1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 29 /* 30 * Stand-alone ZFS file reader. 31 */ 32 33 #include <sys/stat.h> 34 #include <sys/stdint.h> 35 36 #include "zfsimpl.h" 37 #include "zfssubr.c" 38 39 40 struct zfsmount { 41 const spa_t *spa; 42 objset_phys_t objset; 43 uint64_t rootobj; 44 }; 45 46 /* 47 * List of all vdevs, chained through v_alllink. 48 */ 49 static vdev_list_t zfs_vdevs; 50 51 /* 52 * List of ZFS features supported for read 53 */ 54 static const char *features_for_read[] = { 55 "org.illumos:lz4_compress", 56 "com.delphix:hole_birth", 57 "com.delphix:extensible_dataset", 58 "com.delphix:embedded_data", 59 "org.open-zfs:large_blocks", 60 "org.illumos:sha512", 61 "org.zfsonlinux:large_dnode", 62 NULL 63 }; 64 65 /* 66 * List of all pools, chained through spa_link. 67 */ 68 static spa_list_t zfs_pools; 69 70 static const dnode_phys_t *dnode_cache_obj; 71 static uint64_t dnode_cache_bn; 72 static char *dnode_cache_buf; 73 static char *zap_scratch; 74 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 75 76 #define TEMP_SIZE (1024 * 1024) 77 78 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 79 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 80 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 81 82 static void 83 zfs_init(void) 84 { 85 STAILQ_INIT(&zfs_vdevs); 86 STAILQ_INIT(&zfs_pools); 87 88 zfs_temp_buf = malloc(TEMP_SIZE); 89 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 90 zfs_temp_ptr = zfs_temp_buf; 91 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 92 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 93 94 zfs_init_crc(); 95 } 96 97 static void * 98 zfs_alloc(size_t size) 99 { 100 char *ptr; 101 102 if (zfs_temp_ptr + size > zfs_temp_end) { 103 printf("ZFS: out of temporary buffer space\n"); 104 for (;;) ; 105 } 106 ptr = zfs_temp_ptr; 107 zfs_temp_ptr += size; 108 109 return (ptr); 110 } 111 112 static void 113 zfs_free(void *ptr, size_t size) 114 { 115 116 zfs_temp_ptr -= size; 117 if (zfs_temp_ptr != ptr) { 118 printf("ZFS: zfs_alloc()/zfs_free() mismatch\n"); 119 for (;;) ; 120 } 121 } 122 123 static int 124 xdr_int(const unsigned char **xdr, int *ip) 125 { 126 *ip = ((*xdr)[0] << 24) 127 | ((*xdr)[1] << 16) 128 | ((*xdr)[2] << 8) 129 | ((*xdr)[3] << 0); 130 (*xdr) += 4; 131 return (0); 132 } 133 134 static int 135 xdr_u_int(const unsigned char **xdr, u_int *ip) 136 { 137 *ip = ((*xdr)[0] << 24) 138 | ((*xdr)[1] << 16) 139 | ((*xdr)[2] << 8) 140 | ((*xdr)[3] << 0); 141 (*xdr) += 4; 142 return (0); 143 } 144 145 static int 146 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 147 { 148 u_int hi, lo; 149 150 xdr_u_int(xdr, &hi); 151 xdr_u_int(xdr, &lo); 152 *lp = (((uint64_t) hi) << 32) | lo; 153 return (0); 154 } 155 156 static int 157 nvlist_find(const unsigned char *nvlist, const char *name, int type, 158 int* elementsp, void *valuep) 159 { 160 const unsigned char *p, *pair; 161 int junk; 162 int encoded_size, decoded_size; 163 164 p = nvlist; 165 xdr_int(&p, &junk); 166 xdr_int(&p, &junk); 167 168 pair = p; 169 xdr_int(&p, &encoded_size); 170 xdr_int(&p, &decoded_size); 171 while (encoded_size && decoded_size) { 172 int namelen, pairtype, elements; 173 const char *pairname; 174 175 xdr_int(&p, &namelen); 176 pairname = (const char*) p; 177 p += roundup(namelen, 4); 178 xdr_int(&p, &pairtype); 179 180 if (!memcmp(name, pairname, namelen) && type == pairtype) { 181 xdr_int(&p, &elements); 182 if (elementsp) 183 *elementsp = elements; 184 if (type == DATA_TYPE_UINT64) { 185 xdr_uint64_t(&p, (uint64_t *) valuep); 186 return (0); 187 } else if (type == DATA_TYPE_STRING) { 188 int len; 189 xdr_int(&p, &len); 190 (*(const char**) valuep) = (const char*) p; 191 return (0); 192 } else if (type == DATA_TYPE_NVLIST 193 || type == DATA_TYPE_NVLIST_ARRAY) { 194 (*(const unsigned char**) valuep) = 195 (const unsigned char*) p; 196 return (0); 197 } else { 198 return (EIO); 199 } 200 } else { 201 /* 202 * Not the pair we are looking for, skip to the next one. 203 */ 204 p = pair + encoded_size; 205 } 206 207 pair = p; 208 xdr_int(&p, &encoded_size); 209 xdr_int(&p, &decoded_size); 210 } 211 212 return (EIO); 213 } 214 215 static int 216 nvlist_check_features_for_read(const unsigned char *nvlist) 217 { 218 const unsigned char *p, *pair; 219 int junk; 220 int encoded_size, decoded_size; 221 int rc; 222 223 rc = 0; 224 225 p = nvlist; 226 xdr_int(&p, &junk); 227 xdr_int(&p, &junk); 228 229 pair = p; 230 xdr_int(&p, &encoded_size); 231 xdr_int(&p, &decoded_size); 232 while (encoded_size && decoded_size) { 233 int namelen, pairtype; 234 const char *pairname; 235 int i, found; 236 237 found = 0; 238 239 xdr_int(&p, &namelen); 240 pairname = (const char*) p; 241 p += roundup(namelen, 4); 242 xdr_int(&p, &pairtype); 243 244 for (i = 0; features_for_read[i] != NULL; i++) { 245 if (!memcmp(pairname, features_for_read[i], namelen)) { 246 found = 1; 247 break; 248 } 249 } 250 251 if (!found) { 252 printf("ZFS: unsupported feature: %s\n", pairname); 253 rc = EIO; 254 } 255 256 p = pair + encoded_size; 257 258 pair = p; 259 xdr_int(&p, &encoded_size); 260 xdr_int(&p, &decoded_size); 261 } 262 263 return (rc); 264 } 265 266 /* 267 * Return the next nvlist in an nvlist array. 268 */ 269 static const unsigned char * 270 nvlist_next(const unsigned char *nvlist) 271 { 272 const unsigned char *p, *pair; 273 int junk; 274 int encoded_size, decoded_size; 275 276 p = nvlist; 277 xdr_int(&p, &junk); 278 xdr_int(&p, &junk); 279 280 pair = p; 281 xdr_int(&p, &encoded_size); 282 xdr_int(&p, &decoded_size); 283 while (encoded_size && decoded_size) { 284 p = pair + encoded_size; 285 286 pair = p; 287 xdr_int(&p, &encoded_size); 288 xdr_int(&p, &decoded_size); 289 } 290 291 return p; 292 } 293 294 #ifdef TEST 295 296 static const unsigned char * 297 nvlist_print(const unsigned char *nvlist, unsigned int indent) 298 { 299 static const char* typenames[] = { 300 "DATA_TYPE_UNKNOWN", 301 "DATA_TYPE_BOOLEAN", 302 "DATA_TYPE_BYTE", 303 "DATA_TYPE_INT16", 304 "DATA_TYPE_UINT16", 305 "DATA_TYPE_INT32", 306 "DATA_TYPE_UINT32", 307 "DATA_TYPE_INT64", 308 "DATA_TYPE_UINT64", 309 "DATA_TYPE_STRING", 310 "DATA_TYPE_BYTE_ARRAY", 311 "DATA_TYPE_INT16_ARRAY", 312 "DATA_TYPE_UINT16_ARRAY", 313 "DATA_TYPE_INT32_ARRAY", 314 "DATA_TYPE_UINT32_ARRAY", 315 "DATA_TYPE_INT64_ARRAY", 316 "DATA_TYPE_UINT64_ARRAY", 317 "DATA_TYPE_STRING_ARRAY", 318 "DATA_TYPE_HRTIME", 319 "DATA_TYPE_NVLIST", 320 "DATA_TYPE_NVLIST_ARRAY", 321 "DATA_TYPE_BOOLEAN_VALUE", 322 "DATA_TYPE_INT8", 323 "DATA_TYPE_UINT8", 324 "DATA_TYPE_BOOLEAN_ARRAY", 325 "DATA_TYPE_INT8_ARRAY", 326 "DATA_TYPE_UINT8_ARRAY" 327 }; 328 329 unsigned int i, j; 330 const unsigned char *p, *pair; 331 int junk; 332 int encoded_size, decoded_size; 333 334 p = nvlist; 335 xdr_int(&p, &junk); 336 xdr_int(&p, &junk); 337 338 pair = p; 339 xdr_int(&p, &encoded_size); 340 xdr_int(&p, &decoded_size); 341 while (encoded_size && decoded_size) { 342 int namelen, pairtype, elements; 343 const char *pairname; 344 345 xdr_int(&p, &namelen); 346 pairname = (const char*) p; 347 p += roundup(namelen, 4); 348 xdr_int(&p, &pairtype); 349 350 for (i = 0; i < indent; i++) 351 printf(" "); 352 printf("%s %s", typenames[pairtype], pairname); 353 354 xdr_int(&p, &elements); 355 switch (pairtype) { 356 case DATA_TYPE_UINT64: { 357 uint64_t val; 358 xdr_uint64_t(&p, &val); 359 printf(" = 0x%jx\n", (uintmax_t)val); 360 break; 361 } 362 363 case DATA_TYPE_STRING: { 364 int len; 365 xdr_int(&p, &len); 366 printf(" = \"%s\"\n", p); 367 break; 368 } 369 370 case DATA_TYPE_NVLIST: 371 printf("\n"); 372 nvlist_print(p, indent + 1); 373 break; 374 375 case DATA_TYPE_NVLIST_ARRAY: 376 for (j = 0; j < elements; j++) { 377 printf("[%d]\n", j); 378 p = nvlist_print(p, indent + 1); 379 if (j != elements - 1) { 380 for (i = 0; i < indent; i++) 381 printf(" "); 382 printf("%s %s", typenames[pairtype], pairname); 383 } 384 } 385 break; 386 387 default: 388 printf("\n"); 389 } 390 391 p = pair + encoded_size; 392 393 pair = p; 394 xdr_int(&p, &encoded_size); 395 xdr_int(&p, &decoded_size); 396 } 397 398 return p; 399 } 400 401 #endif 402 403 static int 404 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 405 off_t offset, size_t size) 406 { 407 size_t psize; 408 int rc; 409 410 if (!vdev->v_phys_read) 411 return (EIO); 412 413 if (bp) { 414 psize = BP_GET_PSIZE(bp); 415 } else { 416 psize = size; 417 } 418 419 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 420 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 421 if (rc) 422 return (rc); 423 if (bp && zio_checksum_verify(bp, buf)) 424 return (EIO); 425 426 return (0); 427 } 428 429 static int 430 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 431 off_t offset, size_t bytes) 432 { 433 434 return (vdev_read_phys(vdev, bp, buf, 435 offset + VDEV_LABEL_START_SIZE, bytes)); 436 } 437 438 439 static int 440 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 441 off_t offset, size_t bytes) 442 { 443 vdev_t *kid; 444 int rc; 445 446 rc = EIO; 447 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 448 if (kid->v_state != VDEV_STATE_HEALTHY) 449 continue; 450 rc = kid->v_read(kid, bp, buf, offset, bytes); 451 if (!rc) 452 return (0); 453 } 454 455 return (rc); 456 } 457 458 static int 459 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 460 off_t offset, size_t bytes) 461 { 462 vdev_t *kid; 463 464 /* 465 * Here we should have two kids: 466 * First one which is the one we are replacing and we can trust 467 * only this one to have valid data, but it might not be present. 468 * Second one is that one we are replacing with. It is most likely 469 * healthy, but we can't trust it has needed data, so we won't use it. 470 */ 471 kid = STAILQ_FIRST(&vdev->v_children); 472 if (kid == NULL) 473 return (EIO); 474 if (kid->v_state != VDEV_STATE_HEALTHY) 475 return (EIO); 476 return (kid->v_read(kid, bp, buf, offset, bytes)); 477 } 478 479 static vdev_t * 480 vdev_find(uint64_t guid) 481 { 482 vdev_t *vdev; 483 484 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 485 if (vdev->v_guid == guid) 486 return (vdev); 487 488 return (0); 489 } 490 491 static vdev_t * 492 vdev_create(uint64_t guid, vdev_read_t *vdev_read) 493 { 494 vdev_t *vdev; 495 496 vdev = malloc(sizeof(vdev_t)); 497 memset(vdev, 0, sizeof(vdev_t)); 498 STAILQ_INIT(&vdev->v_children); 499 vdev->v_guid = guid; 500 vdev->v_state = VDEV_STATE_OFFLINE; 501 vdev->v_read = vdev_read; 502 vdev->v_phys_read = 0; 503 vdev->v_read_priv = 0; 504 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 505 506 return (vdev); 507 } 508 509 static int 510 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 511 vdev_t **vdevp, int is_newer) 512 { 513 int rc; 514 uint64_t guid, id, ashift, nparity; 515 const char *type; 516 const char *path; 517 vdev_t *vdev, *kid; 518 const unsigned char *kids; 519 int nkids, i, is_new; 520 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 521 522 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 523 NULL, &guid) || 524 nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) || 525 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 526 NULL, &type)) { 527 printf("ZFS: can't find vdev details\n"); 528 return (ENOENT); 529 } 530 531 if (strcmp(type, VDEV_TYPE_MIRROR) 532 && strcmp(type, VDEV_TYPE_DISK) 533 #ifdef ZFS_TEST 534 && strcmp(type, VDEV_TYPE_FILE) 535 #endif 536 && strcmp(type, VDEV_TYPE_RAIDZ) 537 && strcmp(type, VDEV_TYPE_REPLACING)) { 538 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 539 return (EIO); 540 } 541 542 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 543 544 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 545 &is_offline); 546 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 547 &is_removed); 548 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 549 &is_faulted); 550 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 551 &is_degraded); 552 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 553 &isnt_present); 554 555 vdev = vdev_find(guid); 556 if (!vdev) { 557 is_new = 1; 558 559 if (!strcmp(type, VDEV_TYPE_MIRROR)) 560 vdev = vdev_create(guid, vdev_mirror_read); 561 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 562 vdev = vdev_create(guid, vdev_raidz_read); 563 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 564 vdev = vdev_create(guid, vdev_replacing_read); 565 else 566 vdev = vdev_create(guid, vdev_disk_read); 567 568 vdev->v_id = id; 569 vdev->v_top = pvdev != NULL ? pvdev : vdev; 570 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 571 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 572 vdev->v_ashift = ashift; 573 } else { 574 vdev->v_ashift = 0; 575 } 576 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 577 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 578 vdev->v_nparity = nparity; 579 } else { 580 vdev->v_nparity = 0; 581 } 582 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 583 DATA_TYPE_STRING, NULL, &path) == 0) { 584 if (strncmp(path, "/dev/dsk/", 9) == 0) 585 path += 9; 586 vdev->v_name = strdup(path); 587 if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH, 588 DATA_TYPE_STRING, NULL, &path) == 0) { 589 vdev->v_phys_path = strdup(path); 590 } else { 591 vdev->v_phys_path = NULL; 592 } 593 if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID, 594 DATA_TYPE_STRING, NULL, &path) == 0) { 595 vdev->v_devid = strdup(path); 596 } else { 597 vdev->v_devid = NULL; 598 } 599 } else { 600 if (!strcmp(type, "raidz")) { 601 if (vdev->v_nparity == 1) 602 vdev->v_name = "raidz1"; 603 else if (vdev->v_nparity == 2) 604 vdev->v_name = "raidz2"; 605 else if (vdev->v_nparity == 3) 606 vdev->v_name = "raidz3"; 607 else { 608 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 609 return (EIO); 610 } 611 } else { 612 vdev->v_name = strdup(type); 613 } 614 } 615 } else { 616 is_new = 0; 617 } 618 619 if (is_new || is_newer) { 620 /* 621 * This is either new vdev or we've already seen this vdev, 622 * but from an older vdev label, so let's refresh its state 623 * from the newer label. 624 */ 625 if (is_offline) 626 vdev->v_state = VDEV_STATE_OFFLINE; 627 else if (is_removed) 628 vdev->v_state = VDEV_STATE_REMOVED; 629 else if (is_faulted) 630 vdev->v_state = VDEV_STATE_FAULTED; 631 else if (is_degraded) 632 vdev->v_state = VDEV_STATE_DEGRADED; 633 else if (isnt_present) 634 vdev->v_state = VDEV_STATE_CANT_OPEN; 635 } 636 637 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 638 &nkids, &kids); 639 /* 640 * Its ok if we don't have any kids. 641 */ 642 if (rc == 0) { 643 vdev->v_nchildren = nkids; 644 for (i = 0; i < nkids; i++) { 645 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 646 if (rc) 647 return (rc); 648 if (is_new) 649 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 650 v_childlink); 651 kids = nvlist_next(kids); 652 } 653 } else { 654 vdev->v_nchildren = 0; 655 } 656 657 if (vdevp) 658 *vdevp = vdev; 659 return (0); 660 } 661 662 static void 663 vdev_set_state(vdev_t *vdev) 664 { 665 vdev_t *kid; 666 int good_kids; 667 int bad_kids; 668 669 /* 670 * A mirror or raidz is healthy if all its kids are healthy. A 671 * mirror is degraded if any of its kids is healthy; a raidz 672 * is degraded if at most nparity kids are offline. 