1 /*-
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 /*
28 * Stand-alone ZFS file reader.
29 */
30
31 #include <stdbool.h>
32 #include <sys/endian.h>
33 #include <sys/stat.h>
34 #include <sys/stdint.h>
35 #include <sys/list.h>
36 #include <sys/zfs_bootenv.h>
37 #include <machine/_inttypes.h>
38
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41
42 #ifdef HAS_ZSTD_ZFS
43 extern int zstd_init(void);
44 #endif
45
46 struct zfsmount {
47 char *path;
48 const spa_t *spa;
49 objset_phys_t objset;
50 uint64_t rootobj;
51 STAILQ_ENTRY(zfsmount) next;
52 };
53
54 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56
57 /*
58 * The indirect_child_t represents the vdev that we will read from, when we
59 * need to read all copies of the data (e.g. for scrub or reconstruction).
60 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
62 * ic_vdev is a child of the mirror.
63 */
64 typedef struct indirect_child {
65 void *ic_data;
66 vdev_t *ic_vdev;
67 } indirect_child_t;
68
69 /*
70 * The indirect_split_t represents one mapped segment of an i/o to the
71 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73 * For split blocks, there will be several of these.
74 */
75 typedef struct indirect_split {
76 list_node_t is_node; /* link on iv_splits */
77
78 /*
79 * is_split_offset is the offset into the i/o.
80 * This is the sum of the previous splits' is_size's.
81 */
82 uint64_t is_split_offset;
83
84 vdev_t *is_vdev; /* top-level vdev */
85 uint64_t is_target_offset; /* offset on is_vdev */
86 uint64_t is_size;
87 int is_children; /* number of entries in is_child[] */
88
89 /*
90 * is_good_child is the child that we are currently using to
91 * attempt reconstruction.
92 */
93 int is_good_child;
94
95 indirect_child_t is_child[1]; /* variable-length */
96 } indirect_split_t;
97
98 /*
99 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101 */
102 typedef struct indirect_vsd {
103 boolean_t iv_split_block;
104 boolean_t iv_reconstruct;
105
106 list_t iv_splits; /* list of indirect_split_t's */
107 } indirect_vsd_t;
108
109 /*
110 * List of supported read-incompatible ZFS features. Do not add here features
111 * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
112 */
113 static const char *features_for_read[] = {
114 "com.datto:bookmark_v2",
115 "com.datto:encryption",
116 "com.delphix:bookmark_written",
117 "com.delphix:device_removal",
118 "com.delphix:embedded_data",
119 "com.delphix:extensible_dataset",
120 "com.delphix:head_errlog",
121 "com.delphix:hole_birth",
122 "com.joyent:multi_vdev_crash_dump",
123 "com.klarasystems:vdev_zaps_v2",
124 "org.freebsd:zstd_compress",
125 "org.illumos:lz4_compress",
126 "org.illumos:sha512",
127 "org.illumos:skein",
128 "org.open-zfs:large_blocks",
129 "org.openzfs:blake3",
130 "org.zfsonlinux:large_dnode",
131 NULL
132 };
133
134 /*
135 * List of all pools, chained through spa_link.
136 */
137 static spa_list_t zfs_pools;
138
139 static const dnode_phys_t *dnode_cache_obj;
140 static uint64_t dnode_cache_bn;
141 static char *dnode_cache_buf;
142
143 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
144 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
145 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
146 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
147 const char *name, uint64_t integer_size, uint64_t num_integers,
148 void *value);
149 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
150 dnode_phys_t *);
151 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
152 size_t);
153 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
154 size_t);
155 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
156 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
157 uint64_t);
158 vdev_indirect_mapping_entry_phys_t *
159 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
160 uint64_t, uint64_t *);
161
162 static void
zfs_init(void)163 zfs_init(void)
164 {
165 STAILQ_INIT(&zfs_pools);
166
167 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
168
169 zfs_init_crc();
170 #ifdef HAS_ZSTD_ZFS
171 zstd_init();
172 #endif
173 }
174
175 static int
nvlist_check_features_for_read(nvlist_t * nvl)176 nvlist_check_features_for_read(nvlist_t *nvl)
177 {
178 nvlist_t *features = NULL;
179 nvs_data_t *data;
180 nvp_header_t *nvp;
181 nv_string_t *nvp_name;
182 int rc;
183
184 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
185 DATA_TYPE_NVLIST, NULL, &features, NULL);
186 switch (rc) {
187 case 0:
188 break; /* Continue with checks */
189
190 case ENOENT:
191 return (0); /* All features are disabled */
192
193 default:
194 return (rc); /* Error while reading nvlist */
195 }
196
197 data = (nvs_data_t *)features->nv_data;
198 nvp = &data->nvl_pair; /* first pair in nvlist */
199
200 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
201 int i, found;
202
203 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
204 found = 0;
205
206 for (i = 0; features_for_read[i] != NULL; i++) {
207 if (memcmp(nvp_name->nv_data, features_for_read[i],
208 nvp_name->nv_size) == 0) {
209 found = 1;
210 break;
211 }
212 }
213
214 if (!found) {
215 printf("ZFS: unsupported feature: %.*s\n",
216 nvp_name->nv_size, nvp_name->nv_data);
217 rc = EIO;
218 }
219 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
220 }
221 nvlist_destroy(features);
222
223 return (rc);
224 }
225
226 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)227 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
228 off_t offset, size_t size)
229 {
230 size_t psize;
231 int rc;
232
233 if (vdev->v_phys_read == NULL)
234 return (ENOTSUP);
235
236 if (bp) {
237 psize = BP_GET_PSIZE(bp);
238 } else {
239 psize = size;
240 }
241
242 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
243 if (rc == 0) {
244 if (bp != NULL)
245 rc = zio_checksum_verify(vdev->v_spa, bp, buf);
246 }
247
248 return (rc);
249 }
250
251 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)252 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
253 {
254 if (vdev->v_phys_write == NULL)
255 return (ENOTSUP);
256
257 return (vdev->v_phys_write(vdev, offset, buf, size));
258 }
259
260 typedef struct remap_segment {
261 vdev_t *rs_vd;
262 uint64_t rs_offset;
263 uint64_t rs_asize;
264 uint64_t rs_split_offset;
265 list_node_t rs_node;
266 } remap_segment_t;
267
268 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)269 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
270 {
271 remap_segment_t *rs = malloc(sizeof (remap_segment_t));
272
273 if (rs != NULL) {
274 rs->rs_vd = vd;
275 rs->rs_offset = offset;
276 rs->rs_asize = asize;
277 rs->rs_split_offset = split_offset;
278 }
279
280 return (rs);
281 }
282
283 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)284 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
285 uint64_t mapping_object)
286 {
287 vdev_indirect_mapping_t *vim;
288 vdev_indirect_mapping_phys_t *vim_phys;
289 int rc;
290
291 vim = calloc(1, sizeof (*vim));
292 if (vim == NULL)
293 return (NULL);
294
295 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
296 if (vim->vim_dn == NULL) {
297 free(vim);
298 return (NULL);
299 }
300
301 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
302 if (rc != 0) {
303 free(vim->vim_dn);
304 free(vim);
305 return (NULL);
306 }
307
308 vim->vim_spa = spa;
309 vim->vim_phys = malloc(sizeof (*vim->vim_phys));
310 if (vim->vim_phys == NULL) {
311 free(vim->vim_dn);
312 free(vim);
313 return (NULL);
314 }
315
316 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
317 *vim->vim_phys = *vim_phys;
318
319 vim->vim_objset = os;
320 vim->vim_object = mapping_object;
321 vim->vim_entries = NULL;
322
323 vim->vim_havecounts =
324 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
325
326 return (vim);
327 }
328
329 /*
330 * Compare an offset with an indirect mapping entry; there are three
331 * possible scenarios:
332 *
333 * 1. The offset is "less than" the mapping entry; meaning the
334 * offset is less than the source offset of the mapping entry. In
335 * this case, there is no overlap between the offset and the
336 * mapping entry and -1 will be returned.
337 *
338 * 2. The offset is "greater than" the mapping entry; meaning the
339 * offset is greater than the mapping entry's source offset plus
340 * the entry's size. In this case, there is no overlap between
341 * the offset and the mapping entry and 1 will be returned.
342 *
343 * NOTE: If the offset is actually equal to the entry's offset
344 * plus size, this is considered to be "greater" than the entry,
345 * and this case applies (i.e. 1 will be returned). Thus, the
346 * entry's "range" can be considered to be inclusive at its
347 * start, but exclusive at its end: e.g. [src, src + size).
348 *
349 * 3. The last case to consider is if the offset actually falls
350 * within the mapping entry's range. If this is the case, the
351 * offset is considered to be "equal to" the mapping entry and
352 * 0 will be returned.
353 *
354 * NOTE: If the offset is equal to the entry's source offset,
355 * this case applies and 0 will be returned. If the offset is
356 * equal to the entry's source plus its size, this case does
357 * *not* apply (see "NOTE" above for scenario 2), and 1 will be
358 * returned.
359 */
360 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)361 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
362 {
363 const uint64_t *key = v_key;
364 const vdev_indirect_mapping_entry_phys_t *array_elem =
365 v_array_elem;
366 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
367
368 if (*key < src_offset) {
369 return (-1);
370 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
371 return (0);
372 } else {
373 return (1);
374 }
375 }
376
377 /*
378 * Return array entry.
379 */
380 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)381 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
382 {
383 uint64_t size;
384 off_t offset = 0;
385 int rc;
386
387 if (vim->vim_phys->vimp_num_entries == 0)
388 return (NULL);
389
390 if (vim->vim_entries == NULL) {
391 uint64_t bsize;
392
393 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
394 size = vim->vim_phys->vimp_num_entries *
395 sizeof (*vim->vim_entries);
396 if (size > bsize) {
397 size = bsize / sizeof (*vim->vim_entries);
398 size *= sizeof (*vim->vim_entries);
399 }
400 vim->vim_entries = malloc(size);
401 if (vim->vim_entries == NULL)
402 return (NULL);
403 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
404 offset = index * sizeof (*vim->vim_entries);
405 }
406
407 /* We have data in vim_entries */
408 if (offset == 0) {
409 if (index >= vim->vim_entry_offset &&
410 index <= vim->vim_entry_offset + vim->vim_num_entries) {
411 index -= vim->vim_entry_offset;
412 return (&vim->vim_entries[index]);
413 }
414 offset = index * sizeof (*vim->vim_entries);
415 }
416
417 vim->vim_entry_offset = index;
418 size = vim->vim_num_entries * sizeof (*vim->vim_entries);
419 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
420 size);
421 if (rc != 0) {
422 /* Read error, invalidate vim_entries. */
423 free(vim->vim_entries);
424 vim->vim_entries = NULL;
425 return (NULL);
426 }
427 index -= vim->vim_entry_offset;
428 return (&vim->vim_entries[index]);
429 }
430
431 /*
432 * Returns the mapping entry for the given offset.
433 *
434 * It's possible that the given offset will not be in the mapping table
435 * (i.e. no mapping entries contain this offset), in which case, the
436 * return value depends on the "next_if_missing" parameter.
437 *
438 * If the offset is not found in the table and "next_if_missing" is
439 * B_FALSE, then NULL will always be returned. The behavior is intended
440 * to allow consumers to get the entry corresponding to the offset
441 * parameter, iff the offset overlaps with an entry in the table.
442 *
443 * If the offset is not found in the table and "next_if_missing" is
444 * B_TRUE, then the entry nearest to the given offset will be returned,
445 * such that the entry's source offset is greater than the offset
446 * passed in (i.e. the "next" mapping entry in the table is returned, if
447 * the offset is missing from the table). If there are no entries whose
448 * source offset is greater than the passed in offset, NULL is returned.
449 */
450 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)451 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
452 uint64_t offset)
453 {
454 ASSERT(vim->vim_phys->vimp_num_entries > 0);
455
456 vdev_indirect_mapping_entry_phys_t *entry;
457
458 uint64_t last = vim->vim_phys->vimp_num_entries - 1;
459 uint64_t base = 0;
460
461 /*
462 * We don't define these inside of the while loop because we use
463 * their value in the case that offset isn't in the mapping.
464 */
465 uint64_t mid;
466 int result;
467
468 while (last >= base) {
469 mid = base + ((last - base) >> 1);
470
471 entry = vdev_indirect_mapping_entry(vim, mid);
472 if (entry == NULL)
473 break;
474 result = dva_mapping_overlap_compare(&offset, entry);
475
476 if (result == 0) {
477 break;
478 } else if (result < 0) {
479 last = mid - 1;
480 } else {
481 base = mid + 1;
482 }
483 }
484 return (entry);
485 }
486
487 /*
488 * Given an indirect vdev and an extent on that vdev, it duplicates the
489 * physical entries of the indirect mapping that correspond to the extent
490 * to a new array and returns a pointer to it. In addition, copied_entries
491 * is populated with the number of mapping entries that were duplicated.
492 *
493 * Finally, since we are doing an allocation, it is up to the caller to
494 * free the array allocated in this function.
495 */
496 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)497 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
498 uint64_t asize, uint64_t *copied_entries)
499 {
500 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
501 vdev_indirect_mapping_t *vim = vd->v_mapping;
502 uint64_t entries = 0;
503
504 vdev_indirect_mapping_entry_phys_t *first_mapping =
505 vdev_indirect_mapping_entry_for_offset(vim, offset);
506 ASSERT3P(first_mapping, !=, NULL);
507
508 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
509 while (asize > 0) {
510 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
511 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
512 uint64_t inner_size = MIN(asize, size - inner_offset);
513
514 offset += inner_size;
515 asize -= inner_size;
516 entries++;
517 m++;
518 }
519
520 size_t copy_length = entries * sizeof (*first_mapping);
521 duplicate_mappings = malloc(copy_length);
522 if (duplicate_mappings != NULL)
523 bcopy(first_mapping, duplicate_mappings, copy_length);
524 else
525 entries = 0;
526
527 *copied_entries = entries;
528
529 return (duplicate_mappings);
530 }
531
532 static vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)533 vdev_lookup_top(spa_t *spa, uint64_t vdev)
534 {
535 vdev_t *rvd;
536 vdev_list_t *vlist;
537
538 vlist = &spa->spa_root_vdev->v_children;
539 STAILQ_FOREACH(rvd, vlist, v_childlink)
540 if (rvd->v_id == vdev)
541 break;
542
543 return (rvd);
544 }
545
546 /*
547 * This is a callback for vdev_indirect_remap() which allocates an
548 * indirect_split_t for each split segment and adds it to iv_splits.
