xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision b1c1ee4429fcca8f69873a8be66184e68e1b19d7)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
28  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
29  * Copyright (c) 2019 Datto Inc.
30  * Copyright (c) 2019, 2023, Klara Inc.
31  * Copyright (c) 2019, Allan Jude
32  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
34  */
35 
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dbuf.h>
40 #include <sys/dnode.h>
41 #include <sys/zfs_context.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/dmu_traverse.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_synctask.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dmu_zfetch.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/zio_compress.h>
54 #include <sys/sa.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/brt.h>
58 #include <sys/trace_zfs.h>
59 #include <sys/zfs_racct.h>
60 #include <sys/zfs_rlock.h>
61 #ifdef _KERNEL
62 #include <sys/vmsystm.h>
63 #include <sys/zfs_znode.h>
64 #endif
65 
66 /*
67  * Enable/disable nopwrite feature.
68  */
69 static int zfs_nopwrite_enabled = 1;
70 
71 /*
72  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
73  * one TXG. After this threshold is crossed, additional dirty blocks from frees
74  * will wait until the next TXG.
75  * A value of zero will disable this throttle.
76  */
77 static uint_t zfs_per_txg_dirty_frees_percent = 30;
78 
79 /*
80  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
81  * By default this is enabled to ensure accurate hole reporting, it can result
82  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
83  * Disabling this option will result in holes never being reported in dirty
84  * files which is always safe.
85  */
86 static int zfs_dmu_offset_next_sync = 1;
87 
88 /*
89  * Limit the amount we can prefetch with one call to this amount.  This
90  * helps to limit the amount of memory that can be used by prefetching.
91  * Larger objects should be prefetched a bit at a time.
92  */
93 #ifdef _ILP32
94 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
95 #else
96 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
97 #endif
98 
99 /*
100  * Override copies= for dedup state objects. 0 means the traditional behaviour
101  * (ie the default for the containing objset ie 3 for the MOS).
102  */
103 uint_t dmu_ddt_copies = 0;
104 
105 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
106 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
108 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
109 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
110 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
111 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
112 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
113 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
114 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
115 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
116 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
117 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
118 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
120 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
121 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
122 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
123 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
124 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
125 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
128 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
129 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
131 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
132 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
135 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
136 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
139 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
140 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
141 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
142 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
143 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
144 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
146 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
147 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
148 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
149 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
150 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
151 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
152 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
153 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
154 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
155 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
156 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
157 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
158 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
159 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
160 };
161 
162 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
163 	{	byteswap_uint8_array,	"uint8"		},
164 	{	byteswap_uint16_array,	"uint16"	},
165 	{	byteswap_uint32_array,	"uint32"	},
166 	{	byteswap_uint64_array,	"uint64"	},
167 	{	zap_byteswap,		"zap"		},
168 	{	dnode_buf_byteswap,	"dnode"		},
169 	{	dmu_objset_byteswap,	"objset"	},
170 	{	zfs_znode_byteswap,	"znode"		},
171 	{	zfs_oldacl_byteswap,	"oldacl"	},
172 	{	zfs_acl_byteswap,	"acl"		}
173 };
174 
175 int
dmu_buf_hold_noread_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp)176 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
177     const void *tag, dmu_buf_t **dbp)
178 {
179 	uint64_t blkid;
180 	dmu_buf_impl_t *db;
181 
182 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
183 	blkid = dbuf_whichblock(dn, 0, offset);
184 	db = dbuf_hold(dn, blkid, tag);
185 	rw_exit(&dn->dn_struct_rwlock);
186 
187 	if (db == NULL) {
188 		*dbp = NULL;
189 		return (SET_ERROR(EIO));
190 	}
191 
192 	*dbp = &db->db;
193 	return (0);
194 }
195 
196 int
dmu_buf_hold_noread(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp)197 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
198     const void *tag, dmu_buf_t **dbp)
199 {
200 	dnode_t *dn;
201 	uint64_t blkid;
202 	dmu_buf_impl_t *db;
203 	int err;
204 
205 	err = dnode_hold(os, object, FTAG, &dn);
206 	if (err)
207 		return (err);
208 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
209 	blkid = dbuf_whichblock(dn, 0, offset);
210 	db = dbuf_hold(dn, blkid, tag);
211 	rw_exit(&dn->dn_struct_rwlock);
212 	dnode_rele(dn, FTAG);
213 
214 	if (db == NULL) {
215 		*dbp = NULL;
216 		return (SET_ERROR(EIO));
217 	}
218 
219 	*dbp = &db->db;
220 	return (err);
221 }
222 
223 int
dmu_buf_hold_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)224 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
225     const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
226 {
227 	int err;
228 
229 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
230 	if (err == 0) {
231 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
232 		err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
233 		if (err != 0) {
234 			dbuf_rele(db, tag);
235 			*dbp = NULL;
236 		}
237 	}
238 
239 	return (err);
240 }
241 
242 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)243 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
244     const void *tag, dmu_buf_t **dbp, dmu_flags_t flags)
245 {
246 	int err;
247 
248 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
249 	if (err == 0) {
250 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
251 		err = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
252 		if (err != 0) {
253 			dbuf_rele(db, tag);
254 			*dbp = NULL;
255 		}
256 	}
257 
258 	return (err);
259 }
260 
261 int
dmu_bonus_max(void)262 dmu_bonus_max(void)
263 {
264 	return (DN_OLD_MAX_BONUSLEN);
265 }
266 
267 int
dmu_set_bonus(dmu_buf_t * db_fake,int newsize,dmu_tx_t * tx)268 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
269 {
270 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271 	dnode_t *dn;
272 	int error;
273 
274 	if (newsize < 0 || newsize > db_fake->db_size)
275 		return (SET_ERROR(EINVAL));
276 
277 	DB_DNODE_ENTER(db);
278 	dn = DB_DNODE(db);
279 
280 	if (dn->dn_bonus != db) {
281 		error = SET_ERROR(EINVAL);
282 	} else {
283 		dnode_setbonuslen(dn, newsize, tx);
284 		error = 0;
285 	}
286 
287 	DB_DNODE_EXIT(db);
288 	return (error);
289 }
290 
291 int
dmu_set_bonustype(dmu_buf_t * db_fake,dmu_object_type_t type,dmu_tx_t * tx)292 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
293 {
294 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
295 	dnode_t *dn;
296 	int error;
297 
298 	if (!DMU_OT_IS_VALID(type))
299 		return (SET_ERROR(EINVAL));
300 
301 	DB_DNODE_ENTER(db);
302 	dn = DB_DNODE(db);
303 
304 	if (dn->dn_bonus != db) {
305 		error = SET_ERROR(EINVAL);
306 	} else {
307 		dnode_setbonus_type(dn, type, tx);
308 		error = 0;
309 	}
310 
311 	DB_DNODE_EXIT(db);
312 	return (error);
313 }
314 
315 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t * db_fake)316 dmu_get_bonustype(dmu_buf_t *db_fake)
317 {
318 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
319 	dmu_object_type_t type;
320 
321 	DB_DNODE_ENTER(db);
322 	type = DB_DNODE(db)->dn_bonustype;
323 	DB_DNODE_EXIT(db);
324 
325 	return (type);
326 }
327 
328 int
dmu_rm_spill(objset_t * os,uint64_t object,dmu_tx_t * tx)329 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
330 {
331 	dnode_t *dn;
332 	int error;
333 
334 	error = dnode_hold(os, object, FTAG, &dn);
335 	dbuf_rm_spill(dn, tx);
336 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
337 	dnode_rm_spill(dn, tx);
338 	rw_exit(&dn->dn_struct_rwlock);
339 	dnode_rele(dn, FTAG);
340 	return (error);
341 }
342 
343 /*
344  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
345  * has not yet been allocated a new bonus dbuf a will be allocated.
346  * Returns ENOENT, EIO, or 0.
347  */
dmu_bonus_hold_by_dnode(dnode_t * dn,const void * tag,dmu_buf_t ** dbp,dmu_flags_t flags)348 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
349     dmu_flags_t flags)
350 {
351 	dmu_buf_impl_t *db;
352 	int error;
353 
354 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
355 	if (dn->dn_bonus == NULL) {
356 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
357 			rw_exit(&dn->dn_struct_rwlock);
358 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
359 		}
360 		if (dn->dn_bonus == NULL)
361 			dbuf_create_bonus(dn);
362 	}
363 	db = dn->dn_bonus;
364 
365 	/* as long as the bonus buf is held, the dnode will be held */
366 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
367 		VERIFY(dnode_add_ref(dn, db));
368 		atomic_inc_32(&dn->dn_dbufs_count);
369 	}
370 
371 	/*
372 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
373 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
374 	 * a dnode hold for every dbuf.
375 	 */
376 	rw_exit(&dn->dn_struct_rwlock);
377 
378 	error = dbuf_read(db, NULL, flags | DB_RF_CANFAIL);
379 	if (error) {
380 		dnode_evict_bonus(dn);
381 		dbuf_rele(db, tag);
382 		*dbp = NULL;
383 		return (error);
384 	}
385 
386 	*dbp = &db->db;
387 	return (0);
388 }
389 
390 int
dmu_bonus_hold(objset_t * os,uint64_t object,const void * tag,dmu_buf_t ** dbp)391 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
392 {
393 	dnode_t *dn;
394 	int error;
395 
396 	error = dnode_hold(os, object, FTAG, &dn);
397 	if (error)
398 		return (error);
399 
400 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
401 	dnode_rele(dn, FTAG);
402 
403 	return (error);
404 }
405 
406 /*
407  * returns ENOENT, EIO, or 0.
408  *
409  * This interface will allocate a blank spill dbuf when a spill blk
410  * doesn't already exist on the dnode.
411  *
412  * if you only want to find an already existing spill db, then
413  * dmu_spill_hold_existing() should be used.
414  */
415 int
dmu_spill_hold_by_dnode(dnode_t * dn,dmu_flags_t flags,const void * tag,dmu_buf_t ** dbp)416 dmu_spill_hold_by_dnode(dnode_t *dn, dmu_flags_t flags, const void *tag,
417     dmu_buf_t **dbp)
418 {
419 	dmu_buf_impl_t *db = NULL;
420 	int err;
421 
422 	if ((flags & DB_RF_HAVESTRUCT) == 0)
423 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
424 
425 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426 
427 	if ((flags & DB_RF_HAVESTRUCT) == 0)
428 		rw_exit(&dn->dn_struct_rwlock);
429 
430 	if (db == NULL) {
431 		*dbp = NULL;
432 		return (SET_ERROR(EIO));
433 	}
434 	err = dbuf_read(db, NULL, flags);
435 	if (err == 0)
436 		*dbp = &db->db;
437 	else {
438 		dbuf_rele(db, tag);
439 		*dbp = NULL;
440 	}
441 	return (err);
442 }
443 
444 int
dmu_spill_hold_existing(dmu_buf_t * bonus,const void * tag,dmu_buf_t ** dbp)445 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
446 {
447 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448 	dnode_t *dn;
449 	int err;
450 
451 	DB_DNODE_ENTER(db);
452 	dn = DB_DNODE(db);
453 
454 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455 		err = SET_ERROR(EINVAL);
456 	} else {
457 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
458 
459 		if (!dn->dn_have_spill) {
460 			err = SET_ERROR(ENOENT);
461 		} else {
462 			err = dmu_spill_hold_by_dnode(dn,
463 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464 		}
465 
466 		rw_exit(&dn->dn_struct_rwlock);
467 	}
468 
469 	DB_DNODE_EXIT(db);
470 	return (err);
471 }
472 
473 int
dmu_spill_hold_by_bonus(dmu_buf_t * bonus,dmu_flags_t flags,const void * tag,dmu_buf_t ** dbp)474 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, dmu_flags_t flags, const void *tag,
475     dmu_buf_t **dbp)
476 {
477 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478 	int err;
479 
480 	DB_DNODE_ENTER(db);
481 	err = dmu_spill_hold_by_dnode(DB_DNODE(db), flags, tag, dbp);
482 	DB_DNODE_EXIT(db);
483 
484 	return (err);
485 }
486 
487 /*
488  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
489  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
490  * and can induce severe lock contention when writing to several files
491  * whose dnodes are in the same block.
