xref: /freebsd/sys/contrib/openzfs/module/os/freebsd/zfs/zfs_znode_os.c (revision 17aab35a77a1b1bf02fc85bb8ffadccb0ca5006d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2011 Martin Matuska <mm@FreeBSD.org> */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/resourcevar.h>
37 #include <sys/mntent.h>
38 #include <sys/u8_textprep.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/atomic.h>
47 #include <sys/zfs_dir.h>
48 #include <sys/zfs_acl.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zfs_rlock.h>
51 #include <sys/zfs_fuid.h>
52 #include <sys/dnode.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dmu_tx.h>
57 #include <sys/zfs_refcount.h>
58 #include <sys/stat.h>
59 #include <sys/zap.h>
60 #include <sys/zfs_znode.h>
61 #include <sys/sa.h>
62 #include <sys/zfs_sa.h>
63 #include <sys/zfs_stat.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 /* Used by fstat(1). */
69 SYSCTL_INT(_debug_sizeof, OID_AUTO, znode, CTLFLAG_RD,
70 	SYSCTL_NULL_INT_PTR, sizeof (znode_t), "sizeof(znode_t)");
71 
72 /*
73  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
74  * turned on when DEBUG is also defined.
75  */
76 #ifdef	ZFS_DEBUG
77 #define	ZNODE_STATS
78 #endif	/* DEBUG */
79 
80 #ifdef	ZNODE_STATS
81 #define	ZNODE_STAT_ADD(stat)			((stat)++)
82 #else
83 #define	ZNODE_STAT_ADD(stat)			/* nothing */
84 #endif	/* ZNODE_STATS */
85 
86 #if !defined(KMEM_DEBUG)
87 #define	_ZFS_USE_SMR
88 static uma_zone_t znode_uma_zone;
89 #else
90 static kmem_cache_t *znode_cache = NULL;
91 #endif
92 
93 extern struct vop_vector zfs_vnodeops;
94 extern struct vop_vector zfs_fifoops;
95 extern struct vop_vector zfs_shareops;
96 
97 
98 /*
99  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
100  * z_rangelock. It will modify the offset and length of the lock to reflect
101  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
102  * called with the rangelock_t's rl_lock held, which avoids races.
103  */
104 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)105 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
106 {
107 	znode_t *zp = arg;
108 
109 	/*
110 	 * If in append mode, convert to writer and lock starting at the
111 	 * current end of file.
112 	 */
113 	if (new->lr_type == RL_APPEND) {
114 		new->lr_offset = zp->z_size;
115 		new->lr_type = RL_WRITER;
116 	}
117 
118 	/*
119 	 * If we need to grow the block size then lock the whole file range.
120 	 */
121 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
122 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
123 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
124 		new->lr_offset = 0;
125 		new->lr_length = UINT64_MAX;
126 	}
127 }
128 
129 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)130 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
131 {
132 	znode_t *zp = buf;
133 
134 	POINTER_INVALIDATE(&zp->z_zfsvfs);
135 
136 	list_link_init(&zp->z_link_node);
137 
138 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
140 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
141 
142 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
143 
144 	zp->z_acl_cached = NULL;
145 	zp->z_xattr_cached = NULL;
146 	zp->z_xattr_parent = 0;
147 	zp->z_vnode = NULL;
148 	zp->z_sync_writes_cnt = 0;
149 	zp->z_async_writes_cnt = 0;
150 
151 	return (0);
152 }
153 
154 static void
zfs_znode_cache_destructor(void * buf,void * arg)155 zfs_znode_cache_destructor(void *buf, void *arg)
156 {
157 	(void) arg;
158 	znode_t *zp = buf;
159 
160 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
161 	ASSERT3P(zp->z_vnode, ==, NULL);
162 	ASSERT(!list_link_active(&zp->z_link_node));
163 	mutex_destroy(&zp->z_lock);
164 	mutex_destroy(&zp->z_acl_lock);
165 	rw_destroy(&zp->z_xattr_lock);
166 	zfs_rangelock_fini(&zp->z_rangelock);
167 
168 	ASSERT3P(zp->z_acl_cached, ==, NULL);
169 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
170 
171 	ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
172 	ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
173 }
174 
175 
176 #ifdef _ZFS_USE_SMR
177 VFS_SMR_DECLARE;
178 
179 static int
zfs_znode_cache_constructor_smr(void * mem,int size __unused,void * private,int flags)180 zfs_znode_cache_constructor_smr(void *mem, int size __unused, void *private,
181     int flags)
182 {
183 	return (zfs_znode_cache_constructor(mem, private, flags));
184 }
185 
186 static void
zfs_znode_cache_destructor_smr(void * mem,int size __unused,void * private)187 zfs_znode_cache_destructor_smr(void *mem, int size __unused, void *private)
188 {
189 	zfs_znode_cache_destructor(mem, private);
190 }
191 
192 void
zfs_znode_init(void)193 zfs_znode_init(void)
194 {
195 	/*
196 	 * Initialize zcache
197 	 */
198 	ASSERT3P(znode_uma_zone, ==, NULL);
199 	znode_uma_zone = uma_zcreate("zfs_znode_cache",
200 	    sizeof (znode_t), zfs_znode_cache_constructor_smr,
201 	    zfs_znode_cache_destructor_smr, NULL, NULL, 0, 0);
202 	VFS_SMR_ZONE_SET(znode_uma_zone);
203 }
204 
205 static znode_t *
zfs_znode_alloc_kmem(int flags)206 zfs_znode_alloc_kmem(int flags)
207 {
208 	return (uma_zalloc_smr(znode_uma_zone, flags));
209 }
210 
211 static void
zfs_znode_free_kmem(znode_t * zp)212 zfs_znode_free_kmem(znode_t *zp)
213 {
214 	if (zp->z_xattr_cached) {
215 		nvlist_free(zp->z_xattr_cached);
216 		zp->z_xattr_cached = NULL;
217 	}
218 	uma_zfree_smr(znode_uma_zone, zp);
219 }
220 #else
221 void
zfs_znode_init(void)222 zfs_znode_init(void)
223 {
224 	/*
225 	 * Initialize zcache
226 	 */
227 	ASSERT3P(znode_cache, ==, NULL);
228 	znode_cache = kmem_cache_create("zfs_znode_cache",
229 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
230 	    zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_RECLAIMABLE);
231 }
232 
233 static znode_t *
zfs_znode_alloc_kmem(int flags)234 zfs_znode_alloc_kmem(int flags)
235 {
236 	return (kmem_cache_alloc(znode_cache, flags));
237 }
238 
239 static void
zfs_znode_free_kmem(znode_t * zp)240 zfs_znode_free_kmem(znode_t *zp)
241 {
242 	if (zp->z_xattr_cached) {
243 		nvlist_free(zp->z_xattr_cached);
244 		zp->z_xattr_cached = NULL;
245 	}
246 	kmem_cache_free(znode_cache, zp);
247 }
248 #endif
249 
250 void
zfs_znode_fini(void)251 zfs_znode_fini(void)
252 {
253 	/*
254 	 * Cleanup zcache
255 	 */
256 #ifdef _ZFS_USE_SMR
257 	if (znode_uma_zone) {
258 		uma_zdestroy(znode_uma_zone);
259 		znode_uma_zone = NULL;
260 	}
261 #else
262 	if (znode_cache) {
263 		kmem_cache_destroy(znode_cache);
264 		znode_cache = NULL;
265 	}
266 #endif
267 }
268 
269 
270 static int
zfs_create_share_dir(zfsvfs_t * zfsvfs,dmu_tx_t * tx)271 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
272 {
273 	zfs_acl_ids_t acl_ids;
274 	vattr_t vattr;
275 	znode_t *sharezp;
276 	znode_t *zp;
277 	int error;
278 
279 	vattr.va_mask = AT_MODE|AT_UID|AT_GID;
280 	vattr.va_type = VDIR;
281 	vattr.va_mode = S_IFDIR|0555;
282 	vattr.va_uid = crgetuid(kcred);
283 	vattr.va_gid = crgetgid(kcred);
284 
285 	sharezp = zfs_znode_alloc_kmem(KM_SLEEP);
286 	ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
287 	sharezp->z_unlinked = 0;
288 	sharezp->z_atime_dirty = 0;
289 	sharezp->z_zfsvfs = zfsvfs;
290 	sharezp->z_is_sa = zfsvfs->z_use_sa;
291 
292 	VERIFY0(zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
293 	    kcred, NULL, &acl_ids, NULL));
294 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
295 	ASSERT3P(zp, ==, sharezp);
296 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
297 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
298 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
299 	zfsvfs->z_shares_dir = sharezp->z_id;
300 
301 	zfs_acl_ids_free(&acl_ids);
302 	sa_handle_destroy(sharezp->z_sa_hdl);
303 	zfs_znode_free_kmem(sharezp);
304 
305 	return (error);
306 }
307 
308 /*
309  * define a couple of values we need available
310  * for both 64 and 32 bit environments.
