xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 8e8fd66ca06ff73f3b4bdf3f7735d727a881cf60)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  *	Stand-alone ZFS file reader.
29  */
30 
31 #include <stdbool.h>
32 #include <sys/endian.h>
33 #include <sys/stat.h>
34 #include <sys/stdint.h>
35 #include <sys/list.h>
36 #include <sys/zfs_bootenv.h>
37 #include <machine/_inttypes.h>
38 
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41 
42 #ifdef HAS_ZSTD_ZFS
43 extern int zstd_init(void);
44 #endif
45 
46 struct zfsmount {
47 	char			*path;
48 	const spa_t		*spa;
49 	objset_phys_t		objset;
50 	uint64_t		rootobj;
51 	STAILQ_ENTRY(zfsmount)	next;
52 };
53 
54 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56 
57 /*
58  * The indirect_child_t represents the vdev that we will read from, when we
59  * need to read all copies of the data (e.g. for scrub or reconstruction).
60  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
62  * ic_vdev is a child of the mirror.
63  */
64 typedef struct indirect_child {
65 	void *ic_data;
66 	vdev_t *ic_vdev;
67 } indirect_child_t;
68 
69 /*
70  * The indirect_split_t represents one mapped segment of an i/o to the
71  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73  * For split blocks, there will be several of these.
74  */
75 typedef struct indirect_split {
76 	list_node_t is_node; /* link on iv_splits */
77 
78 	/*
79 	 * is_split_offset is the offset into the i/o.
80 	 * This is the sum of the previous splits' is_size's.
81 	 */
82 	uint64_t is_split_offset;
83 
84 	vdev_t *is_vdev; /* top-level vdev */
85 	uint64_t is_target_offset; /* offset on is_vdev */
86 	uint64_t is_size;
87 	int is_children; /* number of entries in is_child[] */
88 
89 	/*
90 	 * is_good_child is the child that we are currently using to
91 	 * attempt reconstruction.
92 	 */
93 	int is_good_child;
94 
95 	indirect_child_t is_child[1]; /* variable-length */
96 } indirect_split_t;
97 
98 /*
99  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101  */
102 typedef struct indirect_vsd {
103 	boolean_t iv_split_block;
104 	boolean_t iv_reconstruct;
105 
106 	list_t iv_splits; /* list of indirect_split_t's */
107 } indirect_vsd_t;
108 
109 /*
110  * List of all vdevs, chained through v_alllink.
111  */
112 static vdev_list_t zfs_vdevs;
113 
114 /*
115  * List of supported read-incompatible ZFS features.  Do not add here features
116  * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
117  */
118 static const char *features_for_read[] = {
119 	"com.datto:bookmark_v2",
120 	"com.datto:encryption",
121 	"com.delphix:bookmark_written",
122 	"com.delphix:device_removal",
123 	"com.delphix:embedded_data",
124 	"com.delphix:extensible_dataset",
125 	"com.delphix:head_errlog",
126 	"com.delphix:hole_birth",
127 	"com.joyent:multi_vdev_crash_dump",
128 	"com.klarasystems:vdev_zaps_v2",
129 	"org.freebsd:zstd_compress",
130 	"org.illumos:lz4_compress",
131 	"org.illumos:sha512",
132 	"org.illumos:skein",
133 	"org.open-zfs:large_blocks",
134 	"org.openzfs:blake3",
135 	"org.zfsonlinux:large_dnode",
136 	NULL
137 };
138 
139 /*
140  * List of all pools, chained through spa_link.
141  */
142 static spa_list_t zfs_pools;
143 
144 static const dnode_phys_t *dnode_cache_obj;
145 static uint64_t dnode_cache_bn;
146 static char *dnode_cache_buf;
147 
148 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
149 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
150 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
151 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
152     const char *name, uint64_t integer_size, uint64_t num_integers,
153     void *value);
154 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
155     dnode_phys_t *);
156 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
157     size_t);
158 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
159     size_t);
160 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
161 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
162     uint64_t);
163 vdev_indirect_mapping_entry_phys_t *
164     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
165     uint64_t, uint64_t *);
166 
167 static void
zfs_init(void)168 zfs_init(void)
169 {
170 	STAILQ_INIT(&zfs_vdevs);
171 	STAILQ_INIT(&zfs_pools);
172 
173 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
174 
175 	zfs_init_crc();
176 #ifdef HAS_ZSTD_ZFS
177 	zstd_init();
178 #endif
179 }
180 
181 static int
nvlist_check_features_for_read(nvlist_t * nvl)182 nvlist_check_features_for_read(nvlist_t *nvl)
183 {
184 	nvlist_t *features = NULL;
185 	nvs_data_t *data;
186 	nvp_header_t *nvp;
187 	nv_string_t *nvp_name;
188 	int rc;
189 
190 	rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
191 	    DATA_TYPE_NVLIST, NULL, &features, NULL);
192 	switch (rc) {
193 	case 0:
194 		break;		/* Continue with checks */
195 
196 	case ENOENT:
197 		return (0);	/* All features are disabled */
198 
199 	default:
200 		return (rc);	/* Error while reading nvlist */
201 	}
202 
203 	data = (nvs_data_t *)features->nv_data;
204 	nvp = &data->nvl_pair;	/* first pair in nvlist */
205 
206 	while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
207 		int i, found;
208 
209 		nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
210 		found = 0;
211 
212 		for (i = 0; features_for_read[i] != NULL; i++) {
213 			if (memcmp(nvp_name->nv_data, features_for_read[i],
214 			    nvp_name->nv_size) == 0) {
215 				found = 1;
216 				break;
217 			}
218 		}
219 
220 		if (!found) {
221 			printf("ZFS: unsupported feature: %.*s\n",
222 			    nvp_name->nv_size, nvp_name->nv_data);
223 			rc = EIO;
224 		}
225 		nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
226 	}
227 	nvlist_destroy(features);
228 
229 	return (rc);
230 }
231 
232 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)233 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
234     off_t offset, size_t size)
235 {
236 	size_t psize;
237 	int rc;
238 
239 	if (vdev->v_phys_read == NULL)
240 		return (ENOTSUP);
241 
242 	if (bp) {
243 		psize = BP_GET_PSIZE(bp);
244 	} else {
245 		psize = size;
246 	}
247 
248 	rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
249 	if (rc == 0) {
250 		if (bp != NULL)
251 			rc = zio_checksum_verify(vdev->v_spa, bp, buf);
252 	}
253 
254 	return (rc);
255 }
256 
257 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)258 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
259 {
260 	if (vdev->v_phys_write == NULL)
261 		return (ENOTSUP);
262 
263 	return (vdev->v_phys_write(vdev, offset, buf, size));
264 }
265 
266 typedef struct remap_segment {
267 	vdev_t *rs_vd;
268 	uint64_t rs_offset;
269 	uint64_t rs_asize;
270 	uint64_t rs_split_offset;
271 	list_node_t rs_node;
272 } remap_segment_t;
273 
274 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)275 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
276 {
277 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
278 
279 	if (rs != NULL) {
280 		rs->rs_vd = vd;
281 		rs->rs_offset = offset;
282 		rs->rs_asize = asize;
283 		rs->rs_split_offset = split_offset;
284 	}
285 
286 	return (rs);
287 }
288 
289 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)290 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
291     uint64_t mapping_object)
292 {
293 	vdev_indirect_mapping_t *vim;
294 	vdev_indirect_mapping_phys_t *vim_phys;
295 	int rc;
296 
297 	vim = calloc(1, sizeof (*vim));
298 	if (vim == NULL)
299 		return (NULL);
300 
301 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
302 	if (vim->vim_dn == NULL) {
303 		free(vim);
304 		return (NULL);
305 	}
306 
307 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
308 	if (rc != 0) {
309 		free(vim->vim_dn);
310 		free(vim);
311 		return (NULL);
312 	}
313 
314 	vim->vim_spa = spa;
315 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
316 	if (vim->vim_phys == NULL) {
317 		free(vim->vim_dn);
318 		free(vim);
319 		return (NULL);
320 	}
321 
322 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
323 	*vim->vim_phys = *vim_phys;
324 
325 	vim->vim_objset = os;
326 	vim->vim_object = mapping_object;
327 	vim->vim_entries = NULL;
328 
329 	vim->vim_havecounts =
330 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
331 
332 	return (vim);
333 }
334 
335 /*
336  * Compare an offset with an indirect mapping entry; there are three
337  * possible scenarios:
338  *
339  *     1. The offset is "less than" the mapping entry; meaning the
340  *        offset is less than the source offset of the mapping entry. In
341  *        this case, there is no overlap between the offset and the
342  *        mapping entry and -1 will be returned.
343  *
344  *     2. The offset is "greater than" the mapping entry; meaning the
345  *        offset is greater than the mapping entry's source offset plus
346  *        the entry's size. In this case, there is no overlap between
347  *        the offset and the mapping entry and 1 will be returned.
348  *
349  *        NOTE: If the offset is actually equal to the entry's offset
350  *        plus size, this is considered to be "greater" than the entry,
351  *        and this case applies (i.e. 1 will be returned). Thus, the
352  *        entry's "range" can be considered to be inclusive at its
353  *        start, but exclusive at its end: e.g. [src, src + size).
354  *
355  *     3. The last case to consider is if the offset actually falls
356  *        within the mapping entry's range. If this is the case, the
357  *        offset is considered to be "equal to" the mapping entry and
358  *        0 will be returned.
359  *
360  *        NOTE: If the offset is equal to the entry's source offset,
361  *        this case applies and 0 will be returned. If the offset is
362  *        equal to the entry's source plus its size, this case does
363  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
364  *        returned.
365  */
366 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)367 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
368 {
369 	const uint64_t *key = v_key;
370 	const vdev_indirect_mapping_entry_phys_t *array_elem =
371 	    v_array_elem;
372 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
373 
374 	if (*key < src_offset) {
375 		return (-1);
376 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
377 		return (0);
378 	} else {
379 		return (1);
380 	}
381 }
382 
383 /*
384  * Return array entry.
385  */
386 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)387 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
388 {
389 	uint64_t size;
390 	off_t offset = 0;
391 	int rc;
392 
393 	if (vim->vim_phys->vimp_num_entries == 0)
394 		return (NULL);
395 
396 	if (vim->vim_entries == NULL) {
397 		uint64_t bsize;
398 
399 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
400 		size = vim->vim_phys->vimp_num_entries *
401 		    sizeof (*vim->vim_entries);
402 		if (size > bsize) {
403 			size = bsize / sizeof (*vim->vim_entries);
404 			size *= sizeof (*vim->vim_entries);
405 		}
406 		vim->vim_entries = malloc(size);
407 		if (vim->vim_entries == NULL)
408 			return (NULL);
409 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
410 		offset = index * sizeof (*vim->vim_entries);
411 	}
412 
413 	/* We have data in vim_entries */
414 	if (offset == 0) {
415 		if (index >= vim->vim_entry_offset &&
416 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
417 			index -= vim->vim_entry_offset;
418 			return (&vim->vim_entries[index]);
419 		}
420 		offset = index * sizeof (*vim->vim_entries);
421 	}
422 
423 	vim->vim_entry_offset = index;
424 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
425 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
426 	    size);
427 	if (rc != 0) {
428 		/* Read error, invalidate vim_entries. */
429 		free(vim->vim_entries);
430 		vim->vim_entries = NULL;
431 		return (NULL);
432 	}
433 	index -= vim->vim_entry_offset;
434 	return (&vim->vim_entries[index]);
435 }
436 
437 /*
438  * Returns the mapping entry for the given offset.
439  *
440  * It's possible that the given offset will not be in the mapping table
441  * (i.e. no mapping entries contain this offset), in which case, the
442  * return value depends on the "next_if_missing" parameter.
443  *
444  * If the offset is not found in the table and "next_if_missing" is
445  * B_FALSE, then NULL will always be returned. The behavior is intended
446  * to allow consumers to get the entry corresponding to the offset
447  * parameter, iff the offset overlaps with an entry in the table.
448  *
449  * If the offset is not found in the table and "next_if_missing" is
450  * B_TRUE, then the entry nearest to the given offset will be returned,
451  * such that the entry's source offset is greater than the offset
452  * passed in (i.e. the "next" mapping entry in the table is returned, if
453  * the offset is missing from the table). If there are no entries whose
454  * source offset is greater than the passed in offset, NULL is returned.
455  */
456 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)457 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
458     uint64_t offset)
459 {
460 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
461 
462 	vdev_indirect_mapping_entry_phys_t *entry;
463 
464 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
465 	uint64_t base = 0;
466 
467 	/*
468 	 * We don't define these inside of the while loop because we use
469 	 * their value in the case that offset isn't in the mapping.
470 	 */
471 	uint64_t mid;
472 	int result;
473 
474 	while (last >= base) {
475 		mid = base + ((last - base) >> 1);
476 
477 		entry = vdev_indirect_mapping_entry(vim, mid);
478 		if (entry == NULL)
479 			break;
480 		result = dva_mapping_overlap_compare(&offset, entry);
481 
482 		if (result == 0) {
483 			break;
484 		} else if (result < 0) {
485 			last = mid - 1;
486 		} else {
487 			base = mid + 1;
488 		}
489 	}
490 	return (entry);
491 }
492 
493 /*
494  * Given an indirect vdev and an extent on that vdev, it duplicates the
495  * physical entries of the indirect mapping that correspond to the extent
496  * to a new array and returns a pointer to it. In addition, copied_entries
497  * is populated with the number of mapping entries that were duplicated.
498  *
499  * Finally, since we are doing an allocation, it is up to the caller to
500  * free the array allocated in this function.
