xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision f6559a18843abdfa5849b9e74f239f9bd15796d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2020 Joyent, Inc.
27  * Copyright 2020 Tintri by DDN, Inc. All rights reserved.
28  * Copyright 2015-2024 RackTop Systems, Inc.
29  */
30 
31 /* Portions Copyright 2007 Jeremy Teo */
32 /* Portions Copyright 2010 Robert Milkowski */
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/time.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/resource.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/stat.h>
45 #include <sys/kmem.h>
46 #include <sys/taskq.h>
47 #include <sys/uio.h>
48 #include <sys/vmsystm.h>
49 #include <sys/atomic.h>
50 #include <sys/vm.h>
51 #include <vm/seg_vn.h>
52 #include <vm/pvn.h>
53 #include <vm/as.h>
54 #include <vm/kpm.h>
55 #include <vm/seg_kpm.h>
56 #include <sys/mman.h>
57 #include <sys/pathname.h>
58 #include <sys/cmn_err.h>
59 #include <sys/errno.h>
60 #include <sys/unistd.h>
61 #include <sys/zfs_dir.h>
62 #include <sys/zfs_acl.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/fs/zfs.h>
65 #include <sys/dmu.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa.h>
68 #include <sys/txg.h>
69 #include <sys/dbuf.h>
70 #include <sys/zap.h>
71 #include <sys/sa.h>
72 #include <sys/dirent.h>
73 #include <sys/policy.h>
74 #include <sys/sunddi.h>
75 #include <sys/filio.h>
76 #include <sys/sid.h>
77 #include "fs/fs_subr.h"
78 #include <sys/zfs_ctldir.h>
79 #include <sys/zfs_fuid.h>
80 #include <sys/zfs_sa.h>
81 #include <sys/dnlc.h>
82 #include <sys/zfs_rlock.h>
83 #include <sys/extdirent.h>
84 #include <sys/kidmap.h>
85 #include <sys/cred.h>
86 #include <sys/attr.h>
87 #include <sys/zil.h>
88 #include <sys/sa_impl.h>
89 #include <sys/zfs_project.h>
90 
91 /*
92  * Programming rules.
93  *
94  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
95  * properly lock its in-core state, create a DMU transaction, do the work,
96  * record this work in the intent log (ZIL), commit the DMU transaction,
97  * and wait for the intent log to commit if it is a synchronous operation.
98  * Moreover, the vnode ops must work in both normal and log replay context.
99  * The ordering of events is important to avoid deadlocks and references
100  * to freed memory.  The example below illustrates the following Big Rules:
101  *
102  *  (1)	A check must be made in each zfs thread for a mounted file system.
103  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
104  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
105  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
106  *	can return EIO from the calling function.
107  *
108  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
109  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
110  *	First, if it's the last reference, the vnode/znode
111  *	can be freed, so the zp may point to freed memory.  Second, the last
112  *	reference will call zfs_zinactive(), which may induce a lot of work --
113  *	pushing cached pages (which acquires range locks) and syncing out
114  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
115  *	which could deadlock the system if you were already holding one.
116  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
117  *
118  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
119  *	as they can span dmu_tx_assign() calls.
120  *
121  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
122  *      dmu_tx_assign().  This is critical because we don't want to block
123  *      while holding locks.
124  *
125  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
126  *	reduces lock contention and CPU usage when we must wait (note that if
127  *	throughput is constrained by the storage, nearly every transaction
128  *	must wait).
129  *
130  *      Note, in particular, that if a lock is sometimes acquired before
131  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
132  *      to use a non-blocking assign can deadlock the system.  The scenario:
133  *
134  *	Thread A has grabbed a lock before calling dmu_tx_assign().
135  *	Thread B is in an already-assigned tx, and blocks for this lock.
136  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
137  *	forever, because the previous txg can't quiesce until B's tx commits.
138  *
139  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
140  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
141  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
142  *	to indicate that this operation has already called dmu_tx_wait().
143  *	This will ensure that we don't retry forever, waiting a short bit
144  *	each time.
145  *
146  *  (5)	If the operation succeeded, generate the intent log entry for it
147  *	before dropping locks.  This ensures that the ordering of events
148  *	in the intent log matches the order in which they actually occurred.
149  *	During ZIL replay the zfs_log_* functions will update the sequence
150  *	number to indicate the zil transaction has replayed.
151  *
152  *  (6)	At the end of each vnode op, the DMU tx must always commit,
153  *	regardless of whether there were any errors.
154  *
155  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
156  *	to ensure that synchronous semantics are provided when necessary.
157  *
158  * In general, this is how things should be ordered in each vnode op:
159  *
160  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
161  * top:
162  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
163  *	rw_enter(...);			// grab any other locks you need
164  *	tx = dmu_tx_create(...);	// get DMU tx
165  *	dmu_tx_hold_*();		// hold each object you might modify
166  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
167  *	if (error) {
168  *		rw_exit(...);		// drop locks
169  *		zfs_dirent_unlock(dl);	// unlock directory entry
170  *		VN_RELE(...);		// release held vnodes
171  *		if (error == ERESTART) {
172  *			waited = B_TRUE;
173  *			dmu_tx_wait(tx);
174  *			dmu_tx_abort(tx);
175  *			goto top;
176  *		}
177  *		dmu_tx_abort(tx);	// abort DMU tx
178  *		ZFS_EXIT(zfsvfs);	// finished in zfs
179  *		return (error);		// really out of space
180  *	}
181  *	error = do_real_work();		// do whatever this VOP does
182  *	if (error == 0)
183  *		zfs_log_*(...);		// on success, make ZIL entry
184  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
185  *	rw_exit(...);			// drop locks
186  *	zfs_dirent_unlock(dl);		// unlock directory entry
187  *	VN_RELE(...);			// release held vnodes
188  *	zil_commit(zilog, foid);	// synchronous when necessary
189  *	ZFS_EXIT(zfsvfs);		// finished in zfs
190  *	return (error);			// done, report error
191  */
192 
193 /* ARGSUSED */
194 static int
zfs_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)195 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
196 {
197 	znode_t	*zp = VTOZ(*vpp);
198 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
199 
200 	ZFS_ENTER(zfsvfs);
201 	ZFS_VERIFY_ZP(zp);
202 
203 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
204 	    ((flag & FAPPEND) == 0)) {
205 		ZFS_EXIT(zfsvfs);
206 		return (SET_ERROR(EPERM));
207 	}
208 
209 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
210 	    ZTOV(zp)->v_type == VREG &&
211 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
212 		if (fs_vscan(*vpp, cr, 0) != 0) {
213 			ZFS_EXIT(zfsvfs);
214 			return (SET_ERROR(EACCES));
215 		}
216 	}
217 
218 	/*
219 	 * Keep a count of the synchronous opens in the znode. On first
220 	 * synchronous open we must convert all previous async transactions
221 	 * into sync to keep correct ordering.
222 	 */
223 	if (flag & (FSYNC | FDSYNC)) {
224 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
225 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
226 	}
227 
228 	ZFS_EXIT(zfsvfs);
229 	return (0);
230 }
231 
232 /* ARGSUSED */
233 static int
zfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)234 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
235     caller_context_t *ct)
236 {
237 	znode_t	*zp = VTOZ(vp);
238 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
239 
240 	/*
241 	 * Clean up any locks held by this process on the vp.
242 	 */
243 	cleanlocks(vp, ddi_get_pid(), 0);
244 	cleanshares(vp, ddi_get_pid());
245 
246 	ZFS_ENTER(zfsvfs);
247 	ZFS_VERIFY_ZP(zp);
248 
249 	/* Decrement the synchronous opens in the znode */
250 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
251 		atomic_dec_32(&zp->z_sync_cnt);
252 
253 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
254 	    ZTOV(zp)->v_type == VREG &&
255 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
256 		VERIFY(fs_vscan(vp, cr, 1) == 0);
257 
258 	ZFS_EXIT(zfsvfs);
259 	return (0);
260 }
261 
262 /*
263  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
264  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
265  */
266 static int
zfs_holey(vnode_t * vp,int cmd,offset_t * off)267 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
268 {
269 	znode_t	*zp = VTOZ(vp);
270 	uint64_t noff = (uint64_t)*off; /* new offset */
271 	uint64_t file_sz;
272 	int error;
273 	boolean_t hole;
274 
275 	file_sz = zp->z_size;
276 	if (noff >= file_sz)  {
277 		return (SET_ERROR(ENXIO));
278 	}
279 
280 	if (cmd == _FIO_SEEK_HOLE)
281 		hole = B_TRUE;
282 	else
283 		hole = B_FALSE;
284 
285 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
286 
287 	if (error == ESRCH)
288 		return (SET_ERROR(ENXIO));
289 
290 	/*
291 	 * We could find a hole that begins after the logical end-of-file,
292 	 * because dmu_offset_next() only works on whole blocks.  If the
293 	 * EOF falls mid-block, then indicate that the "virtual hole"
294 	 * at the end of the file begins at the logical EOF, rather than
295 	 * at the end of the last block.
296 	 */
297 	if (noff > file_sz) {
298 		ASSERT(hole);
299 		noff = file_sz;
300 	}
301 
302 	if (noff < *off)
303 		return (error);
304 	*off = noff;
305 	return (error);
306 }
307 
308 static int
zfs_ioctl_getxattr(vnode_t * vp,intptr_t data,int flag,cred_t * cr,caller_context_t * ct)309 zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr,
310     caller_context_t *ct)
311 {
312 	zfsxattr_t fsx = { 0 };
313 	znode_t *zp = VTOZ(vp);
314 
315 	if (zp->z_pflags & ZFS_PROJINHERIT)
316 		fsx.fsx_xflags = ZFS_PROJINHERIT_FL;
317 	if (zp->z_pflags & ZFS_PROJID)
318 		fsx.fsx_projid = zp->z_projid;
319 	if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag))
320 		return (SET_ERROR(EFAULT));
321 
322 	return (0);
323 }
324 
325 static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *);
326 
327 static int
zfs_ioctl_setxattr(vnode_t * vp,intptr_t data,int flags,cred_t * cr,caller_context_t * ct)328 zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr,
329     caller_context_t *ct)
330 {
331 	znode_t *zp = VTOZ(vp);
332 	zfsxattr_t fsx;
333 	xvattr_t xva;
334 	xoptattr_t *xoap;
335 	int err;
336 
337 	if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags))
338 		return (SET_ERROR(EFAULT));
339 
340 	if (!zpl_is_valid_projid(fsx.fsx_projid))
341 		return (SET_ERROR(EINVAL));
342 
343 	if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL)
344 		return (SET_ERROR(EOPNOTSUPP));
345 
346 	xva_init(&xva);
347 	xoap = xva_getxoptattr(&xva);
348 
349 	XVA_SET_REQ(&xva, XAT_PROJINHERIT);
350 	if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL)
351 		xoap->xoa_projinherit = B_TRUE;
352 
353 	XVA_SET_REQ(&xva, XAT_PROJID);
354 	xoap->xoa_projid = fsx.fsx_projid;
355 
356 	return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct));
357 }
358 
359 /* ARGSUSED */
360 static int
zfs_ioctl(vnode_t * vp,int com,intptr_t data,int flag,cred_t * cred,int * rvalp,caller_context_t * ct)361 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
362     int *rvalp, caller_context_t *ct)
363 {
364 	offset_t off;
365 	offset_t ndata;
366 	dmu_object_info_t doi;
367 	int error;
368 	zfsvfs_t *zfsvfs;
369 	znode_t *zp;
370 
371 	switch (com) {
372 	case _FIOFFS:
373 	{
374 		return (zfs_sync(vp->v_vfsp, 0, cred));
375 
376 		/*
377 		 * The following two ioctls are used by bfu.  Faking out,
378 		 * necessary to avoid bfu errors.
379 		 */
380 	}
381 	case _FIOGDIO:
382 	case _FIOSDIO:
383 	{
384 		return (0);
385 	}
386 
387 	case _FIODIRECTIO:
388 	{
389 		/*
390 		 * ZFS inherently provides the basic semantics for directio.
391 		 * This is the summary from the ZFS on Linux support for
392 		 * O_DIRECT, which is the common form of directio, and required
393 		 * no changes to ZFS.
394 		 *
395 		 * 1. Minimize cache effects of the I/O.
396 		 *
397 		 *    By design the ARC is already scan-resistant, which helps
398 		 *    mitigate the need for special O_DIRECT handling.
399 		 *
400 		 * 2. O_DIRECT _MAY_ impose restrictions on IO alignment and
401 		 *    length.
402 		 *
403 		 *    No additional alignment or length restrictions are
404 		 *    imposed by ZFS.
405 		 *
406 		 * 3. O_DIRECT _MAY_ perform unbuffered IO operations directly
407 		 *    between user memory and block device.
408 		 *
409 		 *    No unbuffered IO operations are currently supported. In
410 		 *    order to support features such as compression, encryption,
411 		 *    and checksumming a copy must be made to transform the
412 		 *    data.
413 		 *
414 		 * 4. O_DIRECT _MAY_ imply O_DSYNC (XFS).
415 		 *
416 		 *    O_DIRECT does not imply O_DSYNC for ZFS.
417 		 *
418 		 * 5. O_DIRECT _MAY_ disable file locking that serializes IO
419 		 *    operations.
420 		 *
421 		 *    All I/O in ZFS is locked for correctness and this locking
422 		 *    is not disabled by O_DIRECT.
423 		 */
424 		return (0);
425 	}
426 
427 	case _FIO_SEEK_DATA:
428 	case _FIO_SEEK_HOLE:
429 	{
430 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
431 			return (SET_ERROR(EFAULT));
432 
433 		zp = VTOZ(vp);
434 		zfsvfs = zp->z_zfsvfs;
435 		ZFS_ENTER(zfsvfs);
436 		ZFS_VERIFY_ZP(zp);
437 
438 		/* offset parameter is in/out */
439 		error = zfs_holey(vp, com, &off);
440 		ZFS_EXIT(zfsvfs);
441 		if (error)
442 			return (error);
443 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
444 			return (SET_ERROR(EFAULT));
445 		return (0);
446 	}
447 	case _FIO_COUNT_FILLED:
448 	{
449 		/*
450 		 * _FIO_COUNT_FILLED adds a new ioctl command which
451 		 * exposes the number of filled blocks in a
452 		 * ZFS object.
453 		 */
454 		zp = VTOZ(vp);
455 		zfsvfs = zp->z_zfsvfs;
456 		ZFS_ENTER(zfsvfs);
457 		ZFS_VERIFY_ZP(zp);
458 
459 		/*
460 		 * Wait for all dirty blocks for this object
461 		 * to get synced out to disk, and the DMU info
462 		 * updated.
463 		 */
464 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
465 		if (error) {
466 			ZFS_EXIT(zfsvfs);
467 			return (error);
468 		}
469 
470 		/*
471 		 * Retrieve fill count from DMU object.
472 		 */
473 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
474 		if (error) {
475 			ZFS_EXIT(zfsvfs);
476 			return (error);
477 		}
478 
479 		ndata = doi.doi_fill_count;
480 
481 		ZFS_EXIT(zfsvfs);
482 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
483 			return (SET_ERROR(EFAULT));
484 		return (0);
485 	}
486 	case ZFS_IOC_FSGETXATTR:
487 		return (zfs_ioctl_getxattr(vp, data, flag, cred, ct));
488 	case ZFS_IOC_FSSETXATTR:
489 		return (zfs_ioctl_setxattr(vp, data, flag, cred, ct));
490 	}
491 	return (SET_ERROR(ENOTTY));
492 }
493 
494 /*
495  * Utility functions to map and unmap a single physical page.  These
496  * are used to manage the mappable copies of ZFS file data, and therefore
497  * do not update ref/mod bits.
498  */
499 caddr_t
zfs_map_page(page_t * pp,enum seg_rw rw)500 zfs_map_page(page_t *pp, enum seg_rw rw)
501 {
502 	if (kpm_enable)
503 		return (hat_kpm_mapin(pp, 0));
504 	ASSERT(rw == S_READ || rw == S_WRITE);
505 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
506 	    (caddr_t)-1));
507 }
508 
509 void
zfs_unmap_page(page_t * pp,caddr_t addr)510 zfs_unmap_page(page_t *pp, caddr_t addr)
511 {
512 	if (kpm_enable) {
513 		hat_kpm_mapout(pp, 0, addr);
514 	} else {
515 		ppmapout(addr);
516 	}
517 }
518 
519 /*
520  * When a file is memory mapped, we must keep the IO data synchronized
521  * between the DMU cache and the memory mapped pages.  What this means:
522  *
523  * On Write:	If we find a memory mapped page, we write to *both*
524  *		the page and the dmu buffer.
525  */
526 static void
update_pages(vnode_t * vp,int64_t start,int len,objset_t * os,uint64_t oid)527 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
528 {
529 	int64_t	off;
530 
531 	off = start & PAGEOFFSET;
532 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
533 		page_t *pp;
534 		uint64_t nbytes = MIN(PAGESIZE - off, len);
535 
536 		if (pp = page_lookup(vp, start, SE_SHARED)) {
537 			caddr_t va;
538 
539 			va = zfs_map_page(pp, S_WRITE);
540 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
541 			    DMU_READ_PREFETCH);
542 			zfs_unmap_page(pp, va);
543 			page_unlock(pp);
544 		}
545 		len -= nbytes;
546 		off = 0;
547 	}
548 }
549 
550 /*
551  * When a file is memory mapped, we must keep the IO data synchronized
552  * between the DMU cache and the memory mapped pages.  What this means:
553  *
554  * On Read:	We "read" preferentially from memory mapped pages,
555  *		else we default from the dmu buffer.
556  *
557  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
558  *	 the file is memory mapped.
559  */
560 static int
mappedread(vnode_t * vp,int nbytes,uio_t * uio)561 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
562 {
563 	znode_t *zp = VTOZ(vp);
564 	int64_t	start, off;
565 	int len = nbytes;
566 	int error = 0;
567 
568 	start = uio->uio_loffset;
569 	off = start & PAGEOFFSET;
570 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
571 		page_t *pp;
572 		uint64_t bytes = MIN(PAGESIZE - off, len);
573 
574 		if (pp = page_lookup(vp, start, SE_SHARED)) {
575 			caddr_t va;
576 
577 			va = zfs_map_page(pp, S_READ);
578 			error = uiomove(va + off, bytes, UIO_READ, uio);
579 			zfs_unmap_page(pp, va);
580 			page_unlock(pp);
581 		} else {
582 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
583 			    uio, bytes);
584 		}
585 		len -= bytes;
586 		off = 0;
587 		if (error)
588 			break;
589 	}
590 	return (error);
591 }
592 
593 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
594 
595 /*
596  * Read bytes from specified file into supplied buffer.
597  *
598  *	IN:	vp	- vnode of file to be read from.
599  *		uio	- structure supplying read location, range info,
600  *			  and return buffer.
601  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
602  *		cr	- credentials of caller.
603  *		ct	- caller context
604  *
605  *	OUT:	uio	- updated offset and range, buffer filled.
606  *
607  *	RETURN:	0 on success, error code on failure.
608  *
609  * Side Effects:
610  *	vp - atime updated if byte count > 0
611  */
612 /* ARGSUSED */
613 static int
zfs_read(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)614 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
615 {
616 	znode_t		*zp = VTOZ(vp);
617 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
618 	ssize_t		n, nbytes;
619 	int		error = 0;
620 	boolean_t	frsync = B_FALSE;
621 	xuio_t		*xuio = NULL;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
627 		ZFS_EXIT(zfsvfs);
628 		return (SET_ERROR(EACCES));
629 	}
630 
631 	/*
632 	 * Validate file offset
633 	 */
634 	if (uio->uio_loffset < (offset_t)0) {
635 		ZFS_EXIT(zfsvfs);
636 		return (SET_ERROR(EINVAL));
637 	}
638 
639 	/*
640 	 * Fasttrack empty reads
641 	 */
642 	if (uio->uio_resid == 0) {
643 		ZFS_EXIT(zfsvfs);
644 		return (0);
645 	}
646 
647 	/*
648 	 * Check for mandatory locks
649 	 */
650 	if (MANDMODE(zp->z_mode)) {
651 		if (error = chklock(vp, FREAD,
652 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
653 			ZFS_EXIT(zfsvfs);
654 			return (error);
655 		}
656 	}
657 
658 #ifdef FRSYNC
659 	/*
660 	 * If we're in FRSYNC mode, sync out this znode before reading it.
661 	 * Only do this for non-snapshots.
662 	 *
663 	 * Some platforms do not support FRSYNC and instead map it
664 	 * to FSYNC, which results in unnecessary calls to zil_commit. We
665 	 * only honor FRSYNC requests on platforms which support it.
666 	 */
667 	frsync = !!(ioflag & FRSYNC);
668 #endif
669 
670 	if (zfsvfs->z_log &&
671 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
672 		zil_commit(zfsvfs->z_log, zp->z_id);
673 
674 	/*
675 	 * Lock the range against changes.
676 	 */
677 	locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
678 	    uio->uio_loffset, uio->uio_resid, RL_READER);
679 
680 	/*
681 	 * If we are reading past end-of-file we can skip
682 	 * to the end; but we might still need to set atime.
683 	 */
684 	if (uio->uio_loffset >= zp->z_size) {
685 		error = 0;
686 		goto out;
687 	}
688 
689 	ASSERT(uio->uio_loffset < zp->z_size);
690 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
691 
692 	if ((uio->uio_extflg == UIO_XUIO) &&
693 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
694 		int nblk;
695 		int blksz = zp->z_blksz;
696 		uint64_t offset = uio->uio_loffset;
697 
698 		xuio = (xuio_t *)uio;
699 		if ((ISP2(blksz))) {
700 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
701 			    blksz)) / blksz;
702 		} else {
703 			ASSERT(offset + n <= blksz);
704 			nblk = 1;
705 		}
706 		(void) dmu_xuio_init(xuio, nblk);
707 
708 		if (vn_has_cached_data(vp)) {
709 			/*
710 			 * For simplicity, we always allocate a full buffer
711 			 * even if we only expect to read a portion of a block.
712 			 */
713 			while (--nblk >= 0) {
714 				(void) dmu_xuio_add(xuio,
715 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
716 				    blksz), 0, blksz);
717 			}
718 		}
719 	}
720 
721 	while (n > 0) {
722 		nbytes = MIN(n, zfs_read_chunk_size -
723 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
724 
725 		if (vn_has_cached_data(vp)) {
726 			error = mappedread(vp, nbytes, uio);
727 		} else {
728 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
729 			    uio, nbytes);
730 		}
731 		if (error) {
732 			/* convert checksum errors into IO errors */
733 			if (error == ECKSUM)
734 				error = SET_ERROR(EIO);
735 			break;
736 		}
737 
738 		n -= nbytes;
739 	}
740 out:
741 	rangelock_exit(lr);
742 
743 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
744 	ZFS_EXIT(zfsvfs);
745 	return (error);
746 }
747 
748 static void
zfs_write_clear_setid_bits_if_necessary(zfsvfs_t * zfsvfs,znode_t * zp,cred_t * cr,boolean_t * did_check,dmu_tx_t * tx)749 zfs_write_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp,
750     cred_t *cr, boolean_t *did_check, dmu_tx_t *tx)
751 {
752 	ASSERT(did_check != NULL);
753 	ASSERT(tx != NULL);
754 
755 	if (*did_check)
756 		return;
757 
758 	zilog_t *zilog = zfsvfs->z_log;
759 
760 	/*
761 	 * Clear Set-UID/Set-GID bits on successful write if not
762 	 * privileged and at least one of the execute bits is set.
