1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28 /* Portions Copyright 2007 Jeremy Teo */
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/time.h>
34 #include <sys/systm.h>
35 #include <sys/sysmacros.h>
36 #include <sys/resource.h>
37 #include <sys/vfs.h>
38 #include <sys/vfs_opreg.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kmem.h>
43 #include <sys/taskq.h>
44 #include <sys/uio.h>
45 #include <sys/vmsystm.h>
46 #include <sys/atomic.h>
47 #include <sys/vm.h>
48 #include <vm/seg_vn.h>
49 #include <vm/pvn.h>
50 #include <vm/as.h>
51 #include <vm/kpm.h>
52 #include <vm/seg_kpm.h>
53 #include <sys/mman.h>
54 #include <sys/pathname.h>
55 #include <sys/cmn_err.h>
56 #include <sys/errno.h>
57 #include <sys/unistd.h>
58 #include <sys/zfs_dir.h>
59 #include <sys/zfs_acl.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/dmu.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa.h>
65 #include <sys/txg.h>
66 #include <sys/dbuf.h>
67 #include <sys/zap.h>
68 #include <sys/sa.h>
69 #include <sys/dirent.h>
70 #include <sys/policy.h>
71 #include <sys/sunddi.h>
72 #include <sys/filio.h>
73 #include <sys/sid.h>
74 #include "fs/fs_subr.h"
75 #include <sys/zfs_ctldir.h>
76 #include <sys/zfs_fuid.h>
77 #include <sys/zfs_sa.h>
78 #include <sys/dnlc.h>
79 #include <sys/zfs_rlock.h>
80 #include <sys/extdirent.h>
81 #include <sys/kidmap.h>
82 #include <sys/cred.h>
83 #include <sys/attr.h>
84 #include <sys/zfs_events.h>
85 #include <sys/fs/zev.h>
86
87 /*
88 * Programming rules.
89 *
90 * Each vnode op performs some logical unit of work. To do this, the ZPL must
91 * properly lock its in-core state, create a DMU transaction, do the work,
92 * record this work in the intent log (ZIL), commit the DMU transaction,
93 * and wait for the intent log to commit if it is a synchronous operation.
94 * Moreover, the vnode ops must work in both normal and log replay context.
95 * The ordering of events is important to avoid deadlocks and references
96 * to freed memory. The example below illustrates the following Big Rules:
97 *
98 * (1) A check must be made in each zfs thread for a mounted file system.
99 * This is done avoiding races using ZFS_ENTER(zfsvfs).
100 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
101 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
102 * can return EIO from the calling function.
103 *
104 * (2) VN_RELE() should always be the last thing except for zil_commit()
105 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
106 * First, if it's the last reference, the vnode/znode
107 * can be freed, so the zp may point to freed memory. Second, the last
108 * reference will call zfs_zinactive(), which may induce a lot of work --
109 * pushing cached pages (which acquires range locks) and syncing out
110 * cached atime changes. Third, zfs_zinactive() may require a new tx,
111 * which could deadlock the system if you were already holding one.
112 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
113 *
114 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
115 * as they can span dmu_tx_assign() calls.
116 *
117 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
118 * dmu_tx_assign(). This is critical because we don't want to block
119 * while holding locks.
120 *
121 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
122 * reduces lock contention and CPU usage when we must wait (note that if
123 * throughput is constrained by the storage, nearly every transaction
124 * must wait).
125 *
126 * Note, in particular, that if a lock is sometimes acquired before
127 * the tx assigns, and sometimes after (e.g. z_lock), then failing
128 * to use a non-blocking assign can deadlock the system. The scenario:
129 *
130 * Thread A has grabbed a lock before calling dmu_tx_assign().
131 * Thread B is in an already-assigned tx, and blocks for this lock.
132 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
133 * forever, because the previous txg can't quiesce until B's tx commits.
134 *
135 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
136 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
137 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
138 * to indicate that this operation has already called dmu_tx_wait().
139 * This will ensure that we don't retry forever, waiting a short bit
140 * each time.
141 *
142 * (5) If the operation succeeded, generate the intent log entry for it
143 * before dropping locks. This ensures that the ordering of events
144 * in the intent log matches the order in which they actually occurred.
145 * During ZIL replay the zfs_log_* functions will update the sequence
146 * number to indicate the zil transaction has replayed.
147 *
148 * (6) At the end of each vnode op, the DMU tx must always commit,
149 * regardless of whether there were any errors.
150 *
151 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
152 * to ensure that synchronous semantics are provided when necessary.
153 *
154 * In general, this is how things should be ordered in each vnode op:
155 *
156 * ZFS_ENTER(zfsvfs); // exit if unmounted
157 * top:
158 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
159 * rw_enter(...); // grab any other locks you need
160 * tx = dmu_tx_create(...); // get DMU tx
161 * dmu_tx_hold_*(); // hold each object you might modify
162 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
163 * if (error) {
164 * rw_exit(...); // drop locks
165 * zfs_dirent_unlock(dl); // unlock directory entry
166 * VN_RELE(...); // release held vnodes
167 * if (error == ERESTART) {
168 * waited = B_TRUE;
169 * dmu_tx_wait(tx);
170 * dmu_tx_abort(tx);
171 * goto top;
172 * }
173 * dmu_tx_abort(tx); // abort DMU tx
174 * ZFS_EXIT(zfsvfs); // finished in zfs
175 * return (error); // really out of space
176 * }
177 * error = do_real_work(); // do whatever this VOP does
178 * if (error == 0)
179 * zfs_log_*(...); // on success, make ZIL entry
180 * dmu_tx_commit(tx); // commit DMU tx -- error or not
181 * rw_exit(...); // drop locks
182 * zfs_dirent_unlock(dl); // unlock directory entry
183 * VN_RELE(...); // release held vnodes
184 * zil_commit(zilog, foid); // synchronous when necessary
185 * ZFS_EXIT(zfsvfs); // finished in zfs
186 * return (error); // done, report error
187 */
188
189 /* ARGSUSED */
190 static int
zfs_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)191 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
192 {
193 znode_t *zp = VTOZ(*vpp);
194 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
195
196 ZFS_ENTER(zfsvfs);
197 ZFS_VERIFY_ZP(zp);
198
199 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
200 ((flag & FAPPEND) == 0)) {
201 ZFS_EXIT(zfsvfs);
202 return (SET_ERROR(EPERM));
203 }
204
205 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
206 ZTOV(zp)->v_type == VREG &&
207 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
208 if (fs_vscan(*vpp, cr, 0) != 0) {
209 ZFS_EXIT(zfsvfs);
210 return (SET_ERROR(EACCES));
211 }
212 }
213
214 /* Keep a count of the synchronous opens in the znode */
215 if (flag & (FSYNC | FDSYNC))
216 atomic_inc_32(&zp->z_sync_cnt);
217
218 ZFS_EXIT(zfsvfs);
219 return (0);
220 }
221
222 /* ARGSUSED */
223 static int
zfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)224 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
225 caller_context_t *ct)
226 {
227 znode_t *zp = VTOZ(vp);
228 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
229
230 /*
231 * Clean up any locks held by this process on the vp.
232 */
233 cleanlocks(vp, ddi_get_pid(), 0);
234 cleanshares(vp, ddi_get_pid());
235
236 ZFS_ENTER(zfsvfs);
237 ZFS_VERIFY_ZP(zp);
238
239 /* Decrement the synchronous opens in the znode */
240 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
241 atomic_dec_32(&zp->z_sync_cnt);
242
243 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
244 ZTOV(zp)->v_type == VREG &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(fs_vscan(vp, cr, 1) == 0);
247
248 if (ZTOV(zp)->v_type == VREG && zp->z_new_content) {
249 zp->z_new_content = 0;
250 rw_enter(&rz_zev_rwlock, RW_READER);
251 if (rz_zev_callbacks &&
252 rz_zev_callbacks->rz_zev_znode_close_after_update)
253 rz_zev_callbacks->rz_zev_znode_close_after_update(zp);
254 rw_exit(&rz_zev_rwlock);
255 }
256
257 ZFS_EXIT(zfsvfs);
258 return (0);
259 }
260
261 /*
262 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
263 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
264 */
265 static int
zfs_holey(vnode_t * vp,int cmd,offset_t * off)266 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
267 {
268 znode_t *zp = VTOZ(vp);
269 uint64_t noff = (uint64_t)*off; /* new offset */
270 uint64_t file_sz;
271 int error;
272 boolean_t hole;
273
274 file_sz = zp->z_size;
275 if (noff >= file_sz) {
276 return (SET_ERROR(ENXIO));
277 }
278
279 if (cmd == _FIO_SEEK_HOLE)
280 hole = B_TRUE;
281 else
282 hole = B_FALSE;
283
284 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
285
286 if (error == ESRCH)
287 return (SET_ERROR(ENXIO));
288
289 /*
290 * We could find a hole that begins after the logical end-of-file,
291 * because dmu_offset_next() only works on whole blocks. If the
292 * EOF falls mid-block, then indicate that the "virtual hole"
293 * at the end of the file begins at the logical EOF, rather than
294 * at the end of the last block.
295 */
296 if (noff > file_sz) {
297 ASSERT(hole);
298 noff = file_sz;
299 }
300
301 if (noff < *off)
302 return (error);
303 *off = noff;
304 return (error);
305 }
306
307 /* ARGSUSED */
308 static int
zfs_ioctl(vnode_t * vp,int com,intptr_t data,int flag,cred_t * cred,int * rvalp,caller_context_t * ct)309 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
310 int *rvalp, caller_context_t *ct)
311 {
312 offset_t off;
313 offset_t ndata;
314 dmu_object_info_t doi;
315 int error;
316 zfsvfs_t *zfsvfs;
317 znode_t *zp;
318
319 switch (com) {
320 case _FIOFFS:
321 {
322 return (zfs_sync(vp->v_vfsp, 0, cred));
323
324 /*
325 * The following two ioctls are used by bfu. Faking out,
326 * necessary to avoid bfu errors.
327 */
328 }
329 case _FIOGDIO:
330 case _FIOSDIO:
331 {
332 return (0);
333 }
334
335 case _FIO_SEEK_DATA:
336 case _FIO_SEEK_HOLE:
337 {
338 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
339 return (SET_ERROR(EFAULT));
340
341 zp = VTOZ(vp);
342 zfsvfs = zp->z_zfsvfs;
343 ZFS_ENTER(zfsvfs);
344 ZFS_VERIFY_ZP(zp);
345
346 /* offset parameter is in/out */
347 error = zfs_holey(vp, com, &off);
348 ZFS_EXIT(zfsvfs);
349 if (error)
350 return (error);
351 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
352 return (SET_ERROR(EFAULT));
353 return (0);
354 }
355 case _FIO_COUNT_FILLED:
356 {
357 /*
358 * _FIO_COUNT_FILLED adds a new ioctl command which
359 * exposes the number of filled blocks in a
360 * ZFS object.
361 */
362 zp = VTOZ(vp);
363 zfsvfs = zp->z_zfsvfs;
364 ZFS_ENTER(zfsvfs);
365 ZFS_VERIFY_ZP(zp);
366
367 /*
368 * Wait for all dirty blocks for this object
369 * to get synced out to disk, and the DMU info
370 * updated.
371 */
372 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
373 if (error) {
374 ZFS_EXIT(zfsvfs);
375 return (error);
376 }
377
378 /*
379 * Retrieve fill count from DMU object.
380 */
381 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
382 if (error) {
383 ZFS_EXIT(zfsvfs);
384 return (error);
385 }
386
387 ndata = doi.doi_fill_count;
388
389 ZFS_EXIT(zfsvfs);
390 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
391 return (SET_ERROR(EFAULT));
392 return (0);
393 }
394 }
395 return (SET_ERROR(ENOTTY));
396 }
397
398 /*
399 * Utility functions to map and unmap a single physical page. These
400 * are used to manage the mappable copies of ZFS file data, and therefore
401 * do not update ref/mod bits.
402 */
403 caddr_t
zfs_map_page(page_t * pp,enum seg_rw rw)404 zfs_map_page(page_t *pp, enum seg_rw rw)
405 {
406 if (kpm_enable)
407 return (hat_kpm_mapin(pp, 0));
408 ASSERT(rw == S_READ || rw == S_WRITE);
409 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
410 (caddr_t)-1));
411 }
412
413 void
zfs_unmap_page(page_t * pp,caddr_t addr)414 zfs_unmap_page(page_t *pp, caddr_t addr)
415 {
416 if (kpm_enable) {
417 hat_kpm_mapout(pp, 0, addr);
418 } else {
419 ppmapout(addr);
420 }
421 }
422
423 /*
424 * When a file is memory mapped, we must keep the IO data synchronized
425 * between the DMU cache and the memory mapped pages. What this means:
426 *
427 * On Write: If we find a memory mapped page, we write to *both*
428 * the page and the dmu buffer.
429 */
430 static void
update_pages(vnode_t * vp,int64_t start,int len,objset_t * os,uint64_t oid)431 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
432 {
433 int64_t off;
434
435 off = start & PAGEOFFSET;
436 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
437 page_t *pp;
438 uint64_t nbytes = MIN(PAGESIZE - off, len);
439
440 if (pp = page_lookup(vp, start, SE_SHARED)) {
441 caddr_t va;
442
443 va = zfs_map_page(pp, S_WRITE);
444 (void) dmu_read(os, oid, start+off, nbytes, va+off,
445 DMU_READ_PREFETCH);
446 zfs_unmap_page(pp, va);
447 page_unlock(pp);
448 }
449 len -= nbytes;
450 off = 0;
451 }
452 }
453
454 /*
455 * When a file is memory mapped, we must keep the IO data synchronized
456 * between the DMU cache and the memory mapped pages. What this means:
457 *
458 * On Read: We "read" preferentially from memory mapped pages,
459 * else we default from the dmu buffer.
460 *
461 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
462 * the file is memory mapped.
463 */
464 static int
mappedread(vnode_t * vp,int nbytes,uio_t * uio)465 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
466 {
467 znode_t *zp = VTOZ(vp);
468 int64_t start, off;
469 int len = nbytes;
470 int error = 0;
471
472 start = uio->uio_loffset;
473 off = start & PAGEOFFSET;
474 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
475 page_t *pp;
476 uint64_t bytes = MIN(PAGESIZE - off, len);
477
478 if (pp = page_lookup(vp, start, SE_SHARED)) {
479 caddr_t va;
480
481 va = zfs_map_page(pp, S_READ);
482 error = uiomove(va + off, bytes, UIO_READ, uio);
483 zfs_unmap_page(pp, va);
484 page_unlock(pp);
485 } else {
486 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
487 uio, bytes);
488 }
489 len -= bytes;
490 off = 0;
491 if (error)
492 break;
493 }
494 return (error);
495 }
496
497 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
498
499 /*
500 * Read bytes from specified file into supplied buffer.
501 *
502 * IN: vp - vnode of file to be read from.
503 * uio - structure supplying read location, range info,
504 * and return buffer.
505 * ioflag - SYNC flags; used to provide FRSYNC semantics.
506 * cr - credentials of caller.
507 * ct - caller context
508 *
509 * OUT: uio - updated offset and range, buffer filled.
510 *
511 * RETURN: 0 on success, error code on failure.
512 *
513 * Side Effects:
514 * vp - atime updated if byte count > 0
515 */
516 /* ARGSUSED */
517 static int
zfs_read(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)518 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
519 {
520 znode_t *zp = VTOZ(vp);
521 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
522 ssize_t n, nbytes;
523 int error = 0;
524 rl_t *rl;
525 xuio_t *xuio = NULL;
526
527 ZFS_ENTER(zfsvfs);
528 ZFS_VERIFY_ZP(zp);
529
530 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
531 ZFS_EXIT(zfsvfs);
532 return (SET_ERROR(EACCES));
533 }
534
535 /*
536 * Validate file offset
537 */
538 if (uio->uio_loffset < (offset_t)0) {
539 ZFS_EXIT(zfsvfs);
540 return (SET_ERROR(EINVAL));
541 }
542
543 /*
544 * Fasttrack empty reads
545 */
546 if (uio->uio_resid == 0) {
547 ZFS_EXIT(zfsvfs);
548 return (0);
549 }
550
551 /*
552 * Check for mandatory locks
553 */
554 if (MANDMODE(zp->z_mode)) {
555 if (error = chklock(vp, FREAD,
556 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
557 ZFS_EXIT(zfsvfs);
558 return (error);
559 }
560 }
561
562 /*
563 * If we're in FRSYNC mode, sync out this znode before reading it.
564 */
565 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
566 zil_commit(zfsvfs->z_log, zp->z_id);
567
568 /*
569 * Lock the range against changes.
570 */
571 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
572
573 /*
574 * If we are reading past end-of-file we can skip
575 * to the end; but we might still need to set atime.
576 */
577 if (uio->uio_loffset >= zp->z_size) {
578 error = 0;
579 goto out;
580 }
581
582 ASSERT(uio->uio_loffset < zp->z_size);
583 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
584
585 if ((uio->uio_extflg == UIO_XUIO) &&
586 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
587 int nblk;
588 int blksz = zp->z_blksz;
589 uint64_t offset = uio->uio_loffset;
590
591 xuio = (xuio_t *)uio;
592 if ((ISP2(blksz))) {
593 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
594 blksz)) / blksz;
595 } else {
596 ASSERT(offset + n <= blksz);
597 nblk = 1;
598 }
599 (void) dmu_xuio_init(xuio, nblk);
600
601 if (vn_has_cached_data(vp)) {
602 /*
603 * For simplicity, we always allocate a full buffer
604 * even if we only expect to read a portion of a block.
605 */
606 while (--nblk >= 0) {
607 (void) dmu_xuio_add(xuio,
608 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
609 blksz), 0, blksz);
610 }
611 }
612 }
613
614 while (n > 0) {
615 nbytes = MIN(n, zfs_read_chunk_size -
616 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
617
618 if (vn_has_cached_data(vp)) {
619 error = mappedread(vp, nbytes, uio);
620 } else {
621 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
622 uio, nbytes);
623 }
624 if (error) {
625 /* convert checksum errors into IO errors */
626 if (error == ECKSUM)
627 error = SET_ERROR(EIO);
628 break;
629 }
630
631 n -= nbytes;
632 }
633 out:
634 zfs_range_unlock(rl);
635
636 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
637 ZFS_EXIT(zfsvfs);
638 return (error);
639 }
640
641 /*
642 * Write the bytes to a file.
643 *
644 * IN: vp - vnode of file to be written to.
645 * uio - structure supplying write location, range info,
646 * and data buffer.
647 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
648 * set if in append mode.
649 * cr - credentials of caller.
650 * ct - caller context (NFS/CIFS fem monitor only)
651 *
652 * OUT: uio - updated offset and range.
653 *
654 * RETURN: 0 on success, error code on failure.
655 *
656 * Timestamps:
657 * vp - ctime|mtime updated if byte count > 0
658 */
659
660 /* ARGSUSED */
661 static int
zfs_write(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)662 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
663 {
664 znode_t *zp = VTOZ(vp);
665 rlim64_t limit = uio->uio_llimit;
666 ssize_t start_resid = uio->uio_resid;
667 ssize_t tx_bytes;
668 uint64_t end_size;
669 dmu_tx_t *tx;
670 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
671 zilog_t *zilog;
672 offset_t woff;
673 ssize_t n, nbytes;
674 rl_t *rl;
675 int max_blksz = zfsvfs->z_max_blksz;
676 int error = 0;
677 arc_buf_t *abuf;
678 iovec_t *aiov = NULL;
679 xuio_t *xuio = NULL;
680 int i_iov = 0;
681 int iovcnt = uio->uio_iovcnt;
682 iovec_t *iovp = uio->uio_iov;
683 int write_eof;
684 int count = 0;
685 sa_bulk_attr_t bulk[4];
686 uint64_t mtime[2], ctime[2];
687 ssize_t lock_off, lock_len;
688
689 /*
690 * Fasttrack empty write
691 */
692 n = start_resid;
693 if (n == 0)
694 return (0);
695
696 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
697 limit = MAXOFFSET_T;
698
699 ZFS_ENTER(zfsvfs);
700 ZFS_VERIFY_ZP(zp);
701
702 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
703 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
704 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
705 &zp->z_size, 8);
706 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
707 &zp->z_pflags, 8);
708
709 /*
710 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
711 * callers might not be able to detect properly that we are read-only,
712 * so check it explicitly here.