673 */ 674 if (STAILQ_FIRST(&vdev->v_children)) { 675 good_kids = 0; 676 bad_kids = 0; 677 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 678 if (kid->v_state == VDEV_STATE_HEALTHY) 679 good_kids++; 680 else 681 bad_kids++; 682 } 683 if (bad_kids == 0) { 684 vdev->v_state = VDEV_STATE_HEALTHY; 685 } else { 686 if (vdev->v_read == vdev_mirror_read) { 687 if (good_kids) { 688 vdev->v_state = VDEV_STATE_DEGRADED; 689 } else { 690 vdev->v_state = VDEV_STATE_OFFLINE; 691 } 692 } else if (vdev->v_read == vdev_raidz_read) { 693 if (bad_kids > vdev->v_nparity) { 694 vdev->v_state = VDEV_STATE_OFFLINE; 695 } else { 696 vdev->v_state = VDEV_STATE_DEGRADED; 697 } 698 } 699 } 700 } 701 } 702 703 static spa_t * 704 spa_find_by_guid(uint64_t guid) 705 { 706 spa_t *spa; 707 708 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 709 if (spa->spa_guid == guid) 710 return (spa); 711 712 return (0); 713 } 714 715 static spa_t * 716 spa_find_by_name(const char *name) 717 { 718 spa_t *spa; 719 720 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 721 if (!strcmp(spa->spa_name, name)) 722 return (spa); 723 724 return (0); 725 } 726 727 spa_t * 728 spa_get_primary(void) 729 { 730 return (STAILQ_FIRST(&zfs_pools)); 731 } 732 733 vdev_t * 734 spa_get_primary_vdev(const spa_t *spa) 735 { 736 vdev_t *vdev; 737 vdev_t *kid; 738 739 if (spa == NULL) 740 spa = spa_get_primary(); 741 if (spa == NULL) 742 return (NULL); 743 vdev = STAILQ_FIRST(&spa->spa_vdevs); 744 if (vdev == NULL) 745 return (NULL); 746 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 747 kid = STAILQ_FIRST(&vdev->v_children)) 748 vdev = kid; 749 return (vdev); 750 } 751 752 static spa_t * 753 spa_create(uint64_t guid, const char *name) 754 { 755 spa_t *spa; 756 757 if ((spa = malloc(sizeof(spa_t))) == NULL) 758 return (NULL); 759 memset(spa, 0, sizeof(spa_t)); 760 if ((spa->spa_name = strdup(name)) == NULL) { 761 free(spa); 762 return (NULL); 763 } 764 STAILQ_INIT(&spa->spa_vdevs); 765 spa->spa_guid = guid; 766 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 767 768 return (spa); 769 } 770 771 static const char * 772 state_name(vdev_state_t state) 773 { 774 static const char* names[] = { 775 "UNKNOWN", 776 "CLOSED", 777 "OFFLINE", 778 "REMOVED", 779 "CANT_OPEN", 780 "FAULTED", 781 "DEGRADED", 782 "ONLINE" 783 }; 784 return names[state]; 785 } 786 787 static int 788 pager_printf(const char *fmt, ...) 789 { 790 char line[80]; 791 va_list args; 792 793 va_start(args, fmt); 794 vsnprintf(line, sizeof (line), fmt, args); 795 va_end(args); 796 return (pager_output(line)); 797 } 798 799 #define STATUS_FORMAT " %s %s\n" 800 801 static int 802 print_state(int indent, const char *name, vdev_state_t state) 803 { 804 int i; 805 char buf[512]; 806 807 buf[0] = 0; 808 for (i = 0; i < indent; i++) 809 strcat(buf, " "); 810 strcat(buf, name); 811 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 812 } 813 814 static int 815 vdev_status(vdev_t *vdev, int indent) 816 { 817 vdev_t *kid; 818 int ret; 819 ret = print_state(indent, vdev->v_name, vdev->v_state); 820 if (ret != 0) 821 return (ret); 822 823 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 824 ret = vdev_status(kid, indent + 1); 825 if (ret != 0) 826 return (ret); 827 } 828 return (ret); 829 } 830 831 static int 832 spa_status(spa_t *spa) 833 { 834 static char bootfs[ZFS_MAXNAMELEN]; 835 uint64_t rootid; 836 vdev_t *vdev; 837 int good_kids, bad_kids, degraded_kids, ret; 838 vdev_state_t state; 839 840 ret = pager_printf(" pool: %s\n", spa->spa_name); 841 if (ret != 0) 842 return (ret); 843 844 if (zfs_get_root(spa, &rootid) == 0 && 845 zfs_rlookup(spa, rootid, bootfs) == 0) { 846 if (bootfs[0] == '\0') 847 ret = pager_printf("bootfs: %s\n", spa->spa_name); 848 else 849 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 850 bootfs); 851 if (ret != 0) 852 return (ret); 853 } 854 ret = pager_printf("config:\n\n"); 855 if (ret != 0) 856 return (ret); 857 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 858 if (ret != 0) 859 return (ret); 860 861 good_kids = 0; 862 degraded_kids = 0; 863 bad_kids = 0; 864 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 865 if (vdev->v_state == VDEV_STATE_HEALTHY) 866 good_kids++; 867 else if (vdev->v_state == VDEV_STATE_DEGRADED) 868 degraded_kids++; 869 else 870 bad_kids++; 871 } 872 873 state = VDEV_STATE_CLOSED; 874 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 875 state = VDEV_STATE_HEALTHY; 876 else if ((good_kids + degraded_kids) > 0) 877 state = VDEV_STATE_DEGRADED; 878 879 ret = print_state(0, spa->spa_name, state); 880 if (ret != 0) 881 return (ret); 882 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 883 ret = vdev_status(vdev, 1); 884 if (ret != 0) 885 return (ret); 886 } 887 return (ret); 888 } 889 890 int 891 spa_all_status(void) 892 { 893 spa_t *spa; 894 int first = 1, ret = 0; 895 896 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 897 if (!first) { 898 ret = pager_printf("\n"); 899 if (ret != 0) 900 return (ret); 901 } 902 first = 0; 903 ret = spa_status(spa); 904 if (ret != 0) 905 return (ret); 906 } 907 return (ret); 908 } 909 910 uint64_t 911 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 912 { 913 uint64_t label_offset; 914 915 if (l < VDEV_LABELS / 2) 916 label_offset = 0; 917 else 918 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 919 920 return (offset + l * sizeof (vdev_label_t) + label_offset); 921 } 922 923 static int 924 vdev_probe(vdev_phys_read_t *phys_read, void *read_priv, spa_t **spap) 925 { 926 vdev_t vtmp; 927 vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch; 928 vdev_phys_t *tmp_label; 929 spa_t *spa; 930 vdev_t *vdev, *top_vdev, *pool_vdev; 931 off_t off; 932 blkptr_t bp; 933 const unsigned char *nvlist = NULL; 934 uint64_t val; 935 uint64_t guid; 936 uint64_t best_txg = 0; 937 uint64_t pool_txg, pool_guid; 938 uint64_t psize; 939 const char *pool_name; 940 const unsigned char *vdevs; 941 const unsigned char *features; 942 int i, l, rc, is_newer; 943 char *upbuf; 944 const struct uberblock *up; 945 946 /* 947 * Load the vdev label and figure out which 948 * uberblock is most current. 949 */ 950 memset(&vtmp, 0, sizeof(vtmp)); 951 vtmp.v_phys_read = phys_read; 952 vtmp.v_read_priv = read_priv; 953 psize = P2ALIGN(ldi_get_size(read_priv), 954 (uint64_t)sizeof (vdev_label_t)); 955 956 /* Test for minimum device size. */ 957 if (psize < SPA_MINDEVSIZE) 958 return (EIO); 959 960 tmp_label = zfs_alloc(sizeof (vdev_phys_t)); 961 962 for (l = 0; l < VDEV_LABELS; l++) { 963 off = vdev_label_offset(psize, l, 964 offsetof(vdev_label_t, vl_vdev_phys)); 965 966 BP_ZERO(&bp); 967 BP_SET_LSIZE(&bp, sizeof(vdev_phys_t)); 968 BP_SET_PSIZE(&bp, sizeof(vdev_phys_t)); 969 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 970 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 971 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 972 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 973 974 if (vdev_read_phys(&vtmp, &bp, tmp_label, off, 0)) 975 continue; 976 977 if (tmp_label->vp_nvlist[0] != NV_ENCODE_XDR) 978 continue; 979 980 nvlist = (const unsigned char *) tmp_label->vp_nvlist + 4; 981 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 982 DATA_TYPE_UINT64, NULL, &pool_txg) != 0) 983 continue; 984 985 if (best_txg <= pool_txg) { 986 best_txg = pool_txg; 987 memcpy(vdev_label, tmp_label, sizeof (vdev_phys_t)); 988 } 989 } 990 991 zfs_free(tmp_label, sizeof (vdev_phys_t)); 992 993 if (best_txg == 0) 994 return (EIO); 995 996 if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) 