1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
29 * Copyright (c) 2019 Datto Inc.
30 * Copyright (c) 2019, 2023, Klara Inc.
31 * Copyright (c) 2019, Allan Jude
32 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34 */
35
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dbuf.h>
40 #include <sys/dnode.h>
41 #include <sys/zfs_context.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/dmu_traverse.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_synctask.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dmu_zfetch.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/zio_compress.h>
54 #include <sys/sa.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/brt.h>
58 #include <sys/trace_zfs.h>
59 #include <sys/zfs_racct.h>
60 #include <sys/zfs_rlock.h>
61 #ifdef _KERNEL
62 #include <sys/vmsystm.h>
63 #include <sys/zfs_znode.h>
64 #endif
65
66 /*
67 * Enable/disable nopwrite feature.
68 */
69 static int zfs_nopwrite_enabled = 1;
70
71 /*
72 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
73 * one TXG. After this threshold is crossed, additional dirty blocks from frees
74 * will wait until the next TXG.
75 * A value of zero will disable this throttle.
76 */
77 static uint_t zfs_per_txg_dirty_frees_percent = 30;
78
79 /*
80 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
81 * By default this is enabled to ensure accurate hole reporting, it can result
82 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
83 * Disabling this option will result in holes never being reported in dirty
84 * files which is always safe.
85 */
86 static int zfs_dmu_offset_next_sync = 1;
87
88 /*
89 * Limit the amount we can prefetch with one call to this amount. This
90 * helps to limit the amount of memory that can be used by prefetching.
91 * Larger objects should be prefetched a bit at a time.
92 */
93 #ifdef _ILP32
94 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
95 #else
96 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97 #endif
98
99 /*
100 * Override copies= for dedup state objects. 0 means the traditional behaviour
101 * (ie the default for the containing objset ie 3 for the MOS).
102 */
103 uint_t dmu_ddt_copies = 0;
104
105 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
106 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
108 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
109 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
110 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
111 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
112 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
113 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
114 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
115 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
116 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
117 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
118 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
120 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
121 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
122 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
123 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
124 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
125 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
126 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
128 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
129 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
131 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
132 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
133 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
134 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
135 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
136 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
137 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
138 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
139 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
140 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
141 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
142 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
143 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
144 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
145 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
146 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
147 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
148 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
149 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
150 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
151 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
152 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
153 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
154 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
155 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
156 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
157 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
158 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
159 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
160 };
161
162 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
163 { byteswap_uint8_array, "uint8" },
164 { byteswap_uint16_array, "uint16" },
165 { byteswap_uint32_array, "uint32" },
166 { byteswap_uint64_array, "uint64" },
167 { zap_byteswap, "zap" },
168 { dnode_buf_byteswap, "dnode" },
169 { dmu_objset_byteswap, "objset" },
170 { zfs_znode_byteswap, "znode" },
171 { zfs_oldacl_byteswap, "oldacl" },
172 { zfs_acl_byteswap, "acl" }
173 };
174
175 int
dmu_buf_hold_noread_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp)176 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
177 const void *tag, dmu_buf_t **dbp)
178 {
179 uint64_t blkid;
180 dmu_buf_impl_t *db;
181
182 rw_enter(&dn->dn_struct_rwlock, RW_READER);
183 blkid = dbuf_whichblock(dn, 0, offset);
184 db = dbuf_hold(dn, blkid, tag);
185 rw_exit(&dn->dn_struct_rwlock);
186
187 if (db == NULL) {
188 *dbp = NULL;
189 return (SET_ERROR(EIO));
190 }
191
192 *dbp = &db->db;
193 return (0);
194 }
195
196 int
dmu_buf_hold_noread(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp)197 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
198 const void *tag, dmu_buf_t **dbp)
199 {
200 dnode_t *dn;
201 uint64_t blkid;
202 dmu_buf_impl_t *db;
203 int err;
204
205 err = dnode_hold(os, object, FTAG, &dn);
206 if (err)
207 return (err);
208 rw_enter(&dn->dn_struct_rwlock, RW_READER);
209 blkid = dbuf_whichblock(dn, 0, offset);
210 db = dbuf_hold(dn, blkid, tag);
211 rw_exit(&dn->dn_struct_rwlock);
212 dnode_rele(dn, FTAG);
213
214 if (db == NULL) {
215 *dbp = NULL;
216 return (SET_ERROR(EIO));
217 }
218
219 *dbp = &db->db;
220 return (err);
221 }
222
223 int
dmu_buf_hold_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)224 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
225 const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
226 {
227 int err;
228
229 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
230 if (err == 0) {
231 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
232 err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
233 if (err != 0) {
234 dbuf_rele(db, tag);
235 *dbp = NULL;
236 }
237 }
238
239 return (err);
240 }
241
242 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)243 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
244 const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
245 {
246 int err;
247
248 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
249 if (err == 0) {
250 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
251 err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
252 if (err != 0) {
253 dbuf_rele(db, tag);
254 *dbp = NULL;
255 }
256 }
257
258 return (err);
259 }
260
261 int
dmu_bonus_max(void)262 dmu_bonus_max(void)
263 {
264 return (DN_OLD_MAX_BONUSLEN);
265 }
266
267 int
dmu_set_bonus(dmu_buf_t * db_fake,int newsize,dmu_tx_t * tx)268 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
269 {
270 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271 dnode_t *dn;
272 int error;
273
274 if (newsize < 0 || newsize > db_fake->db_size)
275 return (SET_ERROR(EINVAL));
276
277 DB_DNODE_ENTER(db);
278 dn = DB_DNODE(db);
279
280 if (dn->dn_bonus != db) {
281 error = SET_ERROR(EINVAL);
282 } else {
283 dnode_setbonuslen(dn, newsize, tx);
284 error = 0;
285 }
286
287 DB_DNODE_EXIT(db);
288 return (error);
289 }
290
291 int
dmu_set_bonustype(dmu_buf_t * db_fake,dmu_object_type_t type,dmu_tx_t * tx)292 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
293 {
294 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
295 dnode_t *dn;
296 int error;
297
298 if (!DMU_OT_IS_VALID(type))
299 return (SET_ERROR(EINVAL));
300
301 DB_DNODE_ENTER(db);
302 dn = DB_DNODE(db);
303
304 if (dn->dn_bonus != db) {
305 error = SET_ERROR(EINVAL);
306 } else {
307 dnode_setbonus_type(dn, type, tx);
308 error = 0;
309 }
310
311 DB_DNODE_EXIT(db);
312 return (error);
313 }
314
315 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t * db_fake)316 dmu_get_bonustype(dmu_buf_t *db_fake)
317 {
318 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
319 dmu_object_type_t type;
320
321 DB_DNODE_ENTER(db);
322 type = DB_DNODE(db)->dn_bonustype;
323 DB_DNODE_EXIT(db);
324
325 return (type);
326 }
327
328 int
dmu_rm_spill(objset_t * os,uint64_t object,dmu_tx_t * tx)329 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
330 {
331 dnode_t *dn;
332 int error;
333
334 error = dnode_hold(os, object, FTAG, &dn);
335 dbuf_rm_spill(dn, tx);
336 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
337 dnode_rm_spill(dn, tx);
338 rw_exit(&dn->dn_struct_rwlock);
339 dnode_rele(dn, FTAG);
340 return (error);
341 }
342
343 /*
344 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
345 * has not yet been allocated a new bonus dbuf a will be allocated.
346 * Returns ENOENT, EIO, or 0.
347 */
dmu_bonus_hold_by_dnode(dnode_t * dn,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)348 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
349 dmu_flags_t flags)
350 {
351 dmu_buf_impl_t *db;
352 int error;
353
354 rw_enter(&dn->dn_struct_rwlock, RW_READER);
355 if (dn->dn_bonus == NULL) {
356 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
357 rw_exit(&dn->dn_struct_rwlock);
358 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
359 }
360 if (dn->dn_bonus == NULL)
361 dbuf_create_bonus(dn);
362 }
363 db = dn->dn_bonus;
364
365 /* as long as the bonus buf is held, the dnode will be held */
366 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
367 VERIFY(dnode_add_ref(dn, db));
368 atomic_inc_32(&dn->dn_dbufs_count);
369 }
370
371 /*
372 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
373 * hold and incrementing the dbuf count to ensure that dnode_move() sees
374 * a dnode hold for every dbuf.
375 */
376 rw_exit(&dn->dn_struct_rwlock);
377
378 error = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
379 if (error) {
380 dnode_evict_bonus(dn);
381 dbuf_rele(db, tag);
382 *dbp = NULL;
383 return (error);
384 }
385
386 *dbp = &db->db;
387 return (0);
388 }
389
390 int
dmu_bonus_hold(objset_t * os,uint64_t object,const void * tag,dmu_buf_t ** dbp)391 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
392 {
393 dnode_t *dn;
394 int error;
395
396 error = dnode_hold(os, object, FTAG, &dn);
397 if (error)
398 return (error);
399
400 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
401 dnode_rele(dn, FTAG);
402
403 return (error);
404 }
405
406 /*
407 * returns ENOENT, EIO, or 0.
408 *
409 * This interface will allocate a blank spill dbuf when a spill blk
410 * doesn't already exist on the dnode.
411 *
412 * if you only want to find an already existing spill db, then
413 * dmu_spill_hold_existing() should be used.
414 */
415 int
dmu_spill_hold_by_dnode(dnode_t * dn,dmu_flags_t flags,const void * tag,dmu_buf_t ** dbp)416 dmu_spill_hold_by_dnode(dnode_t *dn, dmu_flags_t flags, const void *tag,
417 dmu_buf_t **dbp)
418 {
419 dmu_buf_impl_t *db = NULL;
420 int err;
421
422 if ((flags & DB_RF_HAVESTRUCT) == 0)
423 rw_enter(&dn->dn_struct_rwlock, RW_READER);
424
425 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426
427 if ((flags & DB_RF_HAVESTRUCT) == 0)
428 rw_exit(&dn->dn_struct_rwlock);
429
430 if (db == NULL) {
431 *dbp = NULL;
432 return (SET_ERROR(EIO));
433 }
434 err = dbuf_read(db, NULL, flags);
435 if (err == 0)
436 *dbp = &db->db;
437 else {
438 dbuf_rele(db, tag);
439 *dbp = NULL;
440 }
441 return (err);
442 }
443
444 int
dmu_spill_hold_existing(dmu_buf_t * bonus,const void * tag,dmu_buf_t ** dbp)445 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
446 {
447 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448 dnode_t *dn;
449 int err;
450
451 DB_DNODE_ENTER(db);
452 dn = DB_DNODE(db);
453
454 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455 err = SET_ERROR(EINVAL);
456 } else {
457 rw_enter(&dn->dn_struct_rwlock, RW_READER);
458
459 if (!dn->dn_have_spill) {
460 err = SET_ERROR(ENOENT);
461 } else {
462 err = dmu_spill_hold_by_dnode(dn,
463 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464 }
465
466 rw_exit(&dn->dn_struct_rwlock);
467 }
468
469 DB_DNODE_EXIT(db);
470 return (err);
471 }
472
473 int
dmu_spill_hold_by_bonus(dmu_buf_t * bonus,dmu_flags_t flags,const void * tag,dmu_buf_t ** dbp)474 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, dmu_flags_t flags, const void *tag,
475 dmu_buf_t **dbp)
476 {
477 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478 int err;
479
480 DB_DNODE_ENTER(db);
481 err = dmu_spill_hold_by_dnode(DB_DNODE(db), flags, tag, dbp);
482 DB_DNODE_EXIT(db);
483
484 return (err);
485 }
486
487 /*
488 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
489 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
490 * and can induce severe lock contention when writing to several files
491 * whose dnodes are in the same block.