311  */
312 #ifndef NBITSMINOR64
313 #define	NBITSMINOR64	32
314 #endif
315 #ifndef MAXMAJ64
316 #define	MAXMAJ64	0xffffffffUL
317 #endif
318 #ifndef	MAXMIN64
319 #define	MAXMIN64	0xffffffffUL
320 #endif
321 
322 /*
323  * Create special expldev for ZFS private use.
324  * Can't use standard expldev since it doesn't do
325  * what we want.  The standard expldev() takes a
326  * dev32_t in LP64 and expands it to a long dev_t.
327  * We need an interface that takes a dev32_t in ILP32
328  * and expands it to a long dev_t.
329  */
330 static uint64_t
zfs_expldev(dev_t dev)331 zfs_expldev(dev_t dev)
332 {
333 	return (((uint64_t)major(dev) << NBITSMINOR64) | minor(dev));
334 }
335 /*
336  * Special cmpldev for ZFS private use.
337  * Can't use standard cmpldev since it takes
338  * a long dev_t and compresses it to dev32_t in
339  * LP64.  We need to do a compaction of a long dev_t
340  * to a dev32_t in ILP32.
341  */
342 dev_t
zfs_cmpldev(uint64_t dev)343 zfs_cmpldev(uint64_t dev)
344 {
345 	return (makedev((dev >> NBITSMINOR64), (dev & MAXMIN64)));
346 }
347 
348 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)349 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
350     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
351 {
352 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
353 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
354 
355 	ASSERT3P(zp->z_sa_hdl, ==, NULL);
356 	ASSERT3P(zp->z_acl_cached, ==, NULL);
357 	if (sa_hdl == NULL) {
358 		VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, zp,
359 		    SA_HDL_SHARED, &zp->z_sa_hdl));
360 	} else {
361 		zp->z_sa_hdl = sa_hdl;
362 		sa_set_userp(sa_hdl, zp);
363 	}
364 
365 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
366 
367 	/*
368 	 * Slap on VROOT if we are the root znode unless we are the root
369 	 * node of a snapshot mounted under .zfs.
370 	 */
371 	if (zp->z_id == zfsvfs->z_root && zfsvfs->z_parent == zfsvfs)
372 		ZTOV(zp)->v_flag |= VROOT;
373 }
374 
375 void
zfs_znode_dmu_fini(znode_t * zp)376 zfs_znode_dmu_fini(znode_t *zp)
377 {
378 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
379 	    ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zp->z_zfsvfs));
380 
381 	sa_handle_destroy(zp->z_sa_hdl);
382 	zp->z_sa_hdl = NULL;
383 }
384 
385 static void
zfs_vnode_forget(vnode_t * vp)386 zfs_vnode_forget(vnode_t *vp)
387 {
388 
389 	/* copied from insmntque_stddtr */
390 	vp->v_data = NULL;
391 	vp->v_op = &dead_vnodeops;
392 	vgone(vp);
393 	vput(vp);
394 }
395 
396 /*
397  * Construct a new znode/vnode and initialize.
398  *
399  * This does not do a call to dmu_set_user() that is
400  * up to the caller to do, in case you don't want to
401  * return the znode
402  */
403 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)404 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
405     dmu_object_type_t obj_type, sa_handle_t *hdl)
406 {
407 	znode_t	*zp;
408 	vnode_t *vp;
409 	uint64_t mode;
410 	uint64_t parent;
411 #ifdef notyet
412 	uint64_t mtime[2], ctime[2];
413 #endif
414 	uint64_t projid = ZFS_DEFAULT_PROJID;
415 	sa_bulk_attr_t bulk[9];
416 	int count = 0;
417 	int error;
418 
419 	zp = zfs_znode_alloc_kmem(KM_SLEEP);
420 
421 #ifndef _ZFS_USE_SMR
422 	KASSERT((zfsvfs->z_parent->z_vfs->mnt_kern_flag & MNTK_FPLOOKUP) == 0,
423 	    ("%s: fast path lookup enabled without smr", __func__));
424 #endif
425 
426 	KASSERT(curthread->td_vp_reserved != NULL,
427 	    ("zfs_znode_alloc: getnewvnode without any vnodes reserved"));
428 	error = getnewvnode("zfs", zfsvfs->z_parent->z_vfs, &zfs_vnodeops, &vp);
429 	if (error != 0) {
430 		zfs_znode_free_kmem(zp);
431 		return (NULL);
432 	}
433 	zp->z_vnode = vp;
434 	vp->v_data = zp;
435 
436 	/*
437 	 * Acquire the vnode lock before any possible interaction with the
438 	 * outside world.  Specifically, there is an error path that calls
439 	 * zfs_vnode_forget() and the vnode should be exclusively locked.
