xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision e6e941e659ab7b3db6786103c1cdc30735a82e32)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27  * Copyright 2017 Nexenta Systems, Inc.
28  * Copyright (c) 2025, Klara, Inc.
29  */
30 
31 /* Portions Copyright 2007 Jeremy Teo */
32 /* Portions Copyright 2010 Robert Milkowski */
33 
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/time.h>
38 #include <sys/sysmacros.h>
39 #include <sys/vfs.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kmem.h>
43 #include <sys/taskq.h>
44 #include <sys/uio.h>
45 #include <sys/vmsystm.h>
46 #include <sys/atomic.h>
47 #include <sys/pathname.h>
48 #include <sys/cmn_err.h>
49 #include <sys/errno.h>
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/spa.h>
57 #include <sys/txg.h>
58 #include <sys/dbuf.h>
59 #include <sys/zap.h>
60 #include <sys/sa.h>
61 #include <sys/policy.h>
62 #include <sys/sunddi.h>
63 #include <sys/sid.h>
64 #include <sys/zfs_ctldir.h>
65 #include <sys/zfs_fuid.h>
66 #include <sys/zfs_quota.h>
67 #include <sys/zfs_sa.h>
68 #include <sys/zfs_vnops.h>
69 #include <sys/zfs_rlock.h>
70 #include <sys/cred.h>
71 #include <sys/zpl.h>
72 #include <sys/zil.h>
73 #include <sys/sa_impl.h>
74 #include <linux/mm_compat.h>
75 
76 /*
77  * Programming rules.
78  *
79  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
80  * properly lock its in-core state, create a DMU transaction, do the work,
81  * record this work in the intent log (ZIL), commit the DMU transaction,
82  * and wait for the intent log to commit if it is a synchronous operation.
83  * Moreover, the vnode ops must work in both normal and log replay context.
84  * The ordering of events is important to avoid deadlocks and references
85  * to freed memory.  The example below illustrates the following Big Rules:
86  *
87  *  (1) A check must be made in each zfs thread for a mounted file system.
88  *	This is done avoiding races using zfs_enter(zfsvfs).
89  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
90  *      must be checked with zfs_verify_zp(zp).  Both of these macros
91  *      can return EIO from the calling function.
92  *
93  *  (2) zrele() should always be the last thing except for zil_commit() (if
94  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
95  *	last reference, the vnode/znode can be freed, so the zp may point to
96  *	freed memory.  Second, the last reference will call zfs_zinactive(),
97  *	which may induce a lot of work -- pushing cached pages (which acquires
98  *	range locks) and syncing out cached atime changes.  Third,
99  *	zfs_zinactive() may require a new tx, which could deadlock the system
100  *	if you were already holding one. This deadlock occurs because the tx
101  *	currently being operated on prevents a txg from syncing, which
102  *	prevents the new tx from progressing, resulting in a deadlock.  If you
103  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
104  *	is a synonym for zrele().
105  *
106  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107  *	as they can span dmu_tx_assign() calls.
108  *
109  *  (4) If ZPL locks are held, pass DMU_TX_NOWAIT as the second argument to
110  *      dmu_tx_assign().  This is critical because we don't want to block
111  *      while holding locks.
112  *
113  *	If no ZPL locks are held (aside from zfs_enter()), use DMU_TX_WAIT.
114  *	This reduces lock contention and CPU usage when we must wait (note
115  *	that if throughput is constrained by the storage, nearly every
116  *	transaction must wait).
117  *
118  *      Note, in particular, that if a lock is sometimes acquired before
119  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120  *      to use a non-blocking assign can deadlock the system.  The scenario:
121  *
122  *	Thread A has grabbed a lock before calling dmu_tx_assign().
123  *	Thread B is in an already-assigned tx, and blocks for this lock.
124  *	Thread A calls dmu_tx_assign(DMU_TX_WAIT) and blocks in
125  *	txg_wait_open() forever, because the previous txg can't quiesce
126  *	until B's tx commits.
127  *
128  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is
129  *	DMU_TX_NOWAIT, then drop all locks, call dmu_tx_wait(), and try
130  *	again.  On subsequent calls to dmu_tx_assign(), pass
131  *	DMU_TX_NOTHROTTLE in addition to DMU_TX_NOWAIT, to indicate that
132  *	this operation has already called dmu_tx_wait().  This will ensure
133  *	that we don't retry forever, waiting a short bit each time.
134  *
135  *  (5)	If the operation succeeded, generate the intent log entry for it
136  *	before dropping locks.  This ensures that the ordering of events
137  *	in the intent log matches the order in which they actually occurred.
138  *	During ZIL replay the zfs_log_* functions will update the sequence
139  *	number to indicate the zil transaction has replayed.
140  *
141  *  (6)	At the end of each vnode op, the DMU tx must always commit,
142  *	regardless of whether there were any errors.
143  *
144  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
145  *	to ensure that synchronous semantics are provided when necessary.
146  *
147  * In general, this is how things should be ordered in each vnode op:
148  *
149  *	zfs_enter(zfsvfs);		// exit if unmounted
150  * top:
151  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
152  *	rw_enter(...);			// grab any other locks you need
153  *	tx = dmu_tx_create(...);	// get DMU tx
154  *	dmu_tx_hold_*();		// hold each object you might modify
155  *	error = dmu_tx_assign(tx,
156  *	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
157  *	if (error) {
158  *		rw_exit(...);		// drop locks
159  *		zfs_dirent_unlock(dl);	// unlock directory entry
160  *		zrele(...);		// release held znodes
161  *		if (error == ERESTART) {
162  *			waited = B_TRUE;
163  *			dmu_tx_wait(tx);
164  *			dmu_tx_abort(tx);
165  *			goto top;
166  *		}
167  *		dmu_tx_abort(tx);	// abort DMU tx
168  *		zfs_exit(zfsvfs);	// finished in zfs
169  *		return (error);		// really out of space
170  *	}
171  *	error = do_real_work();		// do whatever this VOP does
172  *	if (error == 0)
173  *		zfs_log_*(...);		// on success, make ZIL entry
174  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
175  *	rw_exit(...);			// drop locks
176  *	zfs_dirent_unlock(dl);		// unlock directory entry
177  *	zrele(...);			// release held znodes
178  *	zil_commit(zilog, foid);	// synchronous when necessary
179  *	zfs_exit(zfsvfs);		// finished in zfs
180  *	return (error);			// done, report error
181  */
182 int
zfs_open(struct inode * ip,int mode,int flag,cred_t * cr)183 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
184 {
185 	(void) cr;
186 	znode_t	*zp = ITOZ(ip);
187 	zfsvfs_t *zfsvfs = ITOZSB(ip);
188 	int error;
189 
190 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
191 		return (error);
192 
193 	/* Honor ZFS_APPENDONLY file attribute */
194 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
195 	    ((flag & O_APPEND) == 0)) {
196 		zfs_exit(zfsvfs, FTAG);
197 		return (SET_ERROR(EPERM));
198 	}
199 
200 	/*
201 	 * Keep a count of the synchronous opens in the znode.  On first
202 	 * synchronous open we must convert all previous async transactions
203 	 * into sync to keep correct ordering.
204 	 */
205 	if (flag & O_SYNC) {
206 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
207 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
208 	}
209 
210 	zfs_exit(zfsvfs, FTAG);
211 	return (0);
212 }
213 
214 int
zfs_close(struct inode * ip,int flag,cred_t * cr)215 zfs_close(struct inode *ip, int flag, cred_t *cr)
216 {
217 	(void) cr;
218 	znode_t	*zp = ITOZ(ip);
219 	zfsvfs_t *zfsvfs = ITOZSB(ip);
220 	int error;
221 
222 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
223 		return (error);
224 
225 	/* Decrement the synchronous opens in the znode */
226 	if (flag & O_SYNC)
227 		atomic_dec_32(&zp->z_sync_cnt);
228 
229 	zfs_exit(zfsvfs, FTAG);
230 	return (0);
231 }
232 
233 #if defined(_KERNEL)
234 
235 static int zfs_fillpage(struct inode *ip, struct page *pp);
236 
237 /*
238  * When a file is memory mapped, we must keep the IO data synchronized
239  * between the DMU cache and the memory mapped pages.  Update all mapped
240  * pages with the contents of the coresponding dmu buffer.
241  */
242 void
update_pages(znode_t * zp,int64_t start,int len,objset_t * os)243 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
244 {
245 	struct address_space *mp = ZTOI(zp)->i_mapping;
246 	int64_t off = start & (PAGE_SIZE - 1);
247 
248 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
249 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
250 
251 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
252 		if (pp) {
253 			if (mapping_writably_mapped(mp))
254 				flush_dcache_page(pp);
255 
256 			void *pb = kmap(pp);
257 			int error = dmu_read(os, zp->z_id, start + off,
258 			    nbytes, pb + off, DMU_READ_PREFETCH);
259 			kunmap(pp);
260 
261 			if (error) {
262 				SetPageError(pp);
263 				ClearPageUptodate(pp);
264 			} else {
265 				ClearPageError(pp);
266 				SetPageUptodate(pp);
267 
268 				if (mapping_writably_mapped(mp))
269 					flush_dcache_page(pp);
270 
271 				mark_page_accessed(pp);
272 			}
273 
274 			unlock_page(pp);
275 			put_page(pp);
276 		}
277 
278 		len -= nbytes;
279 		off = 0;
280 	}
281 }
282 
283 /*
284  * When a file is memory mapped, we must keep the I/O data synchronized
285  * between the DMU cache and the memory mapped pages.  Preferentially read
286  * from memory mapped pages, otherwise fallback to reading through the dmu.
287  */
288 int
mappedread(znode_t * zp,int nbytes,zfs_uio_t * uio)289 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
290 {
291 	struct inode *ip = ZTOI(zp);
292 	struct address_space *mp = ip->i_mapping;
293 	int64_t start = uio->uio_loffset;
294 	int64_t off = start & (PAGE_SIZE - 1);
295 	int len = nbytes;
296 	int error = 0;
297 
298 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
299 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
300 
301 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
302 		if (pp) {
303 
304 			/*
305 			 * If filemap_fault() retries there exists a window
306 			 * where the page will be unlocked and not up to date.
307 			 * In this case we must try and fill the page.
308 			 */
309 			if (unlikely(!PageUptodate(pp))) {
310 				error = zfs_fillpage(ip, pp);
311 				if (error) {
312 					unlock_page(pp);
313 					put_page(pp);
314 					return (error);
315 				}
316 			}
317 
318 			ASSERT(PageUptodate(pp) || PageDirty(pp));
319 
320 			unlock_page(pp);
321 
322 			void *pb = kmap(pp);
323 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
324 			kunmap(pp);
325 
326 			if (mapping_writably_mapped(mp))
327 				flush_dcache_page(pp);
328 
329 			mark_page_accessed(pp);
330 			put_page(pp);
331 		} else {
332 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
333 			    uio, bytes, DMU_READ_PREFETCH);
334 		}
335 
336 		len -= bytes;
337 		off = 0;
338 
339 		if (error)
340 			break;
341 	}
342 
343 	return (error);
344 }
345 #endif /* _KERNEL */
346 
347 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
348 
349 /*
350  * Write the bytes to a file.
351  *
352  *	IN:	zp	- znode of file to be written to
353  *		data	- bytes to write
354  *		len	- number of bytes to write
355  *		pos	- offset to start writing at
356  *
357  *	OUT:	resid	- remaining bytes to write
358  *
359  *	RETURN:	0 if success
360  *		positive error code if failure.  EIO is	returned
361  *		for a short write when residp isn't provided.
362  *
363  * Timestamps:
364  *	zp - ctime|mtime updated if byte count > 0
365  */
366 int
zfs_write_simple(znode_t * zp,const void * data,size_t len,loff_t pos,size_t * residp)367 zfs_write_simple(znode_t *zp, const void *data, size_t len,
368     loff_t pos, size_t *residp)
369 {
370 	fstrans_cookie_t cookie;
371 	int error;
372 
373 	struct iovec iov;
374 	iov.iov_base = (void *)data;
375 	iov.iov_len = len;
376 
377 	zfs_uio_t uio;
378 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
379 
380 	cookie = spl_fstrans_mark();
381 	error = zfs_write(zp, &uio, 0, kcred);
382 	spl_fstrans_unmark(cookie);
383 
384 	if (error == 0) {
385 		if (residp != NULL)
386 			*residp = zfs_uio_resid(&uio);
387 		else if (zfs_uio_resid(&uio) != 0)
388 			error = SET_ERROR(EIO);
389 	}
390 
391 	return (error);
392 }
393 
394 static void
zfs_rele_async_task(void * arg)395 zfs_rele_async_task(void *arg)
396 {
397 	iput(arg);
398 }
399 
400 void
zfs_zrele_async(znode_t * zp)401 zfs_zrele_async(znode_t *zp)
402 {
403 	struct inode *ip = ZTOI(zp);
404 	objset_t *os = ITOZSB(ip)->z_os;
405 
406 	ASSERT(atomic_read(&ip->i_count) > 0);
407 	ASSERT(os != NULL);
408 
409 	/*
410 	 * If decrementing the count would put us at 0, we can't do it inline
411 	 * here, because that would be synchronous. Instead, dispatch an iput
412 	 * to run later.
