xref: /freebsd/sys/contrib/openzfs/module/os/freebsd/zfs/zfs_vfsops.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24  * All rights reserved.
25  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sysmacros.h>
37 #include <sys/kmem.h>
38 #include <sys/acl.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/mntent.h>
42 #include <sys/mount.h>
43 #include <sys/cmn_err.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_vnops.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zil.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/dmu.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_dataset.h>
52 #include <sys/dsl_deleg.h>
53 #include <sys/spa.h>
54 #include <sys/zap.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/policy.h>
58 #include <sys/atomic.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/sunddi.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/dsl_dir.h>
65 #include <sys/jail.h>
66 #include <sys/osd.h>
67 #include <ufs/ufs/quota.h>
68 #include <sys/zfs_quota.h>
69 
70 #include "zfs_comutil.h"
71 
72 #ifndef	MNTK_VMSETSIZE_BUG
73 #define	MNTK_VMSETSIZE_BUG	0
74 #endif
75 #ifndef	MNTK_NOMSYNC
76 #define	MNTK_NOMSYNC	8
77 #endif
78 
79 struct mtx zfs_debug_mtx;
80 MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
81 
82 SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
83 
84 int zfs_super_owner;
85 SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
86 	"File system owners can perform privileged operation on file systems");
87 
88 int zfs_debug_level;
89 SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
90 	"Debug level");
91 
92 struct zfs_jailparam {
93 	int mount_snapshot;
94 };
95 
96 static struct zfs_jailparam zfs_jailparam0 = {
97 	.mount_snapshot = 0,
98 };
99 
100 static int zfs_jailparam_slot;
101 
102 SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters");
103 SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I",
104 	"Allow mounting snapshots in the .zfs directory for unjailed datasets");
105 
106 SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
107 static int zfs_version_acl = ZFS_ACL_VERSION;
108 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
109 	"ZFS_ACL_VERSION");
110 static int zfs_version_spa = SPA_VERSION;
111 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
112 	"SPA_VERSION");
113 static int zfs_version_zpl = ZPL_VERSION;
114 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
115 	"ZPL_VERSION");
116 
117 #if __FreeBSD_version >= 1400018
118 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg,
119     bool *mp_busy);
120 #else
121 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
122 #endif
123 static int zfs_mount(vfs_t *vfsp);
124 static int zfs_umount(vfs_t *vfsp, int fflag);
125 static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
126 static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
127 static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
128 static int zfs_sync(vfs_t *vfsp, int waitfor);
129 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
130     struct ucred **credanonp, int *numsecflavors, int *secflavors);
131 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
132 static void zfs_freevfs(vfs_t *vfsp);
133 
134 struct vfsops zfs_vfsops = {
135 	.vfs_mount =		zfs_mount,
136 	.vfs_unmount =		zfs_umount,
137 	.vfs_root =		vfs_cache_root,
138 	.vfs_cachedroot =	zfs_root,
139 	.vfs_statfs =		zfs_statfs,
140 	.vfs_vget =		zfs_vget,
141 	.vfs_sync =		zfs_sync,
142 	.vfs_checkexp =		zfs_checkexp,
143 	.vfs_fhtovp =		zfs_fhtovp,
144 	.vfs_quotactl =		zfs_quotactl,
145 };
146 
147 #ifdef VFCF_CROSS_COPY_FILE_RANGE
148 VFS_SET(zfs_vfsops, zfs,
149     VFCF_DELEGADMIN | VFCF_JAIL | VFCF_CROSS_COPY_FILE_RANGE);
150 #else
151 VFS_SET(zfs_vfsops, zfs, VFCF_DELEGADMIN | VFCF_JAIL);
152 #endif
153 
154 /*
155  * We need to keep a count of active fs's.
156  * This is necessary to prevent our module
157  * from being unloaded after a umount -f
158  */
159 static uint32_t	zfs_active_fs_count = 0;
160 
161 int
zfs_get_temporary_prop(dsl_dataset_t * ds,zfs_prop_t zfs_prop,uint64_t * val,char * setpoint)162 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
163     char *setpoint)
164 {
165 	int error;
166 	zfsvfs_t *zfvp;
167 	vfs_t *vfsp;
168 	objset_t *os;
169 	uint64_t tmp = *val;
170 
171 	error = dmu_objset_from_ds(ds, &os);
172 	if (error != 0)
173 		return (error);
174 
175 	error = getzfsvfs_impl(os, &zfvp);
176 	if (error != 0)
177 		return (error);
178 	if (zfvp == NULL)
179 		return (ENOENT);
180 	vfsp = zfvp->z_vfs;
181 	switch (zfs_prop) {
182 	case ZFS_PROP_ATIME:
183 		if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
184 			tmp = 0;
185 		if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
186 			tmp = 1;
187 		break;
188 	case ZFS_PROP_DEVICES:
189 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
190 			tmp = 0;
191 		if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
192 			tmp = 1;
193 		break;
194 	case ZFS_PROP_EXEC:
195 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
196 			tmp = 0;
197 		if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
198 			tmp = 1;
199 		break;
200 	case ZFS_PROP_SETUID:
201 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
202 			tmp = 0;
203 		if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
204 			tmp = 1;
205 		break;
206 	case ZFS_PROP_READONLY:
207 		if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
208 			tmp = 0;
209 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
210 			tmp = 1;
211 		break;
212 	case ZFS_PROP_XATTR:
213 		if (zfvp->z_flags & ZSB_XATTR)
214 			tmp = zfvp->z_xattr;
215 		break;
216 	case ZFS_PROP_NBMAND:
217 		if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
218 			tmp = 0;
219 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
220 			tmp = 1;
221 		break;
222 	default:
223 		vfs_unbusy(vfsp);
224 		return (ENOENT);
225 	}
226 
227 	vfs_unbusy(vfsp);
228 	if (tmp != *val) {
229 		if (setpoint)
230 			(void) strcpy(setpoint, "temporary");
231 		*val = tmp;
232 	}
233 	return (0);
234 }
235 
236 static int
zfs_getquota(zfsvfs_t * zfsvfs,uid_t id,int isgroup,struct dqblk64 * dqp)237 zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
238 {
239 	int error = 0;
240 	char buf[32];
241 	uint64_t usedobj, quotaobj;
242 	uint64_t quota, used = 0;
243 	timespec_t now;
244 
245 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
246 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
247 
248 	if (quotaobj == 0 || zfsvfs->z_replay) {
249 		error = ENOENT;
250 		goto done;
251 	}
252 	(void) sprintf(buf, "%llx", (longlong_t)id);
253 	if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
254 	    buf, sizeof (quota), 1, &quota)) != 0) {
255 		dprintf("%s(%d): quotaobj lookup failed\n",
256 		    __FUNCTION__, __LINE__);
257 		goto done;
258 	}
259 	/*
260 	 * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
261 	 * So we set them to be the same.
262 	 */
263 	dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
264 	error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
265 	if (error && error != ENOENT) {
266 		dprintf("%s(%d):  usedobj failed; %d\n",
267 		    __FUNCTION__, __LINE__, error);
268 		goto done;
269 	}
270 	dqp->dqb_curblocks = btodb(used);
271 	dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
272 	vfs_timestamp(&now);
273 	/*
274 	 * Setting this to 0 causes FreeBSD quota(8) to print
275 	 * the number of days since the epoch, which isn't
276 	 * particularly useful.
277 	 */
278 	dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
279 done:
280 	return (error);
281 }
282 
283 static int
284 #if __FreeBSD_version >= 1400018
zfs_quotactl(vfs_t * vfsp,int cmds,uid_t id,void * arg,bool * mp_busy)285 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy)
286 #else
287 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
288 #endif
289 {
290 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
291 	struct thread *td;
292 	int cmd, type, error = 0;
293 	int bitsize;
294 	zfs_userquota_prop_t quota_type;
295 	struct dqblk64 dqblk = { 0 };
296 
297 	td = curthread;
298 	cmd = cmds >> SUBCMDSHIFT;
299 	type = cmds & SUBCMDMASK;
300 
301 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
302 		return (error);
303 	if (id == -1) {
304 		switch (type) {
305 		case USRQUOTA:
306 			id = td->td_ucred->cr_ruid;
307 			break;
308 		case GRPQUOTA:
309 			id = td->td_ucred->cr_rgid;
310 			break;
311 		default:
312 			error = EINVAL;
313 #if __FreeBSD_version < 1400018
314 			if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
315 				vfs_unbusy(vfsp);
316 #endif
317 			goto done;
318 		}
319 	}
320 	/*
321 	 * Map BSD type to:
322 	 * ZFS_PROP_USERUSED,
323 	 * ZFS_PROP_USERQUOTA,
324 	 * ZFS_PROP_GROUPUSED,
325 	 * ZFS_PROP_GROUPQUOTA
326 	 */
327 	switch (cmd) {
328 	case Q_SETQUOTA:
329 	case Q_SETQUOTA32:
330 		if (type == USRQUOTA)
331 			quota_type = ZFS_PROP_USERQUOTA;
332 		else if (type == GRPQUOTA)
333 			quota_type = ZFS_PROP_GROUPQUOTA;
334 		else
335 			error = EINVAL;
336 		break;
337 	case Q_GETQUOTA:
338 	case Q_GETQUOTA32:
339 		if (type == USRQUOTA)
340 			quota_type = ZFS_PROP_USERUSED;
341 		else if (type == GRPQUOTA)
342 			quota_type = ZFS_PROP_GROUPUSED;
343 		else
344 			error = EINVAL;
345 		break;
346 	}
347 
348 	/*
349 	 * Depending on the cmd, we may need to get
350 	 * the ruid and domain (see fuidstr_to_sid?),
351 	 * the fuid (how?), or other information.
352 	 * Create fuid using zfs_fuid_create(zfsvfs, id,
353 	 * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
354 	 * I think I can use just the id?
355 	 *
356 	 * Look at zfs_id_overquota() to look up a quota.
357 	 * zap_lookup(something, quotaobj, fuidstring,
358 	 *     sizeof (long long), 1, &quota)
359 	 *
360 	 * See zfs_set_userquota() to set a quota.