440 	 */
441 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
442 
443 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
444 
445 	zp->z_sa_hdl = NULL;
446 	zp->z_unlinked = 0;
447 	zp->z_atime_dirty = 0;
448 	zp->z_mapcnt = 0;
449 	zp->z_id = db->db_object;
450 	zp->z_blksz = blksz;
451 	zp->z_seq = 0x7A4653;
452 	zp->z_sync_cnt = 0;
453 	zp->z_sync_writes_cnt = 0;
454 	zp->z_async_writes_cnt = 0;
455 	atomic_store_ptr(&zp->z_cached_symlink, NULL);
456 
457 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
458 
459 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
460 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
461 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
462 	    &zp->z_size, 8);
463 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
464 	    &zp->z_links, 8);
465 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
466 	    &zp->z_pflags, 8);
467 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
468 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
469 	    &zp->z_atime, 16);
470 #ifdef notyet
471 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
472 	    &mtime, 16);
473 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
474 	    &ctime, 16);
475 #endif
476 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
477 	    &zp->z_uid, 8);
478 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
479 	    &zp->z_gid, 8);
480 
481 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0 ||
482 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
483 	    (zp->z_pflags & ZFS_PROJID) &&
484 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
485 		if (hdl == NULL)
486 			sa_handle_destroy(zp->z_sa_hdl);
487 		zfs_vnode_forget(vp);
488 		zp->z_vnode = NULL;
489 		zfs_znode_free_kmem(zp);
490 		return (NULL);
491 	}
492 
493 	zp->z_projid = projid;
494 	zp->z_mode = mode;
495 
496 	/* Cache the xattr parent id */
497 	if (zp->z_pflags & ZFS_XATTR)
498 		zp->z_xattr_parent = parent;
499 
500 	vp->v_type = IFTOVT((mode_t)mode);
501 
502 	switch (vp->v_type) {
503 	case VDIR:
504 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
505 		break;
506 	case VFIFO:
507 		vp->v_op = &zfs_fifoops;
508 		break;
509 	case VREG:
510 		if (parent == zfsvfs->z_shares_dir) {
511 			ASSERT0(zp->z_uid);
512 			ASSERT0(zp->z_gid);
513 			vp->v_op = &zfs_shareops;
514 		}
515 		break;
516 	default:
517 			break;
518 	}
519 
520 	mutex_enter(&zfsvfs->z_znodes_lock);
521 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
522 	zp->z_zfsvfs = zfsvfs;
523 	mutex_exit(&zfsvfs->z_znodes_lock);
524 
525 #if __FreeBSD_version >= 1400077
526 	vn_set_state(vp, VSTATE_CONSTRUCTED);
527 #endif
528 	VN_LOCK_AREC(vp);
529 	if (vp->v_type != VFIFO)
530 		VN_LOCK_ASHARE(vp);
531 
532 	return (zp);
533 }
534 
535 static uint64_t empty_xattr;
536 static uint64_t pad[4];
537 static zfs_acl_phys_t acl_phys;
538 /*
539  * Create a new DMU object to hold a zfs znode.
540  *
541  *	IN:	dzp	- parent directory for new znode
542  *		vap	- file attributes for new znode
543  *		tx	- dmu transaction id for zap operations
544  *		cr	- credentials of caller
545  *		flag	- flags:
546  *			  IS_ROOT_NODE	- new object will be root
547  *			  IS_XATTR	- new object is an attribute
548  *		bonuslen - length of bonus buffer
549  *		setaclp  - File/Dir initial ACL
550  *		fuidp	 - Tracks fuid allocation.
551  *
552  *	OUT:	zpp	- allocated znode
553  *
554  */
555 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)556 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
557     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
558 {
559 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
560 	uint64_t	mode, size, links, parent, pflags;
561 	uint64_t	dzp_pflags = 0;
562 	uint64_t	rdev = 0;
563 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
564 	dmu_buf_t	*db;
565 	timestruc_t	now;
566 	uint64_t	gen, obj;
567 	int		bonuslen;
568 	int		dnodesize;
569 	sa_handle_t	*sa_hdl;
570 	dmu_object_type_t obj_type;
571 	sa_bulk_attr_t	*sa_attrs;
572 	int		cnt = 0;
573 	zfs_acl_locator_cb_t locate = { 0 };
574 
575 	ASSERT3P(vap, !=, NULL);
576 	ASSERT3U((vap->va_mask & AT_MODE), ==, AT_MODE);
577 
578 	if (zfsvfs->z_replay) {
579 		obj = vap->va_nodeid;
580 		now = vap->va_ctime;		/* see zfs_replay_create() */
581 		gen = vap->va_nblocks;		/* ditto */
582 		dnodesize = vap->va_fsid;	/* ditto */
583 	} else {
584 		obj = 0;
585 		vfs_timestamp(&now);
586 		gen = dmu_tx_get_txg(tx);
587 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
588 	}
589 
590 	if (dnodesize == 0)
591 		dnodesize = DNODE_MIN_SIZE;
592 
593 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
594 	bonuslen = (obj_type == DMU_OT_SA) ?
595 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
596 
597 	/*
598 	 * Create a new DMU object.
599 	 */
600 	/*
601 	 * There's currently no mechanism for pre-reading the blocks that will
602 	 * be needed to allocate a new object, so we accept the small chance
603 	 * that there will be an i/o error and we will fail one of the
604 	 * assertions below.
605 	 */
606 	if (vap->va_type == VDIR) {
607 		if (zfsvfs->z_replay) {
608 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
609 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
610 			    obj_type, bonuslen, dnodesize, tx));
611 		} else {
612 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
613 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
614 			    obj_type, bonuslen, dnodesize, tx);
615 		}
616 	} else {
617 		if (zfsvfs->z_replay) {
618 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
619 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
620 			    obj_type, bonuslen, dnodesize, tx));
621 		} else {
622 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
623 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
624 			    obj_type, bonuslen, dnodesize, tx);
625 		}
626 	}
627 
628 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
629 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
630 
631 	/*
632 	 * If this is the root, fix up the half-initialized parent pointer
633 	 * to reference the just-allocated physical data area.
634 	 */
635 	if (flag & IS_ROOT_NODE) {
636 		dzp->z_id = obj;
637 	} else {
638 		dzp_pflags = dzp->z_pflags;
639 	}
640 
641 	/*
642 	 * If parent is an xattr, so am I.
643 	 */
644 	if (dzp_pflags & ZFS_XATTR) {
645 		flag |= IS_XATTR;
646 	}
647 
648 	if (zfsvfs->z_use_fuids)
649 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
650 	else
651 		pflags = 0;
652 
653 	if (vap->va_type == VDIR) {
654 		size = 2;		/* contents ("." and "..") */
655 		links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
656 	} else {
657 		size = links = 0;
658 	}
659 
660 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
661 		rdev = zfs_expldev(vap->va_rdev);
662 	}
663 
664 	parent = dzp->z_id;
665 	mode = acl_ids->z_mode;
666 	if (flag & IS_XATTR)
667 		pflags |= ZFS_XATTR;
668 
669 	/*
670 	 * No execs denied will be determined when zfs_mode_compute() is called.