763 	 *
764 	 * It would be nice to do this after all writes have
765 	 * been done, but that would still expose the ISUID/ISGID
766 	 * to another app after the partial write is committed.
767 	 *
768 	 * Note: we don't call zfs_fuid_map_id() here because
769 	 * user 0 is not an ephemeral uid.
770 	 */
771 	rw_enter(&zp->z_acl_lock, RW_READER);
772 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
773 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
774 	    secpolicy_vnode_setid_retain(cr,
775 	    ((zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0)) != 0) {
776 		/*
777 		 * We need to clear the SUID|SGID bits, but
778 		 * become RW_WRITER before updating z_mode.
779 		 */
780 		rw_exit(&zp->z_acl_lock);
781 		rw_enter(&zp->z_acl_lock, RW_WRITER);
782 
783 		/*
784 		 * If another writer did this, skip it.
785 		 */
786 		if ((zp->z_mode & (S_ISUID | S_ISGID)) != 0) {
787 			uint64_t newmode;
788 			vattr_t va;
789 
790 			zp->z_mode &= ~(S_ISUID | S_ISGID);
791 			newmode = zp->z_mode;
792 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
793 			    (void *)&newmode, sizeof (uint64_t), tx);
794 
795 			/*
796 			 * Make sure SUID/SGID bits will be removed
797 			 * when we replay the log.
798 			 */
799 			bzero(&va, sizeof (va));
800 			va.va_mask = AT_MODE;
801 			va.va_nodeid = zp->z_id;
802 			va.va_mode = newmode;
803 			zfs_log_setattr(zilog, tx, TX_SETATTR,
804 			    zp, &va, AT_MODE, NULL);
805 		}
806 	}
807 	rw_exit(&zp->z_acl_lock);
808 
809 	*did_check = B_TRUE;
810 }
811 
812 /*
813  * Write the bytes to a file.
814  *
815  *	IN:	vp	- vnode of file to be written to.
816  *		uio	- structure supplying write location, range info,
817  *			  and data buffer.
818  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
819  *			  set if in append mode.
820  *		cr	- credentials of caller.
821  *		ct	- caller context (NFS/CIFS fem monitor only)
822  *
823  *	OUT:	uio	- updated offset and range.
824  *
825  *	RETURN:	0 on success, error code on failure.
826  *
827  * Timestamps:
828  *	vp - ctime|mtime updated if byte count > 0
829  */
830 
831 /* ARGSUSED */
832 static int
zfs_write(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)833 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
834 {
835 	znode_t		*zp = VTOZ(vp);
836 	rlim64_t	limit = uio->uio_llimit;
837 	ssize_t		start_resid = uio->uio_resid;
838 	ssize_t		tx_bytes;
839 	uint64_t	end_size;
840 	dmu_tx_t	*tx;
841 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
842 	zilog_t		*zilog;
843 	offset_t	woff;
844 	ssize_t		n, nbytes;
845 	int		max_blksz = zfsvfs->z_max_blksz;
846 	int		error = 0;
847 	int		prev_error;
848 	arc_buf_t	*abuf;
849 	iovec_t		*aiov = NULL;
850 	xuio_t		*xuio = NULL;
851 	int		i_iov = 0;
852 	int		iovcnt = uio->uio_iovcnt;
853 	iovec_t		*iovp = uio->uio_iov;
854 	int		write_eof;
855 	int		count = 0;
856 	sa_bulk_attr_t	bulk[4];
857 	uint64_t	mtime[2], ctime[2];
858 	boolean_t	did_clear_setid_bits = B_FALSE, commit;
859 
860 	/*
861 	 * Fasttrack empty write
862 	 */
863 	n = start_resid;
864 	if (n == 0)
865 		return (0);
866 
867 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
868 		limit = MAXOFFSET_T;
869 
870 	ZFS_ENTER(zfsvfs);
871 	ZFS_VERIFY_ZP(zp);
872 
873 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
874 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
875 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
876 	    &zp->z_size, 8);
877 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
878 	    &zp->z_pflags, 8);
879 
880 	/*
881 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
882 	 * callers might not be able to detect properly that we are read-only,
883 	 * so check it explicitly here.
884 	 */
885 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
886 		ZFS_EXIT(zfsvfs);
887 		return (SET_ERROR(EROFS));
888 	}
889 
890 	/*
891 	 * If immutable or not appending then return EPERM.
892 	 * Intentionally allow ZFS_READONLY through here.
893 	 * See zfs_zaccess_common()
894 	 */
895 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
896 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
897 	    (uio->uio_loffset < zp->z_size))) {
898 		ZFS_EXIT(zfsvfs);
899 		return (SET_ERROR(EPERM));
900 	}
901 
902 	zilog = zfsvfs->z_log;
903 
904 	/*
905 	 * Validate file offset
906 	 */
907 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
908 	if (woff < 0) {
909 		ZFS_EXIT(zfsvfs);
910 		return (SET_ERROR(EINVAL));
911 	}
912 
913 	/*
914 	 * Check for mandatory locks before calling rangelock_enter()
915 	 * in order to prevent a deadlock with locks set via fcntl().
916 	 */
917 	if (MANDMODE((mode_t)zp->z_mode) &&
918 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
919 		ZFS_EXIT(zfsvfs);
920 		return (error);
921 	}
922 
923 	/*
924 	 * Pre-fault the pages to ensure slow (eg NFS) pages
925 	 * don't hold up txg.
926 	 * Skip this if uio contains loaned arc_buf.
927 	 */
928 	if ((uio->uio_extflg == UIO_XUIO) &&
929 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
930 		xuio = (xuio_t *)uio;
931 	else
932 		uio_prefaultpages(MIN(n, max_blksz), uio);
933 
934 	/*
935 	 * If in append mode, set the io offset pointer to eof.
936 	 */
937 	locked_range_t *lr;
938 	if (ioflag & FAPPEND) {
939 		/*
940 		 * Obtain an appending range lock to guarantee file append
941 		 * semantics.  We reset the write offset once we have the lock.
942 		 */
943 		lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
944 		woff = lr->lr_offset;
945 		if (lr->lr_length == UINT64_MAX) {
946 			/*
947 			 * We overlocked the file because this write will cause
948 			 * the file block size to increase.
949 			 * Note that zp_size cannot change with this lock held.
950 			 */
951 			woff = zp->z_size;
952 		}
953 		uio->uio_loffset = woff;
954 	} else {
955 		/*
956 		 * Note that if the file block size will change as a result of
957 		 * this write, then this range lock will lock the entire file
958 		 * so that we can re-write the block safely.
959 		 */
960 		lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
961 	}
962 
963 	if (woff >= limit) {
964 		rangelock_exit(lr);
965 		ZFS_EXIT(zfsvfs);
966 		return (SET_ERROR(EFBIG));
967 	}
968 
969 	if ((woff + n) > limit || woff > (limit - n))
970 		n = limit - woff;
971 
972 	/* Will this write extend the file length? */
973 	write_eof = (woff + n > zp->z_size);
974 
975 	end_size = MAX(zp->z_size, woff + n);
976 
977 	commit = ((ioflag & (FSYNC | FDSYNC)) != 0 ||
978 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
979 
980 	/*
981 	 * Write the file in reasonable size chunks.  Each chunk is written
982 	 * in a separate transaction; this keeps the intent log records small
983 	 * and allows us to do more fine-grained space accounting.
984 	 */
985 	while (n > 0) {
986 		woff = uio->uio_loffset;
987 
988 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
989 		    zp->z_uid) ||
990 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
991 		    zp->z_gid) ||
992 		    (zp->z_projid != ZFS_DEFAULT_PROJID &&
993 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
994 		    zp->z_projid))) {
995 			error = SET_ERROR(EDQUOT);
996 			break;
997 		}
998 
999 		arc_buf_t *abuf = NULL;
1000 		if (xuio) {
1001 			ASSERT(i_iov < iovcnt);
1002 			aiov = &iovp[i_iov];
1003 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
1004 			dmu_xuio_clear(xuio, i_iov);
1005 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
1006 			    iovec_t *, aiov, arc_buf_t *, abuf);
1007 			ASSERT((aiov->iov_base == abuf->b_data) ||
1008 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
1009 			    aiov->iov_len == arc_buf_size(abuf)));
1010 			i_iov++;
1011 		} else if (n >= max_blksz && woff >= zp->z_size &&
1012 		    P2PHASE(woff, max_blksz) == 0 &&
1013 		    zp->z_blksz == max_blksz) {
1014 			/*
1015 			 * This write covers a full block.  "Borrow" a buffer
1016 			 * from the dmu so that we can fill it before we enter
1017 			 * a transaction.  This avoids the possibility of
1018 			 * holding up the transaction if the data copy hangs
1019 			 * up on a pagefault (e.g., from an NFS server mapping).
1020 			 */
1021 			size_t cbytes;
1022 
1023 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1024 			    max_blksz);
1025 			ASSERT(abuf != NULL);
1026 			ASSERT(arc_buf_size(abuf) == max_blksz);
1027 			if (error = uiocopy(abuf->b_data, max_blksz,
1028 			    UIO_WRITE, uio, &cbytes)) {
1029 				dmu_return_arcbuf(abuf);
1030 				break;
1031 			}
1032 			ASSERT(cbytes == max_blksz);
1033 		}
1034 
1035 		/*
1036 		 * Start a transaction.
1037 		 */
1038 		tx = dmu_tx_create(zfsvfs->z_os);
1039 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1040 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1041 		zfs_sa_upgrade_txholds(tx, zp);
1042 		error = dmu_tx_assign(tx, TXG_WAIT);
1043 		if (error) {
1044 			dmu_tx_abort(tx);
1045 			if (abuf != NULL)
1046 				dmu_return_arcbuf(abuf);
1047 			break;
1048 		}
1049 
1050 		/*
1051 		 * NB: We must call zfs_write_clear_setid_bits_if_necessary
1052 		 * before committing the transaction!
1053 		 */
1054 
1055 		/*
1056 		 * If rangelock_enter() over-locked we grow the blocksize
1057 		 * and then reduce the lock range.  This will only happen
1058 		 * on the first iteration since rangelock_reduce() will
1059 		 * shrink down lr_length to the appropriate size.
1060 		 */
1061 		if (lr->lr_length == UINT64_MAX) {
1062 			uint64_t new_blksz;
1063 
1064 			if (zp->z_blksz > max_blksz) {
1065 				/*
1066 				 * File's blocksize is already larger than the
1067 				 * "recordsize" property.  Only let it grow to
1068 				 * the next power of 2.
1069 				 */
1070 				ASSERT(!ISP2(zp->z_blksz));
1071 				new_blksz = MIN(end_size,
1072 				    1 << highbit64(zp->z_blksz));
1073 			} else {
1074 				new_blksz = MIN(end_size, max_blksz);
1075 			}
1076 			zfs_grow_blocksize(zp, new_blksz, tx);
1077 			rangelock_reduce(lr, woff, n);
1078 		}
1079 
1080 		/*
1081 		 * XXX - should we really limit each write to z_max_blksz?
1082 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1083 		 */
1084 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1085 
1086 		if (abuf == NULL) {
1087 			tx_bytes = uio->uio_resid;
1088 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1089 			    uio, nbytes, tx);
1090 			tx_bytes -= uio->uio_resid;
1091 		} else {
1092 			tx_bytes = nbytes;
1093 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1094 			/*
1095 			 * If this is not a full block write, but we are
1096 			 * extending the file past EOF and this data starts
1097 			 * block-aligned, use assign_arcbuf().  Otherwise,
1098 			 * write via dmu_write().
1099 			 */
1100 			if (tx_bytes < max_blksz && (!write_eof ||
1101 			    aiov->iov_base != abuf->b_data)) {
1102 				ASSERT(xuio);
1103 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1104 				    aiov->iov_len, aiov->iov_base, tx);
1105 				dmu_return_arcbuf(abuf);
1106 				xuio_stat_wbuf_copied();
1107 			} else {
1108 				ASSERT(xuio || tx_bytes == max_blksz);
1109 				dmu_assign_arcbuf_by_dbuf(
1110 				    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
1111 			}
1112 			ASSERT(tx_bytes <= uio->uio_resid);
1113 			uioskip(uio, tx_bytes);
1114 		}
1115 		if (tx_bytes && vn_has_cached_data(vp)) {
1116 			update_pages(vp, woff,
1117 			    tx_bytes, zfsvfs->z_os, zp->z_id);
1118 		}
1119 
1120 		/*
1121 		 * If we made no progress, we're done.  If we made even
1122 		 * partial progress, update the znode and ZIL accordingly.
1123 		 */
1124 		if (tx_bytes == 0) {
1125 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1126 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1127 			dmu_tx_commit(tx);
1128 			ASSERT(error != 0);
1129 			break;
1130 		}
1131 
1132 		zfs_write_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
1133 		    &did_clear_setid_bits, tx);
1134 
1135 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1136 		    B_TRUE);
1137 
1138 		/*
1139 		 * Update the file size (zp_size) if it has changed;
1140 		 * account for possible concurrent updates.
1141 		 */
1142 		while ((end_size = zp->z_size) < uio->uio_loffset) {
1143 			(void) atomic_cas_64(&zp->z_size, end_size,
1144 			    uio->uio_loffset);
1145 		}
1146 		/*
1147 		 * If we are replaying and eof is non zero then force
1148 		 * the file size to the specified eof. Note, there's no
1149 		 * concurrency during replay.
1150 		 */
1151 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1152 			zp->z_size = zfsvfs->z_replay_eof;
1153 
1154 		/*
1155 		 * Keep track of a possible pre-existing error from a partial
1156 		 * write via dmu_write_uio_dbuf above.
1157 		 */
1158 		prev_error = error;
1159 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1160 
1161 		/*
1162 		 * NB: During replay, the TX_SETATTR record logged by
1163 		 * zfs_write_clear_setid_bits_if_necessary must precede
1164 		 * any of the TX_WRITE records logged here.
1165 		 */
1166 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit);
1167 		dmu_tx_commit(tx);
1168 
1169 		if (prev_error != 0 || error != 0)
1170 			break;
1171 		ASSERT(tx_bytes == nbytes);
1172 		n -= nbytes;
1173 
1174 		if (!xuio && n > 0)
1175 			uio_prefaultpages(MIN(n, max_blksz), uio);
1176 	}
1177 
1178 	rangelock_exit(lr);
1179 
1180 	/*
1181 	 * If we're in replay mode, or we made no progress, return error.
1182 	 * Otherwise, it's at least a partial write, so it's successful.
1183 	 */
1184 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1185 		ZFS_EXIT(zfsvfs);
1186 		return (error);
1187 	}
1188 
1189 	if (commit)
1190 		zil_commit(zilog, zp->z_id);
1191 
1192 	ZFS_EXIT(zfsvfs);
1193 	return (0);
1194 }
1195 
1196 /* ARGSUSED */
1197 void
zfs_get_done(zgd_t * zgd,int error)1198 zfs_get_done(zgd_t *zgd, int error)
1199 {
1200 	znode_t *zp = zgd->zgd_private;
1201 	objset_t *os = zp->z_zfsvfs->z_os;
1202 
1203 	if (zgd->zgd_db)
1204 		dmu_buf_rele(zgd->zgd_db, zgd);
1205 
1206 	rangelock_exit(zgd->zgd_lr);
1207 
1208 	/*
1209 	 * Release the vnode asynchronously as we currently have the
1210 	 * txg stopped from syncing.
1211 	 */
1212 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1213 
1214 	kmem_free(zgd, sizeof (zgd_t));
1215 }
1216 
1217 #ifdef DEBUG
1218 static int zil_fault_io = 0;
1219 #endif
1220 
1221 /*
1222  * Get data to generate a TX_WRITE intent log record.
1223  */
1224 int
zfs_get_data(void * arg,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1225 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1226 {
1227 	zfsvfs_t *zfsvfs = arg;
1228 	objset_t *os = zfsvfs->z_os;
1229 	znode_t *zp;
1230 	uint64_t object = lr->lr_foid;
1231 	uint64_t offset = lr->lr_offset;
1232 	uint64_t size = lr->lr_length;
1233 	dmu_buf_t *db;
1234 	zgd_t *zgd;
1235 	int error = 0;
1236 
1237 	ASSERT3P(lwb, !=, NULL);
1238 	ASSERT3P(zio, !=, NULL);
1239 	ASSERT3U(size, !=, 0);
1240 
1241 	/*
1242 	 * Nothing to do if the file has been removed
1243 	 */
1244 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1245 		return (SET_ERROR(ENOENT));
1246 	if (zp->z_unlinked) {
1247 		/*
1248 		 * Release the vnode asynchronously as we currently have the
1249 		 * txg stopped from syncing.
1250 		 */
1251 		VN_RELE_ASYNC(ZTOV(zp),
1252 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1253 		return (SET_ERROR(ENOENT));
1254 	}
1255 
1256 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1257 	zgd->zgd_lwb = lwb;
1258 	zgd->zgd_private = zp;
1259 
1260 	/*
1261 	 * Write records come in two flavors: immediate and indirect.
1262 	 * For small writes it's cheaper to store the data with the
1263 	 * log record (immediate); for large writes it's cheaper to
1264 	 * sync the data and get a pointer to it (indirect) so that
1265 	 * we don't have to write the data twice.
1266 	 */
1267 	if (buf != NULL) { /* immediate write */
1268 		zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1269 		    offset, size, RL_READER);
1270 		/* test for truncation needs to be done while range locked */
1271 		if (offset >= zp->z_size) {
1272 			error = SET_ERROR(ENOENT);
1273 		} else {
1274 			error = dmu_read(os, object, offset, size, buf,
1275 			    DMU_READ_NO_PREFETCH);
1276 		}
1277 		ASSERT(error == 0 || error == ENOENT);
1278 	} else { /* indirect write */
1279 		/*
1280 		 * Have to lock the whole block to ensure when it's
1281 		 * written out and its checksum is being calculated
1282 		 * that no one can change the data. We need to re-check
1283 		 * blocksize after we get the lock in case it's changed!
1284 		 */
1285 		for (;;) {
1286 			uint64_t blkoff;
1287 			size = zp->z_blksz;
1288 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1289 			offset -= blkoff;
1290 			zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1291 			    offset, size, RL_READER);
1292 			if (zp->z_blksz == size)
1293 				break;
1294 			offset += blkoff;
1295 			rangelock_exit(zgd->zgd_lr);
1296 		}
1297 		/* test for truncation needs to be done while range locked */
1298 		if (lr->lr_offset >= zp->z_size)
1299 			error = SET_ERROR(ENOENT);
1300 #ifdef DEBUG
1301 		if (zil_fault_io) {
1302 			error = SET_ERROR(EIO);
1303 			zil_fault_io = 0;
1304 		}
1305 #endif
1306 		if (error == 0)
1307 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1308 			    DMU_READ_NO_PREFETCH);
1309 
1310 		if (error == 0) {
1311 			blkptr_t *bp = &lr->lr_blkptr;
1312 
1313 			zgd->zgd_db = db;
1314 			zgd->zgd_bp = bp;
1315 
1316 			ASSERT(db->db_offset == offset);
1317 			ASSERT(db->db_size == size);
1318 
1319 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1320 			    zfs_get_done, zgd);
1321 			ASSERT(error || lr->lr_length <= size);
1322 
1323 			/*
1324 			 * On success, we need to wait for the write I/O
1325 			 * initiated by dmu_sync() to complete before we can
1326 			 * release this dbuf.  We will finish everything up
1327 			 * in the zfs_get_done() callback.
1328 			 */
1329 			if (error == 0)
1330 				return (0);
1331 
1332 			if (error == EALREADY) {
1333 				lr->lr_common.lrc_txtype = TX_WRITE2;
1334 				/*
1335 				 * TX_WRITE2 relies on the data previously
1336 				 * written by the TX_WRITE that caused
1337 				 * EALREADY.  We zero out the BP because
1338 				 * it is the old, currently-on-disk BP.
1339 				 */
1340 				zgd->zgd_bp = NULL;
1341 				BP_ZERO(bp);
1342 				error = 0;
1343 			}
1344 		}
1345 	}
1346 
1347 	zfs_get_done(zgd, error);
1348 
1349 	return (error);
1350 }
1351 
1352 /*ARGSUSED*/
1353 static int
zfs_access(vnode_t * vp,int mode,int flag,cred_t * cr,caller_context_t * ct)1354 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1355     caller_context_t *ct)
1356 {
1357 	znode_t *zp = VTOZ(vp);
1358 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1359 	int error;
1360 
1361 	ZFS_ENTER(zfsvfs);
1362 	ZFS_VERIFY_ZP(zp);
1363 
1364 	if (flag & V_ACE_MASK)
1365 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1366 	else
1367 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1368 
1369 	ZFS_EXIT(zfsvfs);
1370 	return (error);
1371 }
1372 
1373 /*
1374  * If vnode is for a device return a specfs vnode instead.
1375  */
1376 static int
specvp_check(vnode_t ** vpp,cred_t * cr)1377 specvp_check(vnode_t **vpp, cred_t *cr)
1378 {
1379 	int error = 0;
1380 
1381 	if (IS_DEVVP(*vpp)) {
1382 		struct vnode *svp;
1383 
1384 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1385 		VN_RELE(*vpp);
1386 		if (svp == NULL)
1387 			error = SET_ERROR(ENOSYS);
1388 		*vpp = svp;
1389 	}
1390 	return (error);
1391 }
1392 
1393 
1394 /*
1395  * Lookup an entry in a directory, or an extended attribute directory.
1396  * If it exists, return a held vnode reference for it.
1397  *
1398  *	IN:	dvp	- vnode of directory to search.
1399  *		nm	- name of entry to lookup.
1400  *		pnp	- full pathname to lookup [UNUSED].
1401  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1402  *		rdir	- root directory vnode [UNUSED].
1403  *		cr	- credentials of caller.
1404  *		ct	- caller context
1405  *		direntflags - directory lookup flags
1406  *		realpnp - returned pathname.
1407  *
1408  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1409  *
1410  *	RETURN:	0 on success, error code on failure.