492 */
493 int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp,dmu_flags_t flags)494 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
495 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
496 dmu_flags_t flags)
497 {
498 dmu_buf_t **dbp;
499 zstream_t *zs = NULL;
500 uint64_t blkid, nblks, i;
501 dmu_flags_t dbuf_flags;
502 int err;
503 zio_t *zio = NULL;
504 boolean_t missed = B_FALSE;
505
506 ASSERT(!read || length <= DMU_MAX_ACCESS);
507
508 /*
509 * Note: We directly notify the prefetch code of this read, so that
510 * we can tell it about the multi-block read. dbuf_read() only knows
511 * about the one block it is accessing.
512 */
513 dbuf_flags = (flags & ~DMU_READ_PREFETCH) | DMU_READ_NO_PREFETCH |
514 DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
515
516 rw_enter(&dn->dn_struct_rwlock, RW_READER);
517 if (dn->dn_datablkshift) {
518 int blkshift = dn->dn_datablkshift;
519 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
520 P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
521 >> blkshift;
522 } else {
523 if (offset + length > dn->dn_datablksz) {
524 zfs_panic_recover("zfs: accessing past end of object "
525 "%llx/%llx (size=%u access=%llu+%llu)",
526 (longlong_t)dn->dn_objset->
527 os_dsl_dataset->ds_object,
528 (longlong_t)dn->dn_object, dn->dn_datablksz,
529 (longlong_t)offset, (longlong_t)length);
530 rw_exit(&dn->dn_struct_rwlock);
531 return (SET_ERROR(EIO));
532 }
533 nblks = 1;
534 }
535 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536
537 if (read)
538 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539 ZIO_FLAG_CANFAIL);
540 blkid = dbuf_whichblock(dn, 0, offset);
541 if ((flags & DMU_READ_NO_PREFETCH) == 0) {
542 /*
543 * Prepare the zfetch before initiating the demand reads, so
544 * that if multiple threads block on same indirect block, we
545 * base predictions on the original less racy request order.
546 */
547 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
548 read && !(flags & DMU_DIRECTIO), B_TRUE);
549 }
550 for (i = 0; i < nblks; i++) {
551 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
552 if (db == NULL) {
553 if (zs) {
554 dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
555 B_TRUE, (flags & DMU_UNCACHEDIO));
556 }
557 rw_exit(&dn->dn_struct_rwlock);
558 dmu_buf_rele_array(dbp, nblks, tag);
559 if (read)
560 zio_nowait(zio);
561 return (SET_ERROR(EIO));
562 }
563
564 /*
565 * Initiate async demand data read.
566 * We check the db_state after calling dbuf_read() because
567 * (1) dbuf_read() may change the state to CACHED due to a
568 * hit in the ARC, and (2) on a cache miss, a child will
569 * have been added to "zio" but not yet completed, so the
570 * state will not yet be CACHED.
571 */
572 if (read) {
573 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
574 offset + length < db->db.db_offset +
575 db->db.db_size) {
576 if (offset <= db->db.db_offset)
577 dbuf_flags |= DMU_PARTIAL_FIRST;
578 else
579 dbuf_flags |= DMU_PARTIAL_MORE;
580 }
581 (void) dbuf_read(db, zio, dbuf_flags);
582 if (db->db_state != DB_CACHED)
583 missed = B_TRUE;
584 }
585 dbp[i] = &db->db;
586 }
587
588 /*
589 * If we are doing O_DIRECT we still hold the dbufs, even for reads,
590 * but we do not issue any reads here. We do not want to account for
591 * writes in this case.
592 *
593 * O_DIRECT write/read accounting takes place in
594 * dmu_{write/read}_abd().
595 */
596 if (!read && ((flags & DMU_DIRECTIO) == 0))
597 zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);
598
599 if (zs) {
600 dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE,
601 (flags & DMU_UNCACHEDIO));
602 }
603 rw_exit(&dn->dn_struct_rwlock);
604
605 if (read) {
606 /* wait for async read i/o */
607 err = zio_wait(zio);
608 if (err) {
609 dmu_buf_rele_array(dbp, nblks, tag);
610 return (err);
611 }
612
613 /* wait for other io to complete */
614 for (i = 0; i < nblks; i++) {
615 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
616 mutex_enter(&db->db_mtx);
617 while (db->db_state == DB_READ ||
618 db->db_state == DB_FILL)
619 cv_wait(&db->db_changed, &db->db_mtx);
620 if (db->db_state == DB_UNCACHED)
621 err = SET_ERROR(EIO);
622 mutex_exit(&db->db_mtx);
623 if (err) {
624 dmu_buf_rele_array(dbp, nblks, tag);
625 return (err);
626 }
627 }
628 }
629
630 *numbufsp = nblks;
631 *dbpp = dbp;
632 return (0);
633 }
634
635 int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)636 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
637 uint64_t length, int read, const void *tag, int *numbufsp,
638 dmu_buf_t ***dbpp)
639 {
640 dnode_t *dn;
641 int err;
642
643 err = dnode_hold(os, object, FTAG, &dn);
644 if (err)
645 return (err);
646
647 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
648 numbufsp, dbpp, DMU_READ_PREFETCH);
649
650 dnode_rele(dn, FTAG);
651
652 return (err);
653 }
654
655 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db_fake,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)656 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
657 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
658 dmu_buf_t ***dbpp)
659 {
660 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
661 int err;
662
663 DB_DNODE_ENTER(db);
664 err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
665 tag, numbufsp, dbpp, DMU_READ_PREFETCH);
666 DB_DNODE_EXIT(db);
667
668 return (err);
669 }
670
671 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,const void * tag)672 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
673 {
674 int i;
675 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
676
677 if (numbufs == 0)
678 return;
679
680 for (i = 0; i < numbufs; i++) {
681 if (dbp[i])
682 dbuf_rele(dbp[i], tag);
683 }
684
685 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
686 }
687
688 /*
689 * Issue prefetch I/Os for the given blocks. If level is greater than 0, the
690 * indirect blocks prefetched will be those that point to the blocks containing
691 * the data starting at offset, and continuing to offset + len. If the range
692 * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
693 * for the rest only a higher level, also fitting within dmu_prefetch_max. It
694 * should primarily help random reads, since for long sequential reads there is
695 * a speculative prefetcher.
696 *
697 * Note that if the indirect blocks above the blocks being prefetched are not
698 * in cache, they will be asynchronously read in. Dnode read by dnode_hold()
699 * is currently synchronous.
700 */
701 void
dmu_prefetch(objset_t * os,uint64_t object,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)702 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
703 uint64_t len, zio_priority_t pri)
704 {
705 dnode_t *dn;
706
707 if (dmu_prefetch_max == 0 || len == 0) {
708 dmu_prefetch_dnode(os, object, pri);
709 return;
710 }
711
712 if (dnode_hold(os, object, FTAG, &dn) != 0)
713 return;
714
715 dmu_prefetch_by_dnode(dn, level, offset, len, pri);
716
717 dnode_rele(dn, FTAG);
718 }
719
720 void
dmu_prefetch_by_dnode(dnode_t * dn,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)721 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
722 uint64_t len, zio_priority_t pri)
723 {
724 int64_t level2 = level;
725 uint64_t start, end, start2, end2;
726
727 /*
728 * Depending on len we may do two prefetches: blocks [start, end) at
729 * level, and following blocks [start2, end2) at higher level2.
730 */
731 rw_enter(&dn->dn_struct_rwlock, RW_READER);
732 if (dn->dn_datablkshift != 0) {
733
734 /*
735 * Limit prefetch to present blocks.
736 */
737 uint64_t size = (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
738 if (offset >= size) {
739 rw_exit(&dn->dn_struct_rwlock);
740 return;
741 }
742 if (offset + len < offset || offset + len > size)
743 len = size - offset;
744
745 /*
746 * The object has multiple blocks. Calculate the full range
747 * of blocks [start, end2) and then split it into two parts,
748 * so that the first [start, end) fits into dmu_prefetch_max.
749 */
750 start = dbuf_whichblock(dn, level, offset);
751 end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
752 uint8_t ibs = dn->dn_indblkshift;
753 uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
754 uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
755 start2 = end = MIN(end2, start + limit);
756
757 /*
758 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
759 */
760 uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
761 limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
762 do {
763 level2++;
764 start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
765 end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
766 } while (end2 - start2 > limit);
767 } else {
768 /* There is only one block. Prefetch it or nothing. */
769 start = start2 = end2 = 0;
770 end = start + (level == 0 && offset < dn->dn_datablksz);
771 }
772
773 for (uint64_t i = start; i < end; i++)
774 dbuf_prefetch(dn, level, i, pri, 0);
775 for (uint64_t i = start2; i < end2; i++)
776 dbuf_prefetch(dn, level2, i, pri, 0);
777 rw_exit(&dn->dn_struct_rwlock);
778 }
779
780 typedef struct {
781 kmutex_t dpa_lock;
782 kcondvar_t dpa_cv;
783 uint64_t dpa_pending_io;
784 } dmu_prefetch_arg_t;
785
786 static void
dmu_prefetch_done(void * arg,uint64_t level,uint64_t blkid,boolean_t issued)787 dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
788 {
789 (void) level; (void) blkid; (void)issued;
790 dmu_prefetch_arg_t *dpa = arg;
791
792 ASSERT0(level);
793
794 mutex_enter(&dpa->dpa_lock);
795 ASSERT3U(dpa->dpa_pending_io, >, 0);
796 if (--dpa->dpa_pending_io == 0)
797 cv_broadcast(&dpa->dpa_cv);
798 mutex_exit(&dpa->dpa_lock);
799 }
800
801 static void
dmu_prefetch_wait_by_dnode(dnode_t * dn,uint64_t offset,uint64_t len)802 dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
803 {
804 dmu_prefetch_arg_t dpa;
805
806 mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
807 cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
808
809 rw_enter(&dn->dn_struct_rwlock, RW_READER);
810
811 uint64_t start = dbuf_whichblock(dn, 0, offset);
812 uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
813 dpa.dpa_pending_io = end - start;
814
815 for (uint64_t blk = start; blk < end; blk++) {
816 (void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
817 0, dmu_prefetch_done, &dpa);
818 }
819
820 rw_exit(&dn->dn_struct_rwlock);
821
822 /* wait for prefetch L0 reads to finish */
823 mutex_enter(&dpa.dpa_lock);
824 while (dpa.dpa_pending_io > 0) {
825 cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
826
827 }
828 mutex_exit(&dpa.dpa_lock);
829
830 mutex_destroy(&dpa.dpa_lock);
831 cv_destroy(&dpa.dpa_cv);
832 }
833
834 /*
835 * Issue prefetch I/Os for the given L0 block range and wait for the I/O
836 * to complete. This does not enforce dmu_prefetch_max and will prefetch
837 * the entire range. The blocks are read from disk into the ARC but no
838 * decompression occurs (i.e., the dbuf cache is not required).