549 */
550 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)551 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
552 uint64_t size, void *arg)
553 {
554 int n = 1;
555 zio_t *zio = arg;
556 indirect_vsd_t *iv = zio->io_vsd;
557
558 if (vd->v_read == vdev_indirect_read)
559 return;
560
561 if (vd->v_read == vdev_mirror_read)
562 n = vd->v_nchildren;
563
564 indirect_split_t *is =
565 malloc(offsetof(indirect_split_t, is_child[n]));
566 if (is == NULL) {
567 zio->io_error = ENOMEM;
568 return;
569 }
570 bzero(is, offsetof(indirect_split_t, is_child[n]));
571
572 is->is_children = n;
573 is->is_size = size;
574 is->is_split_offset = split_offset;
575 is->is_target_offset = offset;
576 is->is_vdev = vd;
577
578 /*
579 * Note that we only consider multiple copies of the data for
580 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
581 * though they use the same ops as mirror, because there's only one
582 * "good" copy under the replacing/spare.
583 */
584 if (vd->v_read == vdev_mirror_read) {
585 int i = 0;
586 vdev_t *kid;
587
588 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
589 is->is_child[i++].ic_vdev = kid;
590 }
591 } else {
592 is->is_child[0].ic_vdev = vd;
593 }
594
595 list_insert_tail(&iv->iv_splits, is);
596 }
597
598 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)599 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
600 {
601 list_t stack;
602 spa_t *spa = vd->v_spa;
603 zio_t *zio = arg;
604 remap_segment_t *rs;
605
606 list_create(&stack, sizeof (remap_segment_t),
607 offsetof(remap_segment_t, rs_node));
608
609 rs = rs_alloc(vd, offset, asize, 0);
610 if (rs == NULL) {
611 printf("vdev_indirect_remap: out of memory.\n");
612 zio->io_error = ENOMEM;
613 }
614 for (; rs != NULL; rs = list_remove_head(&stack)) {
615 vdev_t *v = rs->rs_vd;
616 uint64_t num_entries = 0;
617 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
618 vdev_indirect_mapping_entry_phys_t *mapping =
619 vdev_indirect_mapping_duplicate_adjacent_entries(v,
620 rs->rs_offset, rs->rs_asize, &num_entries);
621
622 if (num_entries == 0)
623 zio->io_error = ENOMEM;
624
625 for (uint64_t i = 0; i < num_entries; i++) {
626 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
627 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
628 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
629 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
630 uint64_t inner_offset = rs->rs_offset -
631 DVA_MAPPING_GET_SRC_OFFSET(m);
632 uint64_t inner_size =
633 MIN(rs->rs_asize, size - inner_offset);
634 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
635
636 if (dst_v->v_read == vdev_indirect_read) {
637 remap_segment_t *o;
638
639 o = rs_alloc(dst_v, dst_offset + inner_offset,
640 inner_size, rs->rs_split_offset);
641 if (o == NULL) {
642 printf("vdev_indirect_remap: "
643 "out of memory.\n");
644 zio->io_error = ENOMEM;
645 break;
646 }
647
648 list_insert_head(&stack, o);
649 }
650 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
651 dst_offset + inner_offset,
652 inner_size, arg);
653
654 /*
655 * vdev_indirect_gather_splits can have memory
656 * allocation error, we can not recover from it.
657 */
658 if (zio->io_error != 0)
659 break;
660 rs->rs_offset += inner_size;
661 rs->rs_asize -= inner_size;
662 rs->rs_split_offset += inner_size;
663 }
664
665 free(mapping);
666 free(rs);
667 if (zio->io_error != 0)
668 break;
669 }
670
671 list_destroy(&stack);
672 }
673
674 static void
vdev_indirect_map_free(zio_t * zio)675 vdev_indirect_map_free(zio_t *zio)
676 {
677 indirect_vsd_t *iv = zio->io_vsd;
678 indirect_split_t *is;
679
680 while ((is = list_head(&iv->iv_splits)) != NULL) {
681 for (int c = 0; c < is->is_children; c++) {
682 indirect_child_t *ic = &is->is_child[c];
683 free(ic->ic_data);
684 }
685 list_remove(&iv->iv_splits, is);
686 free(is);
687 }
688 free(iv);
689 }
690
691 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)692 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
693 off_t offset, size_t bytes)
694 {
695 zio_t zio;
696 spa_t *spa = vdev->v_spa;
697 indirect_vsd_t *iv;
698 indirect_split_t *first;
699 int rc = EIO;
700
701 iv = calloc(1, sizeof(*iv));
702 if (iv == NULL)
703 return (ENOMEM);
704
705 list_create(&iv->iv_splits,
706 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
707
708 bzero(&zio, sizeof(zio));
709 zio.io_spa = spa;
710 zio.io_bp = (blkptr_t *)bp;
711 zio.io_data = buf;
712 zio.io_size = bytes;
713 zio.io_offset = offset;
714 zio.io_vd = vdev;
715 zio.io_vsd = iv;
716
717 if (vdev->v_mapping == NULL) {
718 vdev_indirect_config_t *vic;
719
720 vic = &vdev->vdev_indirect_config;
721 vdev->v_mapping = vdev_indirect_mapping_open(spa,
722 spa->spa_mos, vic->vic_mapping_object);
723 }
724
725 vdev_indirect_remap(vdev, offset, bytes, &zio);
726 if (zio.io_error != 0)
727 return (zio.io_error);
728
729 first = list_head(&iv->iv_splits);
730 if (first->is_size == zio.io_size) {
731 /*
732 * This is not a split block; we are pointing to the entire
733 * data, which will checksum the same as the original data.
734 * Pass the BP down so that the child i/o can verify the
735 * checksum, and try a different location if available
736 * (e.g. on a mirror).
737 *
738 * While this special case could be handled the same as the
739 * general (split block) case, doing it this way ensures
740 * that the vast majority of blocks on indirect vdevs
741 * (which are not split) are handled identically to blocks
742 * on non-indirect vdevs. This allows us to be less strict
743 * about performance in the general (but rare) case.
744 */
745 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
746 zio.io_data, first->is_target_offset, bytes);
747 } else {
748 iv->iv_split_block = B_TRUE;
749 /*
750 * Read one copy of each split segment, from the
751 * top-level vdev. Since we don't know the
752 * checksum of each split individually, the child
753 * zio can't ensure that we get the right data.
754 * E.g. if it's a mirror, it will just read from a
755 * random (healthy) leaf vdev. We have to verify
756 * the checksum in vdev_indirect_io_done().
757 */
758 for (indirect_split_t *is = list_head(&iv->iv_splits);
759 is != NULL; is = list_next(&iv->iv_splits, is)) {
760 char *ptr = zio.io_data;
761
762 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
763 ptr + is->is_split_offset, is->is_target_offset,
764 is->is_size);
765 }
766 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
767 rc = ECKSUM;
768 else
769 rc = 0;
770 }
771
772 vdev_indirect_map_free(&zio);
773 if (rc == 0)
774 rc = zio.io_error;
775
776 return (rc);
777 }
778
779 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)780 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
781 off_t offset, size_t bytes)
782 {
783
784 return (vdev_read_phys(vdev, bp, buf,
785 offset + VDEV_LABEL_START_SIZE, bytes));
786 }
787
788 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)789 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
790 void *buf __unused, off_t offset __unused, size_t bytes __unused)
791 {
792
793 return (ENOTSUP);
794 }
795
796 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)797 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
798 off_t offset, size_t bytes)
799 {
800 vdev_t *kid;
801 int rc;
802
803 rc = EIO;
804 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
805 if (kid->v_state != VDEV_STATE_HEALTHY)
806 continue;
807 rc = kid->v_read(kid, bp, buf, offset, bytes);
808 if (!rc)
809 return (0);
810 }
811
812 return (rc);
813 }
814
815 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)816 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
817 off_t offset, size_t bytes)
818 {
819 vdev_t *kid;
820
821 /*
822 * Here we should have two kids:
823 * First one which is the one we are replacing and we can trust
824 * only this one to have valid data, but it might not be present.
825 * Second one is that one we are replacing with. It is most likely
826 * healthy, but we can't trust it has needed data, so we won't use it.
827 */
828 kid = STAILQ_FIRST(&vdev->v_children);
829 if (kid == NULL)
830 return (EIO);
831 if (kid->v_state != VDEV_STATE_HEALTHY)
832 return (EIO);
833 return (kid->v_read(kid, bp, buf, offset, bytes));
834 }
835
836 /*
837 * List of vdevs that were fully initialized from their own label, but later a
838 * newer label was found that obsoleted the stale label, freeing its
839 * configuration tree. We keep those vdevs around, since a new configuration
840 * may include them.
841 */
842 static vdev_list_t orphans = STAILQ_HEAD_INITIALIZER(orphans);
843
844 static vdev_t *
vdev_find(vdev_list_t * list,uint64_t guid)845 vdev_find(vdev_list_t *list, uint64_t guid)
846 {
847 vdev_t *vdev, *safe;
848
849 STAILQ_FOREACH_SAFE(vdev, list, v_childlink, safe) {
850 if (vdev->v_guid == guid)
851 return (vdev);
852 if ((vdev = vdev_find(&vdev->v_children, guid)) != NULL)
853 return (vdev);
854 }
855
856 return (NULL);
857 }
858
859 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * _read)860 vdev_create(uint64_t guid, vdev_read_t *_read)
861 {
862 vdev_t *vdev;
863 vdev_indirect_config_t *vic;
864
865 if ((vdev = vdev_find(&orphans, guid))) {
866 STAILQ_REMOVE(&orphans, vdev, vdev, v_childlink);
867 return (vdev);
868 }
869
870 vdev = calloc(1, sizeof(vdev_t));
871 if (vdev != NULL) {
872 STAILQ_INIT(&vdev->v_children);
873 vdev->v_guid = guid;
874 vdev->v_read = _read;
875
876 /*
877 * root vdev has no read function, we use this fact to
878 * skip setting up data we do not need for root vdev.
879 * We only point root vdev from spa.
880 */
881 if (_read != NULL) {
882 vic = &vdev->vdev_indirect_config;
883 vic->vic_prev_indirect_vdev = UINT64_MAX;
884 }
885 }
886
887 return (vdev);
888 }
889
890 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)891 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
892 {
893 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
894 uint64_t is_log;
895
896 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
897 is_log = 0;
898 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
899 &is_offline, NULL);
900 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
901 &is_removed, NULL);
902 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
903 &is_faulted, NULL);
904 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
905 NULL, &is_degraded, NULL);
906 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
907 NULL, &isnt_present, NULL);
908 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
909 &is_log, NULL);
910
911 if (is_offline != 0)
912 vdev->v_state = VDEV_STATE_OFFLINE;
913 else if (is_removed != 0)
914 vdev->v_state = VDEV_STATE_REMOVED;
915 else if (is_faulted != 0)
916 vdev->v_state = VDEV_STATE_FAULTED;
917 else if (is_degraded != 0)
918 vdev->v_state = VDEV_STATE_DEGRADED;
919 else if (isnt_present != 0)
920 vdev->v_state = VDEV_STATE_CANT_OPEN;
921
922 vdev->v_islog = is_log != 0;
923 }
924
925 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)926 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
927 {
928 uint64_t id, ashift, asize, nparity;
929 const char *path;
930 const char *type;
931 int len, pathlen;
932 char *name;
933 vdev_t *vdev;
934
935 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
936 NULL) ||
937 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
938 &type, &len)) {
939 return (ENOENT);
940 }
941
942 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
943 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
944 #ifdef ZFS_TEST
945 memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
946 #endif
947 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
948 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
949 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
950 memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
951 printf("ZFS: can only boot from disk, mirror, raidz1, "
952 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
953 return (EIO);
954 }
955
956 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
957 vdev = vdev_create(guid, vdev_mirror_read);
958 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
959 vdev = vdev_create(guid, vdev_raidz_read);
960 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
961 vdev = vdev_create(guid, vdev_replacing_read);
962 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
963 vdev_indirect_config_t *vic;
964
965 vdev = vdev_create(guid, vdev_indirect_read);
966 if (vdev != NULL) {
967 vdev->v_state = VDEV_STATE_HEALTHY;
968 vic = &vdev->vdev_indirect_config;
969
970 nvlist_find(nvlist,
971 ZPOOL_CONFIG_INDIRECT_OBJECT,
972 DATA_TYPE_UINT64,
973 NULL, &vic->vic_mapping_object, NULL);
974 nvlist_find(nvlist,
975 ZPOOL_CONFIG_INDIRECT_BIRTHS,
976 DATA_TYPE_UINT64,
977 NULL, &vic->vic_births_object, NULL);
978 nvlist_find(nvlist,
979 ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
980 DATA_TYPE_UINT64,
981 NULL, &vic->vic_prev_indirect_vdev, NULL);
982 }
983 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
984 vdev = vdev_create(guid, vdev_missing_read);
985 } else {
986 vdev = vdev_create(guid, vdev_disk_read);
987 }
988
989 if (vdev == NULL)
990 return (ENOMEM);
991
992 vdev_set_initial_state(vdev, nvlist);
993 vdev->v_id = id;
994 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
995 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
996 vdev->v_ashift = ashift;
997
998 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
999 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
1000 vdev->v_psize = asize +
1001 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1002 }
1003
1004 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1005 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
1006 vdev->v_nparity = nparity;
1007
1008 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1009 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1010 char prefix[] = "/dev/";
1011
1012 len = strlen(prefix);
1013 if (len < pathlen && memcmp(path, prefix, len) == 0) {
1014 path += len;
1015 pathlen -= len;
1016 }
1017 name = malloc(pathlen + 1);
1018 bcopy(path, name, pathlen);
1019 name[pathlen] = '\0';
1020 vdev->v_name = name;
1021 } else {
1022 name = NULL;
1023 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1024 if (vdev->v_nparity < 1 ||
1025 vdev->v_nparity > 3) {
1026 printf("ZFS: invalid raidz parity: %d\n",
1027 vdev->v_nparity);
1028 return (EIO);
1029 }
1030 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1031 vdev->v_nparity, id);
1032 } else {
1033 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1034 }
1035 vdev->v_name = name;
1036 }
1037 *vdevp = vdev;
1038 return (0);
1039 }
1040
1041 /*
1042 * Find slot for vdev. We return either NULL to signal to use
1043 * STAILQ_INSERT_HEAD, or we return link element to be used with
1044 * STAILQ_INSERT_AFTER.
