL
3207 		 * is eligible for excision.
3208 		 */
3209 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3210 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3211 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3212 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3213 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3214 			return (B_TRUE);
3215 		}
3216 	} else {
3217 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3218 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3219 
3220 		/* Resilver not initiated by attach */
3221 		if (vd->vdev_resilver_txg == 0)
3222 			return (B_TRUE);
3223 
3224 		/*
3225 		 * When a resilver is initiated the scan will assign the
3226 		 * scn_max_txg value to the highest txg value that exists
3227 		 * in all DTLs. If this device's max DTL is not part of this
3228 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3229 		 * then it is not eligible for excision.
3230 		 */
3231 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3232 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3233 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3234 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3235 			return (B_TRUE);
3236 		}
3237 	}
3238 
3239 	return (B_FALSE);
3240 }
3241 
3242 /*
3243  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3244  * write operations will be issued to the pool.
3245  */
3246 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3247 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3248     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3249 {
3250 	spa_t *spa = vd->vdev_spa;
3251 	avl_tree_t reftree;
3252 	int minref;
3253 
3254 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3255 
3256 	for (int c = 0; c < vd->vdev_children; c++)
3257 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3258 		    scrub_txg, scrub_done, rebuild_done, faulting);
3259 
3260 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3261 		return;
3262 
3263 	if (vd->vdev_ops->vdev_op_leaf) {
3264 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3265 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3266 		boolean_t check_excise = B_FALSE;
3267 		boolean_t wasempty = B_TRUE;
3268 
3269 		mutex_enter(&vd->vdev_dtl_lock);
3270 
3271 		/*
3272 		 * If requested, pretend the scan or rebuild completed cleanly.
3273 		 */
3274 		if (zfs_scan_ignore_errors) {
3275 			if (scn != NULL)
3276 				scn->scn_phys.scn_errors = 0;
3277 			if (vr != NULL)
3278 				vr->vr_rebuild_phys.vrp_errors = 0;
3279 		}
3280 
3281 		if (scrub_txg != 0 &&
3282 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3283 			wasempty = B_FALSE;
3284 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3285 			    "dtl:%llu/%llu errors:%llu",
3286 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3287 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3288 			    (u_longlong_t)vdev_dtl_min(vd),
3289 			    (u_longlong_t)vdev_dtl_max(vd),
3290 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3291 		}
3292 
3293 		/*
3294 		 * If we've completed a scrub/resilver or a rebuild cleanly
3295 		 * then determine if this vdev should remove any DTLs. We
3296 		 * only want to excise regions on vdevs that were available
3297 		 * during the entire duration of this scan.
3298 		 */
3299 		if (rebuild_done &&
3300 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3301 			check_excise = B_TRUE;
3302 		} else {
3303 			if (spa->spa_scrub_started ||
3304 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3305 				check_excise = B_TRUE;
3306 			}
3307 		}
3308 
3309 		if (scrub_txg && check_excise &&
3310 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3311 			/*
3312 			 * We completed a scrub, resilver or rebuild up to
3313 			 * scrub_txg.  If we did it without rebooting, then
3314 			 * the scrub dtl will be valid, so excise the old
3315 			 * region and fold in the scrub dtl.  Otherwise,
3316 			 * leave the dtl as-is if there was an error.
3317 			 *
3318 			 * There's little trick here: to excise the beginning
3319 			 * of the DTL_MISSING map, we put it into a reference
3320 			 * tree and then add a segment with refcnt -1 that
3321 			 * covers the range [0, scrub_txg).  This means
3322 			 * that each txg in that range has refcnt -1 or 0.
3323 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3324 			 * entries in the range [0, scrub_txg) will have a
3325 			 * positive refcnt -- either 1 or 2.  We then convert
3326 			 * the reference tree into the new DTL_MISSING map.
3327 			 */
3328 			space_reftree_create(&reftree);
3329 			space_reftree_add_map(&reftree,
3330 			    vd->vdev_dtl[DTL_MISSING], 1);
3331 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3332 			space_reftree_add_map(&reftree,
3333 			    vd->vdev_dtl[DTL_SCRUB], 2);
3334 			space_reftree_generate_map(&reftree,
3335 			    vd->vdev_dtl[DTL_MISSING], 1);
3336 			space_reftree_destroy(&reftree);
3337 
3338 			if (!zfs_range_tree_is_empty(
3339 			    vd->vdev_dtl[DTL_MISSING])) {
3340 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3341 				    (u_longlong_t)vdev_dtl_min(vd),
3342 				    (u_longlong_t)vdev_dtl_max(vd));
3343 			} else if (!wasempty) {
3344 				zfs_dbgmsg("DTL_MISSING is now empty");
3345 			}
3346 		}
3347 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3348 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3349 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3350 		if (scrub_done)
3351 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3352 			    NULL);
3353 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3354 
3355 		/*
3356 		 * For the faulting case, treat members of a replacing vdev
3357 		 * as if they are not available. It's more likely than not that
3358 		 * a vdev in a replacing vdev could encounter read errors so
3359 		 * treat it as not being able to contribute.
3360 		 */
3361 		if (!vdev_readable(vd) ||
3362 		    (faulting && vd->vdev_parent != NULL &&
3363 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3364 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3365 		} else {
3366 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3367 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3368 		}
3369 
3370 		/*
3371 		 * If the vdev was resilvering or rebuilding and no longer
3372 		 * has any DTLs then reset the appropriate flag and dirty
3373 		 * the top level so that we persist the change.
3374 		 */
3375 		if (txg != 0 &&
3376 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3377 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3378 			if (vd->vdev_rebuild_txg != 0) {
3379 				vd->vdev_rebuild_txg = 0;
3380 				vdev_config_dirty(vd->vdev_top);
3381 			} else if (vd->vdev_resilver_txg != 0) {
3382 				vd->vdev_resilver_txg = 0;
3383 				vdev_config_dirty(vd->vdev_top);
3384 			}
3385 		}
3386 
3387 		mutex_exit(&vd->vdev_dtl_lock);
3388 
3389 		if (txg != 0)
3390 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3391 	} else {
3392 		mutex_enter(&vd->vdev_dtl_lock);
3393 		for (int t = 0; t < DTL_TYPES; t++) {
3394 			/* account for child's outage in parent's missing map */
3395 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3396 			if (t == DTL_SCRUB) {
3397 				/* leaf vdevs only */
3398 				continue;
3399 			}
3400 			if (t == DTL_PARTIAL) {
3401 				/* i.e. non-zero */
3402 				minref = 1;
3403 			} else if (vdev_get_nparity(vd) != 0) {
3404 				/* RAIDZ, DRAID */
3405 				minref = vdev_get_nparity(vd) + 1;
3406 			} else {
3407 				/* any kind of mirror */
3408 				minref = vd->vdev_children;
3409 			}
3410 			space_reftree_create(&reftree);
3411 			for (int c = 0; c < vd->vdev_children; c++) {
3412 				vdev_t *cvd = vd->vdev_child[c];
3413 				mutex_enter(&cvd->vdev_dtl_lock);
3414 				space_reftree_add_map(&reftree,
3415 				    cvd->vdev_dtl[s], 1);
3416 				mutex_exit(&cvd->vdev_dtl_lock);
3417 			}
3418 			space_reftree_generate_map(&reftree,
3419 			    vd->vdev_dtl[t], minref);
3420 			space_reftree_destroy(&reftree);
3421 		}
3422 		mutex_exit(&vd->vdev_dtl_lock);
3423 	}
3424 
3425 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3426 		raidz_dtl_reassessed(vd);
3427 	}
3428 }
3429 
3430 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3431 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3432     boolean_t scrub_done, boolean_t rebuild_done)
3433 {
3434 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3435 	    rebuild_done, B_FALSE));
3436 }
3437 
3438 /*
3439  * Iterate over all the vdevs except spare, and post kobj events
3440  */
3441 void
vdev_post_kobj_evt(vdev_t * vd)3442 vdev_post_kobj_evt(vdev_t *vd)
3443 {
3444 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3445 	    vd->vdev_kobj_flag == B_FALSE) {
3446 		vd->vdev_kobj_flag = B_TRUE;
3447 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3448 	}
3449 
3450 	for (int c = 0; c < vd->vdev_children; c++)
3451 		vdev_post_kobj_evt(vd->vdev_child[c]);
3452 }
3453 
3454 /*
3455  * Iterate over all the vdevs except spare, and clear kobj events
3456  */
3457 void
vdev_clear_kobj_evt(vdev_t * vd)3458 vdev_clear_kobj_evt(vdev_t *vd)
3459 {
3460 	vd->vdev_kobj_flag = B_FALSE;
3461 
3462 	for (int c = 0; c < vd->vdev_children; c++)
3463 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3464 }
3465 
3466 int
vdev_dtl_load(vdev_t * vd)3467 vdev_dtl_load(vdev_t *vd)
3468 {
3469 	spa_t *spa = vd->vdev_spa;
3470 	objset_t *mos = spa->spa_meta_objset;
3471 	zfs_range_tree_t *rt;
3472 	int error = 0;
3473 
3474 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3475 		ASSERT(vdev_is_concrete(vd));
3476 
3477 		/*
3478 		 * If the dtl cannot be sync'd there is no need to open it.
3479 		 */
3480 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3481 			return (0);
3482 
3483 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3484 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3485 		if (error)
3486 			return (error);
3487 		ASSERT(vd->vdev_dtl_sm != NULL);
3488 
3489 		rt = zfs_range_tree_create_flags(
3490 		    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3491 		    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt"));
3492 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3493 		if (error == 0) {
3494 			mutex_enter(&vd->vdev_dtl_lock);
3495 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3496 			    vd->vdev_dtl[DTL_MISSING]);
3497 			mutex_exit(&vd->vdev_dtl_lock);
3498 		}
3499 
3500 		zfs_range_tree_vacate(rt, NULL, NULL);
3501 		zfs_range_tree_destroy(rt);
3502 
3503 		return (error);
3504 	}
3505 
3506 	for (int c = 0; c < vd->vdev_children; c++) {
3507 		error = vdev_dtl_load(vd->vdev_child[c]);
3508 		if (error != 0)
3509 			break;
3510 	}
3511 
3512 	return (error);
3513 }
3514 
3515 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3516 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3517 {
3518 	spa_t *spa = vd->vdev_spa;
3519 	objset_t *mos = spa->spa_meta_objset;
3520 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3521 	const char *string;
3522 
3523 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3524 
3525 	string =
3526 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3527 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3528 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3529 
3530 	ASSERT(string != NULL);
3531 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3532 	    1, strlen(string) + 1, string, tx));
3533 
3534 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3535 		spa_activate_allocation_classes(spa, tx);
3536 	}
3537 }
3538 
3539 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3540 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3541 {
3542 	spa_t *spa = vd->vdev_spa;
3543 
3544 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3545 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3546 	    zapobj, tx));
3547 }
3548 
3549 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3550 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3551 {
3552 	spa_t *spa = vd->vdev_spa;
3553 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3554 	    DMU_OT_NONE, 0, tx);
3555 
3556 	ASSERT(zap != 0);
3557 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3558 	    zap, tx));
3559 
3560 	return (zap);
3561 }
3562 
3563 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3564 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3565 {
3566 	if (vd->vdev_ops != &vdev_hole_ops &&
3567 	    vd->vdev_ops != &vdev_missing_ops &&
3568 	    vd->vdev_ops != &vdev_root_ops &&
3569 	    !vd->vdev_top->vdev_removing) {
3570 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3571 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3572 		}
3573 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3574 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3575 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3576 				vdev_zap_allocation_data(vd, tx);
3577 		}
3578 	}
3579 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3580 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3581 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3582 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3583 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3584 	}
3585 
3586 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3587 		vdev_construct_zaps(vd->vdev_child[i], tx);
3588 	}
3589 }
3590 
3591 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3592 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3593 {
3594 	spa_t *spa = vd->vdev_spa;
3595 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3596 	objset_t *mos = spa->spa_meta_objset;
3597 	zfs_range_tree_t *rtsync;
3598 	dmu_tx_t *tx;
3599 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3600 
3601 	ASSERT(vdev_is_concrete(vd));
3602 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3603 
3604 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3605 
3606 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3607 		mutex_enter(&vd->vdev_dtl_lock);
3608 		space_map_free(vd->vdev_dtl_sm, tx);
3609 		space_map_close(vd->vdev_dtl_sm);
3610 		vd->vdev_dtl_sm = NULL;
3611 		mutex_exit(&vd->vdev_dtl_lock);
3612 
3613 		/*
3614 		 * We only destroy the leaf ZAP for detached leaves or for
3615 		 * removed log devices. Removed data devices handle leaf ZAP
3616 		 * cleanup later, once cancellation is no longer possible.
3617 		 */
3618 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3619 		    vd->vdev_top->vdev_islog)) {
3620 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3621 			vd->vdev_leaf_zap = 0;
3622 		}
3623 
3624 		dmu_tx_commit(tx);
3625 		return;
3626 	}
3627 
3628 	if (vd->vdev_dtl_sm == NULL) {
3629 		uint64_t new_object;
3630 
3631 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3632 		VERIFY3U(new_object, !=, 0);
3633 
3634 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3635 		    0, -1ULL, 0));
3636 		ASSERT(vd->vdev_dtl_sm != NULL);
3637 	}
3638 
3639 	rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3640 	    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync"));
3641 
3642 	mutex_enter(&vd->vdev_dtl_lock);
3643 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3644 	mutex_exit(&vd->vdev_dtl_lock);
3645 
3646 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3647 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3648 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3649 
3650 	zfs_range_tree_destroy(rtsync);
3651 
3652 	/*
3653 	 * If the object for the space map has changed then dirty
3654 	 * the top level so that we update the config.
3655 	 */
3656 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3657 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3658 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3659 		    (u_longlong_t)object,
3660 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3661 		vdev_config_dirty(vd->vdev_top);
3662 	}
3663 
3664 	dmu_tx_commit(tx);
3665 }
3666 
3667 /*
3668  * Determine whether the specified vdev can be
3669  * - offlined
3670  * - detached
3671  * - removed
3672  * - faulted
3673  * without losing data.
3674  */
3675 boolean_t
vdev_dtl_required(vdev_t * vd)3676 vdev_dtl_required(vdev_t *vd)
3677 {
3678 	spa_t *spa = vd->vdev_spa;
3679 	vdev_t *tvd = vd->vdev_top;
3680 	uint8_t cant_read = vd->vdev_cant_read;
3681 	boolean_t required;
3682 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3683 
3684 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3685 
3686 	if (vd == spa->spa_root_vdev || vd == tvd)
3687 		return (B_TRUE);
3688 
3689 	/*
3690 	 * Temporarily mark the device as unreadable, and then determine
3691 	 * whether this results in any DTL outages in the top-level vdev.