839 */
840 int
dmu_prefetch_wait(objset_t * os,uint64_t object,uint64_t offset,uint64_t size)841 dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
842 {
843 dnode_t *dn;
844 int err = 0;
845
846 err = dnode_hold(os, object, FTAG, &dn);
847 if (err != 0)
848 return (err);
849
850 /*
851 * Chunk the requests (16 indirects worth) so that we can be interrupted
852 */
853 uint64_t chunksize;
854 if (dn->dn_indblkshift) {
855 uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
856 chunksize = (nbps * 16) << dn->dn_datablkshift;
857 } else {
858 chunksize = dn->dn_datablksz;
859 }
860
861 while (size > 0) {
862 uint64_t mylen = MIN(size, chunksize);
863
864 dmu_prefetch_wait_by_dnode(dn, offset, mylen);
865
866 offset += mylen;
867 size -= mylen;
868
869 if (issig()) {
870 err = SET_ERROR(EINTR);
871 break;
872 }
873 }
874
875 dnode_rele(dn, FTAG);
876
877 return (err);
878 }
879
880 /*
881 * Issue prefetch I/Os for the given object's dnode.
882 */
883 void
dmu_prefetch_dnode(objset_t * os,uint64_t object,zio_priority_t pri)884 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
885 {
886 if (object == 0 || object >= DN_MAX_OBJECT)
887 return;
888
889 dnode_t *dn = DMU_META_DNODE(os);
890 rw_enter(&dn->dn_struct_rwlock, RW_READER);
891 uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
892 dbuf_prefetch(dn, 0, blkid, pri, 0);
893 rw_exit(&dn->dn_struct_rwlock);
894 }
895
896 /*
897 * Get the next "chunk" of file data to free. We traverse the file from
898 * the end so that the file gets shorter over time (if we crash in the
899 * middle, this will leave us in a better state). We find allocated file
900 * data by simply searching the allocated level 1 indirects.
901 *
902 * On input, *start should be the first offset that does not need to be
903 * freed (e.g. "offset + length"). On return, *start will be the first
904 * offset that should be freed and l1blks is set to the number of level 1
905 * indirect blocks found within the chunk.
906 */
907 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t minimum,uint64_t * l1blks)908 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
909 {
910 uint64_t blks;
911 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
912 /* bytes of data covered by a level-1 indirect block */
913 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
914 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
915
916 ASSERT3U(minimum, <=, *start);
917
918 /* dn_nlevels == 1 means we don't have any L1 blocks */
919 if (dn->dn_nlevels <= 1) {
920 *l1blks = 0;
921 *start = minimum;
922 return (0);
923 }
924
925 /*
926 * Check if we can free the entire range assuming that all of the
927 * L1 blocks in this range have data. If we can, we use this
928 * worst case value as an estimate so we can avoid having to look
929 * at the object's actual data.
930 */
931 uint64_t total_l1blks =
932 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
933 iblkrange;
934 if (total_l1blks <= maxblks) {
935 *l1blks = total_l1blks;
936 *start = minimum;
937 return (0);
938 }
939 ASSERT(ISP2(iblkrange));
940
941 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
942 int err;
943
944 /*
945 * dnode_next_offset(BACKWARDS) will find an allocated L1
946 * indirect block at or before the input offset. We must
947 * decrement *start so that it is at the end of the region
948 * to search.
949 */
950 (*start)--;
951
952 err = dnode_next_offset(dn,
953 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
954
955 /* if there are no indirect blocks before start, we are done */
956 if (err == ESRCH) {
957 *start = minimum;
958 break;
959 } else if (err != 0) {
960 *l1blks = blks;
961 return (err);
962 }
963
964 /* set start to the beginning of this L1 indirect */
965 *start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
966 }
967 if (*start < minimum)
968 *start = minimum;
969 *l1blks = blks;
970
971 return (0);
972 }
973
974 /*
975 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
976 * otherwise return false.
977 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
978 */
979 static boolean_t
dmu_objset_zfs_unmounting(objset_t * os)980 dmu_objset_zfs_unmounting(objset_t *os)
981 {
982 #ifdef _KERNEL
983 if (dmu_objset_type(os) == DMU_OST_ZFS)
984 return (zfs_get_vfs_flag_unmounted(os));
985 #else
986 (void) os;
987 #endif
988 return (B_FALSE);
989 }
990
991 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length)992 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
993 uint64_t length)
994 {
995 uint64_t object_size;
996 int err;
997 uint64_t dirty_frees_threshold;
998 dsl_pool_t *dp = dmu_objset_pool(os);
999
1000 if (dn == NULL)
1001 return (SET_ERROR(EINVAL));
1002
1003 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1004 if (offset >= object_size)
1005 return (0);
1006
1007 if (zfs_per_txg_dirty_frees_percent <= 100)
1008 dirty_frees_threshold =
1009 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
1010 else
1011 dirty_frees_threshold = zfs_dirty_data_max / 20;
1012
1013 if (length == DMU_OBJECT_END || offset + length > object_size)
1014 length = object_size - offset;
1015
1016 while (length != 0) {
1017 uint64_t chunk_end, chunk_begin, chunk_len;
1018 uint64_t l1blks;
1019 dmu_tx_t *tx;
1020
1021 if (dmu_objset_zfs_unmounting(dn->dn_objset))
1022 return (SET_ERROR(EINTR));
1023
1024 chunk_end = chunk_begin = offset + length;
1025
1026 /* move chunk_begin backwards to the beginning of this chunk */
1027 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
1028 if (err)
1029 return (err);
1030 ASSERT3U(chunk_begin, >=, offset);
1031 ASSERT3U(chunk_begin, <=, chunk_end);
1032
1033 chunk_len = chunk_end - chunk_begin;
1034
1035 tx = dmu_tx_create(os);
1036 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
1037
1038 /*
1039 * Mark this transaction as typically resulting in a net
1040 * reduction in space used.
1041 */
1042 dmu_tx_mark_netfree(tx);
1043 err = dmu_tx_assign(tx, DMU_TX_WAIT);
1044 if (err) {
1045 dmu_tx_abort(tx);
1046 return (err);
1047 }
1048
1049 uint64_t txg = dmu_tx_get_txg(tx);
1050
1051 mutex_enter(&dp->dp_lock);
1052 uint64_t long_free_dirty =
1053 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
1054 mutex_exit(&dp->dp_lock);
1055
1056 /*
1057 * To avoid filling up a TXG with just frees, wait for
1058 * the next TXG to open before freeing more chunks if
1059 * we have reached the threshold of frees.
1060 */
1061 if (dirty_frees_threshold != 0 &&
1062 long_free_dirty >= dirty_frees_threshold) {
1063 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
1064 dmu_tx_commit(tx);
1065 txg_wait_open(dp, 0, B_TRUE);
1066 continue;
1067 }
1068
1069 /*
1070 * In order to prevent unnecessary write throttling, for each
1071 * TXG, we track the cumulative size of L1 blocks being dirtied
1072 * in dnode_free_range() below. We compare this number to a
1073 * tunable threshold, past which we prevent new L1 dirty freeing
1074 * blocks from being added into the open TXG. See
1075 * dmu_free_long_range_impl() for details. The threshold
1076 * prevents write throttle activation due to dirty freeing L1
1077 * blocks taking up a large percentage of zfs_dirty_data_max.
1078 */
1079 mutex_enter(&dp->dp_lock);
1080 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
1081 l1blks << dn->dn_indblkshift;
1082 mutex_exit(&dp->dp_lock);
1083 DTRACE_PROBE3(free__long__range,
1084 uint64_t, long_free_dirty, uint64_t, chunk_len,
1085 uint64_t, txg);
1086 dnode_free_range(dn, chunk_begin, chunk_len, tx);
1087
1088 dmu_tx_commit(tx);
1089
1090 length -= chunk_len;
1091 }
1092 return (0);
1093 }
1094
1095 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)1096 dmu_free_long_range(objset_t *os, uint64_t object,
1097 uint64_t offset, uint64_t length)
1098 {
1099 dnode_t *dn;
1100 int err;
1101
1102 err = dnode_hold(os, object, FTAG, &dn);
1103 if (err != 0)
1104 return (err);
1105 err = dmu_free_long_range_impl(os, dn, offset, length);
1106
1107 /*
1108 * It is important to zero out the maxblkid when freeing the entire
1109 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1110 * will take the fast path, and (b) dnode_reallocate() can verify
1111 * that the entire file has been freed.
1112 */
1113 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1114 dn->dn_maxblkid = 0;
1115
1116 dnode_rele(dn, FTAG);
1117 return (err);
1118 }
1119
1120 int
dmu_free_long_object(objset_t * os,uint64_t object)1121 dmu_free_long_object(objset_t *os, uint64_t object)
1122 {
1123 dmu_tx_t *tx;
1124 int err;
1125
1126 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1127 if (err != 0)
1128 return (err);
1129
1130 tx = dmu_tx_create(os);
1131 dmu_tx_hold_bonus(tx, object);
1132 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1133 dmu_tx_mark_netfree(tx);
1134 err = dmu_tx_assign(tx, DMU_TX_WAIT);
1135 if (err == 0) {
1136 err = dmu_object_free(os, object, tx);
1137 dmu_tx_commit(tx);
1138 } else {
1139 dmu_tx_abort(tx);
1140 }
1141
1142 return (err);
1143 }
1144
1145 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1146 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1147 uint64_t size, dmu_tx_t *tx)
1148 {
1149 dnode_t *dn;
1150 int err = dnode_hold(os, object, FTAG, &dn);
1151 if (err)
1152 return (err);
1153 ASSERT(offset < UINT64_MAX);
1154 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1155 dnode_free_range(dn, offset, size, tx);
1156 dnode_rele(dn, FTAG);
1157 return (0);
1158 }
1159
1160 static int
dmu_read_impl(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1161 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1162 void *buf, dmu_flags_t flags)
1163 {
1164 dmu_buf_t **dbp;
1165 int numbufs, err = 0;
1166
1167 /*
1168 * Deal with odd block sizes, where there can't be data past the first
1169 * block. If we ever do the tail block optimization, we will need to
1170 * handle that here as well.
1171 */
1172 if (dn->dn_maxblkid == 0) {
1173 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1174 MIN(size, dn->dn_datablksz - offset);
1175 memset((char *)buf + newsz, 0, size - newsz);
1176 size = newsz;
1177 }
1178
1179 if (size == 0)
1180 return (0);
1181
1182 /* Allow Direct I/O when requested and properly aligned */
1183 if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
1184 zfs_dio_aligned(offset, size, PAGESIZE)) {
1185 abd_t *data = abd_get_from_buf(buf, size);
1186 err = dmu_read_abd(dn, offset, size, data, flags);
1187 abd_free(data);
1188 return (err);
1189 }
1190 flags &= ~DMU_DIRECTIO;
1191
1192 while (size > 0) {
1193 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1194 int i;
1195
1196 /*
1197 * NB: we could do this block-at-a-time, but it's nice
1198 * to be reading in parallel.