1045 */
1046 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,uint64_t id)1047 vdev_find_previous(vdev_t *top_vdev, uint64_t id)
1048 {
1049 vdev_t *v, *previous;
1050
1051 previous = NULL;
1052 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1053 if (v->v_id > id)
1054 return (previous);
1055
1056 if (v->v_id == id)
1057 return (v);
1058
1059 if (v->v_id < id)
1060 previous = v;
1061 }
1062 return (previous);
1063 }
1064
1065 static size_t
vdev_child_count(vdev_t * vdev)1066 vdev_child_count(vdev_t *vdev)
1067 {
1068 vdev_t *v;
1069 size_t count;
1070
1071 count = 0;
1072 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1073 count++;
1074 }
1075 return (count);
1076 }
1077
1078 /*
1079 * Insert vdev into top_vdev children list. List is ordered by v_id.
1080 */
1081 static vdev_t *
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1082 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1083 {
1084 vdev_t *previous;
1085 size_t count;
1086
1087 /*
1088 * The top level vdev can appear in random order, depending how
1089 * the firmware is presenting the disk devices.
1090 * However, we will insert vdev to create list ordered by v_id,
1091 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1092 * as STAILQ does not have insert before.
1093 */
1094 previous = vdev_find_previous(top_vdev, vdev->v_id);
1095
1096 if (previous == NULL) {
1097 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1098 } else if (previous->v_id == vdev->v_id) {
1099 /*
1100 * This vdev was configured from label config,
1101 * do not insert duplicate.
1102 */
1103 free(vdev);
1104 return (previous);
1105 } else {
1106 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1107 v_childlink);
1108 }
1109
1110 count = vdev_child_count(top_vdev);
1111 if (top_vdev->v_nchildren < count)
1112 top_vdev->v_nchildren = count;
1113 return (vdev);
1114 }
1115
1116 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,uint64_t label_guid,uint64_t txg,const nvlist_t * nvlist)1117 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, uint64_t label_guid,
1118 uint64_t txg, const nvlist_t *nvlist)
1119 {
1120 vdev_t *top_vdev, *vdev;
1121 nvlist_t **kids = NULL;
1122 int rc, nkids;
1123
1124 /* Get top vdev. */
1125 top_vdev = vdev_find(&spa->spa_root_vdev->v_children, top_guid);
1126 if (top_vdev == NULL) {
1127 rc = vdev_init(top_guid, nvlist, &top_vdev);
1128 if (rc != 0)
1129 return (rc);
1130 top_vdev->v_spa = spa;
1131 top_vdev->v_top = top_vdev;
1132 top_vdev->v_label = label_guid;
1133 top_vdev->v_txg = txg;
1134 (void )vdev_insert(spa->spa_root_vdev, top_vdev);
1135 }
1136
1137 /* Add children if there are any. */
1138 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1139 &nkids, &kids, NULL);
1140 if (rc == 0) {
1141 for (int i = 0; i < nkids; i++) {
1142 uint64_t guid;
1143
1144 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1145 DATA_TYPE_UINT64, NULL, &guid, NULL);
1146 if (rc != 0)
1147 goto done;
1148
1149 rc = vdev_init(guid, kids[i], &vdev);
1150 if (rc != 0)
1151 goto done;
1152
1153 vdev->v_spa = spa;
1154 vdev->v_top = top_vdev;
1155 vdev = vdev_insert(top_vdev, vdev);
1156 }
1157 } else {
1158 /*
1159 * When there are no children, nvlist_find() does return
1160 * error, reset it because leaf devices have no children.
1161 */
1162 rc = 0;
1163 }
1164 done:
1165 if (kids != NULL) {
1166 for (int i = 0; i < nkids; i++)
1167 nvlist_destroy(kids[i]);
1168 free(kids);
1169 }
1170
1171 return (rc);
1172 }
1173
1174 static void
vdev_set_state(vdev_t * vdev)1175 vdev_set_state(vdev_t *vdev)
1176 {
1177 vdev_t *kid;
1178 int good_kids;
1179 int bad_kids;
1180
1181 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1182 vdev_set_state(kid);
1183 }
1184
1185 /*
1186 * A mirror or raidz is healthy if all its kids are healthy. A
1187 * mirror is degraded if any of its kids is healthy; a raidz
1188 * is degraded if at most nparity kids are offline.
1189 */
1190 if (STAILQ_FIRST(&vdev->v_children)) {
1191 good_kids = 0;
1192 bad_kids = 0;
1193 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1194 if (kid->v_state == VDEV_STATE_HEALTHY)
1195 good_kids++;
1196 else
1197 bad_kids++;
1198 }
1199 if (bad_kids == 0) {
1200 vdev->v_state = VDEV_STATE_HEALTHY;
1201 } else {
1202 if (vdev->v_read == vdev_mirror_read) {
1203 if (good_kids) {
1204 vdev->v_state = VDEV_STATE_DEGRADED;
1205 } else {
1206 vdev->v_state = VDEV_STATE_OFFLINE;
1207 }
1208 } else if (vdev->v_read == vdev_raidz_read) {
1209 if (bad_kids > vdev->v_nparity) {
1210 vdev->v_state = VDEV_STATE_OFFLINE;
1211 } else {
1212 vdev->v_state = VDEV_STATE_DEGRADED;
1213 }
1214 }
1215 }
1216 }
1217 }
1218
1219 static int
vdev_update_from_nvlist(vdev_t * root,uint64_t top_guid,const nvlist_t * nvlist)1220 vdev_update_from_nvlist(vdev_t *root, uint64_t top_guid, const nvlist_t *nvlist)
1221 {
1222 vdev_t *vdev;
1223 nvlist_t **kids = NULL;
1224 int rc, nkids;
1225
1226 /* Update top vdev. */
1227 vdev = vdev_find(&root->v_children, top_guid);
1228 if (vdev != NULL)
1229 vdev_set_initial_state(vdev, nvlist);
1230
1231 /* Update children if there are any. */
1232 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1233 &nkids, &kids, NULL);
1234 if (rc == 0) {
1235 for (int i = 0; i < nkids; i++) {
1236 uint64_t guid;
1237
1238 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1239 DATA_TYPE_UINT64, NULL, &guid, NULL);
1240 if (rc != 0)
1241 break;
1242
1243 vdev = vdev_find(&root->v_children, guid);
1244 if (vdev != NULL)
1245 vdev_set_initial_state(vdev, kids[i]);
1246 }
1247 } else {
1248 rc = 0;
1249 }
1250 if (kids != NULL) {
1251 for (int i = 0; i < nkids; i++)
1252 nvlist_destroy(kids[i]);
1253 free(kids);
1254 }
1255
1256 return (rc);
1257 }
1258
1259 static void
vdev_free(struct vdev * vdev)1260 vdev_free(struct vdev *vdev)
1261 {
1262 struct vdev *kid, *safe;
1263
1264 STAILQ_FOREACH_SAFE(kid, &vdev->v_children, v_childlink, safe)
1265 vdev_free(kid);
1266 if (vdev->v_phys_read != NULL)
1267 STAILQ_INSERT_HEAD(&orphans, vdev, v_childlink);
1268 else
1269 free(vdev);
1270 }
1271
1272 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1273 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1274 {
1275 uint64_t pool_guid, vdev_children;
1276 nvlist_t *vdevs = NULL, **kids = NULL;
1277 int rc, nkids;
1278
1279 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1280 NULL, &pool_guid, NULL) ||
1281 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1282 NULL, &vdev_children, NULL) ||
1283 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1284 NULL, &vdevs, NULL)) {
1285 printf("ZFS: can't find vdev details\n");
1286 return (ENOENT);
1287 }
1288
1289 /* Wrong guid?! */
1290 if (spa->spa_guid != pool_guid) {
1291 nvlist_destroy(vdevs);
1292 return (EINVAL);
1293 }
1294
1295 spa->spa_root_vdev->v_nchildren = vdev_children;
1296
1297 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1298 &nkids, &kids, NULL);
1299 nvlist_destroy(vdevs);
1300
1301 /*
1302 * MOS config has at least one child for root vdev.
1303 */
1304 if (rc != 0)
1305 return (rc);
1306
1307 for (int i = 0; i < nkids; i++) {
1308 uint64_t guid;
1309 vdev_t *vdev;
1310
1311 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1312 NULL, &guid, NULL);
1313 if (rc != 0)
1314 break;
1315 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
1316 /*
1317 * Top level vdev is missing, create it.
1318 * XXXGL: how can this happen?
1319 */
1320 if (vdev == NULL)
1321 rc = vdev_from_nvlist(spa, guid, 0, 0, kids[i]);
1322 else
1323 rc = vdev_update_from_nvlist(spa->spa_root_vdev, guid,
1324 kids[i]);
1325 if (rc != 0)
1326 break;
1327 }
1328 if (kids != NULL) {
1329 for (int i = 0; i < nkids; i++)
1330 nvlist_destroy(kids[i]);
1331 free(kids);
1332 }
1333
1334 /*
1335 * Re-evaluate top-level vdev state.
1336 */
1337 vdev_set_state(spa->spa_root_vdev);
1338
1339 return (rc);
1340 }
1341
1342 static bool
nvlist_find_child_guid(const nvlist_t * nvlist,uint64_t guid)1343 nvlist_find_child_guid(const nvlist_t *nvlist, uint64_t guid)
1344 {
1345 nvlist_t **kids = NULL;
1346 int nkids, i;
1347 bool rv = false;
1348
1349 if (nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1350 &nkids, &kids, NULL) != 0)
1351 nkids = 0;
1352
1353 for (i = 0; i < nkids; i++) {
1354 uint64_t kid_guid;
1355
1356 if (nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1357 NULL, &kid_guid, NULL) != 0)
1358 break;
1359 if (kid_guid == guid)
1360 rv = true;
1361 else
1362 rv = nvlist_find_child_guid(kids[i], guid);
1363 if (rv)
1364 break;
1365 }
1366
1367 for (i = 0; i < nkids; i++)
1368 nvlist_destroy(kids[i]);
1369 free(kids);
1370
1371 return (rv);
1372 }
1373
1374 static bool
nvlist_find_vdev_guid(const nvlist_t * nvlist,uint64_t guid)1375 nvlist_find_vdev_guid(const nvlist_t *nvlist, uint64_t guid)
1376 {
1377 nvlist_t *vdevs;
1378 bool rv;
1379
1380 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
1381 &vdevs, NULL) != 0)
1382 return (false);
1383 rv = nvlist_find_child_guid(vdevs, guid);
1384 nvlist_destroy(vdevs);
1385
1386 return (rv);
1387 }
1388
1389 static spa_t *
spa_find_by_guid(uint64_t guid)1390 spa_find_by_guid(uint64_t guid)
1391 {
1392 spa_t *spa;
1393
1394 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1395 if (spa->spa_guid == guid)
1396 return (spa);
1397
1398 return (NULL);
1399 }
1400
1401 static spa_t *
spa_find_by_name(const char * name)1402 spa_find_by_name(const char *name)
1403 {
1404 spa_t *spa;
1405
1406 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1407 if (strcmp(spa->spa_name, name) == 0)
1408 return (spa);
1409
1410 return (NULL);
1411 }
1412
1413 static spa_t *
spa_create(uint64_t guid,const char * name)1414 spa_create(uint64_t guid, const char *name)
1415 {
1416 spa_t *spa;
1417
1418 if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1419 return (NULL);
1420 if ((spa->spa_name = strdup(name)) == NULL) {
1421 free(spa);
1422 return (NULL);
1423 }
1424 spa->spa_uberblock = &spa->spa_uberblock_master;
1425 spa->spa_mos = &spa->spa_mos_master;
1426 spa->spa_guid = guid;
1427 spa->spa_root_vdev = vdev_create(guid, NULL);
1428 if (spa->spa_root_vdev == NULL) {
1429 free(spa->spa_name);
1430 free(spa);
1431 return (NULL);
1432 }
1433 spa->spa_root_vdev->v_name = spa->spa_name;
1434 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1435
1436 return (spa);
1437 }
1438
1439 static const char *
state_name(vdev_state_t state)1440 state_name(vdev_state_t state)
1441 {
1442 static const char *names[] = {
1443 "UNKNOWN",
1444 "CLOSED",
1445 "OFFLINE",
1446 "REMOVED",
1447 "CANT_OPEN",
1448 "FAULTED",
1449 "DEGRADED",
1450 "ONLINE"
1451 };
1452 return (names[state]);
1453 }
1454
1455 #ifdef BOOT2
1456
1457 #define pager_printf printf
1458
1459 #else
1460
1461 static int
pager_printf(const char * fmt,...)1462 pager_printf(const char *fmt, ...)
