1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2015, Joyent, Inc.
27 */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/mode.h>
39 #include <sys/kmem.h>
40 #include <sys/uio.h>
41 #include <sys/pathname.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/stat.h>
45 #include <sys/unistd.h>
46 #include <sys/sunddi.h>
47 #include <sys/random.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/fs/zfs.h>
52 #include "fs/fs_subr.h"
53 #include <sys/zap.h>
54 #include <sys/dmu.h>
55 #include <sys/atomic.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/sa.h>
59 #include <sys/zfs_sa.h>
60 #include <sys/dnlc.h>
61 #include <sys/extdirent.h>
62
63 /*
64 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups
65 * of names after deciding which is the appropriate lookup interface.
66 */
67 static int
zfs_match_find(zfsvfs_t * zfsvfs,znode_t * dzp,char * name,matchtype_t mt,boolean_t update,int * deflags,pathname_t * rpnp,uint64_t * zoid)68 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, matchtype_t mt,
69 boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
70 {
71 int error;
72
73 if (zfsvfs->z_norm) {
74 boolean_t conflict = B_FALSE;
75 size_t bufsz = 0;
76 char *buf = NULL;
77
78 if (rpnp) {
79 buf = rpnp->pn_buf;
80 bufsz = rpnp->pn_bufsize;
81 }
82
83 /*
84 * In the non-mixed case we only expect there would ever
85 * be one match, but we need to use the normalizing lookup.
86 */
87 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
88 zoid, mt, buf, bufsz, &conflict);
89 if (!error && deflags)
90 *deflags = conflict ? ED_CASE_CONFLICT : 0;
91 } else {
92 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
93 }
94 *zoid = ZFS_DIRENT_OBJ(*zoid);
95
96 if (error == ENOENT && update)
97 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);
98
99 return (error);
100 }
101
102 /*
103 * Lock a directory entry. A dirlock on <dzp, name> protects that name
104 * in dzp's directory zap object. As long as you hold a dirlock, you can
105 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
106 * can change the zap entry for (i.e. link or unlink) this name.
107 *
108 * Input arguments:
109 * dzp - znode for directory
110 * name - name of entry to lock
111 * flag - ZNEW: if the entry already exists, fail with EEXIST.
112 * ZEXISTS: if the entry does not exist, fail with ENOENT.
113 * ZSHARED: allow concurrent access with other ZSHARED callers.
114 * ZXATTR: we want dzp's xattr directory
115 * ZCILOOK: On a mixed sensitivity file system,
116 * this lookup should be case-insensitive.
117 * ZCIEXACT: On a purely case-insensitive file system,
118 * this lookup should be case-sensitive.
119 * ZRENAMING: we are locking for renaming, force narrow locks
120 * ZHAVELOCK: Don't grab the z_name_lock for this call. The
121 * current thread already holds it.
122 *
123 * Output arguments:
124 * zpp - pointer to the znode for the entry (NULL if there isn't one)
125 * dlpp - pointer to the dirlock for this entry (NULL on error)
126 * direntflags - (case-insensitive lookup only)
127 * flags if multiple case-sensitive matches exist in directory
128 * realpnp - (case-insensitive lookup only)
129 * actual name matched within the directory
130 *
131 * Return value: 0 on success or errno on failure.
132 *
133 * NOTE: Always checks for, and rejects, '.' and '..'.
134 * NOTE: For case-insensitive file systems we take wide locks (see below),
135 * but return znode pointers to a single match.
136 */
137 int
zfs_dirent_lock(zfs_dirlock_t ** dlpp,znode_t * dzp,char * name,znode_t ** zpp,int flag,int * direntflags,pathname_t * realpnp)138 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp,
139 int flag, int *direntflags, pathname_t *realpnp)
140 {
141 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
142 zfs_dirlock_t *dl;
143 boolean_t update;
144 matchtype_t mt = 0;
145 uint64_t zoid;
146 vnode_t *vp = NULL;
147 int error = 0;
148 int cmpflags;
149
150 *zpp = NULL;
151 *dlpp = NULL;
152
153 /*
154 * Verify that we are not trying to lock '.', '..', or '.zfs'
155 */
156 if (name[0] == '.' &&
157 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) ||
158 zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)
159 return (SET_ERROR(EEXIST));
160
161 /*
162 * Case sensitivity and normalization preferences are set when
163 * the file system is created. These are stored in the
164 * zfsvfs->z_case and zfsvfs->z_norm fields. These choices
165 * affect what vnodes can be cached in the DNLC, how we
166 * perform zap lookups, and the "width" of our dirlocks.