413 	 *
414 	 * For more information on the dangers of a synchronous iput, see the
415 	 * header comment of this file.
416 	 */
417 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
418 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
419 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
420 	}
421 }
422 
423 
424 /*
425  * Lookup an entry in a directory, or an extended attribute directory.
426  * If it exists, return a held inode reference for it.
427  *
428  *	IN:	zdp	- znode of directory to search.
429  *		nm	- name of entry to lookup.
430  *		flags	- LOOKUP_XATTR set if looking for an attribute.
431  *		cr	- credentials of caller.
432  *		direntflags - directory lookup flags
433  *		realpnp - returned pathname.
434  *
435  *	OUT:	zpp	- znode of located entry, NULL if not found.
436  *
437  *	RETURN:	0 on success, error code on failure.
438  *
439  * Timestamps:
440  *	NA
441  */
442 int
zfs_lookup(znode_t * zdp,char * nm,znode_t ** zpp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)443 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
444     int *direntflags, pathname_t *realpnp)
445 {
446 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
447 	int error = 0;
448 
449 	/*
450 	 * Fast path lookup, however we must skip DNLC lookup
451 	 * for case folding or normalizing lookups because the
452 	 * DNLC code only stores the passed in name.  This means
453 	 * creating 'a' and removing 'A' on a case insensitive
454 	 * file system would work, but DNLC still thinks 'a'
455 	 * exists and won't let you create it again on the next
456 	 * pass through fast path.
457 	 */
458 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
459 
460 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
461 			return (SET_ERROR(ENOTDIR));
462 		} else if (zdp->z_sa_hdl == NULL) {
463 			return (SET_ERROR(EIO));
464 		}
465 
466 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
467 			error = zfs_fastaccesschk_execute(zdp, cr);
468 			if (!error) {
469 				*zpp = zdp;
470 				zhold(*zpp);
471 				return (0);
472 			}
473 			return (error);
474 		}
475 	}
476 
477 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
478 		return (error);
479 
480 	*zpp = NULL;
481 
482 	if (flags & LOOKUP_XATTR) {
483 		/*
484 		 * We don't allow recursive attributes..
485 		 * Maybe someday we will.
486 		 */
487 		if (zdp->z_pflags & ZFS_XATTR) {
488 			zfs_exit(zfsvfs, FTAG);
489 			return (SET_ERROR(EINVAL));
490 		}
491 
492 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
493 			zfs_exit(zfsvfs, FTAG);
494 			return (error);
495 		}
496 
497 		/*
498 		 * Do we have permission to get into attribute directory?
499 		 */
500 
501 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
502 		    B_TRUE, cr, zfs_init_idmap))) {
503 			zrele(*zpp);
504 			*zpp = NULL;
505 		}
506 
507 		zfs_exit(zfsvfs, FTAG);
508 		return (error);
509 	}
510 
511 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
512 		zfs_exit(zfsvfs, FTAG);
513 		return (SET_ERROR(ENOTDIR));
514 	}
515 
516 	/*
517 	 * Check accessibility of directory.
518 	 */
519 
520 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
521 	    zfs_init_idmap))) {
522 		zfs_exit(zfsvfs, FTAG);
523 		return (error);
524 	}
525 
526 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
527 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
528 		zfs_exit(zfsvfs, FTAG);
529 		return (SET_ERROR(EILSEQ));
530 	}
531 
532 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
533 	if ((error == 0) && (*zpp))
534 		zfs_znode_update_vfs(*zpp);
535 
536 	zfs_exit(zfsvfs, FTAG);
537 	return (error);
538 }
539 
540 /*
541  * Perform a linear search in directory for the name of specific inode.
542  * Note we don't pass in the buffer size of name because it's hardcoded to
543  * NAME_MAX+1(256) in Linux.
544  *
545  *	IN:	dzp	- znode of directory to search.
546  *		zp	- znode of the target
547  *
548  *	OUT:	name	- dentry name of the target
549  *
550  *	RETURN:	0 on success, error code on failure.
551  */
552 int
zfs_get_name(znode_t * dzp,char * name,znode_t * zp)553 zfs_get_name(znode_t *dzp, char *name, znode_t *zp)
554 {
555 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
556 	int error = 0;
557 
558 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
559 		return (error);
560 
561 	if ((error = zfs_verify_zp(zp)) != 0) {
562 		zfs_exit(zfsvfs, FTAG);
563 		return (error);
564 	}
565 
566 	/* ctldir should have got their name in zfs_vget */
567 	if (dzp->z_is_ctldir || zp->z_is_ctldir) {
568 		zfs_exit(zfsvfs, FTAG);
569 		return (ENOENT);
570 	}
571 
572 	/* buffer len is hardcoded to 256 in Linux kernel */
573 	error = zap_value_search(zfsvfs->z_os, dzp->z_id, zp->z_id,
574 	    ZFS_DIRENT_OBJ(-1ULL), name, ZAP_MAXNAMELEN);
575 
576 	zfs_exit(zfsvfs, FTAG);
577 	return (error);
578 }
579 
580 /*
581  * Attempt to create a new entry in a directory.  If the entry
582  * already exists, truncate the file if permissible, else return
583  * an error.  Return the ip of the created or trunc'd file.
584  *
585  *	IN:	dzp	- znode of directory to put new file entry in.
586  *		name	- name of new file entry.
587  *		vap	- attributes of new file.
588  *		excl	- flag indicating exclusive or non-exclusive mode.
589  *		mode	- mode to open file with.
590  *		cr	- credentials of caller.
591  *		flag	- file flag.
592  *		vsecp	- ACL to be set
593  *		mnt_ns	- user namespace of the mount
594  *
595  *	OUT:	zpp	- znode of created or trunc'd entry.
596  *
597  *	RETURN:	0 on success, error code on failure.
598  *
599  * Timestamps:
600  *	dzp - ctime|mtime updated if new entry created
601  *	 zp - ctime|mtime always, atime if new
602  */
603 int
zfs_create(znode_t * dzp,char * name,vattr_t * vap,int excl,int mode,znode_t ** zpp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)604 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
605     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
606     zidmap_t *mnt_ns)
607 {
608 	znode_t		*zp;
609 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
610 	zilog_t		*zilog;
611 	objset_t	*os;
612 	zfs_dirlock_t	*dl;
613 	dmu_tx_t	*tx;
614 	int		error;
615 	uid_t		uid;
616 	gid_t		gid;
617 	zfs_acl_ids_t   acl_ids;
618 	boolean_t	fuid_dirtied;
619 	boolean_t	have_acl = B_FALSE;
620 	boolean_t	waited = B_FALSE;
621 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
622 
623 	/*
624 	 * If we have an ephemeral id, ACL, or XVATTR then
625 	 * make sure file system is at proper version
626 	 */
627 
628 	gid = crgetgid(cr);
629 	uid = crgetuid(cr);
630 
631 	if (zfsvfs->z_use_fuids == B_FALSE &&
632 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
633 		return (SET_ERROR(EINVAL));
634 
635 	if (name == NULL)
636 		return (SET_ERROR(EINVAL));
637 
638 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
639 		return (error);
640 	os = zfsvfs->z_os;
641 	zilog = zfsvfs->z_log;
642 
643 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
644 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
645 		zfs_exit(zfsvfs, FTAG);
646 		return (SET_ERROR(EILSEQ));
647 	}
648 
649 	if (vap->va_mask & ATTR_XVATTR) {
650 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
651 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
652 			zfs_exit(zfsvfs, FTAG);
653 			return (error);
654 		}
655 	}
656 
657 top:
658 	*zpp = NULL;
659 	if (*name == '\0') {
660 		/*
661 		 * Null component name refers to the directory itself.
662 		 */
663 		zhold(dzp);
664 		zp = dzp;
665 		dl = NULL;
666 		error = 0;
667 	} else {
668 		/* possible igrab(zp) */
669 		int zflg = 0;
670 
671 		if (flag & FIGNORECASE)
672 			zflg |= ZCILOOK;
673 
674 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
675 		    NULL, NULL);
676 		if (error) {
677 			if (have_acl)
678 				zfs_acl_ids_free(&acl_ids);
679 			if (strcmp(name, "..") == 0)
680 				error = SET_ERROR(EISDIR);
681 			zfs_exit(zfsvfs, FTAG);
682 			return (error);
683 		}
684 	}
685 
686 	if (zp == NULL) {
687 		uint64_t txtype;
688 		uint64_t projid = ZFS_DEFAULT_PROJID;
689 
690 		/*
691 		 * Create a new file object and update the directory
692 		 * to reference it.
693 		 */
694 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
695 		    mnt_ns))) {
696 			if (have_acl)
697 				zfs_acl_ids_free(&acl_ids);
698 			goto out;
699 		}
700 
701 		/*
702 		 * We only support the creation of regular files in
703 		 * extended attribute directories.
704 		 */
705 
706 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
707 			if (have_acl)
708 				zfs_acl_ids_free(&acl_ids);
709 			error = SET_ERROR(EINVAL);
710 			goto out;
711 		}
712 
713 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
714 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
715 			goto out;
716 		have_acl = B_TRUE;
717 
718 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
719 			projid = zfs_inherit_projid(dzp);
720 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
721 			zfs_acl_ids_free(&acl_ids);
722 			error = SET_ERROR(EDQUOT);
723 			goto out;
724 		}
725 
726 		tx = dmu_tx_create(os);
727 
728 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
729 		    ZFS_SA_BASE_ATTR_SIZE);
730 
731 		fuid_dirtied = zfsvfs->z_fuid_dirty;
732 		if (fuid_dirtied)
733 			zfs_fuid_txhold(zfsvfs, tx);
734 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
735 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
736 		if (!zfsvfs->z_use_sa &&
737 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
738 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
739 			    0, acl_ids.z_aclp->z_acl_bytes);
740 		}
741 
742 		error = dmu_tx_assign(tx,
743 		    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
744 		if (error) {
745 			zfs_dirent_unlock(dl);
746 			if (error == ERESTART) {
747 				waited = B_TRUE;
748 				dmu_tx_wait(tx);
749 				dmu_tx_abort(tx);
750 				goto top;
751 			}
752 			zfs_acl_ids_free(&acl_ids);
753 			dmu_tx_abort(tx);
754 			zfs_exit(zfsvfs, FTAG);
755 			return (error);
756 		}
757 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
758 
759 		error = zfs_link_create(dl, zp, tx, ZNEW);
760 		if (error != 0) {
761 			/*
762 			 * Since, we failed to add the directory entry for it,
763 			 * delete the newly created dnode.
764 			 */
765 			zfs_znode_delete(zp, tx);
766 			remove_inode_hash(ZTOI(zp));
767 			zfs_acl_ids_free(&acl_ids);
768 			dmu_tx_commit(tx);
769 			goto out;
770 		}
771 
772 		if (fuid_dirtied)
773 			zfs_fuid_sync(zfsvfs, tx);
774 
775 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
776 		if (flag & FIGNORECASE)
777 			txtype |= TX_CI;
778 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
779 		    vsecp, acl_ids.z_fuidp, vap);
780 		zfs_acl_ids_free(&acl_ids);
781 		dmu_tx_commit(tx);
782 	} else {
783 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
784 
785 		if (have_acl)
786 			zfs_acl_ids_free(&acl_ids);
787 
788 		/*
789 		 * A directory entry already exists for this name.
790 		 */
791 		/*
792 		 * Can't truncate an existing file if in exclusive mode.
793 		 */
794 		if (excl) {
795 			error = SET_ERROR(EEXIST);
796 			goto out;
797 		}
798 		/*
799 		 * Can't open a directory for writing.
800 		 */
801 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
802 			error = SET_ERROR(EISDIR);
803 			goto out;
804 		}
805 		/*
806 		 * Verify requested access to file.
807 		 */
808 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
809 		    mnt_ns))) {
810 			goto out;
811 		}
812 
813 		mutex_enter(&dzp->z_lock);
814 		dzp->z_seq++;
815 		mutex_exit(&dzp->z_lock);
816 
817 		/*
818 		 * Truncate regular files if requested.