1463 {
1464 char line[80];
1465 va_list args;
1466
1467 va_start(args, fmt);
1468 vsnprintf(line, sizeof(line), fmt, args);
1469 va_end(args);
1470 return (pager_output(line));
1471 }
1472
1473 #endif
1474
1475 #define STATUS_FORMAT " %s %s\n"
1476
1477 static int
print_state(int indent,const char * name,vdev_state_t state)1478 print_state(int indent, const char *name, vdev_state_t state)
1479 {
1480 int i;
1481 char buf[512];
1482
1483 buf[0] = 0;
1484 for (i = 0; i < indent; i++)
1485 strcat(buf, " ");
1486 strcat(buf, name);
1487 return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1488 }
1489
1490 static int
vdev_status(vdev_t * vdev,int indent)1491 vdev_status(vdev_t *vdev, int indent)
1492 {
1493 vdev_t *kid;
1494 int ret;
1495
1496 if (vdev->v_islog) {
1497 (void) pager_output(" logs\n");
1498 indent++;
1499 }
1500
1501 ret = print_state(indent, vdev->v_name, vdev->v_state);
1502 if (ret != 0)
1503 return (ret);
1504
1505 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1506 ret = vdev_status(kid, indent + 1);
1507 if (ret != 0)
1508 return (ret);
1509 }
1510 return (ret);
1511 }
1512
1513 static int
spa_status(spa_t * spa)1514 spa_status(spa_t *spa)
1515 {
1516 static char bootfs[ZFS_MAXNAMELEN];
1517 uint64_t rootid;
1518 vdev_list_t *vlist;
1519 vdev_t *vdev;
1520 int good_kids, bad_kids, degraded_kids, ret;
1521 vdev_state_t state;
1522
1523 ret = pager_printf(" pool: %s\n", spa->spa_name);
1524 if (ret != 0)
1525 return (ret);
1526
1527 if (zfs_get_root(spa, &rootid) == 0 &&
1528 zfs_rlookup(spa, rootid, bootfs) == 0) {
1529 if (bootfs[0] == '\0')
1530 ret = pager_printf("bootfs: %s\n", spa->spa_name);
1531 else
1532 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1533 bootfs);
1534 if (ret != 0)
1535 return (ret);
1536 }
1537 ret = pager_printf("config:\n\n");
1538 if (ret != 0)
1539 return (ret);
1540 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1541 if (ret != 0)
1542 return (ret);
1543
1544 good_kids = 0;
1545 degraded_kids = 0;
1546 bad_kids = 0;
1547 vlist = &spa->spa_root_vdev->v_children;
1548 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1549 if (vdev->v_state == VDEV_STATE_HEALTHY)
1550 good_kids++;
1551 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1552 degraded_kids++;
1553 else
1554 bad_kids++;
1555 }
1556
1557 state = VDEV_STATE_CLOSED;
1558 if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1559 state = VDEV_STATE_HEALTHY;
1560 else if ((good_kids + degraded_kids) > 0)
1561 state = VDEV_STATE_DEGRADED;
1562
1563 ret = print_state(0, spa->spa_name, state);
1564 if (ret != 0)
1565 return (ret);
1566
1567 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1568 ret = vdev_status(vdev, 1);
1569 if (ret != 0)
1570 return (ret);
1571 }
1572 return (ret);
1573 }
1574
1575 static int
spa_all_status(void)1576 spa_all_status(void)
1577 {
1578 spa_t *spa;
1579 int first = 1, ret = 0;
1580
1581 STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1582 if (!first) {
1583 ret = pager_printf("\n");
1584 if (ret != 0)
1585 return (ret);
1586 }
1587 first = 0;
1588 ret = spa_status(spa);
1589 if (ret != 0)
1590 return (ret);
1591 }
1592 return (ret);
1593 }
1594
1595 static uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1596 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1597 {
1598 uint64_t label_offset;
1599
1600 if (l < VDEV_LABELS / 2)
1601 label_offset = 0;
1602 else
1603 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1604
1605 return (offset + l * sizeof (vdev_label_t) + label_offset);
1606 }
1607
1608 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1609 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1610 {
1611 unsigned int seq1 = 0;
1612 unsigned int seq2 = 0;
1613 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1614
1615 if (cmp != 0)
1616 return (cmp);
1617
1618 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1619 if (cmp != 0)
1620 return (cmp);
1621
1622 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1623 seq1 = MMP_SEQ(ub1);
1624
1625 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1626 seq2 = MMP_SEQ(ub2);
1627
1628 return (AVL_CMP(seq1, seq2));
1629 }
1630
1631 static int
uberblock_verify(uberblock_t * ub)1632 uberblock_verify(uberblock_t *ub)
1633 {
1634 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1635 byteswap_uint64_array(ub, sizeof (uberblock_t));
1636 }
1637
1638 if (ub->ub_magic != UBERBLOCK_MAGIC ||
1639 !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1640 return (EINVAL);
1641
1642 return (0);
1643 }
1644
1645 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1646 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1647 size_t size)
1648 {
1649 blkptr_t bp;
1650 off_t off;
1651
1652 off = vdev_label_offset(vd->v_psize, l, offset);
1653
1654 BP_ZERO(&bp);
1655 BP_SET_LSIZE(&bp, size);
1656 BP_SET_PSIZE(&bp, size);
1657 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1658 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1659 DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1660 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1661
1662 return (vdev_read_phys(vd, &bp, buf, off, size));
1663 }
1664
1665 /*
1666 * We do need to be sure we write to correct location.
1667 * Our vdev label does consist of 4 fields:
1668 * pad1 (8k), reserved.
1669 * bootenv (8k), checksummed, previously reserved, may contian garbage.
1670 * vdev_phys (112k), checksummed
1671 * uberblock ring (128k), checksummed.
1672 *
1673 * Since bootenv area may contain garbage, we can not reliably read it, as
1674 * we can get checksum errors.
1675 * Next best thing is vdev_phys - it is just after bootenv. It still may
1676 * be corrupted, but in such case we will miss this one write.
1677 */
1678 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1679 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1680 {
1681 uint64_t off, o_phys;
1682 void *buf;
1683 size_t size = VDEV_PHYS_SIZE;
1684 int rc;
1685
1686 o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1687 off = vdev_label_offset(vd->v_psize, l, o_phys);
1688
1689 /* off should be 8K from bootenv */
1690 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1691 return (EINVAL);
1692
1693 buf = malloc(size);
1694 if (buf == NULL)
1695 return (ENOMEM);
1696
1697 /* Read vdev_phys */
1698 rc = vdev_label_read(vd, l, buf, o_phys, size);
1699 free(buf);
1700 return (rc);
1701 }
1702
1703 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1704 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1705 {
1706 zio_checksum_info_t *ci;
1707 zio_cksum_t cksum;
1708 off_t off;
1709 size_t size = VDEV_PAD_SIZE;
1710 int rc;
1711
1712 if (vd->v_phys_write == NULL)
1713 return (ENOTSUP);
1714
1715 off = vdev_label_offset(vd->v_psize, l, offset);
1716
1717 rc = vdev_label_write_validate(vd, l, offset);
1718 if (rc != 0) {
1719 return (rc);
1720 }
1721
1722 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1723 be->vbe_zbt.zec_magic = ZEC_MAGIC;
1724 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1725 ci->ci_func[0](be, size, NULL, &cksum);
1726 be->vbe_zbt.zec_cksum = cksum;
1727
1728 return (vdev_write_phys(vd, be, off, size));
1729 }
1730
1731 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1732 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1733 {
1734 vdev_t *kid;
1735 int rv = 0, err;
1736
1737 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1738 if (kid->v_state != VDEV_STATE_HEALTHY)
1739 continue;
1740 err = vdev_write_bootenv_impl(kid, be);
1741 if (err != 0)
1742 rv = err;
1743 }
1744
1745 /*
1746 * Non-leaf vdevs do not have v_phys_write.
1747 */
1748 if (vdev->v_phys_write == NULL)
1749 return (rv);
1750
1751 for (int l = 0; l < VDEV_LABELS; l++) {
1752 err = vdev_label_write(vdev, l, be,
1753 offsetof(vdev_label_t, vl_be));
1754 if (err != 0) {
1755 printf("failed to write bootenv to %s label %d: %d\n",
1756 vdev->v_name ? vdev->v_name : "unknown", l, err);
1757 rv = err;
1758 }
1759 }
1760 return (rv);
1761 }
1762
1763 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1764 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1765 {
1766 vdev_boot_envblock_t *be;
1767 nvlist_t nv, *nvp;
1768 uint64_t version;
1769 int rv;
1770
1771 if (nvl->nv_size > sizeof(be->vbe_bootenv))
1772 return (E2BIG);
1773
1774 version = VB_RAW;
1775 nvp = vdev_read_bootenv(vdev);
1776 if (nvp != NULL) {
1777 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1778 &version, NULL);
1779 nvlist_destroy(nvp);
1780 }
1781
1782 be = calloc(1, sizeof(*be));
1783 if (be == NULL)
1784 return (ENOMEM);
1785
1786 be->vbe_version = version;
1787 switch (version) {
1788 case VB_RAW:
1789 /*
1790 * If there is no envmap, we will just wipe bootenv.
1791 */
1792 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1793 be->vbe_bootenv, NULL);
1794 rv = 0;
1795 break;
1796
1797 case VB_NVLIST:
1798 nv.nv_header = nvl->nv_header;
1799 nv.nv_asize = nvl->nv_asize;
1800 nv.nv_size = nvl->nv_size;
1801
1802 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1803 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1804 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1805 rv = nvlist_export(&nv);
1806 break;
1807
1808 default:
1809 rv = EINVAL;
1810 break;
1811 }
1812
1813 if (rv == 0) {
1814 be->vbe_version = htobe64(be->vbe_version);
1815 rv = vdev_write_bootenv_impl(vdev, be);
1816 }
1817 free(be);
1818 return (rv);
1819 }
1820
1821 /*
1822 * Read the bootenv area from pool label, return the nvlist from it.
1823 * We return from first successful read.
1824 */
1825 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1826 vdev_read_bootenv(vdev_t *vdev)
1827 {
1828 vdev_t *kid;
1829 nvlist_t *benv;
1830 vdev_boot_envblock_t *be;
1831 char *command;
1832 bool ok;
1833 int rv;
1834
1835 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1836 if (kid->v_state != VDEV_STATE_HEALTHY)
1837 continue;
1838
1839 benv = vdev_read_bootenv(kid);
1840 if (benv != NULL)
1841 return (benv);
1842 }
1843
1844 be = malloc(sizeof (*be));
1845 if (be == NULL)
1846 return (NULL);
1847
1848 rv = 0;
1849 for (int l = 0; l < VDEV_LABELS; l++) {
1850 rv = vdev_label_read(vdev, l, be,
1851 offsetof(vdev_label_t, vl_be),
1852 sizeof (*be));
1853 if (rv == 0)
1854 break;
1855 }
1856 if (rv != 0) {
1857 free(be);
1858 return (NULL);
1859 }
1860
1861 be->vbe_version = be64toh(be->vbe_version);
1862 switch (be->vbe_version) {
1863 case VB_RAW:
1864 /*
1865 * we have textual data in vbe_bootenv, create nvlist
1866 * with key "envmap".
1867 */
1868 benv = nvlist_create(NV_UNIQUE_NAME);
1869 if (benv != NULL) {
1870 if (*be->vbe_bootenv == '\0') {
1871 nvlist_add_uint64(benv, BOOTENV_VERSION,
1872 VB_NVLIST);
1873 break;
1874 }
1875 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1876 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1877 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1878 }
1879 break;
1880
1881 case VB_NVLIST:
1882 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1883 break;
1884
1885 default:
1886 command = (char *)be;
1887 ok = false;
1888
1889 /* Check for legacy zfsbootcfg command string */
1890 for (int i = 0; command[i] != '\0'; i++) {
1891 if (iscntrl(command[i])) {
1892 ok = false;
1893 break;
1894 } else {
1895 ok = true;
1896 }
1897 }
1898 benv = nvlist_create(NV_UNIQUE_NAME);
1899 if (benv != NULL) {
1900 if (ok)
1901 nvlist_add_string(benv, FREEBSD_BOOTONCE,
1902 command);
1903 else
1904 nvlist_add_uint64(benv, BOOTENV_VERSION,
1905 VB_NVLIST);
1906 }
1907 break;
1908 }
1909 free(be);
1910 return (benv);
1911 }
1912
1913 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1914 vdev_get_label_asize(nvlist_t *nvl)
1915 {
1916 nvlist_t *vdevs;
1917 uint64_t asize;
1918 const char *type;
1919 int len;
1920
1921 asize = 0;
1922 /* Get vdev tree */
1923 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1924 NULL, &vdevs, NULL) != 0)
1925 return (asize);
1926
1927 /*
1928 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1929 * For raidz, the asize is raw size of all children.
1930 */
1931 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1932 NULL, &type, &len) != 0)
1933 goto done;
1934
1935 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1936 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1937 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1938 goto done;
1939
1940 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1941 NULL, &asize, NULL) != 0)
1942 goto done;
1943
1944 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1945 nvlist_t **kids;
1946 int nkids;
1947
1948 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1949 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1950 asize = 0;
1951 goto done;
1952 }
1953
1954 asize /= nkids;
1955 for (int i = 0; i < nkids; i++)
1956 nvlist_destroy(kids[i]);
1957 free(kids);
1958 }
1959
1960 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1961 done:
1962 nvlist_destroy(vdevs);
1963 return (asize);
1964 }
1965
1966 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1967 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1968 {
1969 vdev_phys_t *label;
1970 uint64_t best_txg = 0;
1971 uint64_t label_txg = 0;
1972 uint64_t asize;
1973 nvlist_t *nvl = NULL, *tmp;
1974 int error;
1975
1976 label = malloc(sizeof (vdev_phys_t));
1977 if (label == NULL)
1978 return (NULL);
1979
1980 for (int l = 0; l < VDEV_LABELS; l++) {
1981 if (vdev_label_read(vd, l, label,
1982 offsetof(vdev_label_t, vl_vdev_phys),
1983 sizeof (vdev_phys_t)))
1984 continue;
1985
1986 tmp = nvlist_import(label->vp_nvlist,
1987 sizeof(label->vp_nvlist));
1988 if (tmp == NULL)
1989 continue;
1990
1991 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1992 DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1993 if (error != 0 || label_txg == 0) {
1994 nvlist_destroy(nvl);
1995 nvl = tmp;
1996 goto done;
1997 }
1998
1999 if (label_txg <= txg && label_txg > best_txg) {
2000 best_txg = label_txg;
2001 nvlist_destroy(nvl);
2002 nvl = tmp;
2003 tmp = NULL;
2004
2005 /*
2006 * Use asize from pool config. We need this
2007 * because we can get bad value from BIOS.