501  */
502 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)503 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
504     uint64_t asize, uint64_t *copied_entries)
505 {
506 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
507 	vdev_indirect_mapping_t *vim = vd->v_mapping;
508 	uint64_t entries = 0;
509 
510 	vdev_indirect_mapping_entry_phys_t *first_mapping =
511 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
512 	ASSERT3P(first_mapping, !=, NULL);
513 
514 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
515 	while (asize > 0) {
516 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
517 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
518 		uint64_t inner_size = MIN(asize, size - inner_offset);
519 
520 		offset += inner_size;
521 		asize -= inner_size;
522 		entries++;
523 		m++;
524 	}
525 
526 	size_t copy_length = entries * sizeof (*first_mapping);
527 	duplicate_mappings = malloc(copy_length);
528 	if (duplicate_mappings != NULL)
529 		bcopy(first_mapping, duplicate_mappings, copy_length);
530 	else
531 		entries = 0;
532 
533 	*copied_entries = entries;
534 
535 	return (duplicate_mappings);
536 }
537 
538 static vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)539 vdev_lookup_top(spa_t *spa, uint64_t vdev)
540 {
541 	vdev_t *rvd;
542 	vdev_list_t *vlist;
543 
544 	vlist = &spa->spa_root_vdev->v_children;
545 	STAILQ_FOREACH(rvd, vlist, v_childlink)
546 		if (rvd->v_id == vdev)
547 			break;
548 
549 	return (rvd);
550 }
551 
552 /*
553  * This is a callback for vdev_indirect_remap() which allocates an
554  * indirect_split_t for each split segment and adds it to iv_splits.
555  */
556 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)557 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
558     uint64_t size, void *arg)
559 {
560 	int n = 1;
561 	zio_t *zio = arg;
562 	indirect_vsd_t *iv = zio->io_vsd;
563 
564 	if (vd->v_read == vdev_indirect_read)
565 		return;
566 
567 	if (vd->v_read == vdev_mirror_read)
568 		n = vd->v_nchildren;
569 
570 	indirect_split_t *is =
571 	    malloc(offsetof(indirect_split_t, is_child[n]));
572 	if (is == NULL) {
573 		zio->io_error = ENOMEM;
574 		return;
575 	}
576 	bzero(is, offsetof(indirect_split_t, is_child[n]));
577 
578 	is->is_children = n;
579 	is->is_size = size;
580 	is->is_split_offset = split_offset;
581 	is->is_target_offset = offset;
582 	is->is_vdev = vd;
583 
584 	/*
585 	 * Note that we only consider multiple copies of the data for
586 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
587 	 * though they use the same ops as mirror, because there's only one
588 	 * "good" copy under the replacing/spare.
589 	 */
590 	if (vd->v_read == vdev_mirror_read) {
591 		int i = 0;
592 		vdev_t *kid;
593 
594 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
595 			is->is_child[i++].ic_vdev = kid;
596 		}
597 	} else {
598 		is->is_child[0].ic_vdev = vd;
599 	}
600 
601 	list_insert_tail(&iv->iv_splits, is);
602 }
603 
604 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)605 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
606 {
607 	list_t stack;
608 	spa_t *spa = vd->v_spa;
609 	zio_t *zio = arg;
610 	remap_segment_t *rs;
611 
612 	list_create(&stack, sizeof (remap_segment_t),
613 	    offsetof(remap_segment_t, rs_node));
614 
615 	rs = rs_alloc(vd, offset, asize, 0);
616 	if (rs == NULL) {
617 		printf("vdev_indirect_remap: out of memory.\n");
618 		zio->io_error = ENOMEM;
619 	}
620 	for (; rs != NULL; rs = list_remove_head(&stack)) {
621 		vdev_t *v = rs->rs_vd;
622 		uint64_t num_entries = 0;
623 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
624 		vdev_indirect_mapping_entry_phys_t *mapping =
625 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
626 		    rs->rs_offset, rs->rs_asize, &num_entries);
627 
628 		if (num_entries == 0)
629 			zio->io_error = ENOMEM;
630 
631 		for (uint64_t i = 0; i < num_entries; i++) {
632 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
633 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
634 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
635 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
636 			uint64_t inner_offset = rs->rs_offset -
637 			    DVA_MAPPING_GET_SRC_OFFSET(m);
638 			uint64_t inner_size =
639 			    MIN(rs->rs_asize, size - inner_offset);
640 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
641 
642 			if (dst_v->v_read == vdev_indirect_read) {
643 				remap_segment_t *o;
644 
645 				o = rs_alloc(dst_v, dst_offset + inner_offset,
646 				    inner_size, rs->rs_split_offset);
647 				if (o == NULL) {
648 					printf("vdev_indirect_remap: "
649 					    "out of memory.\n");
650 					zio->io_error = ENOMEM;
651 					break;
652 				}
653 
654 				list_insert_head(&stack, o);
655 			}
656 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
657 			    dst_offset + inner_offset,
658 			    inner_size, arg);
659 
660 			/*
661 			 * vdev_indirect_gather_splits can have memory
662 			 * allocation error, we can not recover from it.
663 			 */
664 			if (zio->io_error != 0)
665 				break;
666 			rs->rs_offset += inner_size;
667 			rs->rs_asize -= inner_size;
668 			rs->rs_split_offset += inner_size;
669 		}
670 
671 		free(mapping);
672 		free(rs);
673 		if (zio->io_error != 0)
674 			break;
675 	}
676 
677 	list_destroy(&stack);
678 }
679 
680 static void
vdev_indirect_map_free(zio_t * zio)681 vdev_indirect_map_free(zio_t *zio)
682 {
683 	indirect_vsd_t *iv = zio->io_vsd;
684 	indirect_split_t *is;
685 
686 	while ((is = list_head(&iv->iv_splits)) != NULL) {
687 		for (int c = 0; c < is->is_children; c++) {
688 			indirect_child_t *ic = &is->is_child[c];
689 			free(ic->ic_data);
690 		}
691 		list_remove(&iv->iv_splits, is);
692 		free(is);
693 	}
694 	free(iv);
695 }
696 
697 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)698 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
699     off_t offset, size_t bytes)
700 {
701 	zio_t zio;
702 	spa_t *spa = vdev->v_spa;
703 	indirect_vsd_t *iv;
704 	indirect_split_t *first;
705 	int rc = EIO;
706 
707 	iv = calloc(1, sizeof(*iv));
708 	if (iv == NULL)
709 		return (ENOMEM);
710 
711 	list_create(&iv->iv_splits,
712 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
713 
714 	bzero(&zio, sizeof(zio));
715 	zio.io_spa = spa;
716 	zio.io_bp = (blkptr_t *)bp;
717 	zio.io_data = buf;
718 	zio.io_size = bytes;
719 	zio.io_offset = offset;
720 	zio.io_vd = vdev;
721 	zio.io_vsd = iv;
722 
723 	if (vdev->v_mapping == NULL) {
724 		vdev_indirect_config_t *vic;
725 
726 		vic = &vdev->vdev_indirect_config;
727 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
728 		    spa->spa_mos, vic->vic_mapping_object);
729 	}
730 
731 	vdev_indirect_remap(vdev, offset, bytes, &zio);
732 	if (zio.io_error != 0)
733 		return (zio.io_error);
734 
735 	first = list_head(&iv->iv_splits);
736 	if (first->is_size == zio.io_size) {
737 		/*
738 		 * This is not a split block; we are pointing to the entire
739 		 * data, which will checksum the same as the original data.
740 		 * Pass the BP down so that the child i/o can verify the
741 		 * checksum, and try a different location if available
742 		 * (e.g. on a mirror).
743 		 *
744 		 * While this special case could be handled the same as the
745 		 * general (split block) case, doing it this way ensures
746 		 * that the vast majority of blocks on indirect vdevs
747 		 * (which are not split) are handled identically to blocks
748 		 * on non-indirect vdevs.  This allows us to be less strict
749 		 * about performance in the general (but rare) case.
750 		 */
751 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
752 		    zio.io_data, first->is_target_offset, bytes);
753 	} else {
754 		iv->iv_split_block = B_TRUE;
755 		/*
756 		 * Read one copy of each split segment, from the
757 		 * top-level vdev.  Since we don't know the
758 		 * checksum of each split individually, the child
759 		 * zio can't ensure that we get the right data.
760 		 * E.g. if it's a mirror, it will just read from a
761 		 * random (healthy) leaf vdev.  We have to verify
762 		 * the checksum in vdev_indirect_io_done().
763 		 */
764 		for (indirect_split_t *is = list_head(&iv->iv_splits);
765 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
766 			char *ptr = zio.io_data;
767 
768 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
769 			    ptr + is->is_split_offset, is->is_target_offset,
770 			    is->is_size);
771 		}
772 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
773 			rc = ECKSUM;
774 		else
775 			rc = 0;
776 	}
777 
778 	vdev_indirect_map_free(&zio);
779 	if (rc == 0)
780 		rc = zio.io_error;
781 
782 	return (rc);
783 }
784 
785 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)786 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
787     off_t offset, size_t bytes)
788 {
789 
790 	return (vdev_read_phys(vdev, bp, buf,
791 	    offset + VDEV_LABEL_START_SIZE, bytes));
792 }
793 
794 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)795 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
796     void *buf __unused, off_t offset __unused, size_t bytes __unused)
797 {
798 
799 	return (ENOTSUP);
800 }
801 
802 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)803 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
804     off_t offset, size_t bytes)
805 {
806 	vdev_t *kid;
807 	int rc;
808 
809 	rc = EIO;
810 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
811 		if (kid->v_state != VDEV_STATE_HEALTHY)
812 			continue;
813 		rc = kid->v_read(kid, bp, buf, offset, bytes);
814 		if (!rc)
815 			return (0);
816 	}
817 
818 	return (rc);
819 }
820 
821 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)822 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
823     off_t offset, size_t bytes)
824 {
825 	vdev_t *kid;
826 
827 	/*
828 	 * Here we should have two kids:
829 	 * First one which is the one we are replacing and we can trust
830 	 * only this one to have valid data, but it might not be present.
831 	 * Second one is that one we are replacing with. It is most likely
832 	 * healthy, but we can't trust it has needed data, so we won't use it.
833 	 */
834 	kid = STAILQ_FIRST(&vdev->v_children);
835 	if (kid == NULL)
836 		return (EIO);
837 	if (kid->v_state != VDEV_STATE_HEALTHY)
838 		return (EIO);
839 	return (kid->v_read(kid, bp, buf, offset, bytes));
840 }
841 
842 static vdev_t *
vdev_find(uint64_t guid)843 vdev_find(uint64_t guid)
844 {
845 	vdev_t *vdev;
846 
847 	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
848 		if (vdev->v_guid == guid)
849 			return (vdev);
850 
851 	return (0);
852 }
853 
854 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * _read)855 vdev_create(uint64_t guid, vdev_read_t *_read)
856 {
857 	vdev_t *vdev;
858 	vdev_indirect_config_t *vic;
859 
860 	vdev = calloc(1, sizeof(vdev_t));
861 	if (vdev != NULL) {
862 		STAILQ_INIT(&vdev->v_children);
863 		vdev->v_guid = guid;
864 		vdev->v_read = _read;
865 
866 		/*
867 		 * root vdev has no read function, we use this fact to
868 		 * skip setting up data we do not need for root vdev.
869 		 * We only point root vdev from spa.
870 		 */
871 		if (_read != NULL) {
872 			vic = &vdev->vdev_indirect_config;
873 			vic->vic_prev_indirect_vdev = UINT64_MAX;
874 			STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
875 		}
876 	}
877 
878 	return (vdev);
879 }
880 
881 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)882 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
883 {
884 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
885 	uint64_t is_log;
886 
887 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
888 	is_log = 0;
889 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
890 	    &is_offline, NULL);
891 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
892 	    &is_removed, NULL);
893 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
894 	    &is_faulted, NULL);
895 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
896 	    NULL, &is_degraded, NULL);
897 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
898 	    NULL, &isnt_present, NULL);
899 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
900 	    &is_log, NULL);
901 
902 	if (is_offline != 0)
903 		vdev->v_state = VDEV_STATE_OFFLINE;
904 	else if (is_removed != 0)
905 		vdev->v_state = VDEV_STATE_REMOVED;
906 	else if (is_faulted != 0)
907 		vdev->v_state = VDEV_STATE_FAULTED;
908 	else if (is_degraded != 0)
909 		vdev->v_state = VDEV_STATE_DEGRADED;
910 	else if (isnt_present != 0)
911 		vdev->v_state = VDEV_STATE_CANT_OPEN;
912 
913 	vdev->v_islog = is_log != 0;
914 }
915 
916 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)917 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
918 {
919 	uint64_t id, ashift, asize, nparity;
920 	const char *path;
921 	const char *type;
922 	int len, pathlen;
923 	char *name;
924 	vdev_t *vdev;
925 
926 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
927 	    NULL) ||
928 	    nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
929 	    &type, &len)) {
930 		return (ENOENT);
931 	}
932 
933 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
934 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
935 #ifdef ZFS_TEST
936 	    memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
937 #endif
938 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
939 	    memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
940 	    memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
941 	    memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
942 		printf("ZFS: can only boot from disk, mirror, raidz1, "
943 		    "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
944 		return (EIO);
945 	}
946 
947 	if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
948 		vdev = vdev_create(guid, vdev_mirror_read);
949 	else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
950 		vdev = vdev_create(guid, vdev_raidz_read);
951 	else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
952 		vdev = vdev_create(guid, vdev_replacing_read);
953 	else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
954 		vdev_indirect_config_t *vic;
955 
956 		vdev = vdev_create(guid, vdev_indirect_read);
957 		if (vdev != NULL) {
958 			vdev->v_state = VDEV_STATE_HEALTHY;
959 			vic = &vdev->vdev_indirect_config;
960 
961 			nvlist_find(nvlist,
962 			    ZPOOL_CONFIG_INDIRECT_OBJECT,
963 			    DATA_TYPE_UINT64,
964 			    NULL, &vic->vic_mapping_object, NULL);
965 			nvlist_find(nvlist,
966 			    ZPOOL_CONFIG_INDIRECT_BIRTHS,
967 			    DATA_TYPE_UINT64,
968 			    NULL, &vic->vic_births_object, NULL);
969 			nvlist_find(nvlist,
970 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
971 			    DATA_TYPE_UINT64,
972 			    NULL, &vic->vic_prev_indirect_vdev, NULL);
973 		}
974 	} else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
975 		vdev = vdev_create(guid, vdev_missing_read);
976 	} else {
977 		vdev = vdev_create(guid, vdev_disk_read);
978 	}
979 
980 	if (vdev == NULL)
981 		return (ENOMEM);
982 
983 	vdev_set_initial_state(vdev, nvlist);
984 	vdev->v_id = id;
985 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
986 	    DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
987 		vdev->v_ashift = ashift;
988 
989 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
990 	    DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
991 		vdev->v_psize = asize +
992 		    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
993 	}
994 
995 	if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
996 	    DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
997 		vdev->v_nparity = nparity;
998 
999 	if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1000 	    DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1001 		char prefix[] = "/dev/";
1002 
1003 		len = strlen(prefix);
1004 		if (len < pathlen && memcmp(path, prefix, len) == 0) {
1005 			path += len;
1006 			pathlen -= len;
1007 		}
1008 		name = malloc(pathlen + 1);
1009 		bcopy(path, name, pathlen);
1010 		name[pathlen] = '\0';
1011 		vdev->v_name = name;
1012 	} else {
1013 		name = NULL;
1014 		if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1015 			if (vdev->v_nparity < 1 ||
1016 			    vdev->v_nparity > 3) {
1017 				printf("ZFS: invalid raidz parity: %d\n",
1018 				    vdev->v_nparity);
1019 				return (EIO);
1020 			}
1021 			(void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1022 			    vdev->v_nparity, id);
1023 		} else {
1024 			(void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1025 		}
1026 		vdev->v_name = name;
1027 	}
1028 	*vdevp = vdev;
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Find slot for vdev. We return either NULL to signal to use
1034  * STAILQ_INSERT_HEAD, or we return link element to be used with
1035  * STAILQ_INSERT_AFTER.