713 */
714 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
715 ZFS_EXIT(zfsvfs);
716 return (SET_ERROR(EROFS));
717 }
718
719 /*
720 * If immutable or not appending then return EPERM
721 */
722 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
723 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
724 (uio->uio_loffset < zp->z_size))) {
725 ZFS_EXIT(zfsvfs);
726 return (SET_ERROR(EPERM));
727 }
728
729 zilog = zfsvfs->z_log;
730
731 /*
732 * Validate file offset
733 */
734 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
735 if (woff < 0) {
736 ZFS_EXIT(zfsvfs);
737 return (SET_ERROR(EINVAL));
738 }
739
740 /*
741 * Check for mandatory locks before calling zfs_range_lock()
742 * in order to prevent a deadlock with locks set via fcntl().
743 */
744 if (MANDMODE((mode_t)zp->z_mode) &&
745 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
746 ZFS_EXIT(zfsvfs);
747 return (error);
748 }
749
750 /*
751 * Pre-fault the pages to ensure slow (eg NFS) pages
752 * don't hold up txg.
753 * Skip this if uio contains loaned arc_buf.
754 */
755 if ((uio->uio_extflg == UIO_XUIO) &&
756 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
757 xuio = (xuio_t *)uio;
758 else
759 uio_prefaultpages(MIN(n, max_blksz), uio);
760
761 /*
762 * If in append mode, set the io offset pointer to eof.
763 */
764 if (ioflag & FAPPEND) {
765 /*
766 * Obtain an appending range lock to guarantee file append
767 * semantics. We reset the write offset once we have the lock.
768 */
769 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
770 woff = rl->r_off;
771 if (rl->r_len == UINT64_MAX) {
772 /*
773 * We overlocked the file because this write will cause
774 * the file block size to increase.
775 * Note that zp_size cannot change with this lock held.
776 */
777 woff = zp->z_size;
778 }
779 uio->uio_loffset = woff;
780 } else {
781 /*
782 * Note that if the file block size will change as a result of
783 * this write, then this range lock will lock the entire file
784 * so that we can re-write the block safely.
785 */
786
787 /*
788 * If in zev mode, lock offsets are quantized to 1MB chunks
789 * so that we can calculate level 1 checksums later on.
790 */
791 if (rz_zev_active()) {
792 /* start of this megabyte */
793 lock_off = P2ALIGN(woff, ZEV_L1_SIZE);
794 /* full megabytes */
795 lock_len = n + (woff - lock_off);
796 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE);
797 } else {
798 lock_off = woff;
799 lock_len = n;
800 }
801
802 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER);
803 }
804
805 if (woff >= limit) {
806 zfs_range_unlock(rl);
807 ZFS_EXIT(zfsvfs);
808 return (SET_ERROR(EFBIG));
809 }
810
811 if ((woff + n) > limit || woff > (limit - n))
812 n = limit - woff;
813
814 /* Will this write extend the file length? */
815 write_eof = (woff + n > zp->z_size);
816
817 end_size = MAX(zp->z_size, woff + n);
818
819 /*
820 * Write the file in reasonable size chunks. Each chunk is written
821 * in a separate transaction; this keeps the intent log records small
822 * and allows us to do more fine-grained space accounting.
823 */
824 while (n > 0) {
825 abuf = NULL;
826 woff = uio->uio_loffset;
827 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
828 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
829 if (abuf != NULL)
830 dmu_return_arcbuf(abuf);
831 error = SET_ERROR(EDQUOT);
832 break;
833 }
834
835 if (xuio && abuf == NULL) {
836 ASSERT(i_iov < iovcnt);
837 aiov = &iovp[i_iov];
838 abuf = dmu_xuio_arcbuf(xuio, i_iov);
839 dmu_xuio_clear(xuio, i_iov);
840 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
841 iovec_t *, aiov, arc_buf_t *, abuf);
842 ASSERT((aiov->iov_base == abuf->b_data) ||
843 ((char *)aiov->iov_base - (char *)abuf->b_data +
844 aiov->iov_len == arc_buf_size(abuf)));
845 i_iov++;
846 } else if (abuf == NULL && n >= max_blksz &&
847 woff >= zp->z_size &&
848 P2PHASE(woff, max_blksz) == 0 &&
849 zp->z_blksz == max_blksz) {
850 /*
851 * This write covers a full block. "Borrow" a buffer
852 * from the dmu so that we can fill it before we enter
853 * a transaction. This avoids the possibility of
854 * holding up the transaction if the data copy hangs
855 * up on a pagefault (e.g., from an NFS server mapping).
856 */
857 size_t cbytes;
858
859 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
860 max_blksz);
861 ASSERT(abuf != NULL);
862 ASSERT(arc_buf_size(abuf) == max_blksz);
863 if (error = uiocopy(abuf->b_data, max_blksz,
864 UIO_WRITE, uio, &cbytes)) {
865 dmu_return_arcbuf(abuf);
866 break;
867 }
868 ASSERT(cbytes == max_blksz);
869 }
870
871 /*
872 * Start a transaction.
873 */
874 tx = dmu_tx_create(zfsvfs->z_os);
875 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
876 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
877 zfs_sa_upgrade_txholds(tx, zp);
878 error = dmu_tx_assign(tx, TXG_WAIT);
879 if (error) {
880 dmu_tx_abort(tx);
881 if (abuf != NULL)
882 dmu_return_arcbuf(abuf);
883 break;
884 }
885
886 /*
887 * If zfs_range_lock() over-locked we grow the blocksize
888 * and then reduce the lock range. This will only happen
889 * on the first iteration since zfs_range_reduce() will
890 * shrink down r_len to the appropriate size.
891 */
892 if (rl->r_len == UINT64_MAX) {
893 uint64_t new_blksz;
894
895 if (zp->z_blksz > max_blksz) {
896 /*
897 * File's blocksize is already larger than the
898 * "recordsize" property. Only let it grow to
899 * the next power of 2.
900 */
901 ASSERT(!ISP2(zp->z_blksz));
902 new_blksz = MIN(end_size,
903 1 << highbit64(zp->z_blksz));
904 } else {
905 new_blksz = MIN(end_size, max_blksz);
906 }
907 zfs_grow_blocksize(zp, new_blksz, tx);
908 zfs_range_reduce(rl, woff, n);
909 }
910
911 /*
912 * XXX - should we really limit each write to z_max_blksz?
913 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
914 */
915 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
916
917 if (abuf == NULL) {
918 tx_bytes = uio->uio_resid;
919 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
920 uio, nbytes, tx);
921 tx_bytes -= uio->uio_resid;
922 } else {
923 tx_bytes = nbytes;
924 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
925 /*
926 * If this is not a full block write, but we are
927 * extending the file past EOF and this data starts
928 * block-aligned, use assign_arcbuf(). Otherwise,
929 * write via dmu_write().
930 */
931 if (tx_bytes < max_blksz && (!write_eof ||
932 aiov->iov_base != abuf->b_data)) {
933 ASSERT(xuio);
934 dmu_write(zfsvfs->z_os, zp->z_id, woff,
935 aiov->iov_len, aiov->iov_base, tx);
936 dmu_return_arcbuf(abuf);
937 xuio_stat_wbuf_copied();
938 } else {
939 ASSERT(xuio || tx_bytes == max_blksz);
940 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
941 woff, abuf, tx);
942 }
943 ASSERT(tx_bytes <= uio->uio_resid);
944 uioskip(uio, tx_bytes);
945 }
946 if (tx_bytes && vn_has_cached_data(vp)) {
947 update_pages(vp, woff,
948 tx_bytes, zfsvfs->z_os, zp->z_id);
949 }
950
951 /*
952 * If we made no progress, we're done. If we made even
953 * partial progress, update the znode and ZIL accordingly.
954 */
955 if (tx_bytes == 0) {
956 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
957 (void *)&zp->z_size, sizeof (uint64_t), tx);
958 dmu_tx_commit(tx);
959 ASSERT(error != 0);
960 break;
961 }
962
963 /*
964 * Clear Set-UID/Set-GID bits on successful write if not
965 * privileged and at least one of the excute bits is set.
966 *
967 * It would be nice to to this after all writes have
968 * been done, but that would still expose the ISUID/ISGID
969 * to another app after the partial write is committed.
970 *
971 * Note: we don't call zfs_fuid_map_id() here because
972 * user 0 is not an ephemeral uid.
973 */
974 mutex_enter(&zp->z_acl_lock);
975 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
976 (S_IXUSR >> 6))) != 0 &&
977 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
978 secpolicy_vnode_setid_retain(cr,
979 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
980 uint64_t newmode;
981 zp->z_mode &= ~(S_ISUID | S_ISGID);
982 newmode = zp->z_mode;
983 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
984 (void *)&newmode, sizeof (uint64_t), tx);
985 }
986 mutex_exit(&zp->z_acl_lock);
987
988 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
989 B_TRUE);
990
991 /*
992 * Update the file size (zp_size) if it has changed;
993 * account for possible concurrent updates.
994 */
995 while ((end_size = zp->z_size) < uio->uio_loffset) {
996 (void) atomic_cas_64(&zp->z_size, end_size,
997 uio->uio_loffset);
998 ASSERT(error == 0);
999 }
1000 /*
1001 * If we are replaying and eof is non zero then force
1002 * the file size to the specified eof. Note, there's no
1003 * concurrency during replay.
1004 */
1005 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1006 zp->z_size = zfsvfs->z_replay_eof;
1007
1008 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1009
1010 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1011 dmu_tx_commit(tx);
1012
1013 if (error != 0)
1014 break;
1015 ASSERT(tx_bytes == nbytes);
1016 n -= nbytes;
1017
1018 if (!xuio && n > 0)
1019 uio_prefaultpages(MIN(n, max_blksz), uio);
1020 }
1021
1022 zfs_range_unlock(rl);
1023
1024 /*
1025 * If we're in replay mode, or we made no progress, return error.
1026 * Otherwise, it's at least a partial write, so it's successful.
1027 */
1028 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1029 ZFS_EXIT(zfsvfs);
1030 return (error);
1031 }
1032
1033 if (ioflag & (FSYNC | FDSYNC) ||
1034 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1035 zil_commit(zilog, zp->z_id);
1036
1037 ZFS_EXIT(zfsvfs);
1038 return (0);
1039 }
1040
1041 void
zfs_get_done(zgd_t * zgd,int error)1042 zfs_get_done(zgd_t *zgd, int error)
1043 {
1044 znode_t *zp = zgd->zgd_private;
1045 objset_t *os = zp->z_zfsvfs->z_os;
1046
1047 if (zgd->zgd_db)
1048 dmu_buf_rele(zgd->zgd_db, zgd);
1049
1050 zfs_range_unlock(zgd->zgd_rl);
1051
1052 /*
1053 * Release the vnode asynchronously as we currently have the
1054 * txg stopped from syncing.
1055 */
1056 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1057
1058 if (error == 0 && zgd->zgd_bp)
1059 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1060
1061 kmem_free(zgd, sizeof (zgd_t));
1062 }
1063
1064 #ifdef DEBUG
1065 static int zil_fault_io = 0;
1066 #endif
1067
1068 /*
1069 * Get data to generate a TX_WRITE intent log record.
1070 */
1071 int
zfs_get_data(void * arg,lr_write_t * lr,char * buf,zio_t * zio)1072 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1073 {
1074 zfsvfs_t *zfsvfs = arg;
1075 objset_t *os = zfsvfs->z_os;
1076 znode_t *zp;
1077 uint64_t object = lr->lr_foid;
1078 uint64_t offset = lr->lr_offset;
1079 uint64_t size = lr->lr_length;
1080 blkptr_t *bp = &lr->lr_blkptr;
1081 dmu_buf_t *db;
1082 zgd_t *zgd;
1083 int error = 0;
1084
1085 ASSERT(zio != NULL);
1086 ASSERT(size != 0);
1087
1088 /*
1089 * Nothing to do if the file has been removed
1090 */
1091 if (zfs_zget(zfsvfs, object, &zp) != 0)
1092 return (SET_ERROR(ENOENT));
1093 if (zp->z_unlinked) {
1094 /*
1095 * Release the vnode asynchronously as we currently have the
1096 * txg stopped from syncing.
1097 */
1098 VN_RELE_ASYNC(ZTOV(zp),
1099 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1100 return (SET_ERROR(ENOENT));
1101 }
1102
1103 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1104 zgd->zgd_zilog = zfsvfs->z_log;
1105 zgd->zgd_private = zp;
1106
1107 /*
1108 * Write records come in two flavors: immediate and indirect.
1109 * For small writes it's cheaper to store the data with the
1110 * log record (immediate); for large writes it's cheaper to
1111 * sync the data and get a pointer to it (indirect) so that
1112 * we don't have to write the data twice.
1113 */
1114 if (buf != NULL) { /* immediate write */
1115 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1116 /* test for truncation needs to be done while range locked */
1117 if (offset >= zp->z_size) {
1118 error = SET_ERROR(ENOENT);
1119 } else {
1120 error = dmu_read(os, object, offset, size, buf,
1121 DMU_READ_NO_PREFETCH);
1122 }
1123 ASSERT(error == 0 || error == ENOENT);
1124 } else { /* indirect write */
1125 /*
1126 * Have to lock the whole block to ensure when it's
1127 * written out and it's checksum is being calculated
1128 * that no one can change the data. We need to re-check
1129 * blocksize after we get the lock in case it's changed!
1130 */
1131 for (;;) {
1132 uint64_t blkoff;
1133 size = zp->z_blksz;
1134 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1135 offset -= blkoff;
1136 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1137 RL_READER);
1138 if (zp->z_blksz == size)
1139 break;
1140 offset += blkoff;
1141 zfs_range_unlock(zgd->zgd_rl);
1142 }
1143 /* test for truncation needs to be done while range locked */
1144 if (lr->lr_offset >= zp->z_size)
1145 error = SET_ERROR(ENOENT);
1146 #ifdef DEBUG
1147 if (zil_fault_io) {
1148 error = SET_ERROR(EIO);
1149 zil_fault_io = 0;
1150 }
1151 #endif
1152 if (error == 0)
1153 error = dmu_buf_hold(os, object, offset, zgd, &db,
1154 DMU_READ_NO_PREFETCH);
1155
1156 if (error == 0) {
1157 blkptr_t *obp = dmu_buf_get_blkptr(db);
1158 if (obp) {
1159 ASSERT(BP_IS_HOLE(bp));
1160 *bp = *obp;
1161 }
1162
1163 zgd->zgd_db = db;
1164 zgd->zgd_bp = bp;
1165
1166 ASSERT(db->db_offset == offset);
1167 ASSERT(db->db_size == size);
1168
1169 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1170 zfs_get_done, zgd);
1171 ASSERT(error || lr->lr_length <= zp->z_blksz);
1172
1173 /*
1174 * On success, we need to wait for the write I/O
1175 * initiated by dmu_sync() to complete before we can
1176 * release this dbuf. We will finish everything up
1177 * in the zfs_get_done() callback.
1178 */
1179 if (error == 0)
1180 return (0);
1181
1182 if (error == EALREADY) {
1183 lr->lr_common.lrc_txtype = TX_WRITE2;
1184 error = 0;
1185 }
1186 }
1187 }
1188
1189 zfs_get_done(zgd, error);
1190
1191 return (error);
1192 }
1193
1194 /*ARGSUSED*/
1195 static int
zfs_access(vnode_t * vp,int mode,int flag,cred_t * cr,caller_context_t * ct)1196 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1197 caller_context_t *ct)
1198 {
1199 znode_t *zp = VTOZ(vp);
1200 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1201 int error;
1202
1203 ZFS_ENTER(zfsvfs);
1204 ZFS_VERIFY_ZP(zp);
1205
1206 if (flag & V_ACE_MASK)
1207 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1208 else
1209 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1210
1211 ZFS_EXIT(zfsvfs);
1212 return (error);
1213 }
1214
1215 /*
1216 * If vnode is for a device return a specfs vnode instead.
1217 */
1218 static int
specvp_check(vnode_t ** vpp,cred_t * cr)1219 specvp_check(vnode_t **vpp, cred_t *cr)
1220 {
1221 int error = 0;
1222
1223 if (IS_DEVVP(*vpp)) {
1224 struct vnode *svp;
1225
1226 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1227 VN_RELE(*vpp);
1228 if (svp == NULL)
1229 error = SET_ERROR(ENOSYS);
1230 *vpp = svp;
1231 }
1232 return (error);
1233 }
1234
1235
1236 /*
1237 * Lookup an entry in a directory, or an extended attribute directory.
1238 * If it exists, return a held vnode reference for it.
1239 *
1240 * IN: dvp - vnode of directory to search.
1241 * nm - name of entry to lookup.
1242 * pnp - full pathname to lookup [UNUSED].
1243 * flags - LOOKUP_XATTR set if looking for an attribute.
1244 * rdir - root directory vnode [UNUSED].
1245 * cr - credentials of caller.
1246 * ct - caller context
1247 * direntflags - directory lookup flags
1248 * realpnp - returned pathname.
1249 *
1250 * OUT: vpp - vnode of located entry, NULL if not found.
1251 *
1252 * RETURN: 0 on success, error code on failure.
1253 *
1254 * Timestamps:
1255 * NA
1256 */
1257 /* ARGSUSED */
1258 static int
zfs_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1259 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1260 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1261 int *direntflags, pathname_t *realpnp)
1262 {
1263 znode_t *zdp = VTOZ(dvp);
1264 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1265 int error = 0;
1266
1267 /* fast path */
1268 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1269
1270 if (dvp->v_type != VDIR) {
1271 return (SET_ERROR(ENOTDIR));
1272 } else if (zdp->z_sa_hdl == NULL) {
1273 return (SET_ERROR(EIO));
1274 }
1275
1276 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1277 error = zfs_fastaccesschk_execute(zdp, cr);
1278 if (!error) {
1279 *vpp = dvp;
1280 VN_HOLD(*vpp);
1281 return (0);
1282 }
1283 return (error);
1284 } else {
1285 vnode_t *tvp = dnlc_lookup(dvp, nm);
1286
1287 if (tvp) {
1288 error = zfs_fastaccesschk_execute(zdp, cr);
1289 if (error) {
1290 VN_RELE(tvp);
1291 return (error);
1292 }
1293 if (tvp == DNLC_NO_VNODE) {
1294 VN_RELE(tvp);
1295 return (SET_ERROR(ENOENT));
1296 } else {
1297 *vpp = tvp;
1298 return (specvp_check(vpp, cr));
1299 }
1300 }
1301 }
1302 }
1303
1304 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1305
1306 ZFS_ENTER(zfsvfs);
1307 ZFS_VERIFY_ZP(zdp);
1308
1309 *vpp = NULL;
1310
1311 if (flags & LOOKUP_XATTR) {
1312 /*
1313 * If the xattr property is off, refuse the lookup request.
1314 */
1315 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1316 ZFS_EXIT(zfsvfs);
1317 return (SET_ERROR(EINVAL));
1318 }
1319
1320 /*
1321 * We don't allow recursive attributes..
1322 * Maybe someday we will.
1323 */
1324 if (zdp->z_pflags & ZFS_XATTR) {
1325 ZFS_EXIT(zfsvfs);
1326 return (SET_ERROR(EINVAL));
1327 }
1328
1329 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1330 ZFS_EXIT(zfsvfs);
1331 return (error);
1332 }
1333
1334 /*
1335 * Do we have permission to get into attribute directory?