671 	 */
672 	pflags |= acl_ids->z_aclp->z_hints &
673 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
674 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
675 
676 	ZFS_TIME_ENCODE(&now, crtime);
677 	ZFS_TIME_ENCODE(&now, ctime);
678 
679 	if (vap->va_mask & AT_ATIME) {
680 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
681 	} else {
682 		ZFS_TIME_ENCODE(&now, atime);
683 	}
684 
685 	if (vap->va_mask & AT_MTIME) {
686 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
687 	} else {
688 		ZFS_TIME_ENCODE(&now, mtime);
689 	}
690 
691 	/* Now add in all of the "SA" attributes */
692 	VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
693 	    &sa_hdl));
694 
695 	/*
696 	 * Setup the array of attributes to be replaced/set on the new file
697 	 *
698 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
699 	 * in the old znode_phys_t format.  Don't change this ordering
700 	 */
701 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
702 
703 	if (obj_type == DMU_OT_ZNODE) {
704 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
705 		    NULL, &atime, 16);
706 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
707 		    NULL, &mtime, 16);
708 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
709 		    NULL, &ctime, 16);
710 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
711 		    NULL, &crtime, 16);
712 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
713 		    NULL, &gen, 8);
714 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
715 		    NULL, &mode, 8);
716 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
717 		    NULL, &size, 8);
718 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
719 		    NULL, &parent, 8);
720 	} else {
721 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
722 		    NULL, &mode, 8);
723 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
724 		    NULL, &size, 8);
725 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
726 		    NULL, &gen, 8);
727 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
728 		    NULL, &acl_ids->z_fuid, 8);
729 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
730 		    NULL, &acl_ids->z_fgid, 8);
731 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
732 		    NULL, &parent, 8);
733 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
734 		    NULL, &pflags, 8);
735 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
736 		    NULL, &atime, 16);
737 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
738 		    NULL, &mtime, 16);
739 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
740 		    NULL, &ctime, 16);
741 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
742 		    NULL, &crtime, 16);
743 	}
744 
745 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
746 
747 	if (obj_type == DMU_OT_ZNODE) {
748 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
749 		    &empty_xattr, 8);
750 	}
751 	if (obj_type == DMU_OT_ZNODE ||
752 	    (vap->va_type == VBLK || vap->va_type == VCHR)) {
753 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
754 		    NULL, &rdev, 8);
755 
756 	}
757 	if (obj_type == DMU_OT_ZNODE) {
758 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
759 		    NULL, &pflags, 8);
760 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
761 		    &acl_ids->z_fuid, 8);
762 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
763 		    &acl_ids->z_fgid, 8);
764 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
765 		    sizeof (uint64_t) * 4);
766 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
767 		    &acl_phys, sizeof (zfs_acl_phys_t));
768 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
769 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
770 		    &acl_ids->z_aclp->z_acl_count, 8);
771 		locate.cb_aclp = acl_ids->z_aclp;
772 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
773 		    zfs_acl_data_locator, &locate,
774 		    acl_ids->z_aclp->z_acl_bytes);
775 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
776 		    acl_ids->z_fuid, acl_ids->z_fgid);
777 	}
778 
779 	VERIFY0(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx));
780 
781 	if (!(flag & IS_ROOT_NODE)) {
782 		*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
783 		ASSERT3P(*zpp, !=, NULL);
784 	} else {
785 		/*
786 		 * If we are creating the root node, the "parent" we
787 		 * passed in is the znode for the root.
788 		 */
789 		*zpp = dzp;
790 
791 		(*zpp)->z_sa_hdl = sa_hdl;
792 	}
793 
794 	(*zpp)->z_pflags = pflags;
795 	(*zpp)->z_mode = mode;
796 	(*zpp)->z_dnodesize = dnodesize;
797 
798 	if (vap->va_mask & AT_XVATTR)
799 		zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
800 
801 	if (obj_type == DMU_OT_ZNODE ||
802 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
803 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
804 	}
805 	if (!(flag & IS_ROOT_NODE)) {
806 		vnode_t *vp = ZTOV(*zpp);
807 		vp->v_vflag |= VV_FORCEINSMQ;
808 		int err = insmntque(vp, zfsvfs->z_vfs);
809 		vp->v_vflag &= ~VV_FORCEINSMQ;
810 		(void) err;
811 		KASSERT(err == 0, ("insmntque() failed: error %d", err));
812 	}
813 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
814 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
815 }
816 
817 /*
818  * Update in-core attributes.  It is assumed the caller will be doing an
819  * sa_bulk_update to push the changes out.
820  */
821 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)822 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
823 {
824 	xoptattr_t *xoap;
825 
826 	xoap = xva_getxoptattr(xvap);
827 	ASSERT3P(xoap, !=, NULL);
828 
829 	if (zp->z_zfsvfs->z_replay == B_FALSE) {
830 		ASSERT_VOP_IN_SEQC(ZTOV(zp));
831 	}
832 
833 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
834 		uint64_t times[2];
835 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
836 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
837 		    &times, sizeof (times), tx);
838 		XVA_SET_RTN(xvap, XAT_CREATETIME);
839 	}
840 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
841 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
842 		    zp->z_pflags, tx);
843 		XVA_SET_RTN(xvap, XAT_READONLY);
844 	}
845 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
846 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
847 		    zp->z_pflags, tx);
848 		XVA_SET_RTN(xvap, XAT_HIDDEN);
849 	}
850 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
851 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
852 		    zp->z_pflags, tx);
853 		XVA_SET_RTN(xvap, XAT_SYSTEM);
854 	}
855 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
856 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
857 		    zp->z_pflags, tx);
858 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
859 	}
860 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
861 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
862 		    zp->z_pflags, tx);
863 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
864 	}
865 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
866 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
867 		    zp->z_pflags, tx);
868 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
869 	}
870 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
871 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
872 		    zp->z_pflags, tx);
873 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
874 	}
875 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
876 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
877 		    zp->z_pflags, tx);
878 		XVA_SET_RTN(xvap, XAT_NODUMP);
879 	}
880 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
881 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
882 		    zp->z_pflags, tx);
883 		XVA_SET_RTN(xvap, XAT_OPAQUE);
884 	}
885 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
886 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
887 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
888 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
889 	}
890 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
891 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
892 		    zp->z_pflags, tx);
893 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
894 	}
895 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
896 		zfs_sa_set_scanstamp(zp, xvap, tx);
897 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
898 	}
899 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
900 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
901 		    zp->z_pflags, tx);
902 		XVA_SET_RTN(xvap, XAT_REPARSE);
903 	}
904 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
905 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
906 		    zp->z_pflags, tx);
907 		XVA_SET_RTN(xvap, XAT_OFFLINE);
908 	}
909 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
910 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
911 		    zp->z_pflags, tx);
912 		XVA_SET_RTN(xvap, XAT_SPARSE);
913 	}
914 }
915 
916 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)917 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
918 {
919 	dmu_object_info_t doi;
920 	dmu_buf_t	*db;
921 	znode_t		*zp;
922 	vnode_t		*vp;
923 	sa_handle_t	*hdl;
924 	int locked;
925 	int err;
926 
927 	getnewvnode_reserve();
928 again:
929 	*zpp = NULL;
930 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
931 
932 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
933 	if (err) {
934 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
935 		getnewvnode_drop_reserve();
936 		return (err);
937 	}
938 
939 	dmu_object_info_from_db(db, &doi);
940 	if (doi.doi_bonus_type != DMU_OT_SA &&
941 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
942 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
943 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
944 		sa_buf_rele(db, NULL);
945 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
946 		getnewvnode_drop_reserve();
947 		return (SET_ERROR(EINVAL));
948 	}
949 
950 	hdl = dmu_buf_get_user(db);
951 	if (hdl != NULL) {
952 		zp = sa_get_userdata(hdl);
953 
954 		/*
955 		 * Since "SA" does immediate eviction we
956 		 * should never find a sa handle that doesn't
957 		 * know about the znode.
958 		 */
959 		ASSERT3P(zp, !=, NULL);
960 		ASSERT3U(zp->z_id, ==, obj_num);
961 		if (zp->z_unlinked) {
962 			err = SET_ERROR(ENOENT);
963 		} else {
964 			vp = ZTOV(zp);
965 			/*
966 			 * Don't let the vnode disappear after
967 			 * ZFS_OBJ_HOLD_EXIT.