1036  */
1037 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,vdev_t * vdev)1038 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1039 {
1040 	vdev_t *v, *previous;
1041 
1042 	if (STAILQ_EMPTY(&top_vdev->v_children))
1043 		return (NULL);
1044 
1045 	previous = NULL;
1046 	STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1047 		if (v->v_id > vdev->v_id)
1048 			return (previous);
1049 
1050 		if (v->v_id == vdev->v_id)
1051 			return (v);
1052 
1053 		if (v->v_id < vdev->v_id)
1054 			previous = v;
1055 	}
1056 	return (previous);
1057 }
1058 
1059 static size_t
vdev_child_count(vdev_t * vdev)1060 vdev_child_count(vdev_t *vdev)
1061 {
1062 	vdev_t *v;
1063 	size_t count;
1064 
1065 	count = 0;
1066 	STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1067 		count++;
1068 	}
1069 	return (count);
1070 }
1071 
1072 /*
1073  * Insert vdev into top_vdev children list. List is ordered by v_id.
1074  */
1075 static void
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1076 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1077 {
1078 	vdev_t *previous;
1079 	size_t count;
1080 
1081 	/*
1082 	 * The top level vdev can appear in random order, depending how
1083 	 * the firmware is presenting the disk devices.
1084 	 * However, we will insert vdev to create list ordered by v_id,
1085 	 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1086 	 * as STAILQ does not have insert before.
1087 	 */
1088 	previous = vdev_find_previous(top_vdev, vdev);
1089 
1090 	if (previous == NULL) {
1091 		STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1092 	} else if (previous->v_id == vdev->v_id) {
1093 		/*
1094 		 * This vdev was configured from label config,
1095 		 * do not insert duplicate.
1096 		 */
1097 		return;
1098 	} else {
1099 		STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1100 		    v_childlink);
1101 	}
1102 
1103 	count = vdev_child_count(top_vdev);
1104 	if (top_vdev->v_nchildren < count)
1105 		top_vdev->v_nchildren = count;
1106 }
1107 
1108 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,const nvlist_t * nvlist)1109 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1110 {
1111 	vdev_t *top_vdev, *vdev;
1112 	nvlist_t **kids = NULL;
1113 	int rc, nkids;
1114 
1115 	/* Get top vdev. */
1116 	top_vdev = vdev_find(top_guid);
1117 	if (top_vdev == NULL) {
1118 		rc = vdev_init(top_guid, nvlist, &top_vdev);
1119 		if (rc != 0)
1120 			return (rc);
1121 		top_vdev->v_spa = spa;
1122 		top_vdev->v_top = top_vdev;
1123 		vdev_insert(spa->spa_root_vdev, top_vdev);
1124 	}
1125 
1126 	/* Add children if there are any. */
1127 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1128 	    &nkids, &kids, NULL);
1129 	if (rc == 0) {
1130 		for (int i = 0; i < nkids; i++) {
1131 			uint64_t guid;
1132 
1133 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1134 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1135 			if (rc != 0)
1136 				goto done;
1137 
1138 			rc = vdev_init(guid, kids[i], &vdev);
1139 			if (rc != 0)
1140 				goto done;
1141 
1142 			vdev->v_spa = spa;
1143 			vdev->v_top = top_vdev;
1144 			vdev_insert(top_vdev, vdev);
1145 		}
1146 	} else {
1147 		/*
1148 		 * When there are no children, nvlist_find() does return
1149 		 * error, reset it because leaf devices have no children.
1150 		 */
1151 		rc = 0;
1152 	}
1153 done:
1154 	if (kids != NULL) {
1155 		for (int i = 0; i < nkids; i++)
1156 			nvlist_destroy(kids[i]);
1157 		free(kids);
1158 	}
1159 
1160 	return (rc);
1161 }
1162 
1163 static int
vdev_init_from_label(spa_t * spa,const nvlist_t * nvlist)1164 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1165 {
1166 	uint64_t pool_guid, top_guid;
1167 	nvlist_t *vdevs;
1168 	int rc;
1169 
1170 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1171 	    NULL, &pool_guid, NULL) ||
1172 	    nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1173 	    NULL, &top_guid, NULL) ||
1174 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1175 	    NULL, &vdevs, NULL)) {
1176 		printf("ZFS: can't find vdev details\n");
1177 		return (ENOENT);
1178 	}
1179 
1180 	rc = vdev_from_nvlist(spa, top_guid, vdevs);
1181 	nvlist_destroy(vdevs);
1182 	return (rc);
1183 }
1184 
1185 static void
vdev_set_state(vdev_t * vdev)1186 vdev_set_state(vdev_t *vdev)
1187 {
1188 	vdev_t *kid;
1189 	int good_kids;
1190 	int bad_kids;
1191 
1192 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1193 		vdev_set_state(kid);
1194 	}
1195 
1196 	/*
1197 	 * A mirror or raidz is healthy if all its kids are healthy. A
1198 	 * mirror is degraded if any of its kids is healthy; a raidz
1199 	 * is degraded if at most nparity kids are offline.
1200 	 */
1201 	if (STAILQ_FIRST(&vdev->v_children)) {
1202 		good_kids = 0;
1203 		bad_kids = 0;
1204 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1205 			if (kid->v_state == VDEV_STATE_HEALTHY)
1206 				good_kids++;
1207 			else
1208 				bad_kids++;
1209 		}
1210 		if (bad_kids == 0) {
1211 			vdev->v_state = VDEV_STATE_HEALTHY;
1212 		} else {
1213 			if (vdev->v_read == vdev_mirror_read) {
1214 				if (good_kids) {
1215 					vdev->v_state = VDEV_STATE_DEGRADED;
1216 				} else {
1217 					vdev->v_state = VDEV_STATE_OFFLINE;
1218 				}
1219 			} else if (vdev->v_read == vdev_raidz_read) {
1220 				if (bad_kids > vdev->v_nparity) {
1221 					vdev->v_state = VDEV_STATE_OFFLINE;
1222 				} else {
1223 					vdev->v_state = VDEV_STATE_DEGRADED;
1224 				}
1225 			}
1226 		}
1227 	}
1228 }
1229 
1230 static int
vdev_update_from_nvlist(uint64_t top_guid,const nvlist_t * nvlist)1231 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1232 {
1233 	vdev_t *vdev;
1234 	nvlist_t **kids = NULL;
1235 	int rc, nkids;
1236 
1237 	/* Update top vdev. */
1238 	vdev = vdev_find(top_guid);
1239 	if (vdev != NULL)
1240 		vdev_set_initial_state(vdev, nvlist);
1241 
1242 	/* Update children if there are any. */
1243 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1244 	    &nkids, &kids, NULL);
1245 	if (rc == 0) {
1246 		for (int i = 0; i < nkids; i++) {
1247 			uint64_t guid;
1248 
1249 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1250 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1251 			if (rc != 0)
1252 				break;
1253 
1254 			vdev = vdev_find(guid);
1255 			if (vdev != NULL)
1256 				vdev_set_initial_state(vdev, kids[i]);
1257 		}
1258 	} else {
1259 		rc = 0;
1260 	}
1261 	if (kids != NULL) {
1262 		for (int i = 0; i < nkids; i++)
1263 			nvlist_destroy(kids[i]);
1264 		free(kids);
1265 	}
1266 
1267 	return (rc);
1268 }
1269 
1270 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1271 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1272 {
1273 	uint64_t pool_guid, vdev_children;
1274 	nvlist_t *vdevs = NULL, **kids = NULL;
1275 	int rc, nkids;
1276 
1277 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1278 	    NULL, &pool_guid, NULL) ||
1279 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1280 	    NULL, &vdev_children, NULL) ||
1281 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1282 	    NULL, &vdevs, NULL)) {
1283 		printf("ZFS: can't find vdev details\n");
1284 		return (ENOENT);
1285 	}
1286 
1287 	/* Wrong guid?! */
1288 	if (spa->spa_guid != pool_guid) {
1289 		nvlist_destroy(vdevs);
1290 		return (EINVAL);
1291 	}
1292 
1293 	spa->spa_root_vdev->v_nchildren = vdev_children;
1294 
1295 	rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1296 	    &nkids, &kids, NULL);
1297 	nvlist_destroy(vdevs);
1298 
1299 	/*
1300 	 * MOS config has at least one child for root vdev.
1301 	 */
1302 	if (rc != 0)
1303 		return (rc);
1304 
1305 	for (int i = 0; i < nkids; i++) {
1306 		uint64_t guid;
1307 		vdev_t *vdev;
1308 
1309 		rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1310 		    NULL, &guid, NULL);
1311 		if (rc != 0)
1312 			break;
1313 		vdev = vdev_find(guid);
1314 		/*
1315 		 * Top level vdev is missing, create it.
1316 		 */
1317 		if (vdev == NULL)
1318 			rc = vdev_from_nvlist(spa, guid, kids[i]);
1319 		else
1320 			rc = vdev_update_from_nvlist(guid, kids[i]);
1321 		if (rc != 0)
1322 			break;
1323 	}
1324 	if (kids != NULL) {
1325 		for (int i = 0; i < nkids; i++)
1326 			nvlist_destroy(kids[i]);
1327 		free(kids);
1328 	}
1329 
1330 	/*
1331 	 * Re-evaluate top-level vdev state.
1332 	 */
1333 	vdev_set_state(spa->spa_root_vdev);
1334 
1335 	return (rc);
1336 }
1337 
1338 static spa_t *
spa_find_by_guid(uint64_t guid)1339 spa_find_by_guid(uint64_t guid)
1340 {
1341 	spa_t *spa;
1342 
1343 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1344 		if (spa->spa_guid == guid)
1345 			return (spa);
1346 
1347 	return (NULL);
1348 }
1349 
1350 static spa_t *
spa_find_by_name(const char * name)1351 spa_find_by_name(const char *name)
1352 {
1353 	spa_t *spa;
1354 
1355 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1356 		if (strcmp(spa->spa_name, name) == 0)
1357 			return (spa);
1358 
1359 	return (NULL);
1360 }
1361 
1362 static spa_t *
spa_create(uint64_t guid,const char * name)1363 spa_create(uint64_t guid, const char *name)
1364 {
1365 	spa_t *spa;
1366 
1367 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1368 		return (NULL);
1369 	if ((spa->spa_name = strdup(name)) == NULL) {
1370 		free(spa);
1371 		return (NULL);
1372 	}
1373 	spa->spa_uberblock = &spa->spa_uberblock_master;
1374 	spa->spa_mos = &spa->spa_mos_master;
1375 	spa->spa_guid = guid;
1376 	spa->spa_root_vdev = vdev_create(guid, NULL);
1377 	if (spa->spa_root_vdev == NULL) {
1378 		free(spa->spa_name);
1379 		free(spa);
1380 		return (NULL);
1381 	}
1382 	spa->spa_root_vdev->v_name = spa->spa_name;
1383 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1384 
1385 	return (spa);
1386 }
1387 
1388 static const char *
state_name(vdev_state_t state)1389 state_name(vdev_state_t state)
1390 {
1391 	static const char *names[] = {
1392 		"UNKNOWN",
1393 		"CLOSED",
1394 		"OFFLINE",
1395 		"REMOVED",
1396 		"CANT_OPEN",
1397 		"FAULTED",
1398 		"DEGRADED",
1399 		"ONLINE"
1400 	};
1401 	return (names[state]);
1402 }
1403 
1404 #ifdef BOOT2
1405 
1406 #define pager_printf printf
1407 
1408 #else
1409 
1410 static int
pager_printf(const char * fmt,...)1411 pager_printf(const char *fmt, ...)