819 		 */
820 		if (S_ISREG(ZTOI(zp)->i_mode) &&
821 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
822 			/* we can't hold any locks when calling zfs_freesp() */
823 			if (dl) {
824 				zfs_dirent_unlock(dl);
825 				dl = NULL;
826 			}
827 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
828 		}
829 	}
830 out:
831 
832 	if (dl)
833 		zfs_dirent_unlock(dl);
834 
835 	if (error) {
836 		if (zp)
837 			zrele(zp);
838 	} else {
839 		zfs_znode_update_vfs(dzp);
840 		zfs_znode_update_vfs(zp);
841 		*zpp = zp;
842 	}
843 
844 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
845 		error = zil_commit(zilog, 0);
846 
847 	zfs_exit(zfsvfs, FTAG);
848 	return (error);
849 }
850 
851 int
zfs_tmpfile(struct inode * dip,vattr_t * vap,int excl,int mode,struct inode ** ipp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)852 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
853     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
854     zidmap_t *mnt_ns)
855 {
856 	(void) excl, (void) mode, (void) flag;
857 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
858 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
859 	objset_t	*os;
860 	dmu_tx_t	*tx;
861 	int		error;
862 	uid_t		uid;
863 	gid_t		gid;
864 	zfs_acl_ids_t   acl_ids;
865 	uint64_t	projid = ZFS_DEFAULT_PROJID;
866 	boolean_t	fuid_dirtied;
867 	boolean_t	have_acl = B_FALSE;
868 	boolean_t	waited = B_FALSE;
869 
870 	/*
871 	 * If we have an ephemeral id, ACL, or XVATTR then
872 	 * make sure file system is at proper version
873 	 */
874 
875 	gid = crgetgid(cr);
876 	uid = crgetuid(cr);
877 
878 	if (zfsvfs->z_use_fuids == B_FALSE &&
879 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
880 		return (SET_ERROR(EINVAL));
881 
882 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
883 		return (error);
884 	os = zfsvfs->z_os;
885 
886 	if (vap->va_mask & ATTR_XVATTR) {
887 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
888 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
889 			zfs_exit(zfsvfs, FTAG);
890 			return (error);
891 		}
892 	}
893 
894 top:
895 	*ipp = NULL;
896 
897 	/*
898 	 * Create a new file object and update the directory
899 	 * to reference it.
900 	 */
901 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
902 		if (have_acl)
903 			zfs_acl_ids_free(&acl_ids);
904 		goto out;
905 	}
906 
907 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
908 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
909 		goto out;
910 	have_acl = B_TRUE;
911 
912 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
913 		projid = zfs_inherit_projid(dzp);
914 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
915 		zfs_acl_ids_free(&acl_ids);
916 		error = SET_ERROR(EDQUOT);
917 		goto out;
918 	}
919 
920 	tx = dmu_tx_create(os);
921 
922 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
923 	    ZFS_SA_BASE_ATTR_SIZE);
924 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
925 
926 	fuid_dirtied = zfsvfs->z_fuid_dirty;
927 	if (fuid_dirtied)
928 		zfs_fuid_txhold(zfsvfs, tx);
929 	if (!zfsvfs->z_use_sa &&
930 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
931 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
932 		    0, acl_ids.z_aclp->z_acl_bytes);
933 	}
934 	error = dmu_tx_assign(tx,
935 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
936 	if (error) {
937 		if (error == ERESTART) {
938 			waited = B_TRUE;
939 			dmu_tx_wait(tx);
940 			dmu_tx_abort(tx);
941 			goto top;
942 		}
943 		zfs_acl_ids_free(&acl_ids);
944 		dmu_tx_abort(tx);
945 		zfs_exit(zfsvfs, FTAG);
946 		return (error);
947 	}
948 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
949 
950 	if (fuid_dirtied)
951 		zfs_fuid_sync(zfsvfs, tx);
952 
953 	/* Add to unlinked set */
954 	zp->z_unlinked = B_TRUE;
955 	zfs_unlinked_add(zp, tx);
956 	zfs_acl_ids_free(&acl_ids);
957 	dmu_tx_commit(tx);
958 out:
959 
960 	if (error) {
961 		if (zp)
962 			zrele(zp);
963 	} else {
964 		zfs_znode_update_vfs(dzp);
965 		zfs_znode_update_vfs(zp);
966 		*ipp = ZTOI(zp);
967 	}
968 
969 	zfs_exit(zfsvfs, FTAG);
970 	return (error);
971 }
972 
973 /*
974  * Remove an entry from a directory.
975  *
976  *	IN:	dzp	- znode of directory to remove entry from.
977  *		name	- name of entry to remove.
978  *		cr	- credentials of caller.
979  *		flags	- case flags.
980  *
981  *	RETURN:	0 if success
982  *		error code if failure
983  *
984  * Timestamps:
985  *	dzp - ctime|mtime
986  *	 ip - ctime (if nlink > 0)
987  */
988 
989 static uint64_t null_xattr = 0;
990 
991 int
zfs_remove(znode_t * dzp,char * name,cred_t * cr,int flags)992 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
993 {
994 	znode_t		*zp;
995 	znode_t		*xzp;
996 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
997 	zilog_t		*zilog;
998 	uint64_t	acl_obj, xattr_obj;
999 	uint64_t	xattr_obj_unlinked = 0;
1000 	uint64_t	obj = 0;
1001 	uint64_t	links;
1002 	zfs_dirlock_t	*dl;
1003 	dmu_tx_t	*tx;
1004 	boolean_t	may_delete_now, delete_now = FALSE;
1005 	boolean_t	unlinked, toobig = FALSE;
1006 	uint64_t	txtype;
1007 	pathname_t	*realnmp = NULL;
1008 	pathname_t	realnm;
1009 	int		error;
1010 	int		zflg = ZEXISTS;
1011 	boolean_t	waited = B_FALSE;
1012 
1013 	if (name == NULL)
1014 		return (SET_ERROR(EINVAL));
1015 
1016 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1017 		return (error);
1018 	zilog = zfsvfs->z_log;
1019 
1020 	if (flags & FIGNORECASE) {
1021 		zflg |= ZCILOOK;
1022 		pn_alloc(&realnm);
1023 		realnmp = &realnm;
1024 	}
1025 
1026 top:
1027 	xattr_obj = 0;
1028 	xzp = NULL;
1029 	/*
1030 	 * Attempt to lock directory; fail if entry doesn't exist.
1031 	 */
1032 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1033 	    NULL, realnmp))) {
1034 		if (realnmp)
1035 			pn_free(realnmp);
1036 		zfs_exit(zfsvfs, FTAG);
1037 		return (error);
1038 	}
1039 
1040 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1041 		goto out;
1042 	}
1043 
1044 	/*
1045 	 * Need to use rmdir for removing directories.
1046 	 */
1047 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1048 		error = SET_ERROR(EPERM);
1049 		goto out;
1050 	}
1051 
1052 	mutex_enter(&zp->z_lock);
1053 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1054 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1055 	mutex_exit(&zp->z_lock);
1056 
1057 	/*
1058 	 * We may delete the znode now, or we may put it in the unlinked set;
1059 	 * it depends on whether we're the last link, and on whether there are
1060 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1061 	 * allow for either case.
1062 	 */
1063 	obj = zp->z_id;
1064 	tx = dmu_tx_create(zfsvfs->z_os);
1065 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1066 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1067 	zfs_sa_upgrade_txholds(tx, zp);
1068 	zfs_sa_upgrade_txholds(tx, dzp);
1069 	if (may_delete_now) {
1070 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1071 		/* if the file is too big, only hold_free a token amount */
1072 		dmu_tx_hold_free(tx, zp->z_id, 0,
1073 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1074 	}
1075 
1076 	/* are there any extended attributes? */
1077 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1078 	    &xattr_obj, sizeof (xattr_obj));
1079 	if (error == 0 && xattr_obj) {
1080 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1081 		ASSERT0(error);
1082 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1083 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1084 	}
1085 
1086 	mutex_enter(&zp->z_lock);
1087 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1088 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1089 	mutex_exit(&zp->z_lock);
1090 
1091 	/* charge as an update -- would be nice not to charge at all */
1092 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1093 
1094 	/*
1095 	 * Mark this transaction as typically resulting in a net free of space
1096 	 */
1097 	dmu_tx_mark_netfree(tx);
1098 
1099 	error = dmu_tx_assign(tx,
1100 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1101 	if (error) {
1102 		zfs_dirent_unlock(dl);
1103 		if (error == ERESTART) {
1104 			waited = B_TRUE;
1105 			dmu_tx_wait(tx);
1106 			dmu_tx_abort(tx);
1107 			zrele(zp);
1108 			if (xzp)
1109 				zrele(xzp);
1110 			goto top;
1111 		}
1112 		if (realnmp)
1113 			pn_free(realnmp);
1114 		dmu_tx_abort(tx);
1115 		zrele(zp);
1116 		if (xzp)
1117 			zrele(xzp);
1118 		zfs_exit(zfsvfs, FTAG);
1119 		return (error);
1120 	}
1121 
1122 	/*
1123 	 * Remove the directory entry.
1124 	 */
1125 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1126 
1127 	if (error) {
1128 		dmu_tx_commit(tx);
1129 		goto out;
1130 	}
1131 
1132 	if (unlinked) {
1133 		/*
1134 		 * Hold z_lock so that we can make sure that the ACL obj
1135 		 * hasn't changed.  Could have been deleted due to
1136 		 * zfs_sa_upgrade().
1137 		 */
1138 		mutex_enter(&zp->z_lock);
1139 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1140 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1141 		delete_now = may_delete_now && !toobig &&
1142 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1143 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1144 		    xattr_obj == xattr_obj_unlinked &&
1145 		    zfs_external_acl(zp) == acl_obj;
1146 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1147 	}
1148 
1149 	if (delete_now) {
1150 		if (xattr_obj_unlinked) {
1151 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1152 			mutex_enter(&xzp->z_lock);
1153 			xzp->z_unlinked = B_TRUE;
1154 			clear_nlink(ZTOI(xzp));
1155 			links = 0;
1156 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1157 			    &links, sizeof (links), tx);
1158 			ASSERT3U(error,  ==,  0);
1159 			mutex_exit(&xzp->z_lock);
1160 			zfs_unlinked_add(xzp, tx);
1161 
1162 			if (zp->z_is_sa)
1163 				error = sa_remove(zp->z_sa_hdl,
1164 				    SA_ZPL_XATTR(zfsvfs), tx);
1165 			else
1166 				error = sa_update(zp->z_sa_hdl,
1167 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1168 				    sizeof (uint64_t), tx);
1169 			ASSERT0(error);
1170 		}
1171 		/*
1172 		 * Add to the unlinked set because a new reference could be
1173 		 * taken concurrently resulting in a deferred destruction.
1174 		 */
1175 		zfs_unlinked_add(zp, tx);
1176 		mutex_exit(&zp->z_lock);
1177 	} else if (unlinked) {
1178 		mutex_exit(&zp->z_lock);
1179 		zfs_unlinked_add(zp, tx);
1180 	}
1181 
1182 	txtype = TX_REMOVE;
1183 	if (flags & FIGNORECASE)
1184 		txtype |= TX_CI;
1185 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1186 
1187 	dmu_tx_commit(tx);
1188 out:
1189 	if (realnmp)
1190 		pn_free(realnmp);
1191 
1192 	zfs_dirent_unlock(dl);
1193 	zfs_znode_update_vfs(dzp);
1194 	zfs_znode_update_vfs(zp);
1195 
1196 	if (delete_now)
1197 		zrele(zp);
1198 	else
1199 		zfs_zrele_async(zp);
1200 
1201 	if (xzp) {
1202 		zfs_znode_update_vfs(xzp);
1203 		zfs_zrele_async(xzp);
1204 	}
1205 
1206 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1207 		error = zil_commit(zilog, 0);
1208 
1209 	zfs_exit(zfsvfs, FTAG);
1210 	return (error);
1211 }
1212 
1213 /*
1214  * Create a new directory and insert it into dzp using the name
1215  * provided.  Return a pointer to the inserted directory.
1216  *
1217  *	IN:	dzp	- znode of directory to add subdir to.
1218  *		dirname	- name of new directory.
1219  *		vap	- attributes of new directory.
1220  *		cr	- credentials of caller.
1221  *		flags	- case flags.
1222  *		vsecp	- ACL to be set
1223  *		mnt_ns	- user namespace of the mount
1224  *
1225  *	OUT:	zpp	- znode of created directory.