968 			 */
969 			VN_HOLD(vp);
970 			*zpp = zp;
971 			err = 0;
972 		}
973 
974 		sa_buf_rele(db, NULL);
975 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
976 
977 		if (err) {
978 			getnewvnode_drop_reserve();
979 			return (err);
980 		}
981 
982 		locked = VOP_ISLOCKED(vp);
983 		VI_LOCK(vp);
984 		if (VN_IS_DOOMED(vp) && locked != LK_EXCLUSIVE) {
985 			/*
986 			 * The vnode is doomed and this thread doesn't
987 			 * hold the exclusive lock on it, so the vnode
988 			 * must be being reclaimed by another thread.
989 			 * Otherwise the doomed vnode is being reclaimed
990 			 * by this thread and zfs_zget is called from
991 			 * ZIL internals.
992 			 */
993 			VI_UNLOCK(vp);
994 
995 			/*
996 			 * XXX vrele() locks the vnode when the last reference
997 			 * is dropped.  Although in this case the vnode is
998 			 * doomed / dead and so no inactivation is required,
999 			 * the vnode lock is still acquired.  That could result
1000 			 * in a LOR with z_teardown_lock if another thread holds
1001 			 * the vnode's lock and tries to take z_teardown_lock.
1002 			 * But that is only possible if the other thread peforms
1003 			 * a ZFS vnode operation on the vnode.  That either
1004 			 * should not happen if the vnode is dead or the thread
1005 			 * should also have a reference to the vnode and thus
1006 			 * our reference is not last.
1007 			 */
1008 			VN_RELE(vp);
1009 			goto again;
1010 		}
1011 		VI_UNLOCK(vp);
1012 		getnewvnode_drop_reserve();
1013 		return (err);
1014 	}
1015 
1016 	/*
1017 	 * Not found create new znode/vnode
1018 	 * but only if file exists.
1019 	 *
1020 	 * There is a small window where zfs_vget() could
1021 	 * find this object while a file create is still in
1022 	 * progress.  This is checked for in zfs_znode_alloc()
1023 	 *
1024 	 * if zfs_znode_alloc() fails it will drop the hold on the
1025 	 * bonus buffer.
1026 	 */
1027 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1028 	    doi.doi_bonus_type, NULL);
1029 	if (zp == NULL) {
1030 		err = SET_ERROR(ENOENT);
1031 	} else {
1032 		*zpp = zp;
1033 	}
1034 	if (err == 0) {
1035 		vnode_t *vp = ZTOV(zp);
1036 
1037 		err = insmntque(vp, zfsvfs->z_vfs);
1038 		if (err == 0) {
1039 			vp->v_hash = obj_num;
1040 			VOP_UNLOCK(vp);
1041 		} else {
1042 			zp->z_vnode = NULL;
1043 			zfs_znode_dmu_fini(zp);
1044 			zfs_znode_free(zp);
1045 			*zpp = NULL;
1046 		}
1047 	}
1048 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1049 	getnewvnode_drop_reserve();
1050 	return (err);
1051 }
1052 
1053 int
zfs_rezget(znode_t * zp)1054 zfs_rezget(znode_t *zp)
1055 {
1056 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1057 	dmu_object_info_t doi;
1058 	dmu_buf_t *db;
1059 	vnode_t *vp;
1060 	uint64_t obj_num = zp->z_id;
1061 	uint64_t mode, size;
1062 	sa_bulk_attr_t bulk[8];
1063 	int err;
1064 	int count = 0;
1065 	uint64_t gen;
1066 
1067 	/*
1068 	 * Remove cached pages before reloading the znode, so that they are not
1069 	 * lingering after we run into any error.  Ideally, we should vgone()
1070 	 * the vnode in case of error, but currently we cannot do that
1071 	 * because of the LOR between the vnode lock and z_teardown_lock.
1072 	 * So, instead, we have to "doom" the znode in the illumos style.
1073 	 *
1074 	 * Ignore invalid pages during the scan.  This is to avoid deadlocks
1075 	 * between page busying and the teardown lock, as pages are busied prior
1076 	 * to a VOP_GETPAGES operation, which acquires the teardown read lock.
1077 	 * Such pages will be invalid and can safely be skipped here.
1078 	 */
1079 	vp = ZTOV(zp);
1080 #if __FreeBSD_version >= 1400042
1081 	vn_pages_remove_valid(vp, 0, 0);
1082 #else
1083 	vn_pages_remove(vp, 0, 0);
1084 #endif
1085 
1086 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1087 
1088 	mutex_enter(&zp->z_acl_lock);
1089 	if (zp->z_acl_cached) {
1090 		zfs_acl_free(zp->z_acl_cached);
1091 		zp->z_acl_cached = NULL;
1092 	}
1093 	mutex_exit(&zp->z_acl_lock);
1094 
1095 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1096 	if (zp->z_xattr_cached) {
1097 		nvlist_free(zp->z_xattr_cached);
1098 		zp->z_xattr_cached = NULL;
1099 	}
1100 	rw_exit(&zp->z_xattr_lock);
1101 
1102 	ASSERT3P(zp->z_sa_hdl, ==, NULL);
1103 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1104 	if (err) {
1105 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1106 		return (err);
1107 	}
1108 
1109 	dmu_object_info_from_db(db, &doi);
1110 	if (doi.doi_bonus_type != DMU_OT_SA &&
1111 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1112 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1113 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1114 		sa_buf_rele(db, NULL);
1115 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1116 		return (SET_ERROR(EINVAL));
1117 	}
1118 
1119 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1120 	size = zp->z_size;
1121 
1122 	/* reload cached values */
1123 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1124 	    &gen, sizeof (gen));
1125 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1126 	    &zp->z_size, sizeof (zp->z_size));
1127 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1128 	    &zp->z_links, sizeof (zp->z_links));
1129 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1130 	    &zp->z_pflags, sizeof (zp->z_pflags));
1131 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1132 	    &zp->z_atime, sizeof (zp->z_atime));
1133 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1134 	    &zp->z_uid, sizeof (zp->z_uid));
1135 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1136 	    &zp->z_gid, sizeof (zp->z_gid));
1137 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1138 	    &mode, sizeof (mode));
1139 
1140 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1141 		zfs_znode_dmu_fini(zp);
1142 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1143 		return (SET_ERROR(EIO));
1144 	}
1145 
1146 	zp->z_mode = mode;
1147 
1148 	if (gen != zp->z_gen) {
1149 		zfs_znode_dmu_fini(zp);
1150 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1151 		return (SET_ERROR(EIO));
1152 	}
1153 
1154 	/*
1155 	 * It is highly improbable but still quite possible that two
1156 	 * objects in different datasets are created with the same
1157 	 * object numbers and in transaction groups with the same
1158 	 * numbers.  znodes corresponding to those objects would
1159 	 * have the same z_id and z_gen, but their other attributes
1160 	 * may be different.
1161 	 * zfs recv -F may replace one of such objects with the other.
1162 	 * As a result file properties recorded in the replaced
1163 	 * object's vnode may no longer match the received object's
1164 	 * properties.  At present the only cached property is the
1165 	 * files type recorded in v_type.