997 return (EIO); 998 999 nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4; 1000 1001 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1002 NULL, &val) != 0) { 1003 return (EIO); 1004 } 1005 1006 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1007 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1008 (unsigned) val, (unsigned) SPA_VERSION); 1009 return (EIO); 1010 } 1011 1012 /* Check ZFS features for read */ 1013 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1014 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1015 nvlist_check_features_for_read(features) != 0) { 1016 return (EIO); 1017 } 1018 1019 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1020 NULL, &val) != 0) { 1021 return (EIO); 1022 } 1023 1024 if (val == POOL_STATE_DESTROYED) { 1025 /* We don't boot only from destroyed pools. */ 1026 return (EIO); 1027 } 1028 1029 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1030 NULL, &pool_txg) != 0 || 1031 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1032 NULL, &pool_guid) != 0 || 1033 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1034 NULL, &pool_name) != 0) { 1035 /* 1036 * Cache and spare devices end up here - just ignore 1037 * them. 1038 */ 1039 /*printf("ZFS: can't find pool details\n");*/ 1040 return (EIO); 1041 } 1042 1043 if (nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 1044 NULL, &val) == 0 && val != 0) { 1045 return (EIO); 1046 } 1047 1048 /* 1049 * Create the pool if this is the first time we've seen it. 1050 */ 1051 spa = spa_find_by_guid(pool_guid); 1052 if (spa == NULL) { 1053 spa = spa_create(pool_guid, pool_name); 1054 if (spa == NULL) 1055 return (ENOMEM); 1056 } 1057 if (pool_txg > spa->spa_txg) { 1058 spa->spa_txg = pool_txg; 1059 is_newer = 1; 1060 } else { 1061 is_newer = 0; 1062 } 1063 1064 /* 1065 * Get the vdev tree and create our in-core copy of it. 1066 * If we already have a vdev with this guid, this must 1067 * be some kind of alias (overlapping slices, dangerously dedicated 1068 * disks etc). 1069 */ 1070 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1071 NULL, &guid) != 0) { 1072 return (EIO); 1073 } 1074 vdev = vdev_find(guid); 1075 if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */ 1076 return (EIO); 1077 1078 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1079 NULL, &vdevs)) { 1080 return (EIO); 1081 } 1082 1083 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1084 if (rc != 0) 1085 return (rc); 1086 1087 /* 1088 * Add the toplevel vdev to the pool if its not already there. 1089 */ 1090 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1091 if (top_vdev == pool_vdev) 1092 break; 1093 if (!pool_vdev && top_vdev) 1094 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1095 1096 /* 1097 * We should already have created an incomplete vdev for this 1098 * vdev. Find it and initialise it with our read proc. 1099 */ 1100 vdev = vdev_find(guid); 1101 if (vdev) { 1102 vdev->v_phys_read = phys_read; 1103 vdev->v_read_priv = read_priv; 1104 vdev->v_state = VDEV_STATE_HEALTHY; 1105 } else { 1106 printf("ZFS: inconsistent nvlist contents\n"); 1107 return (EIO); 1108 } 1109 1110 /* 1111 * Re-evaluate top-level vdev state. 1112 */ 1113 vdev_set_state(top_vdev); 1114 1115 /* 1116 * Ok, we are happy with the pool so far. Lets find 1117 * the best uberblock and then we can actually access 1118 * the contents of the pool. 1119 */ 1120 upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev)); 1121 up = (const struct uberblock *)upbuf; 1122 for (l = 0; l < VDEV_LABELS; l++) { 1123 for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdev); i++) { 1124 off = vdev_label_offset(psize, l, 1125 VDEV_UBERBLOCK_OFFSET(vdev, i)); 1126 BP_ZERO(&bp); 1127 DVA_SET_OFFSET(&bp.blk_dva[0], off); 1128 BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1129 BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1130 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1131 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1132 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1133 1134 if (vdev_read_phys(vdev, &bp, upbuf, off, 0) != 0) 1135 continue; 1136 1137 if (up->ub_magic != UBERBLOCK_MAGIC) 1138 continue; 1139 if (up->ub_txg < spa->spa_txg) 1140 continue; 1141 if (up->ub_txg > spa->spa_uberblock.ub_txg || 1142 (up->ub_txg == spa->spa_uberblock.ub_txg && 1143 up->ub_timestamp > 1144 spa->spa_uberblock.ub_timestamp)) { 1145 spa->spa_uberblock = *up; 1146 } 1147 } 1148 } 1149 zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev)); 1150 1151 if (spap != NULL) 1152 *spap = spa; 1153 return (0); 1154 } 1155 1156 static int 1157 ilog2(int n) 1158 { 1159 int v; 1160 1161 for (v = 0; v < 32; v++) 1162 if (n == (1 << v)) 1163 return v; 1164 return -1; 1165 } 1166 1167 static int 1168 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1169 { 1170 blkptr_t gbh_bp; 1171 zio_gbh_phys_t zio_gb; 1172 char *pbuf; 1173 int i; 1174 1175 /* Artificial BP for gang block header. */ 1176 gbh_bp = *bp; 1177 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1178 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1179 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1180 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1181 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1182 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1183 1184 /* Read gang header block using the artificial BP. */ 1185 if (zio_read(spa, &gbh_bp, &zio_gb)) 1186 return (EIO); 1187 1188 pbuf = buf; 1189 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1190 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1191 1192 if (BP_IS_HOLE(gbp)) 1193 continue; 1194 if (zio_read(spa, gbp, pbuf)) 1195 return (EIO); 1196 pbuf += BP_GET_PSIZE(gbp); 1197 } 1198 1199 if (zio_checksum_verify(bp, buf)) 1200 return (EIO); 1201 return (0); 1202 } 1203 1204 static int 1205 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1206 { 1207 int cpfunc = BP_GET_COMPRESS(bp); 1208 uint64_t align, size; 1209 void *pbuf; 1210 int i, error; 1211 1212 /* 1213 * Process data embedded in block pointer 1214 */ 1215 if (BP_IS_EMBEDDED(bp)) { 1216 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1217 1218 size = BPE_GET_PSIZE(bp); 1219 ASSERT(size <= BPE_PAYLOAD_SIZE); 1220 1221 if (cpfunc != ZIO_COMPRESS_OFF) 1222 pbuf = zfs_alloc(size); 1223 else 1224 pbuf = buf; 1225 1226 decode_embedded_bp_compressed(bp, pbuf); 1227 error = 0; 1228 1229 if (cpfunc != ZIO_COMPRESS_OFF) { 1230 error = zio_decompress_data(cpfunc, pbuf, 1231 size, buf, BP_GET_LSIZE(bp)); 1232 zfs_free(pbuf, size); 1233 } 1234 if (error != 0) 1235 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1236 error); 1237 return (error); 1238 } 1239 1240 error = EIO; 1241 1242 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1243 const dva_t *dva = &bp->blk_dva[i]; 1244 vdev_t *vdev; 1245 int vdevid; 1246 off_t offset; 1247 1248 if (!dva->dva_word[0] && !dva->dva_word[1]) 1249 continue; 1250 1251 vdevid = DVA_GET_VDEV(dva); 1252 offset = DVA_GET_OFFSET(dva); 1253 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1254 if (vdev->v_id == vdevid) 1255 break; 1256 } 1257 if (!vdev || !vdev->v_read) 1258 continue; 1259 1260 size = BP_GET_PSIZE(bp); 1261 if (vdev->v_read == vdev_raidz_read) { 1262 align = 1ULL << vdev->v_top->v_ashift; 1263 if (P2PHASE(size, align) != 0) 1264 size = P2ROUNDUP(size, align); 1265 } 1266 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1267 pbuf = zfs_alloc(size); 1268 else 1269 pbuf = buf; 1270 1271 if (DVA_GET_GANG(dva)) 1272 error = zio_read_gang(spa, bp, pbuf); 1273 else 1274 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1275 if (error == 0) { 1276 if (cpfunc != ZIO_COMPRESS_OFF) 1277 error = zio_decompress_data(cpfunc, pbuf, 1278 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1279 else if (size != BP_GET_PSIZE(bp)) 1280 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1281 } 1282 if (buf != pbuf) 1283 zfs_free(pbuf, size); 1284 if (error == 0) 1285 break; 1286 } 1287 if (error != 0) 1288 printf("ZFS: i/o error - all block copies unavailable\n"); 1289 return (error); 1290 } 1291 1292 static int 1293 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 1294 { 1295 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 1296 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1297 int nlevels = dnode->dn_nlevels; 1298 int i, rc; 1299 1300 if (bsize > SPA_MAXBLOCKSIZE) { 1301 printf("ZFS: I/O error - blocks larger than %llu are not " 1302 "supported\n", SPA_MAXBLOCKSIZE); 1303 return (EIO); 1304 } 1305 1306 /* 1307 * Note: bsize may not be a power of two here so we need to do an 1308 * actual divide rather than a bitshift. 