3692 	 * If not, we can safely offline/detach/remove the device.
3693 	 */
3694 	vd->vdev_cant_read = B_TRUE;
3695 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3696 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3697 	vd->vdev_cant_read = cant_read;
3698 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3699 
3700 	if (!required && zio_injection_enabled) {
3701 		required = !!zio_handle_device_injection(vd, NULL,
3702 		    SET_ERROR(ECHILD));
3703 	}
3704 
3705 	return (required);
3706 }
3707 
3708 /*
3709  * Determine if resilver is needed, and if so the txg range.
3710  */
3711 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3712 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3713 {
3714 	boolean_t needed = B_FALSE;
3715 	uint64_t thismin = UINT64_MAX;
3716 	uint64_t thismax = 0;
3717 
3718 	if (vd->vdev_children == 0) {
3719 		mutex_enter(&vd->vdev_dtl_lock);
3720 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3721 		    vdev_writeable(vd)) {
3722 
3723 			thismin = vdev_dtl_min(vd);
3724 			thismax = vdev_dtl_max(vd);
3725 			needed = B_TRUE;
3726 		}
3727 		mutex_exit(&vd->vdev_dtl_lock);
3728 	} else {
3729 		for (int c = 0; c < vd->vdev_children; c++) {
3730 			vdev_t *cvd = vd->vdev_child[c];
3731 			uint64_t cmin, cmax;
3732 
3733 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3734 				thismin = MIN(thismin, cmin);
3735 				thismax = MAX(thismax, cmax);
3736 				needed = B_TRUE;
3737 			}
3738 		}
3739 	}
3740 
3741 	if (needed && minp) {
3742 		*minp = thismin;
3743 		*maxp = thismax;
3744 	}
3745 	return (needed);
3746 }
3747 
3748 /*
3749  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3750  * will contain either the checkpoint spacemap object or zero if none exists.
3751  * All other errors are returned to the caller.
3752  */
3753 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3754 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3755 {
3756 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3757 
3758 	if (vd->vdev_top_zap == 0) {
3759 		*sm_obj = 0;
3760 		return (0);
3761 	}
3762 
3763 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3764 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3765 	if (error == ENOENT) {
3766 		*sm_obj = 0;
3767 		error = 0;
3768 	}
3769 
3770 	return (error);
3771 }
3772 
3773 int
vdev_load(vdev_t * vd)3774 vdev_load(vdev_t *vd)
3775 {
3776 	int children = vd->vdev_children;
3777 	int error = 0;
3778 	taskq_t *tq = NULL;
3779 
3780 	/*
3781 	 * It's only worthwhile to use the taskq for the root vdev, because the
3782 	 * slow part is metaslab_init, and that only happens for top-level
3783 	 * vdevs.
3784 	 */
3785 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3786 		tq = taskq_create("vdev_load", children, minclsyspri,
3787 		    children, children, TASKQ_PREPOPULATE);
3788 	}
3789 
3790 	/*
3791 	 * Recursively load all children.
3792 	 */
3793 	for (int c = 0; c < vd->vdev_children; c++) {
3794 		vdev_t *cvd = vd->vdev_child[c];
3795 
3796 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3797 			cvd->vdev_load_error = vdev_load(cvd);
3798 		} else {
3799 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3800 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3801 		}
3802 	}
3803 
3804 	if (tq != NULL) {
3805 		taskq_wait(tq);
3806 		taskq_destroy(tq);
3807 	}
3808 
3809 	for (int c = 0; c < vd->vdev_children; c++) {
3810 		int error = vd->vdev_child[c]->vdev_load_error;
3811 
3812 		if (error != 0)
3813 			return (error);
3814 	}
3815 
3816 	vdev_set_deflate_ratio(vd);
3817 
3818 	if (vd->vdev_ops == &vdev_raidz_ops) {
3819 		error = vdev_raidz_load(vd);
3820 		if (error != 0)
3821 			return (error);
3822 	}
3823 
3824 	/*
3825 	 * On spa_load path, grab the allocation bias from our zap
3826 	 */
3827 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3828 		spa_t *spa = vd->vdev_spa;
3829 		char bias_str[64];
3830 
3831 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3832 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3833 		    bias_str);
3834 		if (error == 0) {
3835 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3836 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3837 		} else if (error != ENOENT) {
3838 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3839 			    VDEV_AUX_CORRUPT_DATA);
3840 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3841 			    "failed [error=%d]",
3842 			    (u_longlong_t)vd->vdev_top_zap, error);
3843 			return (error);
3844 		}
3845 	}
3846 
3847 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3848 		spa_t *spa = vd->vdev_spa;
3849 		uint64_t failfast;
3850 
3851 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3852 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3853 		    1, &failfast);
3854 		if (error == 0) {
3855 			vd->vdev_failfast = failfast & 1;
3856 		} else if (error == ENOENT) {
3857 			vd->vdev_failfast = vdev_prop_default_numeric(
3858 			    VDEV_PROP_FAILFAST);
3859 		} else {
3860 			vdev_dbgmsg(vd,
3861 			    "vdev_load: zap_lookup(top_zap=%llu) "
3862 			    "failed [error=%d]",
3863 			    (u_longlong_t)vd->vdev_top_zap, error);
3864 		}
3865 	}
3866 
3867 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3868 		spa_t *spa = vd->vdev_spa;
3869 		uint64_t autosit;
3870 
3871 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3872 		    vdev_prop_to_name(VDEV_PROP_AUTOSIT), sizeof (autosit),
3873 		    1, &autosit);
3874 		if (error == 0) {
3875 			vd->vdev_autosit = autosit == 1;
3876 		} else if (error == ENOENT) {
3877 			vd->vdev_autosit = vdev_prop_default_numeric(
3878 			    VDEV_PROP_AUTOSIT);
3879 		} else {
3880 			vdev_dbgmsg(vd,
3881 			    "vdev_load: zap_lookup(top_zap=%llu) "
3882 			    "failed [error=%d]",
3883 			    (u_longlong_t)vd->vdev_top_zap, error);
3884 		}
3885 	}
3886 
3887 	/*
3888 	 * Load any rebuild state from the top-level vdev zap.
3889 	 */
3890 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3891 		error = vdev_rebuild_load(vd);
3892 		if (error && error != ENOTSUP) {
3893 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3894 			    VDEV_AUX_CORRUPT_DATA);
3895 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3896 			    "failed [error=%d]", error);
3897 			return (error);
3898 		}
3899 	}
3900 
3901 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3902 		uint64_t zapobj;
3903 
3904 		if (vd->vdev_top_zap != 0)
3905 			zapobj = vd->vdev_top_zap;
3906 		else
3907 			zapobj = vd->vdev_leaf_zap;
3908 
3909 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3910 		    &vd->vdev_checksum_n);
3911 		if (error && error != ENOENT)
3912 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3913 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3914 
3915 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3916 		    &vd->vdev_checksum_t);
3917 		if (error && error != ENOENT)
3918 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3919 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3920 
3921 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3922 		    &vd->vdev_io_n);
3923 		if (error && error != ENOENT)
3924 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3925 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3926 
3927 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3928 		    &vd->vdev_io_t);
3929 		if (error && error != ENOENT)
3930 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3931 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3932 
3933 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3934 		    &vd->vdev_slow_io_n);
3935 		if (error && error != ENOENT)
3936 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3937 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3938 
3939 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3940 		    &vd->vdev_slow_io_t);
3941 		if (error && error != ENOENT)
3942 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3943 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3944 	}
3945 
3946 	/*
3947 	 * If this is a top-level vdev, initialize its metaslabs.
3948 	 */
3949 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3950 		vdev_metaslab_group_create(vd);
3951 
3952 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3953 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3954 			    VDEV_AUX_CORRUPT_DATA);
3955 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3956 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3957 			    (u_longlong_t)vd->vdev_asize);
3958 			return (SET_ERROR(ENXIO));
3959 		}
3960 
3961 		error = vdev_metaslab_init(vd, 0);
3962 		if (error != 0) {
3963 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3964 			    "[error=%d]", error);
3965 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3966 			    VDEV_AUX_CORRUPT_DATA);
3967 			return (error);
3968 		}
3969 
3970 		uint64_t checkpoint_sm_obj;
3971 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3972 		if (error == 0 && checkpoint_sm_obj != 0) {
3973 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3974 			ASSERT(vd->vdev_asize != 0);
3975 			ASSERT0P(vd->vdev_checkpoint_sm);
3976 
3977 			error = space_map_open(&vd->vdev_checkpoint_sm,
3978 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3979 			    vd->vdev_ashift);
3980 			if (error != 0) {
3981 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3982 				    "failed for checkpoint spacemap (obj %llu) "
3983 				    "[error=%d]",
3984 				    (u_longlong_t)checkpoint_sm_obj, error);
3985 				return (error);
3986 			}
3987 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3988 
3989 			/*
3990 			 * Since the checkpoint_sm contains free entries
3991 			 * exclusively we can use space_map_allocated() to
3992 			 * indicate the cumulative checkpointed space that
3993 			 * has been freed.
3994 			 */
3995 			vd->vdev_stat.vs_checkpoint_space =
3996 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3997 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3998 			    vd->vdev_stat.vs_checkpoint_space;
3999 		} else if (error != 0) {
4000 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
4001 			    "checkpoint space map object from vdev ZAP "
4002 			    "[error=%d]", error);
4003 			return (error);
4004 		}
4005 	}
4006 
4007 	/*
4008 	 * If this is a leaf vdev, load its DTL.
4009 	 */
4010 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
4011 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4012 		    VDEV_AUX_CORRUPT_DATA);
4013 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
4014 		    "[error=%d]", error);
4015 		return (error);
4016 	}
4017 
4018 	uint64_t obsolete_sm_object;
4019 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
4020 	if (error == 0 && obsolete_sm_object != 0) {
4021 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
4022 		ASSERT(vd->vdev_asize != 0);
4023 		ASSERT0P(vd->vdev_obsolete_sm);
4024 
4025 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
4026 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
4027 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4028 			    VDEV_AUX_CORRUPT_DATA);
4029 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
4030 			    "obsolete spacemap (obj %llu) [error=%d]",
4031 			    (u_longlong_t)obsolete_sm_object, error);
4032 			return (error);
4033 		}
4034 	} else if (error != 0) {
4035 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
4036 		    "space map object from vdev ZAP [error=%d]", error);
4037 		return (error);
4038 	}
4039 
4040 	return (0);
4041 }
4042 
4043 /*
4044  * The special vdev case is used for hot spares and l2cache devices.  Its
4045  * sole purpose it to set the vdev state for the associated vdev.  To do this,
4046  * we make sure that we can open the underlying device, then try to read the
4047  * label, and make sure that the label is sane and that it hasn't been
4048  * repurposed to another pool.
4049  */
4050 int
vdev_validate_aux(vdev_t * vd)4051 vdev_validate_aux(vdev_t *vd)
4052 {
4053 	nvlist_t *label;
4054 	uint64_t guid, version;
4055 	uint64_t state;
4056 
4057 	if (!vdev_readable(vd))
4058 		return (0);
4059 
4060 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4061 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4062 		    VDEV_AUX_CORRUPT_DATA);
4063 		return (-1);
4064 	}
4065 
4066 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4067 	    !SPA_VERSION_IS_SUPPORTED(version) ||
4068 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4069 	    guid != vd->vdev_guid ||
4070 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4071 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4072 		    VDEV_AUX_CORRUPT_DATA);
4073 		nvlist_free(label);
4074 		return (-1);
4075 	}
4076 
4077 	/*
4078 	 * We don't actually check the pool state here.  If it's in fact in
4079 	 * use by another pool, we update this fact on the fly when requested.
4080 	 */
4081 	nvlist_free(label);
4082 	return (0);
4083 }
4084 
4085 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4086 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4087 {
4088 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
4089 
4090 	if (vd->vdev_top_zap == 0)
4091 		return;
4092 
4093 	uint64_t object = 0;
4094 	int err = zap_lookup(mos, vd->vdev_top_zap,
4095 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4096 	if (err == ENOENT)
4097 		return;
4098 	VERIFY0(err);
4099 
4100 	VERIFY0(dmu_object_free(mos, object, tx));
4101 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4102 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4103 }
4104 
4105 /*
4106  * Free the objects used to store this vdev's spacemaps, and the array
4107  * that points to them.
4108  */
4109 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4110 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4111 {
4112 	if (vd->vdev_ms_array == 0)
4113 		return;
4114 
4115 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4116 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4117 	size_t array_bytes = array_count * sizeof (uint64_t);
4118 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4119 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4120 	    array_bytes, smobj_array, 0));
4121 
4122 	for (uint64_t i = 0; i < array_count; i++) {
4123 		uint64_t smobj = smobj_array[i];
4124 		if (smobj == 0)
4125 			continue;
4126 
4127 		space_map_free_obj(mos, smobj, tx);
4128 	}
4129 
4130 	kmem_free(smobj_array, array_bytes);
4131 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4132 	vdev_destroy_ms_flush_data(vd, tx);
4133 	vd->vdev_ms_array = 0;
4134 }
4135 
4136 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4137 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4138 {
4139 	spa_t *spa = vd->vdev_spa;
4140 
4141 	ASSERT(vd->vdev_islog);
4142 	ASSERT(vd == vd->vdev_top);
4143 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4144 
4145 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4146 
4147 	vdev_destroy_spacemaps(vd, tx);
4148 	if (vd->vdev_top_zap != 0) {
4149 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4150 		vd->vdev_top_zap = 0;
4151 	}
4152 
4153 	dmu_tx_commit(tx);
4154 }
4155 
4156 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4157 vdev_sync_done(vdev_t *vd, uint64_t txg)
4158 {
4159 	metaslab_t *msp;
4160 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4161 
4162 	ASSERT(vdev_is_concrete(vd));
4163 
4164 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4165 	    != NULL)
4166 		metaslab_sync_done(msp, txg);
4167 
4168 	if (reassess) {
4169 		metaslab_sync_reassess(vd->vdev_mg);
4170 		if (vd->vdev_log_mg != NULL)
4171 			metaslab_sync_reassess(vd->vdev_log_mg);
4172 	}
4173 }
4174 
4175 void
vdev_sync(vdev_t * vd,uint64_t txg)4176 vdev_sync(vdev_t *vd, uint64_t txg)
4177 {
4178 	spa_t *spa = vd->vdev_spa;
4179 	vdev_t *lvd;
4180 	metaslab_t *msp;
4181 
4182 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4183 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4184 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4185 		ASSERT(vd->vdev_removing ||
4186 		    vd->vdev_ops == &vdev_indirect_ops);
4187 
4188 		vdev_indirect_sync_obsolete(vd, tx);
4189 
4190 		/*
4191 		 * If the vdev is indirect, it can't have dirty
4192 		 * metaslabs or DTLs.