1166 	 * So, handle this case by leaving the old vnode and znode
1167 	 * disassociated from the actual object.  A new vnode and a
1168 	 * znode will be created if the object is accessed
1169 	 * (e.g. via a look-up).  The old vnode and znode will be
1170 	 * recycled when the last vnode reference is dropped.
1171 	 */
1172 	if (vp->v_type != IFTOVT((mode_t)zp->z_mode)) {
1173 		zfs_znode_dmu_fini(zp);
1174 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1175 		return (SET_ERROR(EIO));
1176 	}
1177 
1178 	/*
1179 	 * If the file has zero links, then it has been unlinked on the send
1180 	 * side and it must be in the received unlinked set.
1181 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1182 	 * stale data and to prevent automatically removal of the file in
1183 	 * zfs_zinactive().  The file will be removed either when it is removed
1184 	 * on the send side and the next incremental stream is received or
1185 	 * when the unlinked set gets processed.
1186 	 */
1187 	zp->z_unlinked = (zp->z_links == 0);
1188 	if (zp->z_unlinked) {
1189 		zfs_znode_dmu_fini(zp);
1190 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1191 		return (0);
1192 	}
1193 
1194 	zp->z_blksz = doi.doi_data_block_size;
1195 	if (zp->z_size != size)
1196 		vnode_pager_setsize(vp, zp->z_size);
1197 
1198 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1199 
1200 	return (0);
1201 }
1202 
1203 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1204 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1205 {
1206 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1207 	objset_t *os = zfsvfs->z_os;
1208 	uint64_t obj = zp->z_id;
1209 	uint64_t acl_obj = zfs_external_acl(zp);
1210 
1211 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1212 	if (acl_obj) {
1213 		VERIFY(!zp->z_is_sa);
1214 		VERIFY0(dmu_object_free(os, acl_obj, tx));
1215 	}
1216 	VERIFY0(dmu_object_free(os, obj, tx));
1217 	zfs_znode_dmu_fini(zp);
1218 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1219 }
1220 
1221 void
zfs_zinactive(znode_t * zp)1222 zfs_zinactive(znode_t *zp)
1223 {
1224 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1225 	uint64_t z_id = zp->z_id;
1226 
1227 	ASSERT3P(zp->z_sa_hdl, !=, NULL);
1228 
1229 	/*
1230 	 * Don't allow a zfs_zget() while were trying to release this znode
1231 	 */
1232 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1233 
1234 	/*
1235 	 * If this was the last reference to a file with no links, remove
1236 	 * the file from the file system unless the file system is mounted
1237 	 * read-only.  That can happen, for example, if the file system was
1238 	 * originally read-write, the file was opened, then unlinked and
1239 	 * the file system was made read-only before the file was finally
1240 	 * closed.  The file will remain in the unlinked set.
1241 	 */
1242 	if (zp->z_unlinked) {
1243 		ASSERT(!zfsvfs->z_issnap);
1244 		if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) {
1245 			ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1246 			zfs_rmnode(zp);
1247 			return;
1248 		}
1249 	}
1250 
1251 	zfs_znode_dmu_fini(zp);
1252 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1253 	zfs_znode_free(zp);
1254 }
1255 
1256 void
zfs_znode_free(znode_t * zp)1257 zfs_znode_free(znode_t *zp)
1258 {
1259 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1260 	char *symlink;
1261 
1262 	ASSERT3P(zp->z_sa_hdl, ==, NULL);
1263 	zp->z_vnode = NULL;
1264 	mutex_enter(&zfsvfs->z_znodes_lock);
1265 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1266 	list_remove(&zfsvfs->z_all_znodes, zp);
1267 	mutex_exit(&zfsvfs->z_znodes_lock);
1268 
1269 	symlink = atomic_load_ptr(&zp->z_cached_symlink);
1270 	if (symlink != NULL) {
1271 		atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink,
1272 		    (uintptr_t)NULL);
1273 		cache_symlink_free(symlink, strlen(symlink) + 1);
1274 	}
1275 
1276 	if (zp->z_acl_cached) {
1277 		zfs_acl_free(zp->z_acl_cached);
1278 		zp->z_acl_cached = NULL;
1279 	}
1280 
1281 	zfs_znode_free_kmem(zp);
1282 }
1283 
1284 void
zfs_tstamp_update_setup_ext(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2],boolean_t have_tx)1285 zfs_tstamp_update_setup_ext(znode_t *zp, uint_t flag, uint64_t mtime[2],
1286     uint64_t ctime[2], boolean_t have_tx)
1287 {
1288 	timestruc_t	now;
1289 
1290 	vfs_timestamp(&now);
1291 
1292 	if (have_tx) {	/* will sa_bulk_update happen really soon? */
1293 		zp->z_atime_dirty = 0;
1294 		zp->z_seq++;
1295 	} else {
1296 		zp->z_atime_dirty = 1;
1297 	}
1298 
1299 	if (flag & AT_ATIME) {
1300 		ZFS_TIME_ENCODE(&now, zp->z_atime);
1301 	}
1302 
1303 	if (flag & AT_MTIME) {
1304 		ZFS_TIME_ENCODE(&now, mtime);
1305 		if (zp->z_zfsvfs->z_use_fuids) {
1306 			zp->z_pflags |= (ZFS_ARCHIVE |
1307 			    ZFS_AV_MODIFIED);
1308 		}
1309 	}
1310 
1311 	if (flag & AT_CTIME) {
1312 		ZFS_TIME_ENCODE(&now, ctime);
1313 		if (zp->z_zfsvfs->z_use_fuids)
1314 			zp->z_pflags |= ZFS_ARCHIVE;
1315 	}
1316 }
1317 
1318 
1319 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1320 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1321     uint64_t ctime[2])
1322 {
1323 	zfs_tstamp_update_setup_ext(zp, flag, mtime, ctime, B_TRUE);
1324 }
1325 /*
1326  * Grow the block size for a file.
1327  *
1328  *	IN:	zp	- znode of file to free data in.
1329  *		size	- requested block size
1330  *		tx	- open transaction.
1331  *
1332  * NOTE: this function assumes that the znode is write locked.
1333  */
1334 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1335 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1336 {
1337 	int		error;
1338 	u_longlong_t	dummy;
1339 
1340 	if (size <= zp->z_blksz)
1341 		return;
1342 	/*
1343 	 * If the file size is already greater than the current blocksize,
1344 	 * we will not grow.  If there is more than one block in a file,
1345 	 * the blocksize cannot change.
1346 	 */
1347 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1348 		return;
1349 
1350 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1351 	    size, 0, tx);
1352 
1353 	if (error == ENOTSUP)
1354 		return;
1355 	ASSERT0(error);
1356 
1357 	/* What blocksize did we actually get? */
1358 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1359 }
1360 
1361 /*
1362  * Increase the file length
1363  *
1364  *	IN:	zp	- znode of file to free data in.
1365  *		end	- new end-of-file
1366  *
1367  *	RETURN:	0 on success, error code on failure
1368  */
1369 static int
zfs_extend(znode_t * zp,uint64_t end)1370 zfs_extend(znode_t *zp, uint64_t end)
1371 {
1372 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1373 	dmu_tx_t *tx;
1374 	zfs_locked_range_t *lr;
1375 	uint64_t newblksz;
1376 	int error;
1377 
1378 	/*
1379 	 * We will change zp_size, lock the whole file.