1336 */
1337
1338 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1339 B_FALSE, cr)) {
1340 VN_RELE(*vpp);
1341 *vpp = NULL;
1342 }
1343
1344 ZFS_EXIT(zfsvfs);
1345 return (error);
1346 }
1347
1348 if (dvp->v_type != VDIR) {
1349 ZFS_EXIT(zfsvfs);
1350 return (SET_ERROR(ENOTDIR));
1351 }
1352
1353 /*
1354 * Check accessibility of directory.
1355 */
1356
1357 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1358 ZFS_EXIT(zfsvfs);
1359 return (error);
1360 }
1361
1362 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1363 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1364 ZFS_EXIT(zfsvfs);
1365 return (SET_ERROR(EILSEQ));
1366 }
1367
1368 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1369 if (error == 0)
1370 error = specvp_check(vpp, cr);
1371
1372 ZFS_EXIT(zfsvfs);
1373 return (error);
1374 }
1375
1376 /*
1377 * Attempt to create a new entry in a directory. If the entry
1378 * already exists, truncate the file if permissible, else return
1379 * an error. Return the vp of the created or trunc'd file.
1380 *
1381 * IN: dvp - vnode of directory to put new file entry in.
1382 * name - name of new file entry.
1383 * vap - attributes of new file.
1384 * excl - flag indicating exclusive or non-exclusive mode.
1385 * mode - mode to open file with.
1386 * cr - credentials of caller.
1387 * flag - large file flag [UNUSED].
1388 * ct - caller context
1389 * vsecp - ACL to be set
1390 *
1391 * OUT: vpp - vnode of created or trunc'd entry.
1392 *
1393 * RETURN: 0 on success, error code on failure.
1394 *
1395 * Timestamps:
1396 * dvp - ctime|mtime updated if new entry created
1397 * vp - ctime|mtime always, atime if new
1398 */
1399
1400 /* ARGSUSED */
1401 static int
zfs_create(vnode_t * dvp,char * name,vattr_t * vap,vcexcl_t excl,int mode,vnode_t ** vpp,cred_t * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)1402 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1403 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1404 vsecattr_t *vsecp)
1405 {
1406 znode_t *zp, *dzp = VTOZ(dvp);
1407 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1408 zilog_t *zilog;
1409 objset_t *os;
1410 zfs_dirlock_t *dl;
1411 dmu_tx_t *tx;
1412 int error;
1413 ksid_t *ksid;
1414 uid_t uid;
1415 gid_t gid = crgetgid(cr);
1416 zfs_acl_ids_t acl_ids;
1417 boolean_t fuid_dirtied;
1418 boolean_t have_acl = B_FALSE;
1419 boolean_t waited = B_FALSE;
1420
1421 /*
1422 * If we have an ephemeral id, ACL, or XVATTR then
1423 * make sure file system is at proper version
1424 */
1425
1426 ksid = crgetsid(cr, KSID_OWNER);
1427 if (ksid)
1428 uid = ksid_getid(ksid);
1429 else
1430 uid = crgetuid(cr);
1431
1432 if (zfsvfs->z_use_fuids == B_FALSE &&
1433 (vsecp || (vap->va_mask & AT_XVATTR) ||
1434 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1435 return (SET_ERROR(EINVAL));
1436
1437 ZFS_ENTER(zfsvfs);
1438 ZFS_VERIFY_ZP(dzp);
1439 os = zfsvfs->z_os;
1440 zilog = zfsvfs->z_log;
1441
1442 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1443 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1444 ZFS_EXIT(zfsvfs);
1445 return (SET_ERROR(EILSEQ));
1446 }
1447
1448 if (vap->va_mask & AT_XVATTR) {
1449 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1450 crgetuid(cr), cr, vap->va_type)) != 0) {
1451 ZFS_EXIT(zfsvfs);
1452 return (error);
1453 }
1454 }
1455 top:
1456 *vpp = NULL;
1457
1458 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1459 vap->va_mode &= ~VSVTX;
1460
1461 if (*name == '\0') {
1462 /*
1463 * Null component name refers to the directory itself.
1464 */
1465 VN_HOLD(dvp);
1466 zp = dzp;
1467 dl = NULL;
1468 error = 0;
1469 } else {
1470 /* possible VN_HOLD(zp) */
1471 int zflg = 0;
1472
1473 if (flag & FIGNORECASE)
1474 zflg |= ZCILOOK;
1475
1476 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1477 NULL, NULL);
1478 if (error) {
1479 if (have_acl)
1480 zfs_acl_ids_free(&acl_ids);
1481 if (strcmp(name, "..") == 0)
1482 error = SET_ERROR(EISDIR);
1483 ZFS_EXIT(zfsvfs);
1484 return (error);
1485 }
1486 }
1487
1488 if (zp == NULL) {
1489 uint64_t txtype;
1490
1491 /*
1492 * Create a new file object and update the directory
1493 * to reference it.
1494 */
1495 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1496 if (have_acl)
1497 zfs_acl_ids_free(&acl_ids);
1498 goto out;
1499 }
1500
1501 /*
1502 * We only support the creation of regular files in
1503 * extended attribute directories.
1504 */
1505
1506 if ((dzp->z_pflags & ZFS_XATTR) &&
1507 (vap->va_type != VREG)) {
1508 if (have_acl)
1509 zfs_acl_ids_free(&acl_ids);
1510 error = SET_ERROR(EINVAL);
1511 goto out;
1512 }
1513
1514 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1515 cr, vsecp, &acl_ids)) != 0)
1516 goto out;
1517 have_acl = B_TRUE;
1518
1519 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1520 zfs_acl_ids_free(&acl_ids);
1521 error = SET_ERROR(EDQUOT);
1522 goto out;
1523 }
1524
1525 tx = dmu_tx_create(os);
1526
1527 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1528 ZFS_SA_BASE_ATTR_SIZE);
1529
1530 fuid_dirtied = zfsvfs->z_fuid_dirty;
1531 if (fuid_dirtied)
1532 zfs_fuid_txhold(zfsvfs, tx);
1533 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1534 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1535 if (!zfsvfs->z_use_sa &&
1536 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1537 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1538 0, acl_ids.z_aclp->z_acl_bytes);
1539 }
1540 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1541 if (error) {
1542 zfs_dirent_unlock(dl);
1543 if (error == ERESTART) {
1544 waited = B_TRUE;
1545 dmu_tx_wait(tx);
1546 dmu_tx_abort(tx);
1547 goto top;
1548 }
1549 zfs_acl_ids_free(&acl_ids);
1550 dmu_tx_abort(tx);
1551 ZFS_EXIT(zfsvfs);
1552 return (error);
1553 }
1554 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1555
1556 if (fuid_dirtied)
1557 zfs_fuid_sync(zfsvfs, tx);
1558
1559 (void) zfs_link_create(dl, zp, tx, ZNEW);
1560 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1561 if (flag & FIGNORECASE)
1562 txtype |= TX_CI;
1563 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1564 vsecp, acl_ids.z_fuidp, vap);
1565 zfs_acl_ids_free(&acl_ids);
1566 dmu_tx_commit(tx);
1567 } else {
1568 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1569
1570 if (have_acl)
1571 zfs_acl_ids_free(&acl_ids);
1572 have_acl = B_FALSE;
1573
1574 /*
1575 * A directory entry already exists for this name.
1576 */
1577 /*
1578 * Can't truncate an existing file if in exclusive mode.
1579 */
1580 if (excl == EXCL) {
1581 error = SET_ERROR(EEXIST);
1582 goto out;
1583 }
1584 /*
1585 * Can't open a directory for writing.
1586 */
1587 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1588 error = SET_ERROR(EISDIR);
1589 goto out;
1590 }
1591 /*
1592 * Verify requested access to file.
1593 */
1594 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1595 goto out;
1596 }
1597
1598 mutex_enter(&dzp->z_lock);
1599 dzp->z_seq++;
1600 mutex_exit(&dzp->z_lock);
1601
1602 /*
1603 * Truncate regular files if requested.
1604 */
1605 if ((ZTOV(zp)->v_type == VREG) &&
1606 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1607 /* we can't hold any locks when calling zfs_freesp() */
1608 zfs_dirent_unlock(dl);
1609 dl = NULL;
1610 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1611 if (error == 0) {
1612 vnevent_create(ZTOV(zp), ct);
1613 }
1614 }
1615 }
1616 out:
1617
1618 if (dl)
1619 zfs_dirent_unlock(dl);
1620
1621 if (error) {
1622 if (zp)
1623 VN_RELE(ZTOV(zp));
1624 } else {
1625 *vpp = ZTOV(zp);
1626 error = specvp_check(vpp, cr);
1627 }
1628
1629 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1630 zil_commit(zilog, 0);
1631
1632 ZFS_EXIT(zfsvfs);
1633 return (error);
1634 }
1635
1636 /*
1637 * Remove an entry from a directory.
1638 *
1639 * IN: dvp - vnode of directory to remove entry from.
1640 * name - name of entry to remove.
1641 * cr - credentials of caller.
1642 * ct - caller context
1643 * flags - case flags
1644 *
1645 * RETURN: 0 on success, error code on failure.
1646 *
1647 * Timestamps:
1648 * dvp - ctime|mtime
1649 * vp - ctime (if nlink > 0)
1650 */
1651
1652 uint64_t null_xattr = 0;
1653
1654 /*ARGSUSED*/
1655 static int
zfs_remove(vnode_t * dvp,char * name,cred_t * cr,caller_context_t * ct,int flags)1656 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1657 int flags)
1658 {
1659 znode_t *zp, *dzp = VTOZ(dvp);
1660 znode_t *xzp;
1661 vnode_t *vp;
1662 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1663 zilog_t *zilog;
1664 uint64_t acl_obj, xattr_obj;
1665 uint64_t xattr_obj_unlinked = 0;
1666 uint64_t obj = 0;
1667 zfs_dirlock_t *dl;
1668 dmu_tx_t *tx;
1669 boolean_t may_delete_now, delete_now = FALSE;
1670 boolean_t unlinked, toobig = FALSE;
1671 uint64_t txtype;
1672 pathname_t *realnmp = NULL;
1673 pathname_t realnm;
1674 int error;
1675 int zflg = ZEXISTS;
1676 boolean_t waited = B_FALSE;
1677
1678 ZFS_ENTER(zfsvfs);
1679 ZFS_VERIFY_ZP(dzp);
1680 zilog = zfsvfs->z_log;
1681
1682 if (flags & FIGNORECASE) {
1683 zflg |= ZCILOOK;
1684 pn_alloc(&realnm);
1685 realnmp = &realnm;
1686 }
1687
1688 top:
1689 xattr_obj = 0;
1690 xzp = NULL;
1691 /*
1692 * Attempt to lock directory; fail if entry doesn't exist.
1693 */
1694 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1695 NULL, realnmp)) {
1696 if (realnmp)
1697 pn_free(realnmp);
1698 ZFS_EXIT(zfsvfs);
1699 return (error);
1700 }
1701
1702 vp = ZTOV(zp);
1703
1704 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1705 goto out;
1706 }
1707
1708 /*
1709 * Need to use rmdir for removing directories.
1710 */
1711 if (vp->v_type == VDIR) {
1712 error = SET_ERROR(EPERM);
1713 goto out;
1714 }
1715
1716 vnevent_remove(vp, dvp, name, ct);
1717
1718 if (realnmp)
1719 dnlc_remove(dvp, realnmp->pn_buf);
1720 else
1721 dnlc_remove(dvp, name);
1722
1723 mutex_enter(&vp->v_lock);
1724 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1725 mutex_exit(&vp->v_lock);
1726
1727 /*
1728 * We may delete the znode now, or we may put it in the unlinked set;
1729 * it depends on whether we're the last link, and on whether there are
1730 * other holds on the vnode. So we dmu_tx_hold() the right things to
1731 * allow for either case.
1732 */
1733 obj = zp->z_id;
1734 tx = dmu_tx_create(zfsvfs->z_os);
1735 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1736 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1737 zfs_sa_upgrade_txholds(tx, zp);
1738 zfs_sa_upgrade_txholds(tx, dzp);
1739 if (may_delete_now) {
1740 toobig =
1741 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1742 /* if the file is too big, only hold_free a token amount */
1743 dmu_tx_hold_free(tx, zp->z_id, 0,
1744 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1745 }
1746
1747 /* are there any extended attributes? */
1748 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1749 &xattr_obj, sizeof (xattr_obj));
1750 if (error == 0 && xattr_obj) {
1751 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1752 ASSERT0(error);
1753 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1754 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1755 }
1756
1757 mutex_enter(&zp->z_lock);
1758 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1759 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1760 mutex_exit(&zp->z_lock);
1761
1762 /* charge as an update -- would be nice not to charge at all */
1763 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1764
1765 /*
1766 * Mark this transaction as typically resulting in a net free of space
1767 */
1768 dmu_tx_mark_netfree(tx);
1769
1770 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1771 if (error) {
1772 zfs_dirent_unlock(dl);
1773 VN_RELE(vp);
1774 if (xzp)
1775 VN_RELE(ZTOV(xzp));
1776 if (error == ERESTART) {
1777 waited = B_TRUE;
1778 dmu_tx_wait(tx);
1779 dmu_tx_abort(tx);
1780 goto top;
1781 }
1782 if (realnmp)
1783 pn_free(realnmp);
1784 dmu_tx_abort(tx);
1785 ZFS_EXIT(zfsvfs);
1786 return (error);
1787 }
1788
1789 /*
1790 * Remove the directory entry.
1791 */
1792 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1793
1794 if (error) {
1795 dmu_tx_commit(tx);
1796 goto out;
1797 }
1798
1799 if (unlinked) {
1800 /*
1801 * Hold z_lock so that we can make sure that the ACL obj
1802 * hasn't changed. Could have been deleted due to
1803 * zfs_sa_upgrade().
1804 */
1805 mutex_enter(&zp->z_lock);
1806 mutex_enter(&vp->v_lock);
1807 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1808 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1809 delete_now = may_delete_now && !toobig &&
1810 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1811 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1812 acl_obj;
1813 mutex_exit(&vp->v_lock);
1814 }
1815
1816 txtype = TX_REMOVE;
1817 if (flags & FIGNORECASE)
1818 txtype |= TX_CI;
1819 rw_enter(&rz_zev_rwlock, RW_READER);
1820 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
1821 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
1822 name, txtype);
1823 rw_exit(&rz_zev_rwlock);
1824
1825 if (delete_now) {
1826 if (xattr_obj_unlinked) {
1827 ASSERT3U(xzp->z_links, ==, 2);
1828 mutex_enter(&xzp->z_lock);
1829 xzp->z_unlinked = 1;
1830 xzp->z_links = 0;
1831 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1832 &xzp->z_links, sizeof (xzp->z_links), tx);
1833 ASSERT3U(error, ==, 0);
1834 mutex_exit(&xzp->z_lock);
1835 zfs_unlinked_add(xzp, tx);
1836
1837 if (zp->z_is_sa)
1838 error = sa_remove(zp->z_sa_hdl,
1839 SA_ZPL_XATTR(zfsvfs), tx);
1840 else
1841 error = sa_update(zp->z_sa_hdl,
1842 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1843 sizeof (uint64_t), tx);
1844 ASSERT0(error);
1845 }
1846 mutex_enter(&vp->v_lock);
1847 vp->v_count--;
1848 ASSERT0(vp->v_count);
1849 mutex_exit(&vp->v_lock);
1850 mutex_exit(&zp->z_lock);
1851 zfs_znode_delete(zp, tx);
1852 } else if (unlinked) {
1853 mutex_exit(&zp->z_lock);
1854 zfs_unlinked_add(zp, tx);
1855 }
1856
1857 txtype = TX_REMOVE;
1858 if (flags & FIGNORECASE)
1859 txtype |= TX_CI;
1860 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1861
1862 dmu_tx_commit(tx);
1863 out:
1864 if (realnmp)
1865 pn_free(realnmp);
1866
1867 zfs_dirent_unlock(dl);
1868
1869 if (!delete_now)
1870 VN_RELE(vp);
1871 if (xzp)
1872 VN_RELE(ZTOV(xzp));
1873
1874 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1875 zil_commit(zilog, 0);
1876
1877 ZFS_EXIT(zfsvfs);
1878 return (error);
1879 }
1880
1881 /*
1882 * Create a new directory and insert it into dvp using the name
1883 * provided. Return a pointer to the inserted directory.
1884 *
1885 * IN: dvp - vnode of directory to add subdir to.
1886 * dirname - name of new directory.
1887 * vap - attributes of new directory.
1888 * cr - credentials of caller.
1889 * ct - caller context
1890 * flags - case flags
1891 * vsecp - ACL to be set
1892 *
1893 * OUT: vpp - vnode of created directory.
1894 *
1895 * RETURN: 0 on success, error code on failure.
1896 *
1897 * Timestamps:
1898 * dvp - ctime|mtime updated
1899 * vp - ctime|mtime|atime updated
1900 */
1901 /*ARGSUSED*/
1902 static int
zfs_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)1903 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1904 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1905 {
1906 znode_t *zp, *dzp = VTOZ(dvp);
1907 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1908 zilog_t *zilog;
1909 zfs_dirlock_t *dl;
1910 uint64_t txtype;
1911 dmu_tx_t *tx;
1912 int error;
1913 int zf = ZNEW;
1914 ksid_t *ksid;
1915 uid_t uid;
1916 gid_t gid = crgetgid(cr);
1917 zfs_acl_ids_t acl_ids;
1918 boolean_t fuid_dirtied;
1919 boolean_t waited = B_FALSE;
1920
1921 ASSERT(vap->va_type == VDIR);
1922
1923 /*
1924 * If we have an ephemeral id, ACL, or XVATTR then
1925 * make sure file system is at proper version
1926 */
1927
1928 ksid = crgetsid(cr, KSID_OWNER);
1929 if (ksid)
1930 uid = ksid_getid(ksid);
1931 else
1932 uid = crgetuid(cr);
1933 if (zfsvfs->z_use_fuids == B_FALSE &&
1934 (vsecp || (vap->va_mask & AT_XVATTR) ||
1935 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1936 return (SET_ERROR(EINVAL));
1937
1938 ZFS_ENTER(zfsvfs);
1939 ZFS_VERIFY_ZP(dzp);
1940 zilog = zfsvfs->z_log;
1941
1942 if (dzp->z_pflags & ZFS_XATTR) {
1943 ZFS_EXIT(zfsvfs);
1944 return (SET_ERROR(EINVAL));
1945 }
1946
1947 if (zfsvfs->z_utf8 && u8_validate(dirname,
1948 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1949 ZFS_EXIT(zfsvfs);
1950 return (SET_ERROR(EILSEQ));
1951 }
1952 if (flags & FIGNORECASE)
1953 zf |= ZCILOOK;
1954
1955 if (vap->va_mask & AT_XVATTR) {
1956 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1957 crgetuid(cr), cr, vap->va_type)) != 0) {
1958 ZFS_EXIT(zfsvfs);
1959 return (error);
1960 }
1961 }
1962
1963 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1964 vsecp, &acl_ids)) != 0) {
1965 ZFS_EXIT(zfsvfs);
1966 return (error);
1967 }
1968 /*
1969 * First make sure the new directory doesn't exist.
1970 *
1971 * Existence is checked first to make sure we don't return
1972 * EACCES instead of EEXIST which can cause some applications
1973 * to fail.
1974 */
1975 top:
1976 *vpp = NULL;
1977
1978 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1979 NULL, NULL)) {
1980 zfs_acl_ids_free(&acl_ids);
1981 ZFS_EXIT(zfsvfs);
1982 return (error);
1983 }
1984
1985 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1986 zfs_acl_ids_free(&acl_ids);
1987 zfs_dirent_unlock(dl);
1988 ZFS_EXIT(zfsvfs);
1989 return (error);
1990 }
1991
1992 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1993 zfs_acl_ids_free(&acl_ids);
1994 zfs_dirent_unlock(dl);
1995 ZFS_EXIT(zfsvfs);
1996 return (SET_ERROR(EDQUOT));
1997 }
1998
1999 /*
2000 * Add a new entry to the directory.