1199 */
1200 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1201 TRUE, FTAG, &numbufs, &dbp, flags);
1202 if (err)
1203 break;
1204
1205 for (i = 0; i < numbufs; i++) {
1206 uint64_t tocpy;
1207 int64_t bufoff;
1208 dmu_buf_t *db = dbp[i];
1209
1210 ASSERT(size > 0);
1211
1212 bufoff = offset - db->db_offset;
1213 tocpy = MIN(db->db_size - bufoff, size);
1214
1215 ASSERT(db->db_data != NULL);
1216 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1217
1218 offset += tocpy;
1219 size -= tocpy;
1220 buf = (char *)buf + tocpy;
1221 }
1222 dmu_buf_rele_array(dbp, numbufs, FTAG);
1223 }
1224 return (err);
1225 }
1226
1227 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1228 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1229 void *buf, dmu_flags_t flags)
1230 {
1231 dnode_t *dn;
1232 int err;
1233
1234 err = dnode_hold(os, object, FTAG, &dn);
1235 if (err != 0)
1236 return (err);
1237
1238 err = dmu_read_impl(dn, offset, size, buf, flags);
1239 dnode_rele(dn, FTAG);
1240 return (err);
1241 }
1242
1243 int
dmu_read_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1244 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1245 dmu_flags_t flags)
1246 {
1247 return (dmu_read_impl(dn, offset, size, buf, flags));
1248 }
1249
1250 static void
dmu_write_impl(dmu_buf_t ** dbp,int numbufs,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx,dmu_flags_t flags)1251 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1252 const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1253 {
1254 int i;
1255
1256 for (i = 0; i < numbufs; i++) {
1257 uint64_t tocpy;
1258 int64_t bufoff;
1259 dmu_buf_t *db = dbp[i];
1260
1261 ASSERT(size > 0);
1262
1263 bufoff = offset - db->db_offset;
1264 tocpy = MIN(db->db_size - bufoff, size);
1265
1266 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1267
1268 if (tocpy == db->db_size) {
1269 dmu_buf_will_fill_flags(db, tx, B_FALSE, flags);
1270 } else {
1271 if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1272 if (bufoff == 0)
1273 flags |= DMU_PARTIAL_FIRST;
1274 else
1275 flags |= DMU_PARTIAL_MORE;
1276 }
1277 dmu_buf_will_dirty_flags(db, tx, flags);
1278 }
1279
1280 ASSERT(db->db_data != NULL);
1281 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1282
1283 if (tocpy == db->db_size)
1284 dmu_buf_fill_done(db, tx, B_FALSE);
1285
1286 offset += tocpy;
1287 size -= tocpy;
1288 buf = (char *)buf + tocpy;
1289 }
1290 }
1291
1292 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1293 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1294 const void *buf, dmu_tx_t *tx)
1295 {
1296 dmu_buf_t **dbp;
1297 int numbufs;
1298
1299 if (size == 0)
1300 return;
1301
1302 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1303 FALSE, FTAG, &numbufs, &dbp));
1304 dmu_write_impl(dbp, numbufs, offset, size, buf, tx, DMU_READ_PREFETCH);
1305 dmu_buf_rele_array(dbp, numbufs, FTAG);
1306 }
1307
1308 int
dmu_write_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx,dmu_flags_t flags)1309 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1310 const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1311 {
1312 dmu_buf_t **dbp;
1313 int numbufs;
1314 int error;
1315
1316 if (size == 0)
1317 return (0);
1318
1319 /* Allow Direct I/O when requested and properly aligned */
1320 if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
1321 zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
1322 abd_t *data = abd_get_from_buf((void *)buf, size);
1323 error = dmu_write_abd(dn, offset, size, data, flags, tx);
1324 abd_free(data);
1325 return (error);
1326 }
1327 flags &= ~DMU_DIRECTIO;
1328
1329 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1330 FALSE, FTAG, &numbufs, &dbp, flags));
1331 dmu_write_impl(dbp, numbufs, offset, size, buf, tx, flags);
1332 dmu_buf_rele_array(dbp, numbufs, FTAG);
1333 return (0);
1334 }
1335
1336 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1337 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1338 dmu_tx_t *tx)
1339 {
1340 dmu_buf_t **dbp;
1341 int numbufs, i;
1342
1343 if (size == 0)
1344 return;
1345
1346 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1347 FALSE, FTAG, &numbufs, &dbp));
1348
1349 for (i = 0; i < numbufs; i++) {
1350 dmu_buf_t *db = dbp[i];
1351
1352 dmu_buf_will_not_fill(db, tx);
1353 }
1354 dmu_buf_rele_array(dbp, numbufs, FTAG);
1355 }
1356
1357 void
dmu_write_embedded(objset_t * os,uint64_t object,uint64_t offset,void * data,uint8_t etype,uint8_t comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1358 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1359 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1360 int compressed_size, int byteorder, dmu_tx_t *tx)
1361 {
1362 dmu_buf_t *db;
1363
1364 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1365 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1366 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1367 FTAG, &db));
1368
1369 dmu_buf_write_embedded(db,
1370 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1371 uncompressed_size, compressed_size, byteorder, tx);
1372
1373 dmu_buf_rele(db, FTAG);
1374 }
1375
1376 void
dmu_redact(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1377 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1378 dmu_tx_t *tx)
1379 {
1380 int numbufs, i;
1381 dmu_buf_t **dbp;
1382
1383 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1384 &numbufs, &dbp));
1385 for (i = 0; i < numbufs; i++)
1386 dmu_buf_redact(dbp[i], tx);
1387 dmu_buf_rele_array(dbp, numbufs, FTAG);
1388 }
1389
1390 #ifdef _KERNEL
1391 int
dmu_read_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1392 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
1393 dmu_flags_t flags)
1394 {
1395 dmu_buf_t **dbp;
1396 int numbufs, i, err;
1397
1398 if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT))
1399 return (dmu_read_uio_direct(dn, uio, size, flags));
1400 flags &= ~DMU_DIRECTIO;
1401
1402 /*
1403 * NB: we could do this block-at-a-time, but it's nice
1404 * to be reading in parallel.
1405 */
1406 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1407 TRUE, FTAG, &numbufs, &dbp, flags);
1408 if (err)
1409 return (err);
1410
1411 for (i = 0; i < numbufs; i++) {
1412 uint64_t tocpy;
1413 int64_t bufoff;
1414 dmu_buf_t *db = dbp[i];
1415
1416 ASSERT(size > 0);
1417
1418 bufoff = zfs_uio_offset(uio) - db->db_offset;
1419 tocpy = MIN(db->db_size - bufoff, size);
1420
1421 ASSERT(db->db_data != NULL);
1422 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1423 UIO_READ, uio);
1424
1425 if (err)
1426 break;
1427
1428 size -= tocpy;
1429 }
1430 dmu_buf_rele_array(dbp, numbufs, FTAG);
1431
1432 return (err);
1433 }
1434
1435 /*
1436 * Read 'size' bytes into the uio buffer.
1437 * From object zdb->db_object.
1438 * Starting at zfs_uio_offset(uio).
1439 *
1440 * If the caller already has a dbuf in the target object
1441 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1442 * because we don't have to find the dnode_t for the object.
1443 */
1444 int
dmu_read_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1445 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1446 dmu_flags_t flags)
1447 {
1448 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1449 int err;
1450
1451 if (size == 0)
1452 return (0);
1453
1454 DB_DNODE_ENTER(db);
1455 err = dmu_read_uio_dnode(DB_DNODE(db), uio, size, flags);
1456 DB_DNODE_EXIT(db);
1457
1458 return (err);
1459 }
1460
1461 /*
1462 * Read 'size' bytes into the uio buffer.
1463 * From the specified object
1464 * Starting at offset zfs_uio_offset(uio).
1465 */
1466 int
dmu_read_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1467 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1468 dmu_flags_t flags)
1469 {
1470 dnode_t *dn;
1471 int err;
1472
1473 if (size == 0)
1474 return (0);
1475
1476 err = dnode_hold(os, object, FTAG, &dn);
1477 if (err)
1478 return (err);
1479
1480 err = dmu_read_uio_dnode(dn, uio, size, flags);
1481
1482 dnode_rele(dn, FTAG);
1483
1484 return (err);
1485 }
1486
1487 int
dmu_write_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1488 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx,
1489 dmu_flags_t flags)
1490 {
1491 dmu_buf_t **dbp;
1492 int numbufs;
1493 int err = 0;
1494 uint64_t write_size;
1495 dmu_flags_t oflags = flags;
1496
1497 top:
1498 write_size = size;
1499
1500 /*
1501 * We only allow Direct I/O writes to happen if we are block
1502 * sized aligned. Otherwise, we pass the write off to the ARC.
1503 */
1504 if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1505 (write_size >= dn->dn_datablksz)) {
1506 if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
1507 dn->dn_datablksz)) {
1508 return (dmu_write_uio_direct(dn, uio, size, flags, tx));
1509 } else if (write_size > dn->dn_datablksz &&
1510 zfs_dio_offset_aligned(zfs_uio_offset(uio),
1511 dn->dn_datablksz)) {
1512 write_size =
1513 dn->dn_datablksz * (write_size / dn->dn_datablksz);
1514 err = dmu_write_uio_direct(dn, uio, write_size, flags,
1515 tx);
1516 if (err == 0) {
1517 size -= write_size;
1518 goto top;
1519 } else {
1520 return (err);
1521 }
1522 } else {
1523 write_size =
1524 P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
1525 }
1526 }
1527 flags &= ~DMU_DIRECTIO;
1528
1529 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
1530 FALSE, FTAG, &numbufs, &dbp, flags);
1531 if (err)
1532 return (err);
1533
1534 for (int i = 0; i < numbufs; i++) {
1535 uint64_t tocpy;
1536 int64_t bufoff;
1537 dmu_buf_t *db = dbp[i];
1538
1539 ASSERT(write_size > 0);
1540
1541 offset_t off = zfs_uio_offset(uio);
1542 bufoff = off - db->db_offset;
1543 tocpy = MIN(db->db_size - bufoff, write_size);
1544
1545 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1546
1547 if (tocpy == db->db_size) {
1548 dmu_buf_will_fill_flags(db, tx, B_TRUE, flags);
1549 } else {
1550 if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1551 if (bufoff == 0)
1552 flags |= DMU_PARTIAL_FIRST;
1553 else
1554 flags |= DMU_PARTIAL_MORE;
1555 }
1556 dmu_buf_will_dirty_flags(db, tx, flags);
1557 }
1558
1559 ASSERT(db->db_data != NULL);
1560 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1561 tocpy, UIO_WRITE, uio);
1562
1563 if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1564 /* The fill was reverted. Undo any uio progress. */
1565 zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1566 }
1567
1568 if (err)
1569 break;
1570
1571 write_size -= tocpy;
1572 size -= tocpy;
1573 }
1574
1575 IMPLY(err == 0, write_size == 0);
1576
1577 dmu_buf_rele_array(dbp, numbufs, FTAG);
1578
1579 if ((oflags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1580 err == 0 && size > 0) {
1581 flags = oflags;
1582 goto top;
1583 }
1584 IMPLY(err == 0, size == 0);
1585
1586 return (err);
1587 }
1588
1589 /*
1590 * Write 'size' bytes from the uio buffer.