167 *
168 * A normal dirlock locks a single name. Note that with
169 * normalization a name can be composed multiple ways, but
170 * when normalized, these names all compare equal. A wide
171 * dirlock locks multiple names. We need these when the file
172 * system is supporting mixed-mode access. It is sometimes
173 * necessary to lock all case permutations of file name at
174 * once so that simultaneous case-insensitive/case-sensitive
175 * behaves as rationally as possible.
176 */
177
178 /*
179 * When matching we may need to normalize & change case according to
180 * FS settings.
181 *
182 * Note that a normalized match is necessary for a case insensitive
183 * filesystem when the lookup request is not exact because normalization
184 * can fold case independent of normalizing code point sequences.
185 *
186 * See the table above zfs_dropname().
187 */
188 if (zfsvfs->z_norm != 0) {
189 mt = MT_NORMALIZE;
190
191 /*
192 * Determine if the match needs to honor the case specified in
193 * lookup, and if so keep track of that so that during
194 * normalization we don't fold case.
195 */
196 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
197 (flag & ZCIEXACT)) ||
198 (zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) {
199 mt |= MT_MATCH_CASE;
200 }
201 }
202
203 /*
204 * Only look in or update the DNLC if we are looking for the
205 * name on a file system that does not require normalization
206 * or case folding. We can also look there if we happen to be
207 * on a non-normalizing, mixed sensitivity file system IF we
208 * are looking for the exact name.
209 *
210 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
211 * case for performance improvement?
212 */
213 update = !zfsvfs->z_norm ||
214 (zfsvfs->z_case == ZFS_CASE_MIXED &&
215 !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
216
217 /*
218 * ZRENAMING indicates we are in a situation where we should
219 * take narrow locks regardless of the file system's
220 * preferences for normalizing and case folding. This will
221 * prevent us deadlocking trying to grab the same wide lock
222 * twice if the two names happen to be case-insensitive
223 * matches.
224 */
225 if (flag & ZRENAMING)
226 cmpflags = 0;
227 else
228 cmpflags = zfsvfs->z_norm;
229
230 /*
231 * Wait until there are no locks on this name.
232 *
233 * Don't grab the the lock if it is already held. However, cannot
234 * have both ZSHARED and ZHAVELOCK together.
235 */
236 ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
237 if (!(flag & ZHAVELOCK))
238 rw_enter(&dzp->z_name_lock, RW_READER);
239
240 mutex_enter(&dzp->z_lock);
241 for (;;) {
242 if (dzp->z_unlinked) {
243 mutex_exit(&dzp->z_lock);
244 if (!(flag & ZHAVELOCK))
245 rw_exit(&dzp->z_name_lock);
246 return (SET_ERROR(ENOENT));
247 }
248 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
249 if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
250 U8_UNICODE_LATEST, &error) == 0) || error != 0)
251 break;
252 }
253 if (error != 0) {
254 mutex_exit(&dzp->z_lock);
255 if (!(flag & ZHAVELOCK))
256 rw_exit(&dzp->z_name_lock);
257 return (SET_ERROR(ENOENT));
258 }
259 if (dl == NULL) {
260 /*
261 * Allocate a new dirlock and add it to the list.
262 */
263 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
264 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
265 dl->dl_name = name;
266 dl->dl_sharecnt = 0;
267 dl->dl_namelock = 0;
268 dl->dl_namesize = 0;
269 dl->dl_dzp = dzp;
270 dl->dl_next = dzp->z_dirlocks;
271 dzp->z_dirlocks = dl;
272 break;
273 }
274 if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
275 break;
276 cv_wait(&dl->dl_cv, &dzp->z_lock);
277 }
278
279 /*
280 * If the z_name_lock was NOT held for this dirlock record it.
281 */
282 if (flag & ZHAVELOCK)
283 dl->dl_namelock = 1;
284
285 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
286 /*
287 * We're the second shared reference to dl. Make a copy of
288 * dl_name in case the first thread goes away before we do.
289 * Note that we initialize the new name before storing its
290 * pointer into dl_name, because the first thread may load
291 * dl->dl_name at any time. It'll either see the old value,
292 * which belongs to it, or the new shared copy; either is OK.
293 */
294 dl->dl_namesize = strlen(dl->dl_name) + 1;
295 name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
296 bcopy(dl->dl_name, name, dl->dl_namesize);
297 dl->dl_name = name;
298 }
299
300 mutex_exit(&dzp->z_lock);
301
302 /*
303 * We have a dirlock on the name. (Note that it is the dirlock,
304 * not the dzp's z_lock, that protects the name in the zap object.)
305 * See if there's an object by this name; if so, put a hold on it.