1226  *
1227  *	RETURN:	0 if success
1228  *		error code if failure
1229  *
1230  * Timestamps:
1231  *	dzp - ctime|mtime updated
1232  *	zpp - ctime|mtime|atime updated
1233  */
1234 int
zfs_mkdir(znode_t * dzp,char * dirname,vattr_t * vap,znode_t ** zpp,cred_t * cr,int flags,vsecattr_t * vsecp,zidmap_t * mnt_ns)1235 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1236     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1237 {
1238 	znode_t		*zp;
1239 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1240 	zilog_t		*zilog;
1241 	zfs_dirlock_t	*dl;
1242 	uint64_t	txtype;
1243 	dmu_tx_t	*tx;
1244 	int		error;
1245 	int		zf = ZNEW;
1246 	uid_t		uid;
1247 	gid_t		gid = crgetgid(cr);
1248 	zfs_acl_ids_t   acl_ids;
1249 	boolean_t	fuid_dirtied;
1250 	boolean_t	waited = B_FALSE;
1251 
1252 	ASSERT(S_ISDIR(vap->va_mode));
1253 
1254 	/*
1255 	 * If we have an ephemeral id, ACL, or XVATTR then
1256 	 * make sure file system is at proper version
1257 	 */
1258 
1259 	uid = crgetuid(cr);
1260 	if (zfsvfs->z_use_fuids == B_FALSE &&
1261 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1262 		return (SET_ERROR(EINVAL));
1263 
1264 	if (dirname == NULL)
1265 		return (SET_ERROR(EINVAL));
1266 
1267 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1268 		return (error);
1269 	zilog = zfsvfs->z_log;
1270 
1271 	if (dzp->z_pflags & ZFS_XATTR) {
1272 		zfs_exit(zfsvfs, FTAG);
1273 		return (SET_ERROR(EINVAL));
1274 	}
1275 
1276 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1277 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1278 		zfs_exit(zfsvfs, FTAG);
1279 		return (SET_ERROR(EILSEQ));
1280 	}
1281 	if (flags & FIGNORECASE)
1282 		zf |= ZCILOOK;
1283 
1284 	if (vap->va_mask & ATTR_XVATTR) {
1285 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1286 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1287 			zfs_exit(zfsvfs, FTAG);
1288 			return (error);
1289 		}
1290 	}
1291 
1292 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1293 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1294 		zfs_exit(zfsvfs, FTAG);
1295 		return (error);
1296 	}
1297 	/*
1298 	 * First make sure the new directory doesn't exist.
1299 	 *
1300 	 * Existence is checked first to make sure we don't return
1301 	 * EACCES instead of EEXIST which can cause some applications
1302 	 * to fail.
1303 	 */
1304 top:
1305 	*zpp = NULL;
1306 
1307 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1308 	    NULL, NULL))) {
1309 		zfs_acl_ids_free(&acl_ids);
1310 		zfs_exit(zfsvfs, FTAG);
1311 		return (error);
1312 	}
1313 
1314 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1315 	    mnt_ns))) {
1316 		zfs_acl_ids_free(&acl_ids);
1317 		zfs_dirent_unlock(dl);
1318 		zfs_exit(zfsvfs, FTAG);
1319 		return (error);
1320 	}
1321 
1322 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1323 		zfs_acl_ids_free(&acl_ids);
1324 		zfs_dirent_unlock(dl);
1325 		zfs_exit(zfsvfs, FTAG);
1326 		return (SET_ERROR(EDQUOT));
1327 	}
1328 
1329 	/*
1330 	 * Add a new entry to the directory.
1331 	 */
1332 	tx = dmu_tx_create(zfsvfs->z_os);
1333 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1334 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1335 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1336 	if (fuid_dirtied)
1337 		zfs_fuid_txhold(zfsvfs, tx);
1338 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1339 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1340 		    acl_ids.z_aclp->z_acl_bytes);
1341 	}
1342 
1343 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1344 	    ZFS_SA_BASE_ATTR_SIZE);
1345 
1346 	error = dmu_tx_assign(tx,
1347 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1348 	if (error) {
1349 		zfs_dirent_unlock(dl);
1350 		if (error == ERESTART) {
1351 			waited = B_TRUE;
1352 			dmu_tx_wait(tx);
1353 			dmu_tx_abort(tx);
1354 			goto top;
1355 		}
1356 		zfs_acl_ids_free(&acl_ids);
1357 		dmu_tx_abort(tx);
1358 		zfs_exit(zfsvfs, FTAG);
1359 		return (error);
1360 	}
1361 
1362 	/*
1363 	 * Create new node.
1364 	 */
1365 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1366 
1367 	/*
1368 	 * Now put new name in parent dir.
1369 	 */
1370 	error = zfs_link_create(dl, zp, tx, ZNEW);
1371 	if (error != 0) {
1372 		zfs_znode_delete(zp, tx);
1373 		remove_inode_hash(ZTOI(zp));
1374 		goto out;
1375 	}
1376 
1377 	if (fuid_dirtied)
1378 		zfs_fuid_sync(zfsvfs, tx);
1379 
1380 	*zpp = zp;
1381 
1382 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1383 	if (flags & FIGNORECASE)
1384 		txtype |= TX_CI;
1385 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1386 	    acl_ids.z_fuidp, vap);
1387 
1388 out:
1389 	zfs_acl_ids_free(&acl_ids);
1390 
1391 	dmu_tx_commit(tx);
1392 
1393 	zfs_dirent_unlock(dl);
1394 
1395 	if (error != 0) {
1396 		zrele(zp);
1397 	} else {
1398 		zfs_znode_update_vfs(dzp);
1399 		zfs_znode_update_vfs(zp);
1400 
1401 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1402 			error = zil_commit(zilog, 0);
1403 
1404 	}
1405 	zfs_exit(zfsvfs, FTAG);
1406 	return (error);
1407 }
1408 
1409 /*
1410  * Remove a directory subdir entry.  If the current working
1411  * directory is the same as the subdir to be removed, the
1412  * remove will fail.
1413  *
1414  *	IN:	dzp	- znode of directory to remove from.
1415  *		name	- name of directory to be removed.
1416  *		cwd	- inode of current working directory.
1417  *		cr	- credentials of caller.
1418  *		flags	- case flags
1419  *
1420  *	RETURN:	0 on success, error code on failure.
1421  *
1422  * Timestamps:
1423  *	dzp - ctime|mtime updated
1424  */
1425 int
zfs_rmdir(znode_t * dzp,char * name,znode_t * cwd,cred_t * cr,int flags)1426 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1427     int flags)
1428 {
1429 	znode_t		*zp;
1430 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1431 	zilog_t		*zilog;
1432 	zfs_dirlock_t	*dl;
1433 	dmu_tx_t	*tx;
1434 	int		error;
1435 	int		zflg = ZEXISTS;
1436 	boolean_t	waited = B_FALSE;
1437 
1438 	if (name == NULL)
1439 		return (SET_ERROR(EINVAL));
1440 
1441 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1442 		return (error);
1443 	zilog = zfsvfs->z_log;
1444 
1445 	if (flags & FIGNORECASE)
1446 		zflg |= ZCILOOK;
1447 top:
1448 	zp = NULL;
1449 
1450 	/*
1451 	 * Attempt to lock directory; fail if entry doesn't exist.
1452 	 */
1453 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1454 	    NULL, NULL))) {
1455 		zfs_exit(zfsvfs, FTAG);
1456 		return (error);
1457 	}
1458 
1459 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1460 		goto out;
1461 	}
1462 
1463 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1464 		error = SET_ERROR(ENOTDIR);
1465 		goto out;
1466 	}
1467 
1468 	if (zp == cwd) {
1469 		error = SET_ERROR(EINVAL);
1470 		goto out;
1471 	}
1472 
1473 	/*
1474 	 * Grab a lock on the directory to make sure that no one is
1475 	 * trying to add (or lookup) entries while we are removing it.
1476 	 */
1477 	rw_enter(&zp->z_name_lock, RW_WRITER);
1478 
1479 	/*
1480 	 * Grab a lock on the parent pointer to make sure we play well
1481 	 * with the treewalk and directory rename code.
1482 	 */
1483 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1484 
1485 	tx = dmu_tx_create(zfsvfs->z_os);
1486 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1487 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1488 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1489 	zfs_sa_upgrade_txholds(tx, zp);
1490 	zfs_sa_upgrade_txholds(tx, dzp);
1491 	dmu_tx_mark_netfree(tx);
1492 	error = dmu_tx_assign(tx,
1493 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1494 	if (error) {
1495 		rw_exit(&zp->z_parent_lock);
1496 		rw_exit(&zp->z_name_lock);
1497 		zfs_dirent_unlock(dl);
1498 		if (error == ERESTART) {
1499 			waited = B_TRUE;
1500 			dmu_tx_wait(tx);
1501 			dmu_tx_abort(tx);
1502 			zrele(zp);
1503 			goto top;
1504 		}
1505 		dmu_tx_abort(tx);
1506 		zrele(zp);
1507 		zfs_exit(zfsvfs, FTAG);
1508 		return (error);
1509 	}
1510 
1511 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1512 
1513 	if (error == 0) {
1514 		uint64_t txtype = TX_RMDIR;
1515 		if (flags & FIGNORECASE)
1516 			txtype |= TX_CI;
1517 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1518 		    B_FALSE);
1519 	}
1520 
1521 	dmu_tx_commit(tx);
1522 
1523 	rw_exit(&zp->z_parent_lock);
1524 	rw_exit(&zp->z_name_lock);
1525 out:
1526 	zfs_dirent_unlock(dl);
1527 
1528 	zfs_znode_update_vfs(dzp);
1529 	zfs_znode_update_vfs(zp);
1530 	zrele(zp);
1531 
1532 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1533 		error = zil_commit(zilog, 0);
1534 
1535 	zfs_exit(zfsvfs, FTAG);
1536 	return (error);
1537 }
1538 
1539 /*
1540  * Read directory entries from the given directory cursor position and emit
1541  * name and position for each entry.
1542  *
1543  *	IN:	ip	- inode of directory to read.
1544  *		ctx	- directory entry context.
1545  *		cr	- credentials of caller.
1546  *
1547  *	RETURN:	0 if success
1548  *		error code if failure
1549  *
1550  * Timestamps:
1551  *	ip - atime updated
1552  *
1553  * Note that the low 4 bits of the cookie returned by zap is always zero.
1554  * This allows us to use the low range for "special" directory entries:
1555  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1556  * we use the offset 2 for the '.zfs' directory.
1557  */
1558 int
zfs_readdir(struct inode * ip,struct dir_context * ctx,cred_t * cr)1559 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
1560 {
1561 	(void) cr;
1562 	znode_t		*zp = ITOZ(ip);
1563 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1564 	objset_t	*os;
1565 	zap_cursor_t	zc;
1566 	zap_attribute_t	*zap;
1567 	int		error;
1568 	uint8_t		prefetch;
1569 	uint8_t		type;
1570 	int		done = 0;
1571 	uint64_t	parent;
1572 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1573 
1574 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1575 		return (error);
1576 
1577 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1578 	    &parent, sizeof (parent))) != 0)
1579 		goto out;
1580 
1581 	/*
1582 	 * Quit if directory has been removed (posix)
1583 	 */
1584 	if (zp->z_unlinked)
1585 		goto out;
1586 
1587 	error = 0;
1588 	os = zfsvfs->z_os;
1589 	offset = ctx->pos;
1590 	prefetch = zp->z_zn_prefetch;
1591 	zap = zap_attribute_long_alloc();
1592 
1593 	/*
1594 	 * Initialize the iterator cursor.
1595 	 */
1596 	if (offset <= 3) {
1597 		/*
1598 		 * Start iteration from the beginning of the directory.
1599 		 */
1600 		zap_cursor_init(&zc, os, zp->z_id);
1601 	} else {
1602 		/*
1603 		 * The offset is a serialized cursor.
1604 		 */
1605 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1606 	}
1607 
1608 	/*
1609 	 * Transform to file-system independent format
1610 	 */
1611 	while (!done) {
1612 		uint64_t objnum;
1613 		/*
1614 		 * Special case `.', `..', and `.zfs'.
1615 		 */
1616 		if (offset == 0) {
1617 			(void) strcpy(zap->za_name, ".");
1618 			zap->za_normalization_conflict = 0;
1619 			objnum = zp->z_id;
1620 			type = DT_DIR;
1621 		} else if (offset == 1) {
1622 			(void) strcpy(zap->za_name, "..");
1623 			zap->za_normalization_conflict = 0;
1624 			objnum = parent;
1625 			type = DT_DIR;
1626 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1627 			(void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1628 			zap->za_normalization_conflict = 0;
1629 			objnum = ZFSCTL_INO_ROOT;
1630 			type = DT_DIR;
1631 		} else {
1632 			/*
1633 			 * Grab next entry.
1634 			 */
1635 			if ((error = zap_cursor_retrieve(&zc, zap))) {
1636 				if (error == ENOENT)
1637 					break;
1638 				else
1639 					goto update;
1640 			}
1641 
1642 			/*
1643 			 * Allow multiple entries provided the first entry is
1644 			 * the object id.  Non-zpl consumers may safely make
1645 			 * use of the additional space.