492  */
493 int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp,dmu_flags_t flags)494 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
495     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
496     dmu_flags_t flags)
497 {
498 	dmu_buf_t **dbp;
499 	zstream_t *zs = NULL;
500 	uint64_t blkid, nblks, i;
501 	dmu_flags_t dbuf_flags;
502 	int err;
503 	zio_t *zio = NULL;
504 	boolean_t missed = B_FALSE;
505 
506 	ASSERT(!read || length <= DMU_MAX_ACCESS);
507 
508 	/*
509 	 * Note: We directly notify the prefetch code of this read, so that
510 	 * we can tell it about the multi-block read.  dbuf_read() only knows
511 	 * about the one block it is accessing.
512 	 */
513 	dbuf_flags = (flags & ~DMU_READ_PREFETCH) | DMU_READ_NO_PREFETCH |
514 	    DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
515 
516 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
517 	if (dn->dn_datablkshift) {
518 		int blkshift = dn->dn_datablkshift;
519 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
520 		    P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
521 		    >> blkshift;
522 	} else {
523 		if (offset + length > dn->dn_datablksz) {
524 			zfs_panic_recover("zfs: accessing past end of object "
525 			    "%llx/%llx (size=%u access=%llu+%llu)",
526 			    (longlong_t)dn->dn_objset->
527 			    os_dsl_dataset->ds_object,
528 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
529 			    (longlong_t)offset, (longlong_t)length);
530 			rw_exit(&dn->dn_struct_rwlock);
531 			return (SET_ERROR(EIO));
532 		}
533 		nblks = 1;
534 	}
535 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536 
537 	if (read)
538 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539 		    ZIO_FLAG_CANFAIL);
540 	blkid = dbuf_whichblock(dn, 0, offset);
541 	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
542 		/*
543 		 * Prepare the zfetch before initiating the demand reads, so
544 		 * that if multiple threads block on same indirect block, we
545 		 * base predictions on the original less racy request order.
546 		 */
547 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
548 		    read && !(flags & DMU_DIRECTIO), B_TRUE);
549 	}
550 	for (i = 0; i < nblks; i++) {
551 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
552 		if (db == NULL) {
553 			if (zs) {
554 				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
555 				    B_TRUE, (flags & DMU_UNCACHEDIO));
556 			}
557 			rw_exit(&dn->dn_struct_rwlock);
558 			dmu_buf_rele_array(dbp, nblks, tag);
559 			if (read)
560 				zio_nowait(zio);
561 			return (SET_ERROR(EIO));
562 		}
563 
564 		/*
565 		 * Initiate async demand data read.
566 		 * We check the db_state after calling dbuf_read() because
567 		 * (1) dbuf_read() may change the state to CACHED due to a
568 		 * hit in the ARC, and (2) on a cache miss, a child will
569 		 * have been added to "zio" but not yet completed, so the
570 		 * state will not yet be CACHED.
571 		 */
572 		if (read) {
573 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
574 			    offset + length < db->db.db_offset +
575 			    db->db.db_size) {
576 				if (offset <= db->db.db_offset)
577 					dbuf_flags |= DMU_PARTIAL_FIRST;
578 				else
579 					dbuf_flags |= DMU_PARTIAL_MORE;
580 			}
581 			(void) dbuf_read(db, zio, dbuf_flags);
582 			if (db->db_state != DB_CACHED)
583 				missed = B_TRUE;
584 		}
585 		dbp[i] = &db->db;
586 	}
587 
588 	/*
589 	 * If we are doing O_DIRECT we still hold the dbufs, even for reads,
590 	 * but we do not issue any reads here. We do not want to account for
591 	 * writes in this case.
592 	 *
593 	 * O_DIRECT write/read accounting takes place in
594 	 * dmu_{write/read}_abd().
595 	 */
596 	if (!read && ((flags & DMU_DIRECTIO) == 0))
597 		zfs_racct_write(dn->dn_objset->os_spa, length, nblks, flags);
598 
599 	if (zs) {
600 		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE,
601 		    (flags & DMU_UNCACHEDIO));
602 	}
603 	rw_exit(&dn->dn_struct_rwlock);
604 
605 	if (read) {
606 		/* wait for async read i/o */
607 		err = zio_wait(zio);
608 		if (err) {
609 			dmu_buf_rele_array(dbp, nblks, tag);
610 			return (err);
611 		}
612 
613 		/* wait for other io to complete */
614 		for (i = 0; i < nblks; i++) {
615 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
616 			mutex_enter(&db->db_mtx);
617 			while (db->db_state == DB_READ ||
618 			    db->db_state == DB_FILL)
619 				cv_wait(&db->db_changed, &db->db_mtx);
620 			if (db->db_state == DB_UNCACHED)
621 				err = SET_ERROR(EIO);
622 			mutex_exit(&db->db_mtx);
623 			if (err) {
624 				dmu_buf_rele_array(dbp, nblks, tag);
625 				return (err);
626 			}
627 		}
628 	}
629 
630 	*numbufsp = nblks;
631 	*dbpp = dbp;
632 	return (0);
633 }
634 
635 int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)636 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
637     uint64_t length, int read, const void *tag, int *numbufsp,
638     dmu_buf_t ***dbpp)
639 {
640 	dnode_t *dn;
641 	int err;
642 
643 	err = dnode_hold(os, object, FTAG, &dn);
644 	if (err)
645 		return (err);
646 
647 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
648 	    numbufsp, dbpp, DMU_READ_PREFETCH);
649 
650 	dnode_rele(dn, FTAG);
651 
652 	return (err);
653 }
654 
655 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db_fake,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)656 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
657     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
658     dmu_buf_t ***dbpp)
659 {
660 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
661 	int err;
662 
663 	DB_DNODE_ENTER(db);
664 	err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
665 	    tag, numbufsp, dbpp, DMU_READ_PREFETCH);
666 	DB_DNODE_EXIT(db);
667 
668 	return (err);
669 }
670 
671 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,const void * tag)672 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
673 {
674 	int i;
675 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
676 
677 	if (numbufs == 0)
678 		return;
679 
680 	for (i = 0; i < numbufs; i++) {
681 		if (dbp[i])
682 			dbuf_rele(dbp[i], tag);
683 	}
684 
685 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
686 }
687 
688 /*
689  * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
690  * indirect blocks prefetched will be those that point to the blocks containing
691  * the data starting at offset, and continuing to offset + len.  If the range
692  * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
693  * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
694  * should primarily help random reads, since for long sequential reads there is
695  * a speculative prefetcher.
696  *
697  * Note that if the indirect blocks above the blocks being prefetched are not
698  * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
699  * is currently synchronous.
700  */
701 void
dmu_prefetch(objset_t * os,uint64_t object,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)702 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
703     uint64_t len, zio_priority_t pri)
704 {
705 	dnode_t *dn;
706 
707 	if (dmu_prefetch_max == 0 || len == 0) {
708 		dmu_prefetch_dnode(os, object, pri);
709 		return;
710 	}
711 
712 	if (dnode_hold(os, object, FTAG, &dn) != 0)
713 		return;
714 
715 	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
716 
717 	dnode_rele(dn, FTAG);
718 }
719 
720 void
dmu_prefetch_by_dnode(dnode_t * dn,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)721 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
722     uint64_t len, zio_priority_t pri)
723 {
724 	int64_t level2 = level;
725 	uint64_t start, end, start2, end2;
726 
727 	/*
728 	 * Depending on len we may do two prefetches: blocks [start, end) at
729 	 * level, and following blocks [start2, end2) at higher level2.
730 	 */
731 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
732 	if (dn->dn_datablkshift != 0) {
733 
734 		/*
735 		 * Limit prefetch to present blocks.
736 		 */
737 		uint64_t size = (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
738 		if (offset >= size) {
739 			rw_exit(&dn->dn_struct_rwlock);
740 			return;
741 		}
742 		if (offset + len < offset || offset + len > size)
743 			len = size - offset;
744 
745 		/*
746 		 * The object has multiple blocks.  Calculate the full range
747 		 * of blocks [start, end2) and then split it into two parts,
748 		 * so that the first [start, end) fits into dmu_prefetch_max.
749 		 */
750 		start = dbuf_whichblock(dn, level, offset);
751 		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
752 		uint8_t ibs = dn->dn_indblkshift;
753 		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
754 		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
755 		start2 = end = MIN(end2, start + limit);
756 
757 		/*
758 		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
759 		 */
760 		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
761 		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
762 		do {
763 			level2++;
764 			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
765 			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
766 		} while (end2 - start2 > limit);
767 	} else {
768 		/* There is only one block.  Prefetch it or nothing. */
769 		start = start2 = end2 = 0;
770 		end = start + (level == 0 && offset < dn->dn_datablksz);
771 	}
772 
773 	for (uint64_t i = start; i < end; i++)
774 		dbuf_prefetch(dn, level, i, pri, 0);
775 	for (uint64_t i = start2; i < end2; i++)
776 		dbuf_prefetch(dn, level2, i, pri, 0);
777 	rw_exit(&dn->dn_struct_rwlock);
778 }
779 
780 typedef struct {
781 	kmutex_t	dpa_lock;
782 	kcondvar_t	dpa_cv;
783 	uint64_t	dpa_pending_io;
784 } dmu_prefetch_arg_t;
785 
786 static void
dmu_prefetch_done(void * arg,uint64_t level,uint64_t blkid,boolean_t issued)787 dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
788 {
789 	(void) level; (void) blkid; (void)issued;
790 	dmu_prefetch_arg_t *dpa = arg;
791 
792 	ASSERT0(level);
793 
794 	mutex_enter(&dpa->dpa_lock);
795 	ASSERT3U(dpa->dpa_pending_io, >, 0);
796 	if (--dpa->dpa_pending_io == 0)
797 		cv_broadcast(&dpa->dpa_cv);
798 	mutex_exit(&dpa->dpa_lock);
799 }
800 
801 static void
dmu_prefetch_wait_by_dnode(dnode_t * dn,uint64_t offset,uint64_t len)802 dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
803 {
804 	dmu_prefetch_arg_t dpa;
805 
806 	mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
807 	cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
808 
809 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
810 
811 	uint64_t start = dbuf_whichblock(dn, 0, offset);
812 	uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
813 	dpa.dpa_pending_io = end - start;
814 
815 	for (uint64_t blk = start; blk < end; blk++) {
816 		(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
817 		    0, dmu_prefetch_done, &dpa);
818 	}
819 
820 	rw_exit(&dn->dn_struct_rwlock);
821 
822 	/* wait for prefetch L0 reads to finish */
823 	mutex_enter(&dpa.dpa_lock);
824 	while (dpa.dpa_pending_io > 0) {
825 		cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
826 
827 	}
828 	mutex_exit(&dpa.dpa_lock);
829 
830 	mutex_destroy(&dpa.dpa_lock);
831 	cv_destroy(&dpa.dpa_cv);
832 }
833 
834 /*
835  * Issue prefetch I/Os for the given L0 block range and wait for the I/O
836  * to complete. This does not enforce dmu_prefetch_max and will prefetch
837  * the entire range. The blocks are read from disk into the ARC but no
838  * decompression occurs (i.e., the dbuf cache is not required).