1591 * To object zdb->db_object.
1592 * Starting at offset zfs_uio_offset(uio).
1593 *
1594 * If the caller already has a dbuf in the target object
1595 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1596 * because we don't have to find the dnode_t for the object.
1597 */
1598 int
dmu_write_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1599 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1600 dmu_tx_t *tx, dmu_flags_t flags)
1601 {
1602 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1603 int err;
1604
1605 if (size == 0)
1606 return (0);
1607
1608 DB_DNODE_ENTER(db);
1609 err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx, flags);
1610 DB_DNODE_EXIT(db);
1611
1612 return (err);
1613 }
1614
1615 /*
1616 * Write 'size' bytes from the uio buffer.
1617 * To the specified object.
1618 * Starting at offset zfs_uio_offset(uio).
1619 */
1620 int
dmu_write_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1621 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1622 dmu_tx_t *tx, dmu_flags_t flags)
1623 {
1624 dnode_t *dn;
1625 int err;
1626
1627 if (size == 0)
1628 return (0);
1629
1630 err = dnode_hold(os, object, FTAG, &dn);
1631 if (err)
1632 return (err);
1633
1634 err = dmu_write_uio_dnode(dn, uio, size, tx, flags);
1635
1636 dnode_rele(dn, FTAG);
1637
1638 return (err);
1639 }
1640 #endif /* _KERNEL */
1641
1642 static void
dmu_cached_bps(spa_t * spa,blkptr_t * bps,uint_t nbps,uint64_t * l1sz,uint64_t * l2sz)1643 dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
1644 uint64_t *l1sz, uint64_t *l2sz)
1645 {
1646 int cached_flags;
1647
1648 if (bps == NULL)
1649 return;
1650
1651 for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
1652 blkptr_t *bp = &bps[blk_off];
1653
1654 if (BP_IS_HOLE(bp))
1655 continue;
1656
1657 cached_flags = arc_cached(spa, bp);
1658 if (cached_flags == 0)
1659 continue;
1660
1661 if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
1662 ARC_CACHED_IN_L2)
1663 *l2sz += BP_GET_LSIZE(bp);
1664 else
1665 *l1sz += BP_GET_LSIZE(bp);
1666 }
1667 }
1668
1669 /*
1670 * Estimate DMU object cached size.
1671 */
1672 int
dmu_object_cached_size(objset_t * os,uint64_t object,uint64_t * l1sz,uint64_t * l2sz)1673 dmu_object_cached_size(objset_t *os, uint64_t object,
1674 uint64_t *l1sz, uint64_t *l2sz)
1675 {
1676 dnode_t *dn;
1677 dmu_object_info_t doi;
1678 int err = 0;
1679
1680 *l1sz = *l2sz = 0;
1681
1682 if (dnode_hold(os, object, FTAG, &dn) != 0)
1683 return (0);
1684
1685 if (dn->dn_nlevels < 2) {
1686 dnode_rele(dn, FTAG);
1687 return (0);
1688 }
1689
1690 dmu_object_info_from_dnode(dn, &doi);
1691
1692 for (uint64_t off = 0; off < doi.doi_max_offset;
1693 off += dmu_prefetch_max) {
1694 /* dbuf_read doesn't prefetch L1 blocks. */
1695 dmu_prefetch_by_dnode(dn, 1, off,
1696 dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
1697 }
1698
1699 /*
1700 * Hold all valid L1 blocks, asking ARC the status of each BP
1701 * contained in each such L1 block.
1702 */
1703 uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
1704 uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
1705
1706 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1707 for (uint64_t blk = 0; blk < l1blks; blk++) {
1708 dmu_buf_impl_t *db = NULL;
1709
1710 if (issig()) {
1711 /*
1712 * On interrupt, get out, and bubble up EINTR
1713 */
1714 err = EINTR;
1715 break;
1716 }
1717
1718 /*
1719 * If we get an i/o error here, the L1 can't be read,
1720 * and nothing under it could be cached, so we just
1721 * continue. Ignoring the error from dbuf_hold_impl
1722 * or from dbuf_read is then a reasonable choice.
1723 */
1724 err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
1725 if (err != 0) {
1726 /*
1727 * ignore error and continue
1728 */
1729 err = 0;
1730 continue;
1731 }
1732
1733 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1734 if (err == 0) {
1735 dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
1736 nbps, l1sz, l2sz);
1737 }
1738 /*
1739 * error may be ignored, and we continue
1740 */
1741 err = 0;
1742 dbuf_rele(db, FTAG);
1743 }
1744 rw_exit(&dn->dn_struct_rwlock);
1745
1746 dnode_rele(dn, FTAG);
1747 return (err);
1748 }
1749
1750 /*
1751 * Allocate a loaned anonymous arc buffer.
1752 */
1753 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)1754 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1755 {
1756 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1757
1758 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1759 }
1760
1761 /*
1762 * Free a loaned arc buffer.
1763 */
1764 void
dmu_return_arcbuf(arc_buf_t * buf)1765 dmu_return_arcbuf(arc_buf_t *buf)
1766 {
1767 arc_return_buf(buf, FTAG);
1768 arc_buf_destroy(buf, FTAG);
1769 }
1770
1771 /*
1772 * A "lightweight" write is faster than a regular write (e.g.
1773 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1774 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1775 * data can not be read or overwritten until the transaction's txg has been
1776 * synced. This makes it appropriate for workloads that are known to be
1777 * (temporarily) write-only, like "zfs receive".
1778 *
1779 * A single block is written, starting at the specified offset in bytes. If
1780 * the call is successful, it returns 0 and the provided abd has been
1781 * consumed (the caller should not free it).
1782 */
1783 int
dmu_lightweight_write_by_dnode(dnode_t * dn,uint64_t offset,abd_t * abd,const zio_prop_t * zp,zio_flag_t flags,dmu_tx_t * tx)1784 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1785 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1786 {
1787 dbuf_dirty_record_t *dr =
1788 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1789 if (dr == NULL)
1790 return (SET_ERROR(EIO));
1791 dr->dt.dll.dr_abd = abd;
1792 dr->dt.dll.dr_props = *zp;
1793 dr->dt.dll.dr_flags = flags;
1794 return (0);
1795 }
1796
1797 /*
1798 * When possible directly assign passed loaned arc buffer to a dbuf.
1799 * If this is not possible copy the contents of passed arc buf via
1800 * dmu_write().
1801 */
1802 int
dmu_assign_arcbuf_by_dnode(dnode_t * dn,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)1803 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1804 dmu_tx_t *tx, dmu_flags_t flags)
1805 {
1806 dmu_buf_impl_t *db;
1807 objset_t *os = dn->dn_objset;
1808 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1809 uint64_t blkid;
1810
1811 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1812 blkid = dbuf_whichblock(dn, 0, offset);
1813 db = dbuf_hold(dn, blkid, FTAG);
1814 rw_exit(&dn->dn_struct_rwlock);
1815 if (db == NULL)
1816 return (SET_ERROR(EIO));
1817
1818 /*
1819 * We can only assign if the offset is aligned and the arc buf is the
1820 * same size as the dbuf.
1821 */
1822 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1823 zfs_racct_write(os->os_spa, blksz, 1, flags);
1824 dbuf_assign_arcbuf(db, buf, tx, flags);
1825 dbuf_rele(db, FTAG);
1826 } else {
1827 /* compressed bufs must always be assignable to their dbuf */
1828 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1829 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1830
1831 dbuf_rele(db, FTAG);
1832 dmu_write_by_dnode(dn, offset, blksz, buf->b_data, tx, flags);
1833 dmu_return_arcbuf(buf);
1834 }
1835
1836 return (0);
1837 }
1838
1839 int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)1840 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1841 dmu_tx_t *tx, dmu_flags_t flags)
1842 {
1843 int err;
1844 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1845
1846 DB_DNODE_ENTER(db);
1847 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx, flags);
1848 DB_DNODE_EXIT(db);
1849
1850 return (err);
1851 }
1852
1853 void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1854 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1855 {
1856 (void) buf;
1857 dmu_sync_arg_t *dsa = varg;
1858
1859 if (zio->io_error == 0) {
1860 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1861 blkptr_t *bp = zio->io_bp;
1862
1863 if (BP_IS_HOLE(bp)) {
1864 dmu_buf_t *db = NULL;
1865 if (dr)
1866 db = &(dr->dr_dbuf->db);
1867 else
1868 db = dsa->dsa_zgd->zgd_db;
1869 /*
1870 * A block of zeros may compress to a hole, but the
1871 * block size still needs to be known for replay.
1872 */
1873 BP_SET_LSIZE(bp, db->db_size);
1874 } else if (!BP_IS_EMBEDDED(bp)) {
1875 ASSERT(BP_GET_LEVEL(bp) == 0);
1876 BP_SET_FILL(bp, 1);
1877 }
1878 }
1879 }
1880
1881 static void
dmu_sync_late_arrival_ready(zio_t * zio)1882 dmu_sync_late_arrival_ready(zio_t *zio)
1883 {
1884 dmu_sync_ready(zio, NULL, zio->io_private);
1885 }
1886
1887 void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1888 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1889 {
1890 (void) buf;
1891 dmu_sync_arg_t *dsa = varg;
1892 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1893 dmu_buf_impl_t *db = dr->dr_dbuf;
1894 zgd_t *zgd = dsa->dsa_zgd;
1895
1896 /*
1897 * Record the vdev(s) backing this blkptr so they can be flushed after
1898 * the writes for the lwb have completed.
1899 */
1900 if (zgd && zio->io_error == 0) {
1901 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1902 }
1903
1904 mutex_enter(&db->db_mtx);
1905 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1906 if (zio->io_error == 0) {
1907 ASSERT0(dr->dt.dl.dr_has_raw_params);
1908 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1909 if (dr->dt.dl.dr_nopwrite) {
1910 blkptr_t *bp = zio->io_bp;
1911 blkptr_t *bp_orig = &zio->io_bp_orig;
1912 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1913
1914 ASSERT(BP_EQUAL(bp, bp_orig));
1915 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1916 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1917 VERIFY(zio_checksum_table[chksum].ci_flags &
1918 ZCHECKSUM_FLAG_NOPWRITE);
1919 }
1920 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1921 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1922 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1923 dr->dt.dl.dr_gang_copies = zio->io_prop.zp_gang_copies;
1924
1925 /*
1926 * Old style holes are filled with all zeros, whereas
1927 * new-style holes maintain their lsize, type, level,
1928 * and birth time (see zio_write_compress). While we
1929 * need to reset the BP_SET_LSIZE() call that happened
1930 * in dmu_sync_ready for old style holes, we do *not*
1931 * want to wipe out the information contained in new
1932 * style holes. Thus, only zero out the block pointer if
1933 * it's an old style hole.
