1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15 /*
16 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
17 */
18
19 #include <sys/zfs_context.h>
20 #include <sys/multilist.h>
21
22 /* needed for spa_get_random() */
23 #include <sys/spa.h>
24
25 /*
26 * This overrides the number of sublists in each multilist_t, which defaults
27 * to the number of CPUs in the system (see multilist_create()).
28 */
29 int zfs_multilist_num_sublists = 0;
30
31 /*
32 * Given the object contained on the list, return a pointer to the
33 * object's multilist_node_t structure it contains.
34 */
35 static multilist_node_t *
multilist_d2l(multilist_t * ml,void * obj)36 multilist_d2l(multilist_t *ml, void *obj)
37 {
38 return ((multilist_node_t *)((char *)obj + ml->ml_offset));
39 }
40
41 /*
42 * Initialize a new mutlilist using the parameters specified.
43 *
44 * - 'size' denotes the size of the structure containing the
45 * multilist_node_t.
46 * - 'offset' denotes the byte offset of the mutlilist_node_t within
47 * the structure that contains it.
48 * - 'num' specifies the number of internal sublists to create.
49 * - 'index_func' is used to determine which sublist to insert into
50 * when the multilist_insert() function is called; as well as which
51 * sublist to remove from when multilist_remove() is called. The
52 * requirements this function must meet, are the following:
53 *
54 * - It must always return the same value when called on the same
55 * object (to ensure the object is removed from the list it was
56 * inserted into).
57 *
58 * - It must return a value in the range [0, number of sublists).
59 * The multilist_get_num_sublists() function may be used to
60 * determine the number of sublists in the multilist.
61 *
62 * Also, in order to reduce internal contention between the sublists
63 * during insertion and removal, this function should choose evenly
64 * between all available sublists when inserting. This isn't a hard
65 * requirement, but a general rule of thumb in order to garner the
66 * best multi-threaded performance out of the data structure.
67 */
68 static multilist_t *
multilist_create_impl(size_t size,size_t offset,unsigned int num,multilist_sublist_index_func_t * index_func)69 multilist_create_impl(size_t size, size_t offset,
70 unsigned int num, multilist_sublist_index_func_t *index_func)
71 {
72 ASSERT3U(size, >, 0);
73 ASSERT3U(size, >=, offset + sizeof (multilist_node_t));
74 ASSERT3U(num, >, 0);
75 ASSERT3P(index_func, !=, NULL);
76
77 multilist_t *ml = kmem_alloc(sizeof (*ml), KM_SLEEP);
78 ml->ml_offset = offset;
79 ml->ml_num_sublists = num;
80 ml->ml_index_func = index_func;
81
82 ml->ml_sublists = kmem_zalloc(sizeof (multilist_sublist_t) *
83 ml->ml_num_sublists, KM_SLEEP);
84
85 ASSERT3P(ml->ml_sublists, !=, NULL);
86
87 for (int i = 0; i < ml->ml_num_sublists; i++) {
88 multilist_sublist_t *mls = &ml->ml_sublists[i];
89 mutex_init(&mls->mls_lock, NULL, MUTEX_DEFAULT, NULL);
90 list_create(&mls->mls_list, size, offset);
91 }
92 return (ml);
93 }
94
95 /*
96 * Allocate a new multilist, using the default number of sublists
97 * (the number of CPUs, or at least 4, or the tunable
98 * zfs_multilist_num_sublists).
99 */
100 multilist_t *
multilist_create(size_t size,size_t offset,multilist_sublist_index_func_t * index_func)101 multilist_create(size_t size, size_t offset,
102 multilist_sublist_index_func_t *index_func)
103 {
104 int num_sublists;
105
106 if (zfs_multilist_num_sublists > 0) {
107 num_sublists = zfs_multilist_num_sublists;
108 } else {
109 num_sublists = MAX(boot_ncpus, 4);
110 }
111
112 return (multilist_create_impl(size, offset, num_sublists, index_func));
113 }
114
115 /*
116 * Destroy the given multilist object, and free up any memory it holds.
117 */
118 void
multilist_destroy(multilist_t * ml)119 multilist_destroy(multilist_t *ml)
120 {
121 ASSERT(multilist_is_empty(ml));
122
123 for (int i = 0; i < ml->ml_num_sublists; i++) {
124 multilist_sublist_t *mls = &ml->ml_sublists[i];
125
126 ASSERT(list_is_empty(&mls->mls_list));
127
128 list_destroy(&mls->mls_list);
129 mutex_destroy(&mls->mls_lock);
130 }
131
132 ASSERT3P(ml->ml_sublists, !=, NULL);
133 kmem_free(ml->ml_sublists,
134 sizeof (multilist_sublist_t) * ml->ml_num_sublists);
135
136 ml->ml_num_sublists = 0;
137 ml->ml_offset = 0;
138 kmem_free(ml, sizeof (multilist_t));
139 }
140
141 /*
142 * Insert the given object into the multilist.