1412 {
1413 	char line[80];
1414 	va_list args;
1415 
1416 	va_start(args, fmt);
1417 	vsnprintf(line, sizeof(line), fmt, args);
1418 	va_end(args);
1419 	return (pager_output(line));
1420 }
1421 
1422 #endif
1423 
1424 #define	STATUS_FORMAT	"        %s %s\n"
1425 
1426 static int
print_state(int indent,const char * name,vdev_state_t state)1427 print_state(int indent, const char *name, vdev_state_t state)
1428 {
1429 	int i;
1430 	char buf[512];
1431 
1432 	buf[0] = 0;
1433 	for (i = 0; i < indent; i++)
1434 		strcat(buf, "  ");
1435 	strcat(buf, name);
1436 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1437 }
1438 
1439 static int
vdev_status(vdev_t * vdev,int indent)1440 vdev_status(vdev_t *vdev, int indent)
1441 {
1442 	vdev_t *kid;
1443 	int ret;
1444 
1445 	if (vdev->v_islog) {
1446 		(void) pager_output("        logs\n");
1447 		indent++;
1448 	}
1449 
1450 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1451 	if (ret != 0)
1452 		return (ret);
1453 
1454 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1455 		ret = vdev_status(kid, indent + 1);
1456 		if (ret != 0)
1457 			return (ret);
1458 	}
1459 	return (ret);
1460 }
1461 
1462 static int
spa_status(spa_t * spa)1463 spa_status(spa_t *spa)
1464 {
1465 	static char bootfs[ZFS_MAXNAMELEN];
1466 	uint64_t rootid;
1467 	vdev_list_t *vlist;
1468 	vdev_t *vdev;
1469 	int good_kids, bad_kids, degraded_kids, ret;
1470 	vdev_state_t state;
1471 
1472 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1473 	if (ret != 0)
1474 		return (ret);
1475 
1476 	if (zfs_get_root(spa, &rootid) == 0 &&
1477 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1478 		if (bootfs[0] == '\0')
1479 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1480 		else
1481 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1482 			    bootfs);
1483 		if (ret != 0)
1484 			return (ret);
1485 	}
1486 	ret = pager_printf("config:\n\n");
1487 	if (ret != 0)
1488 		return (ret);
1489 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1490 	if (ret != 0)
1491 		return (ret);
1492 
1493 	good_kids = 0;
1494 	degraded_kids = 0;
1495 	bad_kids = 0;
1496 	vlist = &spa->spa_root_vdev->v_children;
1497 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1498 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1499 			good_kids++;
1500 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1501 			degraded_kids++;
1502 		else
1503 			bad_kids++;
1504 	}
1505 
1506 	state = VDEV_STATE_CLOSED;
1507 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1508 		state = VDEV_STATE_HEALTHY;
1509 	else if ((good_kids + degraded_kids) > 0)
1510 		state = VDEV_STATE_DEGRADED;
1511 
1512 	ret = print_state(0, spa->spa_name, state);
1513 	if (ret != 0)
1514 		return (ret);
1515 
1516 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1517 		ret = vdev_status(vdev, 1);
1518 		if (ret != 0)
1519 			return (ret);
1520 	}
1521 	return (ret);
1522 }
1523 
1524 static int
spa_all_status(void)1525 spa_all_status(void)
1526 {
1527 	spa_t *spa;
1528 	int first = 1, ret = 0;
1529 
1530 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1531 		if (!first) {
1532 			ret = pager_printf("\n");
1533 			if (ret != 0)
1534 				return (ret);
1535 		}
1536 		first = 0;
1537 		ret = spa_status(spa);
1538 		if (ret != 0)
1539 			return (ret);
1540 	}
1541 	return (ret);
1542 }
1543 
1544 static uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1545 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1546 {
1547 	uint64_t label_offset;
1548 
1549 	if (l < VDEV_LABELS / 2)
1550 		label_offset = 0;
1551 	else
1552 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1553 
1554 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1555 }
1556 
1557 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1558 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1559 {
1560 	unsigned int seq1 = 0;
1561 	unsigned int seq2 = 0;
1562 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1563 
1564 	if (cmp != 0)
1565 		return (cmp);
1566 
1567 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1568 	if (cmp != 0)
1569 		return (cmp);
1570 
1571 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1572 		seq1 = MMP_SEQ(ub1);
1573 
1574 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1575 		seq2 = MMP_SEQ(ub2);
1576 
1577 	return (AVL_CMP(seq1, seq2));
1578 }
1579 
1580 static int
uberblock_verify(uberblock_t * ub)1581 uberblock_verify(uberblock_t *ub)
1582 {
1583 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1584 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1585 	}
1586 
1587 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1588 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1589 		return (EINVAL);
1590 
1591 	return (0);
1592 }
1593 
1594 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1595 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1596     size_t size)
1597 {
1598 	blkptr_t bp;
1599 	off_t off;
1600 
1601 	off = vdev_label_offset(vd->v_psize, l, offset);
1602 
1603 	BP_ZERO(&bp);
1604 	BP_SET_LSIZE(&bp, size);
1605 	BP_SET_PSIZE(&bp, size);
1606 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1607 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1608 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1609 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1610 
1611 	return (vdev_read_phys(vd, &bp, buf, off, size));
1612 }
1613 
1614 /*
1615  * We do need to be sure we write to correct location.
1616  * Our vdev label does consist of 4 fields:
1617  * pad1 (8k), reserved.
1618  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1619  * vdev_phys (112k), checksummed
1620  * uberblock ring (128k), checksummed.
1621  *
1622  * Since bootenv area may contain garbage, we can not reliably read it, as
1623  * we can get checksum errors.
1624  * Next best thing is vdev_phys - it is just after bootenv. It still may
1625  * be corrupted, but in such case we will miss this one write.
1626  */
1627 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1628 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1629 {
1630 	uint64_t off, o_phys;
1631 	void *buf;
1632 	size_t size = VDEV_PHYS_SIZE;
1633 	int rc;
1634 
1635 	o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1636 	off = vdev_label_offset(vd->v_psize, l, o_phys);
1637 
1638 	/* off should be 8K from bootenv */
1639 	if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1640 		return (EINVAL);
1641 
1642 	buf = malloc(size);
1643 	if (buf == NULL)
1644 		return (ENOMEM);
1645 
1646 	/* Read vdev_phys */
1647 	rc = vdev_label_read(vd, l, buf, o_phys, size);
1648 	free(buf);
1649 	return (rc);
1650 }
1651 
1652 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1653 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1654 {
1655 	zio_checksum_info_t *ci;
1656 	zio_cksum_t cksum;
1657 	off_t off;
1658 	size_t size = VDEV_PAD_SIZE;
1659 	int rc;
1660 
1661 	if (vd->v_phys_write == NULL)
1662 		return (ENOTSUP);
1663 
1664 	off = vdev_label_offset(vd->v_psize, l, offset);
1665 
1666 	rc = vdev_label_write_validate(vd, l, offset);
1667 	if (rc != 0) {
1668 		return (rc);
1669 	}
1670 
1671 	ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1672 	be->vbe_zbt.zec_magic = ZEC_MAGIC;
1673 	zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1674 	ci->ci_func[0](be, size, NULL, &cksum);
1675 	be->vbe_zbt.zec_cksum = cksum;
1676 
1677 	return (vdev_write_phys(vd, be, off, size));
1678 }
1679 
1680 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1681 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1682 {
1683 	vdev_t *kid;
1684 	int rv = 0, err;
1685 
1686 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1687 		if (kid->v_state != VDEV_STATE_HEALTHY)
1688 			continue;
1689 		err = vdev_write_bootenv_impl(kid, be);
1690 		if (err != 0)
1691 			rv = err;
1692 	}
1693 
1694 	/*
1695 	 * Non-leaf vdevs do not have v_phys_write.
1696 	 */
1697 	if (vdev->v_phys_write == NULL)
1698 		return (rv);
1699 
1700 	for (int l = 0; l < VDEV_LABELS; l++) {
1701 		err = vdev_label_write(vdev, l, be,
1702 		    offsetof(vdev_label_t, vl_be));
1703 		if (err != 0) {
1704 			printf("failed to write bootenv to %s label %d: %d\n",
1705 			    vdev->v_name ? vdev->v_name : "unknown", l, err);
1706 			rv = err;
1707 		}
1708 	}
1709 	return (rv);
1710 }
1711 
1712 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1713 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1714 {
1715 	vdev_boot_envblock_t *be;
1716 	nvlist_t nv, *nvp;
1717 	uint64_t version;
1718 	int rv;
1719 
1720 	if (nvl->nv_size > sizeof(be->vbe_bootenv))
1721 		return (E2BIG);
1722 
1723 	version = VB_RAW;
1724 	nvp = vdev_read_bootenv(vdev);
1725 	if (nvp != NULL) {
1726 		nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1727 		    &version, NULL);
1728 		nvlist_destroy(nvp);
1729 	}
1730 
1731 	be = calloc(1, sizeof(*be));
1732 	if (be == NULL)
1733 		return (ENOMEM);
1734 
1735 	be->vbe_version = version;
1736 	switch (version) {
1737 	case VB_RAW:
1738 		/*
1739 		 * If there is no envmap, we will just wipe bootenv.
1740 		 */
1741 		nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1742 		    be->vbe_bootenv, NULL);
1743 		rv = 0;
1744 		break;
1745 
1746 	case VB_NVLIST:
1747 		nv.nv_header = nvl->nv_header;
1748 		nv.nv_asize = nvl->nv_asize;
1749 		nv.nv_size = nvl->nv_size;
1750 
1751 		bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1752 		nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1753 		bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1754 		rv = nvlist_export(&nv);
1755 		break;
1756 
1757 	default:
1758 		rv = EINVAL;
1759 		break;
1760 	}
1761 
1762 	if (rv == 0) {
1763 		be->vbe_version = htobe64(be->vbe_version);
1764 		rv = vdev_write_bootenv_impl(vdev, be);
1765 	}
1766 	free(be);
1767 	return (rv);
1768 }
1769 
1770 /*
1771  * Read the bootenv area from pool label, return the nvlist from it.
1772  * We return from first successful read.
1773  */
1774 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1775 vdev_read_bootenv(vdev_t *vdev)
1776 {
1777 	vdev_t *kid;
1778 	nvlist_t *benv;
1779 	vdev_boot_envblock_t *be;
1780 	char *command;
1781 	bool ok;
1782 	int rv;
1783 
1784 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1785 		if (kid->v_state != VDEV_STATE_HEALTHY)
1786 			continue;
1787 
1788 		benv = vdev_read_bootenv(kid);
1789 		if (benv != NULL)
1790 			return (benv);
1791 	}
1792 
1793 	be = malloc(sizeof (*be));
1794 	if (be == NULL)
1795 		return (NULL);
1796 
1797 	rv = 0;
1798 	for (int l = 0; l < VDEV_LABELS; l++) {
1799 		rv = vdev_label_read(vdev, l, be,
1800 		    offsetof(vdev_label_t, vl_be),
1801 		    sizeof (*be));
1802 		if (rv == 0)
1803 			break;
1804 	}
1805 	if (rv != 0) {
1806 		free(be);
1807 		return (NULL);
1808 	}
1809 
1810 	be->vbe_version = be64toh(be->vbe_version);
1811 	switch (be->vbe_version) {
1812 	case VB_RAW:
1813 		/*
1814 		 * we have textual data in vbe_bootenv, create nvlist
1815 		 * with key "envmap".
1816 		 */
1817 		benv = nvlist_create(NV_UNIQUE_NAME);
1818 		if (benv != NULL) {
1819 			if (*be->vbe_bootenv == '\0') {
1820 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1821 				    VB_NVLIST);
1822 				break;
1823 			}
1824 			nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1825 			be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1826 			nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1827 		}
1828 		break;
1829 
1830 	case VB_NVLIST:
1831 		benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1832 		break;
1833 
1834 	default:
1835 		command = (char *)be;
1836 		ok = false;
1837 
1838 		/* Check for legacy zfsbootcfg command string */
1839 		for (int i = 0; command[i] != '\0'; i++) {
1840 			if (iscntrl(command[i])) {
1841 				ok = false;
1842 				break;
1843 			} else {
1844 				ok = true;
1845 			}
1846 		}
1847 		benv = nvlist_create(NV_UNIQUE_NAME);
1848 		if (benv != NULL) {
1849 			if (ok)
1850 				nvlist_add_string(benv, FREEBSD_BOOTONCE,
1851 				    command);
1852 			else
1853 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1854 				    VB_NVLIST);
1855 		}
1856 		break;
1857 	}
1858 	free(be);
1859 	return (benv);
1860 }
1861 
1862 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1863 vdev_get_label_asize(nvlist_t *nvl)
1864 {
1865 	nvlist_t *vdevs;
1866 	uint64_t asize;
1867 	const char *type;
1868 	int len;
1869 
1870 	asize = 0;
1871 	/* Get vdev tree */
1872 	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1873 	    NULL, &vdevs, NULL) != 0)
1874 		return (asize);
1875 
1876 	/*
1877 	 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1878 	 * For raidz, the asize is raw size of all children.
1879 	 */
1880 	if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1881 	    NULL, &type, &len) != 0)
1882 		goto done;
1883 
1884 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1885 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1886 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1887 		goto done;
1888 
1889 	if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1890 	    NULL, &asize, NULL) != 0)
1891 		goto done;
1892 
1893 	if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1894 		nvlist_t **kids;
1895 		int nkids;
1896 
1897 		if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1898 		    DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1899 			asize = 0;
1900 			goto done;
1901 		}
1902 
1903 		asize /= nkids;
1904 		for (int i = 0; i < nkids; i++)
1905 			nvlist_destroy(kids[i]);
1906 		free(kids);
1907 	}
1908 
1909 	asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1910 done:
1911 	nvlist_destroy(vdevs);
1912 	return (asize);
1913 }
1914 
1915 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1916 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1917 {
1918 	vdev_phys_t *label;
1919 	uint64_t best_txg = 0;
1920 	uint64_t label_txg = 0;
1921 	uint64_t asize;
1922 	nvlist_t *nvl = NULL, *tmp;
1923 	int error;
1924 
1925 	label = malloc(sizeof (vdev_phys_t));
1926 	if (label == NULL)
1927 		return (NULL);
1928 
1929 	for (int l = 0; l < VDEV_LABELS; l++) {
1930 		if (vdev_label_read(vd, l, label,
1931 		    offsetof(vdev_label_t, vl_vdev_phys),
1932 		    sizeof (vdev_phys_t)))
1933 			continue;
1934 
1935 		tmp = nvlist_import(label->vp_nvlist,
1936 		    sizeof(label->vp_nvlist));
1937 		if (tmp == NULL)
1938 			continue;
1939 
1940 		error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1941 		    DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1942 		if (error != 0 || label_txg == 0) {
1943 			nvlist_destroy(nvl);
1944 			nvl = tmp;
1945 			goto done;
1946 		}
1947 
1948 		if (label_txg <= txg && label_txg > best_txg) {
1949 			best_txg = label_txg;
1950 			nvlist_destroy(nvl);
1951 			nvl = tmp;
1952 			tmp = NULL;
1953 
1954 			/*
1955 			 * Use asize from pool config. We need this
1956 			 * because we can get bad value from BIOS.