361 	 */
362 	if ((uint32_t)type >= MAXQUOTAS) {
363 		error = EINVAL;
364 		goto done;
365 	}
366 
367 	switch (cmd) {
368 	case Q_GETQUOTASIZE:
369 		bitsize = 64;
370 		error = copyout(&bitsize, arg, sizeof (int));
371 		break;
372 	case Q_QUOTAON:
373 		// As far as I can tell, you can't turn quotas on or off on zfs
374 		error = 0;
375 #if __FreeBSD_version < 1400018
376 		vfs_unbusy(vfsp);
377 #endif
378 		break;
379 	case Q_QUOTAOFF:
380 		error = ENOTSUP;
381 #if __FreeBSD_version < 1400018
382 		vfs_unbusy(vfsp);
383 #endif
384 		break;
385 	case Q_SETQUOTA:
386 		error = copyin(arg, &dqblk, sizeof (dqblk));
387 		if (error == 0)
388 			error = zfs_set_userquota(zfsvfs, quota_type,
389 			    "", id, dbtob(dqblk.dqb_bhardlimit));
390 		break;
391 	case Q_GETQUOTA:
392 		error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
393 		if (error == 0)
394 			error = copyout(&dqblk, arg, sizeof (dqblk));
395 		break;
396 	default:
397 		error = EINVAL;
398 		break;
399 	}
400 done:
401 	zfs_exit(zfsvfs, FTAG);
402 	return (error);
403 }
404 
405 
406 boolean_t
zfs_is_readonly(zfsvfs_t * zfsvfs)407 zfs_is_readonly(zfsvfs_t *zfsvfs)
408 {
409 	return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
410 }
411 
412 static int
zfs_sync(vfs_t * vfsp,int waitfor)413 zfs_sync(vfs_t *vfsp, int waitfor)
414 {
415 
416 	/*
417 	 * Data integrity is job one.  We don't want a compromised kernel
418 	 * writing to the storage pool, so we never sync during panic.
419 	 */
420 	if (panicstr)
421 		return (0);
422 
423 	/*
424 	 * Ignore the system syncher.  ZFS already commits async data
425 	 * at zfs_txg_timeout intervals.
426 	 */
427 	if (waitfor == MNT_LAZY)
428 		return (0);
429 
430 	if (vfsp != NULL) {
431 		/*
432 		 * Sync a specific filesystem.
433 		 */
434 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
435 		dsl_pool_t *dp;
436 		int error;
437 
438 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
439 			return (error);
440 		dp = dmu_objset_pool(zfsvfs->z_os);
441 
442 		/*
443 		 * If the system is shutting down, then skip any
444 		 * filesystems which may exist on a suspended pool.
445 		 */
446 		if (rebooting && spa_suspended(dp->dp_spa)) {
447 			zfs_exit(zfsvfs, FTAG);
448 			return (0);
449 		}
450 
451 		if (zfsvfs->z_log != NULL)
452 			zil_commit(zfsvfs->z_log, 0);
453 
454 		zfs_exit(zfsvfs, FTAG);
455 	} else {
456 		/*
457 		 * Sync all ZFS filesystems.  This is what happens when you
458 		 * run sync(8).  Unlike other filesystems, ZFS honors the
459 		 * request by waiting for all pools to commit all dirty data.
460 		 */
461 		spa_sync_allpools();
462 	}
463 
464 	return (0);
465 }
466 
467 static void
atime_changed_cb(void * arg,uint64_t newval)468 atime_changed_cb(void *arg, uint64_t newval)
469 {
470 	zfsvfs_t *zfsvfs = arg;
471 
472 	if (newval == TRUE) {
473 		zfsvfs->z_atime = TRUE;
474 		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
475 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
476 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
477 	} else {
478 		zfsvfs->z_atime = FALSE;
479 		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
480 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
481 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
482 	}
483 }
484 
485 static void
xattr_changed_cb(void * arg,uint64_t newval)486 xattr_changed_cb(void *arg, uint64_t newval)
487 {
488 	zfsvfs_t *zfsvfs = arg;
489 
490 	if (newval == ZFS_XATTR_OFF) {
491 		zfsvfs->z_flags &= ~ZSB_XATTR;
492 	} else {
493 		zfsvfs->z_flags |= ZSB_XATTR;
494 
495 		if (newval == ZFS_XATTR_SA)
496 			zfsvfs->z_xattr_sa = B_TRUE;
497 		else
498 			zfsvfs->z_xattr_sa = B_FALSE;
499 	}
500 }
501 
502 static void
blksz_changed_cb(void * arg,uint64_t newval)503 blksz_changed_cb(void *arg, uint64_t newval)
504 {
505 	zfsvfs_t *zfsvfs = arg;
506 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
507 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
508 	ASSERT(ISP2(newval));
509 
510 	zfsvfs->z_max_blksz = newval;
511 	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
512 }
513 
514 static void
readonly_changed_cb(void * arg,uint64_t newval)515 readonly_changed_cb(void *arg, uint64_t newval)
516 {
517 	zfsvfs_t *zfsvfs = arg;
518 
519 	if (newval) {
520 		/* XXX locking on vfs_flag? */
521 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
522 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
523 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
524 	} else {
525 		/* XXX locking on vfs_flag? */
526 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
527 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
528 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
529 	}
530 }
531 
532 static void
setuid_changed_cb(void * arg,uint64_t newval)533 setuid_changed_cb(void *arg, uint64_t newval)
534 {
535 	zfsvfs_t *zfsvfs = arg;
536 
537 	if (newval == FALSE) {
538 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
539 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
540 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
541 	} else {
542 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
543 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
544 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
545 	}
546 }
547 
548 static void
exec_changed_cb(void * arg,uint64_t newval)549 exec_changed_cb(void *arg, uint64_t newval)
550 {
551 	zfsvfs_t *zfsvfs = arg;
552 
553 	if (newval == FALSE) {
554 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
555 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
556 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
557 	} else {
558 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
559 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
560 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
561 	}
562 }
563 
564 /*
565  * The nbmand mount option can be changed at mount time.
566  * We can't allow it to be toggled on live file systems or incorrect
567  * behavior may be seen from cifs clients
568  *
569  * This property isn't registered via dsl_prop_register(), but this callback
570  * will be called when a file system is first mounted
571  */
572 static void
nbmand_changed_cb(void * arg,uint64_t newval)573 nbmand_changed_cb(void *arg, uint64_t newval)
574 {
575 	zfsvfs_t *zfsvfs = arg;
576 	if (newval == FALSE) {
577 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
578 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
579 	} else {
580 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
581 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
582 	}
583 }
584 
585 static void
snapdir_changed_cb(void * arg,uint64_t newval)586 snapdir_changed_cb(void *arg, uint64_t newval)
587 {
588 	zfsvfs_t *zfsvfs = arg;
589 
590 	zfsvfs->z_show_ctldir = newval;
591 }
592 
593 static void
acl_mode_changed_cb(void * arg,uint64_t newval)594 acl_mode_changed_cb(void *arg, uint64_t newval)
595 {
596 	zfsvfs_t *zfsvfs = arg;
597 
598 	zfsvfs->z_acl_mode = newval;
599 }
600 
601 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)602 acl_inherit_changed_cb(void *arg, uint64_t newval)
603 {
604 	zfsvfs_t *zfsvfs = arg;
605 
606 	zfsvfs->z_acl_inherit = newval;
607 }
608 
609 static void
acl_type_changed_cb(void * arg,uint64_t newval)610 acl_type_changed_cb(void *arg, uint64_t newval)
611 {
612 	zfsvfs_t *zfsvfs = arg;
613 
614 	zfsvfs->z_acl_type = newval;
615 }
616 
617 static void
longname_changed_cb(void * arg,uint64_t newval)618 longname_changed_cb(void *arg, uint64_t newval)
619 {
620 	zfsvfs_t *zfsvfs = arg;
621 
622 	zfsvfs->z_longname = newval;
623 }
624 
625 static int
zfs_register_callbacks(vfs_t * vfsp)626 zfs_register_callbacks(vfs_t *vfsp)
627 {
628 	struct dsl_dataset *ds = NULL;
629 	objset_t *os = NULL;
630 	zfsvfs_t *zfsvfs = NULL;
631 	uint64_t nbmand;
632 	boolean_t readonly = B_FALSE;
633 	boolean_t do_readonly = B_FALSE;
634 	boolean_t setuid = B_FALSE;
635 	boolean_t do_setuid = B_FALSE;
636 	boolean_t exec = B_FALSE;
637 	boolean_t do_exec = B_FALSE;
638 	boolean_t xattr = B_FALSE;
639 	boolean_t atime = B_FALSE;
640 	boolean_t do_atime = B_FALSE;
641 	boolean_t do_xattr = B_FALSE;
642 	int error = 0;
643 
644 	ASSERT3P(vfsp, !=, NULL);
645 	zfsvfs = vfsp->vfs_data;
646 	ASSERT3P(zfsvfs, !=, NULL);
647 	os = zfsvfs->z_os;
648 
649 	/*
650 	 * This function can be called for a snapshot when we update snapshot's
651 	 * mount point, which isn't really supported.
652 	 */
653 	if (dmu_objset_is_snapshot(os))
654 		return (EOPNOTSUPP);
655 
656 	/*
657 	 * The act of registering our callbacks will destroy any mount
658 	 * options we may have.  In order to enable temporary overrides
659 	 * of mount options, we stash away the current values and
660 	 * restore them after we register the callbacks.