1411  *
1412  * Timestamps:
1413  *	NA
1414  */
1415 /* ARGSUSED */
1416 static int
zfs_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1417 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1418     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1419     int *direntflags, pathname_t *realpnp)
1420 {
1421 	znode_t *zdp = VTOZ(dvp);
1422 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1423 	int	error = 0;
1424 	boolean_t skipaclchk = ((flags & LOOKUP_NOACLCHECK) != 0);
1425 
1426 	/*
1427 	 * LOOKUP_NOACLCHECK is specified to skip EXECUTE checks for
1428 	 * consumers (like SMB) that bypass traverse checking.
1429 	 * Turn it off here so it can't accidentally be used
1430 	 * for other checks.
1431 	 */
1432 	flags &= ~LOOKUP_NOACLCHECK;
1433 
1434 	/*
1435 	 * Fast path lookup, however we must skip DNLC lookup
1436 	 * for case folding or normalizing lookups because the
1437 	 * DNLC code only stores the passed in name.  This means
1438 	 * creating 'a' and removing 'A' on a case insensitive
1439 	 * file system would work, but DNLC still thinks 'a'
1440 	 * exists and won't let you create it again on the next
1441 	 * pass through fast path.
1442 	 */
1443 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1444 
1445 		if (dvp->v_type != VDIR) {
1446 			return (SET_ERROR(ENOTDIR));
1447 		} else if (zdp->z_sa_hdl == NULL) {
1448 			return (SET_ERROR(EIO));
1449 		}
1450 
1451 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1452 			error = zfs_fastaccesschk_execute(zdp, cr, skipaclchk);
1453 			if (!error) {
1454 				*vpp = dvp;
1455 				VN_HOLD(*vpp);
1456 				return (0);
1457 			}
1458 			return (error);
1459 		} else if (!zdp->z_zfsvfs->z_norm &&
1460 		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1461 
1462 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1463 
1464 			if (tvp) {
1465 				error = zfs_fastaccesschk_execute(zdp, cr,
1466 				    skipaclchk);
1467 				if (error) {
1468 					VN_RELE(tvp);
1469 					return (error);
1470 				}
1471 				if (tvp == DNLC_NO_VNODE) {
1472 					VN_RELE(tvp);
1473 					return (SET_ERROR(ENOENT));
1474 				} else {
1475 					*vpp = tvp;
1476 					return (specvp_check(vpp, cr));
1477 				}
1478 			}
1479 		}
1480 	}
1481 
1482 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1483 
1484 	ZFS_ENTER(zfsvfs);
1485 	ZFS_VERIFY_ZP(zdp);
1486 
1487 	*vpp = NULL;
1488 
1489 	if (flags & LOOKUP_XATTR) {
1490 		/*
1491 		 * If the xattr property is off, refuse the lookup request.
1492 		 */
1493 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1494 			ZFS_EXIT(zfsvfs);
1495 			return (SET_ERROR(EINVAL));
1496 		}
1497 
1498 		/*
1499 		 * We don't allow recursive attributes..
1500 		 * Maybe someday we will.
1501 		 */
1502 		if (zdp->z_pflags & ZFS_XATTR) {
1503 			ZFS_EXIT(zfsvfs);
1504 			return (SET_ERROR(EINVAL));
1505 		}
1506 
1507 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1508 			ZFS_EXIT(zfsvfs);
1509 			return (error);
1510 		}
1511 
1512 		/*
1513 		 * Do we have permission to get into attribute directory?
1514 		 */
1515 
1516 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1517 		    skipaclchk, cr)) {
1518 			VN_RELE(*vpp);
1519 			*vpp = NULL;
1520 		}
1521 
1522 		ZFS_EXIT(zfsvfs);
1523 		return (error);
1524 	}
1525 
1526 	if (dvp->v_type != VDIR) {
1527 		ZFS_EXIT(zfsvfs);
1528 		return (SET_ERROR(ENOTDIR));
1529 	}
1530 
1531 	/*
1532 	 * Check accessibility of directory.
1533 	 */
1534 
1535 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, skipaclchk, cr)) {
1536 		ZFS_EXIT(zfsvfs);
1537 		return (error);
1538 	}
1539 
1540 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1541 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1542 		ZFS_EXIT(zfsvfs);
1543 		return (SET_ERROR(EILSEQ));
1544 	}
1545 
1546 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1547 	if (error == 0)
1548 		error = specvp_check(vpp, cr);
1549 
1550 	ZFS_EXIT(zfsvfs);
1551 	return (error);
1552 }
1553 
1554 /*
1555  * Attempt to create a new entry in a directory.  If the entry
1556  * already exists, truncate the file if permissible, else return
1557  * an error.  Return the vp of the created or trunc'd file.
1558  *
1559  *	IN:	dvp	- vnode of directory to put new file entry in.
1560  *		name	- name of new file entry.
1561  *		vap	- attributes of new file.
1562  *		excl	- flag indicating exclusive or non-exclusive mode.
1563  *		mode	- mode to open file with.
1564  *		cr	- credentials of caller.
1565  *		flag	- large file flag [UNUSED].
1566  *		ct	- caller context
1567  *		vsecp	- ACL to be set
1568  *
1569  *	OUT:	vpp	- vnode of created or trunc'd entry.
1570  *
1571  *	RETURN:	0 on success, error code on failure.
1572  *
1573  * Timestamps:
1574  *	dvp - ctime|mtime updated if new entry created
1575  *	 vp - ctime|mtime always, atime if new
1576  */
1577 
1578 /* ARGSUSED */
1579 static int
zfs_create(vnode_t * dvp,char * name,vattr_t * vap,vcexcl_t excl,int mode,vnode_t ** vpp,cred_t * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)1580 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1581     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1582     vsecattr_t *vsecp)
1583 {
1584 	znode_t		*zp, *dzp = VTOZ(dvp);
1585 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1586 	zilog_t		*zilog;
1587 	objset_t	*os;
1588 	zfs_dirlock_t	*dl;
1589 	dmu_tx_t	*tx;
1590 	int		error;
1591 	ksid_t		*ksid;
1592 	uid_t		uid;
1593 	gid_t		gid = crgetgid(cr);
1594 	zfs_acl_ids_t   acl_ids;
1595 	boolean_t	fuid_dirtied;
1596 	boolean_t	have_acl = B_FALSE;
1597 	boolean_t	waited = B_FALSE;
1598 
1599 	/*
1600 	 * If we have an ephemeral id, ACL, or XVATTR then
1601 	 * make sure file system is at proper version
1602 	 */
1603 
1604 	ksid = crgetsid(cr, KSID_OWNER);
1605 	if (ksid)
1606 		uid = ksid_getid(ksid);
1607 	else
1608 		uid = crgetuid(cr);
1609 
1610 	if (zfsvfs->z_use_fuids == B_FALSE &&
1611 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1612 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1613 		return (SET_ERROR(EINVAL));
1614 
1615 	ZFS_ENTER(zfsvfs);
1616 	ZFS_VERIFY_ZP(dzp);
1617 	os = zfsvfs->z_os;
1618 	zilog = zfsvfs->z_log;
1619 
1620 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1621 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1622 		ZFS_EXIT(zfsvfs);
1623 		return (SET_ERROR(EILSEQ));
1624 	}
1625 
1626 	if (vap->va_mask & AT_XVATTR) {
1627 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1628 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1629 			ZFS_EXIT(zfsvfs);
1630 			return (error);
1631 		}
1632 	}
1633 top:
1634 	*vpp = NULL;
1635 
1636 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1637 		vap->va_mode &= ~VSVTX;
1638 
1639 	if (*name == '\0') {
1640 		/*
1641 		 * Null component name refers to the directory itself.
1642 		 */
1643 		VN_HOLD(dvp);
1644 		zp = dzp;
1645 		dl = NULL;
1646 		error = 0;
1647 	} else {
1648 		/* possible VN_HOLD(zp) */
1649 		int zflg = 0;
1650 
1651 		if (flag & FIGNORECASE)
1652 			zflg |= ZCILOOK;
1653 
1654 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1655 		    NULL, NULL);
1656 		if (error) {
1657 			if (have_acl)
1658 				zfs_acl_ids_free(&acl_ids);
1659 			if (strcmp(name, "..") == 0)
1660 				error = SET_ERROR(EISDIR);
1661 			ZFS_EXIT(zfsvfs);
1662 			return (error);
1663 		}
1664 	}
1665 
1666 	if (zp == NULL) {
1667 		uint64_t txtype;
1668 		uint64_t projid = ZFS_DEFAULT_PROJID;
1669 
1670 		/*
1671 		 * Create a new file object and update the directory
1672 		 * to reference it.
1673 		 */
1674 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1675 			if (have_acl)
1676 				zfs_acl_ids_free(&acl_ids);
1677 			goto out;
1678 		}
1679 
1680 		/*
1681 		 * We only support the creation of regular files in
1682 		 * extended attribute directories.
1683 		 */
1684 
1685 		if ((dzp->z_pflags & ZFS_XATTR) &&
1686 		    (vap->va_type != VREG)) {
1687 			if (have_acl)
1688 				zfs_acl_ids_free(&acl_ids);
1689 			error = SET_ERROR(EINVAL);
1690 			goto out;
1691 		}
1692 
1693 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1694 		    cr, vsecp, &acl_ids)) != 0)
1695 			goto out;
1696 		have_acl = B_TRUE;
1697 
1698 		if (vap->va_type == VREG || vap->va_type == VDIR)
1699 			projid = zfs_inherit_projid(dzp);
1700 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1701 			zfs_acl_ids_free(&acl_ids);
1702 			error = SET_ERROR(EDQUOT);
1703 			goto out;
1704 		}
1705 
1706 		tx = dmu_tx_create(os);
1707 
1708 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1709 		    ZFS_SA_BASE_ATTR_SIZE);
1710 
1711 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1712 		if (fuid_dirtied)
1713 			zfs_fuid_txhold(zfsvfs, tx);
1714 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1715 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1716 		if (!zfsvfs->z_use_sa &&
1717 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1718 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1719 			    0, acl_ids.z_aclp->z_acl_bytes);
1720 		}
1721 		error = dmu_tx_assign(tx,
1722 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1723 		if (error) {
1724 			zfs_dirent_unlock(dl);
1725 			if (error == ERESTART) {
1726 				waited = B_TRUE;
1727 				dmu_tx_wait(tx);
1728 				dmu_tx_abort(tx);
1729 				goto top;
1730 			}
1731 			zfs_acl_ids_free(&acl_ids);
1732 			dmu_tx_abort(tx);
1733 			ZFS_EXIT(zfsvfs);
1734 			return (error);
1735 		}
1736 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1737 
1738 		if (fuid_dirtied)
1739 			zfs_fuid_sync(zfsvfs, tx);
1740 
1741 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1742 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1743 		if (flag & FIGNORECASE)
1744 			txtype |= TX_CI;
1745 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1746 		    vsecp, acl_ids.z_fuidp, vap);
1747 		zfs_acl_ids_free(&acl_ids);
1748 		dmu_tx_commit(tx);
1749 	} else {
1750 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1751 
1752 		if (have_acl)
1753 			zfs_acl_ids_free(&acl_ids);
1754 		have_acl = B_FALSE;
1755 
1756 		/*
1757 		 * A directory entry already exists for this name.
1758 		 */
1759 		/*
1760 		 * Can't truncate an existing file if in exclusive mode.
1761 		 */
1762 		if (excl == EXCL) {
1763 			error = SET_ERROR(EEXIST);
1764 			goto out;
1765 		}
1766 		/*
1767 		 * Can't open a directory for writing.
1768 		 */
1769 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1770 			error = SET_ERROR(EISDIR);
1771 			goto out;
1772 		}
1773 		/*
1774 		 * Verify requested access to file.
1775 		 */
1776 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1777 			goto out;
1778 		}
1779 
1780 		mutex_enter(&dzp->z_lock);
1781 		dzp->z_seq++;
1782 		mutex_exit(&dzp->z_lock);
1783 
1784 		/*
1785 		 * Truncate regular files if requested.
1786 		 */
1787 		if ((ZTOV(zp)->v_type == VREG) &&
1788 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1789 			/* we can't hold any locks when calling zfs_freesp() */
1790 			zfs_dirent_unlock(dl);
1791 			dl = NULL;
1792 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1793 			if (error == 0) {
1794 				vnevent_create(ZTOV(zp), ct);
1795 			}
1796 		}
1797 	}
1798 out:
1799 
1800 	if (dl)
1801 		zfs_dirent_unlock(dl);
1802 
1803 	if (error) {
1804 		if (zp)
1805 			VN_RELE(ZTOV(zp));
1806 	} else {
1807 		*vpp = ZTOV(zp);
1808 		error = specvp_check(vpp, cr);
1809 	}
1810 
1811 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1812 		zil_commit(zilog, 0);
1813 
1814 	ZFS_EXIT(zfsvfs);
1815 	return (error);
1816 }
1817 
1818 /*
1819  * Remove an entry from a directory.
1820  *
1821  *	IN:	dvp	- vnode of directory to remove entry from.
1822  *		name	- name of entry to remove.
1823  *		cr	- credentials of caller.
1824  *		ct	- caller context
1825  *		flags	- case flags
1826  *
1827  *	RETURN:	0 on success, error code on failure.
1828  *
1829  * Timestamps:
1830  *	dvp - ctime|mtime
1831  *	 vp - ctime (if nlink > 0)
1832  */
1833 
1834 uint64_t null_xattr = 0;
1835 
1836 /*ARGSUSED*/
1837 static int
zfs_remove(vnode_t * dvp,char * name,cred_t * cr,caller_context_t * ct,int flags)1838 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1839     int flags)
1840 {
1841 	znode_t		*zp, *dzp = VTOZ(dvp);
1842 	znode_t		*xzp;
1843 	vnode_t		*vp;
1844 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1845 	zilog_t		*zilog;
1846 	uint64_t	acl_obj, xattr_obj;
1847 	uint64_t	xattr_obj_unlinked = 0;
1848 	uint64_t	obj = 0;
1849 	zfs_dirlock_t	*dl;
1850 	dmu_tx_t	*tx;
1851 	boolean_t	may_delete_now, delete_now = FALSE;
1852 	boolean_t	unlinked, toobig = FALSE;
1853 	uint64_t	txtype;
1854 	pathname_t	*realnmp = NULL;
1855 	pathname_t	realnm;
1856 	int		error;
1857 	int		zflg = ZEXISTS;
1858 	boolean_t	waited = B_FALSE;
1859 
1860 	ZFS_ENTER(zfsvfs);
1861 	ZFS_VERIFY_ZP(dzp);
1862 	zilog = zfsvfs->z_log;
1863 
1864 	if (flags & FIGNORECASE) {
1865 		zflg |= ZCILOOK;
1866 		pn_alloc(&realnm);
1867 		realnmp = &realnm;
1868 	}
1869 
1870 top:
1871 	xattr_obj = 0;
1872 	xzp = NULL;
1873 	/*
1874 	 * Attempt to lock directory; fail if entry doesn't exist.
1875 	 */
1876 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1877 	    NULL, realnmp)) {
1878 		if (realnmp)
1879 			pn_free(realnmp);
1880 		ZFS_EXIT(zfsvfs);
1881 		return (error);
1882 	}
1883 
1884 	vp = ZTOV(zp);
1885 
1886 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1887 		goto out;
1888 	}
1889 
1890 	/*
1891 	 * Need to use rmdir for removing directories.
1892 	 */
1893 	if (vp->v_type == VDIR) {
1894 		error = SET_ERROR(EPERM);
1895 		goto out;
1896 	}
1897 
1898 	vnevent_remove(vp, dvp, name, ct);
1899 
1900 	if (realnmp)
1901 		dnlc_remove(dvp, realnmp->pn_buf);
1902 	else
1903 		dnlc_remove(dvp, name);
1904 
1905 	mutex_enter(&vp->v_lock);
1906 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1907 	mutex_exit(&vp->v_lock);
1908 
1909 	/*
1910 	 * We may delete the znode now, or we may put it in the unlinked set;
1911 	 * it depends on whether we're the last link, and on whether there are
1912 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1913 	 * allow for either case.
1914 	 */
1915 	obj = zp->z_id;
1916 	tx = dmu_tx_create(zfsvfs->z_os);
1917 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1918 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1919 	zfs_sa_upgrade_txholds(tx, zp);
1920 	zfs_sa_upgrade_txholds(tx, dzp);
1921 	if (may_delete_now) {
1922 		toobig =
1923 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1924 		/* if the file is too big, only hold_free a token amount */
1925 		dmu_tx_hold_free(tx, zp->z_id, 0,
1926 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1927 	}
1928 
1929 	/* are there any extended attributes? */
1930 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1931 	    &xattr_obj, sizeof (xattr_obj));
1932 	if (error == 0 && xattr_obj) {
1933 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1934 		ASSERT0(error);
1935 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1936 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1937 	}
1938 
1939 	mutex_enter(&zp->z_lock);
1940 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1941 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1942 	mutex_exit(&zp->z_lock);
1943 
1944 	/* charge as an update -- would be nice not to charge at all */
1945 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1946 
1947 	/*
1948 	 * Mark this transaction as typically resulting in a net free of space
1949 	 */
1950 	dmu_tx_mark_netfree(tx);
1951 
1952 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1953 	if (error) {
1954 		zfs_dirent_unlock(dl);
1955 		VN_RELE(vp);
1956 		if (xzp)
1957 			VN_RELE(ZTOV(xzp));
1958 		if (error == ERESTART) {
1959 			waited = B_TRUE;
1960 			dmu_tx_wait(tx);
1961 			dmu_tx_abort(tx);
1962 			goto top;
1963 		}
1964 		if (realnmp)
1965 			pn_free(realnmp);
1966 		dmu_tx_abort(tx);
1967 		ZFS_EXIT(zfsvfs);
1968 		return (error);
1969 	}
1970 
1971 	/*
1972 	 * Remove the directory entry.
1973 	 */
1974 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1975 
1976 	if (error) {
1977 		dmu_tx_commit(tx);
1978 		goto out;
1979 	}
1980 
1981 	if (unlinked) {
1982 		/*
1983 		 * Hold z_lock so that we can make sure that the ACL obj
1984 		 * hasn't changed.  Could have been deleted due to
1985 		 * zfs_sa_upgrade().
1986 		 */
1987 		mutex_enter(&zp->z_lock);
1988 		mutex_enter(&vp->v_lock);
1989 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1990 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1991 		delete_now = may_delete_now && !toobig &&
1992 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1993 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1994 		    acl_obj;
1995 		mutex_exit(&vp->v_lock);
1996 	}
1997 
1998 	if (delete_now) {
1999 		if (xattr_obj_unlinked) {
2000 			ASSERT3U(xzp->z_links, ==, 2);
2001 			mutex_enter(&xzp->z_lock);
2002 			xzp->z_unlinked = 1;
2003 			xzp->z_links = 0;
2004 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2005 			    &xzp->z_links, sizeof (xzp->z_links), tx);
2006 			ASSERT3U(error,  ==,  0);
2007 			mutex_exit(&xzp->z_lock);
2008 			zfs_unlinked_add(xzp, tx);
2009 
2010 			if (zp->z_is_sa)
2011 				error = sa_remove(zp->z_sa_hdl,
2012 				    SA_ZPL_XATTR(zfsvfs), tx);
2013 			else
2014 				error = sa_update(zp->z_sa_hdl,
2015 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2016 				    sizeof (uint64_t), tx);
2017 			ASSERT0(error);
2018 		}
2019 		mutex_enter(&vp->v_lock);
2020 		VN_RELE_LOCKED(vp);
2021 		ASSERT0(vp->v_count);
2022 		mutex_exit(&vp->v_lock);
2023 		mutex_exit(&zp->z_lock);
2024 		zfs_znode_delete(zp, tx);
2025 	} else if (unlinked) {
2026 		mutex_exit(&zp->z_lock);
2027 		zfs_unlinked_add(zp, tx);
2028 	}
2029 
2030 	txtype = TX_REMOVE;
2031 	if (flags & FIGNORECASE)
2032 		txtype |= TX_CI;
2033 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
2034 
2035 	dmu_tx_commit(tx);
2036 out:
2037 	if (realnmp)
2038 		pn_free(realnmp);
2039 
2040 	zfs_dirent_unlock(dl);
2041 
2042 	if (!delete_now)
2043 		VN_RELE(vp);
2044 	if (xzp)
2045 		VN_RELE(ZTOV(xzp));
2046 
2047 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2048 		zil_commit(zilog, 0);
2049 
2050 	ZFS_EXIT(zfsvfs);
2051 	return (error);
2052 }
2053 
2054 /*
2055  * Create a new directory and insert it into dvp using the name
2056  * provided.  Return a pointer to the inserted directory.
2057  *
2058  *	IN:	dvp	- vnode of directory to add subdir to.
2059  *		dirname	- name of new directory.
2060  *		vap	- attributes of new directory.
2061  *		cr	- credentials of caller.
2062  *		ct	- caller context
2063  *		flags	- case flags
2064  *		vsecp	- ACL to be set
2065  *
2066  *	OUT:	vpp	- vnode of created directory.
2067  *
2068  *	RETURN:	0 on success, error code on failure.
2069  *
2070  * Timestamps:
2071  *	dvp - ctime|mtime updated
2072  *	 vp - ctime|mtime|atime updated
2073  */
2074 /*ARGSUSED*/
2075 static int
zfs_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)2076 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2077     caller_context_t *ct, int flags, vsecattr_t *vsecp)
2078 {
2079 	znode_t		*zp, *dzp = VTOZ(dvp);
2080 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2081 	zilog_t		*zilog;
2082 	zfs_dirlock_t	*dl;
2083 	uint64_t	txtype;
2084 	dmu_tx_t	*tx;
2085 	int		error;
2086 	int		zf = ZNEW;
2087 	ksid_t		*ksid;
2088 	uid_t		uid;
2089 	gid_t		gid = crgetgid(cr);
2090 	zfs_acl_ids_t   acl_ids;
2091 	boolean_t	fuid_dirtied;
2092 	boolean_t	waited = B_FALSE;
2093 
2094 	ASSERT(vap->va_type == VDIR);
2095 
2096 	/*
2097 	 * If we have an ephemeral id, ACL, or XVATTR then
2098 	 * make sure file system is at proper version
2099 	 */
2100 
2101 	ksid = crgetsid(cr, KSID_OWNER);
2102 	if (ksid)
2103 		uid = ksid_getid(ksid);
2104 	else
2105 		uid = crgetuid(cr);
2106 	if (zfsvfs->z_use_fuids == B_FALSE &&
2107 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2108 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2109 		return (SET_ERROR(EINVAL));
2110 
2111 	ZFS_ENTER(zfsvfs);
2112 	ZFS_VERIFY_ZP(dzp);
2113 	zilog = zfsvfs->z_log;
2114 
2115 	if (dzp->z_pflags & ZFS_XATTR) {
2116 		ZFS_EXIT(zfsvfs);
2117 		return (SET_ERROR(EINVAL));
2118 	}
2119 
2120 	if (zfsvfs->z_utf8 && u8_validate(dirname,
2121 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2122 		ZFS_EXIT(zfsvfs);
2123 		return (SET_ERROR(EILSEQ));
2124 	}
2125 	if (flags & FIGNORECASE)
2126 		zf |= ZCILOOK;
2127 
2128 	if (vap->va_mask & AT_XVATTR) {
2129 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
2130 		    crgetuid(cr), cr, vap->va_type)) != 0) {
2131 			ZFS_EXIT(zfsvfs);
2132 			return (error);
2133 		}
2134 	}
2135 
2136 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2137 	    vsecp, &acl_ids)) != 0) {
2138 		ZFS_EXIT(zfsvfs);
2139 		return (error);
2140 	}
2141 	/*
2142 	 * First make sure the new directory doesn't exist.