1957 			 */
1958 			asize = vdev_get_label_asize(nvl);
1959 			if (asize != 0) {
1960 				vd->v_psize = asize;
1961 			}
1962 		}
1963 		nvlist_destroy(tmp);
1964 	}
1965 
1966 	if (best_txg == 0) {
1967 		nvlist_destroy(nvl);
1968 		nvl = NULL;
1969 	}
1970 done:
1971 	free(label);
1972 	return (nvl);
1973 }
1974 
1975 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)1976 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1977 {
1978 	uberblock_t *buf;
1979 
1980 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1981 	if (buf == NULL)
1982 		return;
1983 
1984 	for (int l = 0; l < VDEV_LABELS; l++) {
1985 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1986 			if (vdev_label_read(vd, l, buf,
1987 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1988 			    VDEV_UBERBLOCK_SIZE(vd)))
1989 				continue;
1990 			if (uberblock_verify(buf) != 0)
1991 				continue;
1992 
1993 			if (vdev_uberblock_compare(buf, ub) > 0)
1994 				*ub = *buf;
1995 		}
1996 	}
1997 	free(buf);
1998 }
1999 
2000 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2001 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2002     spa_t **spap)
2003 {
2004 	vdev_t vtmp;
2005 	spa_t *spa;
2006 	vdev_t *vdev;
2007 	nvlist_t *nvl;
2008 	uint64_t val;
2009 	uint64_t guid;
2010 	uint64_t pool_txg, pool_guid;
2011 	const char *pool_name;
2012 	int rc, namelen;
2013 
2014 	/*
2015 	 * Load the vdev label and figure out which
2016 	 * uberblock is most current.
2017 	 */
2018 	memset(&vtmp, 0, sizeof(vtmp));
2019 	vtmp.v_phys_read = _read;
2020 	vtmp.v_phys_write = _write;
2021 	vtmp.v_priv = priv;
2022 	vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2023 	    (uint64_t)sizeof (vdev_label_t));
2024 
2025 	/* Test for minimum device size. */
2026 	if (vtmp.v_psize < SPA_MINDEVSIZE)
2027 		return (EIO);
2028 
2029 	nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2030 	if (nvl == NULL)
2031 		return (EIO);
2032 
2033 	if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2034 	    NULL, &val, NULL) != 0) {
2035 		nvlist_destroy(nvl);
2036 		return (EIO);
2037 	}
2038 
2039 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
2040 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2041 		    (unsigned)val, (unsigned)SPA_VERSION);
2042 		nvlist_destroy(nvl);
2043 		return (EIO);
2044 	}
2045 
2046 	/* Check ZFS features for read */
2047 	rc = nvlist_check_features_for_read(nvl);
2048 	if (rc != 0) {
2049 		nvlist_destroy(nvl);
2050 		return (EIO);
2051 	}
2052 
2053 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2054 	    NULL, &val, NULL) != 0) {
2055 		nvlist_destroy(nvl);
2056 		return (EIO);
2057 	}
2058 
2059 	if (val == POOL_STATE_DESTROYED) {
2060 		/* We don't boot only from destroyed pools. */
2061 		nvlist_destroy(nvl);
2062 		return (EIO);
2063 	}
2064 
2065 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2066 	    NULL, &pool_txg, NULL) != 0 ||
2067 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2068 	    NULL, &pool_guid, NULL) != 0 ||
2069 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2070 	    NULL, &pool_name, &namelen) != 0 ||
2071 	    nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2072 	    NULL, &guid, NULL) != 0) {
2073 		/*
2074 		 * Cache and spare devices end up here - just ignore
2075 		 * them.
2076 		 */
2077 		nvlist_destroy(nvl);
2078 		return (EIO);
2079 	}
2080 
2081 	/*
2082 	 * Create the pool if this is the first time we've seen it.
2083 	 */
2084 	spa = spa_find_by_guid(pool_guid);
2085 	if (spa == NULL) {
2086 		char *name;
2087 
2088 		name = malloc(namelen + 1);
2089 		if (name == NULL) {
2090 			nvlist_destroy(nvl);
2091 			return (ENOMEM);
2092 		}
2093 		bcopy(pool_name, name, namelen);
2094 		name[namelen] = '\0';
2095 		spa = spa_create(pool_guid, name);
2096 		free(name);
2097 		if (spa == NULL) {
2098 			nvlist_destroy(nvl);
2099 			return (ENOMEM);
2100 		}
2101 	}
2102 	if (pool_txg > spa->spa_txg)
2103 		spa->spa_txg = pool_txg;
2104 
2105 	/*
2106 	 * Get the vdev tree and create our in-core copy of it.
2107 	 * If we already have a vdev with this guid, this must
2108 	 * be some kind of alias (overlapping slices, dangerously dedicated
2109 	 * disks etc).
2110 	 */
2111 	vdev = vdev_find(guid);
2112 	/* Has this vdev already been inited? */
2113 	if (vdev && vdev->v_phys_read) {
2114 		nvlist_destroy(nvl);
2115 		return (EIO);
2116 	}
2117 
2118 	rc = vdev_init_from_label(spa, nvl);
2119 	nvlist_destroy(nvl);
2120 	if (rc != 0)
2121 		return (rc);
2122 
2123 	/*
2124 	 * We should already have created an incomplete vdev for this
2125 	 * vdev. Find it and initialise it with our read proc.
2126 	 */
2127 	vdev = vdev_find(guid);
2128 	if (vdev != NULL) {
2129 		vdev->v_phys_read = _read;
2130 		vdev->v_phys_write = _write;
2131 		vdev->v_priv = priv;
2132 		vdev->v_psize = vtmp.v_psize;
2133 		/*
2134 		 * If no other state is set, mark vdev healthy.
2135 		 */
2136 		if (vdev->v_state == VDEV_STATE_UNKNOWN)
2137 			vdev->v_state = VDEV_STATE_HEALTHY;
2138 	} else {
2139 		printf("ZFS: inconsistent nvlist contents\n");
2140 		return (EIO);
2141 	}
2142 
2143 	if (vdev->v_islog)
2144 		spa->spa_with_log = vdev->v_islog;
2145 
2146 	/*
2147 	 * Re-evaluate top-level vdev state.
2148 	 */
2149 	vdev_set_state(vdev->v_top);
2150 
2151 	/*
2152 	 * Ok, we are happy with the pool so far. Lets find
2153 	 * the best uberblock and then we can actually access
2154 	 * the contents of the pool.
2155 	 */
2156 	vdev_uberblock_load(vdev, spa->spa_uberblock);
2157 
2158 	if (spap != NULL)
2159 		*spap = spa;
2160 	return (0);
2161 }
2162 
2163 static int
ilog2(int n)2164 ilog2(int n)
2165 {
2166 	int v;
2167 
2168 	for (v = 0; v < 32; v++)
2169 		if (n == (1 << v))
2170 			return (v);
2171 	return (-1);
2172 }
2173 
2174 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2175 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2176 {
2177 	blkptr_t gbh_bp;
2178 	zio_gbh_phys_t zio_gb;
2179 	char *pbuf;
2180 	int i;
2181 
2182 	/* Artificial BP for gang block header. */
2183 	gbh_bp = *bp;
2184 	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2185 	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2186 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2187 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2188 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
2189 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2190 
2191 	/* Read gang header block using the artificial BP. */
2192 	if (zio_read(spa, &gbh_bp, &zio_gb))
2193 		return (EIO);
2194 
2195 	pbuf = buf;
2196 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2197 		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2198 
2199 		if (BP_IS_HOLE(gbp))
2200 			continue;
2201 		if (zio_read(spa, gbp, pbuf))
2202 			return (EIO);
2203 		pbuf += BP_GET_PSIZE(gbp);
2204 	}
2205 
2206 	if (zio_checksum_verify(spa, bp, buf))
2207 		return (EIO);
2208 	return (0);
2209 }
2210 
2211 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2212 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2213 {
2214 	int cpfunc = BP_GET_COMPRESS(bp);
2215 	uint64_t align, size;
2216 	void *pbuf;
2217 	int i, error;
2218 
2219 	/*
2220 	 * Process data embedded in block pointer
2221 	 */
2222 	if (BP_IS_EMBEDDED(bp)) {
2223 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2224 
2225 		size = BPE_GET_PSIZE(bp);
2226 		ASSERT(size <= BPE_PAYLOAD_SIZE);
2227 
2228 		if (cpfunc != ZIO_COMPRESS_OFF)
2229 			pbuf = malloc(size);
2230 		else
2231 			pbuf = buf;
2232 
2233 		if (pbuf == NULL)
2234 			return (ENOMEM);
2235 
2236 		decode_embedded_bp_compressed(bp, pbuf);
2237 		error = 0;
2238 
2239 		if (cpfunc != ZIO_COMPRESS_OFF) {
2240 			error = zio_decompress_data(cpfunc, pbuf,
2241 			    size, buf, BP_GET_LSIZE(bp));
2242 			free(pbuf);
2243 		}
2244 		if (error != 0)
2245 			printf("ZFS: i/o error - unable to decompress "
2246 			    "block pointer data, error %d\n", error);
2247 		return (error);
2248 	}
2249 
2250 	error = EIO;
2251 
2252 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2253 		const dva_t *dva = &bp->blk_dva[i];
2254 		vdev_t *vdev;
2255 		vdev_list_t *vlist;
2256 		uint64_t vdevid;
2257 		off_t offset;
2258 
2259 		if (!dva->dva_word[0] && !dva->dva_word[1])
2260 			continue;
2261 
2262 		vdevid = DVA_GET_VDEV(dva);
2263 		offset = DVA_GET_OFFSET(dva);
2264 		vlist = &spa->spa_root_vdev->v_children;
2265 		STAILQ_FOREACH(vdev, vlist, v_childlink) {
2266 			if (vdev->v_id == vdevid)
2267 				break;
2268 		}
2269 		if (!vdev || !vdev->v_read)
2270 			continue;
2271 
2272 		size = BP_GET_PSIZE(bp);
2273 		if (vdev->v_read == vdev_raidz_read) {
2274 			align = 1ULL << vdev->v_ashift;
2275 			if (P2PHASE(size, align) != 0)
2276 				size = P2ROUNDUP(size, align);
2277 		}
2278 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2279 			pbuf = malloc(size);
2280 		else
2281 			pbuf = buf;
2282 
2283 		if (pbuf == NULL) {
2284 			error = ENOMEM;
2285 			break;
2286 		}
2287 
2288 		if (DVA_GET_GANG(dva))
2289 			error = zio_read_gang(spa, bp, pbuf);
2290 		else
2291 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
2292 		if (error == 0) {
2293 			if (cpfunc != ZIO_COMPRESS_OFF)
2294 				error = zio_decompress_data(cpfunc, pbuf,
2295 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2296 			else if (size != BP_GET_PSIZE(bp))
2297 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2298 		} else {
2299 			printf("zio_read error: %d\n", error);
2300 		}
2301 		if (buf != pbuf)
2302 			free(pbuf);
2303 		if (error == 0)
2304 			break;
2305 	}
2306 	if (error != 0)
2307 		printf("ZFS: i/o error - all block copies unavailable\n");
2308 
2309 	return (error);
2310 }
2311 
2312 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2313 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2314     void *buf, size_t buflen)
2315 {
2316 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2317 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2318 	int nlevels = dnode->dn_nlevels;
2319 	int i, rc;
2320 
2321 	if (bsize > SPA_MAXBLOCKSIZE) {
2322 		printf("ZFS: I/O error - blocks larger than %llu are not "
2323 		    "supported\n", SPA_MAXBLOCKSIZE);
2324 		return (EIO);
2325 	}
2326 
2327 	/*
2328 	 * Handle odd block sizes, mirrors dmu_read_impl().  Data can't exist
2329 	 * past the first block, so we'll clip the read to the portion of the
2330 	 * buffer within bsize and zero out the remainder.
2331 	 */
2332 	if (dnode->dn_maxblkid == 0) {
2333 		size_t newbuflen;
2334 
2335 		newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2336 		bzero((char *)buf + newbuflen, buflen - newbuflen);
2337 		buflen = newbuflen;
2338 	}
2339 
2340 	/*
2341 	 * Note: bsize may not be a power of two here so we need to do an
2342 	 * actual divide rather than a bitshift.
2343 	 */
2344 	while (buflen > 0) {
2345 		uint64_t bn = offset / bsize;
2346 		int boff = offset % bsize;
2347 		int ibn;
2348 		const blkptr_t *indbp;
2349 		blkptr_t bp;
2350 
2351 		if (bn > dnode->dn_maxblkid)
2352 			return (EIO);
2353 
2354 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2355 			goto cached;
2356 
2357 		indbp = dnode->dn_blkptr;
2358 		for (i = 0; i < nlevels; i++) {
2359 			/*
2360 			 * Copy the bp from the indirect array so that
2361 			 * we can re-use the scratch buffer for multi-level
2362 			 * objects.
2363 			 */
2364 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2365 			ibn &= ((1 << ibshift) - 1);
2366 			bp = indbp[ibn];
2367 			if (BP_IS_HOLE(&bp)) {
2368 				memset(dnode_cache_buf, 0, bsize);
2369 				break;
2370 			}
2371 			rc = zio_read(spa, &bp, dnode_cache_buf);
2372 			if (rc)
2373 				return (rc);
2374 			indbp = (const blkptr_t *) dnode_cache_buf;
2375 		}
2376 		dnode_cache_obj = dnode;
2377 		dnode_cache_bn = bn;
2378 	cached:
2379 
2380 		/*
2381 		 * The buffer contains our data block. Copy what we
2382 		 * need from it and loop.
2383 		 */
2384 		i = bsize - boff;
2385 		if (i > buflen) i = buflen;
2386 		memcpy(buf, &dnode_cache_buf[boff], i);
2387 		buf = ((char *)buf) + i;
2388 		offset += i;
2389 		buflen -= i;
2390 	}
2391 
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Lookup a value in a microzap directory.