2001 */
2002 tx = dmu_tx_create(zfsvfs->z_os);
2003 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2004 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2005 fuid_dirtied = zfsvfs->z_fuid_dirty;
2006 if (fuid_dirtied)
2007 zfs_fuid_txhold(zfsvfs, tx);
2008 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2009 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2010 acl_ids.z_aclp->z_acl_bytes);
2011 }
2012
2013 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2014 ZFS_SA_BASE_ATTR_SIZE);
2015
2016 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2017 if (error) {
2018 zfs_dirent_unlock(dl);
2019 if (error == ERESTART) {
2020 waited = B_TRUE;
2021 dmu_tx_wait(tx);
2022 dmu_tx_abort(tx);
2023 goto top;
2024 }
2025 zfs_acl_ids_free(&acl_ids);
2026 dmu_tx_abort(tx);
2027 ZFS_EXIT(zfsvfs);
2028 return (error);
2029 }
2030
2031 /*
2032 * Create new node.
2033 */
2034 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2035
2036 if (fuid_dirtied)
2037 zfs_fuid_sync(zfsvfs, tx);
2038
2039 /*
2040 * Now put new name in parent dir.
2041 */
2042 (void) zfs_link_create(dl, zp, tx, ZNEW);
2043
2044 *vpp = ZTOV(zp);
2045
2046 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2047 if (flags & FIGNORECASE)
2048 txtype |= TX_CI;
2049 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2050 acl_ids.z_fuidp, vap);
2051
2052 zfs_acl_ids_free(&acl_ids);
2053
2054 dmu_tx_commit(tx);
2055
2056 zfs_dirent_unlock(dl);
2057
2058 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2059 zil_commit(zilog, 0);
2060
2061 ZFS_EXIT(zfsvfs);
2062 return (0);
2063 }
2064
2065 /*
2066 * Remove a directory subdir entry. If the current working
2067 * directory is the same as the subdir to be removed, the
2068 * remove will fail.
2069 *
2070 * IN: dvp - vnode of directory to remove from.
2071 * name - name of directory to be removed.
2072 * cwd - vnode of current working directory.
2073 * cr - credentials of caller.
2074 * ct - caller context
2075 * flags - case flags
2076 *
2077 * RETURN: 0 on success, error code on failure.
2078 *
2079 * Timestamps:
2080 * dvp - ctime|mtime updated
2081 */
2082 /*ARGSUSED*/
2083 static int
zfs_rmdir(vnode_t * dvp,char * name,vnode_t * cwd,cred_t * cr,caller_context_t * ct,int flags)2084 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2085 caller_context_t *ct, int flags)
2086 {
2087 znode_t *dzp = VTOZ(dvp);
2088 znode_t *zp;
2089 vnode_t *vp;
2090 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2091 zilog_t *zilog;
2092 zfs_dirlock_t *dl;
2093 dmu_tx_t *tx;
2094 int error;
2095 int zflg = ZEXISTS;
2096 boolean_t waited = B_FALSE;
2097
2098 ZFS_ENTER(zfsvfs);
2099 ZFS_VERIFY_ZP(dzp);
2100 zilog = zfsvfs->z_log;
2101
2102 if (flags & FIGNORECASE)
2103 zflg |= ZCILOOK;
2104 top:
2105 zp = NULL;
2106
2107 /*
2108 * Attempt to lock directory; fail if entry doesn't exist.
2109 */
2110 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2111 NULL, NULL)) {
2112 ZFS_EXIT(zfsvfs);
2113 return (error);
2114 }
2115
2116 vp = ZTOV(zp);
2117
2118 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2119 goto out;
2120 }
2121
2122 if (vp->v_type != VDIR) {
2123 error = SET_ERROR(ENOTDIR);
2124 goto out;
2125 }
2126
2127 if (vp == cwd) {
2128 error = SET_ERROR(EINVAL);
2129 goto out;
2130 }
2131
2132 vnevent_rmdir(vp, dvp, name, ct);
2133
2134 /*
2135 * Grab a lock on the directory to make sure that noone is
2136 * trying to add (or lookup) entries while we are removing it.
2137 */
2138 rw_enter(&zp->z_name_lock, RW_WRITER);
2139
2140 /*
2141 * Grab a lock on the parent pointer to make sure we play well
2142 * with the treewalk and directory rename code.
2143 */
2144 rw_enter(&zp->z_parent_lock, RW_WRITER);
2145
2146 tx = dmu_tx_create(zfsvfs->z_os);
2147 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2148 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2149 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2150 zfs_sa_upgrade_txholds(tx, zp);
2151 zfs_sa_upgrade_txholds(tx, dzp);
2152 dmu_tx_mark_netfree(tx);
2153 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2154 if (error) {
2155 rw_exit(&zp->z_parent_lock);
2156 rw_exit(&zp->z_name_lock);
2157 zfs_dirent_unlock(dl);
2158 VN_RELE(vp);
2159 if (error == ERESTART) {
2160 waited = B_TRUE;
2161 dmu_tx_wait(tx);
2162 dmu_tx_abort(tx);
2163 goto top;
2164 }
2165 dmu_tx_abort(tx);
2166 ZFS_EXIT(zfsvfs);
2167 return (error);
2168 }
2169
2170 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2171
2172 if (error == 0) {
2173 uint64_t txtype = TX_RMDIR;
2174 if (flags & FIGNORECASE)
2175 txtype |= TX_CI;
2176
2177 rw_enter(&rz_zev_rwlock, RW_READER);
2178 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
2179 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
2180 name, txtype);
2181 rw_exit(&rz_zev_rwlock);
2182
2183 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2184 }
2185
2186 dmu_tx_commit(tx);
2187
2188 rw_exit(&zp->z_parent_lock);
2189 rw_exit(&zp->z_name_lock);
2190 out:
2191 zfs_dirent_unlock(dl);
2192
2193 VN_RELE(vp);
2194
2195 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2196 zil_commit(zilog, 0);
2197
2198 ZFS_EXIT(zfsvfs);
2199 return (error);
2200 }
2201
2202 /*
2203 * Read as many directory entries as will fit into the provided
2204 * buffer from the given directory cursor position (specified in
2205 * the uio structure).
2206 *
2207 * IN: vp - vnode of directory to read.
2208 * uio - structure supplying read location, range info,
2209 * and return buffer.
2210 * cr - credentials of caller.
2211 * ct - caller context
2212 * flags - case flags
2213 *
2214 * OUT: uio - updated offset and range, buffer filled.
2215 * eofp - set to true if end-of-file detected.
2216 *
2217 * RETURN: 0 on success, error code on failure.
2218 *
2219 * Timestamps:
2220 * vp - atime updated
2221 *
2222 * Note that the low 4 bits of the cookie returned by zap is always zero.
2223 * This allows us to use the low range for "special" directory entries:
2224 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2225 * we use the offset 2 for the '.zfs' directory.
2226 */
2227 /* ARGSUSED */
2228 static int
zfs_readdir(vnode_t * vp,uio_t * uio,cred_t * cr,int * eofp,caller_context_t * ct,int flags)2229 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2230 caller_context_t *ct, int flags)
2231 {
2232 znode_t *zp = VTOZ(vp);
2233 iovec_t *iovp;
2234 edirent_t *eodp;
2235 dirent64_t *odp;
2236 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2237 objset_t *os;
2238 caddr_t outbuf;
2239 size_t bufsize;
2240 zap_cursor_t zc;
2241 zap_attribute_t zap;
2242 uint_t bytes_wanted;
2243 uint64_t offset; /* must be unsigned; checks for < 1 */
2244 uint64_t parent;
2245 int local_eof;
2246 int outcount;
2247 int error;
2248 uint8_t prefetch;
2249 boolean_t check_sysattrs;
2250
2251 ZFS_ENTER(zfsvfs);
2252 ZFS_VERIFY_ZP(zp);
2253
2254 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2255 &parent, sizeof (parent))) != 0) {
2256 ZFS_EXIT(zfsvfs);
2257 return (error);
2258 }
2259
2260 /*
2261 * If we are not given an eof variable,
2262 * use a local one.
2263 */
2264 if (eofp == NULL)
2265 eofp = &local_eof;
2266
2267 /*
2268 * Check for valid iov_len.
2269 */
2270 if (uio->uio_iov->iov_len <= 0) {
2271 ZFS_EXIT(zfsvfs);
2272 return (SET_ERROR(EINVAL));
2273 }
2274
2275 /*
2276 * Quit if directory has been removed (posix)
2277 */
2278 if ((*eofp = zp->z_unlinked) != 0) {
2279 ZFS_EXIT(zfsvfs);
2280 return (0);
2281 }
2282
2283 error = 0;
2284 os = zfsvfs->z_os;
2285 offset = uio->uio_loffset;
2286 prefetch = zp->z_zn_prefetch;
2287
2288 /*
2289 * Initialize the iterator cursor.
2290 */
2291 if (offset <= 3) {
2292 /*
2293 * Start iteration from the beginning of the directory.
2294 */
2295 zap_cursor_init(&zc, os, zp->z_id);
2296 } else {
2297 /*
2298 * The offset is a serialized cursor.
2299 */
2300 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2301 }
2302
2303 /*
2304 * Get space to change directory entries into fs independent format.
2305 */
2306 iovp = uio->uio_iov;
2307 bytes_wanted = iovp->iov_len;
2308 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2309 bufsize = bytes_wanted;
2310 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2311 odp = (struct dirent64 *)outbuf;
2312 } else {
2313 bufsize = bytes_wanted;
2314 outbuf = NULL;
2315 odp = (struct dirent64 *)iovp->iov_base;
2316 }
2317 eodp = (struct edirent *)odp;
2318
2319 /*
2320 * If this VFS supports the system attribute view interface; and
2321 * we're looking at an extended attribute directory; and we care
2322 * about normalization conflicts on this vfs; then we must check
2323 * for normalization conflicts with the sysattr name space.
2324 */
2325 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2326 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2327 (flags & V_RDDIR_ENTFLAGS);
2328
2329 /*
2330 * Transform to file-system independent format
2331 */
2332 outcount = 0;
2333 while (outcount < bytes_wanted) {
2334 ino64_t objnum;
2335 ushort_t reclen;
2336 off64_t *next = NULL;
2337
2338 /*
2339 * Special case `.', `..', and `.zfs'.
2340 */
2341 if (offset == 0) {
2342 (void) strcpy(zap.za_name, ".");
2343 zap.za_normalization_conflict = 0;
2344 objnum = zp->z_id;
2345 } else if (offset == 1) {
2346 (void) strcpy(zap.za_name, "..");
2347 zap.za_normalization_conflict = 0;
2348 objnum = parent;
2349 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2350 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2351 zap.za_normalization_conflict = 0;
2352 objnum = ZFSCTL_INO_ROOT;
2353 } else {
2354 /*
2355 * Grab next entry.
2356 */
2357 if (error = zap_cursor_retrieve(&zc, &zap)) {
2358 if ((*eofp = (error == ENOENT)) != 0)
2359 break;
2360 else
2361 goto update;
2362 }
2363
2364 if (zap.za_integer_length != 8 ||
2365 zap.za_num_integers != 1) {
2366 cmn_err(CE_WARN, "zap_readdir: bad directory "
2367 "entry, obj = %lld, offset = %lld\n",
2368 (u_longlong_t)zp->z_id,
2369 (u_longlong_t)offset);
2370 error = SET_ERROR(ENXIO);
2371 goto update;
2372 }
2373
2374 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2375 /*
2376 * MacOS X can extract the object type here such as:
2377 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2378 */
2379
2380 if (check_sysattrs && !zap.za_normalization_conflict) {
2381 zap.za_normalization_conflict =
2382 xattr_sysattr_casechk(zap.za_name);
2383 }
2384 }
2385
2386 if (flags & V_RDDIR_ACCFILTER) {
2387 /*
2388 * If we have no access at all, don't include
2389 * this entry in the returned information
2390 */
2391 znode_t *ezp;
2392 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2393 goto skip_entry;
2394 if (!zfs_has_access(ezp, cr)) {
2395 VN_RELE(ZTOV(ezp));
2396 goto skip_entry;
2397 }
2398 VN_RELE(ZTOV(ezp));
2399 }
2400
2401 if (flags & V_RDDIR_ENTFLAGS)
2402 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2403 else
2404 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2405
2406 /*
2407 * Will this entry fit in the buffer?
2408 */
2409 if (outcount + reclen > bufsize) {
2410 /*
2411 * Did we manage to fit anything in the buffer?
2412 */
2413 if (!outcount) {
2414 error = SET_ERROR(EINVAL);
2415 goto update;
2416 }
2417 break;
2418 }
2419 if (flags & V_RDDIR_ENTFLAGS) {
2420 /*
2421 * Add extended flag entry:
2422 */
2423 eodp->ed_ino = objnum;
2424 eodp->ed_reclen = reclen;
2425 /* NOTE: ed_off is the offset for the *next* entry */
2426 next = &(eodp->ed_off);
2427 eodp->ed_eflags = zap.za_normalization_conflict ?
2428 ED_CASE_CONFLICT : 0;
2429 (void) strncpy(eodp->ed_name, zap.za_name,
2430 EDIRENT_NAMELEN(reclen));
2431 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2432 } else {
2433 /*
2434 * Add normal entry:
2435 */
2436 odp->d_ino = objnum;
2437 odp->d_reclen = reclen;
2438 /* NOTE: d_off is the offset for the *next* entry */
2439 next = &(odp->d_off);
2440 (void) strncpy(odp->d_name, zap.za_name,
2441 DIRENT64_NAMELEN(reclen));
2442 odp = (dirent64_t *)((intptr_t)odp + reclen);
2443 }
2444 outcount += reclen;
2445
2446 ASSERT(outcount <= bufsize);
2447
2448 /* Prefetch znode */
2449 if (prefetch)
2450 dmu_prefetch(os, objnum, 0, 0, 0,
2451 ZIO_PRIORITY_SYNC_READ);
2452
2453 skip_entry:
2454 /*
2455 * Move to the next entry, fill in the previous offset.
2456 */
2457 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2458 zap_cursor_advance(&zc);
2459 offset = zap_cursor_serialize(&zc);
2460 } else {
2461 offset += 1;
2462 }
2463 if (next)
2464 *next = offset;
2465 }
2466 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2467
2468 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2469 iovp->iov_base += outcount;
2470 iovp->iov_len -= outcount;
2471 uio->uio_resid -= outcount;
2472 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2473 /*
2474 * Reset the pointer.
2475 */
2476 offset = uio->uio_loffset;
2477 }
2478
2479 update:
2480 zap_cursor_fini(&zc);
2481 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2482 kmem_free(outbuf, bufsize);
2483
2484 if (error == ENOENT)
2485 error = 0;
2486
2487 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2488
2489 uio->uio_loffset = offset;
2490 ZFS_EXIT(zfsvfs);
2491 return (error);
2492 }
2493
2494 ulong_t zfs_fsync_sync_cnt = 4;
2495
2496 static int
zfs_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)2497 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2498 {
2499 znode_t *zp = VTOZ(vp);
2500 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2501
2502 /*
2503 * Regardless of whether this is required for standards conformance,
2504 * this is the logical behavior when fsync() is called on a file with
2505 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2506 * going to be pushed out as part of the zil_commit().
2507 */
2508 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2509 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2510 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2511
2512 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2513
2514 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2515 ZFS_ENTER(zfsvfs);
2516 ZFS_VERIFY_ZP(zp);
2517 zil_commit(zfsvfs->z_log, zp->z_id);
2518 ZFS_EXIT(zfsvfs);
2519 }
2520 return (0);
2521 }
2522
2523
2524 /*
2525 * Get the requested file attributes and place them in the provided
2526 * vattr structure.
2527 *
2528 * IN: vp - vnode of file.
2529 * vap - va_mask identifies requested attributes.
2530 * If AT_XVATTR set, then optional attrs are requested
2531 * flags - ATTR_NOACLCHECK (CIFS server context)
2532 * cr - credentials of caller.
2533 * ct - caller context
2534 *
2535 * OUT: vap - attribute values.
2536 *
2537 * RETURN: 0 (always succeeds).
2538 */
2539 /* ARGSUSED */
2540 static int
zfs_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2541 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2542 caller_context_t *ct)
2543 {
2544 znode_t *zp = VTOZ(vp);
2545 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2546 int error = 0;
2547 uint64_t links;
2548 uint64_t mtime[2], ctime[2];
2549 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2550 xoptattr_t *xoap = NULL;
2551 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2552 sa_bulk_attr_t bulk[2];
2553 int count = 0;
2554
2555 ZFS_ENTER(zfsvfs);
2556 ZFS_VERIFY_ZP(zp);
2557
2558 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2559
2560 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2561 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2562
2563 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2564 ZFS_EXIT(zfsvfs);
2565 return (error);
2566 }
2567
2568 /*
2569 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2570 * Also, if we are the owner don't bother, since owner should
2571 * always be allowed to read basic attributes of file.
2572 */
2573 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2574 (vap->va_uid != crgetuid(cr))) {
2575 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2576 skipaclchk, cr)) {
2577 ZFS_EXIT(zfsvfs);
2578 return (error);
2579 }
2580 }
2581
2582 /*
2583 * Return all attributes. It's cheaper to provide the answer
2584 * than to determine whether we were asked the question.
2585 */
2586
2587 mutex_enter(&zp->z_lock);
2588 vap->va_type = vp->v_type;
2589 vap->va_mode = zp->z_mode & MODEMASK;
2590 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2591 vap->va_nodeid = zp->z_id;
2592 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2593 links = zp->z_links + 1;
2594 else
2595 links = zp->z_links;
2596 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2597 vap->va_size = zp->z_size;
2598 vap->va_rdev = vp->v_rdev;
2599 vap->va_seq = zp->z_seq;
2600
2601 /*
2602 * Add in any requested optional attributes and the create time.
2603 * Also set the corresponding bits in the returned attribute bitmap.
2604 */
2605 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2606 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2607 xoap->xoa_archive =
2608 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2609 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2610 }
2611
2612 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2613 xoap->xoa_readonly =
2614 ((zp->z_pflags & ZFS_READONLY) != 0);
2615 XVA_SET_RTN(xvap, XAT_READONLY);
2616 }
2617
2618 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2619 xoap->xoa_system =
2620 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2621 XVA_SET_RTN(xvap, XAT_SYSTEM);
2622 }
2623
2624 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2625 xoap->xoa_hidden =
2626 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2627 XVA_SET_RTN(xvap, XAT_HIDDEN);
2628 }
2629
2630 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2631 xoap->xoa_nounlink =
2632 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2633 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2634 }
2635
2636 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2637 xoap->xoa_immutable =
2638 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2639 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2640 }
2641
2642 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2643 xoap->xoa_appendonly =
2644 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2645 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2646 }
2647
2648 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2649 xoap->xoa_nodump =
2650 ((zp->z_pflags & ZFS_NODUMP) != 0);
2651 XVA_SET_RTN(xvap, XAT_NODUMP);
2652 }
2653
2654 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2655 xoap->xoa_opaque =
2656 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2657 XVA_SET_RTN(xvap, XAT_OPAQUE);
2658 }
2659
2660 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2661 xoap->xoa_av_quarantined =
2662 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2663 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2664 }
2665
2666 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2667 xoap->xoa_av_modified =
2668 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2669 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2670 }
2671
2672 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2673 vp->v_type == VREG) {
2674 zfs_sa_get_scanstamp(zp, xvap);
2675 }
2676
2677 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2678 uint64_t times[2];
2679
2680 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2681 times, sizeof (times));
2682 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2683 XVA_SET_RTN(xvap, XAT_CREATETIME);
2684 }
2685
2686 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2687 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2688 XVA_SET_RTN(xvap, XAT_REPARSE);
2689 }
2690 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2691 xoap->xoa_generation = zp->z_gen;
2692 XVA_SET_RTN(xvap, XAT_GEN);
2693 }
2694
2695 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2696 xoap->xoa_offline =
2697 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2698 XVA_SET_RTN(xvap, XAT_OFFLINE);
2699 }
2700
2701 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2702 xoap->xoa_sparse =
2703 ((zp->z_pflags & ZFS_SPARSE) != 0);
2704 XVA_SET_RTN(xvap, XAT_SPARSE);
2705 }
2706 }
2707
2708 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2709 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2710 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2711
2712 mutex_exit(&zp->z_lock);
2713
2714 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2715
2716 if (zp->z_blksz == 0) {
2717 /*
2718 * Block size hasn't been set; suggest maximal I/O transfers.