839  */
840 int
dmu_prefetch_wait(objset_t * os,uint64_t object,uint64_t offset,uint64_t size)841 dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
842 {
843 	dnode_t *dn;
844 	int err = 0;
845 
846 	err = dnode_hold(os, object, FTAG, &dn);
847 	if (err != 0)
848 		return (err);
849 
850 	/*
851 	 * Chunk the requests (16 indirects worth) so that we can be interrupted
852 	 */
853 	uint64_t chunksize;
854 	if (dn->dn_indblkshift) {
855 		uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
856 		chunksize = (nbps * 16) << dn->dn_datablkshift;
857 	} else {
858 		chunksize = dn->dn_datablksz;
859 	}
860 
861 	while (size > 0) {
862 		uint64_t mylen = MIN(size, chunksize);
863 
864 		dmu_prefetch_wait_by_dnode(dn, offset, mylen);
865 
866 		offset += mylen;
867 		size -= mylen;
868 
869 		if (issig()) {
870 			err = SET_ERROR(EINTR);
871 			break;
872 		}
873 	}
874 
875 	dnode_rele(dn, FTAG);
876 
877 	return (err);
878 }
879 
880 /*
881  * Issue prefetch I/Os for the given object's dnode.
882  */
883 void
dmu_prefetch_dnode(objset_t * os,uint64_t object,zio_priority_t pri)884 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
885 {
886 	if (object == 0 || object >= DN_MAX_OBJECT)
887 		return;
888 
889 	dnode_t *dn = DMU_META_DNODE(os);
890 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
891 	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
892 	dbuf_prefetch(dn, 0, blkid, pri, 0);
893 	rw_exit(&dn->dn_struct_rwlock);
894 }
895 
896 /*
897  * Get the next "chunk" of file data to free.  We traverse the file from
898  * the end so that the file gets shorter over time (if we crash in the
899  * middle, this will leave us in a better state).  We find allocated file
900  * data by simply searching the allocated level 1 indirects.
901  *
902  * On input, *start should be the first offset that does not need to be
903  * freed (e.g. "offset + length").  On return, *start will be the first
904  * offset that should be freed and l1blks is set to the number of level 1
905  * indirect blocks found within the chunk.
906  */
907 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t minimum,uint64_t * l1blks)908 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
909 {
910 	uint64_t blks;
911 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
912 	/* bytes of data covered by a level-1 indirect block */
913 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
914 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
915 
916 	ASSERT3U(minimum, <=, *start);
917 
918 	/* dn_nlevels == 1 means we don't have any L1 blocks */
919 	if (dn->dn_nlevels <= 1) {
920 		*l1blks = 0;
921 		*start = minimum;
922 		return (0);
923 	}
924 
925 	/*
926 	 * Check if we can free the entire range assuming that all of the
927 	 * L1 blocks in this range have data. If we can, we use this
928 	 * worst case value as an estimate so we can avoid having to look
929 	 * at the object's actual data.
930 	 */
931 	uint64_t total_l1blks =
932 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
933 	    iblkrange;
934 	if (total_l1blks <= maxblks) {
935 		*l1blks = total_l1blks;
936 		*start = minimum;
937 		return (0);
938 	}
939 	ASSERT(ISP2(iblkrange));
940 
941 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
942 		int err;
943 
944 		/*
945 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
946 		 * indirect block at or before the input offset.  We must
947 		 * decrement *start so that it is at the end of the region
948 		 * to search.
949 		 */
950 		(*start)--;
951 
952 		err = dnode_next_offset(dn,
953 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
954 
955 		/* if there are no indirect blocks before start, we are done */
956 		if (err == ESRCH) {
957 			*start = minimum;
958 			break;
959 		} else if (err != 0) {
960 			*l1blks = blks;
961 			return (err);
962 		}
963 
964 		/* set start to the beginning of this L1 indirect */
965 		*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
966 	}
967 	if (*start < minimum)
968 		*start = minimum;
969 	*l1blks = blks;
970 
971 	return (0);
972 }
973 
974 /*
975  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
976  * otherwise return false.
977  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
978  */
979 static boolean_t
dmu_objset_zfs_unmounting(objset_t * os)980 dmu_objset_zfs_unmounting(objset_t *os)
981 {
982 #ifdef _KERNEL
983 	if (dmu_objset_type(os) == DMU_OST_ZFS)
984 		return (zfs_get_vfs_flag_unmounted(os));
985 #else
986 	(void) os;
987 #endif
988 	return (B_FALSE);
989 }
990 
991 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length)992 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
993     uint64_t length)
994 {
995 	uint64_t object_size;
996 	int err;
997 	uint64_t dirty_frees_threshold;
998 	dsl_pool_t *dp = dmu_objset_pool(os);
999 
1000 	if (dn == NULL)
1001 		return (SET_ERROR(EINVAL));
1002 
1003 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1004 	if (offset >= object_size)
1005 		return (0);
1006 
1007 	if (zfs_per_txg_dirty_frees_percent <= 100)
1008 		dirty_frees_threshold =
1009 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
1010 	else
1011 		dirty_frees_threshold = zfs_dirty_data_max / 20;
1012 
1013 	if (length == DMU_OBJECT_END || offset + length > object_size)
1014 		length = object_size - offset;
1015 
1016 	while (length != 0) {
1017 		uint64_t chunk_end, chunk_begin, chunk_len;
1018 		uint64_t l1blks;
1019 		dmu_tx_t *tx;
1020 
1021 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
1022 			return (SET_ERROR(EINTR));
1023 
1024 		chunk_end = chunk_begin = offset + length;
1025 
1026 		/* move chunk_begin backwards to the beginning of this chunk */
1027 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
1028 		if (err)
1029 			return (err);
1030 		ASSERT3U(chunk_begin, >=, offset);
1031 		ASSERT3U(chunk_begin, <=, chunk_end);
1032 
1033 		chunk_len = chunk_end - chunk_begin;
1034 
1035 		tx = dmu_tx_create(os);
1036 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
1037 
1038 		/*
1039 		 * Mark this transaction as typically resulting in a net
1040 		 * reduction in space used.
1041 		 */
1042 		dmu_tx_mark_netfree(tx);
1043 		err = dmu_tx_assign(tx, DMU_TX_WAIT);
1044 		if (err) {
1045 			dmu_tx_abort(tx);
1046 			return (err);
1047 		}
1048 
1049 		uint64_t txg = dmu_tx_get_txg(tx);
1050 
1051 		mutex_enter(&dp->dp_lock);
1052 		uint64_t long_free_dirty =
1053 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
1054 		mutex_exit(&dp->dp_lock);
1055 
1056 		/*
1057 		 * To avoid filling up a TXG with just frees, wait for
1058 		 * the next TXG to open before freeing more chunks if
1059 		 * we have reached the threshold of frees.
1060 		 */
1061 		if (dirty_frees_threshold != 0 &&
1062 		    long_free_dirty >= dirty_frees_threshold) {
1063 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
1064 			dmu_tx_commit(tx);
1065 			txg_wait_open(dp, 0, B_TRUE);
1066 			continue;
1067 		}
1068 
1069 		/*
1070 		 * In order to prevent unnecessary write throttling, for each
1071 		 * TXG, we track the cumulative size of L1 blocks being dirtied
1072 		 * in dnode_free_range() below. We compare this number to a
1073 		 * tunable threshold, past which we prevent new L1 dirty freeing
1074 		 * blocks from being added into the open TXG. See
1075 		 * dmu_free_long_range_impl() for details. The threshold
1076 		 * prevents write throttle activation due to dirty freeing L1
1077 		 * blocks taking up a large percentage of zfs_dirty_data_max.
1078 		 */
1079 		mutex_enter(&dp->dp_lock);
1080 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
1081 		    l1blks << dn->dn_indblkshift;
1082 		mutex_exit(&dp->dp_lock);
1083 		DTRACE_PROBE3(free__long__range,
1084 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
1085 		    uint64_t, txg);
1086 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
1087 
1088 		dmu_tx_commit(tx);
1089 
1090 		length -= chunk_len;
1091 	}
1092 	return (0);
1093 }
1094 
1095 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)1096 dmu_free_long_range(objset_t *os, uint64_t object,
1097     uint64_t offset, uint64_t length)
1098 {
1099 	dnode_t *dn;
1100 	int err;
1101 
1102 	err = dnode_hold(os, object, FTAG, &dn);
1103 	if (err != 0)
1104 		return (err);
1105 	err = dmu_free_long_range_impl(os, dn, offset, length);
1106 
1107 	/*
1108 	 * It is important to zero out the maxblkid when freeing the entire
1109 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1110 	 * will take the fast path, and (b) dnode_reallocate() can verify
1111 	 * that the entire file has been freed.
1112 	 */
1113 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1114 		dn->dn_maxblkid = 0;
1115 
1116 	dnode_rele(dn, FTAG);
1117 	return (err);
1118 }
1119 
1120 int
dmu_free_long_object(objset_t * os,uint64_t object)1121 dmu_free_long_object(objset_t *os, uint64_t object)
1122 {
1123 	dmu_tx_t *tx;
1124 	int err;
1125 
1126 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1127 	if (err != 0)
1128 		return (err);
1129 
1130 	tx = dmu_tx_create(os);
1131 	dmu_tx_hold_bonus(tx, object);
1132 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1133 	dmu_tx_mark_netfree(tx);
1134 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
1135 	if (err == 0) {
1136 		err = dmu_object_free(os, object, tx);
1137 		dmu_tx_commit(tx);
1138 	} else {
1139 		dmu_tx_abort(tx);
1140 	}
1141 
1142 	return (err);
1143 }
1144 
1145 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1146 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1147     uint64_t size, dmu_tx_t *tx)
1148 {
1149 	dnode_t *dn;
1150 	int err = dnode_hold(os, object, FTAG, &dn);
1151 	if (err)
1152 		return (err);
1153 	ASSERT(offset < UINT64_MAX);
1154 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1155 	dnode_free_range(dn, offset, size, tx);
1156 	dnode_rele(dn, FTAG);
1157 	return (0);
1158 }
1159 
1160 static int
dmu_read_impl(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1161 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1162     void *buf, dmu_flags_t flags)
1163 {
1164 	dmu_buf_t **dbp;
1165 	int numbufs, err = 0;
1166 
1167 	/*
1168 	 * Deal with odd block sizes, where there can't be data past the first
1169 	 * block. If we ever do the tail block optimization, we will need to
1170 	 * handle that here as well.
1171 	 */
1172 	if (dn->dn_maxblkid == 0) {
1173 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1174 		    MIN(size, dn->dn_datablksz - offset);
1175 		memset((char *)buf + newsz, 0, size - newsz);
1176 		size = newsz;
1177 	}
1178 
1179 	if (size == 0)
1180 		return (0);
1181 
1182 	/* Allow Direct I/O when requested and properly aligned */
1183 	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned(buf) &&
1184 	    zfs_dio_aligned(offset, size, PAGESIZE)) {
1185 		abd_t *data = abd_get_from_buf(buf, size);
1186 		err = dmu_read_abd(dn, offset, size, data, flags);
1187 		abd_free(data);
1188 		return (err);
1189 	}
1190 	flags &= ~DMU_DIRECTIO;
1191 
1192 	while (size > 0) {
1193 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1194 		int i;
1195 
1196 		/*
1197 		 * NB: we could do this block-at-a-time, but it's nice
1198 		 * to be reading in parallel.