1646 			 *
1647 			 * XXX: This should be a feature flag for compatibility
1648 			 */
1649 			if (zap->za_integer_length != 8 ||
1650 			    zap->za_num_integers == 0) {
1651 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1652 				    "entry, obj = %lld, offset = %lld, "
1653 				    "length = %d, num = %lld\n",
1654 				    (u_longlong_t)zp->z_id,
1655 				    (u_longlong_t)offset,
1656 				    zap->za_integer_length,
1657 				    (u_longlong_t)zap->za_num_integers);
1658 				error = SET_ERROR(ENXIO);
1659 				goto update;
1660 			}
1661 
1662 			objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1663 			type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1664 		}
1665 
1666 		done = !dir_emit(ctx, zap->za_name, strlen(zap->za_name),
1667 		    objnum, type);
1668 		if (done)
1669 			break;
1670 
1671 		if (prefetch)
1672 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1673 
1674 		/*
1675 		 * Move to the next entry, fill in the previous offset.
1676 		 */
1677 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1678 			zap_cursor_advance(&zc);
1679 			offset = zap_cursor_serialize(&zc);
1680 		} else {
1681 			offset += 1;
1682 		}
1683 		ctx->pos = offset;
1684 	}
1685 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1686 
1687 update:
1688 	zap_cursor_fini(&zc);
1689 	zap_attribute_free(zap);
1690 	if (error == ENOENT)
1691 		error = 0;
1692 out:
1693 	zfs_exit(zfsvfs, FTAG);
1694 
1695 	return (error);
1696 }
1697 
1698 /*
1699  * Get the basic file attributes and place them in the provided kstat
1700  * structure.  The inode is assumed to be the authoritative source
1701  * for most of the attributes.  However, the znode currently has the
1702  * authoritative atime, blksize, and block count.
1703  *
1704  *	IN:	ip	- inode of file.
1705  *
1706  *	OUT:	sp	- kstat values.
1707  *
1708  *	RETURN:	0 (always succeeds)
1709  */
1710 int
1711 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
zfs_getattr_fast(zidmap_t * user_ns,u32 request_mask,struct inode * ip,struct kstat * sp)1712 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1713     struct kstat *sp)
1714 #else
1715 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1716 #endif
1717 {
1718 	znode_t *zp = ITOZ(ip);
1719 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1720 	uint32_t blksize;
1721 	u_longlong_t nblocks;
1722 	int error;
1723 
1724 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1725 		return (error);
1726 
1727 	mutex_enter(&zp->z_lock);
1728 
1729 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1730 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1731 #else
1732 	zpl_generic_fillattr(user_ns, ip, sp);
1733 #endif
1734 	/*
1735 	 * +1 link count for root inode with visible '.zfs' directory.
1736 	 */
1737 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1738 		if (sp->nlink < ZFS_LINK_MAX)
1739 			sp->nlink++;
1740 
1741 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1742 	sp->blksize = blksize;
1743 	sp->blocks = nblocks;
1744 
1745 	if (unlikely(zp->z_blksz == 0)) {
1746 		/*
1747 		 * Block size hasn't been set; suggest maximal I/O transfers.
1748 		 */
1749 		sp->blksize = zfsvfs->z_max_blksz;
1750 	}
1751 
1752 	mutex_exit(&zp->z_lock);
1753 
1754 	/*
1755 	 * Required to prevent NFS client from detecting different inode
1756 	 * numbers of snapshot root dentry before and after snapshot mount.
1757 	 */
1758 	if (zfsvfs->z_issnap) {
1759 		if (ip->i_sb->s_root->d_inode == ip)
1760 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1761 			    dmu_objset_id(zfsvfs->z_os);
1762 	}
1763 
1764 	zfs_exit(zfsvfs, FTAG);
1765 
1766 	return (0);
1767 }
1768 
1769 /*
1770  * For the operation of changing file's user/group/project, we need to
1771  * handle not only the main object that is assigned to the file directly,
1772  * but also the ones that are used by the file via hidden xattr directory.
1773  *
1774  * Because the xattr directory may contains many EA entries, as to it may
1775  * be impossible to change all of them via the transaction of changing the
1776  * main object's user/group/project attributes. Then we have to change them
1777  * via other multiple independent transactions one by one. It may be not good
1778  * solution, but we have no better idea yet.
1779  */
1780 static int
zfs_setattr_dir(znode_t * dzp)1781 zfs_setattr_dir(znode_t *dzp)
1782 {
1783 	struct inode	*dxip = ZTOI(dzp);
1784 	struct inode	*xip = NULL;
1785 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1786 	objset_t	*os = zfsvfs->z_os;
1787 	zap_cursor_t	zc;
1788 	zap_attribute_t	*zap;
1789 	zfs_dirlock_t	*dl;
1790 	znode_t		*zp = NULL;
1791 	dmu_tx_t	*tx = NULL;
1792 	uint64_t	uid, gid;
1793 	sa_bulk_attr_t	bulk[4];
1794 	int		count;
1795 	int		err;
1796 
1797 	zap = zap_attribute_alloc();
1798 	zap_cursor_init(&zc, os, dzp->z_id);
1799 	while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
1800 		count = 0;
1801 		if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
1802 			err = ENXIO;
1803 			break;
1804 		}
1805 
1806 		err = zfs_dirent_lock(&dl, dzp, (char *)zap->za_name, &zp,
1807 		    ZEXISTS, NULL, NULL);
1808 		if (err == ENOENT)
1809 			goto next;
1810 		if (err)
1811 			break;
1812 
1813 		xip = ZTOI(zp);
1814 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1815 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1816 		    zp->z_projid == dzp->z_projid)
1817 			goto next;
1818 
1819 		tx = dmu_tx_create(os);
1820 		if (!(zp->z_pflags & ZFS_PROJID))
1821 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1822 		else
1823 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1824 
1825 		err = dmu_tx_assign(tx, DMU_TX_WAIT);
1826 		if (err)
1827 			break;
1828 
1829 		mutex_enter(&dzp->z_lock);
1830 
1831 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1832 			xip->i_uid = dxip->i_uid;
1833 			uid = zfs_uid_read(dxip);
1834 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1835 			    &uid, sizeof (uid));
1836 		}
1837 
1838 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1839 			xip->i_gid = dxip->i_gid;
1840 			gid = zfs_gid_read(dxip);
1841 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1842 			    &gid, sizeof (gid));
1843 		}
1844 
1845 
1846 		uint64_t projid = dzp->z_projid;
1847 		if (zp->z_projid != projid) {
1848 			if (!(zp->z_pflags & ZFS_PROJID)) {
1849 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1850 				if (unlikely(err == EEXIST)) {
1851 					err = 0;
1852 				} else if (err != 0) {
1853 					goto sa_add_projid_err;
1854 				} else {
1855 					projid = ZFS_INVALID_PROJID;
1856 				}
1857 			}
1858 
1859 			if (projid != ZFS_INVALID_PROJID) {
1860 				zp->z_projid = projid;
1861 				SA_ADD_BULK_ATTR(bulk, count,
1862 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1863 				    sizeof (zp->z_projid));
1864 			}
1865 		}
1866 
1867 sa_add_projid_err:
1868 		mutex_exit(&dzp->z_lock);
1869 
1870 		if (likely(count > 0)) {
1871 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1872 			dmu_tx_commit(tx);
1873 		} else if (projid == ZFS_INVALID_PROJID) {
1874 			dmu_tx_commit(tx);
1875 		} else {
1876 			dmu_tx_abort(tx);
1877 		}
1878 		tx = NULL;
1879 		if (err != 0 && err != ENOENT)
1880 			break;
1881 
1882 next:
1883 		if (zp) {
1884 			zrele(zp);
1885 			zp = NULL;
1886 			zfs_dirent_unlock(dl);
1887 		}
1888 		zap_cursor_advance(&zc);
1889 	}
1890 
1891 	if (tx)
1892 		dmu_tx_abort(tx);
1893 	if (zp) {
1894 		zrele(zp);
1895 		zfs_dirent_unlock(dl);
1896 	}
1897 	zap_cursor_fini(&zc);
1898 	zap_attribute_free(zap);
1899 
1900 	return (err == ENOENT ? 0 : err);
1901 }
1902 
1903 /*
1904  * Set the file attributes to the values contained in the
1905  * vattr structure.
1906  *
1907  *	IN:	zp	- znode of file to be modified.
1908  *		vap	- new attribute values.
1909  *			  If ATTR_XVATTR set, then optional attrs are being set
1910  *		flags	- ATTR_UTIME set if non-default time values provided.
1911  *			- ATTR_NOACLCHECK (CIFS context only).
1912  *		cr	- credentials of caller.
1913  *		mnt_ns	- user namespace of the mount
1914  *
1915  *	RETURN:	0 if success
1916  *		error code if failure
1917  *
1918  * Timestamps:
1919  *	ip - ctime updated, mtime updated if size changed.
1920  */
1921 int
zfs_setattr(znode_t * zp,vattr_t * vap,int flags,cred_t * cr,zidmap_t * mnt_ns)1922 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1923 {
1924 	struct inode	*ip;
1925 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1926 	objset_t	*os;
1927 	zilog_t		*zilog;
1928 	dmu_tx_t	*tx;
1929 	vattr_t		oldva;
1930 	xvattr_t	*tmpxvattr;
1931 	uint_t		mask = vap->va_mask;
1932 	uint_t		saved_mask = 0;
1933 	int		trim_mask = 0;
1934 	uint64_t	new_mode;
1935 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1936 	uint64_t	xattr_obj;
1937 	uint64_t	mtime[2], ctime[2], atime[2];
1938 	uint64_t	projid = ZFS_INVALID_PROJID;
1939 	znode_t		*attrzp;
1940 	int		need_policy = FALSE;
1941 	int		err, err2 = 0;
1942 	zfs_fuid_info_t *fuidp = NULL;
1943 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1944 	xoptattr_t	*xoap;
1945 	zfs_acl_t	*aclp;
1946 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1947 	boolean_t	fuid_dirtied = B_FALSE;
1948 	boolean_t	handle_eadir = B_FALSE;
1949 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1950 	int		count = 0, xattr_count = 0, bulks = 8;
1951 
1952 	if (mask == 0)
1953 		return (0);
1954 
1955 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1956 		return (err);
1957 	ip = ZTOI(zp);
1958 	os = zfsvfs->z_os;
1959 
1960 	/*
1961 	 * If this is a xvattr_t, then get a pointer to the structure of
1962 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1963 	 */
1964 	xoap = xva_getxoptattr(xvap);
1965 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1966 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1967 			if (!dmu_objset_projectquota_enabled(os) ||
1968 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1969 				zfs_exit(zfsvfs, FTAG);
1970 				return (SET_ERROR(ENOTSUP));
1971 			}
1972 
1973 			projid = xoap->xoa_projid;
1974 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1975 				zfs_exit(zfsvfs, FTAG);
1976 				return (SET_ERROR(EINVAL));
1977 			}
1978 
1979 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1980 				projid = ZFS_INVALID_PROJID;
1981 			else
1982 				need_policy = TRUE;
1983 		}
1984 
1985 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1986 		    (xoap->xoa_projinherit !=
1987 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1988 		    (!dmu_objset_projectquota_enabled(os) ||
1989 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1990 			zfs_exit(zfsvfs, FTAG);
1991 			return (SET_ERROR(ENOTSUP));
1992 		}
1993 	}
1994 
1995 	zilog = zfsvfs->z_log;
1996 
1997 	/*
1998 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1999 	 * that file system is at proper version level
2000 	 */
2001 
2002 	if (zfsvfs->z_use_fuids == B_FALSE &&
2003 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2004 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2005 	    (mask & ATTR_XVATTR))) {
2006 		zfs_exit(zfsvfs, FTAG);
2007 		return (SET_ERROR(EINVAL));
2008 	}
2009 
2010 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2011 		zfs_exit(zfsvfs, FTAG);
2012 		return (SET_ERROR(EISDIR));
2013 	}
2014 
2015 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2016 		zfs_exit(zfsvfs, FTAG);
2017 		return (SET_ERROR(EINVAL));
2018 	}
2019 
2020 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2021 	xva_init(tmpxvattr);
2022 
2023 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2024 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2025 
2026 	/*
2027 	 * Immutable files can only alter immutable bit and atime
2028 	 */
2029 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2030 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2031 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2032 		err = SET_ERROR(EPERM);
2033 		goto out3;
2034 	}
2035 
2036 	/* ZFS_READONLY will be handled in zfs_zaccess() */
2037 
2038 	/*
2039 	 * Verify timestamps doesn't overflow 32 bits.