306 */
307 if (flag & ZXATTR) {
308 error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
309 sizeof (zoid));
310 if (error == 0)
311 error = (zoid == 0 ? ENOENT : 0);
312 } else {
313 if (update)
314 vp = dnlc_lookup(ZTOV(dzp), name);
315 if (vp == DNLC_NO_VNODE) {
316 VN_RELE(vp);
317 error = SET_ERROR(ENOENT);
318 } else if (vp) {
319 if (flag & ZNEW) {
320 zfs_dirent_unlock(dl);
321 VN_RELE(vp);
322 return (SET_ERROR(EEXIST));
323 }
324 *dlpp = dl;
325 *zpp = VTOZ(vp);
326 return (0);
327 } else {
328 error = zfs_match_find(zfsvfs, dzp, name, mt,
329 update, direntflags, realpnp, &zoid);
330 }
331 }
332 if (error) {
333 if (error != ENOENT || (flag & ZEXISTS)) {
334 zfs_dirent_unlock(dl);
335 return (error);
336 }
337 } else {
338 if (flag & ZNEW) {
339 zfs_dirent_unlock(dl);
340 return (SET_ERROR(EEXIST));
341 }
342 error = zfs_zget(zfsvfs, zoid, zpp);
343 if (error) {
344 zfs_dirent_unlock(dl);
345 return (error);
346 }
347 if (!(flag & ZXATTR) && update)
348 dnlc_update(ZTOV(dzp), name, ZTOV(*zpp));
349 }
350
351 *dlpp = dl;
352
353 return (0);
354 }
355
356 /*
357 * Unlock this directory entry and wake anyone who was waiting for it.
358 */
359 void
zfs_dirent_unlock(zfs_dirlock_t * dl)360 zfs_dirent_unlock(zfs_dirlock_t *dl)
361 {
362 znode_t *dzp = dl->dl_dzp;
363 zfs_dirlock_t **prev_dl, *cur_dl;
364
365 mutex_enter(&dzp->z_lock);
366
367 if (!dl->dl_namelock)
368 rw_exit(&dzp->z_name_lock);
369
370 if (dl->dl_sharecnt > 1) {
371 dl->dl_sharecnt--;
372 mutex_exit(&dzp->z_lock);
373 return;
374 }
375 prev_dl = &dzp->z_dirlocks;
376 while ((cur_dl = *prev_dl) != dl)
377 prev_dl = &cur_dl->dl_next;
378 *prev_dl = dl->dl_next;
379 cv_broadcast(&dl->dl_cv);
380 mutex_exit(&dzp->z_lock);
381
382 if (dl->dl_namesize != 0)
383 kmem_free(dl->dl_name, dl->dl_namesize);
384 cv_destroy(&dl->dl_cv);
385 kmem_free(dl, sizeof (*dl));
386 }
387
388 /*
389 * Look up an entry in a directory.
390 *
391 * NOTE: '.' and '..' are handled as special cases because
392 * no directory entries are actually stored for them. If this is
393 * the root of a filesystem, then '.zfs' is also treated as a
394 * special pseudo-directory.
395 */
396 int
zfs_dirlook(znode_t * dzp,char * name,vnode_t ** vpp,int flags,int * deflg,pathname_t * rpnp)397 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags,
398 int *deflg, pathname_t *rpnp)
399 {
400 zfs_dirlock_t *dl;
401 znode_t *zp;
402 int error = 0;
403 uint64_t parent;
404
405 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
406 *vpp = ZTOV(dzp);
407 VN_HOLD(*vpp);
408 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
409 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
410
411 /*
412 * If we are a snapshot mounted under .zfs, return
413 * the vp for the snapshot directory.
414 */
415 if ((error = sa_lookup(dzp->z_sa_hdl,
416 SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
417 return (error);
418 if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) {
419 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
420 "snapshot", vpp, NULL, 0, NULL, kcred,
421 NULL, NULL, NULL);
422 return (error);
423 }
424 rw_enter(&dzp->z_parent_lock, RW_READER);
425 error = zfs_zget(zfsvfs, parent, &zp);
426 if (error == 0)
427 *vpp = ZTOV(zp);
428 rw_exit(&dzp->z_parent_lock);
429 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
430 *vpp = zfsctl_root(dzp);
431 } else {
432 int zf;
433
434 zf = ZEXISTS | ZSHARED;
435 if (flags & FIGNORECASE)
436 zf |= ZCILOOK;
437
438 error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
439 if (error == 0) {
440 *vpp = ZTOV(zp);
441 zfs_dirent_unlock(dl);
442 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
443 }
444 rpnp = NULL;
445 }
446
447 if ((flags & FIGNORECASE) && rpnp && !error)
448 (void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
449
450 return (error);
451 }
452
453 /*
454 * unlinked Set (formerly known as the "delete queue") Error Handling
455 *
456 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
457 * don't specify the name of the entry that we will be manipulating. We
458 * also fib and say that we won't be adding any new entries to the
459 * unlinked set, even though we might (this is to lower the minimum file
460 * size that can be deleted in a full filesystem). So on the small
461 * chance that the nlink list is using a fat zap (ie. has more than
462 * 2000 entries), we *may* not pre-read a block that's needed.