2143 	 *
2144 	 * Existence is checked first to make sure we don't return
2145 	 * EACCES instead of EEXIST which can cause some applications
2146 	 * to fail.
2147 	 */
2148 top:
2149 	*vpp = NULL;
2150 
2151 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2152 	    NULL, NULL)) {
2153 		zfs_acl_ids_free(&acl_ids);
2154 		ZFS_EXIT(zfsvfs);
2155 		return (error);
2156 	}
2157 
2158 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2159 		zfs_acl_ids_free(&acl_ids);
2160 		zfs_dirent_unlock(dl);
2161 		ZFS_EXIT(zfsvfs);
2162 		return (error);
2163 	}
2164 
2165 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2166 		zfs_acl_ids_free(&acl_ids);
2167 		zfs_dirent_unlock(dl);
2168 		ZFS_EXIT(zfsvfs);
2169 		return (SET_ERROR(EDQUOT));
2170 	}
2171 
2172 	/*
2173 	 * Add a new entry to the directory.
2174 	 */
2175 	tx = dmu_tx_create(zfsvfs->z_os);
2176 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2177 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2178 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2179 	if (fuid_dirtied)
2180 		zfs_fuid_txhold(zfsvfs, tx);
2181 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2182 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2183 		    acl_ids.z_aclp->z_acl_bytes);
2184 	}
2185 
2186 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2187 	    ZFS_SA_BASE_ATTR_SIZE);
2188 
2189 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2190 	if (error) {
2191 		zfs_dirent_unlock(dl);
2192 		if (error == ERESTART) {
2193 			waited = B_TRUE;
2194 			dmu_tx_wait(tx);
2195 			dmu_tx_abort(tx);
2196 			goto top;
2197 		}
2198 		zfs_acl_ids_free(&acl_ids);
2199 		dmu_tx_abort(tx);
2200 		ZFS_EXIT(zfsvfs);
2201 		return (error);
2202 	}
2203 
2204 	/*
2205 	 * Create new node.
2206 	 */
2207 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2208 
2209 	if (fuid_dirtied)
2210 		zfs_fuid_sync(zfsvfs, tx);
2211 
2212 	/*
2213 	 * Now put new name in parent dir.
2214 	 */
2215 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2216 
2217 	*vpp = ZTOV(zp);
2218 
2219 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2220 	if (flags & FIGNORECASE)
2221 		txtype |= TX_CI;
2222 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2223 	    acl_ids.z_fuidp, vap);
2224 
2225 	zfs_acl_ids_free(&acl_ids);
2226 
2227 	dmu_tx_commit(tx);
2228 
2229 	zfs_dirent_unlock(dl);
2230 
2231 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2232 		zil_commit(zilog, 0);
2233 
2234 	ZFS_EXIT(zfsvfs);
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Remove a directory subdir entry.  If the current working
2240  * directory is the same as the subdir to be removed, the
2241  * remove will fail.
2242  *
2243  *	IN:	dvp	- vnode of directory to remove from.
2244  *		name	- name of directory to be removed.
2245  *		cwd	- vnode of current working directory.
2246  *		cr	- credentials of caller.
2247  *		ct	- caller context
2248  *		flags	- case flags
2249  *
2250  *	RETURN:	0 on success, error code on failure.
2251  *
2252  * Timestamps:
2253  *	dvp - ctime|mtime updated
2254  */
2255 /*ARGSUSED*/
2256 static int
zfs_rmdir(vnode_t * dvp,char * name,vnode_t * cwd,cred_t * cr,caller_context_t * ct,int flags)2257 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2258     caller_context_t *ct, int flags)
2259 {
2260 	znode_t		*dzp = VTOZ(dvp);
2261 	znode_t		*zp;
2262 	vnode_t		*vp;
2263 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2264 	zilog_t		*zilog;
2265 	zfs_dirlock_t	*dl;
2266 	dmu_tx_t	*tx;
2267 	int		error;
2268 	int		zflg = ZEXISTS;
2269 	boolean_t	waited = B_FALSE;
2270 
2271 	ZFS_ENTER(zfsvfs);
2272 	ZFS_VERIFY_ZP(dzp);
2273 	zilog = zfsvfs->z_log;
2274 
2275 	if (flags & FIGNORECASE)
2276 		zflg |= ZCILOOK;
2277 top:
2278 	zp = NULL;
2279 
2280 	/*
2281 	 * Attempt to lock directory; fail if entry doesn't exist.
2282 	 */
2283 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2284 	    NULL, NULL)) {
2285 		ZFS_EXIT(zfsvfs);
2286 		return (error);
2287 	}
2288 
2289 	vp = ZTOV(zp);
2290 
2291 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2292 		goto out;
2293 	}
2294 
2295 	if (vp->v_type != VDIR) {
2296 		error = SET_ERROR(ENOTDIR);
2297 		goto out;
2298 	}
2299 
2300 	if (vp == cwd) {
2301 		error = SET_ERROR(EINVAL);
2302 		goto out;
2303 	}
2304 
2305 	vnevent_rmdir(vp, dvp, name, ct);
2306 
2307 	/*
2308 	 * Grab a lock on the directory to make sure that noone is
2309 	 * trying to add (or lookup) entries while we are removing it.
2310 	 */
2311 	rw_enter(&zp->z_name_lock, RW_WRITER);
2312 
2313 	/*
2314 	 * Grab a lock on the parent pointer to make sure we play well
2315 	 * with the treewalk and directory rename code.
2316 	 */
2317 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2318 
2319 	tx = dmu_tx_create(zfsvfs->z_os);
2320 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2321 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2322 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2323 	zfs_sa_upgrade_txholds(tx, zp);
2324 	zfs_sa_upgrade_txholds(tx, dzp);
2325 	dmu_tx_mark_netfree(tx);
2326 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2327 	if (error) {
2328 		rw_exit(&zp->z_parent_lock);
2329 		rw_exit(&zp->z_name_lock);
2330 		zfs_dirent_unlock(dl);
2331 		VN_RELE(vp);
2332 		if (error == ERESTART) {
2333 			waited = B_TRUE;
2334 			dmu_tx_wait(tx);
2335 			dmu_tx_abort(tx);
2336 			goto top;
2337 		}
2338 		dmu_tx_abort(tx);
2339 		ZFS_EXIT(zfsvfs);
2340 		return (error);
2341 	}
2342 
2343 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2344 
2345 	if (error == 0) {
2346 		uint64_t txtype = TX_RMDIR;
2347 		if (flags & FIGNORECASE)
2348 			txtype |= TX_CI;
2349 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
2350 		    B_FALSE);
2351 	}
2352 
2353 	dmu_tx_commit(tx);
2354 
2355 	rw_exit(&zp->z_parent_lock);
2356 	rw_exit(&zp->z_name_lock);
2357 out:
2358 	zfs_dirent_unlock(dl);
2359 
2360 	VN_RELE(vp);
2361 
2362 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2363 		zil_commit(zilog, 0);
2364 
2365 	ZFS_EXIT(zfsvfs);
2366 	return (error);
2367 }
2368 
2369 /*
2370  * Read as many directory entries as will fit into the provided
2371  * buffer from the given directory cursor position (specified in
2372  * the uio structure).
2373  *
2374  *	IN:	vp	- vnode of directory to read.
2375  *		uio	- structure supplying read location, range info,
2376  *			  and return buffer.
2377  *		cr	- credentials of caller.
2378  *		ct	- caller context
2379  *		flags	- case flags
2380  *
2381  *	OUT:	uio	- updated offset and range, buffer filled.
2382  *		eofp	- set to true if end-of-file detected.
2383  *
2384  *	RETURN:	0 on success, error code on failure.
2385  *
2386  * Timestamps:
2387  *	vp - atime updated
2388  *
2389  * Note that the low 4 bits of the cookie returned by zap is always zero.
2390  * This allows us to use the low range for "special" directory entries:
2391  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2392  * we use the offset 2 for the '.zfs' directory.
2393  */
2394 /* ARGSUSED */
2395 static int
zfs_readdir(vnode_t * vp,uio_t * uio,cred_t * cr,int * eofp,caller_context_t * ct,int flags)2396 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2397     caller_context_t *ct, int flags)
2398 {
2399 	znode_t		*zp = VTOZ(vp);
2400 	iovec_t		*iovp;
2401 	edirent_t	*eodp;
2402 	dirent64_t	*odp;
2403 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2404 	objset_t	*os;
2405 	caddr_t		outbuf;
2406 	size_t		bufsize;
2407 	zap_cursor_t	zc;
2408 	zap_attribute_t	zap;
2409 	uint_t		bytes_wanted;
2410 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2411 	uint64_t	parent;
2412 	int		local_eof;
2413 	int		outcount;
2414 	int		error;
2415 	uint8_t		prefetch;
2416 	boolean_t	check_sysattrs;
2417 
2418 	ZFS_ENTER(zfsvfs);
2419 	ZFS_VERIFY_ZP(zp);
2420 
2421 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2422 	    &parent, sizeof (parent))) != 0) {
2423 		ZFS_EXIT(zfsvfs);
2424 		return (error);
2425 	}
2426 
2427 	/*
2428 	 * If we are not given an eof variable,
2429 	 * use a local one.
2430 	 */
2431 	if (eofp == NULL)
2432 		eofp = &local_eof;
2433 
2434 	/*
2435 	 * Check for valid iov_len.
2436 	 */
2437 	if (uio->uio_iov->iov_len <= 0) {
2438 		ZFS_EXIT(zfsvfs);
2439 		return (SET_ERROR(EINVAL));
2440 	}
2441 
2442 	/*
2443 	 * Quit if directory has been removed (posix)
2444 	 */
2445 	if ((*eofp = zp->z_unlinked) != 0) {
2446 		ZFS_EXIT(zfsvfs);
2447 		return (0);
2448 	}
2449 
2450 	error = 0;
2451 	os = zfsvfs->z_os;
2452 	offset = uio->uio_loffset;
2453 	prefetch = zp->z_zn_prefetch;
2454 
2455 	/*
2456 	 * Initialize the iterator cursor.
2457 	 */
2458 	if (offset <= 3) {
2459 		/*
2460 		 * Start iteration from the beginning of the directory.
2461 		 */
2462 		zap_cursor_init(&zc, os, zp->z_id);
2463 	} else {
2464 		/*
2465 		 * The offset is a serialized cursor.
2466 		 */
2467 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2468 	}
2469 
2470 	/*
2471 	 * Get space to change directory entries into fs independent format.
2472 	 */
2473 	iovp = uio->uio_iov;
2474 	bytes_wanted = iovp->iov_len;
2475 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2476 		bufsize = bytes_wanted;
2477 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2478 		odp = (struct dirent64 *)outbuf;
2479 	} else {
2480 		bufsize = bytes_wanted;
2481 		outbuf = NULL;
2482 		odp = (struct dirent64 *)iovp->iov_base;
2483 	}
2484 	eodp = (struct edirent *)odp;
2485 
2486 	/*
2487 	 * If this VFS supports the system attribute view interface; and
2488 	 * we're looking at an extended attribute directory; and we care
2489 	 * about normalization conflicts on this vfs; then we must check
2490 	 * for normalization conflicts with the sysattr name space.
2491 	 */
2492 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2493 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2494 	    (flags & V_RDDIR_ENTFLAGS);
2495 
2496 	/*
2497 	 * Transform to file-system independent format
2498 	 */
2499 	outcount = 0;
2500 	while (outcount < bytes_wanted) {
2501 		ino64_t objnum;
2502 		ushort_t reclen;
2503 		off64_t *next = NULL;
2504 
2505 		/*
2506 		 * Special case `.', `..', and `.zfs'.
2507 		 */
2508 		if (offset == 0) {
2509 			(void) strcpy(zap.za_name, ".");
2510 			zap.za_normalization_conflict = 0;
2511 			objnum = zp->z_id;
2512 		} else if (offset == 1) {
2513 			(void) strcpy(zap.za_name, "..");
2514 			zap.za_normalization_conflict = 0;
2515 			objnum = parent;
2516 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2517 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2518 			zap.za_normalization_conflict = 0;
2519 			objnum = ZFSCTL_INO_ROOT;
2520 		} else {
2521 			/*
2522 			 * Grab next entry.
2523 			 */
2524 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2525 				if ((*eofp = (error == ENOENT)) != 0)
2526 					break;
2527 				else
2528 					goto update;
2529 			}
2530 
2531 			if (zap.za_integer_length != 8 ||
2532 			    zap.za_num_integers != 1) {
2533 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2534 				    "entry, obj = %lld, offset = %lld\n",
2535 				    (u_longlong_t)zp->z_id,
2536 				    (u_longlong_t)offset);
2537 				error = SET_ERROR(ENXIO);
2538 				goto update;
2539 			}
2540 
2541 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2542 			/*
2543 			 * MacOS X can extract the object type here such as:
2544 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2545 			 */
2546 
2547 			if (check_sysattrs && !zap.za_normalization_conflict) {
2548 				zap.za_normalization_conflict =
2549 				    xattr_sysattr_casechk(zap.za_name);
2550 			}
2551 		}
2552 
2553 		if (flags & V_RDDIR_ACCFILTER) {
2554 			/*
2555 			 * If we have no access at all, don't include
2556 			 * this entry in the returned information
2557 			 */
2558 			znode_t	*ezp;
2559 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2560 				goto skip_entry;
2561 			if (!zfs_has_access(ezp, cr)) {
2562 				VN_RELE(ZTOV(ezp));
2563 				goto skip_entry;
2564 			}
2565 			VN_RELE(ZTOV(ezp));
2566 		}
2567 
2568 		if (flags & V_RDDIR_ENTFLAGS)
2569 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2570 		else
2571 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2572 
2573 		/*
2574 		 * Will this entry fit in the buffer?
2575 		 */
2576 		if (outcount + reclen > bufsize) {
2577 			/*
2578 			 * Did we manage to fit anything in the buffer?
2579 			 */
2580 			if (!outcount) {
2581 				error = SET_ERROR(EINVAL);
2582 				goto update;
2583 			}
2584 			break;
2585 		}
2586 		if (flags & V_RDDIR_ENTFLAGS) {
2587 			/*
2588 			 * Add extended flag entry:
2589 			 */
2590 			eodp->ed_ino = objnum;
2591 			eodp->ed_reclen = reclen;
2592 			/* NOTE: ed_off is the offset for the *next* entry */
2593 			next = &(eodp->ed_off);
2594 			eodp->ed_eflags = zap.za_normalization_conflict ?
2595 			    ED_CASE_CONFLICT : 0;
2596 			(void) strncpy(eodp->ed_name, zap.za_name,
2597 			    EDIRENT_NAMELEN(reclen));
2598 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2599 		} else {
2600 			/*
2601 			 * Add normal entry:
2602 			 */
2603 			odp->d_ino = objnum;
2604 			odp->d_reclen = reclen;
2605 			/* NOTE: d_off is the offset for the *next* entry */
2606 			next = &(odp->d_off);
2607 			(void) strncpy(odp->d_name, zap.za_name,
2608 			    DIRENT64_NAMELEN(reclen));
2609 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2610 		}
2611 		outcount += reclen;
2612 
2613 		ASSERT(outcount <= bufsize);
2614 
2615 		/* Prefetch znode */
2616 		if (prefetch)
2617 			dmu_prefetch(os, objnum, 0, 0, 0,
2618 			    ZIO_PRIORITY_SYNC_READ);
2619 
2620 	skip_entry:
2621 		/*
2622 		 * Move to the next entry, fill in the previous offset.
2623 		 */
2624 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2625 			zap_cursor_advance(&zc);
2626 			offset = zap_cursor_serialize(&zc);
2627 		} else {
2628 			offset += 1;
2629 		}
2630 		if (next)
2631 			*next = offset;
2632 	}
2633 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2634 
2635 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2636 		iovp->iov_base += outcount;
2637 		iovp->iov_len -= outcount;
2638 		uio->uio_resid -= outcount;
2639 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2640 		/*
2641 		 * Reset the pointer.
2642 		 */
2643 		offset = uio->uio_loffset;
2644 	}
2645 
2646 update:
2647 	zap_cursor_fini(&zc);
2648 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2649 		kmem_free(outbuf, bufsize);
2650 
2651 	if (error == ENOENT)
2652 		error = 0;
2653 
2654 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2655 
2656 	uio->uio_loffset = offset;
2657 	ZFS_EXIT(zfsvfs);
2658 	return (error);
2659 }
2660 
2661 static int
zfs_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)2662 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2663 {
2664 	znode_t	*zp = VTOZ(vp);
2665 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2666 
2667 	/*
2668 	 * Regardless of whether this is required for standards conformance,
2669 	 * this is the logical behavior when fsync() is called on a file with
2670 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2671 	 * going to be pushed out as part of the zil_commit().
2672 	 */
2673 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2674 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2675 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2676 
2677 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2678 		ZFS_ENTER(zfsvfs);
2679 		ZFS_VERIFY_ZP(zp);
2680 		zil_commit(zfsvfs->z_log, zp->z_id);
2681 		ZFS_EXIT(zfsvfs);
2682 	}
2683 	return (0);
2684 }
2685 
2686 
2687 /*
2688  * Get the requested file attributes and place them in the provided
2689  * vattr structure.
2690  *
2691  *	IN:	vp	- vnode of file.
2692  *		vap	- va_mask identifies requested attributes.
2693  *			  If AT_XVATTR set, then optional attrs are requested
2694  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2695  *		cr	- credentials of caller.
2696  *		ct	- caller context
2697  *
2698  *	OUT:	vap	- attribute values.
2699  *
2700  *	RETURN:	0 (always succeeds).
2701  */
2702 /* ARGSUSED */
2703 static int
zfs_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2704 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2705     caller_context_t *ct)
2706 {
2707 	znode_t *zp = VTOZ(vp);
2708 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2709 	int	error = 0;
2710 	uint64_t links;
2711 	uint64_t mtime[2], ctime[2];
2712 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2713 	xoptattr_t *xoap = NULL;
2714 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2715 	sa_bulk_attr_t bulk[2];
2716 	int count = 0;
2717 
2718 	ZFS_ENTER(zfsvfs);
2719 	ZFS_VERIFY_ZP(zp);
2720 
2721 	/*
2722 	 * When files have FUIDs (SIDs) for UID or GID, it can be
2723 	 * quite expensive to get the UID and GID values.
2724 	 * Avoid that when we can.
2725 	 */
2726 	if ((vap->va_mask & (AT_UID | AT_GID)) != 0) {
2727 		zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2728 	} else {
2729 		vap->va_uid = (uid_t)-1;
2730 		vap->va_gid = (gid_t)-1;
2731 	}
2732 
2733 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2734 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2735 
2736 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2737 		ZFS_EXIT(zfsvfs);
2738 		return (error);
2739 	}
2740 
2741 	/*
2742 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2743 	 * Also, if we are the owner don't bother, since owner should
2744 	 * always be allowed to read basic attributes of file.
2745 	 *
2746 	 * Also skip when flags & ATTR_NOACLCHECK, which is safe when
2747 	 * we only need ACE_READ_ATTRIBUTES or ACE_READ_ACL because
2748 	 * none of the other checks (dataset checks etc) done in
2749 	 * zfs_access_common apply to those permissions.
2750 	 *
2751 	 * Check "is owner" using zfs_fuid_is_cruser which optimizes
2752 	 * the case where both the object and owner have known SIDs.
2753 	 *
2754 	 * These optimizations are to avoid a potentially expensive
2755 	 * idmap up-call for these very frequent access checks.
2756 	 */
2757 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && !skipaclchk &&
2758 	    !zfs_fuid_is_cruser(zfsvfs, zp->z_uid, cr)) {
2759 		if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2760 		    B_FALSE, cr)) != 0) {
2761 			ZFS_EXIT(zfsvfs);
2762 			return (error);
2763 		}
2764 	}
2765 
2766 	/*
2767 	 * Return all attributes.  It's cheaper to provide the answer
2768 	 * than to determine whether we were asked the question.
2769 	 */
2770 
2771 	mutex_enter(&zp->z_lock);
2772 	vap->va_type = vp->v_type;
2773 	vap->va_mode = zp->z_mode & MODEMASK;
2774 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2775 	vap->va_nodeid = zp->z_id;
2776 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2777 		links = zp->z_links + 1;
2778 	else
2779 		links = zp->z_links;
2780 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2781 	vap->va_size = zp->z_size;
2782 	vap->va_rdev = vp->v_rdev;
2783 	vap->va_seq = zp->z_seq;
2784 
2785 	/*
2786 	 * Add in any requested optional attributes and the create time.
2787 	 * Also set the corresponding bits in the returned attribute bitmap.
2788 	 */
2789 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2790 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2791 			xoap->xoa_archive =
2792 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2793 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2794 		}
2795 
2796 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2797 			xoap->xoa_readonly =
2798 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2799 			XVA_SET_RTN(xvap, XAT_READONLY);
2800 		}
2801 
2802 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2803 			xoap->xoa_system =
2804 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2805 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2806 		}
2807 
2808 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2809 			xoap->xoa_hidden =
2810 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2811 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2812 		}
2813 
2814 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2815 			xoap->xoa_nounlink =
2816 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2817 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2818 		}
2819 
2820 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2821 			xoap->xoa_immutable =
2822 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2823 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2824 		}
2825 
2826 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2827 			xoap->xoa_appendonly =
2828 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2829 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2830 		}
2831 
2832 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2833 			xoap->xoa_nodump =
2834 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2835 			XVA_SET_RTN(xvap, XAT_NODUMP);
2836 		}
2837 
2838 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2839 			xoap->xoa_opaque =
2840 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2841 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2842 		}
2843 
2844 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2845 			xoap->xoa_av_quarantined =
2846 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2847 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2848 		}
2849 
2850 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2851 			xoap->xoa_av_modified =
2852 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2853 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2854 		}
2855 
2856 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2857 		    vp->v_type == VREG) {
2858 			zfs_sa_get_scanstamp(zp, xvap);
2859 		}
2860 
2861 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2862 			uint64_t times[2];
2863 
2864 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2865 			    times, sizeof (times));
2866 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2867 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2868 		}
2869 
2870 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2871 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2872 			XVA_SET_RTN(xvap, XAT_REPARSE);
2873 		}
2874 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2875 			xoap->xoa_generation = zp->z_gen;
2876 			XVA_SET_RTN(xvap, XAT_GEN);
2877 		}
2878 
2879 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2880 			xoap->xoa_offline =
2881 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2882 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2883 		}
2884 
2885 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2886 			xoap->xoa_sparse =
2887 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2888 			XVA_SET_RTN(xvap, XAT_SPARSE);
2889 		}
2890 
2891 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2892 			xoap->xoa_projinherit =
2893 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2894 			XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2895 		}
2896 
2897 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2898 			xoap->xoa_projid = zp->z_projid;
2899 			XVA_SET_RTN(xvap, XAT_PROJID);
2900 		}
2901 	}
2902 
2903 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2904 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2905 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2906 
2907 	mutex_exit(&zp->z_lock);
2908 
2909 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2910 
2911 	if (zp->z_blksz == 0) {
2912 		/*
2913 		 * Block size hasn't been set; suggest maximal I/O transfers.