4193 		 */
4194 		if (vd->vdev_ops == &vdev_indirect_ops) {
4195 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4196 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4197 			dmu_tx_commit(tx);
4198 			return;
4199 		}
4200 	}
4201 
4202 	ASSERT(vdev_is_concrete(vd));
4203 
4204 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4205 	    !vd->vdev_removing) {
4206 		ASSERT(vd == vd->vdev_top);
4207 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4208 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4209 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4210 		ASSERT(vd->vdev_ms_array != 0);
4211 		vdev_config_dirty(vd);
4212 	}
4213 
4214 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4215 		metaslab_sync(msp, txg);
4216 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4217 	}
4218 
4219 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4220 		vdev_dtl_sync(lvd, txg);
4221 
4222 	/*
4223 	 * If this is an empty log device being removed, destroy the
4224 	 * metadata associated with it.
4225 	 */
4226 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4227 		vdev_remove_empty_log(vd, txg);
4228 
4229 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4230 	dmu_tx_commit(tx);
4231 }
4232 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4233 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4234 {
4235 	return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4236 }
4237 
4238 /*
4239  * Return the amount of space that should be (or was) allocated for the given
4240  * psize (compressed block size) in the given TXG. Note that for expanded
4241  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4242  * vdev_raidz_psize_to_asize().
4243  */
4244 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4245 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4246 {
4247 	return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4248 }
4249 
4250 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4251 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4252 {
4253 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4254 }
4255 
4256 /*
4257  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4258  * not be opened, and no I/O is attempted.
4259  */
4260 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4261 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4262 {
4263 	vdev_t *vd, *tvd;
4264 
4265 	spa_vdev_state_enter(spa, SCL_NONE);
4266 
4267 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4268 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4269 
4270 	if (!vd->vdev_ops->vdev_op_leaf)
4271 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4272 
4273 	tvd = vd->vdev_top;
4274 
4275 	/*
4276 	 * If user did a 'zpool offline -f' then make the fault persist across
4277 	 * reboots.
4278 	 */
4279 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4280 		/*
4281 		 * There are two kinds of forced faults: temporary and
4282 		 * persistent.  Temporary faults go away at pool import, while
4283 		 * persistent faults stay set.  Both types of faults can be
4284 		 * cleared with a zpool clear.
4285 		 *
4286 		 * We tell if a vdev is persistently faulted by looking at the
4287 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4288 		 * import then it's a persistent fault.  Otherwise, it's
4289 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4290 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4291 		 * tells vdev_config_generate() (which gets run later) to set
4292 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4293 		 */
4294 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4295 		vd->vdev_tmpoffline = B_FALSE;
4296 		aux = VDEV_AUX_EXTERNAL;
4297 	} else {
4298 		vd->vdev_tmpoffline = B_TRUE;
4299 	}
4300 
4301 	/*
4302 	 * We don't directly use the aux state here, but if we do a
4303 	 * vdev_reopen(), we need this value to be present to remember why we
4304 	 * were faulted.
4305 	 */
4306 	vd->vdev_label_aux = aux;
4307 
4308 	/*
4309 	 * Faulted state takes precedence over degraded.
4310 	 */
4311 	vd->vdev_delayed_close = B_FALSE;
4312 	vd->vdev_faulted = 1ULL;
4313 	vd->vdev_degraded = 0ULL;
4314 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4315 
4316 	/*
4317 	 * If this device has the only valid copy of the data, then
4318 	 * back off and simply mark the vdev as degraded instead.
4319 	 */
4320 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4321 		vd->vdev_degraded = 1ULL;
4322 		vd->vdev_faulted = 0ULL;
4323 
4324 		/*
4325 		 * If we reopen the device and it's not dead, only then do we
4326 		 * mark it degraded.
4327 		 */
4328 		vdev_reopen(tvd);
4329 
4330 		if (vdev_readable(vd))
4331 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4332 	}
4333 
4334 	return (spa_vdev_state_exit(spa, vd, 0));
4335 }
4336 
4337 /*
4338  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4339  * user that something is wrong.  The vdev continues to operate as normal as far
4340  * as I/O is concerned.
4341  */
4342 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4343 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4344 {
4345 	vdev_t *vd;
4346 
4347 	spa_vdev_state_enter(spa, SCL_NONE);
4348 
4349 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4350 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4351 
4352 	if (!vd->vdev_ops->vdev_op_leaf)
4353 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4354 
4355 	/*
4356 	 * If the vdev is already faulted, then don't do anything.
4357 	 */
4358 	if (vd->vdev_faulted || vd->vdev_degraded)
4359 		return (spa_vdev_state_exit(spa, NULL, 0));
4360 
4361 	vd->vdev_degraded = 1ULL;
4362 	if (!vdev_is_dead(vd))
4363 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4364 		    aux);
4365 
4366 	return (spa_vdev_state_exit(spa, vd, 0));
4367 }
4368 
4369 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4370 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4371 {
4372 	vdev_t *vd;
4373 
4374 	spa_vdev_state_enter(spa, SCL_NONE);
4375 
4376 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4377 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4378 
4379 	/*
4380 	 * If the vdev is already removed, or expanding which can trigger
4381 	 * repartition add/remove events, then don't do anything.
4382 	 */
4383 	if (vd->vdev_removed || vd->vdev_expanding)
4384 		return (spa_vdev_state_exit(spa, NULL, 0));
4385 
4386 	/*
4387 	 * Confirm the vdev has been removed, otherwise don't do anything.
4388 	 */
4389 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4390 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4391 
4392 	vd->vdev_remove_wanted = B_TRUE;
4393 	spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4394 
4395 	return (spa_vdev_state_exit(spa, vd, 0));
4396 }
4397 
4398 
4399 /*
4400  * Online the given vdev.
4401  *
4402  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4403  * spare device should be detached when the device finishes resilvering.
4404  * Second, the online should be treated like a 'test' online case, so no FMA
4405  * events are generated if the device fails to open.
4406  */
4407 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4408 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4409 {
4410 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4411 	boolean_t wasoffline;
4412 	vdev_state_t oldstate;
4413 
4414 	spa_vdev_state_enter(spa, SCL_NONE);
4415 
4416 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4417 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4418 
4419 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4420 	oldstate = vd->vdev_state;
4421 
4422 	tvd = vd->vdev_top;
4423 	vd->vdev_offline = B_FALSE;
4424 	vd->vdev_tmpoffline = B_FALSE;
4425 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4426 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4427 
4428 	/* XXX - L2ARC 1.0 does not support expansion */
4429 	if (!vd->vdev_aux) {
4430 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4431 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4432 			    spa->spa_autoexpand);
4433 		vd->vdev_expansion_time = gethrestime_sec();
4434 	}
4435 
4436 	vdev_reopen(tvd);
4437 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4438 
4439 	if (!vd->vdev_aux) {
4440 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4441 			pvd->vdev_expanding = B_FALSE;
4442 	}
4443 
4444 	if (newstate)
4445 		*newstate = vd->vdev_state;
4446 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4447 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4448 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4449 	    vd->vdev_parent->vdev_child[0] == vd)
4450 		vd->vdev_unspare = B_TRUE;
4451 
4452 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4453 
4454 		/* XXX - L2ARC 1.0 does not support expansion */
4455 		if (vd->vdev_aux)
4456 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4457 		spa->spa_ccw_fail_time = 0;
4458 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4459 	}
4460 
4461 	/* Restart initializing if necessary */
4462 	mutex_enter(&vd->vdev_initialize_lock);
4463 	if (vdev_writeable(vd) &&
4464 	    vd->vdev_initialize_thread == NULL &&
4465 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4466 		(void) vdev_initialize(vd);
4467 	}
4468 	mutex_exit(&vd->vdev_initialize_lock);
4469 
4470 	/*
4471 	 * Restart trimming if necessary. We do not restart trimming for cache
4472 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4473 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4474 	 * space for upcoming writes.
4475 	 */
4476 	mutex_enter(&vd->vdev_trim_lock);
4477 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4478 	    vd->vdev_trim_thread == NULL &&
4479 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4480 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4481 		    vd->vdev_trim_secure);
4482 	}
4483 	mutex_exit(&vd->vdev_trim_lock);
4484 
4485 	if (wasoffline ||
4486 	    (oldstate < VDEV_STATE_DEGRADED &&
4487 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4488 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4489 
4490 		/*
4491 		 * Asynchronously detach spare vdev if resilver or
4492 		 * rebuild is not required
4493 		 */
4494 		if (vd->vdev_unspare &&
4495 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4496 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4497 		    !vdev_rebuild_active(tvd))
4498 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4499 	}
4500 	return (spa_vdev_state_exit(spa, vd, 0));
4501 }
4502 
4503 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4504 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4505 {
4506 	vdev_t *vd, *tvd;
4507 	int error = 0;
4508 	uint64_t generation;
4509 	metaslab_group_t *mg;
4510 
4511 top:
4512 	spa_vdev_state_enter(spa, SCL_ALLOC);
4513 
4514 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4515 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4516 
4517 	if (!vd->vdev_ops->vdev_op_leaf)
4518 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4519 
4520 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4521 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4522 
4523 	tvd = vd->vdev_top;
4524 	mg = tvd->vdev_mg;
4525 	generation = spa->spa_config_generation + 1;
4526 
4527 	/*
4528 	 * If the device isn't already offline, try to offline it.
4529 	 */
4530 	if (!vd->vdev_offline) {
4531 		/*
4532 		 * If this device has the only valid copy of some data,
4533 		 * don't allow it to be offlined. Log devices are always
4534 		 * expendable.
4535 		 */
4536 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4537 		    vdev_dtl_required(vd))
4538 			return (spa_vdev_state_exit(spa, NULL,
4539 			    SET_ERROR(EBUSY)));
4540 
4541 		/*
4542 		 * If the top-level is a slog and it has had allocations
4543 		 * then proceed.  We check that the vdev's metaslab group
4544 		 * is not NULL since it's possible that we may have just
4545 		 * added this vdev but not yet initialized its metaslabs.
4546 		 */
4547 		if (tvd->vdev_islog && mg != NULL) {
4548 			/*
4549 			 * Prevent any future allocations.
4550 			 */
4551 			ASSERT0P(tvd->vdev_log_mg);
4552 			metaslab_group_passivate(mg);
4553 			(void) spa_vdev_state_exit(spa, vd, 0);
4554 
4555 			error = spa_reset_logs(spa);
4556 
4557 			/*
4558 			 * If the log device was successfully reset but has
4559 			 * checkpointed data, do not offline it.
4560 			 */
4561 			if (error == 0 &&
4562 			    tvd->vdev_checkpoint_sm != NULL) {
4563 				ASSERT3U(space_map_allocated(
4564 				    tvd->vdev_checkpoint_sm), !=, 0);
4565 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4566 			}
4567 
4568 			spa_vdev_state_enter(spa, SCL_ALLOC);
4569 
4570 			/*
4571 			 * Check to see if the config has changed.
4572 			 */
4573 			if (error || generation != spa->spa_config_generation) {
4574 				metaslab_group_activate(mg);
4575 				if (error)
4576 					return (spa_vdev_state_exit(spa,
4577 					    vd, error));
4578 				(void) spa_vdev_state_exit(spa, vd, 0);
4579 				goto top;
4580 			}
4581 			ASSERT0(tvd->vdev_stat.vs_alloc);
4582 		}
4583 
4584 		/*
4585 		 * Offline this device and reopen its top-level vdev.
4586 		 * If the top-level vdev is a log device then just offline
4587 		 * it. Otherwise, if this action results in the top-level
4588 		 * vdev becoming unusable, undo it and fail the request.
4589 		 */
4590 		vd->vdev_offline = B_TRUE;
4591 		vdev_reopen(tvd);
4592 
4593 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4594 		    vdev_is_dead(tvd)) {
4595 			vd->vdev_offline = B_FALSE;
4596 			vdev_reopen(tvd);
4597 			return (spa_vdev_state_exit(spa, NULL,
4598 			    SET_ERROR(EBUSY)));
4599 		}
4600 
4601 		/*
4602 		 * Add the device back into the metaslab rotor so that
4603 		 * once we online the device it's open for business.
4604 		 */
4605 		if (tvd->vdev_islog && mg != NULL)
4606 			metaslab_group_activate(mg);
4607 	}
4608 
4609 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4610 
4611 	return (spa_vdev_state_exit(spa, vd, 0));
4612 }
4613 
4614 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4615 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4616 {
4617 	int error;
4618 
4619 	mutex_enter(&spa->spa_vdev_top_lock);
4620 	error = vdev_offline_locked(spa, guid, flags);
4621 	mutex_exit(&spa->spa_vdev_top_lock);
4622 
4623 	return (error);
4624 }
4625 
4626 /*
4627  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4628  * vdev_offline(), we assume the spa config is locked.  We also clear all
4629  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4630  */
4631 void
vdev_clear(spa_t * spa,vdev_t * vd)4632 vdev_clear(spa_t *spa, vdev_t *vd)
4633 {
4634 	vdev_t *rvd = spa->spa_root_vdev;
4635 
4636 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4637 
4638 	if (vd == NULL)
4639 		vd = rvd;
4640 
4641 	vd->vdev_stat.vs_read_errors = 0;
4642 	vd->vdev_stat.vs_write_errors = 0;
4643 	vd->vdev_stat.vs_checksum_errors = 0;
4644 	vd->vdev_stat.vs_dio_verify_errors = 0;
4645 	vd->vdev_stat.vs_slow_ios = 0;
4646 	atomic_store_64(&vd->vdev_outlier_count, 0);
4647 	vd->vdev_read_sit_out_expire = 0;
4648 
4649 	for (int c = 0; c < vd->vdev_children; c++)
4650 		vdev_clear(spa, vd->vdev_child[c]);
4651 
4652 	/*
4653 	 * It makes no sense to "clear" an indirect  or removed vdev.
4654 	 */
4655 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4656 		return;
4657 
4658 	/*
4659 	 * If we're in the FAULTED state or have experienced failed I/O, then
4660 	 * clear the persistent state and attempt to reopen the device.  We
4661 	 * also mark the vdev config dirty, so that the new faulted state is
4662 	 * written out to disk.