1934 */
1935 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1936 BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1937 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1938 } else {
1939 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1940 }
1941
1942 cv_broadcast(&db->db_changed);
1943 mutex_exit(&db->db_mtx);
1944
1945 if (dsa->dsa_done)
1946 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1947
1948 kmem_free(dsa, sizeof (*dsa));
1949 }
1950
1951 static void
dmu_sync_late_arrival_done(zio_t * zio)1952 dmu_sync_late_arrival_done(zio_t *zio)
1953 {
1954 blkptr_t *bp = zio->io_bp;
1955 dmu_sync_arg_t *dsa = zio->io_private;
1956 zgd_t *zgd = dsa->dsa_zgd;
1957
1958 if (zio->io_error == 0) {
1959 /*
1960 * Record the vdev(s) backing this blkptr so they can be
1961 * flushed after the writes for the lwb have completed.
1962 */
1963 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1964
1965 if (!BP_IS_HOLE(bp)) {
1966 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1967 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1968 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1969 ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1970 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1971 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1972 }
1973 }
1974
1975 dmu_tx_commit(dsa->dsa_tx);
1976
1977 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1978
1979 abd_free(zio->io_abd);
1980 kmem_free(dsa, sizeof (*dsa));
1981 }
1982
1983 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_phys_t * zb)1984 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1985 zio_prop_t *zp, zbookmark_phys_t *zb)
1986 {
1987 dmu_sync_arg_t *dsa;
1988 dmu_tx_t *tx;
1989 int error;
1990
1991 error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1992 DB_RF_CANFAIL | DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1993 if (error != 0)
1994 return (error);
1995
1996 tx = dmu_tx_create(os);
1997 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1998 /*
1999 * This transaction does not produce any dirty data or log blocks, so
2000 * it should not be throttled. All other cases wait for TXG sync, by
2001 * which time the log block we are writing will be obsolete, so we can
2002 * skip waiting and just return error here instead.
2003 */
2004 if (dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE) != 0) {
2005 dmu_tx_abort(tx);
2006 /* Make zl_get_data do txg_waited_synced() */
2007 return (SET_ERROR(EIO));
2008 }
2009
2010 /*
2011 * In order to prevent the zgd's lwb from being free'd prior to
2012 * dmu_sync_late_arrival_done() being called, we have to ensure
2013 * the lwb's "max txg" takes this tx's txg into account.
2014 */
2015 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
2016
2017 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2018 dsa->dsa_dr = NULL;
2019 dsa->dsa_done = done;
2020 dsa->dsa_zgd = zgd;
2021 dsa->dsa_tx = tx;
2022
2023 /*
2024 * Since we are currently syncing this txg, it's nontrivial to
2025 * determine what BP to nopwrite against, so we disable nopwrite.
2026 *
2027 * When syncing, the db_blkptr is initially the BP of the previous
2028 * txg. We can not nopwrite against it because it will be changed
2029 * (this is similar to the non-late-arrival case where the dbuf is
2030 * dirty in a future txg).
2031 *
2032 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2033 * We can not nopwrite against it because although the BP will not
2034 * (typically) be changed, the data has not yet been persisted to this
2035 * location.
2036 *
2037 * Finally, when dbuf_write_done() is called, it is theoretically
2038 * possible to always nopwrite, because the data that was written in
2039 * this txg is the same data that we are trying to write. However we
2040 * would need to check that this dbuf is not dirty in any future
2041 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
2042 * don't nopwrite in this case.
2043 */
2044 zp->zp_nopwrite = B_FALSE;
2045
2046 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
2047 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
2048 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
2049 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
2050 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
2051
2052 return (0);
2053 }
2054
2055 /*
2056 * Intent log support: sync the block associated with db to disk.
2057 * N.B. and XXX: the caller is responsible for making sure that the
2058 * data isn't changing while dmu_sync() is writing it.
2059 *
2060 * Return values:
2061 *
2062 * EEXIST: this txg has already been synced, so there's nothing to do.
2063 * The caller should not log the write.
2064 *
2065 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2066 * The caller should not log the write.
2067 *
2068 * EALREADY: this block is already in the process of being synced.
2069 * The caller should track its progress (somehow).
2070 *
2071 * EIO: could not do the I/O.
2072 * The caller should do a txg_wait_synced().
2073 *
2074 * 0: the I/O has been initiated.
2075 * The caller should log this blkptr in the done callback.
2076 * It is possible that the I/O will fail, in which case
2077 * the error will be reported to the done callback and
2078 * propagated to pio from zio_done().
2079 */
2080 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)2081 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2082 {
2083 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2084 objset_t *os = db->db_objset;
2085 dsl_dataset_t *ds = os->os_dsl_dataset;
2086 dbuf_dirty_record_t *dr, *dr_next;
2087 dmu_sync_arg_t *dsa;
2088 zbookmark_phys_t zb;
2089 zio_prop_t zp;
2090
2091 ASSERT(pio != NULL);
2092 ASSERT(txg != 0);
2093
2094 SET_BOOKMARK(&zb, ds->ds_object,
2095 db->db.db_object, db->db_level, db->db_blkid);
2096
2097 DB_DNODE_ENTER(db);
2098 dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
2099 DB_DNODE_EXIT(db);
2100
2101 /*
2102 * If we're frozen (running ziltest), we always need to generate a bp.
2103 */
2104 if (txg > spa_freeze_txg(os->os_spa))
2105 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2106
2107 /*
2108 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2109 * and us. If we determine that this txg is not yet syncing,
2110 * but it begins to sync a moment later, that's OK because the
2111 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2112 */
2113 mutex_enter(&db->db_mtx);
2114
2115 if (txg <= spa_last_synced_txg(os->os_spa)) {
2116 /*
2117 * This txg has already synced. There's nothing to do.
2118 */
2119 mutex_exit(&db->db_mtx);
2120 return (SET_ERROR(EEXIST));
2121 }
2122
2123 if (txg <= spa_syncing_txg(os->os_spa)) {
2124 /*
2125 * This txg is currently syncing, so we can't mess with
2126 * the dirty record anymore; just write a new log block.
2127 */
2128 mutex_exit(&db->db_mtx);
2129 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2130 }
2131
2132 dr = dbuf_find_dirty_eq(db, txg);
2133
2134 if (dr == NULL) {
2135 /*
2136 * There's no dr for this dbuf, so it must have been freed.
2137 * There's no need to log writes to freed blocks, so we're done.
2138 */
2139 mutex_exit(&db->db_mtx);
2140 return (SET_ERROR(ENOENT));
2141 }
2142
2143 dr_next = list_next(&db->db_dirty_records, dr);
2144 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
2145
2146 if (db->db_blkptr != NULL) {
2147 /*
2148 * We need to fill in zgd_bp with the current blkptr so that
2149 * the nopwrite code can check if we're writing the same
2150 * data that's already on disk. We can only nopwrite if we
2151 * are sure that after making the copy, db_blkptr will not
2152 * change until our i/o completes. We ensure this by
2153 * holding the db_mtx, and only allowing nopwrite if the
2154 * block is not already dirty (see below). This is verified
2155 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2156 * not changed.
2157 */
2158 *zgd->zgd_bp = *db->db_blkptr;
2159 }
2160
2161 /*
2162 * Assume the on-disk data is X, the current syncing data (in
2163 * txg - 1) is Y, and the current in-memory data is Z (currently
2164 * in dmu_sync).
2165 *
2166 * We usually want to perform a nopwrite if X and Z are the
2167 * same. However, if Y is different (i.e. the BP is going to
2168 * change before this write takes effect), then a nopwrite will
2169 * be incorrect - we would override with X, which could have
2170 * been freed when Y was written.
2171 *
2172 * (Note that this is not a concern when we are nop-writing from
2173 * syncing context, because X and Y must be identical, because
2174 * all previous txgs have been synced.)
2175 *
2176 * Therefore, we disable nopwrite if the current BP could change
2177 * before this TXG. There are two ways it could change: by
2178 * being dirty (dr_next is non-NULL), or by being freed
2179 * (dnode_block_freed()). This behavior is verified by
2180 * zio_done(), which VERIFYs that the override BP is identical
2181 * to the on-disk BP.
2182 */
2183 if (dr_next != NULL) {
2184 zp.zp_nopwrite = B_FALSE;
2185 } else {
2186 DB_DNODE_ENTER(db);
2187 if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
2188 zp.zp_nopwrite = B_FALSE;
2189 DB_DNODE_EXIT(db);
2190 }
2191
2192 ASSERT(dr->dr_txg == txg);
2193 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2194 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2195 /*
2196 * We have already issued a sync write for this buffer,
2197 * or this buffer has already been synced. It could not
2198 * have been dirtied since, or we would have cleared the state.
2199 */
2200 mutex_exit(&db->db_mtx);
2201 return (SET_ERROR(EALREADY));
2202 }
2203
2204 ASSERT0(dr->dt.dl.dr_has_raw_params);
2205 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2206 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2207 mutex_exit(&db->db_mtx);
2208
2209 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2210 dsa->dsa_dr = dr;
2211 dsa->dsa_done = done;
2212 dsa->dsa_zgd = zgd;
2213 dsa->dsa_tx = NULL;
2214
2215 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
2216 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
2217 dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
2218 dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
2219 &zb));
2220
2221 return (0);
2222 }
2223
2224 int
dmu_object_set_nlevels(objset_t * os,uint64_t object,int nlevels,dmu_tx_t * tx)2225 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2226 {
2227 dnode_t *dn;
2228 int err;
2229
2230 err = dnode_hold(os, object, FTAG, &dn);
2231 if (err)
2232 return (err);
2233 err = dnode_set_nlevels(dn, nlevels, tx);
2234 dnode_rele(dn, FTAG);
2235 return (err);
2236 }
2237
2238 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)2239 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2240 dmu_tx_t *tx)
2241 {
2242 dnode_t *dn;
2243 int err;
2244
2245 err = dnode_hold(os, object, FTAG, &dn);
2246 if (err)
2247 return (err);
2248 err = dnode_set_blksz(dn, size, ibs, tx);
2249 dnode_rele(dn, FTAG);
2250 return (err);
2251 }
2252
2253 int
dmu_object_set_maxblkid(objset_t * os,uint64_t object,uint64_t maxblkid,dmu_tx_t * tx)2254 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2255 dmu_tx_t *tx)
2256 {
2257 dnode_t *dn;
2258 int err;
2259
2260 err = dnode_hold(os, object, FTAG, &dn);
2261 if (err)
2262 return (err);
2263 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2264 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2265 rw_exit(&dn->dn_struct_rwlock);
2266 dnode_rele(dn, FTAG);
2267 return (0);
2268 }
2269
2270 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)2271 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2272 dmu_tx_t *tx)
2273 {
2274 dnode_t *dn;
2275
2276 /*
2277 * Send streams include each object's checksum function. This
2278 * check ensures that the receiving system can understand the
2279 * checksum function transmitted.
2280 */
2281 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2282
2283 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2284 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2285 dn->dn_checksum = checksum;
2286 dnode_setdirty(dn, tx);
2287 dnode_rele(dn, FTAG);
2288 }
2289
2290 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)2291 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2292 dmu_tx_t *tx)
2293 {
2294 dnode_t *dn;
2295
2296 /*
2297 * Send streams include each object's compression function. This
2298 * check ensures that the receiving system can understand the
2299 * compression function transmitted.