463 * Therefore it is remotely possible for some of the assertions
464 * regarding the unlinked set below to fail due to i/o error. On a
465 * nondebug system, this will result in the space being leaked.
466 */
467 void
zfs_unlinked_add(znode_t * zp,dmu_tx_t * tx)468 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
469 {
470 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
471
472 ASSERT(zp->z_unlinked);
473 ASSERT(zp->z_links == 0);
474
475 VERIFY3U(0, ==,
476 zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
477 }
478
479 /*
480 * Clean up any znodes that had no links when we either crashed or
481 * (force) umounted the file system.
482 */
483 static void
zfs_unlinked_drain_task(void * arg)484 zfs_unlinked_drain_task(void *arg)
485 {
486 zfsvfs_t *zfsvfs = arg;
487 zap_cursor_t zc;
488 zap_attribute_t zap;
489 dmu_object_info_t doi;
490 znode_t *zp;
491 int error;
492
493 ASSERT3B(zfsvfs->z_draining, ==, B_TRUE);
494
495 /*
496 * Interate over the contents of the unlinked set.
497 */
498 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
499 zap_cursor_retrieve(&zc, &zap) == 0 && !zfsvfs->z_drain_cancel;
500 zap_cursor_advance(&zc)) {
501
502 /*
503 * See what kind of object we have in list
504 */
505
506 error = dmu_object_info(zfsvfs->z_os,
507 zap.za_first_integer, &doi);
508 if (error != 0)
509 continue;
510
511 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
512 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
513 /*
514 * We need to re-mark these list entries for deletion,
515 * so we pull them back into core and set zp->z_unlinked.
516 */
517 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
518
519 /*
520 * We may pick up znodes that are already marked for deletion.
521 * This could happen during the purge of an extended attribute
522 * directory. All we need to do is skip over them, since they
523 * are already in the system marked z_unlinked.
524 */
525 if (error != 0)
526 continue;
527
528 zp->z_unlinked = B_TRUE;
529
530 VN_RELE(ZTOV(zp));
531 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
532 }
533 zap_cursor_fini(&zc);
534
535 zfsvfs->z_draining = B_FALSE;
536 zfsvfs->z_drain_task = TASKQID_INVALID;
537 }
538
539 /*
540 * Sets z_draining then tries to dispatch async unlinked drain.
541 * If that fails executes synchronous unlinked drain.
542 */
543 void
zfs_unlinked_drain(zfsvfs_t * zfsvfs)544 zfs_unlinked_drain(zfsvfs_t *zfsvfs)
545 {
546 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
547 ASSERT3B(zfsvfs->z_draining, ==, B_FALSE);
548
549 zfsvfs->z_draining = B_TRUE;
550 zfsvfs->z_drain_cancel = B_FALSE;
551
552 zfsvfs->z_drain_task = taskq_dispatch(
553 dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)),
554 zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP);
555 if (zfsvfs->z_drain_task == TASKQID_INVALID) {
556 zfs_dbgmsg("async zfs_unlinked_drain dispatch failed");
557 zfs_unlinked_drain_task(zfsvfs);
558 }
559 }
560
561 /*
562 * Wait for the unlinked drain taskq task to stop. This will interrupt the
563 * unlinked set processing if it is in progress.
564 */
565 void
zfs_unlinked_drain_stop_wait(zfsvfs_t * zfsvfs)566 zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs)
567 {
568 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
569
570 while (zfsvfs->z_draining) {
571 zfsvfs->z_drain_cancel = B_TRUE;
572 taskq_wait(dsl_pool_unlinked_drain_taskq(
573 dmu_objset_pool(zfsvfs->z_os)));
574 }
575 }
576
577 /*
578 * Delete the entire contents of a directory. Return a count
579 * of the number of entries that could not be deleted. If we encounter
580 * an error, return a count of at least one so that the directory stays
581 * in the unlinked set.
582 *
583 * NOTE: this function assumes that the directory is inactive,
584 * so there is no need to lock its entries before deletion.
585 * Also, it assumes the directory contents is *only* regular
586 * files.