2914 		 */
2915 		vap->va_blksize = zfsvfs->z_max_blksz;
2916 	}
2917 
2918 	ZFS_EXIT(zfsvfs);
2919 	return (0);
2920 }
2921 
2922 /*
2923  * For the operation of changing file's user/group/project, we need to
2924  * handle not only the main object that is assigned to the file directly,
2925  * but also the ones that are used by the file via hidden xattr directory.
2926  *
2927  * Because the xattr directory may contain many EA entries, it may be
2928  * impossible to change all of them in the same transaction as changing the
2929  * main object's user/group/project attributes. If so, we have to change them
2930  * via other multiple independent transactions one by one. It may be not a good
2931  * solution, but we have no better idea yet.
2932  */
2933 static int
zfs_setattr_dir(znode_t * dzp)2934 zfs_setattr_dir(znode_t *dzp)
2935 {
2936 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2937 	objset_t	*os = zfsvfs->z_os;
2938 	zap_cursor_t	zc;
2939 	zap_attribute_t	zap;
2940 	zfs_dirlock_t	*dl;
2941 	znode_t		*zp = NULL;
2942 	dmu_tx_t	*tx = NULL;
2943 	sa_bulk_attr_t	bulk[4];
2944 	int		count;
2945 	int		err;
2946 
2947 	zap_cursor_init(&zc, os, dzp->z_id);
2948 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2949 		count = 0;
2950 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2951 			err = ENXIO;
2952 			break;
2953 		}
2954 
2955 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2956 		    ZEXISTS, NULL, NULL);
2957 		if (err == ENOENT)
2958 			goto next;
2959 		if (err)
2960 			break;
2961 
2962 		if (zp->z_uid == dzp->z_uid &&
2963 		    zp->z_gid == dzp->z_gid &&
2964 		    zp->z_projid == dzp->z_projid)
2965 			goto next;
2966 
2967 		tx = dmu_tx_create(os);
2968 		if (!(zp->z_pflags & ZFS_PROJID))
2969 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2970 		else
2971 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2972 
2973 		err = dmu_tx_assign(tx, TXG_WAIT);
2974 		if (err)
2975 			break;
2976 
2977 		mutex_enter(&dzp->z_lock);
2978 
2979 		if (zp->z_uid != dzp->z_uid) {
2980 			zp->z_uid = dzp->z_uid;
2981 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2982 			    &dzp->z_uid, sizeof (dzp->z_uid));
2983 		}
2984 
2985 		if (zp->z_gid != dzp->z_gid) {
2986 			zp->z_gid = dzp->z_gid;
2987 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2988 			    &dzp->z_gid, sizeof (dzp->z_gid));
2989 		}
2990 
2991 		if (zp->z_projid != dzp->z_projid) {
2992 			if (!(zp->z_pflags & ZFS_PROJID)) {
2993 				zp->z_pflags |= ZFS_PROJID;
2994 				SA_ADD_BULK_ATTR(bulk, count,
2995 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2996 				    sizeof (zp->z_pflags));
2997 			}
2998 
2999 			zp->z_projid = dzp->z_projid;
3000 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
3001 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
3002 		}
3003 
3004 		mutex_exit(&dzp->z_lock);
3005 
3006 		if (likely(count > 0)) {
3007 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3008 			dmu_tx_commit(tx);
3009 		} else {
3010 			dmu_tx_abort(tx);
3011 		}
3012 		tx = NULL;
3013 		if (err != 0 && err != ENOENT)
3014 			break;
3015 
3016 next:
3017 		if (zp) {
3018 			VN_RELE(ZTOV(zp));
3019 			zp = NULL;
3020 			zfs_dirent_unlock(dl);
3021 		}
3022 		zap_cursor_advance(&zc);
3023 	}
3024 
3025 	if (tx)
3026 		dmu_tx_abort(tx);
3027 	if (zp) {
3028 		VN_RELE(ZTOV(zp));
3029 		zfs_dirent_unlock(dl);
3030 	}
3031 	zap_cursor_fini(&zc);
3032 
3033 	return (err == ENOENT ? 0 : err);
3034 }
3035 
3036 /*
3037  * Set the file attributes to the values contained in the
3038  * vattr structure.
3039  *
3040  *	IN:	vp	- vnode of file to be modified.
3041  *		vap	- new attribute values.
3042  *			  If AT_XVATTR set, then optional attrs are being set
3043  *		flags	- ATTR_UTIME set if non-default time values provided.
3044  *			- ATTR_NOACLCHECK (CIFS context only).
3045  *		cr	- credentials of caller.
3046  *		ct	- caller context
3047  *
3048  *	RETURN:	0 on success, error code on failure.
3049  *
3050  * Timestamps:
3051  *	vp - ctime updated, mtime updated if size changed.
3052  */
3053 /* ARGSUSED */
3054 static int
zfs_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)3055 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
3056     caller_context_t *ct)
3057 {
3058 	znode_t		*zp = VTOZ(vp);
3059 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3060 	objset_t	*os = zfsvfs->z_os;
3061 	zilog_t		*zilog;
3062 	dmu_tx_t	*tx;
3063 	vattr_t		oldva;
3064 	xvattr_t	tmpxvattr;
3065 	uint_t		mask = vap->va_mask;
3066 	uint_t		saved_mask = 0;
3067 	int		trim_mask = 0;
3068 	uint64_t	new_mode;
3069 	uint64_t	new_uid, new_gid;
3070 	uint64_t	xattr_obj;
3071 	uint64_t	mtime[2], ctime[2];
3072 	uint64_t	projid = ZFS_INVALID_PROJID;
3073 	znode_t		*attrzp;
3074 	int		need_policy = FALSE;
3075 	int		err, err2 = 0;
3076 	zfs_fuid_info_t *fuidp = NULL;
3077 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3078 	xoptattr_t	*xoap;
3079 	zfs_acl_t	*aclp;
3080 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3081 	boolean_t	fuid_dirtied = B_FALSE;
3082 	boolean_t	handle_eadir = B_FALSE;
3083 	boolean_t	zp_acl_entered = B_FALSE;
3084 	boolean_t	attr_acl_entered = B_FALSE;
3085 	sa_bulk_attr_t	bulk[8], xattr_bulk[8];
3086 	int		count = 0, xattr_count = 0;
3087 
3088 	if (mask == 0)
3089 		return (0);
3090 
3091 	if (mask & AT_NOSET)
3092 		return (SET_ERROR(EINVAL));
3093 
3094 	ZFS_ENTER(zfsvfs);
3095 	ZFS_VERIFY_ZP(zp);
3096 
3097 	/*
3098 	 * If this is a xvattr_t, then get a pointer to the structure of
3099 	 * optional attributes.  If this is NULL, then we have a vattr_t.
3100 	 */
3101 	xoap = xva_getxoptattr(xvap);
3102 	if (xoap != NULL && (mask & AT_XVATTR)) {
3103 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
3104 			if (!dmu_objset_projectquota_enabled(os) ||
3105 			    (vp->v_type != VREG && vp->v_type != VDIR)) {
3106 				ZFS_EXIT(zfsvfs);
3107 				return (SET_ERROR(ENOTSUP));
3108 			}
3109 
3110 			projid = xoap->xoa_projid;
3111 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
3112 				ZFS_EXIT(zfsvfs);
3113 				return (SET_ERROR(EINVAL));
3114 			}
3115 
3116 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
3117 				projid = ZFS_INVALID_PROJID;
3118 			else
3119 				need_policy = TRUE;
3120 		}
3121 
3122 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
3123 		    (!dmu_objset_projectquota_enabled(os) ||
3124 		    (vp->v_type != VREG && vp->v_type != VDIR))) {
3125 				ZFS_EXIT(zfsvfs);
3126 				return (SET_ERROR(ENOTSUP));
3127 		}
3128 	}
3129 
3130 	zilog = zfsvfs->z_log;
3131 
3132 	/*
3133 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3134 	 * that file system is at proper version level
3135 	 */
3136 
3137 	if (zfsvfs->z_use_fuids == B_FALSE &&
3138 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3139 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3140 	    (mask & AT_XVATTR))) {
3141 		ZFS_EXIT(zfsvfs);
3142 		return (SET_ERROR(EINVAL));
3143 	}
3144 
3145 	if (mask & AT_SIZE && vp->v_type == VDIR) {
3146 		ZFS_EXIT(zfsvfs);
3147 		return (SET_ERROR(EISDIR));
3148 	}
3149 
3150 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3151 		ZFS_EXIT(zfsvfs);
3152 		return (SET_ERROR(EINVAL));
3153 	}
3154 
3155 	xva_init(&tmpxvattr);
3156 
3157 	/*
3158 	 * Immutable files can only alter immutable bit and atime
3159 	 */
3160 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3161 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3162 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3163 		ZFS_EXIT(zfsvfs);
3164 		return (SET_ERROR(EPERM));
3165 	}
3166 
3167 	/*
3168 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
3169 	 */
3170 
3171 	/*
3172 	 * Verify timestamps doesn't overflow 32 bits.
3173 	 * ZFS can handle large timestamps, but 32bit syscalls can't
3174 	 * handle times greater than 2039.  This check should be removed
3175 	 * once large timestamps are fully supported.
3176 	 */
3177 	if (mask & (AT_ATIME | AT_MTIME)) {
3178 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3179 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3180 			ZFS_EXIT(zfsvfs);
3181 			return (SET_ERROR(EOVERFLOW));
3182 		}
3183 	}
3184 
3185 top:
3186 	attrzp = NULL;
3187 	aclp = NULL;
3188 
3189 	/* Can this be moved to before the top label? */
3190 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3191 		ZFS_EXIT(zfsvfs);
3192 		return (SET_ERROR(EROFS));
3193 	}
3194 
3195 	/*
3196 	 * First validate permissions
3197 	 */
3198 
3199 	if (mask & AT_SIZE) {
3200 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
3201 		if (err) {
3202 			ZFS_EXIT(zfsvfs);
3203 			return (err);
3204 		}
3205 		/*
3206 		 * XXX - Note, we are not providing any open
3207 		 * mode flags here (like FNDELAY), so we may
3208 		 * block if there are locks present... this
3209 		 * should be addressed in openat().
3210 		 */
3211 		/* XXX - would it be OK to generate a log record here? */
3212 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3213 		if (err) {
3214 			ZFS_EXIT(zfsvfs);
3215 			return (err);
3216 		}
3217 
3218 		if (vap->va_size == 0)
3219 			vnevent_truncate(ZTOV(zp), ct);
3220 	}
3221 
3222 	if (mask & (AT_ATIME|AT_MTIME) ||
3223 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3224 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3225 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3226 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3227 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3228 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3229 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3230 		err = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3231 		    skipaclchk, cr);
3232 		if (err != 0)
3233 			need_policy = TRUE;
3234 	}
3235 
3236 	if (mask & (AT_UID|AT_GID)) {
3237 		int	idmask = (mask & (AT_UID|AT_GID));
3238 		int	take_owner;
3239 		int	take_group;
3240 
3241 		/*
3242 		 * NOTE: even if a new mode is being set,
3243 		 * we may clear S_ISUID/S_ISGID bits.
3244 		 */
3245 
3246 		if (!(mask & AT_MODE))
3247 			vap->va_mode = zp->z_mode;
3248 
3249 		/*
3250 		 * Take ownership or chgrp to group we are a member of
3251 		 */
3252 
3253 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3254 		take_group = (mask & AT_GID) &&
3255 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3256 
3257 		/*
3258 		 * If both AT_UID and AT_GID are set then take_owner and
3259 		 * take_group must both be set in order to allow taking
3260 		 * ownership.
3261 		 *
3262 		 * Otherwise, send the check through secpolicy_vnode_setattr()
3263 		 *
3264 		 */
3265 
3266 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3267 		    ((idmask == AT_UID) && take_owner) ||
3268 		    ((idmask == AT_GID) && take_group)) {
3269 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3270 			    skipaclchk, cr) == 0) {
3271 				/*
3272 				 * Remove setuid/setgid for non-privileged users
3273 				 */
3274 				secpolicy_setid_clear(vap, cr);
3275 				trim_mask = (mask & (AT_UID|AT_GID));
3276 			} else {
3277 				need_policy =  TRUE;
3278 			}
3279 		} else {
3280 			need_policy =  TRUE;
3281 		}
3282 	}
3283 
3284 	mutex_enter(&zp->z_lock);
3285 	if (mask & AT_XVATTR) {
3286 		/*
3287 		 * Update xvattr mask to include only those attributes
3288 		 * that are actually changing.
3289 		 *
3290 		 * the bits will be restored prior to actually setting
3291 		 * the attributes so the caller thinks they were set.
3292 		 */
3293 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3294 			if (xoap->xoa_appendonly !=
3295 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3296 				need_policy = TRUE;
3297 			} else {
3298 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3299 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3300 			}
3301 		}
3302 
3303 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3304 			if (xoap->xoa_projinherit !=
3305 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3306 				need_policy = TRUE;
3307 			} else {
3308 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3309 				XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT);
3310 			}
3311 		}
3312 
3313 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3314 			if (xoap->xoa_nounlink !=
3315 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3316 				need_policy = TRUE;
3317 			} else {
3318 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3319 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3320 			}
3321 		}
3322 
3323 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3324 			if (xoap->xoa_immutable !=
3325 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3326 				need_policy = TRUE;
3327 			} else {
3328 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3329 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3330 			}
3331 		}
3332 
3333 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3334 			if (xoap->xoa_nodump !=
3335 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3336 				need_policy = TRUE;
3337 			} else {
3338 				XVA_CLR_REQ(xvap, XAT_NODUMP);
3339 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3340 			}
3341 		}
3342 
3343 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3344 			if (xoap->xoa_av_modified !=
3345 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3346 				need_policy = TRUE;
3347 			} else {
3348 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3349 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3350 			}
3351 		}
3352 
3353 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3354 			if ((vp->v_type != VREG &&
3355 			    xoap->xoa_av_quarantined) ||
3356 			    xoap->xoa_av_quarantined !=
3357 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3358 				need_policy = TRUE;
3359 			} else {
3360 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3361 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3362 			}
3363 		}
3364 
3365 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3366 			mutex_exit(&zp->z_lock);
3367 			ZFS_EXIT(zfsvfs);
3368 			return (SET_ERROR(EPERM));
3369 		}
3370 
3371 		if (need_policy == FALSE &&
3372 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3373 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3374 			need_policy = TRUE;
3375 		}
3376 	}
3377 
3378 	if (need_policy || (mask & AT_MODE) != 0) {
3379 		oldva.va_mode = zp->z_mode;
3380 		zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3381 	}
3382 
3383 	mutex_exit(&zp->z_lock);
3384 
3385 	if (mask & AT_MODE) {
3386 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3387 			err = secpolicy_setid_setsticky_clear(vp, vap,
3388 			    &oldva, cr);
3389 			if (err) {
3390 				ZFS_EXIT(zfsvfs);
3391 				return (err);
3392 			}
3393 			trim_mask |= AT_MODE;
3394 		} else {
3395 			need_policy = TRUE;
3396 		}
3397 	}
3398 
3399 	if (need_policy) {
3400 		/*
3401 		 * If trim_mask is set then take ownership
3402 		 * has been granted or write_acl is present and user
3403 		 * has the ability to modify mode.  In that case remove
3404 		 * UID|GID and or MODE from mask so that
3405 		 * secpolicy_vnode_setattr() doesn't revoke it.
3406 		 * If acl_implicit (implicit owner rights) is false,
3407 		 * tell secpolicy about that via the flags.
3408 		 */
3409 
3410 		if (zfsvfs->z_acl_implicit == B_FALSE)
3411 			flags |= ATTR_NOIMPLICIT;
3412 		if (trim_mask) {
3413 			saved_mask = vap->va_mask;
3414 			vap->va_mask &= ~trim_mask;
3415 		}
3416 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3417 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3418 		if (err) {
3419 			ZFS_EXIT(zfsvfs);
3420 			return (err);
3421 		}
3422 
3423 		if (trim_mask)
3424 			vap->va_mask |= saved_mask;
3425 	}
3426 
3427 	/*
3428 	 * secpolicy_vnode_setattr, or take ownership may have
3429 	 * changed va_mask
3430 	 */
3431 	mask = vap->va_mask;
3432 
3433 	if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) {
3434 		handle_eadir = B_TRUE;
3435 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3436 		    &xattr_obj, sizeof (xattr_obj));
3437 
3438 		if (err == 0 && xattr_obj) {
3439 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3440 			if (err)
3441 				goto out2;
3442 		}
3443 		if (mask & AT_UID) {
3444 			new_uid = zfs_fuid_create(zfsvfs,
3445 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3446 			if (new_uid != zp->z_uid &&
3447 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3448 			    new_uid)) {
3449 				if (attrzp)
3450 					VN_RELE(ZTOV(attrzp));
3451 				err = SET_ERROR(EDQUOT);
3452 				goto out2;
3453 			}
3454 		}
3455 
3456 		if (mask & AT_GID) {
3457 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3458 			    cr, ZFS_GROUP, &fuidp);
3459 			if (new_gid != zp->z_gid &&
3460 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3461 			    new_gid)) {
3462 				if (attrzp)
3463 					VN_RELE(ZTOV(attrzp));
3464 				err = SET_ERROR(EDQUOT);
3465 				goto out2;
3466 			}
3467 		}
3468 
3469 		if (projid != ZFS_INVALID_PROJID &&
3470 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3471 			if (attrzp)
3472 				VN_RELE(ZTOV(attrzp));
3473 			err = EDQUOT;
3474 			goto out2;
3475 		}
3476 	}
3477 	tx = dmu_tx_create(os);
3478 
3479 	if (mask & AT_MODE) {
3480 		uint64_t pmode = zp->z_mode;
3481 		uint64_t acl_obj;
3482 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3483 
3484 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3485 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3486 			err = SET_ERROR(EPERM);
3487 			goto out;
3488 		}
3489 
3490 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3491 			goto out;
3492 
3493 		mutex_enter(&zp->z_lock);
3494 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3495 			/*
3496 			 * Are we upgrading ACL from old V0 format
3497 			 * to V1 format?
3498 			 */
3499 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3500 			    zfs_znode_acl_version(zp) ==
3501 			    ZFS_ACL_VERSION_INITIAL) {
3502 				dmu_tx_hold_free(tx, acl_obj, 0,
3503 				    DMU_OBJECT_END);
3504 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3505 				    0, aclp->z_acl_bytes);
3506 			} else {
3507 				dmu_tx_hold_write(tx, acl_obj, 0,
3508 				    aclp->z_acl_bytes);
3509 			}
3510 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3511 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3512 			    0, aclp->z_acl_bytes);
3513 		}
3514 		mutex_exit(&zp->z_lock);
3515 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3516 	} else {
3517 		if (((mask & AT_XVATTR) &&
3518 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3519 		    (projid != ZFS_INVALID_PROJID &&
3520 		    !(zp->z_pflags & ZFS_PROJID)))
3521 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3522 		else
3523 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3524 	}
3525 
3526 	if (attrzp) {
3527 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3528 	}
3529 
3530 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3531 	if (fuid_dirtied)
3532 		zfs_fuid_txhold(zfsvfs, tx);
3533 
3534 	zfs_sa_upgrade_txholds(tx, zp);
3535 
3536 	err = dmu_tx_assign(tx, TXG_WAIT);
3537 	if (err)
3538 		goto out;
3539 
3540 	count = 0;
3541 	/*
3542 	 * Set each attribute requested.
3543 	 * We group settings according to the locks they need to acquire.
3544 	 *
3545 	 * Note: you cannot set ctime directly, although it will be
3546 	 * updated as a side-effect of calling this function.
3547 	 */
3548 
3549 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3550 		/*
3551 		 * For the existing object that is upgraded from old system,
3552 		 * its on-disk layout has no slot for the project ID attribute.
3553 		 * But quota accounting logic needs to access related slots by
3554 		 * offset directly. So we need to adjust old objects' layout
3555 		 * to make the project ID to some unified and fixed offset.