4663 	 */
4664 	if (vd->vdev_faulted || vd->vdev_degraded ||
4665 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4666 		/*
4667 		 * When reopening in response to a clear event, it may be due to
4668 		 * a fmadm repair request.  In this case, if the device is
4669 		 * still broken, we want to still post the ereport again.
4670 		 */
4671 		vd->vdev_forcefault = B_TRUE;
4672 
4673 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4674 		vd->vdev_cant_read = B_FALSE;
4675 		vd->vdev_cant_write = B_FALSE;
4676 		vd->vdev_stat.vs_aux = 0;
4677 
4678 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4679 
4680 		vd->vdev_forcefault = B_FALSE;
4681 
4682 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4683 			vdev_state_dirty(vd->vdev_top);
4684 
4685 		/* If a resilver isn't required, check if vdevs can be culled */
4686 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4687 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4688 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4689 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4690 
4691 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4692 	}
4693 
4694 	/*
4695 	 * When clearing a FMA-diagnosed fault, we always want to
4696 	 * unspare the device, as we assume that the original spare was
4697 	 * done in response to the FMA fault.
4698 	 */
4699 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4700 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4701 	    vd->vdev_parent->vdev_child[0] == vd)
4702 		vd->vdev_unspare = B_TRUE;
4703 
4704 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4705 	zfs_ereport_clear(spa, vd);
4706 }
4707 
4708 boolean_t
vdev_is_dead(vdev_t * vd)4709 vdev_is_dead(vdev_t *vd)
4710 {
4711 	/*
4712 	 * Holes and missing devices are always considered "dead".
4713 	 * This simplifies the code since we don't have to check for
4714 	 * these types of devices in the various code paths.
4715 	 * Instead we rely on the fact that we skip over dead devices
4716 	 * before issuing I/O to them.
4717 	 */
4718 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4719 	    vd->vdev_ops == &vdev_hole_ops ||
4720 	    vd->vdev_ops == &vdev_missing_ops);
4721 }
4722 
4723 boolean_t
vdev_readable(vdev_t * vd)4724 vdev_readable(vdev_t *vd)
4725 {
4726 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4727 }
4728 
4729 boolean_t
vdev_writeable(vdev_t * vd)4730 vdev_writeable(vdev_t *vd)
4731 {
4732 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4733 	    vdev_is_concrete(vd));
4734 }
4735 
4736 boolean_t
vdev_allocatable(vdev_t * vd)4737 vdev_allocatable(vdev_t *vd)
4738 {
4739 	uint64_t state = vd->vdev_state;
4740 
4741 	/*
4742 	 * We currently allow allocations from vdevs which may be in the
4743 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4744 	 * fails to reopen then we'll catch it later when we're holding
4745 	 * the proper locks.  Note that we have to get the vdev state
4746 	 * in a local variable because although it changes atomically,
4747 	 * we're asking two separate questions about it.
4748 	 */
4749 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4750 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4751 	    vd->vdev_mg->mg_initialized);
4752 }
4753 
4754 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4755 vdev_accessible(vdev_t *vd, zio_t *zio)
4756 {
4757 	ASSERT(zio->io_vd == vd);
4758 
4759 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4760 		return (B_FALSE);
4761 
4762 	if (zio->io_type == ZIO_TYPE_READ)
4763 		return (!vd->vdev_cant_read);
4764 
4765 	if (zio->io_type == ZIO_TYPE_WRITE)
4766 		return (!vd->vdev_cant_write);
4767 
4768 	return (B_TRUE);
4769 }
4770 
4771 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4772 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4773 {
4774 	/*
4775 	 * Exclude the dRAID spare when aggregating to avoid double counting
4776 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4777 	 */
4778 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4779 		return;
4780 
4781 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4782 		vs->vs_ops[t] += cvs->vs_ops[t];
4783 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4784 	}
4785 
4786 	cvs->vs_scan_removing = cvd->vdev_removing;
4787 }
4788 
4789 /*
4790  * Get extended stats
4791  */
4792 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4793 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4794 {
4795 	(void) cvd;
4796 
4797 	int t, b;
4798 	for (t = 0; t < ZIO_TYPES; t++) {
4799 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4800 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4801 
4802 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4803 			vsx->vsx_total_histo[t][b] +=
4804 			    cvsx->vsx_total_histo[t][b];
4805 		}
4806 	}
4807 
4808 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4809 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4810 			vsx->vsx_queue_histo[t][b] +=
4811 			    cvsx->vsx_queue_histo[t][b];
4812 		}
4813 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4814 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4815 
4816 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4817 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4818 
4819 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4820 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4821 	}
4822 
4823 }
4824 
4825 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4826 vdev_is_spacemap_addressable(vdev_t *vd)
4827 {
4828 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4829 		return (B_TRUE);
4830 
4831 	/*
4832 	 * If double-word space map entries are not enabled we assume
4833 	 * 47 bits of the space map entry are dedicated to the entry's
4834 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4835 	 * to calculate the maximum address that can be described by a
4836 	 * space map entry for the given device.
4837 	 */
4838 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4839 
4840 	if (shift >= 63) /* detect potential overflow */
4841 		return (B_TRUE);
4842 
4843 	return (vd->vdev_asize < (1ULL << shift));
4844 }
4845 
4846 /*
4847  * Get statistics for the given vdev.
4848  */
4849 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4850 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4851 {
4852 	int t;
4853 	/*
4854 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4855 	 * over all top-level vdevs (i.e. the direct children of the root).
4856 	 */
4857 	if (!vd->vdev_ops->vdev_op_leaf) {
4858 		if (vs) {
4859 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4860 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4861 		}
4862 		if (vsx)
4863 			memset(vsx, 0, sizeof (*vsx));
4864 
4865 		for (int c = 0; c < vd->vdev_children; c++) {
4866 			vdev_t *cvd = vd->vdev_child[c];
4867 			vdev_stat_t *cvs = &cvd->vdev_stat;
4868 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4869 
4870 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4871 			if (vs)
4872 				vdev_get_child_stat(cvd, vs, cvs);
4873 			if (vsx)
4874 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4875 		}
4876 	} else {
4877 		/*
4878 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4879 		 * other leaf stats are updated in vdev_stat_update().
4880 		 */
4881 		if (!vsx)
4882 			return;
4883 
4884 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4885 
4886 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4887 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4888 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4889 		}
4890 	}
4891 }
4892 
4893 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4894 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4895 {
4896 	vdev_t *tvd = vd->vdev_top;
4897 	mutex_enter(&vd->vdev_stat_lock);
4898 	if (vs) {
4899 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4900 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4901 		vs->vs_state = vd->vdev_state;
4902 		vs->vs_rsize = vdev_get_min_asize(vd);
4903 
4904 		if (vd->vdev_ops->vdev_op_leaf) {
4905 			vs->vs_pspace = vd->vdev_psize;
4906 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4907 			    VDEV_LABEL_END_SIZE;
4908 			/*
4909 			 * Report initializing progress. Since we don't
4910 			 * have the initializing locks held, this is only
4911 			 * an estimate (although a fairly accurate one).
4912 			 */
4913 			vs->vs_initialize_bytes_done =
4914 			    vd->vdev_initialize_bytes_done;
4915 			vs->vs_initialize_bytes_est =
4916 			    vd->vdev_initialize_bytes_est;
4917 			vs->vs_initialize_state = vd->vdev_initialize_state;
4918 			vs->vs_initialize_action_time =
4919 			    vd->vdev_initialize_action_time;
4920 
4921 			/*
4922 			 * Report manual TRIM progress. Since we don't have
4923 			 * the manual TRIM locks held, this is only an
4924 			 * estimate (although fairly accurate one).
4925 			 */
4926 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4927 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4928 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4929 			vs->vs_trim_state = vd->vdev_trim_state;
4930 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4931 
4932 			/* Set when there is a deferred resilver. */
4933 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4934 		}
4935 
4936 		/*
4937 		 * Report expandable space on top-level, non-auxiliary devices
4938 		 * only. The expandable space is reported in terms of metaslab
4939 		 * sized units since that determines how much space the pool
4940 		 * can expand.
4941 		 */
4942 		if (vd->vdev_aux == NULL && tvd != NULL) {
4943 			vs->vs_esize = P2ALIGN_TYPED(
4944 			    vd->vdev_max_asize - vd->vdev_asize,
4945 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4946 		}
4947 
4948 		vs->vs_configured_ashift = vd->vdev_top != NULL
4949 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4950 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4951 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4952 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4953 		else
4954 			vs->vs_physical_ashift = 0;
4955 
4956 		/*
4957 		 * Report fragmentation and rebuild progress for top-level,
4958 		 * non-auxiliary, concrete devices.
4959 		 */
4960 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4961 		    vdev_is_concrete(vd)) {
4962 			/*
4963 			 * The vdev fragmentation rating doesn't take into
4964 			 * account the embedded slog metaslab (vdev_log_mg).
4965 			 * Since it's only one metaslab, it would have a tiny
4966 			 * impact on the overall fragmentation.
4967 			 */
4968 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4969 			    vd->vdev_mg->mg_fragmentation : 0;
4970 		}
4971 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4972 		    tvd ? tvd->vdev_noalloc : 0);
4973 	}
4974 
4975 	vdev_get_stats_ex_impl(vd, vs, vsx);
4976 	mutex_exit(&vd->vdev_stat_lock);
4977 }
4978 
4979 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4980 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4981 {
4982 	return (vdev_get_stats_ex(vd, vs, NULL));
4983 }
4984 
4985 void
vdev_clear_stats(vdev_t * vd)4986 vdev_clear_stats(vdev_t *vd)
4987 {
4988 	mutex_enter(&vd->vdev_stat_lock);
4989 	vd->vdev_stat.vs_space = 0;
4990 	vd->vdev_stat.vs_dspace = 0;
4991 	vd->vdev_stat.vs_alloc = 0;
4992 	mutex_exit(&vd->vdev_stat_lock);
4993 }
4994 
4995 void
vdev_scan_stat_init(vdev_t * vd)4996 vdev_scan_stat_init(vdev_t *vd)
4997 {
4998 	vdev_stat_t *vs = &vd->vdev_stat;
4999 
5000 	for (int c = 0; c < vd->vdev_children; c++)
5001 		vdev_scan_stat_init(vd->vdev_child[c]);
5002 
5003 	mutex_enter(&vd->vdev_stat_lock);
5004 	vs->vs_scan_processed = 0;
5005 	mutex_exit(&vd->vdev_stat_lock);
5006 }
5007 
5008 void
vdev_stat_update(zio_t * zio,uint64_t psize)5009 vdev_stat_update(zio_t *zio, uint64_t psize)
5010 {
5011 	spa_t *spa = zio->io_spa;
5012 	vdev_t *rvd = spa->spa_root_vdev;
5013 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
5014 	vdev_t *pvd;
5015 	uint64_t txg = zio->io_txg;
5016 /* Suppress ASAN false positive */
5017 #ifdef __SANITIZE_ADDRESS__
5018 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
5019 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
5020 #else
5021 	vdev_stat_t *vs = &vd->vdev_stat;
5022 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
5023 #endif
5024 	zio_type_t type = zio->io_type;
5025 	int flags = zio->io_flags;
5026 
5027 	/*
5028 	 * If this i/o is a gang leader, it didn't do any actual work.
5029 	 */
5030 	if (zio->io_gang_tree)
5031 		return;
5032 
5033 	if (zio->io_error == 0) {
5034 		/*
5035 		 * If this is a root i/o, don't count it -- we've already
5036 		 * counted the top-level vdevs, and vdev_get_stats() will
5037 		 * aggregate them when asked.  This reduces contention on
5038 		 * the root vdev_stat_lock and implicitly handles blocks
5039 		 * that compress away to holes, for which there is no i/o.
5040 		 * (Holes never create vdev children, so all the counters
5041 		 * remain zero, which is what we want.)
5042 		 *
5043 		 * Note: this only applies to successful i/o (io_error == 0)
5044 		 * because unlike i/o counts, errors are not additive.
5045 		 * When reading a ditto block, for example, failure of
5046 		 * one top-level vdev does not imply a root-level error.
5047 		 */
5048 		if (vd == rvd)
5049 			return;
5050 
5051 		ASSERT(vd == zio->io_vd);
5052 
5053 		if (flags & ZIO_FLAG_IO_BYPASS)
5054 			return;
5055 
5056 		mutex_enter(&vd->vdev_stat_lock);
5057 
5058 		if (flags & ZIO_FLAG_IO_REPAIR) {
5059 			/*
5060 			 * Repair is the result of a resilver issued by the
5061 			 * scan thread (spa_sync).
5062 			 */
5063 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5064 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5065 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5066 				uint64_t *processed = &scn_phys->scn_processed;
5067 
5068 				if (vd->vdev_ops->vdev_op_leaf)
5069 					atomic_add_64(processed, psize);
5070 				vs->vs_scan_processed += psize;
5071 			}
5072 
5073 			/*
5074 			 * Repair is the result of a rebuild issued by the
5075 			 * rebuild thread (vdev_rebuild_thread).  To avoid
5076 			 * double counting repaired bytes the virtual dRAID
5077 			 * spare vdev is excluded from the processed bytes.
5078 			 */
5079 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5080 				vdev_t *tvd = vd->vdev_top;
5081 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5082 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5083 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5084 
5085 				if (vd->vdev_ops->vdev_op_leaf &&
5086 				    vd->vdev_ops != &vdev_draid_spare_ops) {
5087 					atomic_add_64(rebuilt, psize);
5088 				}
5089 				vs->vs_rebuild_processed += psize;
5090 			}
5091 
5092 			if (flags & ZIO_FLAG_SELF_HEAL)
5093 				vs->vs_self_healed += psize;
5094 		}
5095 
5096 		/*
5097 		 * The bytes/ops/histograms are recorded at the leaf level and
5098 		 * aggregated into the higher level vdevs in vdev_get_stats().
5099 		 */
5100 		if (vd->vdev_ops->vdev_op_leaf &&
5101 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5102 			zio_type_t vs_type = type;
5103 			zio_priority_t priority = zio->io_priority;
5104 
5105 			/*
5106 			 * TRIM ops and bytes are reported to user space as
5107 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
5108 			 * vdev_stat_t structure layout for user space.
5109 			 */
5110 			if (type == ZIO_TYPE_TRIM)
5111 				vs_type = ZIO_TYPE_FLUSH;
5112 
5113 			/*
5114 			 * Solely for the purposes of 'zpool iostat -lqrw'
5115 			 * reporting use the priority to categorize the IO.