587 */
588 static int
zfs_purgedir(znode_t * dzp)589 zfs_purgedir(znode_t *dzp)
590 {
591 zap_cursor_t zc;
592 zap_attribute_t zap;
593 znode_t *xzp;
594 dmu_tx_t *tx;
595 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
596 zfs_dirlock_t dl;
597 int skipped = 0;
598 int error;
599
600 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
601 (error = zap_cursor_retrieve(&zc, &zap)) == 0;
602 zap_cursor_advance(&zc)) {
603 error = zfs_zget(zfsvfs,
604 ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
605 if (error) {
606 skipped += 1;
607 continue;
608 }
609
610 ASSERT((ZTOV(xzp)->v_type == VREG) ||
611 (ZTOV(xzp)->v_type == VLNK));
612
613 tx = dmu_tx_create(zfsvfs->z_os);
614 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
615 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
616 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
617 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
618 /* Is this really needed ? */
619 zfs_sa_upgrade_txholds(tx, xzp);
620 dmu_tx_mark_netfree(tx);
621 error = dmu_tx_assign(tx, TXG_WAIT);
622 if (error) {
623 dmu_tx_abort(tx);
624 VN_RELE(ZTOV(xzp));
625 skipped += 1;
626 continue;
627 }
628 bzero(&dl, sizeof (dl));
629 dl.dl_dzp = dzp;
630 dl.dl_name = zap.za_name;
631
632 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
633 if (error)
634 skipped += 1;
635 dmu_tx_commit(tx);
636
637 VN_RELE(ZTOV(xzp));
638 }
639 zap_cursor_fini(&zc);
640 if (error != ENOENT)
641 skipped += 1;
642 return (skipped);
643 }
644
645 void
zfs_rmnode(znode_t * zp)646 zfs_rmnode(znode_t *zp)
647 {
648 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
649 objset_t *os = zfsvfs->z_os;
650 znode_t *xzp = NULL;
651 dmu_tx_t *tx;
652 uint64_t acl_obj;
653 uint64_t xattr_obj;
654 int error;
655
656 ASSERT(zp->z_links == 0);
657 ASSERT(ZTOV(zp)->v_count == 0);
658
659 /*
660 * If this is an attribute directory, purge its contents.
661 */
662 if (ZTOV(zp)->v_type == VDIR && (zp->z_pflags & ZFS_XATTR)) {
663 if (zfs_purgedir(zp) != 0) {
664 /*
665 * Not enough space to delete some xattrs.
666 * Leave it in the unlinked set.
667 */
668 zfs_znode_dmu_fini(zp);
669 zfs_znode_free(zp);
670 return;
671 }
672 } else {
673 /*
674 * Free up all the data in the file. We don't do this for
675 * XATTR directories because we need truncate and remove to be
676 * in the same tx, like in zfs_znode_delete(). Otherwise, if
677 * we crash here we'll end up with an inconsistent truncated
678 * zap object in the delete queue. Note a truncated file is
679 * harmless since it only contains user data.
680 */
681 error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
682 if (error) {
683 /*
684 * Not enough space or we were interrupted by unmount.
685 * Leave the file in the unlinked set.
686 */
687 zfs_znode_dmu_fini(zp);
688 zfs_znode_free(zp);
689 return;
690 }
691 }
692
693 /*
694 * If the file has extended attributes, we're going to unlink
695 * the xattr dir.
696 */
697 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
698 &xattr_obj, sizeof (xattr_obj));
699 if (error == 0 && xattr_obj) {
700 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
701 ASSERT(error == 0);
702 }
703
704 acl_obj = zfs_external_acl(zp);
705
706 /*
707 * Set up the final transaction.
708 */
709 tx = dmu_tx_create(os);
710 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
711 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
712 if (xzp) {
713 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
714 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
715 }
716 if (acl_obj)
717 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
718
719 zfs_sa_upgrade_txholds(tx, zp);
720 dmu_tx_mark_netfree(tx);
721 error = dmu_tx_assign(tx, TXG_WAIT);
722 if (error) {
723 /*
724 * Not enough space to delete the file. Leave it in the
725 * unlinked set, leaking it until the fs is remounted (at
726 * which point we'll call zfs_unlinked_drain() to process it).
727 */
728 dmu_tx_abort(tx);
729 zfs_znode_dmu_fini(zp);
730 zfs_znode_free(zp);
731 goto out;
732 }
733
734 if (xzp) {
735 ASSERT(error == 0);
736 mutex_enter(&xzp->z_lock);
737 xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */
738 xzp->z_links = 0; /* no more links to it */
739 VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
740 &xzp->z_links, sizeof (xzp->z_links), tx));
741 mutex_exit(&xzp->z_lock);
742 zfs_unlinked_add(xzp, tx);
743 }
744
745 /* Remove this znode from the unlinked set */
746 VERIFY3U(0, ==,
747 zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
748
749 zfs_znode_delete(zp, tx);
750
751 dmu_tx_commit(tx);
752 out:
753 if (xzp)
754 VN_RELE(ZTOV(xzp));
755 }
756
757 static uint64_t
zfs_dirent(znode_t * zp,uint64_t mode)758 zfs_dirent(znode_t *zp, uint64_t mode)
759 {
760 uint64_t de = zp->z_id;
761
762 if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
763 de |= IFTODT(mode) << 60;
764 return (de);
765 }
766
767 /*
768 * Link zp into dl. Can only fail if zp has been unlinked.