3556 		 */
3557 		if (attrzp)
3558 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3559 		if (err == 0)
3560 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3561 
3562 		if (unlikely(err == EEXIST))
3563 			err = 0;
3564 		else if (err != 0)
3565 			goto out;
3566 		else
3567 			projid = ZFS_INVALID_PROJID;
3568 	}
3569 
3570 	if (mask & (AT_UID|AT_GID|AT_MODE)) {
3571 		rw_enter(&zp->z_acl_lock, RW_WRITER);
3572 		zp_acl_entered = B_TRUE;
3573 	}
3574 	mutex_enter(&zp->z_lock);
3575 
3576 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3577 	    &zp->z_pflags, sizeof (zp->z_pflags));
3578 
3579 	if (attrzp) {
3580 		if (mask & (AT_UID|AT_GID|AT_MODE)) {
3581 			rw_enter(&attrzp->z_acl_lock, RW_WRITER);
3582 			attr_acl_entered = B_TRUE;
3583 		}
3584 		mutex_enter(&attrzp->z_lock);
3585 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3586 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3587 		    sizeof (attrzp->z_pflags));
3588 		if (projid != ZFS_INVALID_PROJID) {
3589 			attrzp->z_projid = projid;
3590 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3591 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3592 			    sizeof (attrzp->z_projid));
3593 		}
3594 	}
3595 
3596 	if (mask & (AT_UID|AT_GID)) {
3597 
3598 		if (mask & AT_UID) {
3599 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3600 			    &new_uid, sizeof (new_uid));
3601 			zp->z_uid = new_uid;
3602 			if (attrzp) {
3603 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3604 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3605 				    sizeof (new_uid));
3606 				attrzp->z_uid = new_uid;
3607 			}
3608 		}
3609 
3610 		if (mask & AT_GID) {
3611 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3612 			    NULL, &new_gid, sizeof (new_gid));
3613 			zp->z_gid = new_gid;
3614 			if (attrzp) {
3615 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3616 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3617 				    sizeof (new_gid));
3618 				attrzp->z_gid = new_gid;
3619 			}
3620 		}
3621 		if (!(mask & AT_MODE)) {
3622 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3623 			    NULL, &new_mode, sizeof (new_mode));
3624 			new_mode = zp->z_mode;
3625 		}
3626 		err = zfs_acl_chown_setattr(zp);
3627 		ASSERT(err == 0);
3628 		if (attrzp) {
3629 			err = zfs_acl_chown_setattr(attrzp);
3630 			ASSERT(err == 0);
3631 		}
3632 	}
3633 
3634 	if (mask & AT_MODE) {
3635 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3636 		    &new_mode, sizeof (new_mode));
3637 		zp->z_mode = new_mode;
3638 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3639 		err = zfs_aclset_common(zp, aclp, cr, tx);
3640 		ASSERT0(err);
3641 		if (zp->z_acl_cached)
3642 			zfs_acl_free(zp->z_acl_cached);
3643 		zp->z_acl_cached = aclp;
3644 		aclp = NULL;
3645 	}
3646 
3647 
3648 	if (mask & AT_ATIME) {
3649 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3650 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3651 		    &zp->z_atime, sizeof (zp->z_atime));
3652 	}
3653 
3654 	if (mask & AT_MTIME) {
3655 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3656 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3657 		    mtime, sizeof (mtime));
3658 	}
3659 
3660 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3661 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3662 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3663 		    NULL, mtime, sizeof (mtime));
3664 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3665 		    &ctime, sizeof (ctime));
3666 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3667 		    B_TRUE);
3668 	} else if (mask != 0) {
3669 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3670 		    &ctime, sizeof (ctime));
3671 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3672 		    B_TRUE);
3673 		if (attrzp) {
3674 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3675 			    SA_ZPL_CTIME(zfsvfs), NULL,
3676 			    &ctime, sizeof (ctime));
3677 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3678 			    mtime, ctime, B_TRUE);
3679 		}
3680 	}
3681 
3682 	if (projid != ZFS_INVALID_PROJID) {
3683 		zp->z_projid = projid;
3684 		SA_ADD_BULK_ATTR(bulk, count,
3685 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3686 		    sizeof (zp->z_projid));
3687 	}
3688 
3689 	/*
3690 	 * Do this after setting timestamps to prevent timestamp
3691 	 * update from toggling bit
3692 	 */
3693 
3694 	if (xoap && (mask & AT_XVATTR)) {
3695 
3696 		/*
3697 		 * restore trimmed off masks
3698 		 * so that return masks can be set for caller.
3699 		 */
3700 
3701 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3702 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3703 		}
3704 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3705 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3706 		}
3707 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3708 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3709 		}
3710 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3711 			XVA_SET_REQ(xvap, XAT_NODUMP);
3712 		}
3713 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3714 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3715 		}
3716 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3717 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3718 		}
3719 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) {
3720 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3721 		}
3722 
3723 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3724 			ASSERT(vp->v_type == VREG);
3725 
3726 		zfs_xvattr_set(zp, xvap, tx);
3727 	}
3728 
3729 	if (fuid_dirtied)
3730 		zfs_fuid_sync(zfsvfs, tx);
3731 
3732 	if (mask != 0)
3733 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3734 
3735 	if (attrzp) {
3736 		if (attr_acl_entered)
3737 			rw_exit(&attrzp->z_acl_lock);
3738 		mutex_exit(&attrzp->z_lock);
3739 	}
3740 
3741 	mutex_exit(&zp->z_lock);
3742 	if (zp_acl_entered)
3743 		rw_exit(&zp->z_acl_lock);
3744 out:
3745 	if (err == 0 && xattr_count > 0) {
3746 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3747 		    xattr_count, tx);
3748 		ASSERT(err2 == 0);
3749 	}
3750 
3751 	if (aclp)
3752 		zfs_acl_free(aclp);
3753 
3754 	if (fuidp) {
3755 		zfs_fuid_info_free(fuidp);
3756 		fuidp = NULL;
3757 	}
3758 
3759 	if (err) {
3760 		dmu_tx_abort(tx);
3761 		if (attrzp)
3762 			VN_RELE(ZTOV(attrzp));
3763 		if (err == ERESTART)
3764 			goto top;
3765 	} else {
3766 		if (count > 0)
3767 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3768 		dmu_tx_commit(tx);
3769 		if (attrzp) {
3770 			if (err2 == 0 && handle_eadir)
3771 				err2 = zfs_setattr_dir(attrzp);
3772 			VN_RELE(ZTOV(attrzp));
3773 		}
3774 	}
3775 
3776 out2:
3777 	if (os->os_sync == ZFS_SYNC_ALWAYS)
3778 		zil_commit(zilog, 0);
3779 
3780 	ZFS_EXIT(zfsvfs);
3781 	return (err);
3782 }
3783 
3784 typedef struct zfs_zlock {
3785 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3786 	znode_t		*zl_znode;	/* znode we held */
3787 	struct zfs_zlock *zl_next;	/* next in list */
3788 } zfs_zlock_t;
3789 
3790 /*
3791  * Drop locks and release vnodes that were held by zfs_rename_lock().
3792  */
3793 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)3794 zfs_rename_unlock(zfs_zlock_t **zlpp)
3795 {
3796 	zfs_zlock_t *zl;
3797 
3798 	while ((zl = *zlpp) != NULL) {
3799 		if (zl->zl_znode != NULL)
3800 			VN_RELE(ZTOV(zl->zl_znode));
3801 		rw_exit(zl->zl_rwlock);
3802 		*zlpp = zl->zl_next;
3803 		kmem_free(zl, sizeof (*zl));
3804 	}
3805 }
3806 
3807 /*
3808  * Search back through the directory tree, using the ".." entries.
3809  * Lock each directory in the chain to prevent concurrent renames.
3810  * Fail any attempt to move a directory into one of its own descendants.
3811  * XXX - z_parent_lock can overlap with map or grow locks
3812  */
3813 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)3814 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3815 {
3816 	zfs_zlock_t	*zl;
3817 	znode_t		*zp = tdzp;
3818 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3819 	uint64_t	oidp = zp->z_id;
3820 	krwlock_t	*rwlp = &szp->z_parent_lock;
3821 	krw_t		rw = RW_WRITER;
3822 
3823 	/*
3824 	 * First pass write-locks szp and compares to zp->z_id.
3825 	 * Later passes read-lock zp and compare to zp->z_parent.
3826 	 */
3827 	do {
3828 		if (!rw_tryenter(rwlp, rw)) {
3829 			/*
3830 			 * Another thread is renaming in this path.
3831 			 * Note that if we are a WRITER, we don't have any
3832 			 * parent_locks held yet.
3833 			 */
3834 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3835 				/*
3836 				 * Drop our locks and restart
3837 				 */
3838 				zfs_rename_unlock(&zl);
3839 				*zlpp = NULL;
3840 				zp = tdzp;
3841 				oidp = zp->z_id;
3842 				rwlp = &szp->z_parent_lock;
3843 				rw = RW_WRITER;
3844 				continue;
3845 			} else {
3846 				/*
3847 				 * Wait for other thread to drop its locks
3848 				 */
3849 				rw_enter(rwlp, rw);
3850 			}
3851 		}
3852 
3853 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3854 		zl->zl_rwlock = rwlp;
3855 		zl->zl_znode = NULL;
3856 		zl->zl_next = *zlpp;
3857 		*zlpp = zl;
3858 
3859 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3860 			return (SET_ERROR(EINVAL));
3861 
3862 		if (oidp == rootid)		/* We've hit the top */
3863 			return (0);
3864 
3865 		if (rw == RW_READER) {		/* i.e. not the first pass */
3866 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3867 			if (error)
3868 				return (error);
3869 			zl->zl_znode = zp;
3870 		}
3871 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3872 		    &oidp, sizeof (oidp));
3873 		rwlp = &zp->z_parent_lock;
3874 		rw = RW_READER;
3875 
3876 	} while (zp->z_id != sdzp->z_id);
3877 
3878 	return (0);
3879 }
3880 
3881 /*
3882  * Move an entry from the provided source directory to the target
3883  * directory.  Change the entry name as indicated.
3884  *
3885  *	IN:	sdvp	- Source directory containing the "old entry".
3886  *		snm	- Old entry name.
3887  *		tdvp	- Target directory to contain the "new entry".
3888  *		tnm	- New entry name.
3889  *		cr	- credentials of caller.
3890  *		ct	- caller context
3891  *		flags	- case flags
3892  *
3893  *	RETURN:	0 on success, error code on failure.
3894  *
3895  * Timestamps:
3896  *	sdvp,tdvp - ctime|mtime updated
3897  */
3898 /*ARGSUSED*/
3899 static int
zfs_rename(vnode_t * sdvp,char * snm,vnode_t * tdvp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3900 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3901     caller_context_t *ct, int flags)
3902 {
3903 	znode_t		*tdzp, *szp, *tzp;
3904 	znode_t		*sdzp = VTOZ(sdvp);
3905 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3906 	zilog_t		*zilog;
3907 	vnode_t		*realvp;
3908 	zfs_dirlock_t	*sdl, *tdl;
3909 	dmu_tx_t	*tx;
3910 	zfs_zlock_t	*zl;
3911 	int		cmp, serr, terr;
3912 	int		error = 0, rm_err = 0;
3913 	int		zflg = 0;
3914 	boolean_t	waited = B_FALSE;
3915 
3916 	ZFS_ENTER(zfsvfs);
3917 	ZFS_VERIFY_ZP(sdzp);
3918 	zilog = zfsvfs->z_log;
3919 
3920 	/*
3921 	 * Make sure we have the real vp for the target directory.
3922 	 */
3923 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3924 		tdvp = realvp;
3925 
3926 	tdzp = VTOZ(tdvp);
3927 	ZFS_VERIFY_ZP(tdzp);
3928 
3929 	/*
3930 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3931 	 * ctldir appear to have the same v_vfsp.
3932 	 */
3933 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3934 		ZFS_EXIT(zfsvfs);
3935 		return (SET_ERROR(EXDEV));
3936 	}
3937 
3938 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3939 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3940 		ZFS_EXIT(zfsvfs);
3941 		return (SET_ERROR(EILSEQ));
3942 	}
3943 
3944 	if (flags & FIGNORECASE)
3945 		zflg |= ZCILOOK;
3946 
3947 top:
3948 	szp = NULL;
3949 	tzp = NULL;
3950 	zl = NULL;
3951 
3952 	/*
3953 	 * This is to prevent the creation of links into attribute space
3954 	 * by renaming a linked file into/outof an attribute directory.
3955 	 * See the comment in zfs_link() for why this is considered bad.
3956 	 */
3957 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3958 		ZFS_EXIT(zfsvfs);
3959 		return (SET_ERROR(EINVAL));
3960 	}
3961 
3962 	/*
3963 	 * Lock source and target directory entries.  To prevent deadlock,
3964 	 * a lock ordering must be defined.  We lock the directory with
3965 	 * the smallest object id first, or if it's a tie, the one with
3966 	 * the lexically first name.
3967 	 */
3968 	if (sdzp->z_id < tdzp->z_id) {
3969 		cmp = -1;
3970 	} else if (sdzp->z_id > tdzp->z_id) {
3971 		cmp = 1;
3972 	} else {
3973 		/*
3974 		 * First compare the two name arguments without
3975 		 * considering any case folding.
3976 		 */
3977 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3978 
3979 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3980 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3981 		if (cmp == 0) {
3982 			/*
3983 			 * POSIX: "If the old argument and the new argument
3984 			 * both refer to links to the same existing file,
3985 			 * the rename() function shall return successfully
3986 			 * and perform no other action."
3987 			 */
3988 			ZFS_EXIT(zfsvfs);
3989 			return (0);
3990 		}
3991 		/*
3992 		 * If the file system is case-folding, then we may
3993 		 * have some more checking to do.  A case-folding file
3994 		 * system is either supporting mixed case sensitivity
3995 		 * access or is completely case-insensitive.  Note
3996 		 * that the file system is always case preserving.
3997 		 *
3998 		 * In mixed sensitivity mode case sensitive behavior
3999 		 * is the default.  FIGNORECASE must be used to
4000 		 * explicitly request case insensitive behavior.
4001 		 *
4002 		 * If the source and target names provided differ only
4003 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
4004 		 * we will treat this as a special case in the
4005 		 * case-insensitive mode: as long as the source name
4006 		 * is an exact match, we will allow this to proceed as
4007 		 * a name-change request.
4008 		 */
4009 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
4010 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
4011 		    flags & FIGNORECASE)) &&
4012 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
4013 		    &error) == 0) {
4014 			/*
4015 			 * case preserving rename request, require exact
4016 			 * name matches
4017 			 */
4018 			zflg |= ZCIEXACT;
4019 			zflg &= ~ZCILOOK;
4020 		}
4021 	}
4022 
4023 	/*
4024 	 * If the source and destination directories are the same, we should
4025 	 * grab the z_name_lock of that directory only once.
4026 	 */
4027 	if (sdzp == tdzp) {
4028 		zflg |= ZHAVELOCK;
4029 		rw_enter(&sdzp->z_name_lock, RW_READER);
4030 	}
4031 
4032 	if (cmp < 0) {
4033 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
4034 		    ZEXISTS | zflg, NULL, NULL);
4035 		terr = zfs_dirent_lock(&tdl,
4036 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
4037 	} else {
4038 		terr = zfs_dirent_lock(&tdl,
4039 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
4040 		serr = zfs_dirent_lock(&sdl,
4041 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
4042 		    NULL, NULL);
4043 	}
4044 
4045 	if (serr) {
4046 		/*
4047 		 * Source entry invalid or not there.
4048 		 */
4049 		if (!terr) {
4050 			zfs_dirent_unlock(tdl);
4051 			if (tzp)
4052 				VN_RELE(ZTOV(tzp));
4053 		}
4054 
4055 		if (sdzp == tdzp)
4056 			rw_exit(&sdzp->z_name_lock);
4057 
4058 		if (strcmp(snm, "..") == 0)
4059 			serr = SET_ERROR(EINVAL);
4060 		ZFS_EXIT(zfsvfs);
4061 		return (serr);
4062 	}
4063 	if (terr) {
4064 		zfs_dirent_unlock(sdl);
4065 		VN_RELE(ZTOV(szp));
4066 
4067 		if (sdzp == tdzp)
4068 			rw_exit(&sdzp->z_name_lock);
4069 
4070 		if (strcmp(tnm, "..") == 0)
4071 			terr = SET_ERROR(EINVAL);
4072 		ZFS_EXIT(zfsvfs);
4073 		return (terr);
4074 	}
4075 
4076 	/*
4077 	 * If we are using project inheritance, it means if the directory has
4078 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4079 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4080 	 * such case, we only allow renames into our tree when the project
4081 	 * IDs are the same.
4082 	 */
4083 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
4084 	    tdzp->z_projid != szp->z_projid) {
4085 		error = SET_ERROR(EXDEV);
4086 		goto out;
4087 	}
4088 
4089 	/*
4090 	 * Must have write access at the source to remove the old entry
4091 	 * and write access at the target to create the new entry.
4092 	 * Note that if target and source are the same, this can be
4093 	 * done in a single check.
4094 	 */
4095 
4096 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
4097 		goto out;
4098 
4099 	if (ZTOV(szp)->v_type == VDIR) {
4100 		/*
4101 		 * Check to make sure rename is valid.
4102 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
4103 		 */
4104 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
4105 			goto out;
4106 	}
4107 
4108 	/*
4109 	 * Does target exist?
4110 	 */
4111 	if (tzp) {
4112 		/*
4113 		 * Source and target must be the same type.
4114 		 */
4115 		if (ZTOV(szp)->v_type == VDIR) {
4116 			if (ZTOV(tzp)->v_type != VDIR) {
4117 				error = SET_ERROR(ENOTDIR);
4118 				goto out;
4119 			}
4120 		} else {
4121 			if (ZTOV(tzp)->v_type == VDIR) {
4122 				error = SET_ERROR(EISDIR);
4123 				goto out;
4124 			}
4125 		}
4126 		/*
4127 		 * POSIX dictates that when the source and target
4128 		 * entries refer to the same file object, rename
4129 		 * must do nothing and exit without error.
4130 		 */
4131 		if (szp->z_id == tzp->z_id) {
4132 			error = 0;
4133 			goto out;
4134 		}
4135 	}
4136 
4137 	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
4138 	if (tzp)
4139 		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4140 
4141 	/*
4142 	 * notify the target directory if it is not the same
4143 	 * as source directory.
4144 	 */
4145 	if (tdvp != sdvp) {
4146 		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
4147 	}
4148 
4149 	tx = dmu_tx_create(zfsvfs->z_os);
4150 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4151 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
4152 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
4153 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
4154 	if (sdzp != tdzp) {
4155 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
4156 		zfs_sa_upgrade_txholds(tx, tdzp);
4157 	}
4158 	if (tzp) {
4159 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
4160 		zfs_sa_upgrade_txholds(tx, tzp);
4161 	}
4162 
4163 	zfs_sa_upgrade_txholds(tx, szp);
4164 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4165 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4166 	if (error) {
4167 		if (zl != NULL)
4168 			zfs_rename_unlock(&zl);
4169 		zfs_dirent_unlock(sdl);
4170 		zfs_dirent_unlock(tdl);
4171 
4172 		if (sdzp == tdzp)
4173 			rw_exit(&sdzp->z_name_lock);
4174 
4175 		VN_RELE(ZTOV(szp));
4176 		if (tzp)
4177 			VN_RELE(ZTOV(tzp));
4178 		if (error == ERESTART) {
4179 			waited = B_TRUE;
4180 			dmu_tx_wait(tx);
4181 			dmu_tx_abort(tx);
4182 			goto top;
4183 		}
4184 		dmu_tx_abort(tx);
4185 		ZFS_EXIT(zfsvfs);
4186 		return (error);
4187 	}
4188 
4189 	if (tzp)	/* Attempt to remove the existing target */
4190 		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4191 
4192 	if (error == 0) {
4193 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4194 		if (error == 0) {
4195 			szp->z_pflags |= ZFS_AV_MODIFIED;
4196 			if (tdzp->z_pflags & ZFS_PROJINHERIT)
4197 				szp->z_pflags |= ZFS_PROJINHERIT;
4198 
4199 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4200 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4201 			ASSERT0(error);
4202 
4203 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4204 			if (error == 0) {
4205 				zfs_log_rename(zilog, tx, TX_RENAME |
4206 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4207 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4208 
4209 				/*
4210 				 * Update path information for the target vnode
4211 				 */
4212 				vn_renamepath(tdvp, ZTOV(szp), tnm,
4213 				    strlen(tnm));
4214 			} else {
4215 				/*
4216 				 * At this point, we have successfully created
4217 				 * the target name, but have failed to remove
4218 				 * the source name.  Since the create was done
4219 				 * with the ZRENAMING flag, there are
4220 				 * complications; for one, the link count is
4221 				 * wrong.  The easiest way to deal with this
4222 				 * is to remove the newly created target, and
4223 				 * return the original error.  This must
4224 				 * succeed; fortunately, it is very unlikely to
4225 				 * fail, since we just created it.
4226 				 */
4227 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4228 				    ZRENAMING, NULL), ==, 0);
4229 			}
4230 		}
4231 	}
4232 
4233 	dmu_tx_commit(tx);
4234 
4235 	if (tzp && rm_err == 0)
4236 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4237 
4238 	if (error == 0) {
4239 		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
4240 		/* notify the target dir if it is not the same as source dir */
4241 		if (tdvp != sdvp)
4242 			vnevent_rename_dest_dir(tdvp, ct);
4243 	}
4244 out:
4245 	if (zl != NULL)
4246 		zfs_rename_unlock(&zl);
4247 
4248 	zfs_dirent_unlock(sdl);
4249 	zfs_dirent_unlock(tdl);
4250 
4251 	if (sdzp == tdzp)
4252 		rw_exit(&sdzp->z_name_lock);
4253 
4254 
4255 	VN_RELE(ZTOV(szp));
4256 	if (tzp)
4257 		VN_RELE(ZTOV(tzp));
4258 
4259 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4260 		zil_commit(zilog, 0);
4261 
4262 	ZFS_EXIT(zfsvfs);
4263 	return (error);
4264 }
4265 
4266 /*
4267  * Insert the indicated symbolic reference entry into the directory.
4268  *
4269  *	IN:	dvp	- Directory to contain new symbolic link.
4270  *		link	- Name for new symlink entry.
4271  *		vap	- Attributes of new entry.
4272  *		cr	- credentials of caller.
4273  *		ct	- caller context
4274  *		flags	- case flags
4275  *
4276  *	RETURN:	0 on success, error code on failure.
4277  *
4278  * Timestamps:
4279  *	dvp - ctime|mtime updated
4280  */
4281 /*ARGSUSED*/
4282 static int
zfs_symlink(vnode_t * dvp,char * name,vattr_t * vap,char * link,cred_t * cr,caller_context_t * ct,int flags)4283 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
4284     caller_context_t *ct, int flags)
4285 {
4286 	znode_t		*zp, *dzp = VTOZ(dvp);
4287 	zfs_dirlock_t	*dl;
4288 	dmu_tx_t	*tx;
4289 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4290 	zilog_t		*zilog;
4291 	uint64_t	len = strlen(link);
4292 	int		error;
4293 	int		zflg = ZNEW;
4294 	zfs_acl_ids_t	acl_ids;
4295 	boolean_t	fuid_dirtied;
4296 	uint64_t	txtype = TX_SYMLINK;
4297 	boolean_t	waited = B_FALSE;
4298 
4299 	ASSERT(vap->va_type == VLNK);
4300 
4301 	ZFS_ENTER(zfsvfs);
4302 	ZFS_VERIFY_ZP(dzp);
4303 	zilog = zfsvfs->z_log;
4304 
4305 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4306 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4307 		ZFS_EXIT(zfsvfs);
4308 		return (SET_ERROR(EILSEQ));
4309 	}
4310 	if (flags & FIGNORECASE)
4311 		zflg |= ZCILOOK;
4312 
4313 	if (len > MAXPATHLEN) {
4314 		ZFS_EXIT(zfsvfs);
4315 		return (SET_ERROR(ENAMETOOLONG));
4316 	}
4317 
4318 	if ((error = zfs_acl_ids_create(dzp, 0,
4319 	    vap, cr, NULL, &acl_ids)) != 0) {
4320 		ZFS_EXIT(zfsvfs);
4321 		return (error);
4322 	}
4323 top:
4324 	/*
4325 	 * Attempt to lock directory; fail if entry already exists.