661 	 */
662 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
663 	    !spa_writeable(dmu_objset_spa(os))) {
664 		readonly = B_TRUE;
665 		do_readonly = B_TRUE;
666 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
667 		readonly = B_FALSE;
668 		do_readonly = B_TRUE;
669 	}
670 	if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
671 		setuid = B_FALSE;
672 		do_setuid = B_TRUE;
673 	} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
674 		setuid = B_TRUE;
675 		do_setuid = B_TRUE;
676 	}
677 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
678 		exec = B_FALSE;
679 		do_exec = B_TRUE;
680 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
681 		exec = B_TRUE;
682 		do_exec = B_TRUE;
683 	}
684 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
685 		zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
686 		do_xattr = B_TRUE;
687 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
688 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
689 		do_xattr = B_TRUE;
690 	} else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
691 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
692 		do_xattr = B_TRUE;
693 	} else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
694 		zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
695 		do_xattr = B_TRUE;
696 	}
697 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
698 		atime = B_FALSE;
699 		do_atime = B_TRUE;
700 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
701 		atime = B_TRUE;
702 		do_atime = B_TRUE;
703 	}
704 
705 	/*
706 	 * We need to enter pool configuration here, so that we can use
707 	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
708 	 * dsl_prop_get_integer() can not be used, because it has to acquire
709 	 * spa_namespace_lock and we can not do that because we already hold
710 	 * z_teardown_lock.  The problem is that spa_write_cachefile() is called
711 	 * with spa_namespace_lock held and the function calls ZFS vnode
712 	 * operations to write the cache file and thus z_teardown_lock is
713 	 * acquired after spa_namespace_lock.
714 	 */
715 	ds = dmu_objset_ds(os);
716 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
717 
718 	/*
719 	 * nbmand is a special property.  It can only be changed at
720 	 * mount time.
721 	 *
722 	 * This is weird, but it is documented to only be changeable
723 	 * at mount time.
724 	 */
725 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
726 		nbmand = B_FALSE;
727 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
728 		nbmand = B_TRUE;
729 	} else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) {
730 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
731 		return (error);
732 	}
733 
734 	/*
735 	 * Register property callbacks.
736 	 *
737 	 * It would probably be fine to just check for i/o error from
738 	 * the first prop_register(), but I guess I like to go
739 	 * overboard...
740 	 */
741 	error = dsl_prop_register(ds,
742 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
743 	error = error ? error : dsl_prop_register(ds,
744 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
745 	error = error ? error : dsl_prop_register(ds,
746 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
747 	error = error ? error : dsl_prop_register(ds,
748 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
749 	error = error ? error : dsl_prop_register(ds,
750 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
751 	error = error ? error : dsl_prop_register(ds,
752 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
753 	error = error ? error : dsl_prop_register(ds,
754 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
755 	error = error ? error : dsl_prop_register(ds,
756 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs);
757 	error = error ? error : dsl_prop_register(ds,
758 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
759 	error = error ? error : dsl_prop_register(ds,
760 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
761 	    zfsvfs);
762 	error = error ? error : dsl_prop_register(ds,
763 	    zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
764 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
765 	if (error)
766 		goto unregister;
767 
768 	/*
769 	 * Invoke our callbacks to restore temporary mount options.
770 	 */
771 	if (do_readonly)
772 		readonly_changed_cb(zfsvfs, readonly);
773 	if (do_setuid)
774 		setuid_changed_cb(zfsvfs, setuid);
775 	if (do_exec)
776 		exec_changed_cb(zfsvfs, exec);
777 	if (do_xattr)
778 		xattr_changed_cb(zfsvfs, xattr);
779 	if (do_atime)
780 		atime_changed_cb(zfsvfs, atime);
781 
782 	nbmand_changed_cb(zfsvfs, nbmand);
783 
784 	return (0);
785 
786 unregister:
787 	dsl_prop_unregister_all(ds, zfsvfs);
788 	return (error);
789 }
790 
791 /*
792  * Associate this zfsvfs with the given objset, which must be owned.
793  * This will cache a bunch of on-disk state from the objset in the
794  * zfsvfs.
795  */
796 static int
zfsvfs_init(zfsvfs_t * zfsvfs,objset_t * os)797 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
798 {
799 	int error;
800 	uint64_t val;
801 
802 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
803 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
804 	zfsvfs->z_os = os;
805 
806 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
807 	if (error != 0)
808 		return (error);
809 	if (zfsvfs->z_version >
810 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
811 		(void) printf("Can't mount a version %lld file system "
812 		    "on a version %lld pool\n. Pool must be upgraded to mount "
813 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
814 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
815 		return (SET_ERROR(ENOTSUP));
816 	}
817 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
818 	if (error != 0)
819 		return (error);
820 	zfsvfs->z_norm = (int)val;
821 
822 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
823 	if (error != 0)
824 		return (error);
825 	zfsvfs->z_utf8 = (val != 0);
826 
827 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
828 	if (error != 0)
829 		return (error);
830 	zfsvfs->z_case = (uint_t)val;
831 
832 	error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val);
833 	if (error != 0)
834 		return (error);
835 	zfsvfs->z_acl_type = (uint_t)val;
836 
837 	/*
838 	 * Fold case on file systems that are always or sometimes case
839 	 * insensitive.
840 	 */
841 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
842 	    zfsvfs->z_case == ZFS_CASE_MIXED)
843 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
844 
845 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
846 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
847 
848 	uint64_t sa_obj = 0;
849 	if (zfsvfs->z_use_sa) {
850 		/* should either have both of these objects or none */
851 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
852 		    &sa_obj);
853 		if (error != 0)
854 			return (error);
855 
856 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
857 		if (error == 0 && val == ZFS_XATTR_SA)
858 			zfsvfs->z_xattr_sa = B_TRUE;
859 	}
860 
861 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
862 	    &zfsvfs->z_attr_table);
863 	if (error != 0)
864 		return (error);
865 
866 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
867 		sa_register_update_callback(os, zfs_sa_upgrade);
868 
869 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
870 	    &zfsvfs->z_root);
871 	if (error != 0)
872 		return (error);
873 	ASSERT3U(zfsvfs->z_root, !=, 0);
874 
875 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
876 	    &zfsvfs->z_unlinkedobj);
877 	if (error != 0)
878 		return (error);
879 
880 	error = zap_lookup(os, MASTER_NODE_OBJ,
881 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
882 	    8, 1, &zfsvfs->z_userquota_obj);
883 	if (error == ENOENT)
884 		zfsvfs->z_userquota_obj = 0;
885 	else if (error != 0)
886 		return (error);
887 
888 	error = zap_lookup(os, MASTER_NODE_OBJ,
889 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
890 	    8, 1, &zfsvfs->z_groupquota_obj);
891 	if (error == ENOENT)
892 		zfsvfs->z_groupquota_obj = 0;
893 	else if (error != 0)
894 		return (error);
895 
896 	error = zap_lookup(os, MASTER_NODE_OBJ,
897 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
898 	    8, 1, &zfsvfs->z_projectquota_obj);
899 	if (error == ENOENT)
900 		zfsvfs->z_projectquota_obj = 0;
901 	else if (error != 0)
902 		return (error);
903 
904 	error = zap_lookup(os, MASTER_NODE_OBJ,
905 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
906 	    8, 1, &zfsvfs->z_userobjquota_obj);
907 	if (error == ENOENT)
908 		zfsvfs->z_userobjquota_obj = 0;
909 	else if (error != 0)
910 		return (error);
911 
912 	error = zap_lookup(os, MASTER_NODE_OBJ,
913 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
914 	    8, 1, &zfsvfs->z_groupobjquota_obj);
915 	if (error == ENOENT)
916 		zfsvfs->z_groupobjquota_obj = 0;
917 	else if (error != 0)
918 		return (error);
919 
920 	error = zap_lookup(os, MASTER_NODE_OBJ,
921 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
922 	    8, 1, &zfsvfs->z_projectobjquota_obj);
923 	if (error == ENOENT)
924 		zfsvfs->z_projectobjquota_obj = 0;
925 	else if (error != 0)
926 		return (error);
927 
928 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
929 	    &zfsvfs->z_fuid_obj);
930 	if (error == ENOENT)
931 		zfsvfs->z_fuid_obj = 0;
932 	else if (error != 0)
933 		return (error);
934 
935 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
936 	    &zfsvfs->z_shares_dir);
937 	if (error == ENOENT)
938 		zfsvfs->z_shares_dir = 0;
939 	else if (error != 0)
940 		return (error);
941 
942 	/*
943 	 * Only use the name cache if we are looking for a
944 	 * name on a file system that does not require normalization
945 	 * or case folding.  We can also look there if we happen to be
946 	 * on a non-normalizing, mixed sensitivity file system IF we
947 	 * are looking for the exact name (which is always the case on
948 	 * FreeBSD).
949 	 */
950 	zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
951 	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
952 	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
953 
954 	return (0);
955 }
956 
957 taskq_t *zfsvfs_taskq;
958 
959 static void
zfsvfs_task_unlinked_drain(void * context,int pending __unused)960 zfsvfs_task_unlinked_drain(void *context, int pending __unused)
961 {
962 
963 	zfs_unlinked_drain((zfsvfs_t *)context);
964 }
965 
966 int
zfsvfs_create(const char * osname,boolean_t readonly,zfsvfs_t ** zfvp)967 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
968 {
969 	objset_t *os;
970 	zfsvfs_t *zfsvfs;
971 	int error;
972 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
973 
974 	/*
975 	 * XXX: Fix struct statfs so this isn't necessary!
976 	 *
977 	 * The 'osname' is used as the filesystem's special node, which means
978 	 * it must fit in statfs.f_mntfromname, or else it can't be
979 	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
980 	 * 'zfs unmount' to think it's not mounted when it is.
981 	 */
982 	if (strlen(osname) >= MNAMELEN)
983 		return (SET_ERROR(ENAMETOOLONG));
984 
985 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
986 
987 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
988 	    &os);
989 	if (error != 0) {
990 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
991 		return (error);
992 	}
993 
994 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
995 
996 	return (error);
997 }
998 
999 
1000 int
zfsvfs_create_impl(zfsvfs_t ** zfvp,zfsvfs_t * zfsvfs,objset_t * os)1001 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1002 {
1003 	int error;
1004 
1005 	zfsvfs->z_vfs = NULL;
1006 	zfsvfs->z_parent = zfsvfs;
1007 
1008 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1009 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1010 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1011 	    offsetof(znode_t, z_link_node));
1012 	TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
1013 	    zfsvfs_task_unlinked_drain, zfsvfs);
1014 	ZFS_TEARDOWN_INIT(zfsvfs);
1015 	ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs);
1016 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1017 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1018 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1019 
1020 	error = zfsvfs_init(zfsvfs, os);
1021 	if (error != 0) {
1022 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1023 		*zfvp = NULL;
1024 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1025 		return (error);
1026 	}
1027 
1028 	*zfvp = zfsvfs;
1029 	return (0);
1030 }
1031 
1032 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)1033 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1034 {
1035 	int error;
1036 
1037 	/*
1038 	 * Check for a bad on-disk format version now since we
1039 	 * lied about owning the dataset readonly before.