1199 		 */
1200 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1201 		    TRUE, FTAG, &numbufs, &dbp, flags);
1202 		if (err)
1203 			break;
1204 
1205 		for (i = 0; i < numbufs; i++) {
1206 			uint64_t tocpy;
1207 			int64_t bufoff;
1208 			dmu_buf_t *db = dbp[i];
1209 
1210 			ASSERT(size > 0);
1211 
1212 			bufoff = offset - db->db_offset;
1213 			tocpy = MIN(db->db_size - bufoff, size);
1214 
1215 			ASSERT(db->db_data != NULL);
1216 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1217 
1218 			offset += tocpy;
1219 			size -= tocpy;
1220 			buf = (char *)buf + tocpy;
1221 		}
1222 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1223 	}
1224 	return (err);
1225 }
1226 
1227 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1228 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1229     void *buf, dmu_flags_t flags)
1230 {
1231 	dnode_t *dn;
1232 	int err;
1233 
1234 	err = dnode_hold(os, object, FTAG, &dn);
1235 	if (err != 0)
1236 		return (err);
1237 
1238 	err = dmu_read_impl(dn, offset, size, buf, flags);
1239 	dnode_rele(dn, FTAG);
1240 	return (err);
1241 }
1242 
1243 int
dmu_read_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,dmu_flags_t flags)1244 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1245     dmu_flags_t flags)
1246 {
1247 	return (dmu_read_impl(dn, offset, size, buf, flags));
1248 }
1249 
1250 static void
dmu_write_impl(dmu_buf_t ** dbp,int numbufs,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx,dmu_flags_t flags)1251 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1252     const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1253 {
1254 	int i;
1255 
1256 	for (i = 0; i < numbufs; i++) {
1257 		uint64_t tocpy;
1258 		int64_t bufoff;
1259 		dmu_buf_t *db = dbp[i];
1260 
1261 		ASSERT(size > 0);
1262 
1263 		bufoff = offset - db->db_offset;
1264 		tocpy = MIN(db->db_size - bufoff, size);
1265 
1266 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1267 
1268 		if (tocpy == db->db_size) {
1269 			dmu_buf_will_fill_flags(db, tx, B_FALSE, flags);
1270 		} else {
1271 			if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1272 				if (bufoff == 0)
1273 					flags |= DMU_PARTIAL_FIRST;
1274 				else
1275 					flags |= DMU_PARTIAL_MORE;
1276 			}
1277 			dmu_buf_will_dirty_flags(db, tx, flags);
1278 		}
1279 
1280 		ASSERT(db->db_data != NULL);
1281 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1282 
1283 		if (tocpy == db->db_size)
1284 			dmu_buf_fill_done(db, tx, B_FALSE);
1285 
1286 		offset += tocpy;
1287 		size -= tocpy;
1288 		buf = (char *)buf + tocpy;
1289 	}
1290 }
1291 
1292 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1293 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1294     const void *buf, dmu_tx_t *tx)
1295 {
1296 	dmu_buf_t **dbp;
1297 	int numbufs;
1298 
1299 	if (size == 0)
1300 		return;
1301 
1302 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1303 	    FALSE, FTAG, &numbufs, &dbp));
1304 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx, DMU_READ_PREFETCH);
1305 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1306 }
1307 
1308 int
dmu_write_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx,dmu_flags_t flags)1309 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1310     const void *buf, dmu_tx_t *tx, dmu_flags_t flags)
1311 {
1312 	dmu_buf_t **dbp;
1313 	int numbufs;
1314 	int error;
1315 
1316 	if (size == 0)
1317 		return (0);
1318 
1319 	/* Allow Direct I/O when requested and properly aligned */
1320 	if ((flags & DMU_DIRECTIO) && zfs_dio_page_aligned((void *)buf) &&
1321 	    zfs_dio_aligned(offset, size, dn->dn_datablksz)) {
1322 		abd_t *data = abd_get_from_buf((void *)buf, size);
1323 		error = dmu_write_abd(dn, offset, size, data, flags, tx);
1324 		abd_free(data);
1325 		return (error);
1326 	}
1327 	flags &= ~DMU_DIRECTIO;
1328 
1329 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1330 	    FALSE, FTAG, &numbufs, &dbp, flags));
1331 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx, flags);
1332 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1333 	return (0);
1334 }
1335 
1336 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1337 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1338     dmu_tx_t *tx)
1339 {
1340 	dmu_buf_t **dbp;
1341 	int numbufs, i;
1342 
1343 	if (size == 0)
1344 		return;
1345 
1346 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1347 	    FALSE, FTAG, &numbufs, &dbp));
1348 
1349 	for (i = 0; i < numbufs; i++) {
1350 		dmu_buf_t *db = dbp[i];
1351 
1352 		dmu_buf_will_not_fill(db, tx);
1353 	}
1354 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1355 }
1356 
1357 void
dmu_write_embedded(objset_t * os,uint64_t object,uint64_t offset,void * data,uint8_t etype,uint8_t comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1358 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1359     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1360     int compressed_size, int byteorder, dmu_tx_t *tx)
1361 {
1362 	dmu_buf_t *db;
1363 
1364 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1365 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1366 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1367 	    FTAG, &db));
1368 
1369 	dmu_buf_write_embedded(db,
1370 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1371 	    uncompressed_size, compressed_size, byteorder, tx);
1372 
1373 	dmu_buf_rele(db, FTAG);
1374 }
1375 
1376 void
dmu_redact(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1377 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1378     dmu_tx_t *tx)
1379 {
1380 	int numbufs, i;
1381 	dmu_buf_t **dbp;
1382 
1383 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1384 	    &numbufs, &dbp));
1385 	for (i = 0; i < numbufs; i++)
1386 		dmu_buf_redact(dbp[i], tx);
1387 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1388 }
1389 
1390 #ifdef _KERNEL
1391 int
dmu_read_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1392 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
1393     dmu_flags_t flags)
1394 {
1395 	dmu_buf_t **dbp;
1396 	int numbufs, i, err;
1397 
1398 	if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT))
1399 		return (dmu_read_uio_direct(dn, uio, size, flags));
1400 	flags &= ~DMU_DIRECTIO;
1401 
1402 	/*
1403 	 * NB: we could do this block-at-a-time, but it's nice
1404 	 * to be reading in parallel.
1405 	 */
1406 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1407 	    TRUE, FTAG, &numbufs, &dbp, flags);
1408 	if (err)
1409 		return (err);
1410 
1411 	for (i = 0; i < numbufs; i++) {
1412 		uint64_t tocpy;
1413 		int64_t bufoff;
1414 		dmu_buf_t *db = dbp[i];
1415 
1416 		ASSERT(size > 0);
1417 
1418 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1419 		tocpy = MIN(db->db_size - bufoff, size);
1420 
1421 		ASSERT(db->db_data != NULL);
1422 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1423 		    UIO_READ, uio);
1424 
1425 		if (err)
1426 			break;
1427 
1428 		size -= tocpy;
1429 	}
1430 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1431 
1432 	return (err);
1433 }
1434 
1435 /*
1436  * Read 'size' bytes into the uio buffer.
1437  * From object zdb->db_object.
1438  * Starting at zfs_uio_offset(uio).
1439  *
1440  * If the caller already has a dbuf in the target object
1441  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1442  * because we don't have to find the dnode_t for the object.
1443  */
1444 int
dmu_read_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1445 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1446     dmu_flags_t flags)
1447 {
1448 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1449 	int err;
1450 
1451 	if (size == 0)
1452 		return (0);
1453 
1454 	DB_DNODE_ENTER(db);
1455 	err = dmu_read_uio_dnode(DB_DNODE(db), uio, size, flags);
1456 	DB_DNODE_EXIT(db);
1457 
1458 	return (err);
1459 }
1460 
1461 /*
1462  * Read 'size' bytes into the uio buffer.
1463  * From the specified object
1464  * Starting at offset zfs_uio_offset(uio).
1465  */
1466 int
dmu_read_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_flags_t flags)1467 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1468     dmu_flags_t flags)
1469 {
1470 	dnode_t *dn;
1471 	int err;
1472 
1473 	if (size == 0)
1474 		return (0);
1475 
1476 	err = dnode_hold(os, object, FTAG, &dn);
1477 	if (err)
1478 		return (err);
1479 
1480 	err = dmu_read_uio_dnode(dn, uio, size, flags);
1481 
1482 	dnode_rele(dn, FTAG);
1483 
1484 	return (err);
1485 }
1486 
1487 int
dmu_write_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1488 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx,
1489     dmu_flags_t flags)
1490 {
1491 	dmu_buf_t **dbp;
1492 	int numbufs;
1493 	int err = 0;
1494 	uint64_t write_size;
1495 	dmu_flags_t oflags = flags;
1496 
1497 top:
1498 	write_size = size;
1499 
1500 	/*
1501 	 * We only allow Direct I/O writes to happen if we are block
1502 	 * sized aligned. Otherwise, we pass the write off to the ARC.
1503 	 */
1504 	if ((flags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1505 	    (write_size >= dn->dn_datablksz)) {
1506 		if (zfs_dio_aligned(zfs_uio_offset(uio), write_size,
1507 		    dn->dn_datablksz)) {
1508 			return (dmu_write_uio_direct(dn, uio, size, flags, tx));
1509 		} else if (write_size > dn->dn_datablksz &&
1510 		    zfs_dio_offset_aligned(zfs_uio_offset(uio),
1511 		    dn->dn_datablksz)) {
1512 			write_size =
1513 			    dn->dn_datablksz * (write_size / dn->dn_datablksz);
1514 			err = dmu_write_uio_direct(dn, uio, write_size, flags,
1515 			    tx);
1516 			if (err == 0) {
1517 				size -= write_size;
1518 				goto top;
1519 			} else {
1520 				return (err);
1521 			}
1522 		} else {
1523 			write_size =
1524 			    P2PHASE(zfs_uio_offset(uio), dn->dn_datablksz);
1525 		}
1526 	}
1527 	flags &= ~DMU_DIRECTIO;
1528 
1529 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), write_size,
1530 	    FALSE, FTAG, &numbufs, &dbp, flags);
1531 	if (err)
1532 		return (err);
1533 
1534 	for (int i = 0; i < numbufs; i++) {
1535 		uint64_t tocpy;
1536 		int64_t bufoff;
1537 		dmu_buf_t *db = dbp[i];
1538 
1539 		ASSERT(write_size > 0);
1540 
1541 		offset_t off = zfs_uio_offset(uio);
1542 		bufoff = off - db->db_offset;
1543 		tocpy = MIN(db->db_size - bufoff, write_size);
1544 
1545 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1546 
1547 		if (tocpy == db->db_size) {
1548 			dmu_buf_will_fill_flags(db, tx, B_TRUE, flags);
1549 		} else {
1550 			if (i == numbufs - 1 && bufoff + tocpy < db->db_size) {
1551 				if (bufoff == 0)
1552 					flags |= DMU_PARTIAL_FIRST;
1553 				else
1554 					flags |= DMU_PARTIAL_MORE;
1555 			}
1556 			dmu_buf_will_dirty_flags(db, tx, flags);
1557 		}
1558 
1559 		ASSERT(db->db_data != NULL);
1560 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1561 		    tocpy, UIO_WRITE, uio);
1562 
1563 		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1564 			/* The fill was reverted.  Undo any uio progress. */
1565 			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1566 		}
1567 
1568 		if (err)
1569 			break;
1570 
1571 		write_size -= tocpy;
1572 		size -= tocpy;
1573 	}
1574 
1575 	IMPLY(err == 0, write_size == 0);
1576 
1577 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1578 
1579 	if ((oflags & DMU_DIRECTIO) && (uio->uio_extflg & UIO_DIRECT) &&
1580 	    err == 0 && size > 0) {
1581 		flags = oflags;
1582 		goto top;
1583 	}
1584 	IMPLY(err == 0, size == 0);
1585 
1586 	return (err);
1587 }
1588 
1589 /*
1590  * Write 'size' bytes from the uio buffer.
1591  * To object zdb->db_object.
1592  * Starting at offset zfs_uio_offset(uio).