4326 	 */
4327 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4328 	if (error) {
4329 		zfs_acl_ids_free(&acl_ids);
4330 		ZFS_EXIT(zfsvfs);
4331 		return (error);
4332 	}
4333 
4334 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4335 		zfs_acl_ids_free(&acl_ids);
4336 		zfs_dirent_unlock(dl);
4337 		ZFS_EXIT(zfsvfs);
4338 		return (error);
4339 	}
4340 
4341 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4342 		zfs_acl_ids_free(&acl_ids);
4343 		zfs_dirent_unlock(dl);
4344 		ZFS_EXIT(zfsvfs);
4345 		return (SET_ERROR(EDQUOT));
4346 	}
4347 	tx = dmu_tx_create(zfsvfs->z_os);
4348 	fuid_dirtied = zfsvfs->z_fuid_dirty;
4349 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4350 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4351 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4352 	    ZFS_SA_BASE_ATTR_SIZE + len);
4353 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4354 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4355 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4356 		    acl_ids.z_aclp->z_acl_bytes);
4357 	}
4358 	if (fuid_dirtied)
4359 		zfs_fuid_txhold(zfsvfs, tx);
4360 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4361 	if (error) {
4362 		zfs_dirent_unlock(dl);
4363 		if (error == ERESTART) {
4364 			waited = B_TRUE;
4365 			dmu_tx_wait(tx);
4366 			dmu_tx_abort(tx);
4367 			goto top;
4368 		}
4369 		zfs_acl_ids_free(&acl_ids);
4370 		dmu_tx_abort(tx);
4371 		ZFS_EXIT(zfsvfs);
4372 		return (error);
4373 	}
4374 
4375 	/*
4376 	 * Create a new object for the symlink.
4377 	 * for version 4 ZPL datsets the symlink will be an SA attribute
4378 	 */
4379 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4380 
4381 	if (fuid_dirtied)
4382 		zfs_fuid_sync(zfsvfs, tx);
4383 
4384 	mutex_enter(&zp->z_lock);
4385 	if (zp->z_is_sa)
4386 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4387 		    link, len, tx);
4388 	else
4389 		zfs_sa_symlink(zp, link, len, tx);
4390 	mutex_exit(&zp->z_lock);
4391 
4392 	zp->z_size = len;
4393 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4394 	    &zp->z_size, sizeof (zp->z_size), tx);
4395 	/*
4396 	 * Insert the new object into the directory.
4397 	 */
4398 	(void) zfs_link_create(dl, zp, tx, ZNEW);
4399 
4400 	if (flags & FIGNORECASE)
4401 		txtype |= TX_CI;
4402 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4403 
4404 	zfs_acl_ids_free(&acl_ids);
4405 
4406 	dmu_tx_commit(tx);
4407 
4408 	zfs_dirent_unlock(dl);
4409 
4410 	VN_RELE(ZTOV(zp));
4411 
4412 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4413 		zil_commit(zilog, 0);
4414 
4415 	ZFS_EXIT(zfsvfs);
4416 	return (error);
4417 }
4418 
4419 /*
4420  * Return, in the buffer contained in the provided uio structure,
4421  * the symbolic path referred to by vp.
4422  *
4423  *	IN:	vp	- vnode of symbolic link.
4424  *		uio	- structure to contain the link path.
4425  *		cr	- credentials of caller.
4426  *		ct	- caller context
4427  *
4428  *	OUT:	uio	- structure containing the link path.
4429  *
4430  *	RETURN:	0 on success, error code on failure.
4431  *
4432  * Timestamps:
4433  *	vp - atime updated
4434  */
4435 /* ARGSUSED */
4436 static int
zfs_readlink(vnode_t * vp,uio_t * uio,cred_t * cr,caller_context_t * ct)4437 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4438 {
4439 	znode_t		*zp = VTOZ(vp);
4440 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4441 	int		error;
4442 
4443 	ZFS_ENTER(zfsvfs);
4444 	ZFS_VERIFY_ZP(zp);
4445 
4446 	mutex_enter(&zp->z_lock);
4447 	if (zp->z_is_sa)
4448 		error = sa_lookup_uio(zp->z_sa_hdl,
4449 		    SA_ZPL_SYMLINK(zfsvfs), uio);
4450 	else
4451 		error = zfs_sa_readlink(zp, uio);
4452 	mutex_exit(&zp->z_lock);
4453 
4454 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4455 
4456 	ZFS_EXIT(zfsvfs);
4457 	return (error);
4458 }
4459 
4460 /*
4461  * Insert a new entry into directory tdvp referencing svp.
4462  *
4463  *	IN:	tdvp	- Directory to contain new entry.
4464  *		svp	- vnode of new entry.
4465  *		name	- name of new entry.
4466  *		cr	- credentials of caller.
4467  *		ct	- caller context
4468  *
4469  *	RETURN:	0 on success, error code on failure.
4470  *
4471  * Timestamps:
4472  *	tdvp - ctime|mtime updated
4473  *	 svp - ctime updated
4474  */
4475 /* ARGSUSED */
4476 static int
zfs_link(vnode_t * tdvp,vnode_t * svp,char * name,cred_t * cr,caller_context_t * ct,int flags)4477 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4478     caller_context_t *ct, int flags)
4479 {
4480 	znode_t		*dzp = VTOZ(tdvp);
4481 	znode_t		*tzp, *szp;
4482 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4483 	zilog_t		*zilog;
4484 	zfs_dirlock_t	*dl;
4485 	dmu_tx_t	*tx;
4486 	vnode_t		*realvp;
4487 	int		error;
4488 	int		zf = ZNEW;
4489 	uint64_t	parent;
4490 	uid_t		owner;
4491 	boolean_t	waited = B_FALSE;
4492 
4493 	ASSERT(tdvp->v_type == VDIR);
4494 
4495 	ZFS_ENTER(zfsvfs);
4496 	ZFS_VERIFY_ZP(dzp);
4497 	zilog = zfsvfs->z_log;
4498 
4499 	if (VOP_REALVP(svp, &realvp, ct) == 0)
4500 		svp = realvp;
4501 
4502 	/*
4503 	 * POSIX dictates that we return EPERM here.
4504 	 * Better choices include ENOTSUP or EISDIR.
4505 	 */
4506 	if (svp->v_type == VDIR) {
4507 		ZFS_EXIT(zfsvfs);
4508 		return (SET_ERROR(EPERM));
4509 	}
4510 
4511 	szp = VTOZ(svp);
4512 	ZFS_VERIFY_ZP(szp);
4513 
4514 	/*
4515 	 * If we are using project inheritance, it means if the directory has
4516 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4517 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4518 	 * such case, we only allow hard link creation in our tree when the
4519 	 * project IDs are the same.
4520 	 */
4521 	if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4522 		ZFS_EXIT(zfsvfs);
4523 		return (SET_ERROR(EXDEV));
4524 	}
4525 
4526 	/*
4527 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4528 	 * ctldir appear to have the same v_vfsp.
4529 	 */
4530 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4531 		ZFS_EXIT(zfsvfs);
4532 		return (SET_ERROR(EXDEV));
4533 	}
4534 
4535 	/* Prevent links to .zfs/shares files */
4536 
4537 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4538 	    &parent, sizeof (uint64_t))) != 0) {
4539 		ZFS_EXIT(zfsvfs);
4540 		return (error);
4541 	}
4542 	if (parent == zfsvfs->z_shares_dir) {
4543 		ZFS_EXIT(zfsvfs);
4544 		return (SET_ERROR(EPERM));
4545 	}
4546 
4547 	if (zfsvfs->z_utf8 && u8_validate(name,
4548 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4549 		ZFS_EXIT(zfsvfs);
4550 		return (SET_ERROR(EILSEQ));
4551 	}
4552 	if (flags & FIGNORECASE)
4553 		zf |= ZCILOOK;
4554 
4555 	/*
4556 	 * We do not support links between attributes and non-attributes
4557 	 * because of the potential security risk of creating links
4558 	 * into "normal" file space in order to circumvent restrictions
4559 	 * imposed in attribute space.
4560 	 */
4561 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4562 		ZFS_EXIT(zfsvfs);
4563 		return (SET_ERROR(EINVAL));
4564 	}
4565 
4566 
4567 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4568 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4569 		ZFS_EXIT(zfsvfs);
4570 		return (SET_ERROR(EPERM));
4571 	}
4572 
4573 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4574 		ZFS_EXIT(zfsvfs);
4575 		return (error);
4576 	}
4577 
4578 top:
4579 	/*
4580 	 * Attempt to lock directory; fail if entry already exists.
4581 	 */
4582 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4583 	if (error) {
4584 		ZFS_EXIT(zfsvfs);
4585 		return (error);
4586 	}
4587 
4588 	tx = dmu_tx_create(zfsvfs->z_os);
4589 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4590 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4591 	zfs_sa_upgrade_txholds(tx, szp);
4592 	zfs_sa_upgrade_txholds(tx, dzp);
4593 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4594 	if (error) {
4595 		zfs_dirent_unlock(dl);
4596 		if (error == ERESTART) {
4597 			waited = B_TRUE;
4598 			dmu_tx_wait(tx);
4599 			dmu_tx_abort(tx);
4600 			goto top;
4601 		}
4602 		dmu_tx_abort(tx);
4603 		ZFS_EXIT(zfsvfs);
4604 		return (error);
4605 	}
4606 
4607 	error = zfs_link_create(dl, szp, tx, 0);
4608 
4609 	if (error == 0) {
4610 		uint64_t txtype = TX_LINK;
4611 		if (flags & FIGNORECASE)
4612 			txtype |= TX_CI;
4613 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4614 	}
4615 
4616 	dmu_tx_commit(tx);
4617 
4618 	zfs_dirent_unlock(dl);
4619 
4620 	if (error == 0) {
4621 		vnevent_link(svp, ct);
4622 	}
4623 
4624 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4625 		zil_commit(zilog, 0);
4626 
4627 	ZFS_EXIT(zfsvfs);
4628 	return (error);
4629 }
4630 
4631 /*
4632  * zfs_null_putapage() is used when the file system has been force
4633  * unmounted. It just drops the pages.
4634  */
4635 /* ARGSUSED */
4636 static int
zfs_null_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4637 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4638     size_t *lenp, int flags, cred_t *cr)
4639 {
4640 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4641 	return (0);
4642 }
4643 
4644 /*
4645  * Push a page out to disk, klustering if possible.
4646  *
4647  *	IN:	vp	- file to push page to.
4648  *		pp	- page to push.
4649  *		flags	- additional flags.
4650  *		cr	- credentials of caller.
4651  *
4652  *	OUT:	offp	- start of range pushed.
4653  *		lenp	- len of range pushed.
4654  *
4655  *	RETURN:	0 on success, error code on failure.
4656  *
4657  * NOTE: callers must have locked the page to be pushed.  On
4658  * exit, the page (and all other pages in the kluster) must be
4659  * unlocked.
4660  */
4661 /* ARGSUSED */
4662 static int
zfs_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4663 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4664     size_t *lenp, int flags, cred_t *cr)
4665 {
4666 	znode_t		*zp = VTOZ(vp);
4667 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4668 	dmu_tx_t	*tx;
4669 	u_offset_t	off, koff;
4670 	size_t		len, klen;
4671 	int		err;
4672 
4673 	off = pp->p_offset;
4674 	len = PAGESIZE;
4675 	/*
4676 	 * If our blocksize is bigger than the page size, try to kluster
4677 	 * multiple pages so that we write a full block (thus avoiding
4678 	 * a read-modify-write).
4679 	 */
4680 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4681 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4682 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4683 		ASSERT(koff <= zp->z_size);
4684 		if (koff + klen > zp->z_size)
4685 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4686 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4687 	}
4688 	ASSERT3U(btop(len), ==, btopr(len));
4689 
4690 	/*
4691 	 * Can't push pages past end-of-file.
4692 	 */
4693 	if (off >= zp->z_size) {
4694 		/* ignore all pages */
4695 		err = 0;
4696 		goto out;
4697 	} else if (off + len > zp->z_size) {
4698 		int npages = btopr(zp->z_size - off);
4699 		page_t *trunc;
4700 
4701 		page_list_break(&pp, &trunc, npages);
4702 		/* ignore pages past end of file */
4703 		if (trunc)
4704 			pvn_write_done(trunc, flags);
4705 		len = zp->z_size - off;
4706 	}
4707 
4708 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) ||
4709 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) {
4710 		err = SET_ERROR(EDQUOT);
4711 		goto out;
4712 	}
4713 	tx = dmu_tx_create(zfsvfs->z_os);
4714 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4715 
4716 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4717 	zfs_sa_upgrade_txholds(tx, zp);
4718 	err = dmu_tx_assign(tx, TXG_WAIT);
4719 	if (err != 0) {
4720 		dmu_tx_abort(tx);
4721 		goto out;
4722 	}
4723 
4724 	if (zp->z_blksz <= PAGESIZE) {
4725 		caddr_t va = zfs_map_page(pp, S_READ);
4726 		ASSERT3U(len, <=, PAGESIZE);
4727 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4728 		zfs_unmap_page(pp, va);
4729 	} else {
4730 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4731 	}
4732 
4733 	if (err == 0) {
4734 		uint64_t mtime[2], ctime[2];
4735 		sa_bulk_attr_t bulk[3];
4736 		int count = 0;
4737 
4738 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4739 		    &mtime, 16);
4740 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4741 		    &ctime, 16);
4742 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4743 		    &zp->z_pflags, 8);
4744 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4745 		    B_TRUE);
4746 		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4747 		ASSERT0(err);
4748 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len,
4749 		    B_FALSE);
4750 	}
4751 	dmu_tx_commit(tx);
4752 
4753 out:
4754 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4755 	if (offp)
4756 		*offp = off;
4757 	if (lenp)
4758 		*lenp = len;
4759 
4760 	return (err);
4761 }
4762 
4763 /*
4764  * Copy the portion of the file indicated from pages into the file.
4765  * The pages are stored in a page list attached to the files vnode.
4766  *
4767  *	IN:	vp	- vnode of file to push page data to.
4768  *		off	- position in file to put data.
4769  *		len	- amount of data to write.
4770  *		flags	- flags to control the operation.
4771  *		cr	- credentials of caller.
4772  *		ct	- caller context.
4773  *
4774  *	RETURN:	0 on success, error code on failure.
4775  *
4776  * Timestamps:
4777  *	vp - ctime|mtime updated
4778  */
4779 /*ARGSUSED*/
4780 static int
zfs_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4781 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4782     caller_context_t *ct)
4783 {
4784 	znode_t		*zp = VTOZ(vp);
4785 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4786 	page_t		*pp;
4787 	size_t		io_len;
4788 	u_offset_t	io_off;
4789 	uint_t		blksz;
4790 	locked_range_t	*lr;
4791 	int		error = 0;
4792 
4793 	ZFS_ENTER(zfsvfs);
4794 	ZFS_VERIFY_ZP(zp);
4795 
4796 	/*
4797 	 * There's nothing to do if no data is cached.
4798 	 */
4799 	if (!vn_has_cached_data(vp)) {
4800 		ZFS_EXIT(zfsvfs);
4801 		return (0);
4802 	}
4803 
4804 	/*
4805 	 * Align this request to the file block size in case we kluster.
4806 	 * XXX - this can result in pretty aggresive locking, which can
4807 	 * impact simultanious read/write access.  One option might be
4808 	 * to break up long requests (len == 0) into block-by-block
4809 	 * operations to get narrower locking.
4810 	 */
4811 	blksz = zp->z_blksz;
4812 	if (ISP2(blksz))
4813 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4814 	else
4815 		io_off = 0;
4816 	if (len > 0 && ISP2(blksz))
4817 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4818 	else
4819 		io_len = 0;
4820 
4821 	if (io_len == 0) {
4822 		/*
4823 		 * Search the entire vp list for pages >= io_off.
4824 		 */
4825 		lr = rangelock_enter(&zp->z_rangelock,
4826 		    io_off, UINT64_MAX, RL_WRITER);
4827 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4828 		goto out;
4829 	}
4830 	lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4831 
4832 	if (off > zp->z_size) {
4833 		/* past end of file */
4834 		rangelock_exit(lr);
4835 		ZFS_EXIT(zfsvfs);
4836 		return (0);
4837 	}
4838 
4839 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4840 
4841 	for (off = io_off; io_off < off + len; io_off += io_len) {
4842 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4843 			pp = page_lookup(vp, io_off,
4844 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4845 		} else {
4846 			pp = page_lookup_nowait(vp, io_off,
4847 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4848 		}
4849 
4850 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4851 			int err;
4852 
4853 			/*
4854 			 * Found a dirty page to push
4855 			 */
4856 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4857 			if (err)
4858 				error = err;
4859 		} else {
4860 			io_len = PAGESIZE;
4861 		}
4862 	}
4863 out:
4864 	rangelock_exit(lr);
4865 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4866 		zil_commit(zfsvfs->z_log, zp->z_id);
4867 	ZFS_EXIT(zfsvfs);
4868 	return (error);
4869 }
4870 
4871 /*ARGSUSED*/
4872 void
zfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4873 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4874 {
4875 	znode_t	*zp = VTOZ(vp);
4876 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4877 	int error;
4878 
4879 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4880 	if (zp->z_sa_hdl == NULL) {
4881 		/*
4882 		 * The fs has been unmounted, or we did a
4883 		 * suspend/resume and this file no longer exists.
4884 		 */
4885 		if (vn_has_cached_data(vp)) {
4886 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4887 			    B_INVAL, cr);
4888 		}
4889 
4890 		mutex_enter(&zp->z_lock);
4891 		mutex_enter(&vp->v_lock);
4892 		ASSERT(vp->v_count == 1);
4893 		VN_RELE_LOCKED(vp);
4894 		mutex_exit(&vp->v_lock);
4895 		mutex_exit(&zp->z_lock);
4896 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4897 		zfs_znode_free(zp);
4898 		return;
4899 	}
4900 
4901 	/*
4902 	 * Attempt to push any data in the page cache.  If this fails
4903 	 * we will get kicked out later in zfs_zinactive().
4904 	 */
4905 	if (vn_has_cached_data(vp)) {
4906 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4907 		    cr);
4908 	}
4909 
4910 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4911 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4912 
4913 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4914 		zfs_sa_upgrade_txholds(tx, zp);
4915 		error = dmu_tx_assign(tx, TXG_WAIT);
4916 		if (error) {
4917 			dmu_tx_abort(tx);
4918 		} else {
4919 			mutex_enter(&zp->z_lock);
4920 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4921 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4922 			zp->z_atime_dirty = 0;
4923 			mutex_exit(&zp->z_lock);
4924 			dmu_tx_commit(tx);
4925 		}
4926 	}
4927 
4928 	zfs_zinactive(zp);
4929 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4930 }
4931 
4932 /*
4933  * Bounds-check the seek operation.
4934  *
4935  *	IN:	vp	- vnode seeking within
4936  *		ooff	- old file offset
4937  *		noffp	- pointer to new file offset
4938  *		ct	- caller context
4939  *
4940  *	RETURN:	0 on success, EINVAL if new offset invalid.
4941  */
4942 /* ARGSUSED */
4943 static int
zfs_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4944 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4945     caller_context_t *ct)
4946 {
4947 	if (vp->v_type == VDIR)
4948 		return (0);
4949 	return ((*noffp < 0) ? EINVAL : 0);
4950 }
4951 
4952 /*
4953  * Pre-filter the generic locking function to trap attempts to place
4954  * a mandatory lock on a memory mapped file.
4955  */
4956 static int
zfs_frlock(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,flk_callback_t * flk_cbp,cred_t * cr,caller_context_t * ct)4957 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4958     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4959 {
4960 	znode_t *zp = VTOZ(vp);
4961 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4962 
4963 	ZFS_ENTER(zfsvfs);
4964 	ZFS_VERIFY_ZP(zp);
4965 
4966 	/*
4967 	 * We are following the UFS semantics with respect to mapcnt
4968 	 * here: If we see that the file is mapped already, then we will
4969 	 * return an error, but we don't worry about races between this
4970 	 * function and zfs_map().
4971 	 */
4972 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4973 		ZFS_EXIT(zfsvfs);
4974 		return (SET_ERROR(EAGAIN));
4975 	}
4976 	ZFS_EXIT(zfsvfs);
4977 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4978 }
4979 
4980 /*
4981  * If we can't find a page in the cache, we will create a new page
4982  * and fill it with file data.  For efficiency, we may try to fill
4983  * multiple pages at once (klustering) to fill up the supplied page
4984  * list.  Note that the pages to be filled are held with an exclusive
4985  * lock to prevent access by other threads while they are being filled.
4986  */
4987 static int
zfs_fillpage(vnode_t * vp,u_offset_t off,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw)4988 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4989     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4990 {
4991 	znode_t *zp = VTOZ(vp);
4992 	page_t *pp, *cur_pp;
4993 	objset_t *os = zp->z_zfsvfs->z_os;
4994 	u_offset_t io_off, total;
4995 	size_t io_len;
4996 	int err;
4997 
4998 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4999 		/*
5000 		 * We only have a single page, don't bother klustering
5001 		 */
5002 		io_off = off;
5003 		io_len = PAGESIZE;
5004 		pp = page_create_va(vp, io_off, io_len,
5005 		    PG_EXCL | PG_WAIT, seg, addr);
5006 	} else {
5007 		/*
5008 		 * Try to find enough pages to fill the page list
5009 		 */
5010 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
5011 		    &io_len, off, plsz, 0);
5012 	}
5013 	if (pp == NULL) {
5014 		/*
5015 		 * The page already exists, nothing to do here.
5016 		 */
5017 		*pl = NULL;
5018 		return (0);
5019 	}
5020 
5021 	/*
5022 	 * Fill the pages in the kluster.
5023 	 */
5024 	cur_pp = pp;
5025 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
5026 		caddr_t va;
5027 
5028 		ASSERT3U(io_off, ==, cur_pp->p_offset);
5029 		va = zfs_map_page(cur_pp, S_WRITE);
5030 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
5031 		    DMU_READ_PREFETCH);
5032 		zfs_unmap_page(cur_pp, va);
5033 		if (err) {
5034 			/* On error, toss the entire kluster */
5035 			pvn_read_done(pp, B_ERROR);
5036 			/* convert checksum errors into IO errors */
5037 			if (err == ECKSUM)
5038 				err = SET_ERROR(EIO);
5039 			return (err);
5040 		}
5041 		cur_pp = cur_pp->p_next;
5042 	}
5043 
5044 	/*
5045 	 * Fill in the page list array from the kluster starting
5046 	 * from the desired offset `off'.
5047 	 * NOTE: the page list will always be null terminated.
5048 	 */
5049 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
5050 	ASSERT(pl == NULL || (*pl)->p_offset == off);
5051 
5052 	return (0);
5053 }
5054 
5055 /*
5056  * Return pointers to the pages for the file region [off, off + len]
5057  * in the pl array.  If plsz is greater than len, this function may
5058  * also return page pointers from after the specified region
5059  * (i.e. the region [off, off + plsz]).  These additional pages are
5060  * only returned if they are already in the cache, or were created as
5061  * part of a klustered read.
5062  *
5063  *	IN:	vp	- vnode of file to get data from.
5064  *		off	- position in file to get data from.
5065  *		len	- amount of data to retrieve.