2719 */
2720 vap->va_blksize = zfsvfs->z_max_blksz;
2721 }
2722
2723 ZFS_EXIT(zfsvfs);
2724 return (0);
2725 }
2726
2727 /*
2728 * Set the file attributes to the values contained in the
2729 * vattr structure.
2730 *
2731 * IN: vp - vnode of file to be modified.
2732 * vap - new attribute values.
2733 * If AT_XVATTR set, then optional attrs are being set
2734 * flags - ATTR_UTIME set if non-default time values provided.
2735 * - ATTR_NOACLCHECK (CIFS context only).
2736 * cr - credentials of caller.
2737 * ct - caller context
2738 *
2739 * RETURN: 0 on success, error code on failure.
2740 *
2741 * Timestamps:
2742 * vp - ctime updated, mtime updated if size changed.
2743 */
2744 /* ARGSUSED */
2745 static int
zfs_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2746 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2747 caller_context_t *ct)
2748 {
2749 znode_t *zp = VTOZ(vp);
2750 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2751 zilog_t *zilog;
2752 dmu_tx_t *tx;
2753 vattr_t oldva;
2754 xvattr_t tmpxvattr;
2755 uint_t mask = vap->va_mask;
2756 uint_t saved_mask = 0;
2757 int trim_mask = 0;
2758 uint64_t new_mode;
2759 uint64_t new_uid, new_gid;
2760 uint64_t xattr_obj;
2761 uint64_t mtime[2], ctime[2];
2762 znode_t *attrzp;
2763 int need_policy = FALSE;
2764 int err, err2;
2765 zfs_fuid_info_t *fuidp = NULL;
2766 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2767 xoptattr_t *xoap;
2768 zfs_acl_t *aclp;
2769 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2770 boolean_t fuid_dirtied = B_FALSE;
2771 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2772 int count = 0, xattr_count = 0;
2773
2774 if (mask == 0)
2775 return (0);
2776
2777 if (mask & AT_NOSET)
2778 return (SET_ERROR(EINVAL));
2779
2780 ZFS_ENTER(zfsvfs);
2781 ZFS_VERIFY_ZP(zp);
2782
2783 zilog = zfsvfs->z_log;
2784
2785 /*
2786 * Make sure that if we have ephemeral uid/gid or xvattr specified
2787 * that file system is at proper version level
2788 */
2789
2790 if (zfsvfs->z_use_fuids == B_FALSE &&
2791 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2792 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2793 (mask & AT_XVATTR))) {
2794 ZFS_EXIT(zfsvfs);
2795 return (SET_ERROR(EINVAL));
2796 }
2797
2798 if (mask & AT_SIZE && vp->v_type == VDIR) {
2799 ZFS_EXIT(zfsvfs);
2800 return (SET_ERROR(EISDIR));
2801 }
2802
2803 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2804 ZFS_EXIT(zfsvfs);
2805 return (SET_ERROR(EINVAL));
2806 }
2807
2808 /*
2809 * If this is an xvattr_t, then get a pointer to the structure of
2810 * optional attributes. If this is NULL, then we have a vattr_t.
2811 */
2812 xoap = xva_getxoptattr(xvap);
2813
2814 xva_init(&tmpxvattr);
2815
2816 /*
2817 * Immutable files can only alter immutable bit and atime
2818 */
2819 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2820 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2821 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2822 ZFS_EXIT(zfsvfs);
2823 return (SET_ERROR(EPERM));
2824 }
2825
2826 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2827 ZFS_EXIT(zfsvfs);
2828 return (SET_ERROR(EPERM));
2829 }
2830
2831 /*
2832 * Verify timestamps doesn't overflow 32 bits.
2833 * ZFS can handle large timestamps, but 32bit syscalls can't
2834 * handle times greater than 2039. This check should be removed
2835 * once large timestamps are fully supported.
2836 */
2837 if (mask & (AT_ATIME | AT_MTIME)) {
2838 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2839 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2840 ZFS_EXIT(zfsvfs);
2841 return (SET_ERROR(EOVERFLOW));
2842 }
2843 }
2844
2845 top:
2846 attrzp = NULL;
2847 aclp = NULL;
2848
2849 /* Can this be moved to before the top label? */
2850 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2851 ZFS_EXIT(zfsvfs);
2852 return (SET_ERROR(EROFS));
2853 }
2854
2855 /*
2856 * First validate permissions
2857 */
2858
2859 if (mask & AT_SIZE) {
2860 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2861 if (err) {
2862 ZFS_EXIT(zfsvfs);
2863 return (err);
2864 }
2865 /*
2866 * XXX - Note, we are not providing any open
2867 * mode flags here (like FNDELAY), so we may
2868 * block if there are locks present... this
2869 * should be addressed in openat().
2870 */
2871 /* XXX - would it be OK to generate a log record here? */
2872 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2873 if (err) {
2874 ZFS_EXIT(zfsvfs);
2875 return (err);
2876 }
2877
2878 if (vap->va_size == 0)
2879 vnevent_truncate(ZTOV(zp), ct);
2880 }
2881
2882 if (mask & (AT_ATIME|AT_MTIME) ||
2883 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2884 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2885 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2886 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2887 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2888 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2889 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2890 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2891 skipaclchk, cr);
2892 }
2893
2894 if (mask & (AT_UID|AT_GID)) {
2895 int idmask = (mask & (AT_UID|AT_GID));
2896 int take_owner;
2897 int take_group;
2898
2899 /*
2900 * NOTE: even if a new mode is being set,
2901 * we may clear S_ISUID/S_ISGID bits.
2902 */
2903
2904 if (!(mask & AT_MODE))
2905 vap->va_mode = zp->z_mode;
2906
2907 /*
2908 * Take ownership or chgrp to group we are a member of
2909 */
2910
2911 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2912 take_group = (mask & AT_GID) &&
2913 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2914
2915 /*
2916 * If both AT_UID and AT_GID are set then take_owner and
2917 * take_group must both be set in order to allow taking
2918 * ownership.
2919 *
2920 * Otherwise, send the check through secpolicy_vnode_setattr()
2921 *
2922 */
2923
2924 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2925 ((idmask == AT_UID) && take_owner) ||
2926 ((idmask == AT_GID) && take_group)) {
2927 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2928 skipaclchk, cr) == 0) {
2929 /*
2930 * Remove setuid/setgid for non-privileged users
2931 */
2932 secpolicy_setid_clear(vap, cr);
2933 trim_mask = (mask & (AT_UID|AT_GID));
2934 } else {
2935 need_policy = TRUE;
2936 }
2937 } else {
2938 need_policy = TRUE;
2939 }
2940 }
2941
2942 mutex_enter(&zp->z_lock);
2943 oldva.va_mode = zp->z_mode;
2944 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2945 if (mask & AT_XVATTR) {
2946 /*
2947 * Update xvattr mask to include only those attributes
2948 * that are actually changing.
2949 *
2950 * the bits will be restored prior to actually setting
2951 * the attributes so the caller thinks they were set.
2952 */
2953 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2954 if (xoap->xoa_appendonly !=
2955 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2956 need_policy = TRUE;
2957 } else {
2958 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2959 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2960 }
2961 }
2962
2963 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2964 if (xoap->xoa_nounlink !=
2965 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2966 need_policy = TRUE;
2967 } else {
2968 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2969 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2970 }
2971 }
2972
2973 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2974 if (xoap->xoa_immutable !=
2975 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2976 need_policy = TRUE;
2977 } else {
2978 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2979 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2980 }
2981 }
2982
2983 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2984 if (xoap->xoa_nodump !=
2985 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2986 need_policy = TRUE;
2987 } else {
2988 XVA_CLR_REQ(xvap, XAT_NODUMP);
2989 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2990 }
2991 }
2992
2993 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2994 if (xoap->xoa_av_modified !=
2995 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2996 need_policy = TRUE;
2997 } else {
2998 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2999 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3000 }
3001 }
3002
3003 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3004 if ((vp->v_type != VREG &&
3005 xoap->xoa_av_quarantined) ||
3006 xoap->xoa_av_quarantined !=
3007 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3008 need_policy = TRUE;
3009 } else {
3010 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3011 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3012 }
3013 }
3014
3015 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3016 mutex_exit(&zp->z_lock);
3017 ZFS_EXIT(zfsvfs);
3018 return (SET_ERROR(EPERM));
3019 }
3020
3021 if (need_policy == FALSE &&
3022 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3023 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3024 need_policy = TRUE;
3025 }
3026 }
3027
3028 mutex_exit(&zp->z_lock);
3029
3030 if (mask & AT_MODE) {
3031 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3032 err = secpolicy_setid_setsticky_clear(vp, vap,
3033 &oldva, cr);
3034 if (err) {
3035 ZFS_EXIT(zfsvfs);
3036 return (err);
3037 }
3038 trim_mask |= AT_MODE;
3039 } else {
3040 need_policy = TRUE;
3041 }
3042 }
3043
3044 if (need_policy) {
3045 /*
3046 * If trim_mask is set then take ownership
3047 * has been granted or write_acl is present and user
3048 * has the ability to modify mode. In that case remove
3049 * UID|GID and or MODE from mask so that
3050 * secpolicy_vnode_setattr() doesn't revoke it.
3051 */
3052
3053 if (trim_mask) {
3054 saved_mask = vap->va_mask;
3055 vap->va_mask &= ~trim_mask;
3056 }
3057 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3058 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3059 if (err) {
3060 ZFS_EXIT(zfsvfs);
3061 return (err);
3062 }
3063
3064 if (trim_mask)
3065 vap->va_mask |= saved_mask;
3066 }
3067
3068 /*
3069 * secpolicy_vnode_setattr, or take ownership may have
3070 * changed va_mask
3071 */
3072 mask = vap->va_mask;
3073
3074 if ((mask & (AT_UID | AT_GID))) {
3075 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3076 &xattr_obj, sizeof (xattr_obj));
3077
3078 if (err == 0 && xattr_obj) {
3079 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3080 if (err)
3081 goto out2;
3082 }
3083 if (mask & AT_UID) {
3084 new_uid = zfs_fuid_create(zfsvfs,
3085 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3086 if (new_uid != zp->z_uid &&
3087 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3088 if (attrzp)
3089 VN_RELE(ZTOV(attrzp));
3090 err = SET_ERROR(EDQUOT);
3091 goto out2;
3092 }
3093 }
3094
3095 if (mask & AT_GID) {
3096 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3097 cr, ZFS_GROUP, &fuidp);
3098 if (new_gid != zp->z_gid &&
3099 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3100 if (attrzp)
3101 VN_RELE(ZTOV(attrzp));
3102 err = SET_ERROR(EDQUOT);
3103 goto out2;
3104 }
3105 }
3106 }
3107 tx = dmu_tx_create(zfsvfs->z_os);
3108
3109 if (mask & AT_MODE) {
3110 uint64_t pmode = zp->z_mode;
3111 uint64_t acl_obj;
3112 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3113
3114 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3115 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3116 err = SET_ERROR(EPERM);
3117 goto out;
3118 }
3119
3120 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3121 goto out;
3122
3123 mutex_enter(&zp->z_lock);
3124 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3125 /*
3126 * Are we upgrading ACL from old V0 format
3127 * to V1 format?
3128 */
3129 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3130 zfs_znode_acl_version(zp) ==
3131 ZFS_ACL_VERSION_INITIAL) {
3132 dmu_tx_hold_free(tx, acl_obj, 0,
3133 DMU_OBJECT_END);
3134 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3135 0, aclp->z_acl_bytes);
3136 } else {
3137 dmu_tx_hold_write(tx, acl_obj, 0,
3138 aclp->z_acl_bytes);
3139 }
3140 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3141 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3142 0, aclp->z_acl_bytes);
3143 }
3144 mutex_exit(&zp->z_lock);
3145 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3146 } else {
3147 if ((mask & AT_XVATTR) &&
3148 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3149 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3150 else
3151 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3152 }
3153
3154 if (attrzp) {
3155 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3156 }
3157
3158 fuid_dirtied = zfsvfs->z_fuid_dirty;
3159 if (fuid_dirtied)
3160 zfs_fuid_txhold(zfsvfs, tx);
3161
3162 zfs_sa_upgrade_txholds(tx, zp);
3163
3164 err = dmu_tx_assign(tx, TXG_WAIT);
3165 if (err)
3166 goto out;
3167
3168 count = 0;
3169 /*
3170 * Set each attribute requested.
3171 * We group settings according to the locks they need to acquire.
3172 *
3173 * Note: you cannot set ctime directly, although it will be
3174 * updated as a side-effect of calling this function.
3175 */
3176
3177
3178 if (mask & (AT_UID|AT_GID|AT_MODE))
3179 mutex_enter(&zp->z_acl_lock);
3180 mutex_enter(&zp->z_lock);
3181
3182 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3183 &zp->z_pflags, sizeof (zp->z_pflags));
3184
3185 if (attrzp) {
3186 if (mask & (AT_UID|AT_GID|AT_MODE))
3187 mutex_enter(&attrzp->z_acl_lock);
3188 mutex_enter(&attrzp->z_lock);
3189 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3190 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3191 sizeof (attrzp->z_pflags));
3192 }
3193
3194 if (mask & (AT_UID|AT_GID)) {
3195
3196 if (mask & AT_UID) {
3197 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3198 &new_uid, sizeof (new_uid));
3199 zp->z_uid = new_uid;
3200 if (attrzp) {
3201 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3202 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3203 sizeof (new_uid));
3204 attrzp->z_uid = new_uid;
3205 }
3206 }
3207
3208 if (mask & AT_GID) {
3209 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3210 NULL, &new_gid, sizeof (new_gid));
3211 zp->z_gid = new_gid;
3212 if (attrzp) {
3213 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3214 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3215 sizeof (new_gid));
3216 attrzp->z_gid = new_gid;
3217 }
3218 }
3219 if (!(mask & AT_MODE)) {
3220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3221 NULL, &new_mode, sizeof (new_mode));
3222 new_mode = zp->z_mode;
3223 }
3224 err = zfs_acl_chown_setattr(zp);
3225 ASSERT(err == 0);
3226 if (attrzp) {
3227 err = zfs_acl_chown_setattr(attrzp);
3228 ASSERT(err == 0);
3229 }
3230 }
3231
3232 if (mask & AT_MODE) {
3233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3234 &new_mode, sizeof (new_mode));
3235 zp->z_mode = new_mode;
3236 ASSERT3U((uintptr_t)aclp, !=, NULL);
3237 err = zfs_aclset_common(zp, aclp, cr, tx);
3238 ASSERT0(err);
3239 if (zp->z_acl_cached)
3240 zfs_acl_free(zp->z_acl_cached);
3241 zp->z_acl_cached = aclp;
3242 aclp = NULL;
3243 }
3244
3245
3246 if (mask & AT_ATIME) {
3247 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3248 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3249 &zp->z_atime, sizeof (zp->z_atime));
3250 }
3251
3252 if (mask & AT_MTIME) {
3253 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3254 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3255 mtime, sizeof (mtime));
3256 }
3257
3258 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3259 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3260 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3261 NULL, mtime, sizeof (mtime));
3262 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3263 &ctime, sizeof (ctime));
3264 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3265 B_TRUE);
3266 } else if (mask != 0) {
3267 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3268 &ctime, sizeof (ctime));
3269 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3270 B_TRUE);
3271 if (attrzp) {
3272 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3273 SA_ZPL_CTIME(zfsvfs), NULL,
3274 &ctime, sizeof (ctime));
3275 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3276 mtime, ctime, B_TRUE);
3277 }
3278 }
3279 /*
3280 * Do this after setting timestamps to prevent timestamp
3281 * update from toggling bit
3282 */
3283
3284 if (xoap && (mask & AT_XVATTR)) {
3285
3286 /*
3287 * restore trimmed off masks
3288 * so that return masks can be set for caller.
3289 */
3290
3291 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3292 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3293 }
3294 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3295 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3296 }
3297 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3298 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3299 }
3300 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3301 XVA_SET_REQ(xvap, XAT_NODUMP);
3302 }
3303 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3304 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3305 }
3306 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3307 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3308 }
3309
3310 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3311 ASSERT(vp->v_type == VREG);
3312
3313 zfs_xvattr_set(zp, xvap, tx);
3314 }
3315
3316 if (fuid_dirtied)
3317 zfs_fuid_sync(zfsvfs, tx);
3318
3319 if (mask != 0)
3320 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3321
3322 mutex_exit(&zp->z_lock);
3323 if (mask & (AT_UID|AT_GID|AT_MODE))
3324 mutex_exit(&zp->z_acl_lock);
3325
3326 if (attrzp) {
3327 if (mask & (AT_UID|AT_GID|AT_MODE))
3328 mutex_exit(&attrzp->z_acl_lock);
3329 mutex_exit(&attrzp->z_lock);
3330 }
3331 out:
3332 if (err == 0 && attrzp) {
3333 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3334 xattr_count, tx);
3335 ASSERT(err2 == 0);
3336 }
3337
3338 if (attrzp)
3339 VN_RELE(ZTOV(attrzp));
3340
3341 if (aclp)
3342 zfs_acl_free(aclp);
3343
3344 if (fuidp) {
3345 zfs_fuid_info_free(fuidp);
3346 fuidp = NULL;
3347 }
3348
3349 if (err) {
3350 dmu_tx_abort(tx);
3351 if (err == ERESTART)
3352 goto top;
3353 } else {
3354 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3355 rw_enter(&rz_zev_rwlock, RW_READER);
3356 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr)
3357 rz_zev_callbacks->rz_zev_znode_setattr(zp, tx);
3358 rw_exit(&rz_zev_rwlock);
3359 dmu_tx_commit(tx);
3360 }
3361
3362 out2:
3363 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3364 zil_commit(zilog, 0);
3365
3366 ZFS_EXIT(zfsvfs);
3367 return (err);
3368 }
3369
3370 typedef struct zfs_zlock {
3371 krwlock_t *zl_rwlock; /* lock we acquired */
3372 znode_t *zl_znode; /* znode we held */
3373 struct zfs_zlock *zl_next; /* next in list */
3374 } zfs_zlock_t;
3375
3376 /*
3377 * Drop locks and release vnodes that were held by zfs_rename_lock().
3378 */
3379 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)3380 zfs_rename_unlock(zfs_zlock_t **zlpp)
3381 {
3382 zfs_zlock_t *zl;
3383
3384 while ((zl = *zlpp) != NULL) {
3385 if (zl->zl_znode != NULL)
3386 VN_RELE(ZTOV(zl->zl_znode));
3387 rw_exit(zl->zl_rwlock);
3388 *zlpp = zl->zl_next;
3389 kmem_free(zl, sizeof (*zl));
3390 }
3391 }
3392
3393 /*
3394 * Search back through the directory tree, using the ".." entries.
3395 * Lock each directory in the chain to prevent concurrent renames.
3396 * Fail any attempt to move a directory into one of its own descendants.