1309 */ 1310 while (buflen > 0) { 1311 uint64_t bn = offset / bsize; 1312 int boff = offset % bsize; 1313 int ibn; 1314 const blkptr_t *indbp; 1315 blkptr_t bp; 1316 1317 if (bn > dnode->dn_maxblkid) { 1318 printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n", 1319 (unsigned long long)bn, 1320 (unsigned long long)dnode->dn_maxblkid); 1321 /* 1322 * zfs bug, will not return error 1323 * return (EIO); 1324 */ 1325 } 1326 1327 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 1328 goto cached; 1329 1330 indbp = dnode->dn_blkptr; 1331 for (i = 0; i < nlevels; i++) { 1332 /* 1333 * Copy the bp from the indirect array so that 1334 * we can re-use the scratch buffer for multi-level 1335 * objects. 1336 */ 1337 ibn = bn >> ((nlevels - i - 1) * ibshift); 1338 ibn &= ((1 << ibshift) - 1); 1339 bp = indbp[ibn]; 1340 if (BP_IS_HOLE(&bp)) { 1341 memset(dnode_cache_buf, 0, bsize); 1342 break; 1343 } 1344 rc = zio_read(spa, &bp, dnode_cache_buf); 1345 if (rc) 1346 return (rc); 1347 indbp = (const blkptr_t *) dnode_cache_buf; 1348 } 1349 dnode_cache_obj = dnode; 1350 dnode_cache_bn = bn; 1351 cached: 1352 1353 /* 1354 * The buffer contains our data block. Copy what we 1355 * need from it and loop. 1356 */ 1357 i = bsize - boff; 1358 if (i > buflen) i = buflen; 1359 memcpy(buf, &dnode_cache_buf[boff], i); 1360 buf = ((char*) buf) + i; 1361 offset += i; 1362 buflen -= i; 1363 } 1364 1365 return (0); 1366 } 1367 1368 /* 1369 * Lookup a value in a microzap directory. Assumes that the zap 1370 * scratch buffer contains the directory contents. 1371 */ 1372 static int 1373 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 1374 { 1375 const mzap_phys_t *mz; 1376 const mzap_ent_phys_t *mze; 1377 size_t size; 1378 int chunks, i; 1379 1380 /* 1381 * Microzap objects use exactly one block. Read the whole 1382 * thing. 1383 */ 1384 size = dnode->dn_datablkszsec * 512; 1385 1386 mz = (const mzap_phys_t *) zap_scratch; 1387 chunks = size / MZAP_ENT_LEN - 1; 1388 1389 for (i = 0; i < chunks; i++) { 1390 mze = &mz->mz_chunk[i]; 1391 if (!strcmp(mze->mze_name, name)) { 1392 *value = mze->mze_value; 1393 return (0); 1394 } 1395 } 1396 1397 return (ENOENT); 1398 } 1399 1400 /* 1401 * Compare a name with a zap leaf entry. Return non-zero if the name 1402 * matches. 1403 */ 1404 static int 1405 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 1406 { 1407 size_t namelen; 1408 const zap_leaf_chunk_t *nc; 1409 const char *p; 1410 1411 namelen = zc->l_entry.le_name_numints; 1412 1413 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 1414 p = name; 1415 while (namelen > 0) { 1416 size_t len; 1417 len = namelen; 1418 if (len > ZAP_LEAF_ARRAY_BYTES) 1419 len = ZAP_LEAF_ARRAY_BYTES; 1420 if (memcmp(p, nc->l_array.la_array, len)) 1421 return (0); 1422 p += len; 1423 namelen -= len; 1424 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 1425 } 1426 1427 return 1; 1428 } 1429 1430 /* 1431 * Extract a uint64_t value from a zap leaf entry. 1432 */ 1433 static uint64_t 1434 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 1435 { 1436 const zap_leaf_chunk_t *vc; 1437 int i; 1438 uint64_t value; 1439 const uint8_t *p; 1440 1441 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 1442 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 1443 value = (value << 8) | p[i]; 1444 } 1445 1446 return value; 1447 } 1448 1449 /* 1450 * Lookup a value in a fatzap directory. Assumes that the zap scratch 1451 * buffer contains the directory header. 1452 */ 1453 static int 1454 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value) 1455 { 1456 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1457 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1458 fat_zap_t z; 1459 uint64_t *ptrtbl; 1460 uint64_t hash; 1461 int rc; 1462 1463 if (zh.zap_magic != ZAP_MAGIC) 1464 return (EIO); 1465 1466 z.zap_block_shift = ilog2(bsize); 1467 z.zap_phys = (zap_phys_t *) zap_scratch; 1468 1469 /* 1470 * Figure out where the pointer table is and read it in if necessary. 1471 */ 1472 if (zh.zap_ptrtbl.zt_blk) { 1473 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 1474 zap_scratch, bsize); 1475 if (rc) 1476 return (rc); 1477 ptrtbl = (uint64_t *) zap_scratch; 1478 } else { 1479 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 1480 } 1481 1482 hash = zap_hash(zh.zap_salt, name); 1483 1484 zap_leaf_t zl; 1485 zl.l_bs = z.zap_block_shift; 1486 1487 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 1488 zap_leaf_chunk_t *zc; 1489 1490 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 1491 if (rc) 1492 return (rc); 1493 1494 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1495 1496 /* 1497 * Make sure this chunk matches our hash. 1498 */ 1499 if (zl.l_phys->l_hdr.lh_prefix_len > 0 1500 && zl.l_phys->l_hdr.lh_prefix 1501 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 1502 return (ENOENT); 1503 1504 /* 1505 * Hash within the chunk to find our entry. 1506 */ 1507 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 1508 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 1509 h = zl.l_phys->l_hash[h]; 1510 if (h == 0xffff) 1511 return (ENOENT); 1512 zc = &ZAP_LEAF_CHUNK(&zl, h); 1513 while (zc->l_entry.le_hash != hash) { 1514 if (zc->l_entry.le_next == 0xffff) { 1515 zc = 0; 1516 break; 1517 } 1518 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 1519 } 1520 if (fzap_name_equal(&zl, zc, name)) { 1521 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 8) 1522 return (E2BIG); 1523 *value = fzap_leaf_value(&zl, zc); 1524 return (0); 1525 } 1526 1527 return (ENOENT); 1528 } 1529 1530 /* 1531 * Lookup a name in a zap object and return its value as a uint64_t. 1532 */ 1533 static int 1534 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, uint64_t *value) 1535 { 1536 int rc; 1537 uint64_t zap_type; 1538 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1539 1540 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 1541 if (rc) 1542 return (rc); 1543 1544 zap_type = *(uint64_t *) zap_scratch; 1545 if (zap_type == ZBT_MICRO) 1546 return mzap_lookup(dnode, name, value); 1547 else if (zap_type == ZBT_HEADER) 1548 return fzap_lookup(spa, dnode, name, value); 1549 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 1550 return (EIO); 1551 } 1552 1553 /* 1554 * List a microzap directory. Assumes that the zap scratch buffer contains 1555 * the directory contents. 