1040 	 */
1041 	if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
1042 	    dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
1043 		return (SET_ERROR(EROFS));
1044 
1045 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1046 	if (error)
1047 		return (error);
1048 
1049 	/*
1050 	 * If we are not mounting (ie: online recv), then we don't
1051 	 * have to worry about replaying the log as we blocked all
1052 	 * operations out since we closed the ZIL.
1053 	 */
1054 	if (mounting) {
1055 		boolean_t readonly;
1056 
1057 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
1058 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
1059 		if (error)
1060 			return (error);
1061 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1062 		    &zfsvfs->z_kstat.dk_zil_sums);
1063 
1064 		/*
1065 		 * During replay we remove the read only flag to
1066 		 * allow replays to succeed.
1067 		 */
1068 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1069 		if (readonly != 0) {
1070 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1071 		} else {
1072 			dsl_dir_t *dd;
1073 			zap_stats_t zs;
1074 
1075 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
1076 			    &zs) == 0) {
1077 				dataset_kstats_update_nunlinks_kstat(
1078 				    &zfsvfs->z_kstat, zs.zs_num_entries);
1079 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1080 				    "num_entries in unlinked set: %llu",
1081 				    (u_longlong_t)zs.zs_num_entries);
1082 			}
1083 
1084 			zfs_unlinked_drain(zfsvfs);
1085 			dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1086 			dd->dd_activity_cancelled = B_FALSE;
1087 		}
1088 
1089 		/*
1090 		 * Parse and replay the intent log.
1091 		 *
1092 		 * Because of ziltest, this must be done after
1093 		 * zfs_unlinked_drain().  (Further note: ziltest
1094 		 * doesn't use readonly mounts, where
1095 		 * zfs_unlinked_drain() isn't called.)  This is because
1096 		 * ziltest causes spa_sync() to think it's committed,
1097 		 * but actually it is not, so the intent log contains
1098 		 * many txg's worth of changes.
1099 		 *
1100 		 * In particular, if object N is in the unlinked set in
1101 		 * the last txg to actually sync, then it could be
1102 		 * actually freed in a later txg and then reallocated
1103 		 * in a yet later txg.  This would write a "create
1104 		 * object N" record to the intent log.  Normally, this
1105 		 * would be fine because the spa_sync() would have
1106 		 * written out the fact that object N is free, before
1107 		 * we could write the "create object N" intent log
1108 		 * record.
1109 		 *
1110 		 * But when we are in ziltest mode, we advance the "open
1111 		 * txg" without actually spa_sync()-ing the changes to
1112 		 * disk.  So we would see that object N is still
1113 		 * allocated and in the unlinked set, and there is an
1114 		 * intent log record saying to allocate it.
1115 		 */
1116 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1117 			if (zil_replay_disable) {
1118 				zil_destroy(zfsvfs->z_log, B_FALSE);
1119 			} else {
1120 				boolean_t use_nc = zfsvfs->z_use_namecache;
1121 				zfsvfs->z_use_namecache = B_FALSE;
1122 				zfsvfs->z_replay = B_TRUE;
1123 				zil_replay(zfsvfs->z_os, zfsvfs,
1124 				    zfs_replay_vector);
1125 				zfsvfs->z_replay = B_FALSE;
1126 				zfsvfs->z_use_namecache = use_nc;
1127 			}
1128 		}
1129 
1130 		/* restore readonly bit */
1131 		if (readonly != 0)
1132 			zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1133 	} else {
1134 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
1135 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1136 		    &zfsvfs->z_kstat.dk_zil_sums);
1137 	}
1138 
1139 	/*
1140 	 * Set the objset user_ptr to track its zfsvfs.
1141 	 */
1142 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1143 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1144 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1145 
1146 	return (0);
1147 }
1148 
1149 void
zfsvfs_free(zfsvfs_t * zfsvfs)1150 zfsvfs_free(zfsvfs_t *zfsvfs)
1151 {
1152 	int i;
1153 
1154 	zfs_fuid_destroy(zfsvfs);
1155 
1156 	mutex_destroy(&zfsvfs->z_znodes_lock);
1157 	mutex_destroy(&zfsvfs->z_lock);
1158 	list_destroy(&zfsvfs->z_all_znodes);
1159 	ZFS_TEARDOWN_DESTROY(zfsvfs);
1160 	ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs);
1161 	rw_destroy(&zfsvfs->z_fuid_lock);
1162 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1163 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1164 	dataset_kstats_destroy(&zfsvfs->z_kstat);
1165 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1166 }
1167 
1168 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)1169 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1170 {
1171 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1172 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1173 }
1174 
1175 static int
zfs_domount(vfs_t * vfsp,char * osname)1176 zfs_domount(vfs_t *vfsp, char *osname)
1177 {
1178 	uint64_t recordsize, fsid_guid;
1179 	int error = 0;
1180 	zfsvfs_t *zfsvfs;
1181 
1182 	ASSERT3P(vfsp, !=, NULL);
1183 	ASSERT3P(osname, !=, NULL);
1184 
1185 	error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
1186 	if (error)
1187 		return (error);
1188 	zfsvfs->z_vfs = vfsp;
1189 
1190 	if ((error = dsl_prop_get_integer(osname,
1191 	    "recordsize", &recordsize, NULL)))
1192 		goto out;
1193 	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1194 	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1195 
1196 	vfsp->vfs_data = zfsvfs;
1197 	vfsp->mnt_flag |= MNT_LOCAL;
1198 	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1199 	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1200 	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1201 	/*
1202 	 * This can cause a loss of coherence between ARC and page cache
1203 	 * on ZoF - unclear if the problem is in FreeBSD or ZoF
1204 	 */
1205 	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1206 	vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
1207 	vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
1208 
1209 #if defined(_KERNEL) && !defined(KMEM_DEBUG)
1210 	vfsp->mnt_kern_flag |= MNTK_FPLOOKUP;
1211 #endif
1212 	/*
1213 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1214 	 * separates our fsid from any other filesystem types, and a
1215 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1216 	 * all objsets open on this system, provided by unique_create().
1217 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1218 	 * because that's where other Solaris filesystems put it.
1219 	 */
1220 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1221 	ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0);
1222 	vfsp->vfs_fsid.val[0] = fsid_guid;
1223 	vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) |
1224 	    (vfsp->mnt_vfc->vfc_typenum & 0xFF);
1225 
1226 	/*
1227 	 * Set features for file system.
1228 	 */
1229 	zfs_set_fuid_feature(zfsvfs);
1230 
1231 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1232 		uint64_t pval;
1233 
1234 		atime_changed_cb(zfsvfs, B_FALSE);
1235 		readonly_changed_cb(zfsvfs, B_TRUE);
1236 		if ((error = dsl_prop_get_integer(osname,
1237 		    "xattr", &pval, NULL)))
1238 			goto out;
1239 		xattr_changed_cb(zfsvfs, pval);
1240 		if ((error = dsl_prop_get_integer(osname,
1241 		    "acltype", &pval, NULL)))
1242 			goto out;
1243 		acl_type_changed_cb(zfsvfs, pval);
1244 		zfsvfs->z_issnap = B_TRUE;
1245 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1246 
1247 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1248 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1249 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1250 	} else {
1251 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1252 			goto out;
1253 	}
1254 
1255 	vfs_mountedfrom(vfsp, osname);
1256 
1257 	if (!zfsvfs->z_issnap)
1258 		zfsctl_create(zfsvfs);
1259 out:
1260 	if (error) {
1261 		dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1262 		zfsvfs_free(zfsvfs);
1263 	} else {
1264 		atomic_inc_32(&zfs_active_fs_count);
1265 	}
1266 
1267 	return (error);
1268 }
1269 
1270 static void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)1271 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1272 {
1273 	objset_t *os = zfsvfs->z_os;
1274 
1275 	if (!dmu_objset_is_snapshot(os))
1276 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1277 }
1278 
1279 static int
getpoolname(const char * osname,char * poolname)1280 getpoolname(const char *osname, char *poolname)
1281 {
1282 	char *p;
1283 
1284 	p = strchr(osname, '/');
1285 	if (p == NULL) {
1286 		if (strlen(osname) >= MAXNAMELEN)
1287 			return (ENAMETOOLONG);
1288 		(void) strcpy(poolname, osname);
1289 	} else {
1290 		if (p - osname >= MAXNAMELEN)
1291 			return (ENAMETOOLONG);
1292 		(void) strlcpy(poolname, osname, p - osname + 1);
1293 	}
1294 	return (0);
1295 }
1296 
1297 static void
fetch_osname_options(char * name,bool * checkpointrewind)1298 fetch_osname_options(char *name, bool *checkpointrewind)
1299 {
1300 
1301 	if (name[0] == '!') {
1302 		*checkpointrewind = true;
1303 		memmove(name, name + 1, strlen(name));
1304 	} else {
1305 		*checkpointrewind = false;
1306 	}
1307 }
1308 
1309 static int
zfs_mount(vfs_t * vfsp)1310 zfs_mount(vfs_t *vfsp)
1311 {
1312 	kthread_t	*td = curthread;
1313 	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1314 	cred_t		*cr = td->td_ucred;
1315 	char		*osname;
1316 	int		error = 0;
1317 	int		canwrite;
1318 	bool		checkpointrewind, isctlsnap = false;
1319 
1320 	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1321 		return (SET_ERROR(EINVAL));
1322 
1323 	/*
1324 	 * If full-owner-access is enabled and delegated administration is
1325 	 * turned on, we must set nosuid.