2397  */
2398 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2399 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2400     uint64_t *value)
2401 {
2402 	const mzap_ent_phys_t *mze;
2403 	int chunks, i;
2404 
2405 	/*
2406 	 * Microzap objects use exactly one block. Read the whole
2407 	 * thing.
2408 	 */
2409 	chunks = size / MZAP_ENT_LEN - 1;
2410 	for (i = 0; i < chunks; i++) {
2411 		mze = &mz->mz_chunk[i];
2412 		if (strcmp(mze->mze_name, name) == 0) {
2413 			*value = mze->mze_value;
2414 			return (0);
2415 		}
2416 	}
2417 
2418 	return (ENOENT);
2419 }
2420 
2421 /*
2422  * Compare a name with a zap leaf entry. Return non-zero if the name
2423  * matches.
2424  */
2425 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2426 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2427     const char *name)
2428 {
2429 	size_t namelen;
2430 	const zap_leaf_chunk_t *nc;
2431 	const char *p;
2432 
2433 	namelen = zc->l_entry.le_name_numints;
2434 
2435 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2436 	p = name;
2437 	while (namelen > 0) {
2438 		size_t len;
2439 
2440 		len = namelen;
2441 		if (len > ZAP_LEAF_ARRAY_BYTES)
2442 			len = ZAP_LEAF_ARRAY_BYTES;
2443 		if (memcmp(p, nc->l_array.la_array, len))
2444 			return (0);
2445 		p += len;
2446 		namelen -= len;
2447 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2448 	}
2449 
2450 	return (1);
2451 }
2452 
2453 /*
2454  * Extract a uint64_t value from a zap leaf entry.
2455  */
2456 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2457 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2458 {
2459 	const zap_leaf_chunk_t *vc;
2460 	int i;
2461 	uint64_t value;
2462 	const uint8_t *p;
2463 
2464 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2465 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2466 		value = (value << 8) | p[i];
2467 	}
2468 
2469 	return (value);
2470 }
2471 
2472 static void
stv(int len,void * addr,uint64_t value)2473 stv(int len, void *addr, uint64_t value)
2474 {
2475 	switch (len) {
2476 	case 1:
2477 		*(uint8_t *)addr = value;
2478 		return;
2479 	case 2:
2480 		*(uint16_t *)addr = value;
2481 		return;
2482 	case 4:
2483 		*(uint32_t *)addr = value;
2484 		return;
2485 	case 8:
2486 		*(uint64_t *)addr = value;
2487 		return;
2488 	}
2489 }
2490 
2491 /*
2492  * Extract a array from a zap leaf entry.
2493  */
2494 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2495 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2496     uint64_t integer_size, uint64_t num_integers, void *buf)
2497 {
2498 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2499 	uint64_t value = 0;
2500 	uint64_t *u64 = buf;
2501 	char *p = buf;
2502 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2503 	int chunk = zc->l_entry.le_value_chunk;
2504 	int byten = 0;
2505 
2506 	if (integer_size == 8 && len == 1) {
2507 		*u64 = fzap_leaf_value(zl, zc);
2508 		return;
2509 	}
2510 
2511 	while (len > 0) {
2512 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2513 		int i;
2514 
2515 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2516 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2517 			value = (value << 8) | la->la_array[i];
2518 			byten++;
2519 			if (byten == array_int_len) {
2520 				stv(integer_size, p, value);
2521 				byten = 0;
2522 				len--;
2523 				if (len == 0)
2524 					return;
2525 				p += integer_size;
2526 			}
2527 		}
2528 		chunk = la->la_next;
2529 	}
2530 }
2531 
2532 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2533 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2534 {
2535 
2536 	switch (integer_size) {
2537 	case 1:
2538 	case 2:
2539 	case 4:
2540 	case 8:
2541 		break;
2542 	default:
2543 		return (EINVAL);
2544 	}
2545 
2546 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
2547 		return (E2BIG);
2548 
2549 	return (0);
2550 }
2551 
2552 static void
zap_leaf_free(zap_leaf_t * leaf)2553 zap_leaf_free(zap_leaf_t *leaf)
2554 {
2555 	free(leaf->l_phys);
2556 	free(leaf);
2557 }
2558 
2559 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2560 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2561 {
2562 	int bs = FZAP_BLOCK_SHIFT(zap);
2563 	int err;
2564 
2565 	*lp = malloc(sizeof(**lp));
2566 	if (*lp == NULL)
2567 		return (ENOMEM);
2568 
2569 	(*lp)->l_bs = bs;
2570 	(*lp)->l_phys = malloc(1 << bs);
2571 
2572 	if ((*lp)->l_phys == NULL) {
2573 		free(*lp);
2574 		return (ENOMEM);
2575 	}
2576 	err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2577 	    1 << bs);
2578 	if (err != 0) {
2579 		zap_leaf_free(*lp);
2580 	}
2581 	return (err);
2582 }
2583 
2584 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2585 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2586     uint64_t *valp)
2587 {
2588 	int bs = FZAP_BLOCK_SHIFT(zap);
2589 	uint64_t blk = idx >> (bs - 3);
2590 	uint64_t off = idx & ((1 << (bs - 3)) - 1);
2591 	uint64_t *buf;
2592 	int rc;
2593 
2594 	buf = malloc(1 << zap->zap_block_shift);
2595 	if (buf == NULL)
2596 		return (ENOMEM);
2597 	rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2598 	    buf, 1 << zap->zap_block_shift);
2599 	if (rc == 0)
2600 		*valp = buf[off];
2601 	free(buf);
2602 	return (rc);
2603 }
2604 
2605 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2606 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2607 {
2608 	if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2609 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2610 		return (0);
2611 	} else {
2612 		return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2613 		    idx, valp));
2614 	}
2615 }
2616 
2617 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2618 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2619 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2620 {
2621 	uint64_t idx, blk;
2622 	int err;
2623 
2624 	idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2625 	err = zap_idx_to_blk(zap, idx, &blk);
2626 	if (err != 0)
2627 		return (err);
2628 	return (zap_get_leaf_byblk(zap, blk, lp));
2629 }
2630 
2631 #define	CHAIN_END	0xffff	/* end of the chunk chain */
2632 #define	LEAF_HASH(l, h) \
2633 	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2634 	((h) >> \
2635 	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2636 #define	LEAF_HASH_ENTPTR(l, h)	(&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2637 
2638 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2639 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2640     uint64_t integer_size, uint64_t num_integers, void *value)
2641 {
2642 	int rc;
2643 	uint16_t *chunkp;
2644 	struct zap_leaf_entry *le;
2645 
2646 	/*
2647 	 * Make sure this chunk matches our hash.
2648 	 */
2649 	if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2650 	    zl->l_phys->l_hdr.lh_prefix !=
2651 	    hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2652 		return (EIO);
2653 
2654 	rc = ENOENT;
2655 	for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2656 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
2657 		zap_leaf_chunk_t *zc;
2658 		uint16_t chunk = *chunkp;
2659 
2660 		le = ZAP_LEAF_ENTRY(zl, chunk);
2661 		if (le->le_hash != hash)
2662 			continue;
2663 		zc = &ZAP_LEAF_CHUNK(zl, chunk);
2664 		if (fzap_name_equal(zl, zc, name)) {
2665 			if (zc->l_entry.le_value_intlen > integer_size) {
2666 				rc = EINVAL;
2667 			} else {
2668 				fzap_leaf_array(zl, zc, integer_size,
2669 				    num_integers, value);
2670 				rc = 0;
2671 			}
2672 			break;
2673 		}
2674 	}
2675 	return (rc);
2676 }
2677 
2678 /*
2679  * Lookup a value in a fatzap directory.
2680  */
2681 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2682 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2683     const char *name, uint64_t integer_size, uint64_t num_integers,
2684     void *value)
2685 {
2686 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2687 	fat_zap_t z;
2688 	zap_leaf_t *zl;
2689 	uint64_t hash;
2690 	int rc;
2691 
2692 	if (zh->zap_magic != ZAP_MAGIC)
2693 		return (EIO);
2694 
2695 	if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2696 		return (rc);
2697 	}
2698 
2699 	z.zap_block_shift = ilog2(bsize);
2700 	z.zap_phys = zh;
2701 	z.zap_spa = spa;
2702 	z.zap_dnode = dnode;
2703 
2704 	hash = zap_hash(zh->zap_salt, name);
2705 	rc = zap_deref_leaf(&z, hash, &zl);
2706 	if (rc != 0)
2707 		return (rc);
2708 
2709 	rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2710 
2711 	zap_leaf_free(zl);
2712 	return (rc);
2713 }
2714 
2715 /*
2716  * Lookup a name in a zap object and return its value as a uint64_t.
2717  */
2718 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2719 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2720     uint64_t integer_size, uint64_t num_integers, void *value)
2721 {
2722 	int rc;
2723 	zap_phys_t *zap;
2724 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2725 
2726 	zap = malloc(size);
2727 	if (zap == NULL)
2728 		return (ENOMEM);
2729 
2730 	rc = dnode_read(spa, dnode, 0, zap, size);
2731 	if (rc)
2732 		goto done;
2733 
2734 	switch (zap->zap_block_type) {
2735 	case ZBT_MICRO:
2736 		rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2737 		break;
2738 	case ZBT_HEADER:
2739 		rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2740 		    num_integers, value);
2741 		break;
2742 	default:
2743 		printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2744 		    zap->zap_block_type);
2745 		rc = EIO;
2746 	}
2747 done:
2748 	free(zap);
2749 	return (rc);
2750 }
2751 
2752 /*
2753  * List a microzap directory.
2754  */
2755 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2756 mzap_list(const mzap_phys_t *mz, size_t size,
2757     int (*callback)(const char *, uint64_t))
2758 {
2759 	const mzap_ent_phys_t *mze;
2760 	int chunks, i, rc;
2761 
2762 	/*
2763 	 * Microzap objects use exactly one block. Read the whole
2764 	 * thing.
2765 	 */
2766 	rc = 0;
2767 	chunks = size / MZAP_ENT_LEN - 1;
2768 	for (i = 0; i < chunks; i++) {
2769 		mze = &mz->mz_chunk[i];
2770 		if (mze->mze_name[0]) {
2771 			rc = callback(mze->mze_name, mze->mze_value);
2772 			if (rc != 0)
2773 				break;
2774 		}
2775 	}
2776 
2777 	return (rc);
2778 }
2779 
2780 /*
2781  * List a fatzap directory.
2782  */
2783 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2784 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2785     int (*callback)(const char *, uint64_t))
2786 {
2787 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2788 	fat_zap_t z;
2789 	uint64_t i;
2790 	int j, rc;
2791 
2792 	if (zh->zap_magic != ZAP_MAGIC)
2793 		return (EIO);
2794 
2795 	z.zap_block_shift = ilog2(bsize);
2796 	z.zap_phys = zh;
2797 
2798 	/*
2799 	 * This assumes that the leaf blocks start at block 1. The
2800 	 * documentation isn't exactly clear on this.
2801 	 */
2802 	zap_leaf_t zl;
2803 	zl.l_bs = z.zap_block_shift;
2804 	zl.l_phys = malloc(bsize);
2805 	if (zl.l_phys == NULL)
2806 		return (ENOMEM);
2807 
2808 	for (i = 0; i < zh->zap_num_leafs; i++) {
2809 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2810 		char name[256], *p;
2811 		uint64_t value;
2812 
2813 		if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2814 			free(zl.l_phys);
2815 			return (EIO);
2816 		}
2817 
2818 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2819 			zap_leaf_chunk_t *zc, *nc;
2820 			int namelen;
2821 
2822 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2823 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2824 				continue;
2825 			namelen = zc->l_entry.le_name_numints;
2826 			if (namelen > sizeof(name))
2827 				namelen = sizeof(name);
2828 
2829 			/*
2830 			 * Paste the name back together.
2831 			 */
2832 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2833 			p = name;
2834 			while (namelen > 0) {
2835 				int len;
2836 				len = namelen;
2837 				if (len > ZAP_LEAF_ARRAY_BYTES)
2838 					len = ZAP_LEAF_ARRAY_BYTES;
2839 				memcpy(p, nc->l_array.la_array, len);
2840 				p += len;
2841 				namelen -= len;
2842 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2843 			}
2844 
2845 			/*
2846 			 * Assume the first eight bytes of the value are
2847 			 * a uint64_t.
2848 			 */
2849 			value = fzap_leaf_value(&zl, zc);
2850 
2851 			/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2852 			rc = callback((const char *)name, value);
2853 			if (rc != 0) {
2854 				free(zl.l_phys);
2855 				return (rc);
2856 			}
2857 		}
2858 	}
2859 
2860 	free(zl.l_phys);
2861 	return (0);
2862 }
2863 
zfs_printf(const char * name,uint64_t value __unused)2864 static int zfs_printf(const char *name, uint64_t value __unused)
2865 {
2866 
2867 	printf("%s\n", name);
2868 
2869 	return (0);
2870 }
2871 
2872 /*
2873  * List a zap directory.
2874  */
2875 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)2876 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2877 {
2878 	zap_phys_t *zap;
2879 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2880 	int rc;
2881 
2882 	zap = malloc(size);
2883 	if (zap == NULL)
2884 		return (ENOMEM);
2885 
2886 	rc = dnode_read(spa, dnode, 0, zap, size);
2887 	if (rc == 0) {
2888 		if (zap->zap_block_type == ZBT_MICRO)
2889 			rc = mzap_list((const mzap_phys_t *)zap, size,
2890 			    zfs_printf);
2891 		else
2892 			rc = fzap_list(spa, dnode, zap, zfs_printf);
2893 	}
2894 	free(zap);
2895 	return (rc);
2896 }
2897 
2898 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)2899 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2900     dnode_phys_t *dnode)
2901 {
2902 	off_t offset;
2903 
2904 	offset = objnum * sizeof(dnode_phys_t);
2905 	return dnode_read(spa, &os->os_meta_dnode, offset,
2906 		dnode, sizeof(dnode_phys_t));
2907 }
2908 
2909 /*
2910  * Lookup a name in a microzap directory.