769 */
770 int
zfs_link_create(zfs_dirlock_t * dl,znode_t * zp,dmu_tx_t * tx,int flag)771 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
772 {
773 znode_t *dzp = dl->dl_dzp;
774 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
775 vnode_t *vp = ZTOV(zp);
776 uint64_t value;
777 int zp_is_dir = (vp->v_type == VDIR);
778 sa_bulk_attr_t bulk[5];
779 uint64_t mtime[2], ctime[2];
780 int count = 0;
781 int error;
782
783 mutex_enter(&zp->z_lock);
784
785 if (!(flag & ZRENAMING)) {
786 if (zp->z_unlinked) { /* no new links to unlinked zp */
787 ASSERT(!(flag & (ZNEW | ZEXISTS)));
788 mutex_exit(&zp->z_lock);
789 return (SET_ERROR(ENOENT));
790 }
791 zp->z_links++;
792 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
793 &zp->z_links, sizeof (zp->z_links));
794
795 }
796 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
797 &dzp->z_id, sizeof (dzp->z_id));
798 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
799 &zp->z_pflags, sizeof (zp->z_pflags));
800
801 if (!(flag & ZNEW)) {
802 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
803 ctime, sizeof (ctime));
804 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
805 ctime, B_TRUE);
806 }
807 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
808 ASSERT(error == 0);
809
810 mutex_exit(&zp->z_lock);
811
812 mutex_enter(&dzp->z_lock);
813 dzp->z_size++;
814 dzp->z_links += zp_is_dir;
815 count = 0;
816 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
817 &dzp->z_size, sizeof (dzp->z_size));
818 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
819 &dzp->z_links, sizeof (dzp->z_links));
820 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
821 mtime, sizeof (mtime));
822 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
823 ctime, sizeof (ctime));
824 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
825 &dzp->z_pflags, sizeof (dzp->z_pflags));
826 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
827 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
828 ASSERT(error == 0);
829 mutex_exit(&dzp->z_lock);
830
831 value = zfs_dirent(zp, zp->z_mode);
832 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
833 8, 1, &value, tx);
834 ASSERT(error == 0);
835
836 dnlc_update(ZTOV(dzp), dl->dl_name, vp);
837
838 return (0);
839 }
840
841 /*
842 * The match type in the code for this function should conform to:
843 *
844 * ------------------------------------------------------------------------
845 * fs type | z_norm | lookup type | match type
846 * ---------|-------------|-------------|----------------------------------
847 * CS !norm | 0 | 0 | 0 (exact)
848 * CS norm | formX | 0 | MT_NORMALIZE
849 * CI !norm | upper | !ZCIEXACT | MT_NORMALIZE
850 * CI !norm | upper | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
851 * CI norm | upper|formX | !ZCIEXACT | MT_NORMALIZE
852 * CI norm | upper|formX | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
853 * CM !norm | upper | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
854 * CM !norm | upper | ZCILOOK | MT_NORMALIZE
855 * CM norm | upper|formX | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
856 * CM norm | upper|formX | ZCILOOK | MT_NORMALIZE
857 *
858 * Abbreviations:
859 * CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
860 * upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
861 * formX = unicode normalization form set on fs creation
862 */
863 static int
zfs_dropname(zfs_dirlock_t * dl,znode_t * zp,znode_t * dzp,dmu_tx_t * tx,int flag)864 zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx,
865 int flag)
866 {
867 int error;
868
869 if (zp->z_zfsvfs->z_norm) {
870 matchtype_t mt = MT_NORMALIZE;
871
872 if ((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
873 (flag & ZCIEXACT)) ||
874 (zp->z_zfsvfs->z_case == ZFS_CASE_MIXED &&
875 !(flag & ZCILOOK))) {
876 mt |= MT_MATCH_CASE;
877 }
878
879 error = zap_remove_norm(zp->z_zfsvfs->z_os, dzp->z_id,
880 dl->dl_name, mt, tx);
881 } else {
882 error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
883 tx);
884 }
885
886 return (error);
887 }
888
889 /*
890 * Unlink zp from dl, and mark zp for deletion if this was the last link.
891 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
892 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
893 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
894 * and it's the caller's job to do it.