2300 */
2301 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2302
2303 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2304 dn->dn_compress = compress;
2305 dnode_setdirty(dn, tx);
2306 dnode_rele(dn, FTAG);
2307 }
2308
2309 /*
2310 * When the "redundant_metadata" property is set to "most", only indirect
2311 * blocks of this level and higher will have an additional ditto block.
2312 */
2313 static const int zfs_redundant_metadata_most_ditto_level = 2;
2314
2315 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)2316 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2317 {
2318 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2319 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2320 (wp & WP_SPILL));
2321 enum zio_checksum checksum = os->os_checksum;
2322 enum zio_compress compress = os->os_compress;
2323 uint8_t complevel = os->os_complevel;
2324 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2325 boolean_t dedup = B_FALSE;
2326 boolean_t nopwrite = B_FALSE;
2327 boolean_t dedup_verify = os->os_dedup_verify;
2328 boolean_t encrypt = B_FALSE;
2329 int copies = os->os_copies;
2330 int gang_copies = os->os_copies;
2331
2332 /*
2333 * We maintain different write policies for each of the following
2334 * types of data:
2335 * 1. metadata
2336 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2337 * 3. all other level 0 blocks
2338 */
2339 if (ismd) {
2340 /*
2341 * XXX -- we should design a compression algorithm
2342 * that specializes in arrays of bps.
2343 */
2344 compress = zio_compress_select(os->os_spa,
2345 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2346
2347 /*
2348 * Metadata always gets checksummed. If the data
2349 * checksum is multi-bit correctable, and it's not a
2350 * ZBT-style checksum, then it's suitable for metadata
2351 * as well. Otherwise, the metadata checksum defaults
2352 * to fletcher4.
2353 */
2354 if (!(zio_checksum_table[checksum].ci_flags &
2355 ZCHECKSUM_FLAG_METADATA) ||
2356 (zio_checksum_table[checksum].ci_flags &
2357 ZCHECKSUM_FLAG_EMBEDDED))
2358 checksum = ZIO_CHECKSUM_FLETCHER_4;
2359
2360 switch (os->os_redundant_metadata) {
2361 case ZFS_REDUNDANT_METADATA_ALL:
2362 copies++;
2363 gang_copies++;
2364 break;
2365 case ZFS_REDUNDANT_METADATA_MOST:
2366 if (level >= zfs_redundant_metadata_most_ditto_level ||
2367 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2368 copies++;
2369 if (level + 1 >=
2370 zfs_redundant_metadata_most_ditto_level ||
2371 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2372 gang_copies++;
2373 break;
2374 case ZFS_REDUNDANT_METADATA_SOME:
2375 if (DMU_OT_IS_CRITICAL(type, level)) {
2376 copies++;
2377 gang_copies++;
2378 } else if (DMU_OT_IS_METADATA(type)) {
2379 gang_copies++;
2380 }
2381 break;
2382 case ZFS_REDUNDANT_METADATA_NONE:
2383 break;
2384 }
2385
2386 if (dmu_ddt_copies > 0) {
2387 /*
2388 * If this tunable is set, and this is a write for a
2389 * dedup entry store (zap or log), then we treat it
2390 * something like ZFS_REDUNDANT_METADATA_MOST on a
2391 * regular dataset: this many copies, and one more for
2392 * "higher" indirect blocks. This specific exception is
2393 * necessary because dedup objects are stored in the
2394 * MOS, which always has the highest possible copies.
2395 */
2396 dmu_object_type_t stype =
2397 dn ? dn->dn_storage_type : DMU_OT_NONE;
2398 if (stype == DMU_OT_NONE)
2399 stype = type;
2400 if (stype == DMU_OT_DDT_ZAP) {
2401 copies = dmu_ddt_copies;
2402 if (level >=
2403 zfs_redundant_metadata_most_ditto_level)
2404 copies++;
2405 }
2406 }
2407 } else if (wp & WP_NOFILL) {
2408 ASSERT(level == 0);
2409
2410 /*
2411 * If we're writing preallocated blocks, we aren't actually
2412 * writing them so don't set any policy properties. These
2413 * blocks are currently only used by an external subsystem
2414 * outside of zfs (i.e. dump) and not written by the zio
2415 * pipeline.
2416 */
2417 compress = ZIO_COMPRESS_OFF;
2418 checksum = ZIO_CHECKSUM_OFF;
2419 } else {
2420 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2421 compress);
2422 complevel = zio_complevel_select(os->os_spa, compress,
2423 complevel, complevel);
2424
2425 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2426 zio_checksum_select(dn->dn_checksum, checksum) :
2427 dedup_checksum;
2428
2429 /*
2430 * Determine dedup setting. If we are in dmu_sync(),
2431 * we won't actually dedup now because that's all
2432 * done in syncing context; but we do want to use the
2433 * dedup checksum. If the checksum is not strong
2434 * enough to ensure unique signatures, force
2435 * dedup_verify.
2436 */
2437 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2438 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2439 if (!(zio_checksum_table[checksum].ci_flags &
2440 ZCHECKSUM_FLAG_DEDUP))
2441 dedup_verify = B_TRUE;
2442 }
2443
2444 /*
2445 * Enable nopwrite if we have secure enough checksum
2446 * algorithm (see comment in zio_nop_write) and
2447 * compression is enabled. We don't enable nopwrite if
2448 * dedup is enabled as the two features are mutually
2449 * exclusive.
2450 */
2451 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2452 ZCHECKSUM_FLAG_NOPWRITE) &&
2453 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2454
2455 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2456 (os->os_redundant_metadata ==
2457 ZFS_REDUNDANT_METADATA_MOST &&
2458 zfs_redundant_metadata_most_ditto_level <= 1))
2459 gang_copies++;
2460 }
2461
2462 /*
2463 * All objects in an encrypted objset are protected from modification
2464 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2465 * in the bp, so we cannot use all copies. Encrypted objects are also
2466 * not subject to nopwrite since writing the same data will still
2467 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2468 * to avoid ambiguity in the dedup code since the DDT does not store
2469 * object types.
2470 */
2471 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2472 encrypt = B_TRUE;
2473
2474 if (DMU_OT_IS_ENCRYPTED(type)) {
2475 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2476 gang_copies = MIN(gang_copies, SPA_DVAS_PER_BP - 1);
2477 nopwrite = B_FALSE;
2478 } else {
2479 dedup = B_FALSE;
2480 }
2481
2482 if (level <= 0 &&
2483 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2484 compress = ZIO_COMPRESS_EMPTY;
2485 }
2486 }
2487
2488 zp->zp_compress = compress;
2489 zp->zp_complevel = complevel;
2490 zp->zp_checksum = checksum;
2491 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2492 zp->zp_level = level;
2493 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2494 zp->zp_gang_copies = MIN(gang_copies, spa_max_replication(os->os_spa));
2495 zp->zp_dedup = dedup;
2496 zp->zp_dedup_verify = dedup && dedup_verify;
2497 zp->zp_nopwrite = nopwrite;
2498 zp->zp_encrypt = encrypt;
2499 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2500 zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
2501 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2502 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2503 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2504 zp->zp_zpl_smallblk = (DMU_OT_IS_FILE(zp->zp_type) ||
2505 zp->zp_type == DMU_OT_ZVOL) ?
2506 os->os_zpl_special_smallblock : 0;
2507 zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
2508
2509 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2510 }
2511
2512 /*
2513 * Reports the location of data and holes in an object. In order to
2514 * accurately report holes all dirty data must be synced to disk. This
2515 * causes extremely poor performance when seeking for holes in a dirty file.
2516 * As a compromise, only provide hole data when the dnode is clean. When
2517 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2518 * which is always safe to do.
2519 */
2520 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)2521 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2522 {
2523 dnode_t *dn;
2524 int restarted = 0, err;
2525
2526 restart:
2527 err = dnode_hold(os, object, FTAG, &dn);
2528 if (err)
2529 return (err);
2530
2531 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2532
2533 if (dnode_is_dirty(dn)) {
2534 /*
2535 * If the zfs_dmu_offset_next_sync module option is enabled
2536 * then hole reporting has been requested. Dirty dnodes
2537 * must be synced to disk to accurately report holes.
2538 *
2539 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2540 * held by the caller only a single restart will be required.
2541 * We tolerate callers which do not hold the rangelock by
2542 * returning EBUSY and not reporting holes after one restart.
2543 */
2544 if (zfs_dmu_offset_next_sync) {
2545 rw_exit(&dn->dn_struct_rwlock);
2546 dnode_rele(dn, FTAG);
2547
2548 if (restarted)
2549 return (SET_ERROR(EBUSY));
2550
2551 txg_wait_synced(dmu_objset_pool(os), 0);
2552 restarted = 1;
2553 goto restart;
2554 }
2555
2556 err = SET_ERROR(EBUSY);
2557 } else {
2558 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2559 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2560 }
2561
2562 rw_exit(&dn->dn_struct_rwlock);
2563 dnode_rele(dn, FTAG);
2564
2565 return (err);
2566 }
2567
2568 int
dmu_read_l0_bps(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,blkptr_t * bps,size_t * nbpsp)2569 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2570 blkptr_t *bps, size_t *nbpsp)
2571 {
2572 dmu_buf_t **dbp, *dbuf;
2573 dmu_buf_impl_t *db;
2574 blkptr_t *bp;
2575 int error, numbufs;
2576
2577 error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2578 &numbufs, &dbp);
2579 if (error != 0) {
2580 if (error == ESRCH) {
2581 error = SET_ERROR(ENXIO);
2582 }
2583 return (error);
2584 }
2585
2586 ASSERT3U(numbufs, <=, *nbpsp);
2587
2588 for (int i = 0; i < numbufs; i++) {
2589 dbuf = dbp[i];
2590 db = (dmu_buf_impl_t *)dbuf;
2591
2592 mutex_enter(&db->db_mtx);
2593
2594 if (!list_is_empty(&db->db_dirty_records)) {
2595 dbuf_dirty_record_t *dr;
2596
2597 dr = list_head(&db->db_dirty_records);
2598 if (dr->dt.dl.dr_brtwrite) {
2599 /*
2600 * This is very special case where we clone a
2601 * block and in the same transaction group we
2602 * read its BP (most likely to clone the clone).
2603 */
2604 bp = &dr->dt.dl.dr_overridden_by;
2605 } else {
2606 /*
2607 * The block was modified in the same
2608 * transaction group.
2609 */
2610 mutex_exit(&db->db_mtx);
2611 error = SET_ERROR(EAGAIN);
2612 goto out;
2613 }
2614 } else {
2615 bp = db->db_blkptr;
2616 }
2617
2618 mutex_exit(&db->db_mtx);
2619
2620 if (bp == NULL) {
2621 /*
2622 * The file size was increased, but the block was never
2623 * written, otherwise we would either have the block
2624 * pointer or the dirty record and would not get here.
2625 * It is effectively a hole, so report it as such.
2626 */
2627 BP_ZERO(&bps[i]);
2628 continue;
2629 }
2630 /*
2631 * Make sure we clone only data blocks.