1556 */ 1557 static int 1558 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 1559 { 1560 const mzap_phys_t *mz; 1561 const mzap_ent_phys_t *mze; 1562 size_t size; 1563 int chunks, i, rc; 1564 1565 /* 1566 * Microzap objects use exactly one block. Read the whole 1567 * thing. 1568 */ 1569 size = dnode->dn_datablkszsec * 512; 1570 mz = (const mzap_phys_t *) zap_scratch; 1571 chunks = size / MZAP_ENT_LEN - 1; 1572 1573 for (i = 0; i < chunks; i++) { 1574 mze = &mz->mz_chunk[i]; 1575 if (mze->mze_name[0]) { 1576 rc = callback(mze->mze_name, mze->mze_value); 1577 if (rc != 0) 1578 return (rc); 1579 } 1580 } 1581 1582 return (0); 1583 } 1584 1585 /* 1586 * List a fatzap directory. Assumes that the zap scratch buffer contains 1587 * the directory header. 1588 */ 1589 static int 1590 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 1591 { 1592 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1593 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1594 fat_zap_t z; 1595 int i, j, rc; 1596 1597 if (zh.zap_magic != ZAP_MAGIC) 1598 return (EIO); 1599 1600 z.zap_block_shift = ilog2(bsize); 1601 z.zap_phys = (zap_phys_t *) zap_scratch; 1602 1603 /* 1604 * This assumes that the leaf blocks start at block 1. The 1605 * documentation isn't exactly clear on this. 1606 */ 1607 zap_leaf_t zl; 1608 zl.l_bs = z.zap_block_shift; 1609 for (i = 0; i < zh.zap_num_leafs; i++) { 1610 off_t off = (i + 1) << zl.l_bs; 1611 char name[256], *p; 1612 uint64_t value; 1613 1614 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 1615 return (EIO); 1616 1617 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1618 1619 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 1620 zap_leaf_chunk_t *zc, *nc; 1621 int namelen; 1622 1623 zc = &ZAP_LEAF_CHUNK(&zl, j); 1624 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 1625 continue; 1626 namelen = zc->l_entry.le_name_numints; 1627 if (namelen > sizeof(name)) 1628 namelen = sizeof(name); 1629 1630 /* 1631 * Paste the name back together. 1632 */ 1633 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 1634 p = name; 1635 while (namelen > 0) { 1636 int len; 1637 len = namelen; 1638 if (len > ZAP_LEAF_ARRAY_BYTES) 1639 len = ZAP_LEAF_ARRAY_BYTES; 1640 memcpy(p, nc->l_array.la_array, len); 1641 p += len; 1642 namelen -= len; 1643 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 1644 } 1645 1646 /* 1647 * Assume the first eight bytes of the value are 1648 * a uint64_t. 1649 */ 1650 value = fzap_leaf_value(&zl, zc); 1651 1652 //printf("%s 0x%jx\n", name, (uintmax_t)value); 1653 rc = callback((const char *)name, value); 1654 if (rc != 0) 1655 return (rc); 1656 } 1657 } 1658 1659 return (0); 1660 } 1661 1662 static int zfs_printf(const char *name, uint64_t value __unused) 1663 { 1664 1665 printf("%s\n", name); 1666 1667 return (0); 1668 } 1669 1670 /* 1671 * List a zap directory. 1672 */ 1673 static int 1674 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 1675 { 1676 uint64_t zap_type; 1677 size_t size = dnode->dn_datablkszsec * 512; 1678 1679 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 1680 return (EIO); 1681 1682 zap_type = *(uint64_t *) zap_scratch; 1683 if (zap_type == ZBT_MICRO) 1684 return mzap_list(dnode, zfs_printf); 1685 else 1686 return fzap_list(spa, dnode, zfs_printf); 1687 } 1688 1689 static int 1690 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 1691 { 1692 off_t offset; 1693 1694 offset = objnum * sizeof(dnode_phys_t); 1695 return dnode_read(spa, &os->os_meta_dnode, offset, 1696 dnode, sizeof(dnode_phys_t)); 1697 } 1698 1699 static int 1700 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1701 { 1702 const mzap_phys_t *mz; 1703 const mzap_ent_phys_t *mze; 1704 size_t size; 1705 int chunks, i; 1706 1707 /* 1708 * Microzap objects use exactly one block. Read the whole 1709 * thing. 1710 */ 1711 size = dnode->dn_datablkszsec * 512; 1712 1713 mz = (const mzap_phys_t *) zap_scratch; 1714 chunks = size / MZAP_ENT_LEN - 1; 1715 1716 for (i = 0; i < chunks; i++) { 1717 mze = &mz->mz_chunk[i]; 1718 if (value == mze->mze_value) { 1719 strcpy(name, mze->mze_name); 1720 return (0); 1721 } 1722 } 1723 1724 return (ENOENT); 1725 } 1726 1727 static void 1728 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 1729 { 1730 size_t namelen; 1731 const zap_leaf_chunk_t *nc; 1732 char *p; 1733 1734 namelen = zc->l_entry.le_name_numints; 1735 1736 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 1737 p = name; 1738 while (namelen > 0) { 1739 size_t len; 1740 len = namelen; 1741 if (len > ZAP_LEAF_ARRAY_BYTES) 1742 len = ZAP_LEAF_ARRAY_BYTES; 1743 memcpy(p, nc->l_array.la_array, len); 1744 p += len; 1745 namelen -= len; 1746 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 1747 } 1748 1749 *p = '\0'; 1750 } 1751 1752 static int 1753 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1754 { 1755 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1756 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1757 fat_zap_t z; 1758 int i, j; 1759 1760 if (zh.zap_magic != ZAP_MAGIC) 1761 return (EIO); 1762 1763 z.zap_block_shift = ilog2(bsize); 1764 z.zap_phys = (zap_phys_t *) zap_scratch; 1765 1766 /* 1767 * This assumes that the leaf blocks start at block 1. The 1768 * documentation isn't exactly clear on this. 1769 */ 1770 zap_leaf_t zl; 1771 zl.l_bs = z.zap_block_shift; 1772 for (i = 0; i < zh.zap_num_leafs; i++) { 1773 off_t off = (i + 1) << zl.l_bs; 1774 1775 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 1776 return (EIO); 1777 1778 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1779 1780 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 1781 zap_leaf_chunk_t *zc; 1782 1783 zc = &ZAP_LEAF_CHUNK(&zl, j); 1784 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 1785 continue; 1786 if (zc->l_entry.le_value_intlen != 8 || 1787 zc->l_entry.le_value_numints != 1) 1788 continue; 1789 1790 if (fzap_leaf_value(&zl, zc) == value) { 1791 fzap_name_copy(&zl, zc, name); 1792 return (0); 1793 } 1794 } 1795 } 1796 1797 return (ENOENT); 1798 } 1799 1800 static int 1801 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1802 { 1803 int rc; 1804 uint64_t zap_type; 1805 size_t size = dnode->dn_datablkszsec * 512; 1806 1807 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 1808 if (rc) 1809 return (rc); 1810 1811 zap_type = *(uint64_t *) zap_scratch; 1812 if (zap_type == ZBT_MICRO) 1813 return mzap_rlookup(spa, dnode, name, value); 1814 else 1815 return fzap_rlookup(spa, dnode, name, value); 1816 } 1817 1818 static int 1819 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 1820 { 1821 char name[256]; 1822 char component[256]; 1823 uint64_t dir_obj, parent_obj, child_dir_zapobj; 1824 dnode_phys_t child_dir_zap, dataset, dir, parent; 1825 dsl_dir_phys_t *dd; 1826 dsl_dataset_phys_t *ds; 1827 char *p; 1828 int len; 1829 1830 p = &name[sizeof(name) - 1]; 1831 *p = '\0'; 1832 1833 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 1834 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 1835 return (EIO); 1836 } 1837 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 1838 dir_obj = ds->ds_dir_obj; 1839 1840 for (;;) { 1841 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 1842 return (EIO); 1843 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1844 1845 /* Actual loop condition. */ 1846 parent_obj = dd->dd_parent_obj; 1847 if (parent_obj == 0) 1848 break; 1849 1850 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 1851 return (EIO); 1852 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 1853 child_dir_zapobj = dd->dd_child_dir_zapobj; 1854 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 1855 return (EIO); 1856 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 1857 return (EIO); 