1593  *
1594  * If the caller already has a dbuf in the target object
1595  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1596  * because we don't have to find the dnode_t for the object.
1597  */
1598 int
dmu_write_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1599 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1600     dmu_tx_t *tx, dmu_flags_t flags)
1601 {
1602 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1603 	int err;
1604 
1605 	if (size == 0)
1606 		return (0);
1607 
1608 	DB_DNODE_ENTER(db);
1609 	err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx, flags);
1610 	DB_DNODE_EXIT(db);
1611 
1612 	return (err);
1613 }
1614 
1615 /*
1616  * Write 'size' bytes from the uio buffer.
1617  * To the specified object.
1618  * Starting at offset zfs_uio_offset(uio).
1619  */
1620 int
dmu_write_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx,dmu_flags_t flags)1621 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1622     dmu_tx_t *tx, dmu_flags_t flags)
1623 {
1624 	dnode_t *dn;
1625 	int err;
1626 
1627 	if (size == 0)
1628 		return (0);
1629 
1630 	err = dnode_hold(os, object, FTAG, &dn);
1631 	if (err)
1632 		return (err);
1633 
1634 	err = dmu_write_uio_dnode(dn, uio, size, tx, flags);
1635 
1636 	dnode_rele(dn, FTAG);
1637 
1638 	return (err);
1639 }
1640 #endif /* _KERNEL */
1641 
1642 static void
dmu_cached_bps(spa_t * spa,blkptr_t * bps,uint_t nbps,uint64_t * l1sz,uint64_t * l2sz)1643 dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
1644     uint64_t *l1sz, uint64_t *l2sz)
1645 {
1646 	int cached_flags;
1647 
1648 	if (bps == NULL)
1649 		return;
1650 
1651 	for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
1652 		blkptr_t *bp = &bps[blk_off];
1653 
1654 		if (BP_IS_HOLE(bp))
1655 			continue;
1656 
1657 		cached_flags = arc_cached(spa, bp);
1658 		if (cached_flags == 0)
1659 			continue;
1660 
1661 		if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
1662 		    ARC_CACHED_IN_L2)
1663 			*l2sz += BP_GET_LSIZE(bp);
1664 		else
1665 			*l1sz += BP_GET_LSIZE(bp);
1666 	}
1667 }
1668 
1669 /*
1670  * Estimate DMU object cached size.
1671  */
1672 int
dmu_object_cached_size(objset_t * os,uint64_t object,uint64_t * l1sz,uint64_t * l2sz)1673 dmu_object_cached_size(objset_t *os, uint64_t object,
1674     uint64_t *l1sz, uint64_t *l2sz)
1675 {
1676 	dnode_t *dn;
1677 	dmu_object_info_t doi;
1678 	int err = 0;
1679 
1680 	*l1sz = *l2sz = 0;
1681 
1682 	if (dnode_hold(os, object, FTAG, &dn) != 0)
1683 		return (0);
1684 
1685 	if (dn->dn_nlevels < 2) {
1686 		dnode_rele(dn, FTAG);
1687 		return (0);
1688 	}
1689 
1690 	dmu_object_info_from_dnode(dn, &doi);
1691 
1692 	for (uint64_t off = 0; off < doi.doi_max_offset;
1693 	    off += dmu_prefetch_max) {
1694 		/* dbuf_read doesn't prefetch L1 blocks. */
1695 		dmu_prefetch_by_dnode(dn, 1, off,
1696 		    dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
1697 	}
1698 
1699 	/*
1700 	 * Hold all valid L1 blocks, asking ARC the status of each BP
1701 	 * contained in each such L1 block.
1702 	 */
1703 	uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
1704 	uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
1705 
1706 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1707 	for (uint64_t blk = 0; blk < l1blks; blk++) {
1708 		dmu_buf_impl_t *db = NULL;
1709 
1710 		if (issig()) {
1711 			/*
1712 			 * On interrupt, get out, and bubble up EINTR
1713 			 */
1714 			err = EINTR;
1715 			break;
1716 		}
1717 
1718 		/*
1719 		 * If we get an i/o error here, the L1 can't be read,
1720 		 * and nothing under it could be cached, so we just
1721 		 * continue. Ignoring the error from dbuf_hold_impl
1722 		 * or from dbuf_read is then a reasonable choice.
1723 		 */
1724 		err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
1725 		if (err != 0) {
1726 			/*
1727 			 * ignore error and continue
1728 			 */
1729 			err = 0;
1730 			continue;
1731 		}
1732 
1733 		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1734 		if (err == 0) {
1735 			dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
1736 			    nbps, l1sz, l2sz);
1737 		}
1738 		/*
1739 		 * error may be ignored, and we continue
1740 		 */
1741 		err = 0;
1742 		dbuf_rele(db, FTAG);
1743 	}
1744 	rw_exit(&dn->dn_struct_rwlock);
1745 
1746 	dnode_rele(dn, FTAG);
1747 	return (err);
1748 }
1749 
1750 /*
1751  * Allocate a loaned anonymous arc buffer.
1752  */
1753 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)1754 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1755 {
1756 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1757 
1758 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1759 }
1760 
1761 /*
1762  * Free a loaned arc buffer.
1763  */
1764 void
dmu_return_arcbuf(arc_buf_t * buf)1765 dmu_return_arcbuf(arc_buf_t *buf)
1766 {
1767 	arc_return_buf(buf, FTAG);
1768 	arc_buf_destroy(buf, FTAG);
1769 }
1770 
1771 /*
1772  * A "lightweight" write is faster than a regular write (e.g.
1773  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1774  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1775  * data can not be read or overwritten until the transaction's txg has been
1776  * synced.  This makes it appropriate for workloads that are known to be
1777  * (temporarily) write-only, like "zfs receive".
1778  *
1779  * A single block is written, starting at the specified offset in bytes.  If
1780  * the call is successful, it returns 0 and the provided abd has been
1781  * consumed (the caller should not free it).
1782  */
1783 int
dmu_lightweight_write_by_dnode(dnode_t * dn,uint64_t offset,abd_t * abd,const zio_prop_t * zp,zio_flag_t flags,dmu_tx_t * tx)1784 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1785     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1786 {
1787 	dbuf_dirty_record_t *dr =
1788 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1789 	if (dr == NULL)
1790 		return (SET_ERROR(EIO));
1791 	dr->dt.dll.dr_abd = abd;
1792 	dr->dt.dll.dr_props = *zp;
1793 	dr->dt.dll.dr_flags = flags;
1794 	return (0);
1795 }
1796 
1797 /*
1798  * When possible directly assign passed loaned arc buffer to a dbuf.
1799  * If this is not possible copy the contents of passed arc buf via
1800  * dmu_write().
1801  */
1802 int
dmu_assign_arcbuf_by_dnode(dnode_t * dn,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)1803 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1804     dmu_tx_t *tx, dmu_flags_t flags)
1805 {
1806 	dmu_buf_impl_t *db;
1807 	objset_t *os = dn->dn_objset;
1808 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1809 	uint64_t blkid;
1810 
1811 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1812 	blkid = dbuf_whichblock(dn, 0, offset);
1813 	db = dbuf_hold(dn, blkid, FTAG);
1814 	rw_exit(&dn->dn_struct_rwlock);
1815 	if (db == NULL)
1816 		return (SET_ERROR(EIO));
1817 
1818 	/*
1819 	 * We can only assign if the offset is aligned and the arc buf is the
1820 	 * same size as the dbuf.
1821 	 */
1822 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1823 		zfs_racct_write(os->os_spa, blksz, 1, flags);
1824 		dbuf_assign_arcbuf(db, buf, tx, flags);
1825 		dbuf_rele(db, FTAG);
1826 	} else {
1827 		/* compressed bufs must always be assignable to their dbuf */
1828 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1829 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1830 
1831 		dbuf_rele(db, FTAG);
1832 		dmu_write_by_dnode(dn, offset, blksz, buf->b_data, tx, flags);
1833 		dmu_return_arcbuf(buf);
1834 	}
1835 
1836 	return (0);
1837 }
1838 
1839 int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx,dmu_flags_t flags)1840 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1841     dmu_tx_t *tx, dmu_flags_t flags)
1842 {
1843 	int err;
1844 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1845 
1846 	DB_DNODE_ENTER(db);
1847 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx, flags);
1848 	DB_DNODE_EXIT(db);
1849 
1850 	return (err);
1851 }
1852 
1853 void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1854 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1855 {
1856 	(void) buf;
1857 	dmu_sync_arg_t *dsa = varg;
1858 
1859 	if (zio->io_error == 0) {
1860 		dbuf_dirty_record_t *dr = dsa->dsa_dr;
1861 		blkptr_t *bp = zio->io_bp;
1862 
1863 		if (BP_IS_HOLE(bp)) {
1864 			dmu_buf_t *db = NULL;
1865 			if (dr)
1866 				db = &(dr->dr_dbuf->db);
1867 			else
1868 				db = dsa->dsa_zgd->zgd_db;
1869 			/*
1870 			 * A block of zeros may compress to a hole, but the
1871 			 * block size still needs to be known for replay.
1872 			 */
1873 			BP_SET_LSIZE(bp, db->db_size);
1874 		} else if (!BP_IS_EMBEDDED(bp)) {
1875 			ASSERT(BP_GET_LEVEL(bp) == 0);
1876 			BP_SET_FILL(bp, 1);
1877 		}
1878 	}
1879 }
1880 
1881 static void
dmu_sync_late_arrival_ready(zio_t * zio)1882 dmu_sync_late_arrival_ready(zio_t *zio)
1883 {
1884 	dmu_sync_ready(zio, NULL, zio->io_private);
1885 }
1886 
1887 void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1888 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1889 {
1890 	(void) buf;
1891 	dmu_sync_arg_t *dsa = varg;
1892 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1893 	dmu_buf_impl_t *db = dr->dr_dbuf;
1894 	zgd_t *zgd = dsa->dsa_zgd;
1895 
1896 	/*
1897 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1898 	 * the writes for the lwb have completed.
1899 	 */
1900 	if (zgd && zio->io_error == 0) {
1901 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1902 	}
1903 
1904 	mutex_enter(&db->db_mtx);
1905 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1906 	if (zio->io_error == 0) {
1907 		ASSERT0(dr->dt.dl.dr_has_raw_params);
1908 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1909 		if (dr->dt.dl.dr_nopwrite) {
1910 			blkptr_t *bp = zio->io_bp;
1911 			blkptr_t *bp_orig = &zio->io_bp_orig;
1912 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1913 
1914 			ASSERT(BP_EQUAL(bp, bp_orig));
1915 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1916 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1917 			VERIFY(zio_checksum_table[chksum].ci_flags &
1918 			    ZCHECKSUM_FLAG_NOPWRITE);
1919 		}
1920 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1921 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1922 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1923 		dr->dt.dl.dr_gang_copies = zio->io_prop.zp_gang_copies;
1924 
1925 		/*
1926 		 * Old style holes are filled with all zeros, whereas
1927 		 * new-style holes maintain their lsize, type, level,
1928 		 * and birth time (see zio_write_compress). While we
1929 		 * need to reset the BP_SET_LSIZE() call that happened
1930 		 * in dmu_sync_ready for old style holes, we do *not*
1931 		 * want to wipe out the information contained in new
1932 		 * style holes. Thus, only zero out the block pointer if
1933 		 * it's an old style hole.