2040 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2041 	 * handle times greater than 2039.  This check should be removed
2042 	 * once large timestamps are fully supported.
2043 	 */
2044 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2045 		if (((mask & ATTR_ATIME) &&
2046 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2047 		    ((mask & ATTR_MTIME) &&
2048 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2049 			err = SET_ERROR(EOVERFLOW);
2050 			goto out3;
2051 		}
2052 	}
2053 
2054 top:
2055 	attrzp = NULL;
2056 	aclp = NULL;
2057 
2058 	/* Can this be moved to before the top label? */
2059 	if (zfs_is_readonly(zfsvfs)) {
2060 		err = SET_ERROR(EROFS);
2061 		goto out3;
2062 	}
2063 
2064 	/*
2065 	 * First validate permissions
2066 	 */
2067 
2068 	if (mask & ATTR_SIZE) {
2069 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2070 		    mnt_ns);
2071 		if (err)
2072 			goto out3;
2073 
2074 		/*
2075 		 * XXX - Note, we are not providing any open
2076 		 * mode flags here (like FNDELAY), so we may
2077 		 * block if there are locks present... this
2078 		 * should be addressed in openat().
2079 		 */
2080 		/* XXX - would it be OK to generate a log record here? */
2081 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2082 		if (err)
2083 			goto out3;
2084 	}
2085 
2086 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2087 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2088 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2089 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2090 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2091 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2092 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2093 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2094 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2095 		    skipaclchk, cr, mnt_ns);
2096 	}
2097 
2098 	if (mask & (ATTR_UID|ATTR_GID)) {
2099 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2100 		int	take_owner;
2101 		int	take_group;
2102 		uid_t	uid;
2103 		gid_t	gid;
2104 
2105 		/*
2106 		 * NOTE: even if a new mode is being set,
2107 		 * we may clear S_ISUID/S_ISGID bits.
2108 		 */
2109 
2110 		if (!(mask & ATTR_MODE))
2111 			vap->va_mode = zp->z_mode;
2112 
2113 		/*
2114 		 * Take ownership or chgrp to group we are a member of
2115 		 */
2116 
2117 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2118 		    vap->va_uid);
2119 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2120 		    vap->va_gid);
2121 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2122 		take_group = (mask & ATTR_GID) &&
2123 		    zfs_groupmember(zfsvfs, gid, cr);
2124 
2125 		/*
2126 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2127 		 * take_group must both be set in order to allow taking
2128 		 * ownership.
2129 		 *
2130 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2131 		 *
2132 		 */
2133 
2134 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2135 		    take_owner && take_group) ||
2136 		    ((idmask == ATTR_UID) && take_owner) ||
2137 		    ((idmask == ATTR_GID) && take_group)) {
2138 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2139 			    skipaclchk, cr, mnt_ns) == 0) {
2140 				/*
2141 				 * Remove setuid/setgid for non-privileged users
2142 				 */
2143 				(void) secpolicy_setid_clear(vap, cr);
2144 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2145 			} else {
2146 				need_policy =  TRUE;
2147 			}
2148 		} else {
2149 			need_policy =  TRUE;
2150 		}
2151 	}
2152 
2153 	mutex_enter(&zp->z_lock);
2154 	oldva.va_mode = zp->z_mode;
2155 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2156 	if (mask & ATTR_XVATTR) {
2157 		/*
2158 		 * Update xvattr mask to include only those attributes
2159 		 * that are actually changing.
2160 		 *
2161 		 * the bits will be restored prior to actually setting
2162 		 * the attributes so the caller thinks they were set.
2163 		 */
2164 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2165 			if (xoap->xoa_appendonly !=
2166 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2167 				need_policy = TRUE;
2168 			} else {
2169 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2170 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2171 			}
2172 		}
2173 
2174 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2175 			if (xoap->xoa_projinherit !=
2176 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2177 				need_policy = TRUE;
2178 			} else {
2179 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2180 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2181 			}
2182 		}
2183 
2184 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2185 			if (xoap->xoa_nounlink !=
2186 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2187 				need_policy = TRUE;
2188 			} else {
2189 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2190 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2191 			}
2192 		}
2193 
2194 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2195 			if (xoap->xoa_immutable !=
2196 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2197 				need_policy = TRUE;
2198 			} else {
2199 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2200 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2201 			}
2202 		}
2203 
2204 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2205 			if (xoap->xoa_nodump !=
2206 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2207 				need_policy = TRUE;
2208 			} else {
2209 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2210 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2211 			}
2212 		}
2213 
2214 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2215 			if (xoap->xoa_av_modified !=
2216 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2217 				need_policy = TRUE;
2218 			} else {
2219 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2220 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2221 			}
2222 		}
2223 
2224 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2225 			if ((!S_ISREG(ip->i_mode) &&
2226 			    xoap->xoa_av_quarantined) ||
2227 			    xoap->xoa_av_quarantined !=
2228 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2229 				need_policy = TRUE;
2230 			} else {
2231 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2232 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2233 			}
2234 		}
2235 
2236 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2237 			mutex_exit(&zp->z_lock);
2238 			err = SET_ERROR(EPERM);
2239 			goto out3;
2240 		}
2241 
2242 		if (need_policy == FALSE &&
2243 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2244 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2245 			need_policy = TRUE;
2246 		}
2247 	}
2248 
2249 	mutex_exit(&zp->z_lock);
2250 
2251 	if (mask & ATTR_MODE) {
2252 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2253 		    mnt_ns) == 0) {
2254 			err = secpolicy_setid_setsticky_clear(ip, vap,
2255 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2256 			if (err)
2257 				goto out3;
2258 			trim_mask |= ATTR_MODE;
2259 		} else {
2260 			need_policy = TRUE;
2261 		}
2262 	}
2263 
2264 	if (need_policy) {
2265 		/*
2266 		 * If trim_mask is set then take ownership
2267 		 * has been granted or write_acl is present and user
2268 		 * has the ability to modify mode.  In that case remove
2269 		 * UID|GID and or MODE from mask so that
2270 		 * secpolicy_vnode_setattr() doesn't revoke it.
2271 		 */
2272 
2273 		if (trim_mask) {
2274 			saved_mask = vap->va_mask;
2275 			vap->va_mask &= ~trim_mask;
2276 		}
2277 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2278 		    zfs_zaccess_unix, zp);
2279 		if (err)
2280 			goto out3;
2281 
2282 		if (trim_mask)
2283 			vap->va_mask |= saved_mask;
2284 	}
2285 
2286 	/*
2287 	 * secpolicy_vnode_setattr, or take ownership may have
2288 	 * changed va_mask
2289 	 */
2290 	mask = vap->va_mask;
2291 
2292 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2293 		handle_eadir = B_TRUE;
2294 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2295 		    &xattr_obj, sizeof (xattr_obj));
2296 
2297 		if (err == 0 && xattr_obj) {
2298 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2299 			if (err)
2300 				goto out2;
2301 		}
2302 		if (mask & ATTR_UID) {
2303 			new_kuid = zfs_fuid_create(zfsvfs,
2304 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2305 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2306 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2307 			    new_kuid)) {
2308 				if (attrzp)
2309 					zrele(attrzp);
2310 				err = SET_ERROR(EDQUOT);
2311 				goto out2;
2312 			}
2313 		}
2314 
2315 		if (mask & ATTR_GID) {
2316 			new_kgid = zfs_fuid_create(zfsvfs,
2317 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2318 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2319 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2320 			    new_kgid)) {
2321 				if (attrzp)
2322 					zrele(attrzp);
2323 				err = SET_ERROR(EDQUOT);
2324 				goto out2;
2325 			}
2326 		}
2327 
2328 		if (projid != ZFS_INVALID_PROJID &&
2329 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2330 			if (attrzp)
2331 				zrele(attrzp);
2332 			err = EDQUOT;
2333 			goto out2;
2334 		}
2335 	}
2336 	tx = dmu_tx_create(os);
2337 
2338 	if (mask & ATTR_MODE) {
2339 		uint64_t pmode = zp->z_mode;
2340 		uint64_t acl_obj;
2341 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2342 
2343 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2344 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2345 			err = EPERM;
2346 			goto out;
2347 		}
2348 
2349 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2350 			goto out;
2351 
2352 		mutex_enter(&zp->z_lock);
2353 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2354 			/*
2355 			 * Are we upgrading ACL from old V0 format
2356 			 * to V1 format?
2357 			 */
2358 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2359 			    zfs_znode_acl_version(zp) ==
2360 			    ZFS_ACL_VERSION_INITIAL) {
2361 				dmu_tx_hold_free(tx, acl_obj, 0,
2362 				    DMU_OBJECT_END);
2363 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2364 				    0, aclp->z_acl_bytes);
2365 			} else {
2366 				dmu_tx_hold_write(tx, acl_obj, 0,
2367 				    aclp->z_acl_bytes);
2368 			}
2369 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2370 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2371 			    0, aclp->z_acl_bytes);
2372 		}
2373 		mutex_exit(&zp->z_lock);
2374 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2375 	} else {
2376 		if (((mask & ATTR_XVATTR) &&
2377 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2378 		    (projid != ZFS_INVALID_PROJID &&
2379 		    !(zp->z_pflags & ZFS_PROJID)))
2380 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2381 		else
2382 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2383 	}
2384 
2385 	if (attrzp) {
2386 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2387 	}
2388 
2389 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2390 	if (fuid_dirtied)
2391 		zfs_fuid_txhold(zfsvfs, tx);
2392 
2393 	zfs_sa_upgrade_txholds(tx, zp);
2394 
2395 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2396 	if (err)
2397 		goto out;
2398 
2399 	count = 0;
2400 	/*
2401 	 * Set each attribute requested.
2402 	 * We group settings according to the locks they need to acquire.
2403 	 *
2404 	 * Note: you cannot set ctime directly, although it will be
2405 	 * updated as a side-effect of calling this function.
2406 	 */
2407 
2408 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2409 		/*
2410 		 * For the existed object that is upgraded from old system,
2411 		 * its on-disk layout has no slot for the project ID attribute.
2412 		 * But quota accounting logic needs to access related slots by
2413 		 * offset directly. So we need to adjust old objects' layout
2414 		 * to make the project ID to some unified and fixed offset.
2415 		 */
2416 		if (attrzp)
2417 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2418 		if (err == 0)
2419 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2420 
2421 		if (unlikely(err == EEXIST))
2422 			err = 0;
2423 		else if (err != 0)
2424 			goto out;
2425 		else
2426 			projid = ZFS_INVALID_PROJID;
2427 	}
2428 
2429 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2430 		mutex_enter(&zp->z_acl_lock);
2431 	mutex_enter(&zp->z_lock);
2432 
2433 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2434 	    &zp->z_pflags, sizeof (zp->z_pflags));
2435 
2436 	if (attrzp) {
2437 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2438 			mutex_enter(&attrzp->z_acl_lock);
2439 		mutex_enter(&attrzp->z_lock);
2440 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2441 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2442 		    sizeof (attrzp->z_pflags));
2443 		if (projid != ZFS_INVALID_PROJID) {
2444 			attrzp->z_projid = projid;
2445 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2446 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2447 			    sizeof (attrzp->z_projid));
2448 		}
2449 	}
2450 
2451 	if (mask & (ATTR_UID|ATTR_GID)) {
2452 
2453 		if (mask & ATTR_UID) {
2454 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2455 			new_uid = zfs_uid_read(ZTOI(zp));
2456 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2457 			    &new_uid, sizeof (new_uid));
2458 			if (attrzp) {
2459 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2460 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2461 				    sizeof (new_uid));
2462 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2463 			}
2464 		}
2465 
2466 		if (mask & ATTR_GID) {
2467 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2468 			new_gid = zfs_gid_read(ZTOI(zp));
2469 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2470 			    NULL, &new_gid, sizeof (new_gid));
2471 			if (attrzp) {
2472 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2473 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2474 				    sizeof (new_gid));
2475 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2476 			}
2477 		}
2478 		if (!(mask & ATTR_MODE)) {
2479 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2480 			    NULL, &new_mode, sizeof (new_mode));
2481 			new_mode = zp->z_mode;
2482 		}
2483 		err = zfs_acl_chown_setattr(zp);
2484 		ASSERT0(err);
2485 		if (attrzp) {
2486 			err = zfs_acl_chown_setattr(attrzp);
2487 			ASSERT0(err);
2488 		}
2489 	}
2490 
2491 	if (mask & ATTR_MODE) {
2492 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2493 		    &new_mode, sizeof (new_mode));
2494 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2495 		ASSERT3P(aclp, !=, NULL);
2496 		err = zfs_aclset_common(zp, aclp, cr, tx);
2497 		ASSERT0(err);
2498 		if (zp->z_acl_cached)
2499 			zfs_acl_free(zp->z_acl_cached);
2500 		zp->z_acl_cached = aclp;
2501 		aclp = NULL;
2502 	}
2503 
2504 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2505 		zp->z_atime_dirty = B_FALSE;
2506 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2507 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2508 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2509 		    &atime, sizeof (atime));
2510 	}
2511 
2512 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2513 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2514 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2515 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2516 
2517 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2518 		    mtime, sizeof (mtime));
2519 	}
2520 
2521 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2522 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2523 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2524 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2525 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2526 		    ctime, sizeof (ctime));
2527 	}
2528 
2529 	if (projid != ZFS_INVALID_PROJID) {
2530 		zp->z_projid = projid;
2531 		SA_ADD_BULK_ATTR(bulk, count,
2532 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2533 		    sizeof (zp->z_projid));
2534 	}
2535 
2536 	if (attrzp && mask) {
2537 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2538 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2539 		    sizeof (ctime));
2540 	}
2541 
2542 	/*
2543 	 * Do this after setting timestamps to prevent timestamp
2544 	 * update from toggling bit
2545 	 */
2546 
2547 	if (xoap && (mask & ATTR_XVATTR)) {
2548 
2549 		/*
2550 		 * restore trimmed off masks
2551 		 * so that return masks can be set for caller.