5116 			 * Only the following are reported to user space:
5117 			 *
5118 			 *   ZIO_PRIORITY_SYNC_READ,
5119 			 *   ZIO_PRIORITY_SYNC_WRITE,
5120 			 *   ZIO_PRIORITY_ASYNC_READ,
5121 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5122 			 *   ZIO_PRIORITY_SCRUB,
5123 			 *   ZIO_PRIORITY_TRIM,
5124 			 *   ZIO_PRIORITY_REBUILD.
5125 			 */
5126 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5127 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5128 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5129 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5130 				priority = ((type == ZIO_TYPE_WRITE) ?
5131 				    ZIO_PRIORITY_ASYNC_WRITE :
5132 				    ZIO_PRIORITY_ASYNC_READ);
5133 			}
5134 
5135 			vs->vs_ops[vs_type]++;
5136 			vs->vs_bytes[vs_type] += psize;
5137 
5138 			if (flags & ZIO_FLAG_DELEGATED) {
5139 				vsx->vsx_agg_histo[priority]
5140 				    [RQ_HISTO(zio->io_size)]++;
5141 			} else {
5142 				vsx->vsx_ind_histo[priority]
5143 				    [RQ_HISTO(zio->io_size)]++;
5144 			}
5145 
5146 			if (zio->io_delta && zio->io_delay) {
5147 				vsx->vsx_queue_histo[priority]
5148 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5149 				vsx->vsx_disk_histo[type]
5150 				    [L_HISTO(zio->io_delay)]++;
5151 				vsx->vsx_total_histo[type]
5152 				    [L_HISTO(zio->io_delta)]++;
5153 			}
5154 		}
5155 
5156 		mutex_exit(&vd->vdev_stat_lock);
5157 		return;
5158 	}
5159 
5160 	if (flags & ZIO_FLAG_SPECULATIVE)
5161 		return;
5162 
5163 	/*
5164 	 * If this is an I/O error that is going to be retried, then ignore the
5165 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5166 	 * hard errors, when in reality they can happen for any number of
5167 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5168 	 */
5169 	if (zio->io_error == EIO &&
5170 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5171 		return;
5172 
5173 	/*
5174 	 * Intent logs writes won't propagate their error to the root
5175 	 * I/O so don't mark these types of failures as pool-level
5176 	 * errors.
5177 	 */
5178 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5179 		return;
5180 
5181 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5182 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5183 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5184 	    spa->spa_claiming)) {
5185 		/*
5186 		 * This is either a normal write (not a repair), or it's
5187 		 * a repair induced by the scrub thread, or it's a repair
5188 		 * made by zil_claim() during spa_load() in the first txg.
5189 		 * In the normal case, we commit the DTL change in the same
5190 		 * txg as the block was born.  In the scrub-induced repair
5191 		 * case, we know that scrubs run in first-pass syncing context,
5192 		 * so we commit the DTL change in spa_syncing_txg(spa).
5193 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5194 		 *
5195 		 * We currently do not make DTL entries for failed spontaneous
5196 		 * self-healing writes triggered by normal (non-scrubbing)
5197 		 * reads, because we have no transactional context in which to
5198 		 * do so -- and it's not clear that it'd be desirable anyway.
5199 		 */
5200 		if (vd->vdev_ops->vdev_op_leaf) {
5201 			uint64_t commit_txg = txg;
5202 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5203 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5204 				ASSERT(spa_sync_pass(spa) == 1);
5205 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5206 				commit_txg = spa_syncing_txg(spa);
5207 			} else if (spa->spa_claiming) {
5208 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5209 				commit_txg = spa_first_txg(spa);
5210 			}
5211 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5212 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5213 				return;
5214 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5215 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5216 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5217 		}
5218 		if (vd != rvd)
5219 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5220 	}
5221 }
5222 
5223 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5224 vdev_deflated_space(vdev_t *vd, int64_t space)
5225 {
5226 	ASSERT0((space & (SPA_MINBLOCKSIZE-1)));
5227 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5228 
5229 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5230 }
5231 
5232 /*
5233  * Update the in-core space usage stats for this vdev, its metaslab class,
5234  * and the root vdev.
5235  */
5236 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5237 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5238     int64_t space_delta)
5239 {
5240 	(void) defer_delta;
5241 	int64_t dspace_delta;
5242 	spa_t *spa = vd->vdev_spa;
5243 	vdev_t *rvd = spa->spa_root_vdev;
5244 
5245 	ASSERT(vd == vd->vdev_top);
5246 
5247 	/*
5248 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5249 	 * factor.  We must calculate this here and not at the root vdev
5250 	 * because the root vdev's psize-to-asize is simply the max of its
5251 	 * children's, thus not accurate enough for us.
5252 	 */
5253 	dspace_delta = vdev_deflated_space(vd, space_delta);
5254 
5255 	mutex_enter(&vd->vdev_stat_lock);
5256 	/* ensure we won't underflow */
5257 	if (alloc_delta < 0) {
5258 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5259 	}
5260 
5261 	vd->vdev_stat.vs_alloc += alloc_delta;
5262 	vd->vdev_stat.vs_space += space_delta;
5263 	vd->vdev_stat.vs_dspace += dspace_delta;
5264 	mutex_exit(&vd->vdev_stat_lock);
5265 
5266 	/* every class but log contributes to root space stats */
5267 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5268 		ASSERT(!vd->vdev_isl2cache);
5269 		mutex_enter(&rvd->vdev_stat_lock);
5270 		rvd->vdev_stat.vs_alloc += alloc_delta;
5271 		rvd->vdev_stat.vs_space += space_delta;
5272 		rvd->vdev_stat.vs_dspace += dspace_delta;
5273 		mutex_exit(&rvd->vdev_stat_lock);
5274 	}
5275 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5276 }
5277 
5278 /*
5279  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5280  * so that it will be written out next time the vdev configuration is synced.
5281  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5282  */
5283 void
vdev_config_dirty(vdev_t * vd)5284 vdev_config_dirty(vdev_t *vd)
5285 {
5286 	spa_t *spa = vd->vdev_spa;
5287 	vdev_t *rvd = spa->spa_root_vdev;
5288 	int c;
5289 
5290 	ASSERT(spa_writeable(spa));
5291 
5292 	/*
5293 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5294 	 * update the vdev config manually and set the sync flag.
5295 	 */
5296 	if (vd->vdev_aux != NULL) {
5297 		spa_aux_vdev_t *sav = vd->vdev_aux;
5298 		nvlist_t **aux;
5299 		uint_t naux;
5300 
5301 		for (c = 0; c < sav->sav_count; c++) {
5302 			if (sav->sav_vdevs[c] == vd)
5303 				break;
5304 		}
5305 
5306 		if (c == sav->sav_count) {
5307 			/*
5308 			 * We're being removed.  There's nothing more to do.
5309 			 */
5310 			ASSERT(sav->sav_sync == B_TRUE);
5311 			return;
5312 		}
5313 
5314 		sav->sav_sync = B_TRUE;
5315 
5316 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5317 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5318 			VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
5319 			    ZPOOL_CONFIG_SPARES, &aux, &naux));
5320 		}
5321 
5322 		ASSERT(c < naux);
5323 
5324 		/*
5325 		 * Setting the nvlist in the middle if the array is a little
5326 		 * sketchy, but it will work.
5327 		 */
5328 		nvlist_free(aux[c]);
5329 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5330 
5331 		return;
5332 	}
5333 
5334 	/*
5335 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5336 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5337 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5338 	 * so this is sufficient to ensure mutual exclusion.
5339 	 */
5340 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5341 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5342 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5343 
5344 	if (vd == rvd) {
5345 		for (c = 0; c < rvd->vdev_children; c++)
5346 			vdev_config_dirty(rvd->vdev_child[c]);
5347 	} else {
5348 		ASSERT(vd == vd->vdev_top);
5349 
5350 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5351 		    vdev_is_concrete(vd)) {
5352 			list_insert_head(&spa->spa_config_dirty_list, vd);
5353 		}
5354 	}
5355 }
5356 
5357 void
vdev_config_clean(vdev_t * vd)5358 vdev_config_clean(vdev_t *vd)
5359 {
5360 	spa_t *spa = vd->vdev_spa;
5361 
5362 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5363 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5364 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5365 
5366 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5367 	list_remove(&spa->spa_config_dirty_list, vd);
5368 }
5369 
5370 /*
5371  * Mark a top-level vdev's state as dirty, so that the next pass of
5372  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5373  * the state changes from larger config changes because they require
5374  * much less locking, and are often needed for administrative actions.
5375  */
5376 void
vdev_state_dirty(vdev_t * vd)5377 vdev_state_dirty(vdev_t *vd)
5378 {
5379 	spa_t *spa = vd->vdev_spa;
5380 
5381 	ASSERT(spa_writeable(spa));
5382 	ASSERT(vd == vd->vdev_top);
5383 
5384 	/*
5385 	 * The state list is protected by the SCL_STATE lock.  The caller
5386 	 * must either hold SCL_STATE as writer, or must be the sync thread
5387 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5388 	 * so this is sufficient to ensure mutual exclusion.
5389 	 */
5390 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5391 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5392 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5393 
5394 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5395 	    vdev_is_concrete(vd))
5396 		list_insert_head(&spa->spa_state_dirty_list, vd);
5397 }
5398 
5399 void
vdev_state_clean(vdev_t * vd)5400 vdev_state_clean(vdev_t *vd)
5401 {
5402 	spa_t *spa = vd->vdev_spa;
5403 
5404 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5405 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5406 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5407 
5408 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5409 	list_remove(&spa->spa_state_dirty_list, vd);
5410 }
5411 
5412 /*
5413  * Propagate vdev state up from children to parent.
5414  */
5415 void
vdev_propagate_state(vdev_t * vd)5416 vdev_propagate_state(vdev_t *vd)
5417 {
5418 	spa_t *spa = vd->vdev_spa;
5419 	vdev_t *rvd = spa->spa_root_vdev;
5420 	int degraded = 0, faulted = 0;
5421 	int corrupted = 0;
5422 	vdev_t *child;
5423 
5424 	if (vd->vdev_children > 0) {
5425 		for (int c = 0; c < vd->vdev_children; c++) {
5426 			child = vd->vdev_child[c];
5427 
5428 			/*
5429 			 * Don't factor holes or indirect vdevs into the
5430 			 * decision.
5431 			 */
5432 			if (!vdev_is_concrete(child))
5433 				continue;
5434 
5435 			if (!vdev_readable(child) ||
5436 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5437 				/*
5438 				 * Root special: if there is a top-level log
5439 				 * device, treat the root vdev as if it were
5440 				 * degraded.
5441 				 */
5442 				if (child->vdev_islog && vd == rvd)
5443 					degraded++;
5444 				else
5445 					faulted++;
5446 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5447 				degraded++;
5448 			}
5449 
5450 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5451 				corrupted++;
5452 		}
5453 
5454 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5455 
5456 		/*
5457 		 * Root special: if there is a top-level vdev that cannot be
5458 		 * opened due to corrupted metadata, then propagate the root
5459 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5460 		 * replicas'.
5461 		 */
5462 		if (corrupted && vd == rvd &&
5463 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5464 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5465 			    VDEV_AUX_CORRUPT_DATA);
5466 	}
5467 
5468 	if (vd->vdev_parent)
5469 		vdev_propagate_state(vd->vdev_parent);
5470 }
5471 
5472 /*
5473  * Set a vdev's state.  If this is during an open, we don't update the parent
5474  * state, because we're in the process of opening children depth-first.
5475  * Otherwise, we propagate the change to the parent.
5476  *
5477  * If this routine places a device in a faulted state, an appropriate ereport is
5478  * generated.
5479  */
5480 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5481 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5482 {
5483 	uint64_t save_state;
5484 	spa_t *spa = vd->vdev_spa;
5485 
5486 	if (state == vd->vdev_state) {
5487 		/*
5488 		 * Since vdev_offline() code path is already in an offline
5489 		 * state we can miss a statechange event to OFFLINE. Check
5490 		 * the previous state to catch this condition.
5491 		 */
5492 		if (vd->vdev_ops->vdev_op_leaf &&
5493 		    (state == VDEV_STATE_OFFLINE) &&
5494 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5495 			/* post an offline state change */
5496 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5497 		}
5498 		vd->vdev_stat.vs_aux = aux;
5499 		return;
5500 	}
5501 
5502 	save_state = vd->vdev_state;
5503 
5504 	vd->vdev_state = state;
5505 	vd->vdev_stat.vs_aux = aux;
5506 
5507 	/*
5508 	 * If we are setting the vdev state to anything but an open state, then
5509 	 * always close the underlying device unless the device has requested
5510 	 * a delayed close (i.e. we're about to remove or fault the device).
5511 	 * Otherwise, we keep accessible but invalid devices open forever.
5512 	 * We don't call vdev_close() itself, because that implies some extra
5513 	 * checks (offline, etc) that we don't want here.  This is limited to
5514 	 * leaf devices, because otherwise closing the device will affect other
5515 	 * children.
5516 	 */
5517 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5518 	    vd->vdev_ops->vdev_op_leaf)
5519 		vd->vdev_ops->vdev_op_close(vd);
5520 
5521 	if (vd->vdev_removed &&
5522 	    state == VDEV_STATE_CANT_OPEN &&
5523 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5524 		/*
5525 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5526 		 * device was previously marked removed and someone attempted to
5527 		 * reopen it.  If this failed due to a nonexistent device, then
5528 		 * keep the device in the REMOVED state.  We also let this be if
5529 		 * it is one of our special test online cases, which is only
5530 		 * attempting to online the device and shouldn't generate an FMA
5531 		 * fault.
5532 		 */
5533 		vd->vdev_state = VDEV_STATE_REMOVED;
5534 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5535 	} else if (state == VDEV_STATE_REMOVED) {
5536 		vd->vdev_removed = B_TRUE;
5537 	} else if (state == VDEV_STATE_CANT_OPEN) {
5538 		/*
5539 		 * If we fail to open a vdev during an import or recovery, we
5540 		 * mark it as "not available", which signifies that it was
5541 		 * never there to begin with.  Failure to open such a device
5542 		 * is not considered an error.
5543 		 */
5544 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5545 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5546 		    vd->vdev_ops->vdev_op_leaf)
5547 			vd->vdev_not_present = 1;
5548 
5549 		/*
5550 		 * Post the appropriate ereport.  If the 'prevstate' field is
5551 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5552 		 * that this is part of a vdev_reopen().  In this case, we don't
5553 		 * want to post the ereport if the device was already in the
5554 		 * CANT_OPEN state beforehand.
5555 		 *
5556 		 * If the 'checkremove' flag is set, then this is an attempt to
5557 		 * online the device in response to an insertion event.  If we
5558 		 * hit this case, then we have detected an insertion event for a
5559 		 * faulted or offline device that wasn't in the removed state.