2008 */
2009 asize = vdev_get_label_asize(nvl);
2010 if (asize != 0) {
2011 vd->v_psize = asize;
2012 }
2013 }
2014 nvlist_destroy(tmp);
2015 }
2016
2017 if (best_txg == 0) {
2018 nvlist_destroy(nvl);
2019 nvl = NULL;
2020 }
2021 done:
2022 free(label);
2023 return (nvl);
2024 }
2025
2026 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)2027 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
2028 {
2029 uberblock_t *buf;
2030
2031 buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
2032 if (buf == NULL)
2033 return;
2034
2035 for (int l = 0; l < VDEV_LABELS; l++) {
2036 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2037 if (vdev_label_read(vd, l, buf,
2038 VDEV_UBERBLOCK_OFFSET(vd, n),
2039 VDEV_UBERBLOCK_SIZE(vd)))
2040 continue;
2041 if (uberblock_verify(buf) != 0)
2042 continue;
2043
2044 if (vdev_uberblock_compare(buf, ub) > 0)
2045 *ub = *buf;
2046 }
2047 }
2048 free(buf);
2049 }
2050
2051 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2052 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2053 spa_t **spap)
2054 {
2055 vdev_t vtmp;
2056 spa_t *spa;
2057 vdev_t *vdev, *top;
2058 nvlist_t *nvl, *vdevs;
2059 uint64_t val;
2060 uint64_t guid, pool_guid, top_guid, txg;
2061 const char *pool_name;
2062 int rc, namelen;
2063
2064 /*
2065 * Load the vdev label and figure out which
2066 * uberblock is most current.
2067 */
2068 memset(&vtmp, 0, sizeof(vtmp));
2069 vtmp.v_phys_read = _read;
2070 vtmp.v_phys_write = _write;
2071 vtmp.v_priv = priv;
2072 vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2073 (uint64_t)sizeof (vdev_label_t));
2074
2075 /* Test for minimum device size. */
2076 if (vtmp.v_psize < SPA_MINDEVSIZE)
2077 return (EIO);
2078
2079 nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2080 if (nvl == NULL)
2081 return (EIO);
2082
2083 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2084 NULL, &val, NULL) != 0) {
2085 nvlist_destroy(nvl);
2086 return (EIO);
2087 }
2088
2089 if (!SPA_VERSION_IS_SUPPORTED(val)) {
2090 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2091 (unsigned)val, (unsigned)SPA_VERSION);
2092 nvlist_destroy(nvl);
2093 return (EIO);
2094 }
2095
2096 /* Check ZFS features for read */
2097 rc = nvlist_check_features_for_read(nvl);
2098 if (rc != 0) {
2099 nvlist_destroy(nvl);
2100 return (EIO);
2101 }
2102
2103 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2104 NULL, &val, NULL) != 0) {
2105 nvlist_destroy(nvl);
2106 return (EIO);
2107 }
2108
2109 if (val == POOL_STATE_DESTROYED) {
2110 /* We don't boot only from destroyed pools. */
2111 nvlist_destroy(nvl);
2112 return (EIO);
2113 }
2114
2115 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2116 NULL, &txg, NULL) != 0 ||
2117 txg == 0 ||
2118 nvlist_find(nvl, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
2119 NULL, &top_guid, NULL) != 0 ||
2120 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2121 NULL, &pool_guid, NULL) != 0 ||
2122 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2123 NULL, &pool_name, &namelen) != 0 ||
2124 nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2125 NULL, &guid, NULL) != 0) {
2126 /*
2127 * Cache, spare and replaced devices end up here - just ignore
2128 * them.
2129 */
2130 nvlist_destroy(nvl);
2131 return (EIO);
2132 }
2133
2134 /*
2135 * Create the pool if this is the first time we've seen it.
2136 */
2137 spa = spa_find_by_guid(pool_guid);
2138 if (spa == NULL) {
2139 char *name;
2140
2141 name = malloc(namelen + 1);
2142 if (name == NULL) {
2143 nvlist_destroy(nvl);
2144 return (ENOMEM);
2145 }
2146 bcopy(pool_name, name, namelen);
2147 name[namelen] = '\0';
2148 spa = spa_create(pool_guid, name);
2149 free(name);
2150 if (spa == NULL) {
2151 nvlist_destroy(nvl);
2152 return (ENOMEM);
2153 }
2154 }
2155
2156 /*
2157 * Check if configuration is already known. If configuration is known
2158 * and txg numbers don't match, we got 2x2 scenarios here. First, is
2159 * the label being read right now _newer_ than the one read before.
2160 * Second, is the vdev that provided the stale label _present_ in the
2161 * newer configuration. If neither is true, we completely ignore the
2162 * label.
2163 */
2164 STAILQ_FOREACH(top, &spa->spa_root_vdev->v_children, v_childlink)
2165 if (top->v_guid == top_guid) {
2166 bool newer, present;
2167
2168 if (top->v_txg == txg)
2169 break;
2170 newer = (top->v_txg < txg);
2171 present = newer ?
2172 nvlist_find_vdev_guid(nvl, top->v_label) :
2173 (vdev_find(&top->v_children, guid) != NULL);
2174 printf("ZFS: pool %s vdev %s %s stale label from "
2175 "0x%jx@0x%jx, %s 0x%jx@0x%jx\n",
2176 spa->spa_name, top->v_name,
2177 present ? "using" : "ignoring",
2178 newer ? top->v_label : guid,
2179 newer ? top->v_txg : txg,
2180 present ? "referred by" : "using",
2181 newer ? guid : top->v_label,
2182 newer ? txg : top->v_txg);
2183 if (newer) {
2184 STAILQ_REMOVE(&spa->spa_root_vdev->v_children,
2185 top, vdev, v_childlink);
2186 vdev_free(top);
2187 break;
2188 } else if (present) {
2189 break;
2190 } else {
2191 nvlist_destroy(nvl);
2192 return (EIO);
2193 }
2194 }
2195
2196 /*
2197 * Get the vdev tree and create our in-core copy of it.
2198 * If we already have a vdev with this guid, this must
2199 * be some kind of alias (overlapping slices, dangerously dedicated
2200 * disks etc).
2201 */
2202 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2203 /* Has this vdev already been inited? */
2204 if (vdev && vdev->v_phys_read) {
2205 nvlist_destroy(nvl);
2206 return (EIO);
2207 }
2208
2209 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
2210 &vdevs, NULL)) {
2211 printf("ZFS: can't find vdev details\n");
2212 nvlist_destroy(nvl);
2213 return (ENOENT);
2214 }
2215
2216 rc = vdev_from_nvlist(spa, top_guid, guid, txg, vdevs);
2217 nvlist_destroy(vdevs);
2218 nvlist_destroy(nvl);
2219 if (rc != 0)
2220 return (rc);
2221
2222 /*
2223 * We should already have created an incomplete vdev for this
2224 * vdev. Find it and initialise it with our read proc.
2225 */
2226 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2227 if (vdev != NULL) {
2228 vdev->v_phys_read = _read;
2229 vdev->v_phys_write = _write;
2230 vdev->v_priv = priv;
2231 vdev->v_psize = vtmp.v_psize;
2232 /*
2233 * If no other state is set, mark vdev healthy.
2234 */
2235 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2236 vdev->v_state = VDEV_STATE_HEALTHY;
2237 } else {
2238 printf("ZFS: inconsistent nvlist contents\n");
2239 return (EIO);
2240 }
2241
2242 if (vdev->v_islog)
2243 spa->spa_with_log = vdev->v_islog;
2244
2245 /*
2246 * Re-evaluate top-level vdev state.
2247 */
2248 vdev_set_state(vdev->v_top);
2249
2250 /*
2251 * Ok, we are happy with the pool so far. Lets find
2252 * the best uberblock and then we can actually access
2253 * the contents of the pool.
2254 */
2255 vdev_uberblock_load(vdev, spa->spa_uberblock);
2256
2257 if (spap != NULL)
2258 *spap = spa;
2259 return (0);
2260 }
2261
2262 static int
ilog2(int n)2263 ilog2(int n)
2264 {
2265 int v;
2266
2267 for (v = 0; v < 32; v++)
2268 if (n == (1 << v))
2269 return (v);
2270 return (-1);
2271 }
2272
2273 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2274 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2275 {
2276 blkptr_t gbh_bp;
2277 zio_gbh_phys_t zio_gb;
2278 char *pbuf;
2279 int i;
2280
2281 /* Artificial BP for gang block header. */
2282 gbh_bp = *bp;
2283 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2284 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2285 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2286 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2287 for (i = 0; i < SPA_DVAS_PER_BP; i++)
2288 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2289
2290 /* Read gang header block using the artificial BP. */
2291 if (zio_read(spa, &gbh_bp, &zio_gb))
2292 return (EIO);
2293
2294 pbuf = buf;
2295 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2296 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2297
2298 if (BP_IS_HOLE(gbp))
2299 continue;
2300 if (zio_read(spa, gbp, pbuf))
2301 return (EIO);
2302 pbuf += BP_GET_PSIZE(gbp);
2303 }
2304
2305 if (zio_checksum_verify(spa, bp, buf))
2306 return (EIO);
2307 return (0);
2308 }
2309
2310 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2311 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2312 {
2313 int cpfunc = BP_GET_COMPRESS(bp);
2314 uint64_t align, size;
2315 void *pbuf;
2316 int i, error;
2317
2318 /*
2319 * Process data embedded in block pointer
2320 */
2321 if (BP_IS_EMBEDDED(bp)) {
2322 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2323
2324 size = BPE_GET_PSIZE(bp);
2325 ASSERT(size <= BPE_PAYLOAD_SIZE);
2326
2327 if (cpfunc != ZIO_COMPRESS_OFF)
2328 pbuf = malloc(size);
2329 else
2330 pbuf = buf;
2331
2332 if (pbuf == NULL)
2333 return (ENOMEM);
2334
2335 decode_embedded_bp_compressed(bp, pbuf);
2336 error = 0;
2337
2338 if (cpfunc != ZIO_COMPRESS_OFF) {
2339 error = zio_decompress_data(cpfunc, pbuf,
2340 size, buf, BP_GET_LSIZE(bp));
2341 free(pbuf);
2342 }
2343 if (error != 0)
2344 printf("ZFS: i/o error - unable to decompress "
2345 "block pointer data, error %d\n", error);
2346 return (error);
2347 }
2348
2349 error = EIO;
2350
2351 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2352 const dva_t *dva = &bp->blk_dva[i];
2353 vdev_t *vdev;
2354 vdev_list_t *vlist;
2355 uint64_t vdevid;
2356 off_t offset;
2357
2358 if (!dva->dva_word[0] && !dva->dva_word[1])
2359 continue;
2360
2361 vdevid = DVA_GET_VDEV(dva);
2362 offset = DVA_GET_OFFSET(dva);
2363 vlist = &spa->spa_root_vdev->v_children;
2364 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2365 if (vdev->v_id == vdevid)
2366 break;
2367 }
2368 if (!vdev || !vdev->v_read)
2369 continue;
2370
2371 size = BP_GET_PSIZE(bp);
2372 if (vdev->v_read == vdev_raidz_read) {
2373 align = 1ULL << vdev->v_ashift;
2374 if (P2PHASE(size, align) != 0)
2375 size = P2ROUNDUP(size, align);
2376 }
2377 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2378 pbuf = malloc(size);
2379 else
2380 pbuf = buf;
2381
2382 if (pbuf == NULL) {
2383 error = ENOMEM;
2384 break;
2385 }
2386
2387 if (DVA_GET_GANG(dva))
2388 error = zio_read_gang(spa, bp, pbuf);
2389 else
2390 error = vdev->v_read(vdev, bp, pbuf, offset, size);
2391 if (error == 0) {
2392 if (cpfunc != ZIO_COMPRESS_OFF)
2393 error = zio_decompress_data(cpfunc, pbuf,
2394 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2395 else if (size != BP_GET_PSIZE(bp))
2396 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2397 } else {
2398 printf("zio_read error: %d\n", error);
2399 }
2400 if (buf != pbuf)
2401 free(pbuf);
2402 if (error == 0)
2403 break;
2404 }
2405 if (error != 0)
2406 printf("ZFS: i/o error - all block copies unavailable\n");
2407
2408 return (error);
2409 }
2410
2411 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2412 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2413 void *buf, size_t buflen)
2414 {
2415 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2416 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2417 int nlevels = dnode->dn_nlevels;
2418 int i, rc;
2419
2420 if (bsize > SPA_MAXBLOCKSIZE) {
2421 printf("ZFS: I/O error - blocks larger than %llu are not "
2422 "supported\n", SPA_MAXBLOCKSIZE);
2423 return (EIO);
2424 }
2425
2426 /*
2427 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist
2428 * past the first block, so we'll clip the read to the portion of the
2429 * buffer within bsize and zero out the remainder.
2430 */
2431 if (dnode->dn_maxblkid == 0) {
2432 size_t newbuflen;
2433
2434 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2435 bzero((char *)buf + newbuflen, buflen - newbuflen);
2436 buflen = newbuflen;
2437 }
2438
2439 /*
2440 * Note: bsize may not be a power of two here so we need to do an
2441 * actual divide rather than a bitshift.