1326 	 */
1327 	if (zfs_super_owner &&
1328 	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1329 		secpolicy_fs_mount_clearopts(cr, vfsp);
1330 	}
1331 
1332 	fetch_osname_options(osname, &checkpointrewind);
1333 	isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) &&
1334 	    strchr(osname, '@') != NULL);
1335 
1336 	/*
1337 	 * Check for mount privilege?
1338 	 *
1339 	 * If we don't have privilege then see if
1340 	 * we have local permission to allow it
1341 	 */
1342 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1343 	if (error && isctlsnap) {
1344 		secpolicy_fs_mount_clearopts(cr, vfsp);
1345 	} else if (error) {
1346 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1347 			goto out;
1348 
1349 		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1350 			vattr_t		vattr;
1351 
1352 			/*
1353 			 * Make sure user is the owner of the mount point
1354 			 * or has sufficient privileges.
1355 			 */
1356 
1357 			vattr.va_mask = AT_UID;
1358 
1359 			vn_lock(mvp, LK_SHARED | LK_RETRY);
1360 			if (VOP_GETATTR(mvp, &vattr, cr)) {
1361 				VOP_UNLOCK(mvp);
1362 				goto out;
1363 			}
1364 
1365 			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1366 			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1367 				VOP_UNLOCK(mvp);
1368 				goto out;
1369 			}
1370 			VOP_UNLOCK(mvp);
1371 		}
1372 
1373 		secpolicy_fs_mount_clearopts(cr, vfsp);
1374 	}
1375 
1376 	/*
1377 	 * Refuse to mount a filesystem if we are in a local zone and the
1378 	 * dataset is not visible.
1379 	 */
1380 	if (!INGLOBALZONE(curproc) &&
1381 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1382 		boolean_t mount_snapshot = B_FALSE;
1383 
1384 		/*
1385 		 * Snapshots may be mounted in .zfs for unjailed datasets
1386 		 * if allowed by the jail param zfs.mount_snapshot.
1387 		 */
1388 		if (isctlsnap) {
1389 			struct prison *pr;
1390 			struct zfs_jailparam *zjp;
1391 
1392 			pr = curthread->td_ucred->cr_prison;
1393 			mtx_lock(&pr->pr_mtx);
1394 			zjp = osd_jail_get(pr, zfs_jailparam_slot);
1395 			mtx_unlock(&pr->pr_mtx);
1396 			if (zjp && zjp->mount_snapshot)
1397 				mount_snapshot = B_TRUE;
1398 		}
1399 		if (!mount_snapshot) {
1400 			error = SET_ERROR(EPERM);
1401 			goto out;
1402 		}
1403 	}
1404 
1405 	vfsp->vfs_flag |= MNT_NFS4ACLS;
1406 
1407 	/*
1408 	 * When doing a remount, we simply refresh our temporary properties
1409 	 * according to those options set in the current VFS options.
1410 	 */
1411 	if (vfsp->vfs_flag & MS_REMOUNT) {
1412 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1413 
1414 		/*
1415 		 * Refresh mount options with z_teardown_lock blocking I/O while
1416 		 * the filesystem is in an inconsistent state.
1417 		 * The lock also serializes this code with filesystem
1418 		 * manipulations between entry to zfs_suspend_fs() and return
1419 		 * from zfs_resume_fs().
1420 		 */
1421 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1422 		zfs_unregister_callbacks(zfsvfs);
1423 		error = zfs_register_callbacks(vfsp);
1424 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1425 		goto out;
1426 	}
1427 
1428 	/* Initial root mount: try hard to import the requested root pool. */
1429 	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1430 	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1431 		char pname[MAXNAMELEN];
1432 
1433 		error = getpoolname(osname, pname);
1434 		if (error == 0)
1435 			error = spa_import_rootpool(pname, checkpointrewind);
1436 		if (error)
1437 			goto out;
1438 	}
1439 	DROP_GIANT();
1440 	error = zfs_domount(vfsp, osname);
1441 	PICKUP_GIANT();
1442 
1443 out:
1444 	return (error);
1445 }
1446 
1447 static int
zfs_statfs(vfs_t * vfsp,struct statfs * statp)1448 zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1449 {
1450 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1451 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1452 	int error;
1453 
1454 	statp->f_version = STATFS_VERSION;
1455 
1456 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1457 		return (error);
1458 
1459 	dmu_objset_space(zfsvfs->z_os,
1460 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1461 
1462 	/*
1463 	 * The underlying storage pool actually uses multiple block sizes.
1464 	 * We report the fragsize as the smallest block size we support,
1465 	 * and we report our blocksize as the filesystem's maximum blocksize.
1466 	 */
1467 	statp->f_bsize = SPA_MINBLOCKSIZE;
1468 	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1469 
1470 	/*
1471 	 * The following report "total" blocks of various kinds in the
1472 	 * file system, but reported in terms of f_frsize - the
1473 	 * "fragment" size.
1474 	 */
1475 
1476 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1477 	statp->f_bfree = availbytes / statp->f_bsize;
1478 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1479 
1480 	/*
1481 	 * statvfs() should really be called statufs(), because it assumes
1482 	 * static metadata.  ZFS doesn't preallocate files, so the best
1483 	 * we can do is report the max that could possibly fit in f_files,
1484 	 * and that minus the number actually used in f_ffree.
1485 	 * For f_ffree, report the smaller of the number of object available
1486 	 * and the number of blocks (each object will take at least a block).
1487 	 */
1488 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1489 	statp->f_files = statp->f_ffree + usedobjs;
1490 
1491 	/*
1492 	 * We're a zfs filesystem.
1493 	 */
1494 	strlcpy(statp->f_fstypename, "zfs",
1495 	    sizeof (statp->f_fstypename));
1496 
1497 	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1498 	    sizeof (statp->f_mntfromname));
1499 	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1500 	    sizeof (statp->f_mntonname));
1501 
1502 	statp->f_namemax =
1503 	    zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1504 
1505 	zfs_exit(zfsvfs, FTAG);
1506 	return (0);
1507 }
1508 
1509 static int
zfs_root(vfs_t * vfsp,int flags,vnode_t ** vpp)1510 zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1511 {
1512 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1513 	znode_t *rootzp;
1514 	int error;
1515 
1516 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1517 		return (error);
1518 
1519 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1520 	if (error == 0)
1521 		*vpp = ZTOV(rootzp);
1522 
1523 	zfs_exit(zfsvfs, FTAG);
1524 
1525 	if (error == 0) {
1526 		error = vn_lock(*vpp, flags);
1527 		if (error != 0) {
1528 			VN_RELE(*vpp);
1529 			*vpp = NULL;
1530 		}
1531 	}
1532 	return (error);
1533 }
1534 
1535 /*
1536  * Teardown the zfsvfs::z_os.
1537  *
1538  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1539  * and 'z_teardown_inactive_lock' held.
1540  */
1541 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1542 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1543 {
1544 	znode_t	*zp;
1545 	dsl_dir_t *dd;
1546 
1547 	/*
1548 	 * If someone has not already unmounted this file system,
1549 	 * drain the zrele_taskq to ensure all active references to the
1550 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1551 	 */
1552 	if (zfsvfs->z_os) {
1553 		/*
1554 		 * If we're unmounting we have to wait for the list to
1555 		 * drain completely.
1556 		 *
1557 		 * If we're not unmounting there's no guarantee the list
1558 		 * will drain completely, but zreles run from the taskq
1559 		 * may add the parents of dir-based xattrs to the taskq
1560 		 * so we want to wait for these.
1561 		 *
1562 		 * We can safely check z_all_znodes for being empty because the
1563 		 * VFS has already blocked operations which add to it.
1564 		 */
1565 		int round = 0;
1566 		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1567 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1568 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1569 			if (++round > 1 && !unmounting)
1570 				break;
1571 		}
1572 	}
1573 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1574 
1575 	if (!unmounting) {
1576 		/*
1577 		 * We purge the parent filesystem's vfsp as the parent
1578 		 * filesystem and all of its snapshots have their vnode's
1579 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1580 		 * 'z_parent' is self referential for non-snapshots.
1581 		 */
1582 #ifdef FREEBSD_NAMECACHE
1583 		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1584 #endif
1585 	}
1586 
1587 	/*
1588 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1589 	 * threads are blocked as zil_close can call zfs_inactive.
1590 	 */
1591 	if (zfsvfs->z_log) {
1592 		zil_close(zfsvfs->z_log);
1593 		zfsvfs->z_log = NULL;
1594 	}
1595 
1596 	ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs);
1597 
1598 	/*
1599 	 * If we are not unmounting (ie: online recv) and someone already
1600 	 * unmounted this file system while we were doing the switcheroo,
1601 	 * or a reopen of z_os failed then just bail out now.
1602 	 */
1603 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1604 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1605 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1606 		return (SET_ERROR(EIO));
1607 	}
1608 
1609 	/*
1610 	 * At this point there are no vops active, and any new vops will
1611 	 * fail with EIO since we have z_teardown_lock for writer (only
1612 	 * relevant for forced unmount).
1613 	 *
1614 	 * Release all holds on dbufs.
1615 	 */
1616 	mutex_enter(&zfsvfs->z_znodes_lock);
1617 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1618 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1619 		if (zp->z_sa_hdl != NULL) {
1620 			zfs_znode_dmu_fini(zp);
1621 		}
1622 	}
1623 	mutex_exit(&zfsvfs->z_znodes_lock);
1624 
1625 	/*
1626 	 * If we are unmounting, set the unmounted flag and let new vops
1627 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1628 	 * other vops will fail with EIO.
1629 	 */
1630 	if (unmounting) {
1631 		zfsvfs->z_unmounted = B_TRUE;
1632 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1633 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1634 	}
1635 
1636 	/*
1637 	 * z_os will be NULL if there was an error in attempting to reopen
1638 	 * zfsvfs, so just return as the properties had already been
1639 	 * unregistered and cached data had been evicted before.
1640 	 */
1641 	if (zfsvfs->z_os == NULL)
1642 		return (0);
1643 
1644 	/*
1645 	 * Unregister properties.