1934 		 */
1935 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1936 		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1937 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1938 	} else {
1939 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1940 	}
1941 
1942 	cv_broadcast(&db->db_changed);
1943 	mutex_exit(&db->db_mtx);
1944 
1945 	if (dsa->dsa_done)
1946 		dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1947 
1948 	kmem_free(dsa, sizeof (*dsa));
1949 }
1950 
1951 static void
dmu_sync_late_arrival_done(zio_t * zio)1952 dmu_sync_late_arrival_done(zio_t *zio)
1953 {
1954 	blkptr_t *bp = zio->io_bp;
1955 	dmu_sync_arg_t *dsa = zio->io_private;
1956 	zgd_t *zgd = dsa->dsa_zgd;
1957 
1958 	if (zio->io_error == 0) {
1959 		/*
1960 		 * Record the vdev(s) backing this blkptr so they can be
1961 		 * flushed after the writes for the lwb have completed.
1962 		 */
1963 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1964 
1965 		if (!BP_IS_HOLE(bp)) {
1966 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1967 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1968 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1969 			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1970 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1971 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1972 		}
1973 	}
1974 
1975 	dmu_tx_commit(dsa->dsa_tx);
1976 
1977 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1978 
1979 	abd_free(zio->io_abd);
1980 	kmem_free(dsa, sizeof (*dsa));
1981 }
1982 
1983 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_phys_t * zb)1984 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1985     zio_prop_t *zp, zbookmark_phys_t *zb)
1986 {
1987 	dmu_sync_arg_t *dsa;
1988 	dmu_tx_t *tx;
1989 	int error;
1990 
1991 	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1992 	    DB_RF_CANFAIL | DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1993 	if (error != 0)
1994 		return (error);
1995 
1996 	tx = dmu_tx_create(os);
1997 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1998 	/*
1999 	 * This transaction does not produce any dirty data or log blocks, so
2000 	 * it should not be throttled.  All other cases wait for TXG sync, by
2001 	 * which time the log block we are writing will be obsolete, so we can
2002 	 * skip waiting and just return error here instead.
2003 	 */
2004 	if (dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE) != 0) {
2005 		dmu_tx_abort(tx);
2006 		/* Make zl_get_data do txg_waited_synced() */
2007 		return (SET_ERROR(EIO));
2008 	}
2009 
2010 	/*
2011 	 * In order to prevent the zgd's lwb from being free'd prior to
2012 	 * dmu_sync_late_arrival_done() being called, we have to ensure
2013 	 * the lwb's "max txg" takes this tx's txg into account.
2014 	 */
2015 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
2016 
2017 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2018 	dsa->dsa_dr = NULL;
2019 	dsa->dsa_done = done;
2020 	dsa->dsa_zgd = zgd;
2021 	dsa->dsa_tx = tx;
2022 
2023 	/*
2024 	 * Since we are currently syncing this txg, it's nontrivial to
2025 	 * determine what BP to nopwrite against, so we disable nopwrite.
2026 	 *
2027 	 * When syncing, the db_blkptr is initially the BP of the previous
2028 	 * txg.  We can not nopwrite against it because it will be changed
2029 	 * (this is similar to the non-late-arrival case where the dbuf is
2030 	 * dirty in a future txg).
2031 	 *
2032 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2033 	 * We can not nopwrite against it because although the BP will not
2034 	 * (typically) be changed, the data has not yet been persisted to this
2035 	 * location.
2036 	 *
2037 	 * Finally, when dbuf_write_done() is called, it is theoretically
2038 	 * possible to always nopwrite, because the data that was written in
2039 	 * this txg is the same data that we are trying to write.  However we
2040 	 * would need to check that this dbuf is not dirty in any future
2041 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
2042 	 * don't nopwrite in this case.
2043 	 */
2044 	zp->zp_nopwrite = B_FALSE;
2045 
2046 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
2047 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
2048 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
2049 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
2050 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
2051 
2052 	return (0);
2053 }
2054 
2055 /*
2056  * Intent log support: sync the block associated with db to disk.
2057  * N.B. and XXX: the caller is responsible for making sure that the
2058  * data isn't changing while dmu_sync() is writing it.
2059  *
2060  * Return values:
2061  *
2062  *	EEXIST: this txg has already been synced, so there's nothing to do.
2063  *		The caller should not log the write.
2064  *
2065  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2066  *		The caller should not log the write.
2067  *
2068  *	EALREADY: this block is already in the process of being synced.
2069  *		The caller should track its progress (somehow).
2070  *
2071  *	EIO: could not do the I/O.
2072  *		The caller should do a txg_wait_synced().
2073  *
2074  *	0: the I/O has been initiated.
2075  *		The caller should log this blkptr in the done callback.
2076  *		It is possible that the I/O will fail, in which case
2077  *		the error will be reported to the done callback and
2078  *		propagated to pio from zio_done().
2079  */
2080 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)2081 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2082 {
2083 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2084 	objset_t *os = db->db_objset;
2085 	dsl_dataset_t *ds = os->os_dsl_dataset;
2086 	dbuf_dirty_record_t *dr, *dr_next;
2087 	dmu_sync_arg_t *dsa;
2088 	zbookmark_phys_t zb;
2089 	zio_prop_t zp;
2090 
2091 	ASSERT(pio != NULL);
2092 	ASSERT(txg != 0);
2093 
2094 	SET_BOOKMARK(&zb, ds->ds_object,
2095 	    db->db.db_object, db->db_level, db->db_blkid);
2096 
2097 	DB_DNODE_ENTER(db);
2098 	dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
2099 	DB_DNODE_EXIT(db);
2100 
2101 	/*
2102 	 * If we're frozen (running ziltest), we always need to generate a bp.
2103 	 */
2104 	if (txg > spa_freeze_txg(os->os_spa))
2105 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2106 
2107 	/*
2108 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2109 	 * and us.  If we determine that this txg is not yet syncing,
2110 	 * but it begins to sync a moment later, that's OK because the
2111 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2112 	 */
2113 	mutex_enter(&db->db_mtx);
2114 
2115 	if (txg <= spa_last_synced_txg(os->os_spa)) {
2116 		/*
2117 		 * This txg has already synced.  There's nothing to do.
2118 		 */
2119 		mutex_exit(&db->db_mtx);
2120 		return (SET_ERROR(EEXIST));
2121 	}
2122 
2123 	if (txg <= spa_syncing_txg(os->os_spa)) {
2124 		/*
2125 		 * This txg is currently syncing, so we can't mess with
2126 		 * the dirty record anymore; just write a new log block.
2127 		 */
2128 		mutex_exit(&db->db_mtx);
2129 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2130 	}
2131 
2132 	dr = dbuf_find_dirty_eq(db, txg);
2133 
2134 	if (dr == NULL) {
2135 		/*
2136 		 * There's no dr for this dbuf, so it must have been freed.
2137 		 * There's no need to log writes to freed blocks, so we're done.
2138 		 */
2139 		mutex_exit(&db->db_mtx);
2140 		return (SET_ERROR(ENOENT));
2141 	}
2142 
2143 	dr_next = list_next(&db->db_dirty_records, dr);
2144 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
2145 
2146 	if (db->db_blkptr != NULL) {
2147 		/*
2148 		 * We need to fill in zgd_bp with the current blkptr so that
2149 		 * the nopwrite code can check if we're writing the same
2150 		 * data that's already on disk.  We can only nopwrite if we
2151 		 * are sure that after making the copy, db_blkptr will not
2152 		 * change until our i/o completes.  We ensure this by
2153 		 * holding the db_mtx, and only allowing nopwrite if the
2154 		 * block is not already dirty (see below).  This is verified
2155 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2156 		 * not changed.
2157 		 */
2158 		*zgd->zgd_bp = *db->db_blkptr;
2159 	}
2160 
2161 	/*
2162 	 * Assume the on-disk data is X, the current syncing data (in
2163 	 * txg - 1) is Y, and the current in-memory data is Z (currently
2164 	 * in dmu_sync).
2165 	 *
2166 	 * We usually want to perform a nopwrite if X and Z are the
2167 	 * same.  However, if Y is different (i.e. the BP is going to
2168 	 * change before this write takes effect), then a nopwrite will
2169 	 * be incorrect - we would override with X, which could have
2170 	 * been freed when Y was written.
2171 	 *
2172 	 * (Note that this is not a concern when we are nop-writing from
2173 	 * syncing context, because X and Y must be identical, because
2174 	 * all previous txgs have been synced.)
2175 	 *
2176 	 * Therefore, we disable nopwrite if the current BP could change
2177 	 * before this TXG.  There are two ways it could change: by
2178 	 * being dirty (dr_next is non-NULL), or by being freed
2179 	 * (dnode_block_freed()).  This behavior is verified by
2180 	 * zio_done(), which VERIFYs that the override BP is identical
2181 	 * to the on-disk BP.
2182 	 */
2183 	if (dr_next != NULL) {
2184 		zp.zp_nopwrite = B_FALSE;
2185 	} else {
2186 		DB_DNODE_ENTER(db);
2187 		if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
2188 			zp.zp_nopwrite = B_FALSE;
2189 		DB_DNODE_EXIT(db);
2190 	}
2191 
2192 	ASSERT(dr->dr_txg == txg);
2193 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2194 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2195 		/*
2196 		 * We have already issued a sync write for this buffer,
2197 		 * or this buffer has already been synced.  It could not
2198 		 * have been dirtied since, or we would have cleared the state.
2199 		 */
2200 		mutex_exit(&db->db_mtx);
2201 		return (SET_ERROR(EALREADY));
2202 	}
2203 
2204 	ASSERT0(dr->dt.dl.dr_has_raw_params);
2205 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2206 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2207 	mutex_exit(&db->db_mtx);
2208 
2209 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2210 	dsa->dsa_dr = dr;
2211 	dsa->dsa_done = done;
2212 	dsa->dsa_zgd = zgd;
2213 	dsa->dsa_tx = NULL;
2214 
2215 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
2216 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db),
2217 	    dbuf_is_l2cacheable(db, NULL), &zp, dmu_sync_ready, NULL,
2218 	    dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL,
2219 	    &zb));
2220 
2221 	return (0);
2222 }
2223 
2224 int
dmu_object_set_nlevels(objset_t * os,uint64_t object,int nlevels,dmu_tx_t * tx)2225 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2226 {
2227 	dnode_t *dn;
2228 	int err;
2229 
2230 	err = dnode_hold(os, object, FTAG, &dn);
2231 	if (err)
2232 		return (err);
2233 	err = dnode_set_nlevels(dn, nlevels, tx);
2234 	dnode_rele(dn, FTAG);
2235 	return (err);
2236 }
2237 
2238 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)2239 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2240     dmu_tx_t *tx)
2241 {
2242 	dnode_t *dn;
2243 	int err;
2244 
2245 	err = dnode_hold(os, object, FTAG, &dn);
2246 	if (err)
2247 		return (err);
2248 	err = dnode_set_blksz(dn, size, ibs, tx);
2249 	dnode_rele(dn, FTAG);
2250 	return (err);
2251 }
2252 
2253 int
dmu_object_set_maxblkid(objset_t * os,uint64_t object,uint64_t maxblkid,dmu_tx_t * tx)2254 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2255     dmu_tx_t *tx)
2256 {
2257 	dnode_t *dn;
2258 	int err;
2259 
2260 	err = dnode_hold(os, object, FTAG, &dn);
2261 	if (err)
2262 		return (err);
2263 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2264 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2265 	rw_exit(&dn->dn_struct_rwlock);
2266 	dnode_rele(dn, FTAG);
2267 	return (0);
2268 }
2269 
2270 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)2271 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2272     dmu_tx_t *tx)
2273 {
2274 	dnode_t *dn;
2275 
2276 	/*
2277 	 * Send streams include each object's checksum function.  This
2278 	 * check ensures that the receiving system can understand the
2279 	 * checksum function transmitted.