2442 */
2443 while (buflen > 0) {
2444 uint64_t bn = offset / bsize;
2445 int boff = offset % bsize;
2446 int ibn;
2447 const blkptr_t *indbp;
2448 blkptr_t bp;
2449
2450 if (bn > dnode->dn_maxblkid)
2451 return (EIO);
2452
2453 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2454 goto cached;
2455
2456 indbp = dnode->dn_blkptr;
2457 for (i = 0; i < nlevels; i++) {
2458 /*
2459 * Copy the bp from the indirect array so that
2460 * we can re-use the scratch buffer for multi-level
2461 * objects.
2462 */
2463 ibn = bn >> ((nlevels - i - 1) * ibshift);
2464 ibn &= ((1 << ibshift) - 1);
2465 bp = indbp[ibn];
2466 if (BP_IS_HOLE(&bp)) {
2467 memset(dnode_cache_buf, 0, bsize);
2468 break;
2469 }
2470 rc = zio_read(spa, &bp, dnode_cache_buf);
2471 if (rc)
2472 return (rc);
2473 indbp = (const blkptr_t *) dnode_cache_buf;
2474 }
2475 dnode_cache_obj = dnode;
2476 dnode_cache_bn = bn;
2477 cached:
2478
2479 /*
2480 * The buffer contains our data block. Copy what we
2481 * need from it and loop.
2482 */
2483 i = bsize - boff;
2484 if (i > buflen) i = buflen;
2485 memcpy(buf, &dnode_cache_buf[boff], i);
2486 buf = ((char *)buf) + i;
2487 offset += i;
2488 buflen -= i;
2489 }
2490
2491 return (0);
2492 }
2493
2494 /*
2495 * Lookup a value in a microzap directory.
2496 */
2497 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2498 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2499 uint64_t *value)
2500 {
2501 const mzap_ent_phys_t *mze;
2502 int chunks, i;
2503
2504 /*
2505 * Microzap objects use exactly one block. Read the whole
2506 * thing.
2507 */
2508 chunks = size / MZAP_ENT_LEN - 1;
2509 for (i = 0; i < chunks; i++) {
2510 mze = &mz->mz_chunk[i];
2511 if (strcmp(mze->mze_name, name) == 0) {
2512 *value = mze->mze_value;
2513 return (0);
2514 }
2515 }
2516
2517 return (ENOENT);
2518 }
2519
2520 /*
2521 * Compare a name with a zap leaf entry. Return non-zero if the name
2522 * matches.
2523 */
2524 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2525 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2526 const char *name)
2527 {
2528 size_t namelen;
2529 const zap_leaf_chunk_t *nc;
2530 const char *p;
2531
2532 namelen = zc->l_entry.le_name_numints;
2533
2534 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2535 p = name;
2536 while (namelen > 0) {
2537 size_t len;
2538
2539 len = namelen;
2540 if (len > ZAP_LEAF_ARRAY_BYTES)
2541 len = ZAP_LEAF_ARRAY_BYTES;
2542 if (memcmp(p, nc->l_array.la_array, len))
2543 return (0);
2544 p += len;
2545 namelen -= len;
2546 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2547 }
2548
2549 return (1);
2550 }
2551
2552 /*
2553 * Extract a uint64_t value from a zap leaf entry.
2554 */
2555 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2556 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2557 {
2558 const zap_leaf_chunk_t *vc;
2559 int i;
2560 uint64_t value;
2561 const uint8_t *p;
2562
2563 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2564 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2565 value = (value << 8) | p[i];
2566 }
2567
2568 return (value);
2569 }
2570
2571 static void
stv(int len,void * addr,uint64_t value)2572 stv(int len, void *addr, uint64_t value)
2573 {
2574 switch (len) {
2575 case 1:
2576 *(uint8_t *)addr = value;
2577 return;
2578 case 2:
2579 *(uint16_t *)addr = value;
2580 return;
2581 case 4:
2582 *(uint32_t *)addr = value;
2583 return;
2584 case 8:
2585 *(uint64_t *)addr = value;
2586 return;
2587 }
2588 }
2589
2590 /*
2591 * Extract a array from a zap leaf entry.
2592 */
2593 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2594 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2595 uint64_t integer_size, uint64_t num_integers, void *buf)
2596 {
2597 uint64_t array_int_len = zc->l_entry.le_value_intlen;
2598 uint64_t value = 0;
2599 uint64_t *u64 = buf;
2600 char *p = buf;
2601 int len = MIN(zc->l_entry.le_value_numints, num_integers);
2602 int chunk = zc->l_entry.le_value_chunk;
2603 int byten = 0;
2604
2605 if (integer_size == 8 && len == 1) {
2606 *u64 = fzap_leaf_value(zl, zc);
2607 return;
2608 }
2609
2610 while (len > 0) {
2611 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2612 int i;
2613
2614 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2615 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2616 value = (value << 8) | la->la_array[i];
2617 byten++;
2618 if (byten == array_int_len) {
2619 stv(integer_size, p, value);
2620 byten = 0;
2621 len--;
2622 if (len == 0)
2623 return;
2624 p += integer_size;
2625 }
2626 }
2627 chunk = la->la_next;
2628 }
2629 }
2630
2631 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2632 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2633 {
2634
2635 switch (integer_size) {
2636 case 1:
2637 case 2:
2638 case 4:
2639 case 8:
2640 break;
2641 default:
2642 return (EINVAL);
2643 }
2644
2645 if (integer_size * num_integers > ZAP_MAXVALUELEN)
2646 return (E2BIG);
2647
2648 return (0);
2649 }
2650
2651 static void
zap_leaf_free(zap_leaf_t * leaf)2652 zap_leaf_free(zap_leaf_t *leaf)
2653 {
2654 free(leaf->l_phys);
2655 free(leaf);
2656 }
2657
2658 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2659 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2660 {
2661 int bs = FZAP_BLOCK_SHIFT(zap);
2662 int err;
2663
2664 *lp = malloc(sizeof(**lp));
2665 if (*lp == NULL)
2666 return (ENOMEM);
2667
2668 (*lp)->l_bs = bs;
2669 (*lp)->l_phys = malloc(1 << bs);
2670
2671 if ((*lp)->l_phys == NULL) {
2672 free(*lp);
2673 return (ENOMEM);
2674 }
2675 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2676 1 << bs);
2677 if (err != 0) {
2678 zap_leaf_free(*lp);
2679 }
2680 return (err);
2681 }
2682
2683 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2684 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2685 uint64_t *valp)
2686 {
2687 int bs = FZAP_BLOCK_SHIFT(zap);
2688 uint64_t blk = idx >> (bs - 3);
2689 uint64_t off = idx & ((1 << (bs - 3)) - 1);
2690 uint64_t *buf;
2691 int rc;
2692
2693 buf = malloc(1 << zap->zap_block_shift);
2694 if (buf == NULL)
2695 return (ENOMEM);
2696 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2697 buf, 1 << zap->zap_block_shift);
2698 if (rc == 0)
2699 *valp = buf[off];
2700 free(buf);
2701 return (rc);
2702 }
2703
2704 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2705 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2706 {
2707 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2708 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2709 return (0);
2710 } else {
2711 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2712 idx, valp));
2713 }
2714 }
2715
2716 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2717 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2718 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2719 {
2720 uint64_t idx, blk;
2721 int err;
2722
2723 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2724 err = zap_idx_to_blk(zap, idx, &blk);
2725 if (err != 0)
2726 return (err);
2727 return (zap_get_leaf_byblk(zap, blk, lp));
2728 }
2729
2730 #define CHAIN_END 0xffff /* end of the chunk chain */
2731 #define LEAF_HASH(l, h) \
2732 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2733 ((h) >> \
2734 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2735 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2736
2737 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2738 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2739 uint64_t integer_size, uint64_t num_integers, void *value)
2740 {
2741 int rc;
2742 uint16_t *chunkp;
2743 struct zap_leaf_entry *le;
2744
2745 /*
2746 * Make sure this chunk matches our hash.
2747 */
2748 if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2749 zl->l_phys->l_hdr.lh_prefix !=
2750 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2751 return (EIO);
2752
2753 rc = ENOENT;
2754 for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2755 *chunkp != CHAIN_END; chunkp = &le->le_next) {
2756 zap_leaf_chunk_t *zc;
2757 uint16_t chunk = *chunkp;
2758
2759 le = ZAP_LEAF_ENTRY(zl, chunk);
2760 if (le->le_hash != hash)
2761 continue;
2762 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2763 if (fzap_name_equal(zl, zc, name)) {
2764 if (zc->l_entry.le_value_intlen > integer_size) {
2765 rc = EINVAL;
2766 } else {
2767 fzap_leaf_array(zl, zc, integer_size,
2768 num_integers, value);
2769 rc = 0;
2770 }
2771 break;
2772 }
2773 }
2774 return (rc);
2775 }
2776
2777 /*
2778 * Lookup a value in a fatzap directory.
2779 */
2780 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2781 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2782 const char *name, uint64_t integer_size, uint64_t num_integers,
2783 void *value)
2784 {
2785 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2786 fat_zap_t z;
2787 zap_leaf_t *zl;
2788 uint64_t hash;
2789 int rc;
2790
2791 if (zh->zap_magic != ZAP_MAGIC)
2792 return (EIO);
2793
2794 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2795 return (rc);
2796 }
2797
2798 z.zap_block_shift = ilog2(bsize);
2799 z.zap_phys = zh;
2800 z.zap_spa = spa;
2801 z.zap_dnode = dnode;
2802
2803 hash = zap_hash(zh->zap_salt, name);
2804 rc = zap_deref_leaf(&z, hash, &zl);
2805 if (rc != 0)
2806 return (rc);
2807
2808 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2809
2810 zap_leaf_free(zl);
2811 return (rc);
2812 }
2813
2814 /*
2815 * Lookup a name in a zap object and return its value as a uint64_t.
2816 */
2817 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2818 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2819 uint64_t integer_size, uint64_t num_integers, void *value)
2820 {
2821 int rc;
2822 zap_phys_t *zap;
2823 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2824
2825 zap = malloc(size);
2826 if (zap == NULL)
2827 return (ENOMEM);
2828
2829 rc = dnode_read(spa, dnode, 0, zap, size);
2830 if (rc)
2831 goto done;
2832
2833 switch (zap->zap_block_type) {
2834 case ZBT_MICRO:
2835 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2836 break;
2837 case ZBT_HEADER:
2838 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2839 num_integers, value);
2840 break;
2841 default:
2842 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2843 zap->zap_block_type);
2844 rc = EIO;
2845 }
2846 done:
2847 free(zap);
2848 return (rc);
2849 }
2850
2851 /*
2852 * List a microzap directory.
2853 */
2854 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2855 mzap_list(const mzap_phys_t *mz, size_t size,
2856 int (*callback)(const char *, uint64_t))
2857 {
2858 const mzap_ent_phys_t *mze;
2859 int chunks, i, rc;
2860
2861 /*
2862 * Microzap objects use exactly one block. Read the whole
2863 * thing.
2864 */
2865 rc = 0;
2866 chunks = size / MZAP_ENT_LEN - 1;
2867 for (i = 0; i < chunks; i++) {
2868 mze = &mz->mz_chunk[i];
2869 if (mze->mze_name[0]) {
2870 rc = callback(mze->mze_name, mze->mze_value);
2871 if (rc != 0)
2872 break;
2873 }
2874 }
2875
2876 return (rc);
2877 }
2878
2879 /*
2880 * List a fatzap directory.
2881 */
2882 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2883 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2884 int (*callback)(const char *, uint64_t))
2885 {
2886 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2887 fat_zap_t z;
2888 uint64_t i;
2889 int j, rc;
2890
2891 if (zh->zap_magic != ZAP_MAGIC)
2892 return (EIO);
2893
2894 z.zap_block_shift = ilog2(bsize);
2895 z.zap_phys = zh;
2896
2897 /*
2898 * This assumes that the leaf blocks start at block 1. The
2899 * documentation isn't exactly clear on this.
2900 */
2901 zap_leaf_t zl;
2902 zl.l_bs = z.zap_block_shift;
2903 zl.l_phys = malloc(bsize);
2904 if (zl.l_phys == NULL)
2905 return (ENOMEM);
2906
2907 for (i = 0; i < zh->zap_num_leafs; i++) {
2908 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2909 char name[256], *p;
2910 uint64_t value;
2911
2912 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2913 free(zl.l_phys);
2914 return (EIO);
2915 }
2916
2917 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2918 zap_leaf_chunk_t *zc, *nc;
2919 int namelen;
2920
2921 zc = &ZAP_LEAF_CHUNK(&zl, j);
2922 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2923 continue;
2924 namelen = zc->l_entry.le_name_numints;
2925 if (namelen > sizeof(name))
2926 namelen = sizeof(name);
2927
2928 /*
2929 * Paste the name back together.
2930 */
2931 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2932 p = name;
2933 while (namelen > 0) {
2934 int len;
2935 len = namelen;
2936 if (len > ZAP_LEAF_ARRAY_BYTES)
2937 len = ZAP_LEAF_ARRAY_BYTES;
2938 memcpy(p, nc->l_array.la_array, len);
2939 p += len;
2940 namelen -= len;
2941 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2942 }
2943
2944 /*
2945 * Assume the first eight bytes of the value are
2946 * a uint64_t.
2947 */
2948 value = fzap_leaf_value(&zl, zc);
2949
2950 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2951 rc = callback((const char *)name, value);
2952 if (rc != 0) {
2953 free(zl.l_phys);
2954 return (rc);
2955 }
2956 }
2957 }
2958
2959 free(zl.l_phys);
2960 return (0);
2961 }
2962
zfs_printf(const char * name,uint64_t value __unused)2963 static int zfs_printf(const char *name, uint64_t value __unused)
2964 {
2965
2966 printf("%s\n", name);
2967
2968 return (0);
2969 }
2970
2971 /*
2972 * List a zap directory.