2632 */
2633 if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2634 error = SET_ERROR(EINVAL);
2635 goto out;
2636 }
2637
2638 /*
2639 * If the block was allocated in transaction group that is not
2640 * yet synced, we could clone it, but we couldn't write this
2641 * operation into ZIL, or it may be impossible to replay, since
2642 * the block may appear not yet allocated at that point.
2643 */
2644 if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2645 error = SET_ERROR(EINVAL);
2646 goto out;
2647 }
2648 if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2649 error = SET_ERROR(EAGAIN);
2650 goto out;
2651 }
2652
2653 bps[i] = *bp;
2654 }
2655
2656 *nbpsp = numbufs;
2657 out:
2658 dmu_buf_rele_array(dbp, numbufs, FTAG);
2659
2660 return (error);
2661 }
2662
2663 int
dmu_brt_clone(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,dmu_tx_t * tx,const blkptr_t * bps,size_t nbps)2664 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2665 dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2666 {
2667 spa_t *spa;
2668 dmu_buf_t **dbp, *dbuf;
2669 dmu_buf_impl_t *db;
2670 struct dirty_leaf *dl;
2671 dbuf_dirty_record_t *dr;
2672 const blkptr_t *bp;
2673 int error = 0, i, numbufs;
2674
2675 spa = os->os_spa;
2676
2677 VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2678 &numbufs, &dbp));
2679 ASSERT3U(nbps, ==, numbufs);
2680
2681 /*
2682 * Before we start cloning make sure that the dbufs sizes match new BPs
2683 * sizes. If they don't, that's a no-go, as we are not able to shrink
2684 * dbufs.
2685 */
2686 for (i = 0; i < numbufs; i++) {
2687 dbuf = dbp[i];
2688 db = (dmu_buf_impl_t *)dbuf;
2689 bp = &bps[i];
2690
2691 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2692 ASSERT0(db->db_level);
2693 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2694 ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2695
2696 if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2697 error = SET_ERROR(EXDEV);
2698 goto out;
2699 }
2700 }
2701
2702 for (i = 0; i < numbufs; i++) {
2703 dbuf = dbp[i];
2704 db = (dmu_buf_impl_t *)dbuf;
2705 bp = &bps[i];
2706
2707 dmu_buf_will_clone_or_dio(dbuf, tx);
2708
2709 mutex_enter(&db->db_mtx);
2710
2711 dr = list_head(&db->db_dirty_records);
2712 VERIFY(dr != NULL);
2713 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2714 dl = &dr->dt.dl;
2715 ASSERT0(dl->dr_has_raw_params);
2716 dl->dr_overridden_by = *bp;
2717 if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2718 if (!BP_IS_EMBEDDED(bp)) {
2719 BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2720 BP_GET_BIRTH(bp));
2721 } else {
2722 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2723 dr->dr_txg);
2724 }
2725 }
2726 dl->dr_brtwrite = B_TRUE;
2727 dl->dr_override_state = DR_OVERRIDDEN;
2728
2729 mutex_exit(&db->db_mtx);
2730
2731 /*
2732 * When data in embedded into BP there is no need to create
2733 * BRT entry as there is no data block. Just copy the BP as
2734 * it contains the data.
2735 */
2736 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2737 brt_pending_add(spa, bp, tx);
2738 }
2739 }
2740 out:
2741 dmu_buf_rele_array(dbp, numbufs, FTAG);
2742
2743 return (error);
2744 }
2745
2746 void
__dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2747 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2748 {
2749 dnode_phys_t *dnp = dn->dn_phys;
2750
2751 doi->doi_data_block_size = dn->dn_datablksz;
2752 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2753 1ULL << dn->dn_indblkshift : 0;
2754 doi->doi_type = dn->dn_type;
2755 doi->doi_bonus_type = dn->dn_bonustype;
2756 doi->doi_bonus_size = dn->dn_bonuslen;
2757 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2758 doi->doi_indirection = dn->dn_nlevels;
2759 doi->doi_checksum = dn->dn_checksum;
2760 doi->doi_compress = dn->dn_compress;
2761 doi->doi_nblkptr = dn->dn_nblkptr;
2762 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2763 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2764 doi->doi_fill_count = 0;
2765 for (int i = 0; i < dnp->dn_nblkptr; i++)
2766 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2767 }
2768
2769 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2770 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2771 {
2772 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2773 mutex_enter(&dn->dn_mtx);
2774
2775 __dmu_object_info_from_dnode(dn, doi);
2776
2777 mutex_exit(&dn->dn_mtx);
2778 rw_exit(&dn->dn_struct_rwlock);
2779 }
2780
2781 /*
2782 * Get information on a DMU object.
2783 * If doi is NULL, just indicates whether the object exists.
2784 */
2785 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)2786 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2787 {
2788 dnode_t *dn;
2789 int err = dnode_hold(os, object, FTAG, &dn);
2790
2791 if (err)
2792 return (err);
2793
2794 if (doi != NULL)
2795 dmu_object_info_from_dnode(dn, doi);
2796
2797 dnode_rele(dn, FTAG);
2798 return (0);
2799 }
2800
2801 /*
2802 * As above, but faster; can be used when you have a held dbuf in hand.
2803 */
2804 void
dmu_object_info_from_db(dmu_buf_t * db_fake,dmu_object_info_t * doi)2805 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2806 {
2807 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2808
2809 DB_DNODE_ENTER(db);
2810 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2811 DB_DNODE_EXIT(db);
2812 }
2813
2814 /*
2815 * Faster still when you only care about the size.
2816 */
2817 void
dmu_object_size_from_db(dmu_buf_t * db_fake,uint32_t * blksize,u_longlong_t * nblk512)2818 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2819 u_longlong_t *nblk512)
2820 {
2821 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2822 dnode_t *dn;
2823
2824 DB_DNODE_ENTER(db);
2825 dn = DB_DNODE(db);
2826
2827 *blksize = dn->dn_datablksz;
2828 /* add in number of slots used for the dnode itself */
2829 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2830 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2831 DB_DNODE_EXIT(db);
2832 }
2833
2834 void
dmu_object_dnsize_from_db(dmu_buf_t * db_fake,int * dnsize)2835 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2836 {
2837 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2838
2839 DB_DNODE_ENTER(db);
2840 *dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
2841 DB_DNODE_EXIT(db);
2842 }
2843
2844 void
byteswap_uint64_array(void * vbuf,size_t size)2845 byteswap_uint64_array(void *vbuf, size_t size)
2846 {
2847 uint64_t *buf = vbuf;
2848 size_t count = size >> 3;
2849 int i;
2850
2851 ASSERT((size & 7) == 0);
2852
2853 for (i = 0; i < count; i++)
2854 buf[i] = BSWAP_64(buf[i]);
2855 }
2856
2857 void
byteswap_uint32_array(void * vbuf,size_t size)2858 byteswap_uint32_array(void *vbuf, size_t size)
2859 {
2860 uint32_t *buf = vbuf;
2861 size_t count = size >> 2;
2862 int i;
2863
2864 ASSERT((size & 3) == 0);
2865
2866 for (i = 0; i < count; i++)
2867 buf[i] = BSWAP_32(buf[i]);
2868 }
2869
2870 void
byteswap_uint16_array(void * vbuf,size_t size)2871 byteswap_uint16_array(void *vbuf, size_t size)
2872 {
2873 uint16_t *buf = vbuf;
2874 size_t count = size >> 1;
2875 int i;
2876
2877 ASSERT((size & 1) == 0);
2878
2879 for (i = 0; i < count; i++)
2880 buf[i] = BSWAP_16(buf[i]);
2881 }
2882
2883 void
byteswap_uint8_array(void * vbuf,size_t size)2884 byteswap_uint8_array(void *vbuf, size_t size)
2885 {
2886 (void) vbuf, (void) size;
2887 }
2888
2889 void
dmu_init(void)2890 dmu_init(void)
2891 {
2892 abd_init();
2893 zfs_dbgmsg_init();
2894 sa_cache_init();
2895 dmu_objset_init();
2896 dnode_init();
2897 zfetch_init();
2898 dmu_tx_init();
2899 l2arc_init();
2900 arc_init();
2901 dbuf_init();
2902 }
2903
2904 void
dmu_fini(void)2905 dmu_fini(void)
2906 {
2907 arc_fini(); /* arc depends on l2arc, so arc must go first */
2908 l2arc_fini();
2909 dmu_tx_fini();
2910 zfetch_fini();
2911 dbuf_fini();
2912 dnode_fini();
2913 dmu_objset_fini();
2914 sa_cache_fini();
2915 zfs_dbgmsg_fini();
2916 abd_fini();
2917 }
2918
2919 EXPORT_SYMBOL(dmu_bonus_hold);
2920 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2921 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2922 EXPORT_SYMBOL(dmu_buf_rele_array);
2923 EXPORT_SYMBOL(dmu_prefetch);
2924 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2925 EXPORT_SYMBOL(dmu_prefetch_dnode);
2926 EXPORT_SYMBOL(dmu_free_range);
2927 EXPORT_SYMBOL(dmu_free_long_range);
2928 EXPORT_SYMBOL(dmu_free_long_object);
2929 EXPORT_SYMBOL(dmu_read);
2930 EXPORT_SYMBOL(dmu_read_by_dnode);
2931 EXPORT_SYMBOL(dmu_read_uio);
2932 EXPORT_SYMBOL(dmu_read_uio_dbuf);
2933 EXPORT_SYMBOL(dmu_read_uio_dnode);
2934 EXPORT_SYMBOL(dmu_write);
2935 EXPORT_SYMBOL(dmu_write_by_dnode);
2936 EXPORT_SYMBOL(dmu_write_uio);
2937 EXPORT_SYMBOL(dmu_write_uio_dbuf);
2938 EXPORT_SYMBOL(dmu_write_uio_dnode);
2939 EXPORT_SYMBOL(dmu_prealloc);
2940 EXPORT_SYMBOL(dmu_object_info);
2941 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2942 EXPORT_SYMBOL(dmu_object_info_from_db);
2943 EXPORT_SYMBOL(dmu_object_size_from_db);
2944 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2945 EXPORT_SYMBOL(dmu_object_set_nlevels);
2946 EXPORT_SYMBOL(dmu_object_set_blocksize);
2947 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2948 EXPORT_SYMBOL(dmu_object_set_checksum);
2949 EXPORT_SYMBOL(dmu_object_set_compress);
2950 EXPORT_SYMBOL(dmu_offset_next);
2951 EXPORT_SYMBOL(dmu_write_policy);
2952 EXPORT_SYMBOL(dmu_sync);
2953 EXPORT_SYMBOL(dmu_request_arcbuf);
2954 EXPORT_SYMBOL(dmu_return_arcbuf);
2955 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2956 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2957 EXPORT_SYMBOL(dmu_buf_hold);
2958 EXPORT_SYMBOL(dmu_ot);
2959
2960 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2961 "Enable NOP writes");
2962
2963 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2964 "Percentage of dirtied blocks from frees in one TXG");
2965
2966 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2967 "Enable forcing txg sync to find holes");
2968
2969 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2970 "Limit one prefetch call to this size");
2971
2972 ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
2973 "Override copies= for dedup objects");
2974