1646 	 */
1647 	zfs_unregister_callbacks(zfsvfs);
1648 
1649 	/*
1650 	 * Evict cached data. We must write out any dirty data before
1651 	 * disowning the dataset.
1652 	 */
1653 	objset_t *os = zfsvfs->z_os;
1654 	boolean_t os_dirty = B_FALSE;
1655 	for (int t = 0; t < TXG_SIZE; t++) {
1656 		if (dmu_objset_is_dirty(os, t)) {
1657 			os_dirty = B_TRUE;
1658 			break;
1659 		}
1660 	}
1661 	if (!zfs_is_readonly(zfsvfs) && os_dirty)
1662 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1663 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1664 	dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1665 	dsl_dir_cancel_waiters(dd);
1666 
1667 	return (0);
1668 }
1669 
1670 static int
zfs_umount(vfs_t * vfsp,int fflag)1671 zfs_umount(vfs_t *vfsp, int fflag)
1672 {
1673 	kthread_t *td = curthread;
1674 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1675 	objset_t *os;
1676 	cred_t *cr = td->td_ucred;
1677 	int ret;
1678 
1679 	ret = secpolicy_fs_unmount(cr, vfsp);
1680 	if (ret) {
1681 		if (dsl_deleg_access((char *)vfsp->vfs_resource,
1682 		    ZFS_DELEG_PERM_MOUNT, cr))
1683 			return (ret);
1684 	}
1685 
1686 	/*
1687 	 * Unmount any snapshots mounted under .zfs before unmounting the
1688 	 * dataset itself.
1689 	 */
1690 	if (zfsvfs->z_ctldir != NULL) {
1691 		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1692 			return (ret);
1693 	}
1694 
1695 	if (fflag & MS_FORCE) {
1696 		/*
1697 		 * Mark file system as unmounted before calling
1698 		 * vflush(FORCECLOSE). This way we ensure no future vnops
1699 		 * will be called and risk operating on DOOMED vnodes.
1700 		 */
1701 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1702 		zfsvfs->z_unmounted = B_TRUE;
1703 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1704 	}
1705 
1706 	/*
1707 	 * Flush all the files.
1708 	 */
1709 	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1710 	if (ret != 0)
1711 		return (ret);
1712 	while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
1713 	    &zfsvfs->z_unlinked_drain_task, NULL) != 0)
1714 		taskqueue_drain(zfsvfs_taskq->tq_queue,
1715 		    &zfsvfs->z_unlinked_drain_task);
1716 
1717 	VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
1718 	os = zfsvfs->z_os;
1719 
1720 	/*
1721 	 * z_os will be NULL if there was an error in
1722 	 * attempting to reopen zfsvfs.
1723 	 */
1724 	if (os != NULL) {
1725 		/*
1726 		 * Unset the objset user_ptr.
1727 		 */
1728 		mutex_enter(&os->os_user_ptr_lock);
1729 		dmu_objset_set_user(os, NULL);
1730 		mutex_exit(&os->os_user_ptr_lock);
1731 
1732 		/*
1733 		 * Finally release the objset
1734 		 */
1735 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1736 	}
1737 
1738 	/*
1739 	 * We can now safely destroy the '.zfs' directory node.
1740 	 */
1741 	if (zfsvfs->z_ctldir != NULL)
1742 		zfsctl_destroy(zfsvfs);
1743 	zfs_freevfs(vfsp);
1744 
1745 	return (0);
1746 }
1747 
1748 static int
zfs_vget(vfs_t * vfsp,ino_t ino,int flags,vnode_t ** vpp)1749 zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1750 {
1751 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1752 	znode_t		*zp;
1753 	int 		err;
1754 
1755 	/*
1756 	 * zfs_zget() can't operate on virtual entries like .zfs/ or
1757 	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1758 	 * This will make NFS to switch to LOOKUP instead of using VGET.
1759 	 */
1760 	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
1761 	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
1762 		return (EOPNOTSUPP);
1763 
1764 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1765 		return (err);
1766 	err = zfs_zget(zfsvfs, ino, &zp);
1767 	if (err == 0 && zp->z_unlinked) {
1768 		vrele(ZTOV(zp));
1769 		err = EINVAL;
1770 	}
1771 	if (err == 0)
1772 		*vpp = ZTOV(zp);
1773 	zfs_exit(zfsvfs, FTAG);
1774 	if (err == 0) {
1775 		err = vn_lock(*vpp, flags);
1776 		if (err != 0)
1777 			vrele(*vpp);
1778 	}
1779 	if (err != 0)
1780 		*vpp = NULL;
1781 	return (err);
1782 }
1783 
1784 static int
zfs_checkexp(vfs_t * vfsp,struct sockaddr * nam,uint64_t * extflagsp,struct ucred ** credanonp,int * numsecflavors,int * secflavors)1785 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
1786     struct ucred **credanonp, int *numsecflavors, int *secflavors)
1787 {
1788 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1789 
1790 	/*
1791 	 * If this is regular file system vfsp is the same as
1792 	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1793 	 * zfsvfs->z_parent->z_vfs represents parent file system
1794 	 * which we have to use here, because only this file system
1795 	 * has mnt_export configured.
1796 	 */
1797 	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1798 	    credanonp, numsecflavors, secflavors));
1799 }
1800 
1801 _Static_assert(sizeof (struct fid) >= SHORT_FID_LEN,
1802 	"struct fid bigger than SHORT_FID_LEN");
1803 _Static_assert(sizeof (struct fid) >= LONG_FID_LEN,
1804 	"struct fid bigger than LONG_FID_LEN");
1805 
1806 static int
zfs_fhtovp(vfs_t * vfsp,fid_t * fidp,int flags,vnode_t ** vpp)1807 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
1808 {
1809 	struct componentname cn;
1810 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1811 	znode_t		*zp;
1812 	vnode_t		*dvp;
1813 	uint64_t	object = 0;
1814 	uint64_t	fid_gen = 0;
1815 	uint64_t	setgen = 0;
1816 	uint64_t	gen_mask;
1817 	uint64_t	zp_gen;
1818 	int 		i, err;
1819 
1820 	*vpp = NULL;
1821 
1822 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1823 		return (err);
1824 
1825 	/*
1826 	 * On FreeBSD we can get snapshot's mount point or its parent file
1827 	 * system mount point depending if snapshot is already mounted or not.
1828 	 */
1829 	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1830 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1831 		uint64_t	objsetid = 0;
1832 
1833 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1834 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1835 
1836 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1837 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1838 
1839 		zfs_exit(zfsvfs, FTAG);
1840 
1841 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1842 		if (err)
1843 			return (SET_ERROR(EINVAL));
1844 		if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1845 			return (err);
1846 	}
1847 
1848 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1849 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1850 
1851 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1852 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1853 
1854 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1855 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1856 	} else {
1857 		zfs_exit(zfsvfs, FTAG);
1858 		return (SET_ERROR(EINVAL));
1859 	}
1860 
1861 	if (fidp->fid_len == LONG_FID_LEN && setgen != 0) {
1862 		zfs_exit(zfsvfs, FTAG);
1863 		dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n",
1864 		    (u_longlong_t)fid_gen, (u_longlong_t)setgen);
1865 		return (SET_ERROR(EINVAL));
1866 	}
1867 
1868 	/*
1869 	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
1870 	 * directory tree. If the object == zfsvfs->z_shares_dir, then
1871 	 * we are in the .zfs/shares directory tree.
1872 	 */
1873 	if ((fid_gen == 0 &&
1874 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
1875 	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
1876 		zfs_exit(zfsvfs, FTAG);
1877 		VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
1878 		if (object == ZFSCTL_INO_SNAPDIR) {
1879 			cn.cn_nameptr = "snapshot";
1880 			cn.cn_namelen = strlen(cn.cn_nameptr);
1881 			cn.cn_nameiop = LOOKUP;
1882 			cn.cn_flags = ISLASTCN | LOCKLEAF;
1883 			cn.cn_lkflags = flags;
1884 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1885 			vput(dvp);
1886 		} else if (object == zfsvfs->z_shares_dir) {
1887 			/*
1888 			 * XXX This branch must not be taken,
1889 			 * if it is, then the lookup below will
1890 			 * explode.
1891 			 */
1892 			cn.cn_nameptr = "shares";
1893 			cn.cn_namelen = strlen(cn.cn_nameptr);
1894 			cn.cn_nameiop = LOOKUP;
1895 			cn.cn_flags = ISLASTCN;
1896 			cn.cn_lkflags = flags;
1897 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1898 			vput(dvp);
1899 		} else {
1900 			*vpp = dvp;
1901 		}
1902 		return (err);
1903 	}
1904 
1905 	gen_mask = -1ULL >> (64 - 8 * i);
1906 
1907 	dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object,
1908 	    (u_longlong_t)fid_gen,
1909 	    (u_longlong_t)gen_mask);
1910 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1911 		zfs_exit(zfsvfs, FTAG);
1912 		return (err);
1913 	}
1914 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1915 	    sizeof (uint64_t));
1916 	zp_gen = zp_gen & gen_mask;
1917 	if (zp_gen == 0)
1918 		zp_gen = 1;
1919 	if (zp->z_unlinked || zp_gen != fid_gen) {
1920 		dprintf("znode gen (%llu) != fid gen (%llu)\n",
1921 		    (u_longlong_t)zp_gen, (u_longlong_t)fid_gen);
1922 		vrele(ZTOV(zp));
1923 		zfs_exit(zfsvfs, FTAG);
1924 		return (SET_ERROR(EINVAL));
1925 	}
1926 
1927 	*vpp = ZTOV(zp);
1928 	zfs_exit(zfsvfs, FTAG);
1929 	err = vn_lock(*vpp, flags);
1930 	if (err == 0)
1931 		vnode_create_vobject(*vpp, zp->z_size, curthread);
1932 	else
1933 		*vpp = NULL;
1934 	return (err);
1935 }
1936 
1937 /*
1938  * Block out VOPs and close zfsvfs_t::z_os
1939  *
1940  * Note, if successful, then we return with the 'z_teardown_lock' and
1941  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1942  * dataset and objset intact so that they can be atomically handed off during
1943  * a subsequent rollback or recv operation and the resume thereafter.