5560 		 * In this scenario, we don't post an ereport because we are
5561 		 * about to replace the device, or attempt an online with
5562 		 * vdev_forcefault, which will generate the fault for us.
5563 		 */
5564 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5565 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5566 		    vd != spa->spa_root_vdev) {
5567 			const char *class;
5568 
5569 			switch (aux) {
5570 			case VDEV_AUX_OPEN_FAILED:
5571 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5572 				break;
5573 			case VDEV_AUX_CORRUPT_DATA:
5574 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5575 				break;
5576 			case VDEV_AUX_NO_REPLICAS:
5577 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5578 				break;
5579 			case VDEV_AUX_BAD_GUID_SUM:
5580 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5581 				break;
5582 			case VDEV_AUX_TOO_SMALL:
5583 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5584 				break;
5585 			case VDEV_AUX_BAD_LABEL:
5586 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5587 				break;
5588 			case VDEV_AUX_BAD_ASHIFT:
5589 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5590 				break;
5591 			default:
5592 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5593 			}
5594 
5595 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5596 			    save_state);
5597 		}
5598 
5599 		/* Erase any notion of persistent removed state */
5600 		vd->vdev_removed = B_FALSE;
5601 	} else {
5602 		vd->vdev_removed = B_FALSE;
5603 	}
5604 
5605 	/*
5606 	 * Notify ZED of any significant state-change on a leaf vdev.
5607 	 *
5608 	 */
5609 	if (vd->vdev_ops->vdev_op_leaf) {
5610 		/* preserve original state from a vdev_reopen() */
5611 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5612 		    (vd->vdev_prevstate != vd->vdev_state) &&
5613 		    (save_state <= VDEV_STATE_CLOSED))
5614 			save_state = vd->vdev_prevstate;
5615 
5616 		/* filter out state change due to initial vdev_open */
5617 		if (save_state > VDEV_STATE_CLOSED)
5618 			zfs_post_state_change(spa, vd, save_state);
5619 	}
5620 
5621 	if (!isopen && vd->vdev_parent)
5622 		vdev_propagate_state(vd->vdev_parent);
5623 }
5624 
5625 boolean_t
vdev_children_are_offline(vdev_t * vd)5626 vdev_children_are_offline(vdev_t *vd)
5627 {
5628 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5629 
5630 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5631 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5632 			return (B_FALSE);
5633 	}
5634 
5635 	return (B_TRUE);
5636 }
5637 
5638 /*
5639  * Check the vdev configuration to ensure that it's capable of supporting
5640  * a root pool. We do not support partial configuration.
5641  */
5642 boolean_t
vdev_is_bootable(vdev_t * vd)5643 vdev_is_bootable(vdev_t *vd)
5644 {
5645 	if (!vd->vdev_ops->vdev_op_leaf) {
5646 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5647 
5648 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5649 			return (B_FALSE);
5650 	}
5651 
5652 	for (int c = 0; c < vd->vdev_children; c++) {
5653 		if (!vdev_is_bootable(vd->vdev_child[c]))
5654 			return (B_FALSE);
5655 	}
5656 	return (B_TRUE);
5657 }
5658 
5659 boolean_t
vdev_is_concrete(vdev_t * vd)5660 vdev_is_concrete(vdev_t *vd)
5661 {
5662 	vdev_ops_t *ops = vd->vdev_ops;
5663 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5664 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5665 		return (B_FALSE);
5666 	} else {
5667 		return (B_TRUE);
5668 	}
5669 }
5670 
5671 /*
5672  * Determine if a log device has valid content.  If the vdev was
5673  * removed or faulted in the MOS config then we know that
5674  * the content on the log device has already been written to the pool.
5675  */
5676 boolean_t
vdev_log_state_valid(vdev_t * vd)5677 vdev_log_state_valid(vdev_t *vd)
5678 {
5679 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5680 	    !vd->vdev_removed)
5681 		return (B_TRUE);
5682 
5683 	for (int c = 0; c < vd->vdev_children; c++)
5684 		if (vdev_log_state_valid(vd->vdev_child[c]))
5685 			return (B_TRUE);
5686 
5687 	return (B_FALSE);
5688 }
5689 
5690 /*
5691  * Expand a vdev if possible.
5692  */
5693 void
vdev_expand(vdev_t * vd,uint64_t txg)5694 vdev_expand(vdev_t *vd, uint64_t txg)
5695 {
5696 	ASSERT(vd->vdev_top == vd);
5697 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5698 	ASSERT(vdev_is_concrete(vd));
5699 
5700 	vdev_set_deflate_ratio(vd);
5701 
5702 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5703 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5704 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5705 	    vdev_is_concrete(vd)) {
5706 		vdev_metaslab_group_create(vd);
5707 		VERIFY0(vdev_metaslab_init(vd, txg));
5708 		vdev_config_dirty(vd);
5709 	}
5710 }
5711 
5712 /*
5713  * Split a vdev.
5714  */
5715 void
vdev_split(vdev_t * vd)5716 vdev_split(vdev_t *vd)
5717 {
5718 	vdev_t *cvd, *pvd = vd->vdev_parent;
5719 
5720 	VERIFY3U(pvd->vdev_children, >, 1);
5721 
5722 	vdev_remove_child(pvd, vd);
5723 	vdev_compact_children(pvd);
5724 
5725 	ASSERT3P(pvd->vdev_child, !=, NULL);
5726 
5727 	cvd = pvd->vdev_child[0];
5728 	if (pvd->vdev_children == 1) {
5729 		vdev_remove_parent(cvd);
5730 		cvd->vdev_splitting = B_TRUE;
5731 	}
5732 	vdev_propagate_state(cvd);
5733 }
5734 
5735 void
vdev_deadman(vdev_t * vd,const char * tag)5736 vdev_deadman(vdev_t *vd, const char *tag)
5737 {
5738 	for (int c = 0; c < vd->vdev_children; c++) {
5739 		vdev_t *cvd = vd->vdev_child[c];
5740 
5741 		vdev_deadman(cvd, tag);
5742 	}
5743 
5744 	if (vd->vdev_ops->vdev_op_leaf) {
5745 		vdev_queue_t *vq = &vd->vdev_queue;
5746 
5747 		mutex_enter(&vq->vq_lock);
5748 		if (vq->vq_active > 0) {
5749 			spa_t *spa = vd->vdev_spa;
5750 			zio_t *fio;
5751 			uint64_t delta;
5752 
5753 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5754 			    vd->vdev_path, vq->vq_active);
5755 
5756 			/*
5757 			 * Look at the head of all the pending queues,
5758 			 * if any I/O has been outstanding for longer than
5759 			 * the spa_deadman_synctime invoke the deadman logic.
5760 			 */
5761 			fio = list_head(&vq->vq_active_list);
5762 			delta = gethrtime() - fio->io_timestamp;
5763 			if (delta > spa_deadman_synctime(spa))
5764 				zio_deadman(fio, tag);
5765 		}
5766 		mutex_exit(&vq->vq_lock);
5767 	}
5768 }
5769 
5770 void
vdev_defer_resilver(vdev_t * vd)5771 vdev_defer_resilver(vdev_t *vd)
5772 {
5773 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5774 
5775 	vd->vdev_resilver_deferred = B_TRUE;
5776 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5777 }
5778 
5779 /*
5780  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5781  * B_TRUE if we have devices that need to be resilvered and are available to
5782  * accept resilver I/Os.
5783  */
5784 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5785 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5786 {
5787 	boolean_t resilver_needed = B_FALSE;
5788 	spa_t *spa = vd->vdev_spa;
5789 
5790 	for (int c = 0; c < vd->vdev_children; c++) {
5791 		vdev_t *cvd = vd->vdev_child[c];
5792 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5793 	}
5794 
5795 	if (vd == spa->spa_root_vdev &&
5796 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5797 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5798 		vdev_config_dirty(vd);
5799 		spa->spa_resilver_deferred = B_FALSE;
5800 		return (resilver_needed);
5801 	}
5802 
5803 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5804 	    !vd->vdev_ops->vdev_op_leaf)
5805 		return (resilver_needed);
5806 
5807 	vd->vdev_resilver_deferred = B_FALSE;
5808 
5809 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5810 	    vdev_resilver_needed(vd, NULL, NULL));
5811 }
5812 
5813 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5814 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5815 {
5816 	return (rs->rs_start == rs->rs_end);
5817 }
5818 
5819 /*
5820  * Translate a logical range to the first contiguous physical range for the
5821  * specified vdev_t.  This function is initially called with a leaf vdev and
5822  * will walk each parent vdev until it reaches a top-level vdev. Once the
5823  * top-level is reached the physical range is initialized and the recursive
5824  * function begins to unwind. As it unwinds it calls the parent's vdev
5825  * specific translation function to do the real conversion.
5826  */
5827 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5828 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5829     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5830 {
5831 	/*
5832 	 * Walk up the vdev tree
5833 	 */
5834 	if (vd != vd->vdev_top) {
5835 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5836 		    remain_rs);
5837 	} else {
5838 		/*
5839 		 * We've reached the top-level vdev, initialize the physical
5840 		 * range to the logical range and set an empty remaining
5841 		 * range then start to unwind.
5842 		 */
5843 		physical_rs->rs_start = logical_rs->rs_start;
5844 		physical_rs->rs_end = logical_rs->rs_end;
5845 
5846 		remain_rs->rs_start = logical_rs->rs_start;
5847 		remain_rs->rs_end = logical_rs->rs_start;
5848 
5849 		return;
5850 	}
5851 
5852 	vdev_t *pvd = vd->vdev_parent;
5853 	ASSERT3P(pvd, !=, NULL);
5854 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5855 
5856 	/*
5857 	 * As this recursive function unwinds, translate the logical
5858 	 * range into its physical and any remaining components by calling
5859 	 * the vdev specific translate function.
5860 	 */
5861 	zfs_range_seg64_t intermediate = { 0 };
5862 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5863 
5864 	physical_rs->rs_start = intermediate.rs_start;
5865 	physical_rs->rs_end = intermediate.rs_end;
5866 }
5867 
5868 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5869 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5870     vdev_xlate_func_t *func, void *arg)
5871 {
5872 	zfs_range_seg64_t iter_rs = *logical_rs;
5873 	zfs_range_seg64_t physical_rs;
5874 	zfs_range_seg64_t remain_rs;
5875 
5876 	while (!vdev_xlate_is_empty(&iter_rs)) {
5877 
5878 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5879 
5880 		/*
5881 		 * With raidz and dRAID, it's possible that the logical range
5882 		 * does not live on this leaf vdev. Only when there is a non-
5883 		 * zero physical size call the provided function.
5884 		 */
5885 		if (!vdev_xlate_is_empty(&physical_rs))
5886 			func(arg, &physical_rs);
5887 
5888 		iter_rs = remain_rs;
5889 	}
5890 }
5891 
5892 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5893 vdev_name(vdev_t *vd, char *buf, int buflen)
5894 {
5895 	if (vd->vdev_path == NULL) {
5896 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5897 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5898 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5899 			snprintf(buf, buflen, "%s-%llu",
5900 			    vd->vdev_ops->vdev_op_type,
5901 			    (u_longlong_t)vd->vdev_id);
5902 		}
5903 	} else {
5904 		strlcpy(buf, vd->vdev_path, buflen);
5905 	}
5906 	return (buf);
5907 }
5908 
5909 /*
5910  * Look at the vdev tree and determine whether any devices are currently being
5911  * replaced.
5912  */
5913 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5914 vdev_replace_in_progress(vdev_t *vdev)
5915 {
5916 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5917 
5918 	if (vdev->vdev_ops == &vdev_replacing_ops)
5919 		return (B_TRUE);
5920 
5921 	/*
5922 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5923 	 * it has exactly two children, and the second, the hot spare, has
5924 	 * finished being resilvered.
5925 	 */
5926 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5927 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5928 		return (B_TRUE);
5929 
5930 	for (int i = 0; i < vdev->vdev_children; i++) {
5931 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5932 			return (B_TRUE);
5933 	}
5934 
5935 	return (B_FALSE);
5936 }
5937 
5938 /*
5939  * Add a (source=src, propname=propval) list to an nvlist.
5940  */
5941 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5942 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5943     uint64_t intval, zprop_source_t src)
5944 {
5945 	nvlist_t *propval;
5946 
5947 	propval = fnvlist_alloc();
5948 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5949 
5950 	if (strval != NULL)
5951 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5952 	else
5953 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5954 
5955 	fnvlist_add_nvlist(nvl, propname, propval);
5956 	nvlist_free(propval);
5957 }
5958 
5959 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5960 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5961 {
5962 	vdev_t *vd;
5963 	nvlist_t *nvp = arg;
5964 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5965 	objset_t *mos = spa->spa_meta_objset;
5966 	nvpair_t *elem = NULL;
5967 	uint64_t vdev_guid;
5968 	uint64_t objid;
5969 	nvlist_t *nvprops;
5970 
5971 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5972 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5973 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5974 
5975 	/* this vdev could get removed while waiting for this sync task */
5976 	if (vd == NULL)
5977 		return;
5978 
5979 	/*
5980 	 * Set vdev property values in the vdev props mos object.