2552 		 */
2553 
2554 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2555 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2556 		}
2557 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2558 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2559 		}
2560 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2561 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2562 		}
2563 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2564 			XVA_SET_REQ(xvap, XAT_NODUMP);
2565 		}
2566 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2567 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2568 		}
2569 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2570 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2571 		}
2572 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2573 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2574 		}
2575 
2576 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2577 			ASSERT(S_ISREG(ip->i_mode));
2578 
2579 		zfs_xvattr_set(zp, xvap, tx);
2580 	}
2581 
2582 	if (fuid_dirtied)
2583 		zfs_fuid_sync(zfsvfs, tx);
2584 
2585 	if (mask != 0)
2586 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2587 
2588 	mutex_exit(&zp->z_lock);
2589 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2590 		mutex_exit(&zp->z_acl_lock);
2591 
2592 	if (attrzp) {
2593 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2594 			mutex_exit(&attrzp->z_acl_lock);
2595 		mutex_exit(&attrzp->z_lock);
2596 	}
2597 out:
2598 	if (err == 0 && xattr_count > 0) {
2599 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2600 		    xattr_count, tx);
2601 		ASSERT0(err2);
2602 	}
2603 
2604 	if (aclp)
2605 		zfs_acl_free(aclp);
2606 
2607 	if (fuidp) {
2608 		zfs_fuid_info_free(fuidp);
2609 		fuidp = NULL;
2610 	}
2611 
2612 	if (err) {
2613 		dmu_tx_abort(tx);
2614 		if (attrzp)
2615 			zrele(attrzp);
2616 		if (err == ERESTART)
2617 			goto top;
2618 	} else {
2619 		if (count > 0)
2620 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2621 		dmu_tx_commit(tx);
2622 		if (attrzp) {
2623 			if (err2 == 0 && handle_eadir)
2624 				err = zfs_setattr_dir(attrzp);
2625 			zrele(attrzp);
2626 		}
2627 		zfs_znode_update_vfs(zp);
2628 	}
2629 
2630 out2:
2631 	if (err == 0 && os->os_sync == ZFS_SYNC_ALWAYS)
2632 		err = zil_commit(zilog, 0);
2633 
2634 out3:
2635 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2636 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2637 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2638 	zfs_exit(zfsvfs, FTAG);
2639 	return (err);
2640 }
2641 
2642 typedef struct zfs_zlock {
2643 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2644 	znode_t		*zl_znode;	/* znode we held */
2645 	struct zfs_zlock *zl_next;	/* next in list */
2646 } zfs_zlock_t;
2647 
2648 /*
2649  * Drop locks and release vnodes that were held by zfs_rename_lock().
2650  */
2651 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)2652 zfs_rename_unlock(zfs_zlock_t **zlpp)
2653 {
2654 	zfs_zlock_t *zl;
2655 
2656 	while ((zl = *zlpp) != NULL) {
2657 		if (zl->zl_znode != NULL)
2658 			zfs_zrele_async(zl->zl_znode);
2659 		rw_exit(zl->zl_rwlock);
2660 		*zlpp = zl->zl_next;
2661 		kmem_free(zl, sizeof (*zl));
2662 	}
2663 }
2664 
2665 /*
2666  * Search back through the directory tree, using the ".." entries.
2667  * Lock each directory in the chain to prevent concurrent renames.
2668  * Fail any attempt to move a directory into one of its own descendants.
2669  * XXX - z_parent_lock can overlap with map or grow locks
2670  */
2671 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)2672 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2673 {
2674 	zfs_zlock_t	*zl;
2675 	znode_t		*zp = tdzp;
2676 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2677 	uint64_t	oidp = zp->z_id;
2678 	krwlock_t	*rwlp = &szp->z_parent_lock;
2679 	krw_t		rw = RW_WRITER;
2680 
2681 	/*
2682 	 * First pass write-locks szp and compares to zp->z_id.
2683 	 * Later passes read-lock zp and compare to zp->z_parent.
2684 	 */
2685 	do {
2686 		if (!rw_tryenter(rwlp, rw)) {
2687 			/*
2688 			 * Another thread is renaming in this path.
2689 			 * Note that if we are a WRITER, we don't have any
2690 			 * parent_locks held yet.
2691 			 */
2692 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2693 				/*
2694 				 * Drop our locks and restart
2695 				 */
2696 				zfs_rename_unlock(&zl);
2697 				*zlpp = NULL;
2698 				zp = tdzp;
2699 				oidp = zp->z_id;
2700 				rwlp = &szp->z_parent_lock;
2701 				rw = RW_WRITER;
2702 				continue;
2703 			} else {
2704 				/*
2705 				 * Wait for other thread to drop its locks
2706 				 */
2707 				rw_enter(rwlp, rw);
2708 			}
2709 		}
2710 
2711 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2712 		zl->zl_rwlock = rwlp;
2713 		zl->zl_znode = NULL;
2714 		zl->zl_next = *zlpp;
2715 		*zlpp = zl;
2716 
2717 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2718 			return (SET_ERROR(EINVAL));
2719 
2720 		if (oidp == rootid)		/* We've hit the top */
2721 			return (0);
2722 
2723 		if (rw == RW_READER) {		/* i.e. not the first pass */
2724 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2725 			if (error)
2726 				return (error);
2727 			zl->zl_znode = zp;
2728 		}
2729 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2730 		    &oidp, sizeof (oidp));
2731 		rwlp = &zp->z_parent_lock;
2732 		rw = RW_READER;
2733 
2734 	} while (zp->z_id != sdzp->z_id);
2735 
2736 	return (0);
2737 }
2738 
2739 /*
2740  * Move an entry from the provided source directory to the target
2741  * directory.  Change the entry name as indicated.
2742  *
2743  *	IN:	sdzp	- Source directory containing the "old entry".
2744  *		snm	- Old entry name.
2745  *		tdzp	- Target directory to contain the "new entry".
2746  *		tnm	- New entry name.
2747  *		cr	- credentials of caller.
2748  *		flags	- case flags
2749  *		rflags  - RENAME_* flags
2750  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2751  *		mnt_ns	- user namespace of the mount
2752  *
2753  *	RETURN:	0 on success, error code on failure.
2754  *
2755  * Timestamps:
2756  *	sdzp,tdzp - ctime|mtime updated
2757  */
2758 int
zfs_rename(znode_t * sdzp,char * snm,znode_t * tdzp,char * tnm,cred_t * cr,int flags,uint64_t rflags,vattr_t * wo_vap,zidmap_t * mnt_ns)2759 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2760     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2761 {
2762 	znode_t		*szp, *tzp;
2763 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2764 	zilog_t		*zilog;
2765 	zfs_dirlock_t	*sdl, *tdl;
2766 	dmu_tx_t	*tx;
2767 	zfs_zlock_t	*zl;
2768 	int		cmp, serr, terr;
2769 	int		error = 0;
2770 	int		zflg = 0;
2771 	boolean_t	waited = B_FALSE;
2772 	/* Needed for whiteout inode creation. */
2773 	boolean_t	fuid_dirtied;
2774 	zfs_acl_ids_t	acl_ids;
2775 	boolean_t	have_acl = B_FALSE;
2776 	znode_t		*wzp = NULL;
2777 
2778 
2779 	if (snm == NULL || tnm == NULL)
2780 		return (SET_ERROR(EINVAL));
2781 
2782 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2783 		return (SET_ERROR(EINVAL));
2784 
2785 	/* Already checked by Linux VFS, but just to make sure. */
2786 	if (rflags & RENAME_EXCHANGE &&
2787 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2788 		return (SET_ERROR(EINVAL));
2789 
2790 	/*
2791 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2792 	 * right kind of vattr_t for the whiteout file. These are set
2793 	 * internally by ZFS so should never be incorrect.
2794 	 */
2795 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2796 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2797 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2798 
2799 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2800 		return (error);
2801 	zilog = zfsvfs->z_log;
2802 
2803 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2804 		zfs_exit(zfsvfs, FTAG);
2805 		return (error);
2806 	}
2807 
2808 	/*
2809 	 * We check i_sb because snapshots and the ctldir must have different
2810 	 * super blocks.
2811 	 */
2812 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2813 	    zfsctl_is_node(ZTOI(tdzp))) {
2814 		zfs_exit(zfsvfs, FTAG);
2815 		return (SET_ERROR(EXDEV));
2816 	}
2817 
2818 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2819 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2820 		zfs_exit(zfsvfs, FTAG);
2821 		return (SET_ERROR(EILSEQ));
2822 	}
2823 
2824 	if (flags & FIGNORECASE)
2825 		zflg |= ZCILOOK;
2826 
2827 top:
2828 	szp = NULL;
2829 	tzp = NULL;
2830 	zl = NULL;
2831 
2832 	/*
2833 	 * This is to prevent the creation of links into attribute space
2834 	 * by renaming a linked file into/outof an attribute directory.
2835 	 * See the comment in zfs_link() for why this is considered bad.
2836 	 */
2837 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2838 		zfs_exit(zfsvfs, FTAG);
2839 		return (SET_ERROR(EINVAL));
2840 	}
2841 
2842 	/*
2843 	 * Lock source and target directory entries.  To prevent deadlock,
2844 	 * a lock ordering must be defined.  We lock the directory with
2845 	 * the smallest object id first, or if it's a tie, the one with
2846 	 * the lexically first name.
2847 	 */
2848 	if (sdzp->z_id < tdzp->z_id) {
2849 		cmp = -1;
2850 	} else if (sdzp->z_id > tdzp->z_id) {
2851 		cmp = 1;
2852 	} else {
2853 		/*
2854 		 * First compare the two name arguments without
2855 		 * considering any case folding.
2856 		 */
2857 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2858 
2859 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2860 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2861 		if (cmp == 0) {
2862 			/*
2863 			 * POSIX: "If the old argument and the new argument
2864 			 * both refer to links to the same existing file,
2865 			 * the rename() function shall return successfully
2866 			 * and perform no other action."
2867 			 */
2868 			zfs_exit(zfsvfs, FTAG);
2869 			return (0);
2870 		}
2871 		/*
2872 		 * If the file system is case-folding, then we may
2873 		 * have some more checking to do.  A case-folding file
2874 		 * system is either supporting mixed case sensitivity
2875 		 * access or is completely case-insensitive.  Note
2876 		 * that the file system is always case preserving.
2877 		 *
2878 		 * In mixed sensitivity mode case sensitive behavior
2879 		 * is the default.  FIGNORECASE must be used to
2880 		 * explicitly request case insensitive behavior.
2881 		 *
2882 		 * If the source and target names provided differ only
2883 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2884 		 * we will treat this as a special case in the
2885 		 * case-insensitive mode: as long as the source name
2886 		 * is an exact match, we will allow this to proceed as
2887 		 * a name-change request.
2888 		 */
2889 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2890 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2891 		    flags & FIGNORECASE)) &&
2892 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2893 		    &error) == 0) {
2894 			/*
2895 			 * case preserving rename request, require exact
2896 			 * name matches
2897 			 */
2898 			zflg |= ZCIEXACT;
2899 			zflg &= ~ZCILOOK;
2900 		}
2901 	}
2902 
2903 	/*
2904 	 * If the source and destination directories are the same, we should
2905 	 * grab the z_name_lock of that directory only once.