1380 	 */
1381 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1382 
1383 	/*
1384 	 * Nothing to do if file already at desired length.
1385 	 */
1386 	if (end <= zp->z_size) {
1387 		zfs_rangelock_exit(lr);
1388 		return (0);
1389 	}
1390 	tx = dmu_tx_create(zfsvfs->z_os);
1391 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1392 	zfs_sa_upgrade_txholds(tx, zp);
1393 	if (end > zp->z_blksz &&
1394 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1395 		/*
1396 		 * We are growing the file past the current block size.
1397 		 */
1398 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1399 			/*
1400 			 * File's blocksize is already larger than the
1401 			 * "recordsize" property.  Only let it grow to
1402 			 * the next power of 2.
1403 			 */
1404 			ASSERT(!ISP2(zp->z_blksz));
1405 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1406 		} else {
1407 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1408 		}
1409 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1410 	} else {
1411 		newblksz = 0;
1412 	}
1413 
1414 	error = dmu_tx_assign(tx, TXG_WAIT);
1415 	if (error) {
1416 		dmu_tx_abort(tx);
1417 		zfs_rangelock_exit(lr);
1418 		return (error);
1419 	}
1420 
1421 	if (newblksz)
1422 		zfs_grow_blocksize(zp, newblksz, tx);
1423 
1424 	zp->z_size = end;
1425 
1426 	VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1427 	    &zp->z_size, sizeof (zp->z_size), tx));
1428 
1429 	vnode_pager_setsize(ZTOV(zp), end);
1430 
1431 	zfs_rangelock_exit(lr);
1432 
1433 	dmu_tx_commit(tx);
1434 
1435 	return (0);
1436 }
1437 
1438 /*
1439  * Free space in a file.
1440  *
1441  *	IN:	zp	- znode of file to free data in.
1442  *		off	- start of section to free.
1443  *		len	- length of section to free.
1444  *
1445  *	RETURN:	0 on success, error code on failure
1446  */
1447 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1448 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1449 {
1450 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1451 	zfs_locked_range_t *lr;
1452 	int error;
1453 
1454 	/*
1455 	 * Lock the range being freed.
1456 	 */
1457 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1458 
1459 	/*
1460 	 * Nothing to do if file already at desired length.
1461 	 */
1462 	if (off >= zp->z_size) {
1463 		zfs_rangelock_exit(lr);
1464 		return (0);
1465 	}
1466 
1467 	if (off + len > zp->z_size)
1468 		len = zp->z_size - off;
1469 
1470 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1471 
1472 	if (error == 0) {
1473 #if __FreeBSD_version >= 1400032
1474 		vnode_pager_purge_range(ZTOV(zp), off, off + len);
1475 #else
1476 		/*
1477 		 * Before __FreeBSD_version 1400032 we cannot free block in the
1478 		 * middle of a file, but only at the end of a file, so this code
1479 		 * path should never happen.
1480 		 */
1481 		vnode_pager_setsize(ZTOV(zp), off);
1482 #endif
1483 	}
1484 
1485 	zfs_rangelock_exit(lr);
1486 
1487 	return (error);
1488 }
1489 
1490 /*
1491  * Truncate a file
1492  *
1493  *	IN:	zp	- znode of file to free data in.
1494  *		end	- new end-of-file.
1495  *
1496  *	RETURN:	0 on success, error code on failure
1497  */
1498 static int
zfs_trunc(znode_t * zp,uint64_t end)1499 zfs_trunc(znode_t *zp, uint64_t end)
1500 {
1501 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1502 	vnode_t *vp = ZTOV(zp);
1503 	dmu_tx_t *tx;
1504 	zfs_locked_range_t *lr;
1505 	int error;
1506 	sa_bulk_attr_t bulk[2];
1507 	int count = 0;
1508 
1509 	/*
1510 	 * We will change zp_size, lock the whole file.
1511 	 */
1512 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1513 
1514 	/*
1515 	 * Nothing to do if file already at desired length.
1516 	 */
1517 	if (end >= zp->z_size) {
1518 		zfs_rangelock_exit(lr);
1519 		return (0);
1520 	}
1521 
1522 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1523 	    DMU_OBJECT_END);
1524 	if (error) {
1525 		zfs_rangelock_exit(lr);
1526 		return (error);
1527 	}
1528 	tx = dmu_tx_create(zfsvfs->z_os);
1529 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1530 	zfs_sa_upgrade_txholds(tx, zp);
1531 	dmu_tx_mark_netfree(tx);
1532 	error = dmu_tx_assign(tx, TXG_WAIT);
1533 	if (error) {
1534 		dmu_tx_abort(tx);
1535 		zfs_rangelock_exit(lr);
1536 		return (error);
1537 	}
1538 
1539 	zp->z_size = end;
1540 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1541 	    NULL, &zp->z_size, sizeof (zp->z_size));
1542 
1543 	if (end == 0) {
1544 		zp->z_pflags &= ~ZFS_SPARSE;
1545 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1546 		    NULL, &zp->z_pflags, 8);
1547 	}
1548 	VERIFY0(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1549 
1550 	dmu_tx_commit(tx);
1551 
1552 	/*
1553 	 * Clear any mapped pages in the truncated region.  This has to
1554 	 * happen outside of the transaction to avoid the possibility of
1555 	 * a deadlock with someone trying to push a page that we are
1556 	 * about to invalidate.
1557 	 */
1558 	vnode_pager_setsize(vp, end);
1559 
1560 	zfs_rangelock_exit(lr);
1561 
1562 	return (0);
1563 }
1564 
1565 /*
1566  * Free space in a file
1567  *
1568  *	IN:	zp	- znode of file to free data in.
1569  *		off	- start of range
1570  *		len	- end of range (0 => EOF)
1571  *		flag	- current file open mode flags.
1572  *		log	- TRUE if this action should be logged
1573  *
1574  *	RETURN:	0 on success, error code on failure
1575  */
1576 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1577 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1578 {
1579 	dmu_tx_t *tx;
1580 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1581 	zilog_t *zilog = zfsvfs->z_log;
1582 	uint64_t mode;
1583 	uint64_t mtime[2], ctime[2];
1584 	sa_bulk_attr_t bulk[3];
1585 	int count = 0;
1586 	int error;
1587 
1588 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1589 	    sizeof (mode))) != 0)
1590 		return (error);
1591 
1592 	if (off > zp->z_size) {
1593 		error =  zfs_extend(zp, off+len);
1594 		if (error == 0 && log)
1595 			goto log;
1596 		else
1597 			return (error);
1598 	}
1599 
1600 	if (len == 0) {
1601 		error = zfs_trunc(zp, off);
1602 	} else {
1603 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1604 		    off + len > zp->z_size)
1605 			error = zfs_extend(zp, off+len);
1606 	}
1607 	if (error || !log)
1608 		return (error);
1609 log:
1610 	tx = dmu_tx_create(zfsvfs->z_os);
1611 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1612 	zfs_sa_upgrade_txholds(tx, zp);
1613 	error = dmu_tx_assign(tx, TXG_WAIT);
1614 	if (error) {
1615 		dmu_tx_abort(tx);
1616 		return (error);
1617 	}
1618 
1619 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1620 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1621 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1622 	    NULL, &zp->z_pflags, 8);
1623 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1624 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1625 	ASSERT0(error);
1626 
1627 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1628 
1629 	dmu_tx_commit(tx);
1630 	return (0);
1631 }
1632 
1633 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1634 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1635 {
1636 	uint64_t	moid, obj, sa_obj, version;
1637 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1638 	uint64_t	norm = 0;
1639 	nvpair_t	*elem;
1640 	int		error;
1641 	int		i;
1642 	znode_t		*rootzp = NULL;
1643 	zfsvfs_t	*zfsvfs;
1644 	vattr_t		vattr;
1645 	znode_t		*zp;
1646 	zfs_acl_ids_t	acl_ids;
1647 
1648 	/*
1649 	 * First attempt to create master node.