5981 	 */
5982 	if (vd->vdev_root_zap != 0) {
5983 		objid = vd->vdev_root_zap;
5984 	} else if (vd->vdev_top_zap != 0) {
5985 		objid = vd->vdev_top_zap;
5986 	} else if (vd->vdev_leaf_zap != 0) {
5987 		objid = vd->vdev_leaf_zap;
5988 	} else {
5989 		panic("unexpected vdev type");
5990 	}
5991 
5992 	mutex_enter(&spa->spa_props_lock);
5993 
5994 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5995 		uint64_t intval;
5996 		const char *strval;
5997 		vdev_prop_t prop;
5998 		const char *propname = nvpair_name(elem);
5999 		zprop_type_t proptype;
6000 
6001 		switch (prop = vdev_name_to_prop(propname)) {
6002 		case VDEV_PROP_USERPROP:
6003 			if (vdev_prop_user(propname)) {
6004 				strval = fnvpair_value_string(elem);
6005 				if (strlen(strval) == 0) {
6006 					/* remove the property if value == "" */
6007 					(void) zap_remove(mos, objid, propname,
6008 					    tx);
6009 				} else {
6010 					VERIFY0(zap_update(mos, objid, propname,
6011 					    1, strlen(strval) + 1, strval, tx));
6012 				}
6013 				spa_history_log_internal(spa, "vdev set", tx,
6014 				    "vdev_guid=%llu: %s=%s",
6015 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
6016 				    strval);
6017 			}
6018 			break;
6019 		default:
6020 			/* normalize the property name */
6021 			propname = vdev_prop_to_name(prop);
6022 			proptype = vdev_prop_get_type(prop);
6023 
6024 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6025 				ASSERT(proptype == PROP_TYPE_STRING);
6026 				strval = fnvpair_value_string(elem);
6027 				VERIFY0(zap_update(mos, objid, propname,
6028 				    1, strlen(strval) + 1, strval, tx));
6029 				spa_history_log_internal(spa, "vdev set", tx,
6030 				    "vdev_guid=%llu: %s=%s",
6031 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
6032 				    strval);
6033 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6034 				intval = fnvpair_value_uint64(elem);
6035 
6036 				if (proptype == PROP_TYPE_INDEX) {
6037 					const char *unused;
6038 					VERIFY0(vdev_prop_index_to_string(
6039 					    prop, intval, &unused));
6040 				}
6041 				VERIFY0(zap_update(mos, objid, propname,
6042 				    sizeof (uint64_t), 1, &intval, tx));
6043 				spa_history_log_internal(spa, "vdev set", tx,
6044 				    "vdev_guid=%llu: %s=%lld",
6045 				    (u_longlong_t)vdev_guid,
6046 				    nvpair_name(elem), (longlong_t)intval);
6047 			} else {
6048 				panic("invalid vdev property type %u",
6049 				    nvpair_type(elem));
6050 			}
6051 		}
6052 
6053 	}
6054 
6055 	mutex_exit(&spa->spa_props_lock);
6056 }
6057 
6058 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6059 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6060 {
6061 	spa_t *spa = vd->vdev_spa;
6062 	nvpair_t *elem = NULL;
6063 	uint64_t vdev_guid;
6064 	nvlist_t *nvprops;
6065 	int error = 0;
6066 
6067 	ASSERT(vd != NULL);
6068 
6069 	/* Check that vdev has a zap we can use */
6070 	if (vd->vdev_root_zap == 0 &&
6071 	    vd->vdev_top_zap == 0 &&
6072 	    vd->vdev_leaf_zap == 0)
6073 		return (SET_ERROR(EINVAL));
6074 
6075 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6076 	    &vdev_guid) != 0)
6077 		return (SET_ERROR(EINVAL));
6078 
6079 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6080 	    &nvprops) != 0)
6081 		return (SET_ERROR(EINVAL));
6082 
6083 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6084 		return (SET_ERROR(EINVAL));
6085 
6086 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6087 		const char *propname = nvpair_name(elem);
6088 		vdev_prop_t prop = vdev_name_to_prop(propname);
6089 		uint64_t intval = 0;
6090 		const char *strval = NULL;
6091 
6092 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6093 			error = EINVAL;
6094 			goto end;
6095 		}
6096 
6097 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6098 			error = EROFS;
6099 			goto end;
6100 		}
6101 
6102 		/* Special Processing */
6103 		switch (prop) {
6104 		case VDEV_PROP_PATH:
6105 			if (vd->vdev_path == NULL) {
6106 				error = EROFS;
6107 				break;
6108 			}
6109 			if (nvpair_value_string(elem, &strval) != 0) {
6110 				error = EINVAL;
6111 				break;
6112 			}
6113 			/* New path must start with /dev/ */
6114 			if (strncmp(strval, "/dev/", 5)) {
6115 				error = EINVAL;
6116 				break;
6117 			}
6118 			error = spa_vdev_setpath(spa, vdev_guid, strval);
6119 			break;
6120 		case VDEV_PROP_ALLOCATING:
6121 			if (nvpair_value_uint64(elem, &intval) != 0) {
6122 				error = EINVAL;
6123 				break;
6124 			}
6125 			if (intval != vd->vdev_noalloc)
6126 				break;
6127 			if (intval == 0)
6128 				error = spa_vdev_noalloc(spa, vdev_guid);
6129 			else
6130 				error = spa_vdev_alloc(spa, vdev_guid);
6131 			break;
6132 		case VDEV_PROP_FAILFAST:
6133 			if (nvpair_value_uint64(elem, &intval) != 0) {
6134 				error = EINVAL;
6135 				break;
6136 			}
6137 			vd->vdev_failfast = intval & 1;
6138 			break;
6139 		case VDEV_PROP_SIT_OUT:
6140 			/* Only expose this for a draid or raidz leaf */
6141 			if (!vd->vdev_ops->vdev_op_leaf ||
6142 			    vd->vdev_top == NULL ||
6143 			    (vd->vdev_top->vdev_ops != &vdev_raidz_ops &&
6144 			    vd->vdev_top->vdev_ops != &vdev_draid_ops)) {
6145 				error = ENOTSUP;
6146 				break;
6147 			}
6148 			if (nvpair_value_uint64(elem, &intval) != 0) {
6149 				error = EINVAL;
6150 				break;
6151 			}
6152 			if (intval == 1) {
6153 				vdev_t *ancestor = vd;
6154 				while (ancestor->vdev_parent != vd->vdev_top)
6155 					ancestor = ancestor->vdev_parent;
6156 				vdev_t *pvd = vd->vdev_top;
6157 				uint_t sitouts = 0;
6158 				for (int i = 0; i < pvd->vdev_children; i++) {
6159 					if (pvd->vdev_child[i] == ancestor)
6160 						continue;
6161 					if (vdev_sit_out_reads(
6162 					    pvd->vdev_child[i], 0)) {
6163 						sitouts++;
6164 					}
6165 				}
6166 				if (sitouts >= vdev_get_nparity(pvd)) {
6167 					error = ZFS_ERR_TOO_MANY_SITOUTS;
6168 					break;
6169 				}
6170 				if (error == 0)
6171 					vdev_raidz_sit_child(vd,
6172 					    INT64_MAX - gethrestime_sec());
6173 			} else {
6174 				vdev_raidz_unsit_child(vd);
6175 			}
6176 			break;
6177 		case VDEV_PROP_AUTOSIT:
6178 			if (vd->vdev_ops != &vdev_raidz_ops &&
6179 			    vd->vdev_ops != &vdev_draid_ops) {
6180 				error = ENOTSUP;
6181 				break;
6182 			}
6183 			if (nvpair_value_uint64(elem, &intval) != 0) {
6184 				error = EINVAL;
6185 				break;
6186 			}
6187 			vd->vdev_autosit = intval == 1;
6188 			break;
6189 		case VDEV_PROP_CHECKSUM_N:
6190 			if (nvpair_value_uint64(elem, &intval) != 0) {
6191 				error = EINVAL;
6192 				break;
6193 			}
6194 			vd->vdev_checksum_n = intval;
6195 			break;
6196 		case VDEV_PROP_CHECKSUM_T:
6197 			if (nvpair_value_uint64(elem, &intval) != 0) {
6198 				error = EINVAL;
6199 				break;
6200 			}
6201 			vd->vdev_checksum_t = intval;
6202 			break;
6203 		case VDEV_PROP_IO_N:
6204 			if (nvpair_value_uint64(elem, &intval) != 0) {
6205 				error = EINVAL;
6206 				break;
6207 			}
6208 			vd->vdev_io_n = intval;
6209 			break;
6210 		case VDEV_PROP_IO_T:
6211 			if (nvpair_value_uint64(elem, &intval) != 0) {
6212 				error = EINVAL;
6213 				break;
6214 			}
6215 			vd->vdev_io_t = intval;
6216 			break;
6217 		case VDEV_PROP_SLOW_IO_N:
6218 			if (nvpair_value_uint64(elem, &intval) != 0) {
6219 				error = EINVAL;
6220 				break;
6221 			}
6222 			vd->vdev_slow_io_n = intval;
6223 			break;
6224 		case VDEV_PROP_SLOW_IO_T:
6225 			if (nvpair_value_uint64(elem, &intval) != 0) {
6226 				error = EINVAL;
6227 				break;
6228 			}
6229 			vd->vdev_slow_io_t = intval;
6230 			break;
6231 		default:
6232 			/* Most processing is done in vdev_props_set_sync */
6233 			break;
6234 		}
6235 end:
6236 		if (error != 0) {
6237 			intval = error;
6238 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6239 			return (error);
6240 		}
6241 	}
6242 
6243 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6244 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6245 }
6246 
6247 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6248 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6249 {
6250 	spa_t *spa = vd->vdev_spa;
6251 	objset_t *mos = spa->spa_meta_objset;
6252 	int err = 0;
6253 	uint64_t objid;
6254 	uint64_t vdev_guid;
6255 	nvpair_t *elem = NULL;
6256 	nvlist_t *nvprops = NULL;
6257 	uint64_t intval = 0;
6258 	char *strval = NULL;
6259 	const char *propname = NULL;
6260 	vdev_prop_t prop;
6261 
6262 	ASSERT(vd != NULL);
6263 	ASSERT(mos != NULL);
6264 
6265 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6266 	    &vdev_guid) != 0)
6267 		return (SET_ERROR(EINVAL));
6268 
6269 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6270 
6271 	if (vd->vdev_root_zap != 0) {
6272 		objid = vd->vdev_root_zap;
6273 	} else if (vd->vdev_top_zap != 0) {
6274 		objid = vd->vdev_top_zap;
6275 	} else if (vd->vdev_leaf_zap != 0) {
6276 		objid = vd->vdev_leaf_zap;
6277 	} else {
6278 		return (SET_ERROR(EINVAL));
6279 	}
6280 	ASSERT(objid != 0);
6281 
6282 	mutex_enter(&spa->spa_props_lock);
6283 
6284 	if (nvprops != NULL) {
6285 		char namebuf[64] = { 0 };
6286 
6287 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6288 			intval = 0;
6289 			strval = NULL;
6290 			propname = nvpair_name(elem);
6291 			prop = vdev_name_to_prop(propname);
6292 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6293 			uint64_t integer_size, num_integers;
6294 
6295 			switch (prop) {
6296 			/* Special Read-only Properties */
6297 			case VDEV_PROP_NAME:
6298 				strval = vdev_name(vd, namebuf,
6299 				    sizeof (namebuf));
6300 				if (strval == NULL)
6301 					continue;
6302 				vdev_prop_add_list(outnvl, propname, strval, 0,
6303 				    ZPROP_SRC_NONE);
6304 				continue;
6305 			case VDEV_PROP_CAPACITY:
6306 				/* percent used */
6307 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6308 				    (vd->vdev_stat.vs_alloc * 100 /
6309 				    vd->vdev_stat.vs_dspace);
6310 				vdev_prop_add_list(outnvl, propname, NULL,
6311 				    intval, ZPROP_SRC_NONE);
6312 				continue;
6313 			case VDEV_PROP_STATE:
6314 				vdev_prop_add_list(outnvl, propname, NULL,
6315 				    vd->vdev_state, ZPROP_SRC_NONE);
6316 				continue;
6317 			case VDEV_PROP_GUID:
6318 				vdev_prop_add_list(outnvl, propname, NULL,
6319 				    vd->vdev_guid, ZPROP_SRC_NONE);
6320 				continue;
6321 			case VDEV_PROP_ASIZE:
6322 				vdev_prop_add_list(outnvl, propname, NULL,
6323 				    vd->vdev_asize, ZPROP_SRC_NONE);
6324 				continue;
6325 			case VDEV_PROP_PSIZE:
6326 				vdev_prop_add_list(outnvl, propname, NULL,
6327 				    vd->vdev_psize, ZPROP_SRC_NONE);
6328 				continue;
6329 			case VDEV_PROP_ASHIFT:
6330 				vdev_prop_add_list(outnvl, propname, NULL,
6331 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6332 				continue;
6333 			case VDEV_PROP_SIZE:
6334 				vdev_prop_add_list(outnvl, propname, NULL,
6335 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6336 				continue;
6337 			case VDEV_PROP_FREE:
6338 				vdev_prop_add_list(outnvl, propname, NULL,
6339 				    vd->vdev_stat.vs_dspace -
6340 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6341 				continue;
6342 			case VDEV_PROP_ALLOCATED:
6343 				vdev_prop_add_list(outnvl, propname, NULL,
6344 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6345 				continue;
6346 			case VDEV_PROP_EXPANDSZ:
6347 				vdev_prop_add_list(outnvl, propname, NULL,
6348 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6349 				continue;
6350 			case VDEV_PROP_FRAGMENTATION:
6351 				vdev_prop_add_list(outnvl, propname, NULL,
6352 				    vd->vdev_stat.vs_fragmentation,
6353 				    ZPROP_SRC_NONE);
6354 				continue;
6355 			case VDEV_PROP_PARITY:
6356 				vdev_prop_add_list(outnvl, propname, NULL,
6357 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6358 				continue;
6359 			case VDEV_PROP_PATH:
6360 				if (vd->vdev_path == NULL)
6361 					continue;
6362 				vdev_prop_add_list(outnvl, propname,
6363 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6364 				continue;
6365 			case VDEV_PROP_DEVID:
6366 				if (vd->vdev_devid == NULL)
6367 					continue;
6368 				vdev_prop_add_list(outnvl, propname,
6369 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6370 				continue;
6371 			case VDEV_PROP_PHYS_PATH:
6372 				if (vd->vdev_physpath == NULL)
6373 					continue;
6374 				vdev_prop_add_list(outnvl, propname,
6375 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6376 				continue;
6377 			case VDEV_PROP_ENC_PATH:
6378 				if (vd->vdev_enc_sysfs_path == NULL)
6379 					continue;
6380 				vdev_prop_add_list(outnvl, propname,
6381 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6382 				continue;
6383 			case VDEV_PROP_FRU:
6384 				if (vd->vdev_fru == NULL)
6385 					continue;
6386 				vdev_prop_add_list(outnvl, propname,
6387 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6388 				continue;
6389 			case VDEV_PROP_PARENT:
6390 				if (vd->vdev_parent != NULL) {
6391 					strval = vdev_name(vd->vdev_parent,
6392 					    namebuf, sizeof (namebuf));
6393 					vdev_prop_add_list(outnvl, propname,
6394 					    strval, 0, ZPROP_SRC_NONE);
6395 				}
6396 				continue;
6397 			case VDEV_PROP_CHILDREN:
6398 				if (vd->vdev_children > 0)
6399 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6400 					    KM_SLEEP);
6401 				for (uint64_t i = 0; i < vd->vdev_children;
6402 				    i++) {
6403 					const char *vname;
6404 
6405 					vname = vdev_name(vd->vdev_child[i],
6406 					    namebuf, sizeof (namebuf));
6407 					if (vname == NULL)
6408 						vname = "(unknown)";
6409 					if (strlen(strval) > 0)
6410 						strlcat(strval, ",",
6411 						    ZAP_MAXVALUELEN);
6412 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6413 				}
6414 				if (strval != NULL) {
6415 					vdev_prop_add_list(outnvl, propname,
6416 					    strval, 0, ZPROP_SRC_NONE);
6417 					kmem_free(strval, ZAP_MAXVALUELEN);
6418 				}
6419 				continue;
6420 			case VDEV_PROP_NUMCHILDREN:
6421 				vdev_prop_add_list(outnvl, propname, NULL,
6422 				    vd->vdev_children, ZPROP_SRC_NONE);
6423 				continue;
6424 			case VDEV_PROP_READ_ERRORS:
6425 				vdev_prop_add_list(outnvl, propname, NULL,
6426 				    vd->vdev_stat.vs_read_errors,
6427 				    ZPROP_SRC_NONE);
6428 				continue;
6429 			case VDEV_PROP_WRITE_ERRORS:
6430 				vdev_prop_add_list(outnvl, propname, NULL,
6431 				    vd->vdev_stat.vs_write_errors,
6432 				    ZPROP_SRC_NONE);
6433 				continue;
6434 			case VDEV_PROP_CHECKSUM_ERRORS:
6435 				vdev_prop_add_list(outnvl, propname, NULL,
6436 				    vd->vdev_stat.vs_checksum_errors,
6437 				    ZPROP_SRC_NONE);
6438 				continue;
6439 			case VDEV_PROP_INITIALIZE_ERRORS:
6440 				vdev_prop_add_list(outnvl, propname, NULL,
6441 				    vd->vdev_stat.vs_initialize_errors,
6442 				    ZPROP_SRC_NONE);
6443 				continue;
6444 			case VDEV_PROP_TRIM_ERRORS:
6445 				vdev_prop_add_list(outnvl, propname, NULL,
6446 				    vd->vdev_stat.vs_trim_errors,
6447 				    ZPROP_SRC_NONE);
6448 				continue;
6449 			case VDEV_PROP_SLOW_IOS:
6450 				vdev_prop_add_list(outnvl, propname, NULL,
6451 				    vd->vdev_stat.vs_slow_ios,
6452 				    ZPROP_SRC_NONE);
6453 				continue;
6454 			case VDEV_PROP_OPS_NULL:
6455 				vdev_prop_add_list(outnvl, propname, NULL,
6456 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6457 				    ZPROP_SRC_NONE);
6458 				continue;
6459 			case VDEV_PROP_OPS_READ:
6460 				vdev_prop_add_list(outnvl, propname, NULL,
6461 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6462 				    ZPROP_SRC_NONE);
6463 				continue;
6464 			case VDEV_PROP_OPS_WRITE:
6465 				vdev_prop_add_list(outnvl, propname, NULL,
6466 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6467 				    ZPROP_SRC_NONE);
6468 				continue;
6469 			case VDEV_PROP_OPS_FREE:
6470 				vdev_prop_add_list(outnvl, propname, NULL,
6471 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6472 				    ZPROP_SRC_NONE);
6473 				continue;
6474 			case VDEV_PROP_OPS_CLAIM:
6475 				vdev_prop_add_list(outnvl, propname, NULL,
6476 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6477 				    ZPROP_SRC_NONE);
6478 				continue;
6479 			case VDEV_PROP_OPS_TRIM:
6480 				/*
6481 				 * TRIM ops and bytes are reported to user
6482 				 * space as ZIO_TYPE_FLUSH.  This is done to
6483 				 * preserve the vdev_stat_t structure layout
6484 				 * for user space.