143 *
144 * This function will insert the object specified into the sublist
145 * determined using the function given at multilist creation time.
146 *
147 * The sublist locks are automatically acquired if not already held, to
148 * ensure consistency when inserting and removing from multiple threads.
149 */
150 void
multilist_insert(multilist_t * ml,void * obj)151 multilist_insert(multilist_t *ml, void *obj)
152 {
153 unsigned int sublist_idx = ml->ml_index_func(ml, obj);
154 multilist_sublist_t *mls;
155 boolean_t need_lock;
156
157 DTRACE_PROBE3(multilist__insert, multilist_t *, ml,
158 unsigned int, sublist_idx, void *, obj);
159
160 ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
161
162 mls = &ml->ml_sublists[sublist_idx];
163
164 /*
165 * Note: Callers may already hold the sublist lock by calling
166 * multilist_sublist_lock(). Here we rely on MUTEX_HELD()
167 * returning TRUE if and only if the current thread holds the
168 * lock. While it's a little ugly to make the lock recursive in
169 * this way, it works and allows the calling code to be much
170 * simpler -- otherwise it would have to pass around a flag
171 * indicating that it already has the lock.
172 */
173 need_lock = !MUTEX_HELD(&mls->mls_lock);
174
175 if (need_lock)
176 mutex_enter(&mls->mls_lock);
177
178 ASSERT(!multilist_link_active(multilist_d2l(ml, obj)));
179
180 multilist_sublist_insert_head(mls, obj);
181
182 if (need_lock)
183 mutex_exit(&mls->mls_lock);
184 }
185
186 /*
187 * Remove the given object from the multilist.
188 *
189 * This function will remove the object specified from the sublist
190 * determined using the function given at multilist creation time.
191 *
192 * The necessary sublist locks are automatically acquired, to ensure
193 * consistency when inserting and removing from multiple threads.
194 */
195 void
multilist_remove(multilist_t * ml,void * obj)196 multilist_remove(multilist_t *ml, void *obj)
197 {
198 unsigned int sublist_idx = ml->ml_index_func(ml, obj);
199 multilist_sublist_t *mls;
200 boolean_t need_lock;
201
202 DTRACE_PROBE3(multilist__remove, multilist_t *, ml,
203 unsigned int, sublist_idx, void *, obj);
204
205 ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
206
207 mls = &ml->ml_sublists[sublist_idx];
208 /* See comment in multilist_insert(). */
209 need_lock = !MUTEX_HELD(&mls->mls_lock);
210
211 if (need_lock)
212 mutex_enter(&mls->mls_lock);
213
214 ASSERT(multilist_link_active(multilist_d2l(ml, obj)));
215
216 multilist_sublist_remove(mls, obj);
217
218 if (need_lock)
219 mutex_exit(&mls->mls_lock);
220 }
221
222 /*
223 * Check to see if this multilist object is empty.
224 *
225 * This will return TRUE if it finds all of the sublists of this
226 * multilist to be empty, and FALSE otherwise. Each sublist lock will be
227 * automatically acquired as necessary.
228 *
229 * If concurrent insertions and removals are occurring, the semantics
230 * of this function become a little fuzzy. Instead of locking all
231 * sublists for the entire call time of the function, each sublist is
232 * only locked as it is individually checked for emptiness. Thus, it's
233 * possible for this function to return TRUE with non-empty sublists at
234 * the time the function returns. This would be due to another thread
235 * inserting into a given sublist, after that specific sublist was check
236 * and deemed empty, but before all sublists have been checked.
237 */
238 int
multilist_is_empty(multilist_t * ml)239 multilist_is_empty(multilist_t *ml)
240 {
241 for (int i = 0; i < ml->ml_num_sublists; i++) {
242 multilist_sublist_t *mls = &ml->ml_sublists[i];
243 /* See comment in multilist_insert(). */
244 boolean_t need_lock = !MUTEX_HELD(&mls->mls_lock);
245
246 if (need_lock)
247 mutex_enter(&mls->mls_lock);
248
249 if (!list_is_empty(&mls->mls_list)) {
250 if (need_lock)
251 mutex_exit(&mls->mls_lock);
252
253 return (FALSE);
254 }
255
256 if (need_lock)
257 mutex_exit(&mls->mls_lock);
258 }
259
260 return (TRUE);
261 }
262
263 /* Return the number of sublists composing this multilist */
264 unsigned int
multilist_get_num_sublists(multilist_t * ml)265 multilist_get_num_sublists(multilist_t *ml)
266 {
267 return (ml->ml_num_sublists);
268 }
269
270 /* Return a randomly selected, valid sublist index for this multilist */
271 unsigned int
multilist_get_random_index(multilist_t * ml)272 multilist_get_random_index(multilist_t *ml)
273 {
274 return (spa_get_random(ml->ml_num_sublists));
275 }
276