2911  */
2912 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)2913 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2914 {
2915 	const mzap_ent_phys_t *mze;
2916 	int chunks, i;
2917 
2918 	/*
2919 	 * Microzap objects use exactly one block. Read the whole
2920 	 * thing.
2921 	 */
2922 	chunks = size / MZAP_ENT_LEN - 1;
2923 	for (i = 0; i < chunks; i++) {
2924 		mze = &mz->mz_chunk[i];
2925 		if (value == mze->mze_value) {
2926 			strcpy(name, mze->mze_name);
2927 			return (0);
2928 		}
2929 	}
2930 
2931 	return (ENOENT);
2932 }
2933 
2934 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)2935 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2936 {
2937 	size_t namelen;
2938 	const zap_leaf_chunk_t *nc;
2939 	char *p;
2940 
2941 	namelen = zc->l_entry.le_name_numints;
2942 
2943 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2944 	p = name;
2945 	while (namelen > 0) {
2946 		size_t len;
2947 		len = namelen;
2948 		if (len > ZAP_LEAF_ARRAY_BYTES)
2949 			len = ZAP_LEAF_ARRAY_BYTES;
2950 		memcpy(p, nc->l_array.la_array, len);
2951 		p += len;
2952 		namelen -= len;
2953 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2954 	}
2955 
2956 	*p = '\0';
2957 }
2958 
2959 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)2960 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2961     char *name, uint64_t value)
2962 {
2963 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2964 	fat_zap_t z;
2965 	uint64_t i;
2966 	int j, rc;
2967 
2968 	if (zh->zap_magic != ZAP_MAGIC)
2969 		return (EIO);
2970 
2971 	z.zap_block_shift = ilog2(bsize);
2972 	z.zap_phys = zh;
2973 
2974 	/*
2975 	 * This assumes that the leaf blocks start at block 1. The
2976 	 * documentation isn't exactly clear on this.
2977 	 */
2978 	zap_leaf_t zl;
2979 	zl.l_bs = z.zap_block_shift;
2980 	zl.l_phys = malloc(bsize);
2981 	if (zl.l_phys == NULL)
2982 		return (ENOMEM);
2983 
2984 	for (i = 0; i < zh->zap_num_leafs; i++) {
2985 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2986 
2987 		rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2988 		if (rc != 0)
2989 			goto done;
2990 
2991 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2992 			zap_leaf_chunk_t *zc;
2993 
2994 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2995 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2996 				continue;
2997 			if (zc->l_entry.le_value_intlen != 8 ||
2998 			    zc->l_entry.le_value_numints != 1)
2999 				continue;
3000 
3001 			if (fzap_leaf_value(&zl, zc) == value) {
3002 				fzap_name_copy(&zl, zc, name);
3003 				goto done;
3004 			}
3005 		}
3006 	}
3007 
3008 	rc = ENOENT;
3009 done:
3010 	free(zl.l_phys);
3011 	return (rc);
3012 }
3013 
3014 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3015 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3016     uint64_t value)
3017 {
3018 	zap_phys_t *zap;
3019 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3020 	int rc;
3021 
3022 	zap = malloc(size);
3023 	if (zap == NULL)
3024 		return (ENOMEM);
3025 
3026 	rc = dnode_read(spa, dnode, 0, zap, size);
3027 	if (rc == 0) {
3028 		if (zap->zap_block_type == ZBT_MICRO)
3029 			rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3030 			    name, value);
3031 		else
3032 			rc = fzap_rlookup(spa, dnode, zap, name, value);
3033 	}
3034 	free(zap);
3035 	return (rc);
3036 }
3037 
3038 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3039 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3040 {
3041 	char name[256];
3042 	char component[256];
3043 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
3044 	dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3045 	dsl_dir_phys_t *dd;
3046 	dsl_dataset_phys_t *ds;
3047 	char *p;
3048 	int len;
3049 	boolean_t issnap = B_FALSE;
3050 
3051 	p = &name[sizeof(name) - 1];
3052 	*p = '\0';
3053 
3054 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3055 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3056 		return (EIO);
3057 	}
3058 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3059 	dir_obj = ds->ds_dir_obj;
3060 	if (ds->ds_snapnames_zapobj == 0)
3061 		issnap = B_TRUE;
3062 
3063 	for (;;) {
3064 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3065 			return (EIO);
3066 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3067 
3068 		/* Actual loop condition. */
3069 		parent_obj = dd->dd_parent_obj;
3070 		if (parent_obj == 0)
3071 			break;
3072 
3073 		if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3074 		    &parent) != 0)
3075 			return (EIO);
3076 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3077 		if (issnap == B_TRUE) {
3078 			/*
3079 			 * The dataset we are looking up is a snapshot
3080 			 * the dir_obj is the parent already, we don't want
3081 			 * the grandparent just yet. Reset to the parent.
3082 			 */
3083 			dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3084 			/* Lookup the dataset to get the snapname ZAP */
3085 			if (objset_get_dnode(spa, spa->spa_mos,
3086 			    dd->dd_head_dataset_obj, &dataset))
3087 				return (EIO);
3088 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3089 			if (objset_get_dnode(spa, spa->spa_mos,
3090 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3091 				return (EIO);
3092 			/* Get the name of the snapshot */
3093 			if (zap_rlookup(spa, &snapnames_zap, component,
3094 			    objnum) != 0)
3095 				return (EIO);
3096 			len = strlen(component);
3097 			p -= len;
3098 			memcpy(p, component, len);
3099 			--p;
3100 			*p = '@';
3101 			issnap = B_FALSE;
3102 			continue;
3103 		}
3104 
3105 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3106 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3107 		    &child_dir_zap) != 0)
3108 			return (EIO);
3109 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3110 			return (EIO);
3111 
3112 		len = strlen(component);
3113 		p -= len;
3114 		memcpy(p, component, len);
3115 		--p;
3116 		*p = '/';
3117 
3118 		/* Actual loop iteration. */
3119 		dir_obj = parent_obj;
3120 	}
3121 
3122 	if (*p != '\0')
3123 		++p;
3124 	strcpy(result, p);
3125 
3126 	return (0);
3127 }
3128 
3129 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3130 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3131 {
3132 	char element[256];
3133 	uint64_t dir_obj, child_dir_zapobj;
3134 	dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3135 	dsl_dir_phys_t *dd;
3136 	dsl_dataset_phys_t *ds;
3137 	const char *p, *q;
3138 	boolean_t issnap = B_FALSE;
3139 
3140 	if (objset_get_dnode(spa, spa->spa_mos,
3141 	    DMU_POOL_DIRECTORY_OBJECT, &dir))
3142 		return (EIO);
3143 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3144 	    1, &dir_obj))
3145 		return (EIO);
3146 
3147 	p = name;
3148 	for (;;) {
3149 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3150 			return (EIO);
3151 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3152 
3153 		while (*p == '/')
3154 			p++;
3155 		/* Actual loop condition #1. */
3156 		if (*p == '\0')
3157 			break;
3158 
3159 		q = strchr(p, '/');
3160 		if (q) {
3161 			memcpy(element, p, q - p);
3162 			element[q - p] = '\0';
3163 			p = q + 1;
3164 		} else {
3165 			strcpy(element, p);
3166 			p += strlen(p);
3167 		}
3168 
3169 		if (issnap == B_TRUE) {
3170 		        if (objset_get_dnode(spa, spa->spa_mos,
3171 			    dd->dd_head_dataset_obj, &dataset))
3172 		                return (EIO);
3173 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3174 			if (objset_get_dnode(spa, spa->spa_mos,
3175 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3176 				return (EIO);
3177 			/* Actual loop condition #2. */
3178 			if (zap_lookup(spa, &snapnames_zap, element,
3179 			    sizeof (dir_obj), 1, &dir_obj) != 0)
3180 				return (ENOENT);
3181 			*objnum = dir_obj;
3182 			return (0);
3183 		} else if ((q = strchr(element, '@')) != NULL) {
3184 			issnap = B_TRUE;
3185 			element[q - element] = '\0';
3186 			p = q + 1;
3187 		}
3188 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3189 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3190 		    &child_dir_zap) != 0)
3191 			return (EIO);
3192 
3193 		/* Actual loop condition #2. */
3194 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3195 		    1, &dir_obj) != 0)
3196 			return (ENOENT);
3197 	}
3198 
3199 	*objnum = dd->dd_head_dataset_obj;
3200 	return (0);
3201 }
3202 
3203 #ifndef BOOT2
3204 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3205 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3206 {
3207 	uint64_t dir_obj, child_dir_zapobj;
3208 	dnode_phys_t child_dir_zap, dir, dataset;
3209 	dsl_dataset_phys_t *ds;
3210 	dsl_dir_phys_t *dd;
3211 
3212 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3213 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3214 		return (EIO);
3215 	}
3216 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3217 	dir_obj = ds->ds_dir_obj;
3218 
3219 	if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3220 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3221 		return (EIO);
3222 	}
3223 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3224 
3225 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3226 	if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3227 	    &child_dir_zap) != 0) {
3228 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3229 		return (EIO);
3230 	}
3231 
3232 	return (zap_list(spa, &child_dir_zap) != 0);
3233 }
3234 
3235 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3236 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3237     int (*callback)(const char *, uint64_t))
3238 {
3239 	uint64_t dir_obj, child_dir_zapobj;
3240 	dnode_phys_t child_dir_zap, dir, dataset;
3241 	dsl_dataset_phys_t *ds;
3242 	dsl_dir_phys_t *dd;
3243 	zap_phys_t *zap;
3244 	size_t size;
3245 	int err;
3246 
3247 	err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3248 	if (err != 0) {
3249 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3250 		return (err);
3251 	}
3252 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3253 	dir_obj = ds->ds_dir_obj;
3254 
3255 	err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3256 	if (err != 0) {
3257 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3258 		return (err);
3259 	}
3260 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3261 
3262 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3263 	err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3264 	    &child_dir_zap);
3265 	if (err != 0) {
3266 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3267 		return (err);
3268 	}
3269 
3270 	size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3271 	zap = malloc(size);
3272 	if (zap != NULL) {
3273 		err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3274 		if (err != 0)
3275 			goto done;
3276 
3277 		if (zap->zap_block_type == ZBT_MICRO)
3278 			err = mzap_list((const mzap_phys_t *)zap, size,
3279 			    callback);
3280 		else
3281 			err = fzap_list(spa, &child_dir_zap, zap, callback);
3282 	} else {
3283 		err = ENOMEM;
3284 	}
3285 done:
3286 	free(zap);
3287 	return (err);
3288 }
3289 #endif
3290 
3291 /*
3292  * Find the object set given the object number of its dataset object
3293  * and return its details in *objset
3294  */
3295 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3296 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3297 {
3298 	dnode_phys_t dataset;
3299 	dsl_dataset_phys_t *ds;
3300 
3301 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3302 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3303 		return (EIO);
3304 	}
3305 
3306 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3307 	if (zio_read(spa, &ds->ds_bp, objset)) {
3308 		printf("ZFS: can't read object set for dataset %ju\n",
3309 		    (uintmax_t)objnum);
3310 		return (EIO);
3311 	}
3312 
3313 	return (0);
3314 }
3315 
3316 /*
3317  * Find the object set pointed to by the BOOTFS property or the root
3318  * dataset if there is none and return its details in *objset
3319  */
3320 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3321 zfs_get_root(const spa_t *spa, uint64_t *objid)
3322 {
3323 	dnode_phys_t dir, propdir;
3324 	uint64_t props, bootfs, root;
3325 
3326 	*objid = 0;
3327 
3328 	/*
3329 	 * Start with the MOS directory object.
3330 	 */
3331 	if (objset_get_dnode(spa, spa->spa_mos,
3332 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3333 		printf("ZFS: can't read MOS object directory\n");
3334 		return (EIO);
3335 	}
3336 
3337 	/*
3338 	 * Lookup the pool_props and see if we can find a bootfs.
3339 	 */
3340 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3341 	    sizeof(props), 1, &props) == 0 &&
3342 	    objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3343 	    zap_lookup(spa, &propdir, "bootfs",
3344 	    sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3345 		*objid = bootfs;
3346 		return (0);
3347 	}
3348 	/*
3349 	 * Lookup the root dataset directory
3350 	 */
3351 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3352 	    sizeof(root), 1, &root) ||
3353 	    objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3354 		printf("ZFS: can't find root dsl_dir\n");
3355 		return (EIO);
3356 	}
3357 
3358 	/*
3359 	 * Use the information from the dataset directory's bonus buffer
3360 	 * to find the dataset object and from that the object set itself.
3361 	 */
3362 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3363 	*objid = dd->dd_head_dataset_obj;
3364 	return (0);
3365 }
3366 
3367 static int
zfs_mount_impl(const spa_t * spa,uint64_t rootobj,struct zfsmount * mount)3368 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3369 {
3370 
3371 	mount->spa = spa;
3372 
3373 	/*
3374 	 * Find the root object set if not explicitly provided
3375 	 */
3376 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3377 		printf("ZFS: can't find root filesystem\n");
3378 		return (EIO);
3379 	}
3380 
3381 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3382 		printf("ZFS: can't open root filesystem\n");
3383 		return (EIO);
3384 	}
3385 
3386 	mount->rootobj = rootobj;
3387 
3388 	return (0);
3389 }
3390 
3391 /*
3392  * callback function for feature name checks.
3393  */
3394 static int
check_feature(const char * name,uint64_t value)3395 check_feature(const char *name, uint64_t value)
3396 {
3397 	int i;
3398 
3399 	if (value == 0)
3400 		return (0);
3401 	if (name[0] == '\0')
3402 		return (0);
3403 
3404 	for (i = 0; features_for_read[i] != NULL; i++) {
3405 		if (strcmp(name, features_for_read[i]) == 0)
3406 			return (0);
3407 	}
3408 	printf("ZFS: unsupported feature: %s\n", name);
3409 	return (EIO);
3410 }
3411 
3412 /*
3413  * Checks whether the MOS features that are active are supported.