3397 * XXX - z_parent_lock can overlap with map or grow locks
3398 */
3399 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)3400 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3401 {
3402 zfs_zlock_t *zl;
3403 znode_t *zp = tdzp;
3404 uint64_t rootid = zp->z_zfsvfs->z_root;
3405 uint64_t oidp = zp->z_id;
3406 krwlock_t *rwlp = &szp->z_parent_lock;
3407 krw_t rw = RW_WRITER;
3408
3409 /*
3410 * First pass write-locks szp and compares to zp->z_id.
3411 * Later passes read-lock zp and compare to zp->z_parent.
3412 */
3413 do {
3414 if (!rw_tryenter(rwlp, rw)) {
3415 /*
3416 * Another thread is renaming in this path.
3417 * Note that if we are a WRITER, we don't have any
3418 * parent_locks held yet.
3419 */
3420 if (rw == RW_READER && zp->z_id > szp->z_id) {
3421 /*
3422 * Drop our locks and restart
3423 */
3424 zfs_rename_unlock(&zl);
3425 *zlpp = NULL;
3426 zp = tdzp;
3427 oidp = zp->z_id;
3428 rwlp = &szp->z_parent_lock;
3429 rw = RW_WRITER;
3430 continue;
3431 } else {
3432 /*
3433 * Wait for other thread to drop its locks
3434 */
3435 rw_enter(rwlp, rw);
3436 }
3437 }
3438
3439 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3440 zl->zl_rwlock = rwlp;
3441 zl->zl_znode = NULL;
3442 zl->zl_next = *zlpp;
3443 *zlpp = zl;
3444
3445 if (oidp == szp->z_id) /* We're a descendant of szp */
3446 return (SET_ERROR(EINVAL));
3447
3448 if (oidp == rootid) /* We've hit the top */
3449 return (0);
3450
3451 if (rw == RW_READER) { /* i.e. not the first pass */
3452 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3453 if (error)
3454 return (error);
3455 zl->zl_znode = zp;
3456 }
3457 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3458 &oidp, sizeof (oidp));
3459 rwlp = &zp->z_parent_lock;
3460 rw = RW_READER;
3461
3462 } while (zp->z_id != sdzp->z_id);
3463
3464 return (0);
3465 }
3466
3467 /*
3468 * Move an entry from the provided source directory to the target
3469 * directory. Change the entry name as indicated.
3470 *
3471 * IN: sdvp - Source directory containing the "old entry".
3472 * snm - Old entry name.
3473 * tdvp - Target directory to contain the "new entry".
3474 * tnm - New entry name.
3475 * cr - credentials of caller.
3476 * ct - caller context
3477 * flags - case flags
3478 *
3479 * RETURN: 0 on success, error code on failure.
3480 *
3481 * Timestamps:
3482 * sdvp,tdvp - ctime|mtime updated
3483 */
3484 /*ARGSUSED*/
3485 static int
zfs_rename(vnode_t * sdvp,char * snm,vnode_t * tdvp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3486 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3487 caller_context_t *ct, int flags)
3488 {
3489 znode_t *tdzp, *szp, *tzp;
3490 znode_t *sdzp = VTOZ(sdvp);
3491 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3492 zilog_t *zilog;
3493 vnode_t *realvp;
3494 zfs_dirlock_t *sdl, *tdl;
3495 dmu_tx_t *tx;
3496 zfs_zlock_t *zl;
3497 int cmp, serr, terr;
3498 int error = 0;
3499 int zflg = 0;
3500 boolean_t waited = B_FALSE;
3501
3502 ZFS_ENTER(zfsvfs);
3503 ZFS_VERIFY_ZP(sdzp);
3504 zilog = zfsvfs->z_log;
3505
3506 /*
3507 * Make sure we have the real vp for the target directory.
3508 */
3509 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3510 tdvp = realvp;
3511
3512 tdzp = VTOZ(tdvp);
3513 ZFS_VERIFY_ZP(tdzp);
3514
3515 /*
3516 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3517 * ctldir appear to have the same v_vfsp.
3518 */
3519 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3520 ZFS_EXIT(zfsvfs);
3521 return (SET_ERROR(EXDEV));
3522 }
3523
3524 if (zfsvfs->z_utf8 && u8_validate(tnm,
3525 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3526 ZFS_EXIT(zfsvfs);
3527 return (SET_ERROR(EILSEQ));
3528 }
3529
3530 if (flags & FIGNORECASE)
3531 zflg |= ZCILOOK;
3532
3533 top:
3534 szp = NULL;
3535 tzp = NULL;
3536 zl = NULL;
3537
3538 /*
3539 * This is to prevent the creation of links into attribute space
3540 * by renaming a linked file into/outof an attribute directory.
3541 * See the comment in zfs_link() for why this is considered bad.
3542 */
3543 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3544 ZFS_EXIT(zfsvfs);
3545 return (SET_ERROR(EINVAL));
3546 }
3547
3548 /*
3549 * Lock source and target directory entries. To prevent deadlock,
3550 * a lock ordering must be defined. We lock the directory with
3551 * the smallest object id first, or if it's a tie, the one with
3552 * the lexically first name.
3553 */
3554 if (sdzp->z_id < tdzp->z_id) {
3555 cmp = -1;
3556 } else if (sdzp->z_id > tdzp->z_id) {
3557 cmp = 1;
3558 } else {
3559 /*
3560 * First compare the two name arguments without
3561 * considering any case folding.
3562 */
3563 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3564
3565 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3566 ASSERT(error == 0 || !zfsvfs->z_utf8);
3567 if (cmp == 0) {
3568 /*
3569 * POSIX: "If the old argument and the new argument
3570 * both refer to links to the same existing file,
3571 * the rename() function shall return successfully
3572 * and perform no other action."
3573 */
3574 ZFS_EXIT(zfsvfs);
3575 return (0);
3576 }
3577 /*
3578 * If the file system is case-folding, then we may
3579 * have some more checking to do. A case-folding file
3580 * system is either supporting mixed case sensitivity
3581 * access or is completely case-insensitive. Note
3582 * that the file system is always case preserving.
3583 *
3584 * In mixed sensitivity mode case sensitive behavior
3585 * is the default. FIGNORECASE must be used to
3586 * explicitly request case insensitive behavior.
3587 *
3588 * If the source and target names provided differ only
3589 * by case (e.g., a request to rename 'tim' to 'Tim'),
3590 * we will treat this as a special case in the
3591 * case-insensitive mode: as long as the source name
3592 * is an exact match, we will allow this to proceed as
3593 * a name-change request.
3594 */
3595 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3596 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3597 flags & FIGNORECASE)) &&
3598 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3599 &error) == 0) {
3600 /*
3601 * case preserving rename request, require exact
3602 * name matches
3603 */
3604 zflg |= ZCIEXACT;
3605 zflg &= ~ZCILOOK;
3606 }
3607 }
3608
3609 /*
3610 * If the source and destination directories are the same, we should
3611 * grab the z_name_lock of that directory only once.
3612 */
3613 if (sdzp == tdzp) {
3614 zflg |= ZHAVELOCK;
3615 rw_enter(&sdzp->z_name_lock, RW_READER);
3616 }
3617
3618 if (cmp < 0) {
3619 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3620 ZEXISTS | zflg, NULL, NULL);
3621 terr = zfs_dirent_lock(&tdl,
3622 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3623 } else {
3624 terr = zfs_dirent_lock(&tdl,
3625 tdzp, tnm, &tzp, zflg, NULL, NULL);
3626 serr = zfs_dirent_lock(&sdl,
3627 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3628 NULL, NULL);
3629 }
3630
3631 if (serr) {
3632 /*
3633 * Source entry invalid or not there.
3634 */
3635 if (!terr) {
3636 zfs_dirent_unlock(tdl);
3637 if (tzp)
3638 VN_RELE(ZTOV(tzp));
3639 }
3640
3641 if (sdzp == tdzp)
3642 rw_exit(&sdzp->z_name_lock);
3643
3644 if (strcmp(snm, "..") == 0)
3645 serr = SET_ERROR(EINVAL);
3646 ZFS_EXIT(zfsvfs);
3647 return (serr);
3648 }
3649 if (terr) {
3650 zfs_dirent_unlock(sdl);
3651 VN_RELE(ZTOV(szp));
3652
3653 if (sdzp == tdzp)
3654 rw_exit(&sdzp->z_name_lock);
3655
3656 if (strcmp(tnm, "..") == 0)
3657 terr = SET_ERROR(EINVAL);
3658 ZFS_EXIT(zfsvfs);
3659 return (terr);
3660 }
3661
3662 /*
3663 * Must have write access at the source to remove the old entry
3664 * and write access at the target to create the new entry.
3665 * Note that if target and source are the same, this can be
3666 * done in a single check.
3667 */
3668
3669 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3670 goto out;
3671
3672 if (ZTOV(szp)->v_type == VDIR) {
3673 /*
3674 * Check to make sure rename is valid.
3675 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3676 */
3677 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3678 goto out;
3679 }
3680
3681 /*
3682 * Does target exist?
3683 */
3684 if (tzp) {
3685 /*
3686 * Source and target must be the same type.
3687 */
3688 if (ZTOV(szp)->v_type == VDIR) {
3689 if (ZTOV(tzp)->v_type != VDIR) {
3690 error = SET_ERROR(ENOTDIR);
3691 goto out;
3692 }
3693 } else {
3694 if (ZTOV(tzp)->v_type == VDIR) {
3695 error = SET_ERROR(EISDIR);
3696 goto out;
3697 }
3698 }
3699 /*
3700 * POSIX dictates that when the source and target
3701 * entries refer to the same file object, rename
3702 * must do nothing and exit without error.
3703 */
3704 if (szp->z_id == tzp->z_id) {
3705 error = 0;
3706 goto out;
3707 }
3708 }
3709
3710 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3711 if (tzp)
3712 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3713
3714 /*
3715 * notify the target directory if it is not the same
3716 * as source directory.
3717 */
3718 if (tdvp != sdvp) {
3719 vnevent_rename_dest_dir(tdvp, ct);
3720 }
3721
3722 tx = dmu_tx_create(zfsvfs->z_os);
3723 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3724 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3725 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3726 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3727 if (sdzp != tdzp) {
3728 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3729 zfs_sa_upgrade_txholds(tx, tdzp);
3730 }
3731 if (tzp) {
3732 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3733 zfs_sa_upgrade_txholds(tx, tzp);
3734 }
3735
3736 zfs_sa_upgrade_txholds(tx, szp);
3737 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3738 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3739 if (error) {
3740 if (zl != NULL)
3741 zfs_rename_unlock(&zl);
3742 zfs_dirent_unlock(sdl);
3743 zfs_dirent_unlock(tdl);
3744
3745 if (sdzp == tdzp)
3746 rw_exit(&sdzp->z_name_lock);
3747
3748 VN_RELE(ZTOV(szp));
3749 if (tzp)
3750 VN_RELE(ZTOV(tzp));
3751 if (error == ERESTART) {
3752 waited = B_TRUE;
3753 dmu_tx_wait(tx);
3754 dmu_tx_abort(tx);
3755 goto top;
3756 }
3757 dmu_tx_abort(tx);
3758 ZFS_EXIT(zfsvfs);
3759 return (error);
3760 }
3761
3762 if (tzp) /* Attempt to remove the existing target */
3763 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3764
3765 if (error == 0) {
3766 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3767 if (error == 0) {
3768 szp->z_pflags |= ZFS_AV_MODIFIED;
3769
3770 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3771 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3772 ASSERT0(error);
3773
3774 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3775 if (error == 0) {
3776 zfs_log_rename(zilog, tx, TX_RENAME |
3777 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3778 sdl->dl_name, tdzp, tdl->dl_name, szp, tzp);
3779
3780 /*
3781 * Update path information for the target vnode
3782 */
3783 vn_renamepath(tdvp, ZTOV(szp), tnm,
3784 strlen(tnm));
3785 } else {
3786 /*
3787 * At this point, we have successfully created
3788 * the target name, but have failed to remove
3789 * the source name. Since the create was done
3790 * with the ZRENAMING flag, there are
3791 * complications; for one, the link count is
3792 * wrong. The easiest way to deal with this
3793 * is to remove the newly created target, and
3794 * return the original error. This must
3795 * succeed; fortunately, it is very unlikely to
3796 * fail, since we just created it.
3797 */
3798 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3799 ZRENAMING, NULL), ==, 0);
3800 }
3801 }
3802 }
3803
3804 dmu_tx_commit(tx);
3805 out:
3806 if (zl != NULL)
3807 zfs_rename_unlock(&zl);
3808
3809 zfs_dirent_unlock(sdl);
3810 zfs_dirent_unlock(tdl);
3811
3812 if (sdzp == tdzp)
3813 rw_exit(&sdzp->z_name_lock);
3814
3815
3816 VN_RELE(ZTOV(szp));
3817 if (tzp)
3818 VN_RELE(ZTOV(tzp));
3819
3820 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3821 zil_commit(zilog, 0);
3822
3823 ZFS_EXIT(zfsvfs);
3824 return (error);
3825 }
3826
3827 /*
3828 * Insert the indicated symbolic reference entry into the directory.
3829 *
3830 * IN: dvp - Directory to contain new symbolic link.
3831 * link - Name for new symlink entry.
3832 * vap - Attributes of new entry.
3833 * cr - credentials of caller.
3834 * ct - caller context
3835 * flags - case flags
3836 *
3837 * RETURN: 0 on success, error code on failure.
3838 *
3839 * Timestamps:
3840 * dvp - ctime|mtime updated
3841 */
3842 /*ARGSUSED*/
3843 static int
zfs_symlink(vnode_t * dvp,char * name,vattr_t * vap,char * link,cred_t * cr,caller_context_t * ct,int flags)3844 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3845 caller_context_t *ct, int flags)
3846 {
3847 znode_t *zp, *dzp = VTOZ(dvp);
3848 zfs_dirlock_t *dl;
3849 dmu_tx_t *tx;
3850 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3851 zilog_t *zilog;
3852 uint64_t len = strlen(link);
3853 int error;
3854 int zflg = ZNEW;
3855 zfs_acl_ids_t acl_ids;
3856 boolean_t fuid_dirtied;
3857 uint64_t txtype = TX_SYMLINK;
3858 boolean_t waited = B_FALSE;
3859
3860 ASSERT(vap->va_type == VLNK);
3861
3862 ZFS_ENTER(zfsvfs);
3863 ZFS_VERIFY_ZP(dzp);
3864 zilog = zfsvfs->z_log;
3865
3866 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3867 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3868 ZFS_EXIT(zfsvfs);
3869 return (SET_ERROR(EILSEQ));
3870 }
3871 if (flags & FIGNORECASE)
3872 zflg |= ZCILOOK;
3873
3874 if (len > MAXPATHLEN) {
3875 ZFS_EXIT(zfsvfs);
3876 return (SET_ERROR(ENAMETOOLONG));
3877 }
3878
3879 if ((error = zfs_acl_ids_create(dzp, 0,
3880 vap, cr, NULL, &acl_ids)) != 0) {
3881 ZFS_EXIT(zfsvfs);
3882 return (error);
3883 }
3884 top:
3885 /*
3886 * Attempt to lock directory; fail if entry already exists.
3887 */
3888 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3889 if (error) {
3890 zfs_acl_ids_free(&acl_ids);
3891 ZFS_EXIT(zfsvfs);
3892 return (error);
3893 }
3894
3895 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3896 zfs_acl_ids_free(&acl_ids);
3897 zfs_dirent_unlock(dl);
3898 ZFS_EXIT(zfsvfs);
3899 return (error);
3900 }
3901
3902 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3903 zfs_acl_ids_free(&acl_ids);
3904 zfs_dirent_unlock(dl);
3905 ZFS_EXIT(zfsvfs);
3906 return (SET_ERROR(EDQUOT));
3907 }
3908 tx = dmu_tx_create(zfsvfs->z_os);
3909 fuid_dirtied = zfsvfs->z_fuid_dirty;
3910 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3911 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3912 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3913 ZFS_SA_BASE_ATTR_SIZE + len);
3914 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3915 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3916 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3917 acl_ids.z_aclp->z_acl_bytes);
3918 }
3919 if (fuid_dirtied)
3920 zfs_fuid_txhold(zfsvfs, tx);
3921 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3922 if (error) {
3923 zfs_dirent_unlock(dl);
3924 if (error == ERESTART) {
3925 waited = B_TRUE;
3926 dmu_tx_wait(tx);
3927 dmu_tx_abort(tx);
3928 goto top;
3929 }
3930 zfs_acl_ids_free(&acl_ids);
3931 dmu_tx_abort(tx);
3932 ZFS_EXIT(zfsvfs);
3933 return (error);
3934 }
3935
3936 /*
3937 * Create a new object for the symlink.
3938 * for version 4 ZPL datsets the symlink will be an SA attribute
3939 */
3940 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3941
3942 if (fuid_dirtied)
3943 zfs_fuid_sync(zfsvfs, tx);
3944
3945 mutex_enter(&zp->z_lock);
3946 if (zp->z_is_sa)
3947 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3948 link, len, tx);
3949 else
3950 zfs_sa_symlink(zp, link, len, tx);
3951 mutex_exit(&zp->z_lock);
3952
3953 zp->z_size = len;
3954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3955 &zp->z_size, sizeof (zp->z_size), tx);
3956 /*
3957 * Insert the new object into the directory.
3958 */
3959 (void) zfs_link_create(dl, zp, tx, ZNEW);
3960
3961 if (flags & FIGNORECASE)
3962 txtype |= TX_CI;
3963 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3964
3965 zfs_acl_ids_free(&acl_ids);
3966
3967 dmu_tx_commit(tx);
3968
3969 zfs_dirent_unlock(dl);
3970
3971 VN_RELE(ZTOV(zp));
3972
3973 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3974 zil_commit(zilog, 0);
3975
3976 ZFS_EXIT(zfsvfs);
3977 return (error);
3978 }
3979
3980 /*
3981 * Return, in the buffer contained in the provided uio structure,
3982 * the symbolic path referred to by vp.
3983 *
3984 * IN: vp - vnode of symbolic link.
3985 * uio - structure to contain the link path.
3986 * cr - credentials of caller.
3987 * ct - caller context
3988 *
3989 * OUT: uio - structure containing the link path.
3990 *
3991 * RETURN: 0 on success, error code on failure.
3992 *
3993 * Timestamps:
3994 * vp - atime updated
3995 */
3996 /* ARGSUSED */
3997 static int
zfs_readlink(vnode_t * vp,uio_t * uio,cred_t * cr,caller_context_t * ct)3998 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3999 {
4000 znode_t *zp = VTOZ(vp);
4001 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4002 int error;
4003
4004 ZFS_ENTER(zfsvfs);
4005 ZFS_VERIFY_ZP(zp);
4006
4007 mutex_enter(&zp->z_lock);
4008 if (zp->z_is_sa)
4009 error = sa_lookup_uio(zp->z_sa_hdl,
4010 SA_ZPL_SYMLINK(zfsvfs), uio);
4011 else
4012 error = zfs_sa_readlink(zp, uio);
4013 mutex_exit(&zp->z_lock);
4014
4015 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4016
4017 ZFS_EXIT(zfsvfs);
4018 return (error);
4019 }
4020
4021 /*
4022 * Insert a new entry into directory tdvp referencing svp.
4023 *
4024 * IN: tdvp - Directory to contain new entry.
4025 * svp - vnode of new entry.
4026 * name - name of new entry.
4027 * cr - credentials of caller.
4028 * ct - caller context
4029 *
4030 * RETURN: 0 on success, error code on failure.