1650 	 */
1651 	/*
1652 	 * In an empty objset, there are no blocks to read and thus
1653 	 * there can be no i/o errors (which we assert below).
1654 	 */
1655 	moid = MASTER_NODE_OBJ;
1656 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1657 	    DMU_OT_NONE, 0, tx);
1658 	ASSERT0(error);
1659 
1660 	/*
1661 	 * Set starting attributes.
1662 	 */
1663 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1664 	elem = NULL;
1665 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1666 		/* For the moment we expect all zpl props to be uint64_ts */
1667 		uint64_t val;
1668 		const char *name;
1669 
1670 		ASSERT3S(nvpair_type(elem), ==, DATA_TYPE_UINT64);
1671 		val = fnvpair_value_uint64(elem);
1672 		name = nvpair_name(elem);
1673 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1674 			if (val < version)
1675 				version = val;
1676 		} else {
1677 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1678 		}
1679 		ASSERT0(error);
1680 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1681 			norm = val;
1682 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1683 			sense = val;
1684 	}
1685 	ASSERT3U(version, !=, 0);
1686 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1687 	ASSERT0(error);
1688 
1689 	/*
1690 	 * Create zap object used for SA attribute registration
1691 	 */
1692 
1693 	if (version >= ZPL_VERSION_SA) {
1694 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1695 		    DMU_OT_NONE, 0, tx);
1696 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1697 		ASSERT0(error);
1698 	} else {
1699 		sa_obj = 0;
1700 	}
1701 	/*
1702 	 * Create a delete queue.
1703 	 */
1704 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1705 
1706 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1707 	ASSERT0(error);
1708 
1709 	/*
1710 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1711 	 * to allow zfs_mknode to work.
1712 	 */
1713 	VATTR_NULL(&vattr);
1714 	vattr.va_mask = AT_MODE|AT_UID|AT_GID;
1715 	vattr.va_type = VDIR;
1716 	vattr.va_mode = S_IFDIR|0755;
1717 	vattr.va_uid = crgetuid(cr);
1718 	vattr.va_gid = crgetgid(cr);
1719 
1720 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1721 
1722 	rootzp = zfs_znode_alloc_kmem(KM_SLEEP);
1723 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1724 	rootzp->z_unlinked = 0;
1725 	rootzp->z_atime_dirty = 0;
1726 	rootzp->z_is_sa = USE_SA(version, os);
1727 
1728 	zfsvfs->z_os = os;
1729 	zfsvfs->z_parent = zfsvfs;
1730 	zfsvfs->z_version = version;
1731 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1732 	zfsvfs->z_use_sa = USE_SA(version, os);
1733 	zfsvfs->z_norm = norm;
1734 
1735 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1736 	    &zfsvfs->z_attr_table);
1737 
1738 	ASSERT0(error);
1739 
1740 	/*
1741 	 * Fold case on file systems that are always or sometimes case
1742 	 * insensitive.
1743 	 */
1744 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1745 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1746 
1747 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1748 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1749 	    offsetof(znode_t, z_link_node));
1750 
1751 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1752 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1753 
1754 	rootzp->z_zfsvfs = zfsvfs;
1755 	VERIFY0(zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1756 	    cr, NULL, &acl_ids, NULL));
1757 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1758 	ASSERT3P(zp, ==, rootzp);
1759 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1760 	ASSERT0(error);
1761 	zfs_acl_ids_free(&acl_ids);
1762 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1763 
1764 	sa_handle_destroy(rootzp->z_sa_hdl);
1765 	zfs_znode_free_kmem(rootzp);
1766 
1767 	/*
1768 	 * Create shares directory
1769 	 */
1770 
1771 	error = zfs_create_share_dir(zfsvfs, tx);
1772 
1773 	ASSERT0(error);
1774 
1775 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1776 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1777 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1778 }
1779 
1780 void
zfs_znode_update_vfs(znode_t * zp)1781 zfs_znode_update_vfs(znode_t *zp)
1782 {
1783 	vm_object_t object;
1784 
1785 	if ((object = ZTOV(zp)->v_object) == NULL ||
1786 	    zp->z_size == object->un_pager.vnp.vnp_size)
1787 		return;
1788 
1789 	vnode_pager_setsize(ZTOV(zp), zp->z_size);
1790 }
1791 
1792 int
zfs_znode_parent_and_name(znode_t * zp,znode_t ** dzpp,char * buf,uint64_t buflen)1793 zfs_znode_parent_and_name(znode_t *zp, znode_t **dzpp, char *buf,
1794     uint64_t buflen)
1795 {
1796 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1797 	uint64_t parent;
1798 	int is_xattrdir;
1799 	int err;
1800 
1801 	/* Extended attributes should not be visible as regular files. */
1802 	if ((zp->z_pflags & ZFS_XATTR) != 0)
1803 		return (SET_ERROR(EINVAL));
1804 
1805 	err = zfs_obj_to_pobj(zfsvfs->z_os, zp->z_sa_hdl, zfsvfs->z_attr_table,
1806 	    &parent, &is_xattrdir);
1807 	if (err != 0)
1808 		return (err);
1809 	ASSERT0(is_xattrdir);
1810 
1811 	/* No name as this is a root object. */
1812 	if (parent == zp->z_id)
1813 		return (SET_ERROR(EINVAL));
1814 
1815 	err = zap_value_search(zfsvfs->z_os, parent, zp->z_id,
1816 	    ZFS_DIRENT_OBJ(-1ULL), buf, buflen);
1817 	if (err != 0)
1818 		return (err);
1819 	err = zfs_zget(zfsvfs, parent, dzpp);
1820 	return (err);
1821 }
1822 
1823 int
zfs_rlimit_fsize(off_t fsize)1824 zfs_rlimit_fsize(off_t fsize)
1825 {
1826 	struct thread *td = curthread;
1827 	off_t lim;
1828 
1829 	if (td == NULL)
1830 		return (0);
1831 
1832 	lim = lim_cur(td, RLIMIT_FSIZE);
1833 	if (__predict_true((uoff_t)fsize <= lim))
1834 		return (0);
1835 
1836 	/*
1837 	 * The limit is reached.
1838 	 */
1839 	PROC_LOCK(td->td_proc);
1840 	kern_psignal(td->td_proc, SIGXFSZ);
1841 	PROC_UNLOCK(td->td_proc);
1842 
1843 	return (EFBIG);
1844 }
1845