6485 				 */
6486 				vdev_prop_add_list(outnvl, propname, NULL,
6487 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6488 				    ZPROP_SRC_NONE);
6489 				continue;
6490 			case VDEV_PROP_BYTES_NULL:
6491 				vdev_prop_add_list(outnvl, propname, NULL,
6492 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6493 				    ZPROP_SRC_NONE);
6494 				continue;
6495 			case VDEV_PROP_BYTES_READ:
6496 				vdev_prop_add_list(outnvl, propname, NULL,
6497 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6498 				    ZPROP_SRC_NONE);
6499 				continue;
6500 			case VDEV_PROP_BYTES_WRITE:
6501 				vdev_prop_add_list(outnvl, propname, NULL,
6502 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6503 				    ZPROP_SRC_NONE);
6504 				continue;
6505 			case VDEV_PROP_BYTES_FREE:
6506 				vdev_prop_add_list(outnvl, propname, NULL,
6507 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6508 				    ZPROP_SRC_NONE);
6509 				continue;
6510 			case VDEV_PROP_BYTES_CLAIM:
6511 				vdev_prop_add_list(outnvl, propname, NULL,
6512 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6513 				    ZPROP_SRC_NONE);
6514 				continue;
6515 			case VDEV_PROP_BYTES_TRIM:
6516 				/*
6517 				 * TRIM ops and bytes are reported to user
6518 				 * space as ZIO_TYPE_FLUSH.  This is done to
6519 				 * preserve the vdev_stat_t structure layout
6520 				 * for user space.
6521 				 */
6522 				vdev_prop_add_list(outnvl, propname, NULL,
6523 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6524 				    ZPROP_SRC_NONE);
6525 				continue;
6526 			case VDEV_PROP_REMOVING:
6527 				vdev_prop_add_list(outnvl, propname, NULL,
6528 				    vd->vdev_removing, ZPROP_SRC_NONE);
6529 				continue;
6530 			case VDEV_PROP_RAIDZ_EXPANDING:
6531 				/* Only expose this for raidz */
6532 				if (vd->vdev_ops == &vdev_raidz_ops) {
6533 					vdev_prop_add_list(outnvl, propname,
6534 					    NULL, vd->vdev_rz_expanding,
6535 					    ZPROP_SRC_NONE);
6536 				}
6537 				continue;
6538 			case VDEV_PROP_SIT_OUT:
6539 				/* Only expose this for a draid or raidz leaf */
6540 				if (vd->vdev_ops->vdev_op_leaf &&
6541 				    vd->vdev_top != NULL &&
6542 				    (vd->vdev_top->vdev_ops ==
6543 				    &vdev_raidz_ops ||
6544 				    vd->vdev_top->vdev_ops ==
6545 				    &vdev_draid_ops)) {
6546 					vdev_prop_add_list(outnvl, propname,
6547 					    NULL, vdev_sit_out_reads(vd, 0),
6548 					    ZPROP_SRC_NONE);
6549 				}
6550 				continue;
6551 			case VDEV_PROP_TRIM_SUPPORT:
6552 				/* only valid for leaf vdevs */
6553 				if (vd->vdev_ops->vdev_op_leaf) {
6554 					vdev_prop_add_list(outnvl, propname,
6555 					    NULL, vd->vdev_has_trim,
6556 					    ZPROP_SRC_NONE);
6557 				}
6558 				continue;
6559 			/* Numeric Properites */
6560 			case VDEV_PROP_ALLOCATING:
6561 				/* Leaf vdevs cannot have this property */
6562 				if (vd->vdev_mg == NULL &&
6563 				    vd->vdev_top != NULL) {
6564 					src = ZPROP_SRC_NONE;
6565 					intval = ZPROP_BOOLEAN_NA;
6566 				} else {
6567 					err = vdev_prop_get_int(vd, prop,
6568 					    &intval);
6569 					if (err && err != ENOENT)
6570 						break;
6571 
6572 					if (intval ==
6573 					    vdev_prop_default_numeric(prop))
6574 						src = ZPROP_SRC_DEFAULT;
6575 					else
6576 						src = ZPROP_SRC_LOCAL;
6577 				}
6578 
6579 				vdev_prop_add_list(outnvl, propname, NULL,
6580 				    intval, src);
6581 				break;
6582 			case VDEV_PROP_FAILFAST:
6583 				src = ZPROP_SRC_LOCAL;
6584 				strval = NULL;
6585 
6586 				err = zap_lookup(mos, objid, nvpair_name(elem),
6587 				    sizeof (uint64_t), 1, &intval);
6588 				if (err == ENOENT) {
6589 					intval = vdev_prop_default_numeric(
6590 					    prop);
6591 					err = 0;
6592 				} else if (err) {
6593 					break;
6594 				}
6595 				if (intval == vdev_prop_default_numeric(prop))
6596 					src = ZPROP_SRC_DEFAULT;
6597 
6598 				vdev_prop_add_list(outnvl, propname, strval,
6599 				    intval, src);
6600 				break;
6601 			case VDEV_PROP_AUTOSIT:
6602 				/* Only raidz vdevs cannot have this property */
6603 				if (vd->vdev_ops != &vdev_raidz_ops &&
6604 				    vd->vdev_ops != &vdev_draid_ops) {
6605 					src = ZPROP_SRC_NONE;
6606 					intval = ZPROP_BOOLEAN_NA;
6607 				} else {
6608 					err = vdev_prop_get_int(vd, prop,
6609 					    &intval);
6610 					if (err && err != ENOENT)
6611 						break;
6612 
6613 					if (intval ==
6614 					    vdev_prop_default_numeric(prop))
6615 						src = ZPROP_SRC_DEFAULT;
6616 					else
6617 						src = ZPROP_SRC_LOCAL;
6618 				}
6619 
6620 				vdev_prop_add_list(outnvl, propname, NULL,
6621 				    intval, src);
6622 				break;
6623 
6624 			case VDEV_PROP_CHECKSUM_N:
6625 			case VDEV_PROP_CHECKSUM_T:
6626 			case VDEV_PROP_IO_N:
6627 			case VDEV_PROP_IO_T:
6628 			case VDEV_PROP_SLOW_IO_N:
6629 			case VDEV_PROP_SLOW_IO_T:
6630 				err = vdev_prop_get_int(vd, prop, &intval);
6631 				if (err && err != ENOENT)
6632 					break;
6633 
6634 				if (intval == vdev_prop_default_numeric(prop))
6635 					src = ZPROP_SRC_DEFAULT;
6636 				else
6637 					src = ZPROP_SRC_LOCAL;
6638 
6639 				vdev_prop_add_list(outnvl, propname, NULL,
6640 				    intval, src);
6641 				break;
6642 			/* Text Properties */
6643 			case VDEV_PROP_COMMENT:
6644 				/* Exists in the ZAP below */
6645 				/* FALLTHRU */
6646 			case VDEV_PROP_USERPROP:
6647 				/* User Properites */
6648 				src = ZPROP_SRC_LOCAL;
6649 
6650 				err = zap_length(mos, objid, nvpair_name(elem),
6651 				    &integer_size, &num_integers);
6652 				if (err)
6653 					break;
6654 
6655 				switch (integer_size) {
6656 				case 8:
6657 					/* User properties cannot be integers */
6658 					err = EINVAL;
6659 					break;
6660 				case 1:
6661 					/* string property */
6662 					strval = kmem_alloc(num_integers,
6663 					    KM_SLEEP);
6664 					err = zap_lookup(mos, objid,
6665 					    nvpair_name(elem), 1,
6666 					    num_integers, strval);
6667 					if (err) {
6668 						kmem_free(strval,
6669 						    num_integers);
6670 						break;
6671 					}
6672 					vdev_prop_add_list(outnvl, propname,
6673 					    strval, 0, src);
6674 					kmem_free(strval, num_integers);
6675 					break;
6676 				}
6677 				break;
6678 			default:
6679 				err = ENOENT;
6680 				break;
6681 			}
6682 			if (err)
6683 				break;
6684 		}
6685 	} else {
6686 		/*
6687 		 * Get all properties from the MOS vdev property object.
6688 		 */
6689 		zap_cursor_t zc;
6690 		zap_attribute_t *za = zap_attribute_alloc();
6691 		for (zap_cursor_init(&zc, mos, objid);
6692 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6693 		    zap_cursor_advance(&zc)) {
6694 			intval = 0;
6695 			strval = NULL;
6696 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6697 			propname = za->za_name;
6698 
6699 			switch (za->za_integer_length) {
6700 			case 8:
6701 				/* We do not allow integer user properties */
6702 				/* This is likely an internal value */
6703 				break;
6704 			case 1:
6705 				/* string property */
6706 				strval = kmem_alloc(za->za_num_integers,
6707 				    KM_SLEEP);
6708 				err = zap_lookup(mos, objid, za->za_name, 1,
6709 				    za->za_num_integers, strval);
6710 				if (err) {
6711 					kmem_free(strval, za->za_num_integers);
6712 					break;
6713 				}
6714 				vdev_prop_add_list(outnvl, propname, strval, 0,
6715 				    src);
6716 				kmem_free(strval, za->za_num_integers);
6717 				break;
6718 
6719 			default:
6720 				break;
6721 			}
6722 		}
6723 		zap_cursor_fini(&zc);
6724 		zap_attribute_free(za);
6725 	}
6726 
6727 	mutex_exit(&spa->spa_props_lock);
6728 	if (err && err != ENOENT) {
6729 		return (err);
6730 	}
6731 
6732 	return (0);
6733 }
6734 
6735 EXPORT_SYMBOL(vdev_fault);
6736 EXPORT_SYMBOL(vdev_degrade);
6737 EXPORT_SYMBOL(vdev_online);
6738 EXPORT_SYMBOL(vdev_offline);
6739 EXPORT_SYMBOL(vdev_clear);
6740 
6741 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6742 	"Target number of metaslabs per top-level vdev");
6743 
6744 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6745 	"Default lower limit for metaslab size");
6746 
6747 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6748 	"Default upper limit for metaslab size");
6749 
6750 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6751 	"Minimum number of metaslabs per top-level vdev");
6752 
6753 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6754 	"Practical upper limit of total metaslabs per top-level vdev");
6755 
6756 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6757 	"Rate limit slow IO (delay) events to this many per second");
6758 
6759 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6760 	"Rate limit hung IO (deadman) events to this many per second");
6761 
6762 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6763 	"Rate Direct I/O write verify events to this many per second");
6764 
6765 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6766 	"Direct I/O writes will perform for checksum verification before "
6767 	"commiting write");
6768 
6769 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6770 	"Rate limit checksum events to this many checksum errors per second "
6771 	"(do not set below ZED threshold).");
6772 
6773 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6774 	"Ignore errors during resilver/scrub");
6775 
6776 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6777 	"Bypass vdev_validate()");
6778 
6779 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6780 	"Disable cache flushes");
6781 
6782 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6783 	"Minimum number of metaslabs required to dedicate one for log blocks");
6784 
6785 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6786 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6787 	"Minimum ashift used when creating new top-level vdevs");
6788 
6789 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6790 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6791 	"Maximum ashift used when optimizing for logical -> physical sector "
6792 	"size on new top-level vdevs");
6793 
6794 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6795 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6796 		"RAIDZ implementation");
6797