1944  */
1945 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)1946 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1947 {
1948 	int error;
1949 
1950 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1951 		return (error);
1952 
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1958  * is an invariant across any of the operations that can be performed while the
1959  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1960  * are the same: the relevant objset and associated dataset are owned by
1961  * zfsvfs, held, and long held on entry.
1962  */
1963 int
zfs_resume_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1964 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1965 {
1966 	int err;
1967 	znode_t *zp;
1968 
1969 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1970 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
1971 
1972 	/*
1973 	 * We already own this, so just update the objset_t, as the one we
1974 	 * had before may have been evicted.
1975 	 */
1976 	objset_t *os;
1977 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1978 	VERIFY(dsl_dataset_long_held(ds));
1979 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1980 	dsl_pool_config_enter(dp, FTAG);
1981 	VERIFY0(dmu_objset_from_ds(ds, &os));
1982 	dsl_pool_config_exit(dp, FTAG);
1983 
1984 	err = zfsvfs_init(zfsvfs, os);
1985 	if (err != 0)
1986 		goto bail;
1987 
1988 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1989 	VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
1990 
1991 	zfs_set_fuid_feature(zfsvfs);
1992 
1993 	/*
1994 	 * Attempt to re-establish all the active znodes with
1995 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
1996 	 * any potential callers discover that via zfs_enter_verify_zp
1997 	 * when they try to use their znode.
1998 	 */
1999 	mutex_enter(&zfsvfs->z_znodes_lock);
2000 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2001 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2002 		(void) zfs_rezget(zp);
2003 	}
2004 	mutex_exit(&zfsvfs->z_znodes_lock);
2005 
2006 bail:
2007 	/* release the VOPs */
2008 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2009 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2010 
2011 	if (err) {
2012 		/*
2013 		 * Since we couldn't setup the sa framework, try to force
2014 		 * unmount this file system.
2015 		 */
2016 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2017 			vfs_ref(zfsvfs->z_vfs);
2018 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2019 		}
2020 	}
2021 	return (err);
2022 }
2023 
2024 static void
zfs_freevfs(vfs_t * vfsp)2025 zfs_freevfs(vfs_t *vfsp)
2026 {
2027 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2028 
2029 	zfsvfs_free(zfsvfs);
2030 
2031 	atomic_dec_32(&zfs_active_fs_count);
2032 }
2033 
2034 #ifdef __i386__
2035 static int desiredvnodes_backup;
2036 #include <sys/vmmeter.h>
2037 
2038 
2039 #include <vm/vm_page.h>
2040 #include <vm/vm_object.h>
2041 #include <vm/vm_kern.h>
2042 #include <vm/vm_map.h>
2043 #endif
2044 
2045 static void
zfs_vnodes_adjust(void)2046 zfs_vnodes_adjust(void)
2047 {
2048 #ifdef __i386__
2049 	int newdesiredvnodes;
2050 
2051 	desiredvnodes_backup = desiredvnodes;
2052 
2053 	/*
2054 	 * We calculate newdesiredvnodes the same way it is done in
2055 	 * vntblinit(). If it is equal to desiredvnodes, it means that
2056 	 * it wasn't tuned by the administrator and we can tune it down.
2057 	 */
2058 	newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
2059 	    vm_kmem_size / (5 * (sizeof (struct vm_object) +
2060 	    sizeof (struct vnode))));
2061 	if (newdesiredvnodes == desiredvnodes)
2062 		desiredvnodes = (3 * newdesiredvnodes) / 4;
2063 #endif
2064 }
2065 
2066 static void
zfs_vnodes_adjust_back(void)2067 zfs_vnodes_adjust_back(void)
2068 {
2069 
2070 #ifdef __i386__
2071 	desiredvnodes = desiredvnodes_backup;
2072 #endif
2073 }
2074 
2075 static struct sx zfs_vnlru_lock;
2076 static struct vnode *zfs_vnlru_marker;
2077 static arc_prune_t *zfs_prune;
2078 
2079 static void
zfs_prune_task(uint64_t nr_to_scan,void * arg __unused)2080 zfs_prune_task(uint64_t nr_to_scan, void *arg __unused)
2081 {
2082 	if (nr_to_scan > INT_MAX)
2083 		nr_to_scan = INT_MAX;
2084 	sx_xlock(&zfs_vnlru_lock);
2085 	vnlru_free_vfsops(nr_to_scan, &zfs_vfsops, zfs_vnlru_marker);
2086 	sx_xunlock(&zfs_vnlru_lock);
2087 }
2088 
2089 void
zfs_init(void)2090 zfs_init(void)
2091 {
2092 
2093 	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2094 
2095 	/*
2096 	 * Initialize .zfs directory structures
2097 	 */
2098 	zfsctl_init();
2099 
2100 	/*
2101 	 * Initialize znode cache, vnode ops, etc...
2102 	 */
2103 	zfs_znode_init();
2104 
2105 	/*
2106 	 * Reduce number of vnodes. Originally number of vnodes is calculated
2107 	 * with UFS inode in mind. We reduce it here, because it's too big for
2108 	 * ZFS/i386.
2109 	 */
2110 	zfs_vnodes_adjust();
2111 
2112 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2113 
2114 	zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
2115 
2116 	zfs_vnlru_marker = vnlru_alloc_marker();
2117 	sx_init(&zfs_vnlru_lock, "zfs vnlru lock");
2118 	zfs_prune = arc_add_prune_callback(zfs_prune_task, NULL);
2119 }
2120 
2121 void
zfs_fini(void)2122 zfs_fini(void)
2123 {
2124 	arc_remove_prune_callback(zfs_prune);
2125 	vnlru_free_marker(zfs_vnlru_marker);
2126 	sx_destroy(&zfs_vnlru_lock);
2127 
2128 	taskq_destroy(zfsvfs_taskq);
2129 	zfsctl_fini();
2130 	zfs_znode_fini();
2131 	zfs_vnodes_adjust_back();
2132 }
2133 
2134 int
zfs_busy(void)2135 zfs_busy(void)
2136 {
2137 	return (zfs_active_fs_count != 0);
2138 }
2139 
2140 /*
2141  * Release VOPs and unmount a suspended filesystem.
2142  */
2143 int
zfs_end_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)2144 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2145 {
2146 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
2147 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
2148 
2149 	/*
2150 	 * We already own this, so just hold and rele it to update the
2151 	 * objset_t, as the one we had before may have been evicted.
2152 	 */
2153 	objset_t *os;
2154 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2155 	VERIFY(dsl_dataset_long_held(ds));
2156 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
2157 	dsl_pool_config_enter(dp, FTAG);
2158 	VERIFY0(dmu_objset_from_ds(ds, &os));
2159 	dsl_pool_config_exit(dp, FTAG);
2160 	zfsvfs->z_os = os;
2161 
2162 	/* release the VOPs */
2163 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2164 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2165 
2166 	/*
2167 	 * Try to force unmount this file system.
2168 	 */
2169 	(void) zfs_umount(zfsvfs->z_vfs, 0);
2170 	zfsvfs->z_unmounted = B_TRUE;
2171 	return (0);
2172 }
2173 
2174 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)2175 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2176 {
2177 	int error;
2178 	objset_t *os = zfsvfs->z_os;
2179 	dmu_tx_t *tx;
2180 
2181 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2182 		return (SET_ERROR(EINVAL));
2183 
2184 	if (newvers < zfsvfs->z_version)
2185 		return (SET_ERROR(EINVAL));
2186 
2187 	if (zfs_spa_version_map(newvers) >
2188 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2189 		return (SET_ERROR(ENOTSUP));
2190 
2191 	tx = dmu_tx_create(os);
2192 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2193 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2194 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2195 		    ZFS_SA_ATTRS);
2196 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2197 	}
2198 	error = dmu_tx_assign(tx, TXG_WAIT);
2199 	if (error) {
2200 		dmu_tx_abort(tx);
2201 		return (error);
2202 	}
2203 
2204 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2205 	    8, 1, &newvers, tx);
2206 
2207 	if (error) {
2208 		dmu_tx_commit(tx);
2209 		return (error);
2210 	}
2211 
2212 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2213 		uint64_t sa_obj;
2214 
2215 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2216 		    SPA_VERSION_SA);
2217 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2218 		    DMU_OT_NONE, 0, tx);
2219 
2220 		error = zap_add(os, MASTER_NODE_OBJ,
2221 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2222 		ASSERT0(error);
2223 
2224 		VERIFY0(sa_set_sa_object(os, sa_obj));
2225 		sa_register_update_callback(os, zfs_sa_upgrade);
2226 	}
2227 
2228 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2229 	    "from %ju to %ju", (uintmax_t)zfsvfs->z_version,
2230 	    (uintmax_t)newvers);
2231 	dmu_tx_commit(tx);
2232 
2233 	zfsvfs->z_version = newvers;
2234 	os->os_version = newvers;
2235 
2236 	zfs_set_fuid_feature(zfsvfs);
2237 
2238 	return (0);
2239 }
2240 
2241 /*
2242  * Return true if the corresponding vfs's unmounted flag is set.
2243  * Otherwise return false.
2244  * If this function returns true we know VFS unmount has been initiated.