895 */
896 int
zfs_link_destroy(zfs_dirlock_t * dl,znode_t * zp,dmu_tx_t * tx,int flag,boolean_t * unlinkedp)897 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
898 boolean_t *unlinkedp)
899 {
900 znode_t *dzp = dl->dl_dzp;
901 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
902 vnode_t *vp = ZTOV(zp);
903 int zp_is_dir = (vp->v_type == VDIR);
904 boolean_t unlinked = B_FALSE;
905 sa_bulk_attr_t bulk[5];
906 uint64_t mtime[2], ctime[2];
907 int count = 0;
908 int error;
909
910 dnlc_remove(ZTOV(dzp), dl->dl_name);
911
912 if (!(flag & ZRENAMING)) {
913 if (vn_vfswlock(vp)) /* prevent new mounts on zp */
914 return (SET_ERROR(EBUSY));
915
916 if (vn_ismntpt(vp)) { /* don't remove mount point */
917 vn_vfsunlock(vp);
918 return (SET_ERROR(EBUSY));
919 }
920
921 mutex_enter(&zp->z_lock);
922
923 if (zp_is_dir && !zfs_dirempty(zp)) {
924 mutex_exit(&zp->z_lock);
925 vn_vfsunlock(vp);
926 return (SET_ERROR(EEXIST));
927 }
928
929 /*
930 * If we get here, we are going to try to remove the object.
931 * First try removing the name from the directory; if that
932 * fails, return the error.
933 */
934 error = zfs_dropname(dl, zp, dzp, tx, flag);
935 if (error != 0) {
936 mutex_exit(&zp->z_lock);
937 vn_vfsunlock(vp);
938 return (error);
939 }
940
941 if (zp->z_links <= zp_is_dir) {
942 zfs_panic_recover("zfs: link count on %s is %u, "
943 "should be at least %u",
944 zp->z_vnode->v_path != vn_vpath_empty ?
945 zp->z_vnode->v_path : "<unknown>",
946 (int)zp->z_links, zp_is_dir + 1);
947 zp->z_links = zp_is_dir + 1;
948 }
949 if (--zp->z_links == zp_is_dir) {
950 zp->z_unlinked = B_TRUE;
951 zp->z_links = 0;
952 unlinked = B_TRUE;
953 } else {
954 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
955 NULL, &ctime, sizeof (ctime));
956 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
957 NULL, &zp->z_pflags, sizeof (zp->z_pflags));
958 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
959 B_TRUE);
960 }
961 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
962 NULL, &zp->z_links, sizeof (zp->z_links));
963 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
964 count = 0;
965 ASSERT(error == 0);
966 mutex_exit(&zp->z_lock);
967 vn_vfsunlock(vp);
968 } else {
969 error = zfs_dropname(dl, zp, dzp, tx, flag);
970 if (error != 0)
971 return (error);
972 }
973
974 mutex_enter(&dzp->z_lock);
975 dzp->z_size--; /* one dirent removed */
976 dzp->z_links -= zp_is_dir; /* ".." link from zp */
977 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
978 NULL, &dzp->z_links, sizeof (dzp->z_links));
979 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
980 NULL, &dzp->z_size, sizeof (dzp->z_size));
981 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
982 NULL, ctime, sizeof (ctime));
983 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
984 NULL, mtime, sizeof (mtime));
985 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
986 NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
987 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
988 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
989 ASSERT(error == 0);
990 mutex_exit(&dzp->z_lock);
991
992 if (unlinkedp != NULL)
993 *unlinkedp = unlinked;
994 else if (unlinked)
995 zfs_unlinked_add(zp, tx);
996
997 return (0);
998 }
999
1000 /*
1001 * Indicate whether the directory is empty. Works with or without z_lock
1002 * held, but can only be consider a hint in the latter case. Returns true
1003 * if only "." and ".." remain and there's no work in progress.