2973 */
2974 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)2975 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2976 {
2977 zap_phys_t *zap;
2978 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2979 int rc;
2980
2981 zap = malloc(size);
2982 if (zap == NULL)
2983 return (ENOMEM);
2984
2985 rc = dnode_read(spa, dnode, 0, zap, size);
2986 if (rc == 0) {
2987 if (zap->zap_block_type == ZBT_MICRO)
2988 rc = mzap_list((const mzap_phys_t *)zap, size,
2989 zfs_printf);
2990 else
2991 rc = fzap_list(spa, dnode, zap, zfs_printf);
2992 }
2993 free(zap);
2994 return (rc);
2995 }
2996
2997 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)2998 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2999 dnode_phys_t *dnode)
3000 {
3001 off_t offset;
3002
3003 offset = objnum * sizeof(dnode_phys_t);
3004 return dnode_read(spa, &os->os_meta_dnode, offset,
3005 dnode, sizeof(dnode_phys_t));
3006 }
3007
3008 /*
3009 * Lookup a name in a microzap directory.
3010 */
3011 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)3012 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
3013 {
3014 const mzap_ent_phys_t *mze;
3015 int chunks, i;
3016
3017 /*
3018 * Microzap objects use exactly one block. Read the whole
3019 * thing.
3020 */
3021 chunks = size / MZAP_ENT_LEN - 1;
3022 for (i = 0; i < chunks; i++) {
3023 mze = &mz->mz_chunk[i];
3024 if (value == mze->mze_value) {
3025 strcpy(name, mze->mze_name);
3026 return (0);
3027 }
3028 }
3029
3030 return (ENOENT);
3031 }
3032
3033 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)3034 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
3035 {
3036 size_t namelen;
3037 const zap_leaf_chunk_t *nc;
3038 char *p;
3039
3040 namelen = zc->l_entry.le_name_numints;
3041
3042 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
3043 p = name;
3044 while (namelen > 0) {
3045 size_t len;
3046 len = namelen;
3047 if (len > ZAP_LEAF_ARRAY_BYTES)
3048 len = ZAP_LEAF_ARRAY_BYTES;
3049 memcpy(p, nc->l_array.la_array, len);
3050 p += len;
3051 namelen -= len;
3052 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
3053 }
3054
3055 *p = '\0';
3056 }
3057
3058 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)3059 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
3060 char *name, uint64_t value)
3061 {
3062 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3063 fat_zap_t z;
3064 uint64_t i;
3065 int j, rc;
3066
3067 if (zh->zap_magic != ZAP_MAGIC)
3068 return (EIO);
3069
3070 z.zap_block_shift = ilog2(bsize);
3071 z.zap_phys = zh;
3072
3073 /*
3074 * This assumes that the leaf blocks start at block 1. The
3075 * documentation isn't exactly clear on this.
3076 */
3077 zap_leaf_t zl;
3078 zl.l_bs = z.zap_block_shift;
3079 zl.l_phys = malloc(bsize);
3080 if (zl.l_phys == NULL)
3081 return (ENOMEM);
3082
3083 for (i = 0; i < zh->zap_num_leafs; i++) {
3084 off_t off = ((off_t)(i + 1)) << zl.l_bs;
3085
3086 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3087 if (rc != 0)
3088 goto done;
3089
3090 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3091 zap_leaf_chunk_t *zc;
3092
3093 zc = &ZAP_LEAF_CHUNK(&zl, j);
3094 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3095 continue;
3096 if (zc->l_entry.le_value_intlen != 8 ||
3097 zc->l_entry.le_value_numints != 1)
3098 continue;
3099
3100 if (fzap_leaf_value(&zl, zc) == value) {
3101 fzap_name_copy(&zl, zc, name);
3102 goto done;
3103 }
3104 }
3105 }
3106
3107 rc = ENOENT;
3108 done:
3109 free(zl.l_phys);
3110 return (rc);
3111 }
3112
3113 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3114 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3115 uint64_t value)
3116 {
3117 zap_phys_t *zap;
3118 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3119 int rc;
3120
3121 zap = malloc(size);
3122 if (zap == NULL)
3123 return (ENOMEM);
3124
3125 rc = dnode_read(spa, dnode, 0, zap, size);
3126 if (rc == 0) {
3127 if (zap->zap_block_type == ZBT_MICRO)
3128 rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3129 name, value);
3130 else
3131 rc = fzap_rlookup(spa, dnode, zap, name, value);
3132 }
3133 free(zap);
3134 return (rc);
3135 }
3136
3137 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3138 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3139 {
3140 char name[256];
3141 char component[256];
3142 uint64_t dir_obj, parent_obj, child_dir_zapobj;
3143 dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3144 dsl_dir_phys_t *dd;
3145 dsl_dataset_phys_t *ds;
3146 char *p;
3147 int len;
3148 boolean_t issnap = B_FALSE;
3149
3150 p = &name[sizeof(name) - 1];
3151 *p = '\0';
3152
3153 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3154 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3155 return (EIO);
3156 }
3157 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3158 dir_obj = ds->ds_dir_obj;
3159 if (ds->ds_snapnames_zapobj == 0)
3160 issnap = B_TRUE;
3161
3162 for (;;) {
3163 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3164 return (EIO);
3165 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3166
3167 /* Actual loop condition. */
3168 parent_obj = dd->dd_parent_obj;
3169 if (parent_obj == 0)
3170 break;
3171
3172 if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3173 &parent) != 0)
3174 return (EIO);
3175 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3176 if (issnap == B_TRUE) {
3177 /*
3178 * The dataset we are looking up is a snapshot
3179 * the dir_obj is the parent already, we don't want
3180 * the grandparent just yet. Reset to the parent.
3181 */
3182 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3183 /* Lookup the dataset to get the snapname ZAP */
3184 if (objset_get_dnode(spa, spa->spa_mos,
3185 dd->dd_head_dataset_obj, &dataset))
3186 return (EIO);
3187 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3188 if (objset_get_dnode(spa, spa->spa_mos,
3189 ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3190 return (EIO);
3191 /* Get the name of the snapshot */
3192 if (zap_rlookup(spa, &snapnames_zap, component,
3193 objnum) != 0)
3194 return (EIO);
3195 len = strlen(component);
3196 p -= len;
3197 memcpy(p, component, len);
3198 --p;
3199 *p = '@';
3200 issnap = B_FALSE;
3201 continue;
3202 }
3203
3204 child_dir_zapobj = dd->dd_child_dir_zapobj;
3205 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3206 &child_dir_zap) != 0)
3207 return (EIO);
3208 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3209 return (EIO);
3210
3211 len = strlen(component);
3212 p -= len;
3213 memcpy(p, component, len);
3214 --p;
3215 *p = '/';
3216
3217 /* Actual loop iteration. */
3218 dir_obj = parent_obj;
3219 }
3220
3221 if (*p != '\0')
3222 ++p;
3223 strcpy(result, p);
3224
3225 return (0);
3226 }
3227
3228 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3229 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3230 {
3231 char element[256];
3232 uint64_t dir_obj, child_dir_zapobj;
3233 dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3234 dsl_dir_phys_t *dd;
3235 dsl_dataset_phys_t *ds;
3236 const char *p, *q;
3237 boolean_t issnap = B_FALSE;
3238
3239 if (objset_get_dnode(spa, spa->spa_mos,
3240 DMU_POOL_DIRECTORY_OBJECT, &dir))
3241 return (EIO);
3242 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3243 1, &dir_obj))
3244 return (EIO);
3245
3246 p = name;
3247 for (;;) {
3248 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3249 return (EIO);
3250 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3251
3252 while (*p == '/')
3253 p++;
3254 /* Actual loop condition #1. */
3255 if (*p == '\0')
3256 break;
3257
3258 q = strchr(p, '/');
3259 if (q) {
3260 memcpy(element, p, q - p);
3261 element[q - p] = '\0';
3262 p = q + 1;
3263 } else {
3264 strcpy(element, p);
3265 p += strlen(p);
3266 }
3267
3268 if (issnap == B_TRUE) {
3269 if (objset_get_dnode(spa, spa->spa_mos,
3270 dd->dd_head_dataset_obj, &dataset))
3271 return (EIO);
3272 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3273 if (objset_get_dnode(spa, spa->spa_mos,
3274 ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3275 return (EIO);
3276 /* Actual loop condition #2. */
3277 if (zap_lookup(spa, &snapnames_zap, element,
3278 sizeof (dir_obj), 1, &dir_obj) != 0)
3279 return (ENOENT);
3280 *objnum = dir_obj;
3281 return (0);
3282 } else if ((q = strchr(element, '@')) != NULL) {
3283 issnap = B_TRUE;
3284 element[q - element] = '\0';
3285 p = q + 1;
3286 }
3287 child_dir_zapobj = dd->dd_child_dir_zapobj;
3288 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3289 &child_dir_zap) != 0)
3290 return (EIO);
3291
3292 /* Actual loop condition #2. */
3293 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3294 1, &dir_obj) != 0)
3295 return (ENOENT);
3296 }
3297
3298 *objnum = dd->dd_head_dataset_obj;
3299 return (0);
3300 }
3301
3302 #ifndef BOOT2
3303 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3304 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3305 {
3306 uint64_t dir_obj, child_dir_zapobj;
3307 dnode_phys_t child_dir_zap, dir, dataset;
3308 dsl_dataset_phys_t *ds;
3309 dsl_dir_phys_t *dd;
3310
3311 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3312 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3313 return (EIO);
3314 }
3315 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3316 dir_obj = ds->ds_dir_obj;
3317
3318 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3319 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3320 return (EIO);
3321 }
3322 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3323
3324 child_dir_zapobj = dd->dd_child_dir_zapobj;
3325 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3326 &child_dir_zap) != 0) {
3327 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3328 return (EIO);
3329 }
3330
3331 return (zap_list(spa, &child_dir_zap) != 0);
3332 }
3333
3334 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3335 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3336 int (*callback)(const char *, uint64_t))
3337 {
3338 uint64_t dir_obj, child_dir_zapobj;
3339 dnode_phys_t child_dir_zap, dir, dataset;
3340 dsl_dataset_phys_t *ds;
3341 dsl_dir_phys_t *dd;
3342 zap_phys_t *zap;
3343 size_t size;
3344 int err;
3345
3346 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3347 if (err != 0) {
3348 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3349 return (err);
3350 }
3351 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3352 dir_obj = ds->ds_dir_obj;
3353
3354 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3355 if (err != 0) {
3356 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3357 return (err);
3358 }
3359 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3360
3361 child_dir_zapobj = dd->dd_child_dir_zapobj;
3362 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3363 &child_dir_zap);
3364 if (err != 0) {
3365 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3366 return (err);
3367 }
3368
3369 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3370 zap = malloc(size);
3371 if (zap != NULL) {
3372 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3373 if (err != 0)
3374 goto done;
3375
3376 if (zap->zap_block_type == ZBT_MICRO)
3377 err = mzap_list((const mzap_phys_t *)zap, size,
3378 callback);
3379 else
3380 err = fzap_list(spa, &child_dir_zap, zap, callback);
3381 } else {
3382 err = ENOMEM;
3383 }
3384 done:
3385 free(zap);
3386 return (err);
3387 }
3388 #endif
3389
3390 /*
3391 * Find the object set given the object number of its dataset object
3392 * and return its details in *objset
3393 */
3394 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3395 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3396 {
3397 dnode_phys_t dataset;
3398 dsl_dataset_phys_t *ds;
3399
3400 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3401 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3402 return (EIO);
3403 }
3404
3405 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3406 if (zio_read(spa, &ds->ds_bp, objset)) {
3407 printf("ZFS: can't read object set for dataset %ju\n",
3408 (uintmax_t)objnum);
3409 return (EIO);
3410 }
3411
3412 return (0);
3413 }
3414
3415 /*
3416 * Find the object set pointed to by the BOOTFS property or the root
3417 * dataset if there is none and return its details in *objset
3418 */
3419 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3420 zfs_get_root(const spa_t *spa, uint64_t *objid)
3421 {
3422 dnode_phys_t dir, propdir;
3423 uint64_t props, bootfs, root;
3424
3425 *objid = 0;
3426
3427 /*
3428 * Start with the MOS directory object.
3429 */
3430 if (objset_get_dnode(spa, spa->spa_mos,
3431 DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3432 printf("ZFS: can't read MOS object directory\n");
3433 return (EIO);
3434 }
3435
3436 /*
3437 * Lookup the pool_props and see if we can find a bootfs.
3438 */
3439 if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3440 sizeof(props), 1, &props) == 0 &&
3441 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3442 zap_lookup(spa, &propdir, "bootfs",
3443 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3444 *objid = bootfs;
3445 return (0);
3446 }
3447 /*
3448 * Lookup the root dataset directory
3449 */
3450 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3451 sizeof(root), 1, &root) ||
3452 objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3453 printf("ZFS: can't find root dsl_dir\n");
3454 return (EIO);
3455 }
3456
3457 /*
3458 * Use the information from the dataset directory's bonus buffer
3459 * to find the dataset object and from that the object set itself.
3460 */
3461 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3462 *objid = dd->dd_head_dataset_obj;
3463 return (0);
3464 }
3465
3466 static int
zfs_mount_impl(const spa_t * spa,uint64_t rootobj,struct zfsmount * mount)3467 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3468 {
3469
3470 mount->spa = spa;
3471
3472 /*
3473 * Find the root object set if not explicitly provided
3474 */
3475 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3476 printf("ZFS: can't find root filesystem\n");
3477 return (EIO);
3478 }
3479
3480 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3481 printf("ZFS: can't open root filesystem\n");
3482 return (EIO);
3483 }
3484
3485 mount->rootobj = rootobj;
3486
3487 return (0);
3488 }
3489
3490 /*
3491 * callback function for feature name checks.