2245  */
2246 boolean_t
zfs_get_vfs_flag_unmounted(objset_t * os)2247 zfs_get_vfs_flag_unmounted(objset_t *os)
2248 {
2249 	zfsvfs_t *zfvp;
2250 	boolean_t unmounted = B_FALSE;
2251 
2252 	ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS);
2253 
2254 	mutex_enter(&os->os_user_ptr_lock);
2255 	zfvp = dmu_objset_get_user(os);
2256 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2257 	    (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
2258 		unmounted = B_TRUE;
2259 	mutex_exit(&os->os_user_ptr_lock);
2260 
2261 	return (unmounted);
2262 }
2263 
2264 #ifdef _KERNEL
2265 void
zfsvfs_update_fromname(const char * oldname,const char * newname)2266 zfsvfs_update_fromname(const char *oldname, const char *newname)
2267 {
2268 	char tmpbuf[MAXPATHLEN];
2269 	struct mount *mp;
2270 	char *fromname;
2271 	size_t oldlen;
2272 
2273 	oldlen = strlen(oldname);
2274 
2275 	mtx_lock(&mountlist_mtx);
2276 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2277 		fromname = mp->mnt_stat.f_mntfromname;
2278 		if (strcmp(fromname, oldname) == 0) {
2279 			(void) strlcpy(fromname, newname,
2280 			    sizeof (mp->mnt_stat.f_mntfromname));
2281 			continue;
2282 		}
2283 		if (strncmp(fromname, oldname, oldlen) == 0 &&
2284 		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2285 			(void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
2286 			    newname, fromname + oldlen);
2287 			(void) strlcpy(fromname, tmpbuf,
2288 			    sizeof (mp->mnt_stat.f_mntfromname));
2289 			continue;
2290 		}
2291 	}
2292 	mtx_unlock(&mountlist_mtx);
2293 }
2294 #endif
2295 
2296 /*
2297  * Find a prison with ZFS info.
2298  * Return the ZFS info and the (locked) prison.
2299  */
2300 static struct zfs_jailparam *
zfs_jailparam_find(struct prison * spr,struct prison ** prp)2301 zfs_jailparam_find(struct prison *spr, struct prison **prp)
2302 {
2303 	struct prison *pr;
2304 	struct zfs_jailparam *zjp;
2305 
2306 	for (pr = spr; ; pr = pr->pr_parent) {
2307 		mtx_lock(&pr->pr_mtx);
2308 		if (pr == &prison0) {
2309 			zjp = &zfs_jailparam0;
2310 			break;
2311 		}
2312 		zjp = osd_jail_get(pr, zfs_jailparam_slot);
2313 		if (zjp != NULL)
2314 			break;
2315 		mtx_unlock(&pr->pr_mtx);
2316 	}
2317 	*prp = pr;
2318 
2319 	return (zjp);
2320 }
2321 
2322 /*
2323  * Ensure a prison has its own ZFS info.  If zjpp is non-null, point it to the
2324  * ZFS info and lock the prison.
2325  */
2326 static void
zfs_jailparam_alloc(struct prison * pr,struct zfs_jailparam ** zjpp)2327 zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp)
2328 {
2329 	struct prison *ppr;
2330 	struct zfs_jailparam *zjp, *nzjp;
2331 	void **rsv;
2332 
2333 	/* If this prison already has ZFS info, return that. */
2334 	zjp = zfs_jailparam_find(pr, &ppr);
2335 	if (ppr == pr)
2336 		goto done;
2337 
2338 	/*
2339 	 * Allocate a new info record.  Then check again, in case something
2340 	 * changed during the allocation.
2341 	 */
2342 	mtx_unlock(&ppr->pr_mtx);
2343 	nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK);
2344 	rsv = osd_reserve(zfs_jailparam_slot);
2345 	zjp = zfs_jailparam_find(pr, &ppr);
2346 	if (ppr == pr) {
2347 		free(nzjp, M_PRISON);
2348 		osd_free_reserved(rsv);
2349 		goto done;
2350 	}
2351 	/* Inherit the initial values from the ancestor. */
2352 	mtx_lock(&pr->pr_mtx);
2353 	(void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp);
2354 	(void) memcpy(nzjp, zjp, sizeof (*zjp));
2355 	zjp = nzjp;
2356 	mtx_unlock(&ppr->pr_mtx);
2357 done:
2358 	if (zjpp != NULL)
2359 		*zjpp = zjp;
2360 	else
2361 		mtx_unlock(&pr->pr_mtx);
2362 }
2363 
2364 /*
2365  * Jail OSD methods for ZFS VFS info.
2366  */
2367 static int
zfs_jailparam_create(void * obj,void * data)2368 zfs_jailparam_create(void *obj, void *data)
2369 {
2370 	struct prison *pr = obj;
2371 	struct vfsoptlist *opts = data;
2372 	int jsys;
2373 
2374 	if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 &&
2375 	    jsys == JAIL_SYS_INHERIT)
2376 		return (0);
2377 	/*
2378 	 * Inherit a prison's initial values from its parent
2379 	 * (different from JAIL_SYS_INHERIT which also inherits changes).
2380 	 */
2381 	zfs_jailparam_alloc(pr, NULL);
2382 	return (0);
2383 }
2384 
2385 static int
zfs_jailparam_get(void * obj,void * data)2386 zfs_jailparam_get(void *obj, void *data)
2387 {
2388 	struct prison *ppr, *pr = obj;
2389 	struct vfsoptlist *opts = data;
2390 	struct zfs_jailparam *zjp;
2391 	int jsys, error;
2392 
2393 	zjp = zfs_jailparam_find(pr, &ppr);
2394 	jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT;
2395 	error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys));
2396 	if (error != 0 && error != ENOENT)
2397 		goto done;
2398 	if (jsys == JAIL_SYS_NEW) {
2399 		error = vfs_setopt(opts, "zfs.mount_snapshot",
2400 		    &zjp->mount_snapshot, sizeof (zjp->mount_snapshot));
2401 		if (error != 0 && error != ENOENT)
2402 			goto done;
2403 	} else {
2404 		/*
2405 		 * If this prison is inheriting its ZFS info, report
2406 		 * empty/zero parameters.
2407 		 */
2408 		static int mount_snapshot = 0;
2409 
2410 		error = vfs_setopt(opts, "zfs.mount_snapshot",
2411 		    &mount_snapshot, sizeof (mount_snapshot));
2412 		if (error != 0 && error != ENOENT)
2413 			goto done;
2414 	}
2415 	error = 0;
2416 done:
2417 	mtx_unlock(&ppr->pr_mtx);
2418 	return (error);
2419 }
2420 
2421 static int
zfs_jailparam_set(void * obj,void * data)2422 zfs_jailparam_set(void *obj, void *data)
2423 {
2424 	struct prison *pr = obj;
2425 	struct prison *ppr;
2426 	struct vfsoptlist *opts = data;
2427 	int error, jsys, mount_snapshot;
2428 
2429 	/* Set the parameters, which should be correct. */
2430 	error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2431 	if (error == ENOENT)
2432 		jsys = -1;
2433 	error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2434 	    sizeof (mount_snapshot));
2435 	if (error == ENOENT)
2436 		mount_snapshot = -1;
2437 	else
2438 		jsys = JAIL_SYS_NEW;
2439 	switch (jsys) {
2440 	case JAIL_SYS_NEW:
2441 	{
2442 		/* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */
2443 		struct zfs_jailparam *zjp;
2444 
2445 		/*
2446 		 * A child jail cannot have more permissions than its parent
2447 		 */
2448 		if (pr->pr_parent != &prison0) {
2449 			zjp = zfs_jailparam_find(pr->pr_parent, &ppr);
2450 			mtx_unlock(&ppr->pr_mtx);
2451 			if (zjp->mount_snapshot < mount_snapshot) {
2452 				return (EPERM);
2453 			}
2454 		}
2455 		zfs_jailparam_alloc(pr, &zjp);
2456 		if (mount_snapshot != -1)
2457 			zjp->mount_snapshot = mount_snapshot;
2458 		mtx_unlock(&pr->pr_mtx);
2459 		break;
2460 	}
2461 	case JAIL_SYS_INHERIT:
2462 		/* "zfs=inherit": inherit the parent's ZFS info. */
2463 		mtx_lock(&pr->pr_mtx);
2464 		osd_jail_del(pr, zfs_jailparam_slot);
2465 		mtx_unlock(&pr->pr_mtx);
2466 		break;
2467 	case -1:
2468 		/*
2469 		 * If the setting being changed is not ZFS related
2470 		 * then do nothing.
2471 		 */
2472 		break;
2473 	}
2474 
2475 	return (0);
2476 }
2477 
2478 static int
zfs_jailparam_check(void * obj __unused,void * data)2479 zfs_jailparam_check(void *obj __unused, void *data)
2480 {
2481 	struct vfsoptlist *opts = data;
2482 	int error, jsys, mount_snapshot;
2483 
2484 	/* Check that the parameters are correct. */
2485 	error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2486 	if (error != ENOENT) {
2487 		if (error != 0)
2488 			return (error);
2489 		if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT)
2490 			return (EINVAL);
2491 	}
2492 	error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2493 	    sizeof (mount_snapshot));
2494 	if (error != ENOENT) {
2495 		if (error != 0)
2496 			return (error);
2497 		if (mount_snapshot != 0 && mount_snapshot != 1)
2498 			return (EINVAL);
2499 	}
2500 	return (0);
2501 }
2502 
2503 static void
zfs_jailparam_destroy(void * data)2504 zfs_jailparam_destroy(void *data)
2505 {
2506 
2507 	free(data, M_PRISON);
2508 }
2509 
2510 static void
zfs_jailparam_sysinit(void * arg __unused)2511 zfs_jailparam_sysinit(void *arg __unused)
2512 {
2513 	struct prison *pr;
2514 	osd_method_t  methods[PR_MAXMETHOD] = {
2515 		[PR_METHOD_CREATE] = zfs_jailparam_create,
2516 		[PR_METHOD_GET] = zfs_jailparam_get,
2517 		[PR_METHOD_SET] = zfs_jailparam_set,
2518 		[PR_METHOD_CHECK] = zfs_jailparam_check,
2519 	};
2520 
2521 	zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods);
2522 	/* Copy the defaults to any existing prisons. */
2523 	sx_slock(&allprison_lock);
2524 	TAILQ_FOREACH(pr, &allprison, pr_list)
2525 		zfs_jailparam_alloc(pr, NULL);
2526 	sx_sunlock(&allprison_lock);
2527 }
2528 
2529 static void
zfs_jailparam_sysuninit(void * arg __unused)2530 zfs_jailparam_sysuninit(void *arg __unused)
2531 {
2532 
2533 	osd_jail_deregister(zfs_jailparam_slot);
2534 }
2535 
2536 SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2537 	zfs_jailparam_sysinit, NULL);
2538 SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2539 	zfs_jailparam_sysuninit, NULL);
2540