4031 *
4032 * Timestamps:
4033 * tdvp - ctime|mtime updated
4034 * svp - ctime updated
4035 */
4036 /* ARGSUSED */
4037 static int
zfs_link(vnode_t * tdvp,vnode_t * svp,char * name,cred_t * cr,caller_context_t * ct,int flags)4038 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4039 caller_context_t *ct, int flags)
4040 {
4041 znode_t *dzp = VTOZ(tdvp);
4042 znode_t *tzp, *szp;
4043 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4044 zilog_t *zilog;
4045 zfs_dirlock_t *dl;
4046 dmu_tx_t *tx;
4047 vnode_t *realvp;
4048 int error;
4049 int zf = ZNEW;
4050 uint64_t parent;
4051 uid_t owner;
4052 boolean_t waited = B_FALSE;
4053
4054 ASSERT(tdvp->v_type == VDIR);
4055
4056 ZFS_ENTER(zfsvfs);
4057 ZFS_VERIFY_ZP(dzp);
4058 zilog = zfsvfs->z_log;
4059
4060 if (VOP_REALVP(svp, &realvp, ct) == 0)
4061 svp = realvp;
4062
4063 /*
4064 * POSIX dictates that we return EPERM here.
4065 * Better choices include ENOTSUP or EISDIR.
4066 */
4067 if (svp->v_type == VDIR) {
4068 ZFS_EXIT(zfsvfs);
4069 return (SET_ERROR(EPERM));
4070 }
4071
4072 szp = VTOZ(svp);
4073 ZFS_VERIFY_ZP(szp);
4074
4075 /*
4076 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4077 * ctldir appear to have the same v_vfsp.
4078 */
4079 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4080 ZFS_EXIT(zfsvfs);
4081 return (SET_ERROR(EXDEV));
4082 }
4083
4084 /* Prevent links to .zfs/shares files */
4085
4086 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4087 &parent, sizeof (uint64_t))) != 0) {
4088 ZFS_EXIT(zfsvfs);
4089 return (error);
4090 }
4091 if (parent == zfsvfs->z_shares_dir) {
4092 ZFS_EXIT(zfsvfs);
4093 return (SET_ERROR(EPERM));
4094 }
4095
4096 if (zfsvfs->z_utf8 && u8_validate(name,
4097 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4098 ZFS_EXIT(zfsvfs);
4099 return (SET_ERROR(EILSEQ));
4100 }
4101 if (flags & FIGNORECASE)
4102 zf |= ZCILOOK;
4103
4104 /*
4105 * We do not support links between attributes and non-attributes
4106 * because of the potential security risk of creating links
4107 * into "normal" file space in order to circumvent restrictions
4108 * imposed in attribute space.
4109 */
4110 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4111 ZFS_EXIT(zfsvfs);
4112 return (SET_ERROR(EINVAL));
4113 }
4114
4115
4116 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4117 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4118 ZFS_EXIT(zfsvfs);
4119 return (SET_ERROR(EPERM));
4120 }
4121
4122 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4123 ZFS_EXIT(zfsvfs);
4124 return (error);
4125 }
4126
4127 top:
4128 /*
4129 * Attempt to lock directory; fail if entry already exists.
4130 */
4131 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4132 if (error) {
4133 ZFS_EXIT(zfsvfs);
4134 return (error);
4135 }
4136
4137 tx = dmu_tx_create(zfsvfs->z_os);
4138 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4139 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4140 zfs_sa_upgrade_txholds(tx, szp);
4141 zfs_sa_upgrade_txholds(tx, dzp);
4142 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4143 if (error) {
4144 zfs_dirent_unlock(dl);
4145 if (error == ERESTART) {
4146 waited = B_TRUE;
4147 dmu_tx_wait(tx);
4148 dmu_tx_abort(tx);
4149 goto top;
4150 }
4151 dmu_tx_abort(tx);
4152 ZFS_EXIT(zfsvfs);
4153 return (error);
4154 }
4155
4156 error = zfs_link_create(dl, szp, tx, 0);
4157
4158 if (error == 0) {
4159 uint64_t txtype = TX_LINK;
4160 if (flags & FIGNORECASE)
4161 txtype |= TX_CI;
4162 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4163 }
4164
4165 dmu_tx_commit(tx);
4166
4167 zfs_dirent_unlock(dl);
4168
4169 if (error == 0) {
4170 vnevent_link(svp, ct);
4171 }
4172
4173 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4174 zil_commit(zilog, 0);
4175
4176 ZFS_EXIT(zfsvfs);
4177 return (error);
4178 }
4179
4180 /*
4181 * zfs_null_putapage() is used when the file system has been force
4182 * unmounted. It just drops the pages.
4183 */
4184 /* ARGSUSED */
4185 static int
zfs_null_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4186 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4187 size_t *lenp, int flags, cred_t *cr)
4188 {
4189 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4190 return (0);
4191 }
4192
4193 /*
4194 * Push a page out to disk, klustering if possible.
4195 *
4196 * IN: vp - file to push page to.
4197 * pp - page to push.
4198 * flags - additional flags.
4199 * cr - credentials of caller.
4200 *
4201 * OUT: offp - start of range pushed.
4202 * lenp - len of range pushed.
4203 *
4204 * RETURN: 0 on success, error code on failure.
4205 *
4206 * NOTE: callers must have locked the page to be pushed. On
4207 * exit, the page (and all other pages in the kluster) must be
4208 * unlocked.
4209 */
4210 /* ARGSUSED */
4211 static int
zfs_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4212 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4213 size_t *lenp, int flags, cred_t *cr)
4214 {
4215 znode_t *zp = VTOZ(vp);
4216 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4217 dmu_tx_t *tx;
4218 u_offset_t off, koff;
4219 size_t len, klen;
4220 int err;
4221
4222 off = pp->p_offset;
4223 len = PAGESIZE;
4224 /*
4225 * If our blocksize is bigger than the page size, try to kluster
4226 * multiple pages so that we write a full block (thus avoiding
4227 * a read-modify-write).
4228 */
4229 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4230 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4231 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4232 ASSERT(koff <= zp->z_size);
4233 if (koff + klen > zp->z_size)
4234 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4235 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4236 }
4237 ASSERT3U(btop(len), ==, btopr(len));
4238
4239 /*
4240 * Can't push pages past end-of-file.
4241 */
4242 if (off >= zp->z_size) {
4243 /* ignore all pages */
4244 err = 0;
4245 goto out;
4246 } else if (off + len > zp->z_size) {
4247 int npages = btopr(zp->z_size - off);
4248 page_t *trunc;
4249
4250 page_list_break(&pp, &trunc, npages);
4251 /* ignore pages past end of file */
4252 if (trunc)
4253 pvn_write_done(trunc, flags);
4254 len = zp->z_size - off;
4255 }
4256
4257 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4258 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4259 err = SET_ERROR(EDQUOT);
4260 goto out;
4261 }
4262 tx = dmu_tx_create(zfsvfs->z_os);
4263 dmu_tx_hold_write(tx, zp->z_id, off, len);
4264
4265 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4266 zfs_sa_upgrade_txholds(tx, zp);
4267 err = dmu_tx_assign(tx, TXG_WAIT);
4268 if (err != 0) {
4269 dmu_tx_abort(tx);
4270 goto out;
4271 }
4272
4273 if (zp->z_blksz <= PAGESIZE) {
4274 caddr_t va = zfs_map_page(pp, S_READ);
4275 ASSERT3U(len, <=, PAGESIZE);
4276 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4277 zfs_unmap_page(pp, va);
4278 } else {
4279 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4280 }
4281
4282 if (err == 0) {
4283 uint64_t mtime[2], ctime[2];
4284 sa_bulk_attr_t bulk[3];
4285 int count = 0;
4286
4287 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4288 &mtime, 16);
4289 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4290 &ctime, 16);
4291 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4292 &zp->z_pflags, 8);
4293 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4294 B_TRUE);
4295 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4296 }
4297 dmu_tx_commit(tx);
4298
4299 out:
4300 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4301 if (offp)
4302 *offp = off;
4303 if (lenp)
4304 *lenp = len;
4305
4306 return (err);
4307 }
4308
4309 /*
4310 * Copy the portion of the file indicated from pages into the file.
4311 * The pages are stored in a page list attached to the files vnode.
4312 *
4313 * IN: vp - vnode of file to push page data to.
4314 * off - position in file to put data.
4315 * len - amount of data to write.
4316 * flags - flags to control the operation.
4317 * cr - credentials of caller.
4318 * ct - caller context.
4319 *
4320 * RETURN: 0 on success, error code on failure.
4321 *
4322 * Timestamps:
4323 * vp - ctime|mtime updated
4324 */
4325 /*ARGSUSED*/
4326 static int
zfs_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4327 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4328 caller_context_t *ct)
4329 {
4330 znode_t *zp = VTOZ(vp);
4331 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4332 page_t *pp;
4333 size_t io_len;
4334 u_offset_t io_off;
4335 uint_t blksz;
4336 rl_t *rl;
4337 int error = 0;
4338
4339 ZFS_ENTER(zfsvfs);
4340 ZFS_VERIFY_ZP(zp);
4341
4342 /*
4343 * There's nothing to do if no data is cached.
4344 */
4345 if (!vn_has_cached_data(vp)) {
4346 ZFS_EXIT(zfsvfs);
4347 return (0);
4348 }
4349
4350 /*
4351 * Align this request to the file block size in case we kluster.
4352 * XXX - this can result in pretty aggresive locking, which can
4353 * impact simultanious read/write access. One option might be
4354 * to break up long requests (len == 0) into block-by-block
4355 * operations to get narrower locking.
4356 */
4357 blksz = zp->z_blksz;
4358 if (ISP2(blksz))
4359 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4360 else
4361 io_off = 0;
4362 if (len > 0 && ISP2(blksz))
4363 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4364 else
4365 io_len = 0;
4366
4367 if (io_len == 0) {
4368 /*
4369 * Search the entire vp list for pages >= io_off.
4370 */
4371 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4372 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4373 goto out;
4374 }
4375 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4376
4377 if (off > zp->z_size) {
4378 /* past end of file */
4379 zfs_range_unlock(rl);
4380 ZFS_EXIT(zfsvfs);
4381 return (0);
4382 }
4383
4384 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4385
4386 for (off = io_off; io_off < off + len; io_off += io_len) {
4387 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4388 pp = page_lookup(vp, io_off,
4389 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4390 } else {
4391 pp = page_lookup_nowait(vp, io_off,
4392 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4393 }
4394
4395 if (pp != NULL && pvn_getdirty(pp, flags)) {
4396 int err;
4397
4398 /*
4399 * Found a dirty page to push
4400 */
4401 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4402 if (err)
4403 error = err;
4404 } else {
4405 io_len = PAGESIZE;
4406 }
4407 }
4408 out:
4409 zfs_range_unlock(rl);
4410 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4411 zil_commit(zfsvfs->z_log, zp->z_id);
4412 ZFS_EXIT(zfsvfs);
4413 return (error);
4414 }
4415
4416 /*ARGSUSED*/
4417 void
zfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4418 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4419 {
4420 znode_t *zp = VTOZ(vp);
4421 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4422 int error;
4423
4424 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4425 if (zp->z_sa_hdl == NULL) {
4426 /*
4427 * The fs has been unmounted, or we did a
4428 * suspend/resume and this file no longer exists.
4429 */
4430 if (vn_has_cached_data(vp)) {
4431 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4432 B_INVAL, cr);
4433 }
4434
4435 mutex_enter(&zp->z_lock);
4436 mutex_enter(&vp->v_lock);
4437 ASSERT(vp->v_count == 1);
4438 vp->v_count = 0;
4439 mutex_exit(&vp->v_lock);
4440 mutex_exit(&zp->z_lock);
4441 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4442 zfs_znode_free(zp);
4443 return;
4444 }
4445
4446 /*
4447 * Attempt to push any data in the page cache. If this fails
4448 * we will get kicked out later in zfs_zinactive().
4449 */
4450 if (vn_has_cached_data(vp)) {
4451 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4452 cr);
4453 }
4454
4455 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4456 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4457
4458 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4459 zfs_sa_upgrade_txholds(tx, zp);
4460 error = dmu_tx_assign(tx, TXG_WAIT);
4461 if (error) {
4462 dmu_tx_abort(tx);
4463 } else {
4464 mutex_enter(&zp->z_lock);
4465 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4466 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4467 zp->z_atime_dirty = 0;
4468 mutex_exit(&zp->z_lock);
4469 dmu_tx_commit(tx);
4470 }
4471 }
4472
4473 zfs_zinactive(zp);
4474 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4475 }
4476
4477 /*
4478 * Bounds-check the seek operation.
4479 *
4480 * IN: vp - vnode seeking within
4481 * ooff - old file offset
4482 * noffp - pointer to new file offset
4483 * ct - caller context
4484 *
4485 * RETURN: 0 on success, EINVAL if new offset invalid.
4486 */
4487 /* ARGSUSED */
4488 static int
zfs_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4489 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4490 caller_context_t *ct)
4491 {
4492 if (vp->v_type == VDIR)
4493 return (0);
4494 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4495 }
4496
4497 /*
4498 * Pre-filter the generic locking function to trap attempts to place
4499 * a mandatory lock on a memory mapped file.
4500 */
4501 static int
zfs_frlock(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,flk_callback_t * flk_cbp,cred_t * cr,caller_context_t * ct)4502 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4503 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4504 {
4505 znode_t *zp = VTOZ(vp);
4506 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4507
4508 ZFS_ENTER(zfsvfs);
4509 ZFS_VERIFY_ZP(zp);
4510
4511 /*
4512 * We are following the UFS semantics with respect to mapcnt
4513 * here: If we see that the file is mapped already, then we will
4514 * return an error, but we don't worry about races between this
4515 * function and zfs_map().
4516 */
4517 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4518 ZFS_EXIT(zfsvfs);
4519 return (SET_ERROR(EAGAIN));
4520 }
4521 ZFS_EXIT(zfsvfs);
4522 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4523 }
4524
4525 /*
4526 * If we can't find a page in the cache, we will create a new page
4527 * and fill it with file data. For efficiency, we may try to fill
4528 * multiple pages at once (klustering) to fill up the supplied page
4529 * list. Note that the pages to be filled are held with an exclusive
4530 * lock to prevent access by other threads while they are being filled.
4531 */
4532 static int
zfs_fillpage(vnode_t * vp,u_offset_t off,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw)4533 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4534 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4535 {
4536 znode_t *zp = VTOZ(vp);
4537 page_t *pp, *cur_pp;
4538 objset_t *os = zp->z_zfsvfs->z_os;
4539 u_offset_t io_off, total;
4540 size_t io_len;
4541 int err;
4542
4543 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4544 /*
4545 * We only have a single page, don't bother klustering
4546 */
4547 io_off = off;
4548 io_len = PAGESIZE;
4549 pp = page_create_va(vp, io_off, io_len,
4550 PG_EXCL | PG_WAIT, seg, addr);
4551 } else {
4552 /*
4553 * Try to find enough pages to fill the page list
4554 */
4555 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4556 &io_len, off, plsz, 0);
4557 }
4558 if (pp == NULL) {
4559 /*
4560 * The page already exists, nothing to do here.
4561 */
4562 *pl = NULL;
4563 return (0);
4564 }
4565
4566 /*
4567 * Fill the pages in the kluster.
4568 */
4569 cur_pp = pp;
4570 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4571 caddr_t va;
4572
4573 ASSERT3U(io_off, ==, cur_pp->p_offset);
4574 va = zfs_map_page(cur_pp, S_WRITE);
4575 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4576 DMU_READ_PREFETCH);
4577 zfs_unmap_page(cur_pp, va);
4578 if (err) {
4579 /* On error, toss the entire kluster */
4580 pvn_read_done(pp, B_ERROR);
4581 /* convert checksum errors into IO errors */
4582 if (err == ECKSUM)
4583 err = SET_ERROR(EIO);
4584 return (err);
4585 }
4586 cur_pp = cur_pp->p_next;
4587 }
4588
4589 /*
4590 * Fill in the page list array from the kluster starting
4591 * from the desired offset `off'.
4592 * NOTE: the page list will always be null terminated.
4593 */
4594 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4595 ASSERT(pl == NULL || (*pl)->p_offset == off);
4596
4597 return (0);
4598 }
4599
4600 /*
4601 * Return pointers to the pages for the file region [off, off + len]
4602 * in the pl array. If plsz is greater than len, this function may
4603 * also return page pointers from after the specified region
4604 * (i.e. the region [off, off + plsz]). These additional pages are
4605 * only returned if they are already in the cache, or were created as
4606 * part of a klustered read.
4607 *
4608 * IN: vp - vnode of file to get data from.
4609 * off - position in file to get data from.
4610 * len - amount of data to retrieve.
4611 * plsz - length of provided page list.
4612 * seg - segment to obtain pages for.
4613 * addr - virtual address of fault.
4614 * rw - mode of created pages.
4615 * cr - credentials of caller.
4616 * ct - caller context.
4617 *
4618 * OUT: protp - protection mode of created pages.
4619 * pl - list of pages created.
4620 *
4621 * RETURN: 0 on success, error code on failure.
4622 *
4623 * Timestamps:
4624 * vp - atime updated
4625 */
4626 /* ARGSUSED */
4627 static int
zfs_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4628 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4629 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4630 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4631 {
4632 znode_t *zp = VTOZ(vp);
4633 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4634 page_t **pl0 = pl;
4635 int err = 0;
4636
4637 /* we do our own caching, faultahead is unnecessary */
4638 if (pl == NULL)
4639 return (0);
4640 else if (len > plsz)
4641 len = plsz;
4642 else
4643 len = P2ROUNDUP(len, PAGESIZE);
4644 ASSERT(plsz >= len);
4645
4646 ZFS_ENTER(zfsvfs);
4647 ZFS_VERIFY_ZP(zp);
4648
4649 if (protp)
4650 *protp = PROT_ALL;
4651
4652 /*
4653 * Loop through the requested range [off, off + len) looking
4654 * for pages. If we don't find a page, we will need to create
4655 * a new page and fill it with data from the file.
4656 */
4657 while (len > 0) {
4658 if (*pl = page_lookup(vp, off, SE_SHARED))
4659 *(pl+1) = NULL;
4660 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4661 goto out;
4662 while (*pl) {
4663 ASSERT3U((*pl)->p_offset, ==, off);
4664 off += PAGESIZE;
4665 addr += PAGESIZE;
4666 if (len > 0) {
4667 ASSERT3U(len, >=, PAGESIZE);
4668 len -= PAGESIZE;
4669 }
4670 ASSERT3U(plsz, >=, PAGESIZE);
4671 plsz -= PAGESIZE;
4672 pl++;
4673 }
4674 }
4675
4676 /*
4677 * Fill out the page array with any pages already in the cache.
4678 */
4679 while (plsz > 0 &&
4680 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4681 off += PAGESIZE;
4682 plsz -= PAGESIZE;
4683 }
4684 out:
4685 if (err) {
4686 /*
4687 * Release any pages we have previously locked.
4688 */
4689 while (pl > pl0)
4690 page_unlock(*--pl);
4691 } else {
4692 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4693 }
4694
4695 *pl = NULL;
4696
4697 ZFS_EXIT(zfsvfs);
4698 return (err);
4699 }
4700
4701 /*
4702 * Request a memory map for a section of a file. This code interacts
4703 * with common code and the VM system as follows:
4704 *
4705 * - common code calls mmap(), which ends up in smmap_common()
4706 * - this calls VOP_MAP(), which takes you into (say) zfs
4707 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4708 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4709 * - zfs_addmap() updates z_mapcnt
4710 */
4711 /*ARGSUSED*/
4712 static int
zfs_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4713 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4714 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4715 caller_context_t *ct)
4716 {
4717 znode_t *zp = VTOZ(vp);
4718 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4719 segvn_crargs_t vn_a;
4720 int error;
4721
4722 ZFS_ENTER(zfsvfs);
4723 ZFS_VERIFY_ZP(zp);
4724
4725 if ((prot & PROT_WRITE) && (zp->z_pflags &
4726 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4727 ZFS_EXIT(zfsvfs);
4728 return (SET_ERROR(EPERM));
4729 }
4730
4731 if ((prot & (PROT_READ | PROT_EXEC)) &&
4732 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4733 ZFS_EXIT(zfsvfs);
4734 return (SET_ERROR(EACCES));
4735 }
4736
4737 if (vp->v_flag & VNOMAP) {
4738 ZFS_EXIT(zfsvfs);
4739 return (SET_ERROR(ENOSYS));
4740 }
4741
4742 if (off < 0 || len > MAXOFFSET_T - off) {
4743 ZFS_EXIT(zfsvfs);
4744 return (SET_ERROR(ENXIO));
4745 }
4746
4747 if (vp->v_type != VREG) {
4748 ZFS_EXIT(zfsvfs);
4749 return (SET_ERROR(ENODEV));
4750 }
4751
4752 /*
4753 * If file is locked, disallow mapping.