2280 	 */
2281 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2282 
2283 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2284 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2285 	dn->dn_checksum = checksum;
2286 	dnode_setdirty(dn, tx);
2287 	dnode_rele(dn, FTAG);
2288 }
2289 
2290 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)2291 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2292     dmu_tx_t *tx)
2293 {
2294 	dnode_t *dn;
2295 
2296 	/*
2297 	 * Send streams include each object's compression function.  This
2298 	 * check ensures that the receiving system can understand the
2299 	 * compression function transmitted.
2300 	 */
2301 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2302 
2303 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2304 	dn->dn_compress = compress;
2305 	dnode_setdirty(dn, tx);
2306 	dnode_rele(dn, FTAG);
2307 }
2308 
2309 /*
2310  * When the "redundant_metadata" property is set to "most", only indirect
2311  * blocks of this level and higher will have an additional ditto block.
2312  */
2313 static const int zfs_redundant_metadata_most_ditto_level = 2;
2314 
2315 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)2316 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2317 {
2318 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2319 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2320 	    (wp & WP_SPILL));
2321 	enum zio_checksum checksum = os->os_checksum;
2322 	enum zio_compress compress = os->os_compress;
2323 	uint8_t complevel = os->os_complevel;
2324 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2325 	boolean_t dedup = B_FALSE;
2326 	boolean_t nopwrite = B_FALSE;
2327 	boolean_t dedup_verify = os->os_dedup_verify;
2328 	boolean_t encrypt = B_FALSE;
2329 	int copies = os->os_copies;
2330 	int gang_copies = os->os_copies;
2331 
2332 	/*
2333 	 * We maintain different write policies for each of the following
2334 	 * types of data:
2335 	 *	 1. metadata
2336 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2337 	 *	 3. all other level 0 blocks
2338 	 */
2339 	if (ismd) {
2340 		/*
2341 		 * XXX -- we should design a compression algorithm
2342 		 * that specializes in arrays of bps.
2343 		 */
2344 		compress = zio_compress_select(os->os_spa,
2345 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2346 
2347 		/*
2348 		 * Metadata always gets checksummed.  If the data
2349 		 * checksum is multi-bit correctable, and it's not a
2350 		 * ZBT-style checksum, then it's suitable for metadata
2351 		 * as well.  Otherwise, the metadata checksum defaults
2352 		 * to fletcher4.
2353 		 */
2354 		if (!(zio_checksum_table[checksum].ci_flags &
2355 		    ZCHECKSUM_FLAG_METADATA) ||
2356 		    (zio_checksum_table[checksum].ci_flags &
2357 		    ZCHECKSUM_FLAG_EMBEDDED))
2358 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2359 
2360 		switch (os->os_redundant_metadata) {
2361 		case ZFS_REDUNDANT_METADATA_ALL:
2362 			copies++;
2363 			gang_copies++;
2364 			break;
2365 		case ZFS_REDUNDANT_METADATA_MOST:
2366 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2367 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2368 				copies++;
2369 			if (level + 1 >=
2370 			    zfs_redundant_metadata_most_ditto_level ||
2371 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2372 				gang_copies++;
2373 			break;
2374 		case ZFS_REDUNDANT_METADATA_SOME:
2375 			if (DMU_OT_IS_CRITICAL(type, level)) {
2376 				copies++;
2377 				gang_copies++;
2378 			} else if (DMU_OT_IS_METADATA(type)) {
2379 				gang_copies++;
2380 			}
2381 			break;
2382 		case ZFS_REDUNDANT_METADATA_NONE:
2383 			break;
2384 		}
2385 
2386 		if (dmu_ddt_copies > 0) {
2387 			/*
2388 			 * If this tunable is set, and this is a write for a
2389 			 * dedup entry store (zap or log), then we treat it
2390 			 * something like ZFS_REDUNDANT_METADATA_MOST on a
2391 			 * regular dataset: this many copies, and one more for
2392 			 * "higher" indirect blocks. This specific exception is
2393 			 * necessary because dedup objects are stored in the
2394 			 * MOS, which always has the highest possible copies.
2395 			 */
2396 			dmu_object_type_t stype =
2397 			    dn ? dn->dn_storage_type : DMU_OT_NONE;
2398 			if (stype == DMU_OT_NONE)
2399 				stype = type;
2400 			if (stype == DMU_OT_DDT_ZAP) {
2401 				copies = dmu_ddt_copies;
2402 				if (level >=
2403 				    zfs_redundant_metadata_most_ditto_level)
2404 					copies++;
2405 			}
2406 		}
2407 	} else if (wp & WP_NOFILL) {
2408 		ASSERT(level == 0);
2409 
2410 		/*
2411 		 * If we're writing preallocated blocks, we aren't actually
2412 		 * writing them so don't set any policy properties.  These
2413 		 * blocks are currently only used by an external subsystem
2414 		 * outside of zfs (i.e. dump) and not written by the zio
2415 		 * pipeline.
2416 		 */
2417 		compress = ZIO_COMPRESS_OFF;
2418 		checksum = ZIO_CHECKSUM_OFF;
2419 	} else {
2420 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2421 		    compress);
2422 		complevel = zio_complevel_select(os->os_spa, compress,
2423 		    complevel, complevel);
2424 
2425 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2426 		    zio_checksum_select(dn->dn_checksum, checksum) :
2427 		    dedup_checksum;
2428 
2429 		/*
2430 		 * Determine dedup setting.  If we are in dmu_sync(),
2431 		 * we won't actually dedup now because that's all
2432 		 * done in syncing context; but we do want to use the
2433 		 * dedup checksum.  If the checksum is not strong
2434 		 * enough to ensure unique signatures, force
2435 		 * dedup_verify.
2436 		 */
2437 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2438 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2439 			if (!(zio_checksum_table[checksum].ci_flags &
2440 			    ZCHECKSUM_FLAG_DEDUP))
2441 				dedup_verify = B_TRUE;
2442 		}
2443 
2444 		/*
2445 		 * Enable nopwrite if we have secure enough checksum
2446 		 * algorithm (see comment in zio_nop_write) and
2447 		 * compression is enabled.  We don't enable nopwrite if
2448 		 * dedup is enabled as the two features are mutually
2449 		 * exclusive.
2450 		 */
2451 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2452 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2453 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2454 
2455 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2456 		    (os->os_redundant_metadata ==
2457 		    ZFS_REDUNDANT_METADATA_MOST &&
2458 		    zfs_redundant_metadata_most_ditto_level <= 1))
2459 			gang_copies++;
2460 	}
2461 
2462 	/*
2463 	 * All objects in an encrypted objset are protected from modification
2464 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2465 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2466 	 * not subject to nopwrite since writing the same data will still
2467 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2468 	 * to avoid ambiguity in the dedup code since the DDT does not store
2469 	 * object types.
2470 	 */
2471 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2472 		encrypt = B_TRUE;
2473 
2474 		if (DMU_OT_IS_ENCRYPTED(type)) {
2475 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2476 			gang_copies = MIN(gang_copies, SPA_DVAS_PER_BP - 1);
2477 			nopwrite = B_FALSE;
2478 		} else {
2479 			dedup = B_FALSE;
2480 		}
2481 
2482 		if (level <= 0 &&
2483 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2484 			compress = ZIO_COMPRESS_EMPTY;
2485 		}
2486 	}
2487 
2488 	zp->zp_compress = compress;
2489 	zp->zp_complevel = complevel;
2490 	zp->zp_checksum = checksum;
2491 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2492 	zp->zp_level = level;
2493 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2494 	zp->zp_gang_copies = MIN(gang_copies, spa_max_replication(os->os_spa));
2495 	zp->zp_dedup = dedup;
2496 	zp->zp_dedup_verify = dedup && dedup_verify;
2497 	zp->zp_nopwrite = nopwrite;
2498 	zp->zp_encrypt = encrypt;
2499 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2500 	zp->zp_direct_write = (wp & WP_DIRECT_WR) ? B_TRUE : B_FALSE;
2501 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2502 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2503 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2504 	zp->zp_zpl_smallblk = (DMU_OT_IS_FILE(zp->zp_type) ||
2505 	    zp->zp_type == DMU_OT_ZVOL) ?
2506 	    os->os_zpl_special_smallblock : 0;
2507 	zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
2508 
2509 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2510 }
2511 
2512 /*
2513  * Reports the location of data and holes in an object.  In order to
2514  * accurately report holes all dirty data must be synced to disk.  This
2515  * causes extremely poor performance when seeking for holes in a dirty file.
2516  * As a compromise, only provide hole data when the dnode is clean.  When
2517  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2518  * which is always safe to do.
2519  */
2520 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)2521 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2522 {
2523 	dnode_t *dn;
2524 	int restarted = 0, err;
2525 
2526 restart:
2527 	err = dnode_hold(os, object, FTAG, &dn);
2528 	if (err)
2529 		return (err);
2530 
2531 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2532 
2533 	if (dnode_is_dirty(dn)) {
2534 		/*
2535 		 * If the zfs_dmu_offset_next_sync module option is enabled
2536 		 * then hole reporting has been requested.  Dirty dnodes
2537 		 * must be synced to disk to accurately report holes.
2538 		 *
2539 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2540 		 * held by the caller only a single restart will be required.
2541 		 * We tolerate callers which do not hold the rangelock by
2542 		 * returning EBUSY and not reporting holes after one restart.
2543 		 */
2544 		if (zfs_dmu_offset_next_sync) {
2545 			rw_exit(&dn->dn_struct_rwlock);
2546 			dnode_rele(dn, FTAG);
2547 
2548 			if (restarted)
2549 				return (SET_ERROR(EBUSY));
2550 
2551 			txg_wait_synced(dmu_objset_pool(os), 0);
2552 			restarted = 1;
2553 			goto restart;
2554 		}
2555 
2556 		err = SET_ERROR(EBUSY);
2557 	} else {
2558 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2559 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2560 	}
2561 
2562 	rw_exit(&dn->dn_struct_rwlock);
2563 	dnode_rele(dn, FTAG);
2564 
2565 	return (err);
2566 }
2567 
2568 int
dmu_read_l0_bps(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,blkptr_t * bps,size_t * nbpsp)2569 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2570     blkptr_t *bps, size_t *nbpsp)
2571 {
2572 	dmu_buf_t **dbp, *dbuf;
2573 	dmu_buf_impl_t *db;
2574 	blkptr_t *bp;
2575 	int error, numbufs;
2576 
2577 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2578 	    &numbufs, &dbp);
2579 	if (error != 0) {
2580 		if (error == ESRCH) {
2581 			error = SET_ERROR(ENXIO);
2582 		}
2583 		return (error);
2584 	}
2585 
2586 	ASSERT3U(numbufs, <=, *nbpsp);
2587 
2588 	for (int i = 0; i < numbufs; i++) {
2589 		dbuf = dbp[i];
2590 		db = (dmu_buf_impl_t *)dbuf;
2591 
2592 		mutex_enter(&db->db_mtx);
2593 
2594 		if (!list_is_empty(&db->db_dirty_records)) {
2595 			dbuf_dirty_record_t *dr;
2596 
2597 			dr = list_head(&db->db_dirty_records);
2598 			if (dr->dt.dl.dr_brtwrite) {
2599 				/*
2600 				 * This is very special case where we clone a
2601 				 * block and in the same transaction group we
2602 				 * read its BP (most likely to clone the clone).
2603 				 */
2604 				bp = &dr->dt.dl.dr_overridden_by;
2605 			} else {
2606 				/*
2607 				 * The block was modified in the same
2608 				 * transaction group.
2609 				 */
2610 				mutex_exit(&db->db_mtx);
2611 				error = SET_ERROR(EAGAIN);
2612 				goto out;
2613 			}
2614 		} else {
2615 			bp = db->db_blkptr;
2616 		}
2617 
2618 		mutex_exit(&db->db_mtx);
2619 
2620 		if (bp == NULL) {
2621 			/*
2622 			 * The file size was increased, but the block was never
2623 			 * written, otherwise we would either have the block
2624 			 * pointer or the dirty record and would not get here.