277 /* Lock and return the sublist specified at the given index */
278 multilist_sublist_t *
multilist_sublist_lock(multilist_t * ml,unsigned int sublist_idx)279 multilist_sublist_lock(multilist_t *ml, unsigned int sublist_idx)
280 {
281 multilist_sublist_t *mls;
282
283 ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
284 mls = &ml->ml_sublists[sublist_idx];
285 mutex_enter(&mls->mls_lock);
286
287 return (mls);
288 }
289
290 /* Lock and return the sublist that would be used to store the specified obj */
291 multilist_sublist_t *
multilist_sublist_lock_obj(multilist_t * ml,void * obj)292 multilist_sublist_lock_obj(multilist_t *ml, void *obj)
293 {
294 return (multilist_sublist_lock(ml, ml->ml_index_func(ml, obj)));
295 }
296
297 void
multilist_sublist_unlock(multilist_sublist_t * mls)298 multilist_sublist_unlock(multilist_sublist_t *mls)
299 {
300 mutex_exit(&mls->mls_lock);
301 }
302
303 /*
304 * We're allowing any object to be inserted into this specific sublist,
305 * but this can lead to trouble if multilist_remove() is called to
306 * remove this object. Specifically, if calling ml_index_func on this
307 * object returns an index for sublist different than what is passed as
308 * a parameter here, any call to multilist_remove() with this newly
309 * inserted object is undefined! (the call to multilist_remove() will
310 * remove the object from a list that it isn't contained in)
311 */
312 void
multilist_sublist_insert_head(multilist_sublist_t * mls,void * obj)313 multilist_sublist_insert_head(multilist_sublist_t *mls, void *obj)
314 {
315 ASSERT(MUTEX_HELD(&mls->mls_lock));
316 list_insert_head(&mls->mls_list, obj);
317 }
318
319 /* please see comment above multilist_sublist_insert_head */
320 void
multilist_sublist_insert_tail(multilist_sublist_t * mls,void * obj)321 multilist_sublist_insert_tail(multilist_sublist_t *mls, void *obj)
322 {
323 ASSERT(MUTEX_HELD(&mls->mls_lock));
324 list_insert_tail(&mls->mls_list, obj);
325 }
326
327 /*
328 * Move the object one element forward in the list.
329 *
330 * This function will move the given object forward in the list (towards
331 * the head) by one object. So, in essence, it will swap its position in
332 * the list with its "prev" pointer. If the given object is already at the
333 * head of the list, it cannot be moved forward any more than it already
334 * is, so no action is taken.
335 *
336 * NOTE: This function **must not** remove any object from the list other
337 * than the object given as the parameter. This is relied upon in
338 * arc_evict_state_impl().
339 */
340 void
multilist_sublist_move_forward(multilist_sublist_t * mls,void * obj)341 multilist_sublist_move_forward(multilist_sublist_t *mls, void *obj)
342 {
343 void *prev = list_prev(&mls->mls_list, obj);
344
345 ASSERT(MUTEX_HELD(&mls->mls_lock));
346 ASSERT(!list_is_empty(&mls->mls_list));
347
348 /* 'obj' must be at the head of the list, nothing to do */
349 if (prev == NULL)
350 return;
351
352 list_remove(&mls->mls_list, obj);
353 list_insert_before(&mls->mls_list, prev, obj);
354 }
355
356 void
multilist_sublist_remove(multilist_sublist_t * mls,void * obj)357 multilist_sublist_remove(multilist_sublist_t *mls, void *obj)
358 {
359 ASSERT(MUTEX_HELD(&mls->mls_lock));
360 list_remove(&mls->mls_list, obj);
361 }
362
363 void *
multilist_sublist_head(multilist_sublist_t * mls)364 multilist_sublist_head(multilist_sublist_t *mls)
365 {
366 ASSERT(MUTEX_HELD(&mls->mls_lock));
367 return (list_head(&mls->mls_list));
368 }
369
370 void *
multilist_sublist_tail(multilist_sublist_t * mls)371 multilist_sublist_tail(multilist_sublist_t *mls)
372 {
373 ASSERT(MUTEX_HELD(&mls->mls_lock));
374 return (list_tail(&mls->mls_list));
375 }
376
377 void *
multilist_sublist_next(multilist_sublist_t * mls,void * obj)378 multilist_sublist_next(multilist_sublist_t *mls, void *obj)
379 {
380 ASSERT(MUTEX_HELD(&mls->mls_lock));
381 return (list_next(&mls->mls_list, obj));
382 }
383
384 void *
multilist_sublist_prev(multilist_sublist_t * mls,void * obj)385 multilist_sublist_prev(multilist_sublist_t *mls, void *obj)
386 {
387 ASSERT(MUTEX_HELD(&mls->mls_lock));
388 return (list_prev(&mls->mls_list, obj));
389 }
390
391 void
multilist_link_init(multilist_node_t * link)392 multilist_link_init(multilist_node_t *link)
393 {
394 list_link_init(link);
395 }
396
397 int
multilist_link_active(multilist_node_t * link)398 multilist_link_active(multilist_node_t *link)
399 {
400 return (list_link_active(link));
401 }
402