3414  */
3415 static int
check_mos_features(const spa_t * spa)3416 check_mos_features(const spa_t *spa)
3417 {
3418 	dnode_phys_t dir;
3419 	zap_phys_t *zap;
3420 	uint64_t objnum;
3421 	size_t size;
3422 	int rc;
3423 
3424 	if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3425 	    &dir)) != 0)
3426 		return (rc);
3427 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3428 	    sizeof (objnum), 1, &objnum)) != 0) {
3429 		/*
3430 		 * It is older pool without features. As we have already
3431 		 * tested the label, just return without raising the error.
3432 		 */
3433 		return (0);
3434 	}
3435 
3436 	if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3437 		return (rc);
3438 
3439 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3440 		return (EIO);
3441 
3442 	size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3443 	zap = malloc(size);
3444 	if (zap == NULL)
3445 		return (ENOMEM);
3446 
3447 	if (dnode_read(spa, &dir, 0, zap, size)) {
3448 		free(zap);
3449 		return (EIO);
3450 	}
3451 
3452 	if (zap->zap_block_type == ZBT_MICRO)
3453 		rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3454 	else
3455 		rc = fzap_list(spa, &dir, zap, check_feature);
3456 
3457 	free(zap);
3458 	return (rc);
3459 }
3460 
3461 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3462 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3463 {
3464 	dnode_phys_t dir;
3465 	size_t size;
3466 	int rc;
3467 	char *nv;
3468 
3469 	*value = NULL;
3470 	if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3471 		return (rc);
3472 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3473 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3474 		return (EIO);
3475 	}
3476 
3477 	if (dir.dn_bonuslen != sizeof (uint64_t))
3478 		return (EIO);
3479 
3480 	size = *(uint64_t *)DN_BONUS(&dir);
3481 	nv = malloc(size);
3482 	if (nv == NULL)
3483 		return (ENOMEM);
3484 
3485 	rc = dnode_read(spa, &dir, 0, nv, size);
3486 	if (rc != 0) {
3487 		free(nv);
3488 		nv = NULL;
3489 		return (rc);
3490 	}
3491 	*value = nvlist_import(nv, size);
3492 	free(nv);
3493 	return (rc);
3494 }
3495 
3496 static int
zfs_spa_init(spa_t * spa)3497 zfs_spa_init(spa_t *spa)
3498 {
3499 	struct uberblock checkpoint;
3500 	dnode_phys_t dir;
3501 	uint64_t config_object;
3502 	nvlist_t *nvlist;
3503 	int rc;
3504 
3505 	if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3506 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3507 		return (EIO);
3508 	}
3509 	if (spa->spa_mos->os_type != DMU_OST_META) {
3510 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3511 		return (EIO);
3512 	}
3513 
3514 	if (objset_get_dnode(spa, &spa->spa_mos_master,
3515 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3516 		printf("ZFS: failed to read pool %s directory object\n",
3517 		    spa->spa_name);
3518 		return (EIO);
3519 	}
3520 	/* this is allowed to fail, older pools do not have salt */
3521 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3522 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3523 	    spa->spa_cksum_salt.zcs_bytes);
3524 
3525 	rc = check_mos_features(spa);
3526 	if (rc != 0) {
3527 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3528 		return (rc);
3529 	}
3530 
3531 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3532 	    sizeof (config_object), 1, &config_object);
3533 	if (rc != 0) {
3534 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3535 		return (EIO);
3536 	}
3537 	rc = load_nvlist(spa, config_object, &nvlist);
3538 	if (rc != 0) {
3539 		printf("ZFS: failed to load pool %s nvlist\n", spa->spa_name);
3540 		return (rc);
3541 	}
3542 
3543 	rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3544 	    sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3545 	    &checkpoint);
3546 	if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3547 		memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3548 		    sizeof(checkpoint));
3549 		if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3550 		    &spa->spa_mos_checkpoint)) {
3551 			printf("ZFS: can not read checkpoint data.\n");
3552 			return (EIO);
3553 		}
3554 	}
3555 
3556 	/*
3557 	 * Update vdevs from MOS config. Note, we do skip encoding bytes
3558 	 * here. See also vdev_label_read_config().
3559 	 */
3560 	rc = vdev_init_from_nvlist(spa, nvlist);
3561 	nvlist_destroy(nvlist);
3562 	return (rc);
3563 }
3564 
3565 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3566 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3567 {
3568 
3569 	if (dn->dn_bonustype != DMU_OT_SA) {
3570 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3571 
3572 		sb->st_mode = zp->zp_mode;
3573 		sb->st_uid = zp->zp_uid;
3574 		sb->st_gid = zp->zp_gid;
3575 		sb->st_size = zp->zp_size;
3576 	} else {
3577 		sa_hdr_phys_t *sahdrp;
3578 		int hdrsize;
3579 		size_t size = 0;
3580 		void *buf = NULL;
3581 
3582 		if (dn->dn_bonuslen != 0)
3583 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3584 		else {
3585 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3586 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3587 				int error;
3588 
3589 				size = BP_GET_LSIZE(bp);
3590 				buf = malloc(size);
3591 				if (buf == NULL)
3592 					error = ENOMEM;
3593 				else
3594 					error = zio_read(spa, bp, buf);
3595 
3596 				if (error != 0) {
3597 					free(buf);
3598 					return (error);
3599 				}
3600 				sahdrp = buf;
3601 			} else {
3602 				return (EIO);
3603 			}
3604 		}
3605 		hdrsize = SA_HDR_SIZE(sahdrp);
3606 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3607 		    SA_MODE_OFFSET);
3608 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3609 		    SA_UID_OFFSET);
3610 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3611 		    SA_GID_OFFSET);
3612 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3613 		    SA_SIZE_OFFSET);
3614 		free(buf);
3615 	}
3616 
3617 	return (0);
3618 }
3619 
3620 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3621 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3622 {
3623 	int rc = 0;
3624 
3625 	if (dn->dn_bonustype == DMU_OT_SA) {
3626 		sa_hdr_phys_t *sahdrp = NULL;
3627 		size_t size = 0;
3628 		void *buf = NULL;
3629 		int hdrsize;
3630 		char *p;
3631 
3632 		if (dn->dn_bonuslen != 0) {
3633 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3634 		} else {
3635 			blkptr_t *bp;
3636 
3637 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3638 				return (EIO);
3639 			bp = DN_SPILL_BLKPTR(dn);
3640 
3641 			size = BP_GET_LSIZE(bp);
3642 			buf = malloc(size);
3643 			if (buf == NULL)
3644 				rc = ENOMEM;
3645 			else
3646 				rc = zio_read(spa, bp, buf);
3647 			if (rc != 0) {
3648 				free(buf);
3649 				return (rc);
3650 			}
3651 			sahdrp = buf;
3652 		}
3653 		hdrsize = SA_HDR_SIZE(sahdrp);
3654 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3655 		memcpy(path, p, psize);
3656 		free(buf);
3657 		return (0);
3658 	}
3659 	/*
3660 	 * Second test is purely to silence bogus compiler
3661 	 * warning about accessing past the end of dn_bonus.
3662 	 */
3663 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3664 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3665 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3666 	} else {
3667 		rc = dnode_read(spa, dn, 0, path, psize);
3668 	}
3669 	return (rc);
3670 }
3671 
3672 struct obj_list {
3673 	uint64_t		objnum;
3674 	STAILQ_ENTRY(obj_list)	entry;
3675 };
3676 
3677 /*
3678  * Lookup a file and return its dnode.
3679  */
3680 static int
zfs_lookup(const struct zfsmount * mount,const char * upath,dnode_phys_t * dnode)3681 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3682 {
3683 	int rc;
3684 	uint64_t objnum;
3685 	const spa_t *spa;
3686 	dnode_phys_t dn;
3687 	const char *p, *q;
3688 	char element[256];
3689 	char path[1024];
3690 	int symlinks_followed = 0;
3691 	struct stat sb;
3692 	struct obj_list *entry, *tentry;
3693 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3694 
3695 	spa = mount->spa;
3696 	if (mount->objset.os_type != DMU_OST_ZFS) {
3697 		printf("ZFS: unexpected object set type %ju\n",
3698 		    (uintmax_t)mount->objset.os_type);
3699 		return (EIO);
3700 	}
3701 
3702 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3703 		return (ENOMEM);
3704 
3705 	/*
3706 	 * Get the root directory dnode.
3707 	 */
3708 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3709 	if (rc) {
3710 		free(entry);
3711 		return (rc);
3712 	}
3713 
3714 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3715 	if (rc) {
3716 		free(entry);
3717 		return (rc);
3718 	}
3719 	entry->objnum = objnum;
3720 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3721 
3722 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3723 	if (rc != 0)
3724 		goto done;
3725 
3726 	p = upath;
3727 	while (p && *p) {
3728 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3729 		if (rc != 0)
3730 			goto done;
3731 
3732 		while (*p == '/')
3733 			p++;
3734 		if (*p == '\0')
3735 			break;
3736 		q = p;
3737 		while (*q != '\0' && *q != '/')
3738 			q++;
3739 
3740 		/* skip dot */
3741 		if (p + 1 == q && p[0] == '.') {
3742 			p++;
3743 			continue;
3744 		}
3745 		/* double dot */
3746 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3747 			p += 2;
3748 			if (STAILQ_FIRST(&on_cache) ==
3749 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3750 				rc = ENOENT;
3751 				goto done;
3752 			}
3753 			entry = STAILQ_FIRST(&on_cache);
3754 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3755 			free(entry);
3756 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3757 			continue;
3758 		}
3759 		if (q - p + 1 > sizeof(element)) {
3760 			rc = ENAMETOOLONG;
3761 			goto done;
3762 		}
3763 		memcpy(element, p, q - p);
3764 		element[q - p] = 0;
3765 		p = q;
3766 
3767 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3768 			goto done;
3769 		if (!S_ISDIR(sb.st_mode)) {
3770 			rc = ENOTDIR;
3771 			goto done;
3772 		}
3773 
3774 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3775 		if (rc)
3776 			goto done;
3777 		objnum = ZFS_DIRENT_OBJ(objnum);
3778 
3779 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3780 			rc = ENOMEM;
3781 			goto done;
3782 		}
3783 		entry->objnum = objnum;
3784 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3785 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3786 		if (rc)
3787 			goto done;
3788 
3789 		/*
3790 		 * Check for symlink.
3791 		 */
3792 		rc = zfs_dnode_stat(spa, &dn, &sb);
3793 		if (rc)
3794 			goto done;
3795 		if (S_ISLNK(sb.st_mode)) {
3796 			if (symlinks_followed > 10) {
3797 				rc = EMLINK;
3798 				goto done;
3799 			}
3800 			symlinks_followed++;
3801 
3802 			/*
3803 			 * Read the link value and copy the tail of our
3804 			 * current path onto the end.
3805 			 */
3806 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3807 				rc = ENAMETOOLONG;
3808 				goto done;
3809 			}
3810 			strcpy(&path[sb.st_size], p);
3811 
3812 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3813 			if (rc != 0)
3814 				goto done;
3815 
3816 			/*
3817 			 * Restart with the new path, starting either at
3818 			 * the root or at the parent depending whether or
3819 			 * not the link is relative.
3820 			 */
3821 			p = path;
3822 			if (*p == '/') {
3823 				while (STAILQ_FIRST(&on_cache) !=
3824 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3825 					entry = STAILQ_FIRST(&on_cache);
3826 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3827 					free(entry);
3828 				}
3829 			} else {
3830 				entry = STAILQ_FIRST(&on_cache);
3831 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3832 				free(entry);
3833 			}
3834 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3835 		}
3836 	}
3837 
3838 	*dnode = dn;
3839 done:
3840 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3841 		free(entry);
3842 	return (rc);
3843 }
3844 
3845 /*
3846  * Return either a cached copy of the bootenv, or read each of the vdev children
3847  * looking for the bootenv. Cache what's found and return the results. Returns 0
3848  * when benvp is filled in, and some errno when not.
3849  */
3850 static int
zfs_get_bootenv_spa(spa_t * spa,nvlist_t ** benvp)3851 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3852 {
3853 	vdev_t *vd;
3854 	nvlist_t *benv = NULL;
3855 
3856 	if (spa->spa_bootenv == NULL) {
3857 		STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3858 		    v_childlink) {
3859 			benv = vdev_read_bootenv(vd);
3860 
3861 			if (benv != NULL)
3862 				break;
3863 		}
3864 		spa->spa_bootenv = benv;
3865 	}
3866 	benv = spa->spa_bootenv;
3867 
3868 	if (benv == NULL)
3869 		return (ENOENT);
3870 
3871 	*benvp = benv;
3872 	return (0);
3873 }
3874 
3875 /*
3876  * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
3877  */
3878 static int
zfs_set_bootenv_spa(spa_t * spa,nvlist_t * benv)3879 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
3880 {
3881 	vdev_t *vd;
3882 
3883 	STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
3884 		vdev_write_bootenv(vd, benv);
3885 	}
3886 
3887 	spa->spa_bootenv = benv;
3888 	return (0);
3889 }
3890 
3891 /*
3892  * Get bootonce value by key. The bootonce <key, value> pair is removed from the
3893  * bootenv nvlist and the remaining nvlist is committed back to disk. This process
3894  * the bootonce flag since we've reached the point in the boot that we've 'used'
3895  * the BE. For chained boot scenarios, we may reach this point multiple times (but
3896  * only remove it and return 0 the first time).
3897  */
3898 static int
zfs_get_bootonce_spa(spa_t * spa,const char * key,char * buf,size_t size)3899 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
3900 {
3901 	nvlist_t *benv;
3902 	char *result = NULL;
3903 	int result_size, rv;
3904 
3905 	if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
3906 		return (rv);
3907 
3908 	if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
3909 	    &result, &result_size)) == 0) {
3910 		if (result_size == 0) {
3911 			/* ignore empty string */
3912 			rv = ENOENT;
3913 		} else if (buf != NULL) {
3914 			size = MIN((size_t)result_size + 1, size);
3915 			strlcpy(buf, result, size);
3916 		}
3917 		(void)nvlist_remove(benv, key, DATA_TYPE_STRING);
3918 		(void)zfs_set_bootenv_spa(spa, benv);
3919 	}
3920 
3921 	return (rv);
3922 }
3923