1858 1859 len = strlen(component); 1860 p -= len; 1861 memcpy(p, component, len); 1862 --p; 1863 *p = '/'; 1864 1865 /* Actual loop iteration. */ 1866 dir_obj = parent_obj; 1867 } 1868 1869 if (*p != '\0') 1870 ++p; 1871 strcpy(result, p); 1872 1873 return (0); 1874 } 1875 1876 static int 1877 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 1878 { 1879 char element[256]; 1880 uint64_t dir_obj, child_dir_zapobj; 1881 dnode_phys_t child_dir_zap, dir; 1882 dsl_dir_phys_t *dd; 1883 const char *p, *q; 1884 1885 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 1886 return (EIO); 1887 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &dir_obj)) 1888 return (EIO); 1889 1890 p = name; 1891 for (;;) { 1892 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 1893 return (EIO); 1894 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1895 1896 while (*p == '/') 1897 p++; 1898 /* Actual loop condition #1. */ 1899 if (*p == '\0') 1900 break; 1901 1902 q = strchr(p, '/'); 1903 if (q) { 1904 memcpy(element, p, q - p); 1905 element[q - p] = '\0'; 1906 p = q + 1; 1907 } else { 1908 strcpy(element, p); 1909 p += strlen(p); 1910 } 1911 1912 child_dir_zapobj = dd->dd_child_dir_zapobj; 1913 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 1914 return (EIO); 1915 1916 /* Actual loop condition #2. */ 1917 if (zap_lookup(spa, &child_dir_zap, element, &dir_obj) != 0) 1918 return (ENOENT); 1919 } 1920 1921 *objnum = dd->dd_head_dataset_obj; 1922 return (0); 1923 } 1924 1925 #pragma GCC diagnostic ignored "-Wstrict-aliasing" 1926 static int 1927 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 1928 { 1929 uint64_t dir_obj, child_dir_zapobj; 1930 dnode_phys_t child_dir_zap, dir, dataset; 1931 dsl_dataset_phys_t *ds; 1932 dsl_dir_phys_t *dd; 1933 1934 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 1935 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 1936 return (EIO); 1937 } 1938 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 1939 dir_obj = ds->ds_dir_obj; 1940 1941 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 1942 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 1943 return (EIO); 1944 } 1945 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1946 1947 child_dir_zapobj = dd->dd_child_dir_zapobj; 1948 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 1949 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 1950 return (EIO); 1951 } 1952 1953 return (zap_list(spa, &child_dir_zap) != 0); 1954 } 1955 1956 int 1957 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 1958 { 1959 uint64_t dir_obj, child_dir_zapobj, zap_type; 1960 dnode_phys_t child_dir_zap, dir, dataset; 1961 dsl_dataset_phys_t *ds; 1962 dsl_dir_phys_t *dd; 1963 int err; 1964 1965 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 1966 if (err != 0) { 1967 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 1968 return (err); 1969 } 1970 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 1971 dir_obj = ds->ds_dir_obj; 1972 1973 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 1974 if (err != 0) { 1975 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 1976 return (err); 1977 } 1978 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1979 1980 child_dir_zapobj = dd->dd_child_dir_zapobj; 1981 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 1982 if (err != 0) { 1983 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 1984 return (err); 1985 } 1986 1987 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 1988 if (err != 0) 1989 return (err); 1990 1991 zap_type = *(uint64_t *) zap_scratch; 1992 if (zap_type == ZBT_MICRO) 1993 return mzap_list(&child_dir_zap, callback); 1994 else 1995 return fzap_list(spa, &child_dir_zap, callback); 1996 } 1997 1998 /* 1999 * Find the object set given the object number of its dataset object 2000 * and return its details in *objset 2001 */ 2002 static int 2003 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2004 { 2005 dnode_phys_t dataset; 2006 dsl_dataset_phys_t *ds; 2007 2008 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2009 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2010 return (EIO); 2011 } 2012 2013 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2014 if (zio_read(spa, &ds->ds_bp, objset)) { 2015 printf("ZFS: can't read object set for dataset %ju\n", 2016 (uintmax_t)objnum); 2017 return (EIO); 2018 } 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * Find the object set pointed to by the BOOTFS property or the root 2025 * dataset if there is none and return its details in *objset 2026 */ 2027 static int 2028 zfs_get_root(const spa_t *spa, uint64_t *objid) 2029 { 2030 dnode_phys_t dir, propdir; 2031 uint64_t props, bootfs, root; 2032 2033 *objid = 0; 2034 2035 /* 2036 * Start with the MOS directory object. 2037 */ 2038 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2039 printf("ZFS: can't read MOS object directory\n"); 2040 return (EIO); 2041 } 2042 2043 /* 2044 * Lookup the pool_props and see if we can find a bootfs. 2045 */ 2046 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, &props) == 0 2047 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2048 && zap_lookup(spa, &propdir, "bootfs", &bootfs) == 0 2049 && bootfs != 0) 2050 { 2051 *objid = bootfs; 2052 return (0); 2053 } 2054 /* 2055 * Lookup the root dataset directory 2056 */ 2057 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, &root) 2058 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2059 printf("ZFS: can't find root dsl_dir\n"); 2060 return (EIO); 2061 } 2062 2063 /* 2064 * Use the information from the dataset directory's bonus buffer 2065 * to find the dataset object and from that the object set itself. 2066 */ 2067 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2068 *objid = dd->dd_head_dataset_obj; 2069 return (0); 2070 } 2071 2072 static int 2073 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt) 2074 { 2075 2076 mnt->spa = spa; 2077 2078 /* 2079 * Find the root object set if not explicitly provided 2080 */ 2081 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2082 printf("ZFS: can't find root filesystem\n"); 2083 return (EIO); 2084 } 2085 2086 if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) { 2087 printf("ZFS: can't open root filesystem\n"); 2088 return (EIO); 2089 } 2090 2091 mnt->rootobj = rootobj; 2092 2093 return (0); 2094 } 2095 2096 /* 2097 * callback function for feature name checks. 2098 */ 2099 static int 2100 check_feature(const char *name, uint64_t value) 2101 { 2102 int i; 2103 2104 if (value == 0) 2105 return (0); 2106 if (name[0] == '\0') 2107 return (0); 2108 2109 for (i = 0; features_for_read[i] != NULL; i++) { 2110 if (strcmp(name, features_for_read[i]) == 0) 2111 return (0); 2112 } 2113 printf("ZFS: unsupported feature: %s\n", name); 2114 return (EIO); 2115 } 2116 2117 /* 2118 * Checks whether the MOS features that are active are supported. 2119 */ 2120 static int 2121 check_mos_features(const spa_t *spa) 2122 { 2123 dnode_phys_t dir; 2124 uint64_t objnum, zap_type; 2125 size_t size; 2126 int rc; 2127 2128 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2129 &dir)) != 0) 2130 return (rc); 2131 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2132 &objnum)) != 0) { 2133 /* 2134 * It is older pool without features. As we have already 2135 * tested the label, just return without raising the error. 