4754 */
4755 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4756 ZFS_EXIT(zfsvfs);
4757 return (SET_ERROR(EAGAIN));
4758 }
4759
4760 as_rangelock(as);
4761 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4762 if (error != 0) {
4763 as_rangeunlock(as);
4764 ZFS_EXIT(zfsvfs);
4765 return (error);
4766 }
4767
4768 vn_a.vp = vp;
4769 vn_a.offset = (u_offset_t)off;
4770 vn_a.type = flags & MAP_TYPE;
4771 vn_a.prot = prot;
4772 vn_a.maxprot = maxprot;
4773 vn_a.cred = cr;
4774 vn_a.amp = NULL;
4775 vn_a.flags = flags & ~MAP_TYPE;
4776 vn_a.szc = 0;
4777 vn_a.lgrp_mem_policy_flags = 0;
4778
4779 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4780
4781 as_rangeunlock(as);
4782 ZFS_EXIT(zfsvfs);
4783 return (error);
4784 }
4785
4786 /* ARGSUSED */
4787 static int
zfs_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4788 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4789 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4790 caller_context_t *ct)
4791 {
4792 uint64_t pages = btopr(len);
4793
4794 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4795 return (0);
4796 }
4797
4798 /*
4799 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4800 * more accurate mtime for the associated file. Since we don't have a way of
4801 * detecting when the data was actually modified, we have to resort to
4802 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4803 * last page is pushed. The problem occurs when the msync() call is omitted,
4804 * which by far the most common case:
4805 *
4806 * open()
4807 * mmap()
4808 * <modify memory>
4809 * munmap()
4810 * close()
4811 * <time lapse>
4812 * putpage() via fsflush
4813 *
4814 * If we wait until fsflush to come along, we can have a modification time that
4815 * is some arbitrary point in the future. In order to prevent this in the
4816 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4817 * torn down.
4818 */
4819 /* ARGSUSED */
4820 static int
zfs_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4821 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4822 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4823 caller_context_t *ct)
4824 {
4825 uint64_t pages = btopr(len);
4826
4827 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4828 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4829
4830 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4831 vn_has_cached_data(vp))
4832 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4833
4834 return (0);
4835 }
4836
4837 /*
4838 * Free or allocate space in a file. Currently, this function only
4839 * supports the `F_FREESP' command. However, this command is somewhat
4840 * misnamed, as its functionality includes the ability to allocate as
4841 * well as free space.
4842 *
4843 * IN: vp - vnode of file to free data in.
4844 * cmd - action to take (only F_FREESP supported).
4845 * bfp - section of file to free/alloc.
4846 * flag - current file open mode flags.
4847 * offset - current file offset.
4848 * cr - credentials of caller [UNUSED].
4849 * ct - caller context.
4850 *
4851 * RETURN: 0 on success, error code on failure.
4852 *
4853 * Timestamps:
4854 * vp - ctime|mtime updated
4855 */
4856 /* ARGSUSED */
4857 static int
zfs_space(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4858 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4859 offset_t offset, cred_t *cr, caller_context_t *ct)
4860 {
4861 znode_t *zp = VTOZ(vp);
4862 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4863 uint64_t off, len;
4864 int error;
4865
4866 ZFS_ENTER(zfsvfs);
4867 ZFS_VERIFY_ZP(zp);
4868
4869 if (cmd != F_FREESP) {
4870 ZFS_EXIT(zfsvfs);
4871 return (SET_ERROR(EINVAL));
4872 }
4873
4874 /*
4875 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4876 * callers might not be able to detect properly that we are read-only,
4877 * so check it explicitly here.
4878 */
4879 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4880 ZFS_EXIT(zfsvfs);
4881 return (SET_ERROR(EROFS));
4882 }
4883
4884 if (error = convoff(vp, bfp, 0, offset)) {
4885 ZFS_EXIT(zfsvfs);
4886 return (error);
4887 }
4888
4889 if (bfp->l_len < 0) {
4890 ZFS_EXIT(zfsvfs);
4891 return (SET_ERROR(EINVAL));
4892 }
4893
4894 off = bfp->l_start;
4895 len = bfp->l_len; /* 0 means from off to end of file */
4896
4897 error = zfs_freesp(zp, off, len, flag, TRUE);
4898
4899 if (error == 0 && off == 0 && len == 0)
4900 vnevent_truncate(ZTOV(zp), ct);
4901
4902 ZFS_EXIT(zfsvfs);
4903 return (error);
4904 }
4905
4906 /*ARGSUSED*/
4907 static int
zfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4908 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4909 {
4910 znode_t *zp = VTOZ(vp);
4911 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4912 uint32_t gen;
4913 uint64_t gen64;
4914 uint64_t object = zp->z_id;
4915 zfid_short_t *zfid;
4916 int size, i, error;
4917
4918 ZFS_ENTER(zfsvfs);
4919 ZFS_VERIFY_ZP(zp);
4920
4921 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4922 &gen64, sizeof (uint64_t))) != 0) {
4923 ZFS_EXIT(zfsvfs);
4924 return (error);
4925 }
4926
4927 gen = (uint32_t)gen64;
4928
4929 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4930 if (fidp->fid_len < size) {
4931 fidp->fid_len = size;
4932 ZFS_EXIT(zfsvfs);
4933 return (SET_ERROR(ENOSPC));
4934 }
4935
4936 zfid = (zfid_short_t *)fidp;
4937
4938 zfid->zf_len = size;
4939
4940 for (i = 0; i < sizeof (zfid->zf_object); i++)
4941 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4942
4943 /* Must have a non-zero generation number to distinguish from .zfs */
4944 if (gen == 0)
4945 gen = 1;
4946 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4947 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4948
4949 if (size == LONG_FID_LEN) {
4950 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4951 zfid_long_t *zlfid;
4952
4953 zlfid = (zfid_long_t *)fidp;
4954
4955 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4956 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4957
4958 /* XXX - this should be the generation number for the objset */
4959 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4960 zlfid->zf_setgen[i] = 0;
4961 }
4962
4963 ZFS_EXIT(zfsvfs);
4964 return (0);
4965 }
4966
4967 static int
zfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4968 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4969 caller_context_t *ct)
4970 {
4971 znode_t *zp, *xzp;
4972 zfsvfs_t *zfsvfs;
4973 zfs_dirlock_t *dl;
4974 int error;
4975
4976 switch (cmd) {
4977 case _PC_LINK_MAX:
4978 *valp = ULONG_MAX;
4979 return (0);
4980
4981 case _PC_FILESIZEBITS:
4982 *valp = 64;
4983 return (0);
4984
4985 case _PC_XATTR_EXISTS:
4986 zp = VTOZ(vp);
4987 zfsvfs = zp->z_zfsvfs;
4988 ZFS_ENTER(zfsvfs);
4989 ZFS_VERIFY_ZP(zp);
4990 *valp = 0;
4991 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4992 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4993 if (error == 0) {
4994 zfs_dirent_unlock(dl);
4995 if (!zfs_dirempty(xzp))
4996 *valp = 1;
4997 VN_RELE(ZTOV(xzp));
4998 } else if (error == ENOENT) {
4999 /*
5000 * If there aren't extended attributes, it's the
5001 * same as having zero of them.
5002 */
5003 error = 0;
5004 }
5005 ZFS_EXIT(zfsvfs);
5006 return (error);
5007
5008 case _PC_SATTR_ENABLED:
5009 case _PC_SATTR_EXISTS:
5010 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5011 (vp->v_type == VREG || vp->v_type == VDIR);
5012 return (0);
5013
5014 case _PC_ACCESS_FILTERING:
5015 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5016 vp->v_type == VDIR;
5017 return (0);
5018
5019 case _PC_ACL_ENABLED:
5020 *valp = _ACL_ACE_ENABLED;
5021 return (0);
5022
5023 case _PC_MIN_HOLE_SIZE:
5024 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5025 return (0);
5026
5027 case _PC_TIMESTAMP_RESOLUTION:
5028 /* nanosecond timestamp resolution */
5029 *valp = 1L;
5030 return (0);
5031
5032 default:
5033 return (fs_pathconf(vp, cmd, valp, cr, ct));
5034 }
5035 }
5036
5037 /*ARGSUSED*/
5038 static int
zfs_getsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5039 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5040 caller_context_t *ct)
5041 {
5042 znode_t *zp = VTOZ(vp);
5043 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5044 int error;
5045 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5046
5047 ZFS_ENTER(zfsvfs);
5048 ZFS_VERIFY_ZP(zp);
5049 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5050 ZFS_EXIT(zfsvfs);
5051
5052 return (error);
5053 }
5054
5055 /*ARGSUSED*/
5056 static int
zfs_setsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5057 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5058 caller_context_t *ct)
5059 {
5060 znode_t *zp = VTOZ(vp);
5061 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5062 int error;
5063 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5064 zilog_t *zilog = zfsvfs->z_log;
5065
5066 ZFS_ENTER(zfsvfs);
5067 ZFS_VERIFY_ZP(zp);
5068
5069 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5070
5071 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5072 zil_commit(zilog, 0);
5073
5074 ZFS_EXIT(zfsvfs);
5075 return (error);
5076 }
5077
5078 /*
5079 * The smallest read we may consider to loan out an arcbuf.
5080 * This must be a power of 2.
5081 */
5082 int zcr_blksz_min = (1 << 10); /* 1K */
5083 /*
5084 * If set to less than the file block size, allow loaning out of an
5085 * arcbuf for a partial block read. This must be a power of 2.
5086 */
5087 int zcr_blksz_max = (1 << 17); /* 128K */
5088
5089 /*ARGSUSED*/
5090 static int
zfs_reqzcbuf(vnode_t * vp,enum uio_rw ioflag,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5091 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5092 caller_context_t *ct)
5093 {
5094 znode_t *zp = VTOZ(vp);
5095 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5096 int max_blksz = zfsvfs->z_max_blksz;
5097 uio_t *uio = &xuio->xu_uio;
5098 ssize_t size = uio->uio_resid;
5099 offset_t offset = uio->uio_loffset;
5100 int blksz;
5101 int fullblk, i;
5102 arc_buf_t *abuf;
5103 ssize_t maxsize;
5104 int preamble, postamble;
5105
5106 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5107 return (SET_ERROR(EINVAL));
5108
5109 ZFS_ENTER(zfsvfs);
5110 ZFS_VERIFY_ZP(zp);
5111 switch (ioflag) {
5112 case UIO_WRITE:
5113 /*
5114 * Loan out an arc_buf for write if write size is bigger than
5115 * max_blksz, and the file's block size is also max_blksz.
5116 */
5117 blksz = max_blksz;
5118 if (size < blksz || zp->z_blksz != blksz) {
5119 ZFS_EXIT(zfsvfs);
5120 return (SET_ERROR(EINVAL));
5121 }
5122 /*
5123 * Caller requests buffers for write before knowing where the
5124 * write offset might be (e.g. NFS TCP write).
5125 */
5126 if (offset == -1) {
5127 preamble = 0;
5128 } else {
5129 preamble = P2PHASE(offset, blksz);
5130 if (preamble) {
5131 preamble = blksz - preamble;
5132 size -= preamble;
5133 }
5134 }
5135
5136 postamble = P2PHASE(size, blksz);
5137 size -= postamble;
5138
5139 fullblk = size / blksz;
5140 (void) dmu_xuio_init(xuio,
5141 (preamble != 0) + fullblk + (postamble != 0));
5142 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5143 int, postamble, int,
5144 (preamble != 0) + fullblk + (postamble != 0));
5145
5146 /*
5147 * Have to fix iov base/len for partial buffers. They
5148 * currently represent full arc_buf's.
5149 */
5150 if (preamble) {
5151 /* data begins in the middle of the arc_buf */
5152 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5153 blksz);
5154 ASSERT(abuf);
5155 (void) dmu_xuio_add(xuio, abuf,
5156 blksz - preamble, preamble);
5157 }
5158
5159 for (i = 0; i < fullblk; i++) {
5160 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5161 blksz);
5162 ASSERT(abuf);
5163 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5164 }
5165
5166 if (postamble) {
5167 /* data ends in the middle of the arc_buf */
5168 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5169 blksz);
5170 ASSERT(abuf);
5171 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5172 }
5173 break;
5174 case UIO_READ:
5175 /*
5176 * Loan out an arc_buf for read if the read size is larger than
5177 * the current file block size. Block alignment is not
5178 * considered. Partial arc_buf will be loaned out for read.
5179 */
5180 blksz = zp->z_blksz;
5181 if (blksz < zcr_blksz_min)
5182 blksz = zcr_blksz_min;
5183 if (blksz > zcr_blksz_max)
5184 blksz = zcr_blksz_max;
5185 /* avoid potential complexity of dealing with it */
5186 if (blksz > max_blksz) {
5187 ZFS_EXIT(zfsvfs);
5188 return (SET_ERROR(EINVAL));
5189 }
5190
5191 maxsize = zp->z_size - uio->uio_loffset;
5192 if (size > maxsize)
5193 size = maxsize;
5194
5195 if (size < blksz || vn_has_cached_data(vp)) {
5196 ZFS_EXIT(zfsvfs);
5197 return (SET_ERROR(EINVAL));
5198 }
5199 break;
5200 default:
5201 ZFS_EXIT(zfsvfs);
5202 return (SET_ERROR(EINVAL));
5203 }
5204
5205 uio->uio_extflg = UIO_XUIO;
5206 XUIO_XUZC_RW(xuio) = ioflag;
5207 ZFS_EXIT(zfsvfs);
5208 return (0);
5209 }
5210
5211 /*ARGSUSED*/
5212 static int
zfs_retzcbuf(vnode_t * vp,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5213 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5214 {
5215 int i;
5216 arc_buf_t *abuf;
5217 int ioflag = XUIO_XUZC_RW(xuio);
5218
5219 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5220
5221 i = dmu_xuio_cnt(xuio);
5222 while (i-- > 0) {
5223 abuf = dmu_xuio_arcbuf(xuio, i);
5224 /*
5225 * if abuf == NULL, it must be a write buffer
5226 * that has been returned in zfs_write().
5227 */
5228 if (abuf)
5229 dmu_return_arcbuf(abuf);
5230 ASSERT(abuf || ioflag == UIO_WRITE);
5231 }
5232
5233 dmu_xuio_fini(xuio);
5234 return (0);
5235 }
5236
5237 /*
5238 * Predeclare these here so that the compiler assumes that
5239 * this is an "old style" function declaration that does
5240 * not include arguments => we won't get type mismatch errors
5241 * in the initializations that follow.
5242 */
5243 static int zfs_inval();
5244 static int zfs_isdir();
5245
5246 static int
zfs_inval()5247 zfs_inval()
5248 {
5249 return (SET_ERROR(EINVAL));
5250 }
5251
5252 static int
zfs_isdir()5253 zfs_isdir()
5254 {
5255 return (SET_ERROR(EISDIR));
5256 }
5257 /*
5258 * Directory vnode operations template
5259 */
5260 vnodeops_t *zfs_dvnodeops;
5261 const fs_operation_def_t zfs_dvnodeops_template[] = {
5262 VOPNAME_OPEN, { .vop_open = zfs_open },
5263 VOPNAME_CLOSE, { .vop_close = zfs_close },
5264 VOPNAME_READ, { .error = zfs_isdir },
5265 VOPNAME_WRITE, { .error = zfs_isdir },
5266 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5267 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5268 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5269 VOPNAME_ACCESS, { .vop_access = zfs_access },
5270 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5271 VOPNAME_CREATE, { .vop_create = zfs_create },
5272 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5273 VOPNAME_LINK, { .vop_link = zfs_link },
5274 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5275 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5276 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5277 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5278 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5279 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5280 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5281 VOPNAME_FID, { .vop_fid = zfs_fid },
5282 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5283 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5284 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5285 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5286 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5287 NULL, NULL
5288 };
5289
5290 /*
5291 * Regular file vnode operations template
5292 */
5293 vnodeops_t *zfs_fvnodeops;
5294 const fs_operation_def_t zfs_fvnodeops_template[] = {
5295 VOPNAME_OPEN, { .vop_open = zfs_open },
5296 VOPNAME_CLOSE, { .vop_close = zfs_close },
5297 VOPNAME_READ, { .vop_read = zfs_read },
5298 VOPNAME_WRITE, { .vop_write = zfs_write },
5299 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5300 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5301 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5302 VOPNAME_ACCESS, { .vop_access = zfs_access },
5303 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5304 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5305 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5306 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5307 VOPNAME_FID, { .vop_fid = zfs_fid },
5308 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5309 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5310 VOPNAME_SPACE, { .vop_space = zfs_space },
5311 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5312 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5313 VOPNAME_MAP, { .vop_map = zfs_map },
5314 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5315 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5316 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5317 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5318 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5319 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5320 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5321 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5322 NULL, NULL
5323 };
5324
5325 /*
5326 * Symbolic link vnode operations template
5327 */
5328 vnodeops_t *zfs_symvnodeops;
5329 const fs_operation_def_t zfs_symvnodeops_template[] = {
5330 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5331 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5332 VOPNAME_ACCESS, { .vop_access = zfs_access },
5333 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5334 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5335 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5336 VOPNAME_FID, { .vop_fid = zfs_fid },
5337 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5338 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5339 NULL, NULL
5340 };
5341
5342 /*
5343 * special share hidden files vnode operations template
5344 */
5345 vnodeops_t *zfs_sharevnodeops;
5346 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5347 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5348 VOPNAME_ACCESS, { .vop_access = zfs_access },
5349 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5350 VOPNAME_FID, { .vop_fid = zfs_fid },
5351 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5352 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5353 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5354 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5355 NULL, NULL
5356 };
5357
5358 /*
5359 * Extended attribute directory vnode operations template
5360 *
5361 * This template is identical to the directory vnodes
5362 * operation template except for restricted operations:
5363 * VOP_MKDIR()
5364 * VOP_SYMLINK()
5365 *
5366 * Note that there are other restrictions embedded in:
5367 * zfs_create() - restrict type to VREG
5368 * zfs_link() - no links into/out of attribute space
5369 * zfs_rename() - no moves into/out of attribute space
5370 */
5371 vnodeops_t *zfs_xdvnodeops;
5372 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5373 VOPNAME_OPEN, { .vop_open = zfs_open },
5374 VOPNAME_CLOSE, { .vop_close = zfs_close },
5375 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5376 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5377 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5378 VOPNAME_ACCESS, { .vop_access = zfs_access },
5379 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5380 VOPNAME_CREATE, { .vop_create = zfs_create },
5381 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5382 VOPNAME_LINK, { .vop_link = zfs_link },
5383 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5384 VOPNAME_MKDIR, { .error = zfs_inval },
5385 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5386 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5387 VOPNAME_SYMLINK, { .error = zfs_inval },
5388 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5389 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5390 VOPNAME_FID, { .vop_fid = zfs_fid },
5391 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5392 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5393 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5394 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5395 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5396 NULL, NULL
5397 };
5398
5399 /*
5400 * Error vnode operations template
5401 */
5402 vnodeops_t *zfs_evnodeops;
5403 const fs_operation_def_t zfs_evnodeops_template[] = {
5404 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5405 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5406 NULL, NULL
5407 };
5408