2625 			 * It is effectively a hole, so report it as such.
2626 			 */
2627 			BP_ZERO(&bps[i]);
2628 			continue;
2629 		}
2630 		/*
2631 		 * Make sure we clone only data blocks.
2632 		 */
2633 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2634 			error = SET_ERROR(EINVAL);
2635 			goto out;
2636 		}
2637 
2638 		/*
2639 		 * If the block was allocated in transaction group that is not
2640 		 * yet synced, we could clone it, but we couldn't write this
2641 		 * operation into ZIL, or it may be impossible to replay, since
2642 		 * the block may appear not yet allocated at that point.
2643 		 */
2644 		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2645 			error = SET_ERROR(EINVAL);
2646 			goto out;
2647 		}
2648 		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2649 			error = SET_ERROR(EAGAIN);
2650 			goto out;
2651 		}
2652 
2653 		bps[i] = *bp;
2654 	}
2655 
2656 	*nbpsp = numbufs;
2657 out:
2658 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2659 
2660 	return (error);
2661 }
2662 
2663 int
dmu_brt_clone(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,dmu_tx_t * tx,const blkptr_t * bps,size_t nbps)2664 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2665     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2666 {
2667 	spa_t *spa;
2668 	dmu_buf_t **dbp, *dbuf;
2669 	dmu_buf_impl_t *db;
2670 	struct dirty_leaf *dl;
2671 	dbuf_dirty_record_t *dr;
2672 	const blkptr_t *bp;
2673 	int error = 0, i, numbufs;
2674 
2675 	spa = os->os_spa;
2676 
2677 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2678 	    &numbufs, &dbp));
2679 	ASSERT3U(nbps, ==, numbufs);
2680 
2681 	/*
2682 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2683 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2684 	 * dbufs.
2685 	 */
2686 	for (i = 0; i < numbufs; i++) {
2687 		dbuf = dbp[i];
2688 		db = (dmu_buf_impl_t *)dbuf;
2689 		bp = &bps[i];
2690 
2691 		ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2692 		ASSERT0(db->db_level);
2693 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2694 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2695 
2696 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2697 			error = SET_ERROR(EXDEV);
2698 			goto out;
2699 		}
2700 	}
2701 
2702 	for (i = 0; i < numbufs; i++) {
2703 		dbuf = dbp[i];
2704 		db = (dmu_buf_impl_t *)dbuf;
2705 		bp = &bps[i];
2706 
2707 		dmu_buf_will_clone_or_dio(dbuf, tx);
2708 
2709 		mutex_enter(&db->db_mtx);
2710 
2711 		dr = list_head(&db->db_dirty_records);
2712 		VERIFY(dr != NULL);
2713 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2714 		dl = &dr->dt.dl;
2715 		ASSERT0(dl->dr_has_raw_params);
2716 		dl->dr_overridden_by = *bp;
2717 		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2718 			if (!BP_IS_EMBEDDED(bp)) {
2719 				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2720 				    BP_GET_BIRTH(bp));
2721 			} else {
2722 				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2723 				    dr->dr_txg);
2724 			}
2725 		}
2726 		dl->dr_brtwrite = B_TRUE;
2727 		dl->dr_override_state = DR_OVERRIDDEN;
2728 
2729 		mutex_exit(&db->db_mtx);
2730 
2731 		/*
2732 		 * When data in embedded into BP there is no need to create
2733 		 * BRT entry as there is no data block. Just copy the BP as
2734 		 * it contains the data.
2735 		 */
2736 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2737 			brt_pending_add(spa, bp, tx);
2738 		}
2739 	}
2740 out:
2741 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2742 
2743 	return (error);
2744 }
2745 
2746 void
__dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2747 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2748 {
2749 	dnode_phys_t *dnp = dn->dn_phys;
2750 
2751 	doi->doi_data_block_size = dn->dn_datablksz;
2752 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2753 	    1ULL << dn->dn_indblkshift : 0;
2754 	doi->doi_type = dn->dn_type;
2755 	doi->doi_bonus_type = dn->dn_bonustype;
2756 	doi->doi_bonus_size = dn->dn_bonuslen;
2757 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2758 	doi->doi_indirection = dn->dn_nlevels;
2759 	doi->doi_checksum = dn->dn_checksum;
2760 	doi->doi_compress = dn->dn_compress;
2761 	doi->doi_nblkptr = dn->dn_nblkptr;
2762 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2763 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2764 	doi->doi_fill_count = 0;
2765 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2766 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2767 }
2768 
2769 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2770 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2771 {
2772 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2773 	mutex_enter(&dn->dn_mtx);
2774 
2775 	__dmu_object_info_from_dnode(dn, doi);
2776 
2777 	mutex_exit(&dn->dn_mtx);
2778 	rw_exit(&dn->dn_struct_rwlock);
2779 }
2780 
2781 /*
2782  * Get information on a DMU object.
2783  * If doi is NULL, just indicates whether the object exists.
2784  */
2785 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)2786 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2787 {
2788 	dnode_t *dn;
2789 	int err = dnode_hold(os, object, FTAG, &dn);
2790 
2791 	if (err)
2792 		return (err);
2793 
2794 	if (doi != NULL)
2795 		dmu_object_info_from_dnode(dn, doi);
2796 
2797 	dnode_rele(dn, FTAG);
2798 	return (0);
2799 }
2800 
2801 /*
2802  * As above, but faster; can be used when you have a held dbuf in hand.
2803  */
2804 void
dmu_object_info_from_db(dmu_buf_t * db_fake,dmu_object_info_t * doi)2805 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2806 {
2807 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2808 
2809 	DB_DNODE_ENTER(db);
2810 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2811 	DB_DNODE_EXIT(db);
2812 }
2813 
2814 /*
2815  * Faster still when you only care about the size.
2816  */
2817 void
dmu_object_size_from_db(dmu_buf_t * db_fake,uint32_t * blksize,u_longlong_t * nblk512)2818 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2819     u_longlong_t *nblk512)
2820 {
2821 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2822 	dnode_t *dn;
2823 
2824 	DB_DNODE_ENTER(db);
2825 	dn = DB_DNODE(db);
2826 
2827 	*blksize = dn->dn_datablksz;
2828 	/* add in number of slots used for the dnode itself */
2829 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2830 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2831 	DB_DNODE_EXIT(db);
2832 }
2833 
2834 void
dmu_object_dnsize_from_db(dmu_buf_t * db_fake,int * dnsize)2835 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2836 {
2837 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2838 
2839 	DB_DNODE_ENTER(db);
2840 	*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
2841 	DB_DNODE_EXIT(db);
2842 }
2843 
2844 void
byteswap_uint64_array(void * vbuf,size_t size)2845 byteswap_uint64_array(void *vbuf, size_t size)
2846 {
2847 	uint64_t *buf = vbuf;
2848 	size_t count = size >> 3;
2849 	int i;
2850 
2851 	ASSERT((size & 7) == 0);
2852 
2853 	for (i = 0; i < count; i++)
2854 		buf[i] = BSWAP_64(buf[i]);
2855 }
2856 
2857 void
byteswap_uint32_array(void * vbuf,size_t size)2858 byteswap_uint32_array(void *vbuf, size_t size)
2859 {
2860 	uint32_t *buf = vbuf;
2861 	size_t count = size >> 2;
2862 	int i;
2863 
2864 	ASSERT((size & 3) == 0);
2865 
2866 	for (i = 0; i < count; i++)
2867 		buf[i] = BSWAP_32(buf[i]);
2868 }
2869 
2870 void
byteswap_uint16_array(void * vbuf,size_t size)2871 byteswap_uint16_array(void *vbuf, size_t size)
2872 {
2873 	uint16_t *buf = vbuf;
2874 	size_t count = size >> 1;
2875 	int i;
2876 
2877 	ASSERT((size & 1) == 0);
2878 
2879 	for (i = 0; i < count; i++)
2880 		buf[i] = BSWAP_16(buf[i]);
2881 }
2882 
2883 void
byteswap_uint8_array(void * vbuf,size_t size)2884 byteswap_uint8_array(void *vbuf, size_t size)
2885 {
2886 	(void) vbuf, (void) size;
2887 }
2888 
2889 void
dmu_init(void)2890 dmu_init(void)
2891 {
2892 	abd_init();
2893 	zfs_dbgmsg_init();
2894 	sa_cache_init();
2895 	dmu_objset_init();
2896 	dnode_init();
2897 	zfetch_init();
2898 	dmu_tx_init();
2899 	l2arc_init();
2900 	arc_init();
2901 	dbuf_init();
2902 }
2903 
2904 void
dmu_fini(void)2905 dmu_fini(void)
2906 {
2907 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2908 	l2arc_fini();
2909 	dmu_tx_fini();
2910 	zfetch_fini();
2911 	dbuf_fini();
2912 	dnode_fini();
2913 	dmu_objset_fini();
2914 	sa_cache_fini();
2915 	zfs_dbgmsg_fini();
2916 	abd_fini();
2917 }
2918 
2919 EXPORT_SYMBOL(dmu_bonus_hold);
2920 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2921 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2922 EXPORT_SYMBOL(dmu_buf_rele_array);
2923 EXPORT_SYMBOL(dmu_prefetch);
2924 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2925 EXPORT_SYMBOL(dmu_prefetch_dnode);
2926 EXPORT_SYMBOL(dmu_free_range);
2927 EXPORT_SYMBOL(dmu_free_long_range);
2928 EXPORT_SYMBOL(dmu_free_long_object);
2929 EXPORT_SYMBOL(dmu_read);
2930 EXPORT_SYMBOL(dmu_read_by_dnode);
2931 EXPORT_SYMBOL(dmu_read_uio);
2932 EXPORT_SYMBOL(dmu_read_uio_dbuf);
2933 EXPORT_SYMBOL(dmu_read_uio_dnode);
2934 EXPORT_SYMBOL(dmu_write);
2935 EXPORT_SYMBOL(dmu_write_by_dnode);
2936 EXPORT_SYMBOL(dmu_write_uio);
2937 EXPORT_SYMBOL(dmu_write_uio_dbuf);
2938 EXPORT_SYMBOL(dmu_write_uio_dnode);
2939 EXPORT_SYMBOL(dmu_prealloc);
2940 EXPORT_SYMBOL(dmu_object_info);
2941 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2942 EXPORT_SYMBOL(dmu_object_info_from_db);
2943 EXPORT_SYMBOL(dmu_object_size_from_db);
2944 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2945 EXPORT_SYMBOL(dmu_object_set_nlevels);
2946 EXPORT_SYMBOL(dmu_object_set_blocksize);
2947 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2948 EXPORT_SYMBOL(dmu_object_set_checksum);
2949 EXPORT_SYMBOL(dmu_object_set_compress);
2950 EXPORT_SYMBOL(dmu_offset_next);
2951 EXPORT_SYMBOL(dmu_write_policy);
2952 EXPORT_SYMBOL(dmu_sync);
2953 EXPORT_SYMBOL(dmu_request_arcbuf);
2954 EXPORT_SYMBOL(dmu_return_arcbuf);
2955 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2956 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2957 EXPORT_SYMBOL(dmu_buf_hold);
2958 EXPORT_SYMBOL(dmu_ot);
2959 
2960 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2961 	"Enable NOP writes");
2962 
2963 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2964 	"Percentage of dirtied blocks from frees in one TXG");
2965 
2966 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2967 	"Enable forcing txg sync to find holes");
2968 
2969 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2970 	"Limit one prefetch call to this size");
2971 
2972 ZFS_MODULE_PARAM(zfs, , dmu_ddt_copies, UINT, ZMOD_RW,
2973 	"Override copies= for dedup objects");
2974