5066  *		plsz	- length of provided page list.
5067  *		seg	- segment to obtain pages for.
5068  *		addr	- virtual address of fault.
5069  *		rw	- mode of created pages.
5070  *		cr	- credentials of caller.
5071  *		ct	- caller context.
5072  *
5073  *	OUT:	protp	- protection mode of created pages.
5074  *		pl	- list of pages created.
5075  *
5076  *	RETURN:	0 on success, error code on failure.
5077  *
5078  * Timestamps:
5079  *	vp - atime updated
5080  */
5081 /* ARGSUSED */
5082 static int
zfs_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)5083 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
5084     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
5085     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
5086 {
5087 	znode_t		*zp = VTOZ(vp);
5088 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5089 	page_t		**pl0 = pl;
5090 	int		err = 0;
5091 
5092 	/* we do our own caching, faultahead is unnecessary */
5093 	if (pl == NULL)
5094 		return (0);
5095 	else if (len > plsz)
5096 		len = plsz;
5097 	else
5098 		len = P2ROUNDUP(len, PAGESIZE);
5099 	ASSERT(plsz >= len);
5100 
5101 	ZFS_ENTER(zfsvfs);
5102 	ZFS_VERIFY_ZP(zp);
5103 
5104 	if (protp)
5105 		*protp = PROT_ALL;
5106 
5107 	/*
5108 	 * Loop through the requested range [off, off + len) looking
5109 	 * for pages.  If we don't find a page, we will need to create
5110 	 * a new page and fill it with data from the file.
5111 	 */
5112 	while (len > 0) {
5113 		if (*pl = page_lookup(vp, off, SE_SHARED))
5114 			*(pl+1) = NULL;
5115 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
5116 			goto out;
5117 		while (*pl) {
5118 			ASSERT3U((*pl)->p_offset, ==, off);
5119 			off += PAGESIZE;
5120 			addr += PAGESIZE;
5121 			if (len > 0) {
5122 				ASSERT3U(len, >=, PAGESIZE);
5123 				len -= PAGESIZE;
5124 			}
5125 			ASSERT3U(plsz, >=, PAGESIZE);
5126 			plsz -= PAGESIZE;
5127 			pl++;
5128 		}
5129 	}
5130 
5131 	/*
5132 	 * Fill out the page array with any pages already in the cache.
5133 	 */
5134 	while (plsz > 0 &&
5135 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
5136 			off += PAGESIZE;
5137 			plsz -= PAGESIZE;
5138 	}
5139 out:
5140 	if (err) {
5141 		/*
5142 		 * Release any pages we have previously locked.
5143 		 */
5144 		while (pl > pl0)
5145 			page_unlock(*--pl);
5146 	} else {
5147 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5148 	}
5149 
5150 	*pl = NULL;
5151 
5152 	ZFS_EXIT(zfsvfs);
5153 	return (err);
5154 }
5155 
5156 /*
5157  * Request a memory map for a section of a file.  This code interacts
5158  * with common code and the VM system as follows:
5159  *
5160  * - common code calls mmap(), which ends up in smmap_common()
5161  * - this calls VOP_MAP(), which takes you into (say) zfs
5162  * - zfs_map() calls as_map(), passing segvn_create() as the callback
5163  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
5164  * - zfs_addmap() updates z_mapcnt
5165  */
5166 /*ARGSUSED*/
5167 static int
zfs_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5168 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5169     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5170     caller_context_t *ct)
5171 {
5172 	znode_t *zp = VTOZ(vp);
5173 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5174 	segvn_crargs_t	vn_a;
5175 	int		error;
5176 
5177 	ZFS_ENTER(zfsvfs);
5178 	ZFS_VERIFY_ZP(zp);
5179 
5180 	/*
5181 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
5182 	 */
5183 
5184 	if ((prot & PROT_WRITE) && (zp->z_pflags &
5185 	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
5186 		ZFS_EXIT(zfsvfs);
5187 		return (SET_ERROR(EPERM));
5188 	}
5189 
5190 	if ((prot & (PROT_READ | PROT_EXEC)) &&
5191 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
5192 		ZFS_EXIT(zfsvfs);
5193 		return (SET_ERROR(EACCES));
5194 	}
5195 
5196 	if (vp->v_flag & VNOMAP) {
5197 		ZFS_EXIT(zfsvfs);
5198 		return (SET_ERROR(ENOSYS));
5199 	}
5200 
5201 	if (off < 0 || len > MAXOFFSET_T - off) {
5202 		ZFS_EXIT(zfsvfs);
5203 		return (SET_ERROR(ENXIO));
5204 	}
5205 
5206 	if (vp->v_type != VREG) {
5207 		ZFS_EXIT(zfsvfs);
5208 		return (SET_ERROR(ENODEV));
5209 	}
5210 
5211 	/*
5212 	 * If file is locked, disallow mapping.
5213 	 */
5214 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5215 		ZFS_EXIT(zfsvfs);
5216 		return (SET_ERROR(EAGAIN));
5217 	}
5218 
5219 	as_rangelock(as);
5220 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5221 	if (error != 0) {
5222 		as_rangeunlock(as);
5223 		ZFS_EXIT(zfsvfs);
5224 		return (error);
5225 	}
5226 
5227 	vn_a.vp = vp;
5228 	vn_a.offset = (u_offset_t)off;
5229 	vn_a.type = flags & MAP_TYPE;
5230 	vn_a.prot = prot;
5231 	vn_a.maxprot = maxprot;
5232 	vn_a.cred = cr;
5233 	vn_a.amp = NULL;
5234 	vn_a.flags = flags & ~MAP_TYPE;
5235 	vn_a.szc = 0;
5236 	vn_a.lgrp_mem_policy_flags = 0;
5237 
5238 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5239 
5240 	as_rangeunlock(as);
5241 	ZFS_EXIT(zfsvfs);
5242 	return (error);
5243 }
5244 
5245 /* ARGSUSED */
5246 static int
zfs_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5247 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5248     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5249     caller_context_t *ct)
5250 {
5251 	uint64_t pages = btopr(len);
5252 
5253 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5254 	return (0);
5255 }
5256 
5257 /* ARGSUSED */
5258 static int
zfs_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5259 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5260     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5261     caller_context_t *ct)
5262 {
5263 	uint64_t pages = btopr(len);
5264 
5265 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5266 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5267 
5268 	return (0);
5269 }
5270 
5271 /*
5272  * Free or allocate space in a file.  Currently, this function only
5273  * supports the `F_FREESP' command.  However, this command is somewhat
5274  * misnamed, as its functionality includes the ability to allocate as
5275  * well as free space.
5276  *
5277  *	IN:	vp	- vnode of file to free data in.
5278  *		cmd	- action to take (only F_FREESP supported).
5279  *		bfp	- section of file to free/alloc.
5280  *		flag	- current file open mode flags.
5281  *		offset	- current file offset.
5282  *		cr	- credentials of caller [UNUSED].
5283  *		ct	- caller context.
5284  *
5285  *	RETURN:	0 on success, error code on failure.
5286  *
5287  * Timestamps:
5288  *	vp - ctime|mtime updated
5289  */
5290 /* ARGSUSED */
5291 static int
zfs_space(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)5292 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5293     offset_t offset, cred_t *cr, caller_context_t *ct)
5294 {
5295 	znode_t		*zp = VTOZ(vp);
5296 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5297 	uint64_t	off, len;
5298 	int		error;
5299 
5300 	ZFS_ENTER(zfsvfs);
5301 	ZFS_VERIFY_ZP(zp);
5302 
5303 	if (cmd != F_FREESP) {
5304 		ZFS_EXIT(zfsvfs);
5305 		return (SET_ERROR(EINVAL));
5306 	}
5307 
5308 	/*
5309 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5310 	 * callers might not be able to detect properly that we are read-only,
5311 	 * so check it explicitly here.
5312 	 */
5313 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5314 		ZFS_EXIT(zfsvfs);
5315 		return (SET_ERROR(EROFS));
5316 	}
5317 
5318 	if (error = convoff(vp, bfp, 0, offset)) {
5319 		ZFS_EXIT(zfsvfs);
5320 		return (error);
5321 	}
5322 
5323 	if (bfp->l_len < 0) {
5324 		ZFS_EXIT(zfsvfs);
5325 		return (SET_ERROR(EINVAL));
5326 	}
5327 
5328 	off = bfp->l_start;
5329 	len = bfp->l_len; /* 0 means from off to end of file */
5330 
5331 	error = zfs_freesp(zp, off, len, flag, TRUE);
5332 
5333 	if (error == 0 && off == 0 && len == 0)
5334 		vnevent_truncate(ZTOV(zp), ct);
5335 
5336 	ZFS_EXIT(zfsvfs);
5337 	return (error);
5338 }
5339 
5340 /*ARGSUSED*/
5341 static int
zfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)5342 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5343 {
5344 	znode_t		*zp = VTOZ(vp);
5345 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5346 	uint32_t	gen;
5347 	uint64_t	gen64;
5348 	uint64_t	object = zp->z_id;
5349 	zfid_short_t	*zfid;
5350 	int		size, i, error;
5351 
5352 	ZFS_ENTER(zfsvfs);
5353 	ZFS_VERIFY_ZP(zp);
5354 
5355 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5356 	    &gen64, sizeof (uint64_t))) != 0) {
5357 		ZFS_EXIT(zfsvfs);
5358 		return (error);
5359 	}
5360 
5361 	gen = (uint32_t)gen64;
5362 
5363 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5364 	if (fidp->fid_len < size) {
5365 		fidp->fid_len = size;
5366 		ZFS_EXIT(zfsvfs);
5367 		return (SET_ERROR(ENOSPC));
5368 	}
5369 
5370 	zfid = (zfid_short_t *)fidp;
5371 
5372 	zfid->zf_len = size;
5373 
5374 	for (i = 0; i < sizeof (zfid->zf_object); i++)
5375 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5376 
5377 	/* Must have a non-zero generation number to distinguish from .zfs */
5378 	if (gen == 0)
5379 		gen = 1;
5380 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5381 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5382 
5383 	if (size == LONG_FID_LEN) {
5384 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5385 		zfid_long_t	*zlfid;
5386 
5387 		zlfid = (zfid_long_t *)fidp;
5388 
5389 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5390 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5391 
5392 		/* XXX - this should be the generation number for the objset */
5393 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5394 			zlfid->zf_setgen[i] = 0;
5395 	}
5396 
5397 	ZFS_EXIT(zfsvfs);
5398 	return (0);
5399 }
5400 
5401 static int
zfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)5402 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5403     caller_context_t *ct)
5404 {
5405 	znode_t		*zp, *xzp;
5406 	zfsvfs_t	*zfsvfs;
5407 	zfs_dirlock_t	*dl;
5408 	int		error;
5409 
5410 	switch (cmd) {
5411 	case _PC_LINK_MAX:
5412 		*valp = ULONG_MAX;
5413 		return (0);
5414 
5415 	case _PC_FILESIZEBITS:
5416 		*valp = 64;
5417 		return (0);
5418 
5419 	case _PC_XATTR_EXISTS:
5420 		zp = VTOZ(vp);
5421 		zfsvfs = zp->z_zfsvfs;
5422 		ZFS_ENTER(zfsvfs);
5423 		ZFS_VERIFY_ZP(zp);
5424 		*valp = 0;
5425 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5426 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5427 		if (error == 0) {
5428 			zfs_dirent_unlock(dl);
5429 			if (!zfs_dirempty(xzp))
5430 				*valp = 1;
5431 			VN_RELE(ZTOV(xzp));
5432 		} else if (error == ENOENT) {
5433 			/*
5434 			 * If there aren't extended attributes, it's the
5435 			 * same as having zero of them.
5436 			 */
5437 			error = 0;
5438 		}
5439 		ZFS_EXIT(zfsvfs);
5440 		return (error);
5441 
5442 	case _PC_SATTR_ENABLED:
5443 	case _PC_SATTR_EXISTS:
5444 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5445 		    (vp->v_type == VREG || vp->v_type == VDIR);
5446 		return (0);
5447 
5448 	case _PC_ACCESS_FILTERING:
5449 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5450 		    vp->v_type == VDIR;
5451 		return (0);
5452 
5453 	case _PC_ACL_ENABLED:
5454 		*valp = _ACL_ACE_ENABLED;
5455 		return (0);
5456 
5457 	case _PC_MIN_HOLE_SIZE:
5458 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5459 		return (0);
5460 
5461 	case _PC_TIMESTAMP_RESOLUTION:
5462 		/* nanosecond timestamp resolution */
5463 		*valp = 1L;
5464 		return (0);
5465 
5466 	default:
5467 		return (fs_pathconf(vp, cmd, valp, cr, ct));
5468 	}
5469 }
5470 
5471 /*ARGSUSED*/
5472 static int
zfs_getsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5473 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5474     caller_context_t *ct)
5475 {
5476 	znode_t *zp = VTOZ(vp);
5477 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5478 	int error;
5479 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5480 
5481 	ZFS_ENTER(zfsvfs);
5482 	ZFS_VERIFY_ZP(zp);
5483 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5484 	ZFS_EXIT(zfsvfs);
5485 
5486 	return (error);
5487 }
5488 
5489 /*ARGSUSED*/
5490 static int
zfs_setsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5491 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5492     caller_context_t *ct)
5493 {
5494 	znode_t *zp = VTOZ(vp);
5495 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5496 	int error;
5497 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5498 	zilog_t	*zilog = zfsvfs->z_log;
5499 
5500 	ZFS_ENTER(zfsvfs);
5501 	ZFS_VERIFY_ZP(zp);
5502 
5503 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5504 
5505 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5506 		zil_commit(zilog, 0);
5507 
5508 	ZFS_EXIT(zfsvfs);
5509 	return (error);
5510 }
5511 
5512 /*
5513  * The smallest read we may consider to loan out an arcbuf.
5514  * This must be a power of 2.
5515  */
5516 int zcr_blksz_min = (1 << 10);	/* 1K */
5517 /*
5518  * If set to less than the file block size, allow loaning out of an
5519  * arcbuf for a partial block read.  This must be a power of 2.
5520  */
5521 int zcr_blksz_max = (1 << 17);	/* 128K */
5522 
5523 /*ARGSUSED*/
5524 static int
zfs_reqzcbuf(vnode_t * vp,enum uio_rw ioflag,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5525 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5526     caller_context_t *ct)
5527 {
5528 	znode_t	*zp = VTOZ(vp);
5529 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5530 	int max_blksz = zfsvfs->z_max_blksz;
5531 	uio_t *uio = &xuio->xu_uio;
5532 	ssize_t size = uio->uio_resid;
5533 	offset_t offset = uio->uio_loffset;
5534 	int blksz;
5535 	int fullblk, i;
5536 	arc_buf_t *abuf;
5537 	ssize_t maxsize;
5538 	int preamble, postamble;
5539 
5540 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5541 		return (SET_ERROR(EINVAL));
5542 
5543 	ZFS_ENTER(zfsvfs);
5544 	ZFS_VERIFY_ZP(zp);
5545 	switch (ioflag) {
5546 	case UIO_WRITE:
5547 		/*
5548 		 * Loan out an arc_buf for write if write size is bigger than
5549 		 * max_blksz, and the file's block size is also max_blksz.
5550 		 */
5551 		blksz = max_blksz;
5552 		if (size < blksz || zp->z_blksz != blksz) {
5553 			ZFS_EXIT(zfsvfs);
5554 			return (SET_ERROR(EINVAL));
5555 		}
5556 		/*
5557 		 * Caller requests buffers for write before knowing where the
5558 		 * write offset might be (e.g. NFS TCP write).
5559 		 */
5560 		if (offset == -1) {
5561 			preamble = 0;
5562 		} else {
5563 			preamble = P2PHASE(offset, blksz);
5564 			if (preamble) {
5565 				preamble = blksz - preamble;
5566 				size -= preamble;
5567 			}
5568 		}
5569 
5570 		postamble = P2PHASE(size, blksz);
5571 		size -= postamble;
5572 
5573 		fullblk = size / blksz;
5574 		(void) dmu_xuio_init(xuio,
5575 		    (preamble != 0) + fullblk + (postamble != 0));
5576 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5577 		    int, postamble, int,
5578 		    (preamble != 0) + fullblk + (postamble != 0));
5579 
5580 		/*
5581 		 * Have to fix iov base/len for partial buffers.  They
5582 		 * currently represent full arc_buf's.
5583 		 */
5584 		if (preamble) {
5585 			/* data begins in the middle of the arc_buf */
5586 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5587 			    blksz);
5588 			ASSERT(abuf);
5589 			(void) dmu_xuio_add(xuio, abuf,
5590 			    blksz - preamble, preamble);
5591 		}
5592 
5593 		for (i = 0; i < fullblk; i++) {
5594 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5595 			    blksz);
5596 			ASSERT(abuf);
5597 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5598 		}
5599 
5600 		if (postamble) {
5601 			/* data ends in the middle of the arc_buf */
5602 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5603 			    blksz);
5604 			ASSERT(abuf);
5605 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5606 		}
5607 		break;
5608 	case UIO_READ:
5609 		/*
5610 		 * Loan out an arc_buf for read if the read size is larger than
5611 		 * the current file block size.  Block alignment is not
5612 		 * considered.  Partial arc_buf will be loaned out for read.
5613 		 */
5614 		blksz = zp->z_blksz;
5615 		if (blksz < zcr_blksz_min)
5616 			blksz = zcr_blksz_min;
5617 		if (blksz > zcr_blksz_max)
5618 			blksz = zcr_blksz_max;
5619 		/* avoid potential complexity of dealing with it */
5620 		if (blksz > max_blksz) {
5621 			ZFS_EXIT(zfsvfs);
5622 			return (SET_ERROR(EINVAL));
5623 		}
5624 
5625 		maxsize = zp->z_size - uio->uio_loffset;
5626 		if (size > maxsize)
5627 			size = maxsize;
5628 
5629 		if (size < blksz || vn_has_cached_data(vp)) {
5630 			ZFS_EXIT(zfsvfs);
5631 			return (SET_ERROR(EINVAL));
5632 		}
5633 		break;
5634 	default:
5635 		ZFS_EXIT(zfsvfs);
5636 		return (SET_ERROR(EINVAL));
5637 	}
5638 
5639 	/*
5640 	 * Note: Setting UIO_XUIO in uio_extflg tells the caller to
5641 	 * return any loaned buffers by calling VOP_RETZCBUF, so
5642 	 * after we do this we MUST expect a zfs_retzcbuf call.
5643 	 * Note that for UIO_READ, XUIO_XUZC_PRIV is not set
5644 	 * until zfs_read calls dmu_xuio_init.
5645 	 */
5646 	uio->uio_extflg = UIO_XUIO;
5647 	XUIO_XUZC_RW(xuio) = ioflag;
5648 	ZFS_EXIT(zfsvfs);
5649 	return (0);
5650 }
5651 
5652 /*ARGSUSED*/
5653 static int
zfs_retzcbuf(vnode_t * vp,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5654 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5655 {
5656 	int i;
5657 	arc_buf_t *abuf;
5658 	int ioflag = XUIO_XUZC_RW(xuio);
5659 
5660 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5661 
5662 	/* In case zfs_read never calls dmu_xuio_init */
5663 	if (XUIO_XUZC_PRIV(xuio) == NULL)
5664 		return (0);
5665 
5666 	i = dmu_xuio_cnt(xuio);
5667 	while (i-- > 0) {
5668 		abuf = dmu_xuio_arcbuf(xuio, i);
5669 		/*
5670 		 * if abuf == NULL, it must be a write buffer
5671 		 * that has been returned in zfs_write().
5672 		 */
5673 		if (abuf)
5674 			dmu_return_arcbuf(abuf);
5675 		ASSERT(abuf || ioflag == UIO_WRITE);
5676 	}
5677 
5678 	dmu_xuio_fini(xuio);
5679 	return (0);
5680 }
5681 
5682 /*
5683  * Predeclare these here so that the compiler assumes that
5684  * this is an "old style" function declaration that does
5685  * not include arguments => we won't get type mismatch errors
5686  * in the initializations that follow.
5687  */
5688 static int zfs_inval();
5689 static int zfs_isdir();
5690 
5691 static int
zfs_inval()5692 zfs_inval()
5693 {
5694 	return (SET_ERROR(EINVAL));
5695 }
5696 
5697 static int
zfs_isdir()5698 zfs_isdir()
5699 {
5700 	return (SET_ERROR(EISDIR));
5701 }
5702 /*
5703  * Directory vnode operations template
5704  */
5705 const fs_operation_def_t zfs_dvnodeops_template[] = {
5706 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5707 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5708 	VOPNAME_READ,		{ .error = zfs_isdir },
5709 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5710 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5711 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5712 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5713 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5714 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5715 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5716 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5717 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5718 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5719 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5720 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5721 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5722 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5723 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5724 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5725 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5726 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5727 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5728 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5729 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5730 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5731 	NULL,			NULL
5732 };
5733 
5734 /*
5735  * Regular file vnode operations template
5736  */
5737 const fs_operation_def_t zfs_fvnodeops_template[] = {
5738 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5739 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5740 	VOPNAME_READ,		{ .vop_read = zfs_read },
5741 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5742 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5743 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5744 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5745 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5746 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5747 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5748 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5749 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5750 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5751 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5752 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5753 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5754 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5755 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5756 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5757 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5758 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5759 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5760 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5761 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5762 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5763 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5764 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5765 	NULL,			NULL
5766 };
5767 
5768 /*
5769  * Symbolic link vnode operations template
5770  */
5771 const fs_operation_def_t zfs_symvnodeops_template[] = {
5772 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5773 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5774 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5775 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5776 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5777 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5778 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5779 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5780 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5781 	NULL,			NULL
5782 };
5783 
5784 /*
5785  * special share hidden files vnode operations template
5786  */
5787 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5788 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5789 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5790 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5791 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5792 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5793 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5794 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5795 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5796 	NULL,			NULL
5797 };
5798 
5799 /*
5800  * Extended attribute directory vnode operations template
5801  *
5802  * This template is identical to the directory vnodes
5803  * operation template except for restricted operations:
5804  *	VOP_MKDIR()
5805  *	VOP_SYMLINK()
5806  *
5807  * Note that there are other restrictions embedded in:
5808  *	zfs_create()	- restrict type to VREG
5809  *	zfs_link()	- no links into/out of attribute space
5810  *	zfs_rename()	- no moves into/out of attribute space
5811  */
5812 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5813 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5814 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5815 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5816 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5817 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5818 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5819 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5820 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5821 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5822 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5823 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5824 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5825 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5826 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5827 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5828 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5829 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5830 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5831 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5832 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5833 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5834 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5835 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5836 	NULL,			NULL
5837 };
5838 
5839 /*
5840  * Error vnode operations template
5841  */
5842 const fs_operation_def_t zfs_evnodeops_template[] = {
5843 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5844 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5845 	NULL,			NULL
5846 };
5847