1004 */
1005 boolean_t
zfs_dirempty(znode_t * dzp)1006 zfs_dirempty(znode_t *dzp)
1007 {
1008 return (dzp->z_size == 2 && dzp->z_dirlocks == 0);
1009 }
1010
1011 int
zfs_make_xattrdir(znode_t * zp,vattr_t * vap,vnode_t ** xvpp,cred_t * cr)1012 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr)
1013 {
1014 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1015 znode_t *xzp;
1016 dmu_tx_t *tx;
1017 int error;
1018 zfs_acl_ids_t acl_ids;
1019 boolean_t fuid_dirtied;
1020 uint64_t parent;
1021
1022 *xvpp = NULL;
1023
1024 if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))
1025 return (error);
1026
1027 if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
1028 &acl_ids)) != 0)
1029 return (error);
1030 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) {
1031 zfs_acl_ids_free(&acl_ids);
1032 return (SET_ERROR(EDQUOT));
1033 }
1034
1035 tx = dmu_tx_create(zfsvfs->z_os);
1036 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1037 ZFS_SA_BASE_ATTR_SIZE);
1038 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1039 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1040 fuid_dirtied = zfsvfs->z_fuid_dirty;
1041 if (fuid_dirtied)
1042 zfs_fuid_txhold(zfsvfs, tx);
1043 error = dmu_tx_assign(tx, TXG_WAIT);
1044 if (error) {
1045 zfs_acl_ids_free(&acl_ids);
1046 dmu_tx_abort(tx);
1047 return (error);
1048 }
1049 zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
1050
1051 if (fuid_dirtied)
1052 zfs_fuid_sync(zfsvfs, tx);
1053
1054 #ifdef DEBUG
1055 error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1056 &parent, sizeof (parent));
1057 ASSERT(error == 0 && parent == zp->z_id);
1058 #endif
1059
1060 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
1061 sizeof (xzp->z_id), tx));
1062
1063 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp,
1064 xzp, "", NULL, acl_ids.z_fuidp, vap);
1065
1066 zfs_acl_ids_free(&acl_ids);
1067 dmu_tx_commit(tx);
1068
1069 *xvpp = ZTOV(xzp);
1070
1071 return (0);
1072 }
1073
1074 /*
1075 * Return a znode for the extended attribute directory for zp.
1076 * ** If the directory does not already exist, it is created **
1077 *
1078 * IN: zp - znode to obtain attribute directory from
1079 * cr - credentials of caller
1080 * flags - flags from the VOP_LOOKUP call
1081 *
1082 * OUT: xzpp - pointer to extended attribute znode
1083 *
1084 * RETURN: 0 on success
1085 * error number on failure
1086 */
1087 int
zfs_get_xattrdir(znode_t * zp,vnode_t ** xvpp,cred_t * cr,int flags)1088 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags)
1089 {
1090 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1091 znode_t *xzp;
1092 zfs_dirlock_t *dl;
1093 vattr_t va;
1094 int error;
1095 top:
1096 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
1097 if (error)
1098 return (error);
1099
1100 if (xzp != NULL) {
1101 *xvpp = ZTOV(xzp);
1102 zfs_dirent_unlock(dl);
1103 return (0);
1104 }
1105
1106
1107 if (!(flags & CREATE_XATTR_DIR)) {
1108 zfs_dirent_unlock(dl);
1109 return (SET_ERROR(ENOENT));
1110 }
1111
1112 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
1113 zfs_dirent_unlock(dl);
1114 return (SET_ERROR(EROFS));
1115 }
1116
1117 /*
1118 * The ability to 'create' files in an attribute
1119 * directory comes from the write_xattr permission on the base file.
1120 *
1121 * The ability to 'search' an attribute directory requires
1122 * read_xattr permission on the base file.
1123 *
1124 * Once in a directory the ability to read/write attributes
1125 * is controlled by the permissions on the attribute file.
1126 */
1127 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
1128 va.va_type = VDIR;
1129 va.va_mode = S_IFDIR | S_ISVTX | 0777;
1130 zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
1131
1132 error = zfs_make_xattrdir(zp, &va, xvpp, cr);
1133 zfs_dirent_unlock(dl);
1134
1135 if (error == ERESTART) {
1136 /* NB: we already did dmu_tx_wait() if necessary */
1137 goto top;
1138 }
1139
1140 return (error);
1141 }
1142
1143 /*
1144 * Decide whether it is okay to remove within a sticky directory.
1145 *
1146 * In sticky directories, write access is not sufficient;
1147 * you can remove entries from a directory only if:
1148 *
1149 * you own the directory,
1150 * you own the entry,
1151 * the entry is a plain file and you have write access,
1152 * or you are privileged (checked in secpolicy...).
1153 *
1154 * The function returns 0 if remove access is granted.
1155 */
1156 int
zfs_sticky_remove_access(znode_t * zdp,znode_t * zp,cred_t * cr)1157 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
1158 {
1159 uid_t uid;
1160 uid_t downer;
1161 uid_t fowner;
1162 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1163
1164 if (zdp->z_zfsvfs->z_replay)
1165 return (0);
1166
1167 if ((zdp->z_mode & S_ISVTX) == 0)
1168 return (0);
1169
1170 downer = zfs_fuid_map_id(zfsvfs, zdp->z_uid, cr, ZFS_OWNER);
1171 fowner = zfs_fuid_map_id(zfsvfs, zp->z_uid, cr, ZFS_OWNER);
1172
1173 if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1174 (ZTOV(zp)->v_type == VREG &&
1175 zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
1176 return (0);
1177 else
1178 return (secpolicy_vnode_remove(cr));
1179 }
1180