2136 */ 2137 if (rc == ENOENT) 2138 rc = 0; 2139 return (rc); 2140 } 2141 2142 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2143 return (rc); 2144 2145 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2146 return (EIO); 2147 2148 size = dir.dn_datablkszsec * 512; 2149 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2150 return (EIO); 2151 2152 zap_type = *(uint64_t *) zap_scratch; 2153 if (zap_type == ZBT_MICRO) 2154 rc = mzap_list(&dir, check_feature); 2155 else 2156 rc = fzap_list(spa, &dir, check_feature); 2157 2158 return (rc); 2159 } 2160 2161 static int 2162 zfs_spa_init(spa_t *spa) 2163 { 2164 int rc; 2165 2166 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2167 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2168 return (EIO); 2169 } 2170 if (spa->spa_mos.os_type != DMU_OST_META) { 2171 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2172 return (EIO); 2173 } 2174 2175 rc = check_mos_features(spa); 2176 if (rc != 0) { 2177 printf("ZFS: pool %s is not supported\n", spa->spa_name); 2178 } 2179 2180 return (rc); 2181 } 2182 2183 static int 2184 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 2185 { 2186 2187 if (dn->dn_bonustype != DMU_OT_SA) { 2188 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 2189 2190 sb->st_mode = zp->zp_mode; 2191 sb->st_uid = zp->zp_uid; 2192 sb->st_gid = zp->zp_gid; 2193 sb->st_size = zp->zp_size; 2194 } else { 2195 sa_hdr_phys_t *sahdrp; 2196 int hdrsize; 2197 size_t size = 0; 2198 void *buf = NULL; 2199 2200 if (dn->dn_bonuslen != 0) 2201 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2202 else { 2203 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 2204 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 2205 int error; 2206 2207 size = BP_GET_LSIZE(bp); 2208 buf = zfs_alloc(size); 2209 error = zio_read(spa, bp, buf); 2210 if (error != 0) { 2211 zfs_free(buf, size); 2212 return (error); 2213 } 2214 sahdrp = buf; 2215 } else { 2216 return (EIO); 2217 } 2218 } 2219 hdrsize = SA_HDR_SIZE(sahdrp); 2220 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 2221 SA_MODE_OFFSET); 2222 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 2223 SA_UID_OFFSET); 2224 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 2225 SA_GID_OFFSET); 2226 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 2227 SA_SIZE_OFFSET); 2228 if (buf != NULL) 2229 zfs_free(buf, size); 2230 } 2231 2232 return (0); 2233 } 2234 2235 static int 2236 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 2237 { 2238 int rc = 0; 2239 2240 if (dn->dn_bonustype == DMU_OT_SA) { 2241 sa_hdr_phys_t *sahdrp = NULL; 2242 size_t size = 0; 2243 void *buf = NULL; 2244 int hdrsize; 2245 char *p; 2246 2247 if (dn->dn_bonuslen != 0) 2248 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2249 else { 2250 blkptr_t *bp; 2251 2252 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 2253 return (EIO); 2254 bp = DN_SPILL_BLKPTR(dn); 2255 2256 size = BP_GET_LSIZE(bp); 2257 buf = zfs_alloc(size); 2258 rc = zio_read(spa, bp, buf); 2259 if (rc != 0) { 2260 zfs_free(buf, size); 2261 return (rc); 2262 } 2263 sahdrp = buf; 2264 } 2265 hdrsize = SA_HDR_SIZE(sahdrp); 2266 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 2267 memcpy(path, p, psize); 2268 if (buf != NULL) 2269 zfs_free(buf, size); 2270 return (0); 2271 } 2272 /* 2273 * Second test is purely to silence bogus compiler 2274 * warning about accessing past the end of dn_bonus. 2275 */ 2276 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 2277 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 2278 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 2279 } else { 2280 rc = dnode_read(spa, dn, 0, path, psize); 2281 } 2282 return (rc); 2283 } 2284 2285 struct obj_list { 2286 uint64_t objnum; 2287 STAILQ_ENTRY(obj_list) entry; 2288 }; 2289 2290 /* 2291 * Lookup a file and return its dnode. 2292 */ 2293 static int 2294 zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode) 2295 { 2296 int rc; 2297 uint64_t objnum; 2298 const spa_t *spa; 2299 dnode_phys_t dn; 2300 const char *p, *q; 2301 char element[256]; 2302 char path[1024]; 2303 int symlinks_followed = 0; 2304 struct stat sb; 2305 struct obj_list *entry, *tentry; 2306 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 2307 2308 spa = mnt->spa; 2309 if (mnt->objset.os_type != DMU_OST_ZFS) { 2310 printf("ZFS: unexpected object set type %ju\n", 2311 (uintmax_t)mnt->objset.os_type); 2312 return (EIO); 2313 } 2314 2315 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 2316 return (ENOMEM); 2317 2318 /* 2319 * Get the root directory dnode. 2320 */ 2321 rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn); 2322 if (rc) { 2323 free(entry); 2324 return (rc); 2325 } 2326 2327 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, &objnum); 2328 if (rc) { 2329 free(entry); 2330 return (rc); 2331 } 2332 entry->objnum = objnum; 2333 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 2334 2335 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 2336 if (rc != 0) 2337 goto done; 2338 2339 p = upath; 2340 while (p && *p) { 2341 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 2342 if (rc != 0) 2343 goto done; 2344 2345 while (*p == '/') 2346 p++; 2347 if (*p == '\0') 2348 break; 2349 q = p; 2350 while (*q != '\0' && *q != '/') 2351 q++; 2352 2353 /* skip dot */ 2354 if (p + 1 == q && p[0] == '.') { 2355 p++; 2356 continue; 2357 } 2358 /* double dot */ 2359 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 2360 p += 2; 2361 if (STAILQ_FIRST(&on_cache) == 2362 STAILQ_LAST(&on_cache, obj_list, entry)) { 2363 rc = ENOENT; 2364 goto done; 2365 } 2366 entry = STAILQ_FIRST(&on_cache); 2367 STAILQ_REMOVE_HEAD(&on_cache, entry); 2368 free(entry); 2369 objnum = (STAILQ_FIRST(&on_cache))->objnum; 2370 continue; 2371 } 2372 if (q - p + 1 > sizeof(element)) { 2373 rc = ENAMETOOLONG; 2374 goto done; 2375 } 2376 memcpy(element, p, q - p); 2377 element[q - p] = 0; 2378 p = q; 2379 2380 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 2381 goto done; 2382 if (!S_ISDIR(sb.st_mode)) { 2383 rc = ENOTDIR; 2384 goto done; 2385 } 2386 2387 rc = zap_lookup(spa, &dn, element, &objnum); 2388 if (rc) 2389 goto done; 2390 objnum = ZFS_DIRENT_OBJ(objnum); 2391 2392 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 2393 rc = ENOMEM; 2394 goto done; 2395 } 2396 entry->objnum = objnum; 2397 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 2398 rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); 2399 if (rc) 2400 goto done; 2401 2402 /* 2403 * Check for symlink. 2404 */ 2405 rc = zfs_dnode_stat(spa, &dn, &sb); 2406 if (rc) 2407 goto done; 2408 if (S_ISLNK(sb.st_mode)) { 2409 if (symlinks_followed > 10) { 2410 rc = EMLINK; 2411 goto done; 2412 } 2413 symlinks_followed++; 2414 2415 /* 2416 * Read the link value and copy the tail of our 2417 * current path onto the end. 2418 */ 2419 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 2420 rc = ENAMETOOLONG; 2421 goto done; 2422 } 2423 strcpy(&path[sb.st_size], p); 2424 2425 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 2426 if (rc != 0) 2427 goto done; 2428 2429 /* 2430 * Restart with the new path, starting either at 2431 * the root or at the parent depending whether or 2432 * not the link is relative. 2433 */ 2434 p = path; 2435 if (*p == '/') { 2436 while (STAILQ_FIRST(&on_cache) != 2437 STAILQ_LAST(&on_cache, obj_list, entry)) { 2438 entry = STAILQ_FIRST(&on_cache); 2439 STAILQ_REMOVE_HEAD(&on_cache, entry); 2440 free(entry); 2441 } 2442 } else { 2443 entry = STAILQ_FIRST(&on_cache); 2444 STAILQ_REMOVE_HEAD(&on_cache, entry); 2445 free(entry); 2446 } 2447 objnum = (STAILQ_FIRST(&on_cache))->objnum; 2448 } 2449 } 2450 2451 *dnode = dn; 2452 done: 2453 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 2454 free(entry); 2455 return (rc); 2456 } 2457