3492 */
3493 static int
check_feature(const char * name,uint64_t value)3494 check_feature(const char *name, uint64_t value)
3495 {
3496 int i;
3497
3498 if (value == 0)
3499 return (0);
3500 if (name[0] == '\0')
3501 return (0);
3502
3503 for (i = 0; features_for_read[i] != NULL; i++) {
3504 if (strcmp(name, features_for_read[i]) == 0)
3505 return (0);
3506 }
3507 printf("ZFS: unsupported feature: %s\n", name);
3508 return (EIO);
3509 }
3510
3511 /*
3512 * Checks whether the MOS features that are active are supported.
3513 */
3514 static int
check_mos_features(const spa_t * spa)3515 check_mos_features(const spa_t *spa)
3516 {
3517 dnode_phys_t dir;
3518 zap_phys_t *zap;
3519 uint64_t objnum;
3520 size_t size;
3521 int rc;
3522
3523 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3524 &dir)) != 0)
3525 return (rc);
3526 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3527 sizeof (objnum), 1, &objnum)) != 0) {
3528 /*
3529 * It is older pool without features. As we have already
3530 * tested the label, just return without raising the error.
3531 */
3532 return (0);
3533 }
3534
3535 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3536 return (rc);
3537
3538 if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3539 return (EIO);
3540
3541 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3542 zap = malloc(size);
3543 if (zap == NULL)
3544 return (ENOMEM);
3545
3546 if (dnode_read(spa, &dir, 0, zap, size)) {
3547 free(zap);
3548 return (EIO);
3549 }
3550
3551 if (zap->zap_block_type == ZBT_MICRO)
3552 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3553 else
3554 rc = fzap_list(spa, &dir, zap, check_feature);
3555
3556 free(zap);
3557 return (rc);
3558 }
3559
3560 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3561 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3562 {
3563 dnode_phys_t dir;
3564 size_t size;
3565 int rc;
3566 char *nv;
3567
3568 *value = NULL;
3569 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3570 return (rc);
3571 if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3572 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3573 return (EIO);
3574 }
3575
3576 if (dir.dn_bonuslen != sizeof (uint64_t))
3577 return (EIO);
3578
3579 size = *(uint64_t *)DN_BONUS(&dir);
3580 nv = malloc(size);
3581 if (nv == NULL)
3582 return (ENOMEM);
3583
3584 rc = dnode_read(spa, &dir, 0, nv, size);
3585 if (rc != 0) {
3586 free(nv);
3587 nv = NULL;
3588 return (rc);
3589 }
3590 *value = nvlist_import(nv, size);
3591 free(nv);
3592 return (rc);
3593 }
3594
3595 static int
zfs_spa_init(spa_t * spa)3596 zfs_spa_init(spa_t *spa)
3597 {
3598 struct uberblock checkpoint;
3599 dnode_phys_t dir;
3600 uint64_t config_object;
3601 nvlist_t *nvlist;
3602 int rc;
3603
3604 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3605 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3606 return (EIO);
3607 }
3608 if (spa->spa_mos->os_type != DMU_OST_META) {
3609 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3610 return (EIO);
3611 }
3612
3613 if (objset_get_dnode(spa, &spa->spa_mos_master,
3614 DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3615 printf("ZFS: failed to read pool %s directory object\n",
3616 spa->spa_name);
3617 return (EIO);
3618 }
3619 /* this is allowed to fail, older pools do not have salt */
3620 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3621 sizeof (spa->spa_cksum_salt.zcs_bytes),
3622 spa->spa_cksum_salt.zcs_bytes);
3623
3624 rc = check_mos_features(spa);
3625 if (rc != 0) {
3626 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3627 return (rc);
3628 }
3629
3630 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3631 sizeof (config_object), 1, &config_object);
3632 if (rc != 0) {
3633 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3634 return (EIO);
3635 }
3636 rc = load_nvlist(spa, config_object, &nvlist);
3637 if (rc != 0) {
3638 printf("ZFS: failed to load pool %s nvlist\n", spa->spa_name);
3639 return (rc);
3640 }
3641
3642 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3643 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3644 &checkpoint);
3645 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3646 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3647 sizeof(checkpoint));
3648 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3649 &spa->spa_mos_checkpoint)) {
3650 printf("ZFS: can not read checkpoint data.\n");
3651 return (EIO);
3652 }
3653 }
3654
3655 /*
3656 * Update vdevs from MOS config. Note, we do skip encoding bytes
3657 * here. See also vdev_label_read_config().
3658 */
3659 rc = vdev_init_from_nvlist(spa, nvlist);
3660 nvlist_destroy(nvlist);
3661 return (rc);
3662 }
3663
3664 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3665 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3666 {
3667
3668 if (dn->dn_bonustype != DMU_OT_SA) {
3669 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3670
3671 sb->st_mode = zp->zp_mode;
3672 sb->st_uid = zp->zp_uid;
3673 sb->st_gid = zp->zp_gid;
3674 sb->st_size = zp->zp_size;
3675 } else {
3676 sa_hdr_phys_t *sahdrp;
3677 int hdrsize;
3678 size_t size = 0;
3679 void *buf = NULL;
3680
3681 if (dn->dn_bonuslen != 0)
3682 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3683 else {
3684 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3685 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3686 int error;
3687
3688 size = BP_GET_LSIZE(bp);
3689 buf = malloc(size);
3690 if (buf == NULL)
3691 error = ENOMEM;
3692 else
3693 error = zio_read(spa, bp, buf);
3694
3695 if (error != 0) {
3696 free(buf);
3697 return (error);
3698 }
3699 sahdrp = buf;
3700 } else {
3701 return (EIO);
3702 }
3703 }
3704 hdrsize = SA_HDR_SIZE(sahdrp);
3705 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3706 SA_MODE_OFFSET);
3707 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3708 SA_UID_OFFSET);
3709 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3710 SA_GID_OFFSET);
3711 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3712 SA_SIZE_OFFSET);
3713 free(buf);
3714 }
3715
3716 return (0);
3717 }
3718
3719 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3720 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3721 {
3722 int rc = 0;
3723
3724 if (dn->dn_bonustype == DMU_OT_SA) {
3725 sa_hdr_phys_t *sahdrp = NULL;
3726 size_t size = 0;
3727 void *buf = NULL;
3728 int hdrsize;
3729 char *p;
3730
3731 if (dn->dn_bonuslen != 0) {
3732 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3733 } else {
3734 blkptr_t *bp;
3735
3736 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3737 return (EIO);
3738 bp = DN_SPILL_BLKPTR(dn);
3739
3740 size = BP_GET_LSIZE(bp);
3741 buf = malloc(size);
3742 if (buf == NULL)
3743 rc = ENOMEM;
3744 else
3745 rc = zio_read(spa, bp, buf);
3746 if (rc != 0) {
3747 free(buf);
3748 return (rc);
3749 }
3750 sahdrp = buf;
3751 }
3752 hdrsize = SA_HDR_SIZE(sahdrp);
3753 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3754 memcpy(path, p, psize);
3755 free(buf);
3756 return (0);
3757 }
3758 /*
3759 * Second test is purely to silence bogus compiler
3760 * warning about accessing past the end of dn_bonus.
3761 */
3762 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3763 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3764 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3765 } else {
3766 rc = dnode_read(spa, dn, 0, path, psize);
3767 }
3768 return (rc);
3769 }
3770
3771 struct obj_list {
3772 uint64_t objnum;
3773 STAILQ_ENTRY(obj_list) entry;
3774 };
3775
3776 /*
3777 * Lookup a file and return its dnode.
3778 */
3779 static int
zfs_lookup(const struct zfsmount * mount,const char * upath,dnode_phys_t * dnode)3780 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3781 {
3782 int rc;
3783 uint64_t objnum;
3784 const spa_t *spa;
3785 dnode_phys_t dn;
3786 const char *p, *q;
3787 char element[256];
3788 char path[1024];
3789 int symlinks_followed = 0;
3790 struct stat sb;
3791 struct obj_list *entry, *tentry;
3792 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3793
3794 spa = mount->spa;
3795 if (mount->objset.os_type != DMU_OST_ZFS) {
3796 printf("ZFS: unexpected object set type %ju\n",
3797 (uintmax_t)mount->objset.os_type);
3798 return (EIO);
3799 }
3800
3801 if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3802 return (ENOMEM);
3803
3804 /*
3805 * Get the root directory dnode.
3806 */
3807 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3808 if (rc) {
3809 free(entry);
3810 return (rc);
3811 }
3812
3813 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3814 if (rc) {
3815 free(entry);
3816 return (rc);
3817 }
3818 entry->objnum = objnum;
3819 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3820
3821 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3822 if (rc != 0)
3823 goto done;
3824
3825 p = upath;
3826 while (p && *p) {
3827 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3828 if (rc != 0)
3829 goto done;
3830
3831 while (*p == '/')
3832 p++;
3833 if (*p == '\0')
3834 break;
3835 q = p;
3836 while (*q != '\0' && *q != '/')
3837 q++;
3838
3839 /* skip dot */
3840 if (p + 1 == q && p[0] == '.') {
3841 p++;
3842 continue;
3843 }
3844 /* double dot */
3845 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3846 p += 2;
3847 if (STAILQ_FIRST(&on_cache) ==
3848 STAILQ_LAST(&on_cache, obj_list, entry)) {
3849 rc = ENOENT;
3850 goto done;
3851 }
3852 entry = STAILQ_FIRST(&on_cache);
3853 STAILQ_REMOVE_HEAD(&on_cache, entry);
3854 free(entry);
3855 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3856 continue;
3857 }
3858 if (q - p + 1 > sizeof(element)) {
3859 rc = ENAMETOOLONG;
3860 goto done;
3861 }
3862 memcpy(element, p, q - p);
3863 element[q - p] = 0;
3864 p = q;
3865
3866 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3867 goto done;
3868 if (!S_ISDIR(sb.st_mode)) {
3869 rc = ENOTDIR;
3870 goto done;
3871 }
3872
3873 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3874 if (rc)
3875 goto done;
3876 objnum = ZFS_DIRENT_OBJ(objnum);
3877
3878 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3879 rc = ENOMEM;
3880 goto done;
3881 }
3882 entry->objnum = objnum;
3883 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3884 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3885 if (rc)
3886 goto done;
3887
3888 /*
3889 * Check for symlink.
3890 */
3891 rc = zfs_dnode_stat(spa, &dn, &sb);
3892 if (rc)
3893 goto done;
3894 if (S_ISLNK(sb.st_mode)) {
3895 if (symlinks_followed > 10) {
3896 rc = EMLINK;
3897 goto done;
3898 }
3899 symlinks_followed++;
3900
3901 /*
3902 * Read the link value and copy the tail of our
3903 * current path onto the end.
3904 */
3905 if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3906 rc = ENAMETOOLONG;
3907 goto done;
3908 }
3909 strcpy(&path[sb.st_size], p);
3910
3911 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3912 if (rc != 0)
3913 goto done;
3914
3915 /*
3916 * Restart with the new path, starting either at
3917 * the root or at the parent depending whether or
3918 * not the link is relative.
3919 */
3920 p = path;
3921 if (*p == '/') {
3922 while (STAILQ_FIRST(&on_cache) !=
3923 STAILQ_LAST(&on_cache, obj_list, entry)) {
3924 entry = STAILQ_FIRST(&on_cache);
3925 STAILQ_REMOVE_HEAD(&on_cache, entry);
3926 free(entry);
3927 }
3928 } else {
3929 entry = STAILQ_FIRST(&on_cache);
3930 STAILQ_REMOVE_HEAD(&on_cache, entry);
3931 free(entry);
3932 }
3933 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3934 }
3935 }
3936
3937 *dnode = dn;
3938 done:
3939 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3940 free(entry);
3941 return (rc);
3942 }
3943
3944 /*
3945 * Return either a cached copy of the bootenv, or read each of the vdev children
3946 * looking for the bootenv. Cache what's found and return the results. Returns 0
3947 * when benvp is filled in, and some errno when not.
3948 */
3949 static int
zfs_get_bootenv_spa(spa_t * spa,nvlist_t ** benvp)3950 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3951 {
3952 vdev_t *vd;
3953 nvlist_t *benv = NULL;
3954
3955 if (spa->spa_bootenv == NULL) {
3956 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3957 v_childlink) {
3958 benv = vdev_read_bootenv(vd);
3959
3960 if (benv != NULL)
3961 break;
3962 }
3963 spa->spa_bootenv = benv;
3964 }
3965 benv = spa->spa_bootenv;
3966
3967 if (benv == NULL)
3968 return (ENOENT);
3969
3970 *benvp = benv;
3971 return (0);
3972 }
3973
3974 /*
3975 * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
3976 */
3977 static int
zfs_set_bootenv_spa(spa_t * spa,nvlist_t * benv)3978 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
3979 {
3980 vdev_t *vd;
3981
3982 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
3983 vdev_write_bootenv(vd, benv);
3984 }
3985
3986 spa->spa_bootenv = benv;
3987 return (0);
3988 }
3989
3990 /*
3991 * Get bootonce value by key. The bootonce <key, value> pair is removed from the
3992 * bootenv nvlist and the remaining nvlist is committed back to disk. This process
3993 * the bootonce flag since we've reached the point in the boot that we've 'used'
3994 * the BE. For chained boot scenarios, we may reach this point multiple times (but
3995 * only remove it and return 0 the first time).
3996 */
3997 static int
zfs_get_bootonce_spa(spa_t * spa,const char * key,char * buf,size_t size)3998 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
3999 {
4000 nvlist_t *benv;
4001 char *result = NULL;
4002 int result_size, rv;
4003
4004 if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
4005 return (rv);
4006
4007 if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
4008 &result, &result_size)) == 0) {
4009 if (result_size == 0) {
4010 /* ignore empty string */
4011 rv = ENOENT;
4012 } else if (buf != NULL) {
4013 size = MIN((size_t)result_size + 1, size);
4014 strlcpy(buf, result, size);
4015 }
4016 (void)nvlist_remove(benv, key, DATA_TYPE_STRING);
4017 (void)zfs_set_bootenv_spa(spa, benv);
4018 }
4019
4020 return (rv);
4021 }
4022