2906 	 */
2907 	if (sdzp == tdzp) {
2908 		zflg |= ZHAVELOCK;
2909 		rw_enter(&sdzp->z_name_lock, RW_READER);
2910 	}
2911 
2912 	if (cmp < 0) {
2913 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2914 		    ZEXISTS | zflg, NULL, NULL);
2915 		terr = zfs_dirent_lock(&tdl,
2916 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2917 	} else {
2918 		terr = zfs_dirent_lock(&tdl,
2919 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2920 		serr = zfs_dirent_lock(&sdl,
2921 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2922 		    NULL, NULL);
2923 	}
2924 
2925 	if (serr) {
2926 		/*
2927 		 * Source entry invalid or not there.
2928 		 */
2929 		if (!terr) {
2930 			zfs_dirent_unlock(tdl);
2931 			if (tzp)
2932 				zrele(tzp);
2933 		}
2934 
2935 		if (sdzp == tdzp)
2936 			rw_exit(&sdzp->z_name_lock);
2937 
2938 		if (strcmp(snm, "..") == 0)
2939 			serr = EINVAL;
2940 		zfs_exit(zfsvfs, FTAG);
2941 		return (serr);
2942 	}
2943 	if (terr) {
2944 		zfs_dirent_unlock(sdl);
2945 		zrele(szp);
2946 
2947 		if (sdzp == tdzp)
2948 			rw_exit(&sdzp->z_name_lock);
2949 
2950 		if (strcmp(tnm, "..") == 0)
2951 			terr = EINVAL;
2952 		zfs_exit(zfsvfs, FTAG);
2953 		return (terr);
2954 	}
2955 
2956 	/*
2957 	 * If we are using project inheritance, means if the directory has
2958 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2959 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2960 	 * such case, we only allow renames into our tree when the project
2961 	 * IDs are the same.
2962 	 */
2963 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2964 	    tdzp->z_projid != szp->z_projid) {
2965 		error = SET_ERROR(EXDEV);
2966 		goto out;
2967 	}
2968 
2969 	/*
2970 	 * Must have write access at the source to remove the old entry
2971 	 * and write access at the target to create the new entry.
2972 	 * Note that if target and source are the same, this can be
2973 	 * done in a single check.
2974 	 */
2975 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2976 		goto out;
2977 
2978 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2979 		/*
2980 		 * Check to make sure rename is valid.
2981 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2982 		 */
2983 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2984 			goto out;
2985 	}
2986 
2987 	/*
2988 	 * Does target exist?
2989 	 */
2990 	if (tzp) {
2991 		if (rflags & RENAME_NOREPLACE) {
2992 			error = SET_ERROR(EEXIST);
2993 			goto out;
2994 		}
2995 		/*
2996 		 * Source and target must be the same type (unless exchanging).
2997 		 */
2998 		if (!(rflags & RENAME_EXCHANGE)) {
2999 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
3000 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
3001 
3002 			if (s_is_dir != t_is_dir) {
3003 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
3004 				goto out;
3005 			}
3006 		}
3007 		/*
3008 		 * POSIX dictates that when the source and target
3009 		 * entries refer to the same file object, rename
3010 		 * must do nothing and exit without error.
3011 		 */
3012 		if (szp->z_id == tzp->z_id) {
3013 			error = 0;
3014 			goto out;
3015 		}
3016 	} else if (rflags & RENAME_EXCHANGE) {
3017 		/* Target must exist for RENAME_EXCHANGE. */
3018 		error = SET_ERROR(ENOENT);
3019 		goto out;
3020 	}
3021 
3022 	/* Set up inode creation for RENAME_WHITEOUT. */
3023 	if (rflags & RENAME_WHITEOUT) {
3024 		/*
3025 		 * Whiteout files are not regular files or directories, so to
3026 		 * match zfs_create() we do not inherit the project id.
3027 		 */
3028 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
3029 
3030 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
3031 		if (error)
3032 			goto out;
3033 
3034 		if (!have_acl) {
3035 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
3036 			    &acl_ids, mnt_ns);
3037 			if (error)
3038 				goto out;
3039 			have_acl = B_TRUE;
3040 		}
3041 
3042 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
3043 			error = SET_ERROR(EDQUOT);
3044 			goto out;
3045 		}
3046 	}
3047 
3048 	tx = dmu_tx_create(zfsvfs->z_os);
3049 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3050 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3051 	dmu_tx_hold_zap(tx, sdzp->z_id,
3052 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3053 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3054 	if (sdzp != tdzp) {
3055 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3056 		zfs_sa_upgrade_txholds(tx, tdzp);
3057 	}
3058 	if (tzp) {
3059 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3060 		zfs_sa_upgrade_txholds(tx, tzp);
3061 	}
3062 	if (rflags & RENAME_WHITEOUT) {
3063 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3064 		    ZFS_SA_BASE_ATTR_SIZE);
3065 
3066 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3067 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3068 		if (!zfsvfs->z_use_sa &&
3069 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3070 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3071 			    0, acl_ids.z_aclp->z_acl_bytes);
3072 		}
3073 	}
3074 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3075 	if (fuid_dirtied)
3076 		zfs_fuid_txhold(zfsvfs, tx);
3077 	zfs_sa_upgrade_txholds(tx, szp);
3078 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3079 	error = dmu_tx_assign(tx,
3080 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3081 	if (error) {
3082 		if (zl != NULL)
3083 			zfs_rename_unlock(&zl);
3084 		zfs_dirent_unlock(sdl);
3085 		zfs_dirent_unlock(tdl);
3086 
3087 		if (sdzp == tdzp)
3088 			rw_exit(&sdzp->z_name_lock);
3089 
3090 		if (error == ERESTART) {
3091 			waited = B_TRUE;
3092 			dmu_tx_wait(tx);
3093 			dmu_tx_abort(tx);
3094 			zrele(szp);
3095 			if (tzp)
3096 				zrele(tzp);
3097 			goto top;
3098 		}
3099 		dmu_tx_abort(tx);
3100 		zrele(szp);
3101 		if (tzp)
3102 			zrele(tzp);
3103 		zfs_exit(zfsvfs, FTAG);
3104 		return (error);
3105 	}
3106 
3107 	/*
3108 	 * Unlink the source.
3109 	 */
3110 	szp->z_pflags |= ZFS_AV_MODIFIED;
3111 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3112 		szp->z_pflags |= ZFS_PROJINHERIT;
3113 
3114 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3115 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3116 	VERIFY0(error);
3117 
3118 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3119 	if (error)
3120 		goto commit;
3121 
3122 	/*
3123 	 * Unlink the target.
3124 	 */
3125 	if (tzp) {
3126 		int tzflg = zflg;
3127 
3128 		if (rflags & RENAME_EXCHANGE) {
3129 			/* This inode will be re-linked soon. */
3130 			tzflg |= ZRENAMING;
3131 
3132 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3133 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3134 				tzp->z_pflags |= ZFS_PROJINHERIT;
3135 
3136 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3137 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3138 			ASSERT0(error);
3139 		}
3140 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3141 		if (error)
3142 			goto commit_link_szp;
3143 	}
3144 
3145 	/*
3146 	 * Create the new target links:
3147 	 *   * We always link the target.
3148 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3149 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3150 	 */
3151 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3152 	if (error) {
3153 		/*
3154 		 * If we have removed the existing target, a subsequent call to
3155 		 * zfs_link_create() to add back the same entry, but with a new
3156 		 * dnode (szp), should not fail.
3157 		 */
3158 		ASSERT0P(tzp);
3159 		goto commit_link_tzp;
3160 	}
3161 
3162 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3163 	case RENAME_EXCHANGE:
3164 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3165 		/*
3166 		 * The same argument as zfs_link_create() failing for
3167 		 * szp applies here, since the source directory must
3168 		 * have had an entry we are replacing.
3169 		 */
3170 		ASSERT0(error);
3171 		if (error)
3172 			goto commit_unlink_td_szp;
3173 		break;
3174 	case RENAME_WHITEOUT:
3175 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3176 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3177 		if (error) {
3178 			zfs_znode_delete(wzp, tx);
3179 			remove_inode_hash(ZTOI(wzp));
3180 			goto commit_unlink_td_szp;
3181 		}
3182 		break;
3183 	}
3184 
3185 	if (fuid_dirtied)
3186 		zfs_fuid_sync(zfsvfs, tx);
3187 
3188 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3189 	case RENAME_EXCHANGE:
3190 		zfs_log_rename_exchange(zilog, tx,
3191 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3192 		    tdzp, tdl->dl_name, szp);
3193 		break;
3194 	case RENAME_WHITEOUT:
3195 		zfs_log_rename_whiteout(zilog, tx,
3196 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3197 		    tdzp, tdl->dl_name, szp, wzp);
3198 		break;
3199 	default:
3200 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3201 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3202 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3203 		break;
3204 	}
3205 
3206 commit:
3207 	dmu_tx_commit(tx);
3208 out:
3209 	if (have_acl)
3210 		zfs_acl_ids_free(&acl_ids);
3211 
3212 	zfs_znode_update_vfs(sdzp);
3213 	if (sdzp == tdzp)
3214 		rw_exit(&sdzp->z_name_lock);
3215 
3216 	if (sdzp != tdzp)
3217 		zfs_znode_update_vfs(tdzp);
3218 
3219 	zfs_znode_update_vfs(szp);
3220 	zrele(szp);
3221 	if (wzp) {
3222 		zfs_znode_update_vfs(wzp);
3223 		zrele(wzp);
3224 	}
3225 	if (tzp) {
3226 		zfs_znode_update_vfs(tzp);
3227 		zrele(tzp);
3228 	}
3229 
3230 	if (zl != NULL)
3231 		zfs_rename_unlock(&zl);
3232 
3233 	zfs_dirent_unlock(sdl);
3234 	zfs_dirent_unlock(tdl);
3235 
3236 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3237 		error = zil_commit(zilog, 0);
3238 
3239 	zfs_exit(zfsvfs, FTAG);
3240 	return (error);
3241 
3242 	/*
3243 	 * Clean-up path for broken link state.
3244 	 *
3245 	 * At this point we are in a (very) bad state, so we need to do our
3246 	 * best to correct the state. In particular, all of the nlinks are
3247 	 * wrong because we were destroying and creating links with ZRENAMING.
3248 	 *
3249 	 * In some form, all of these operations have to resolve the state:
3250 	 *
3251 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3252 	 *    since we only just created it.
3253 	 *
3254 	 *  * link_create()s are allowed to fail (though they shouldn't because
3255 	 *    we only just unlinked them and are putting the entries back
3256 	 *    during clean-up). But if they fail, we can just forcefully drop
3257 	 *    the nlink value to (at the very least) avoid broken nlink values
3258 	 *    -- though in the case of non-empty directories we will have to
3259 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3260 	 */
3261 commit_unlink_td_szp:
3262 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3263 commit_link_tzp:
3264 	if (tzp) {
3265 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3266 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3267 	}
3268 commit_link_szp:
3269 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3270 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3271 	goto commit;
3272 }
3273 
3274 /*
3275  * Insert the indicated symbolic reference entry into the directory.
3276  *
3277  *	IN:	dzp	- Directory to contain new symbolic link.
3278  *		name	- Name of directory entry in dip.
3279  *		vap	- Attributes of new entry.
3280  *		link	- Name for new symlink entry.
3281  *		cr	- credentials of caller.
3282  *		flags	- case flags
3283  *		mnt_ns	- user namespace of the mount
3284  *
3285  *	OUT:	zpp	- Znode for new symbolic link.
3286  *
3287  *	RETURN:	0 on success, error code on failure.
3288  *
3289  * Timestamps:
3290  *	dip - ctime|mtime updated
3291  */
3292 int
zfs_symlink(znode_t * dzp,char * name,vattr_t * vap,char * link,znode_t ** zpp,cred_t * cr,int flags,zidmap_t * mnt_ns)3293 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3294     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3295 {
3296 	znode_t		*zp;
3297 	zfs_dirlock_t	*dl;
3298 	dmu_tx_t	*tx;
3299 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3300 	zilog_t		*zilog;
3301 	uint64_t	len = strlen(link);
3302 	int		error;
3303 	int		zflg = ZNEW;
3304 	zfs_acl_ids_t	acl_ids;
3305 	boolean_t	fuid_dirtied;
3306 	uint64_t	txtype = TX_SYMLINK;
3307 	boolean_t	waited = B_FALSE;
3308 
3309 	ASSERT(S_ISLNK(vap->va_mode));
3310 
3311 	if (name == NULL)
3312 		return (SET_ERROR(EINVAL));
3313 
3314 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3315 		return (error);
3316 	zilog = zfsvfs->z_log;
3317 
3318 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3319 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3320 		zfs_exit(zfsvfs, FTAG);
3321 		return (SET_ERROR(EILSEQ));
3322 	}
3323 	if (flags & FIGNORECASE)
3324 		zflg |= ZCILOOK;
3325 
3326 	if (len > MAXPATHLEN) {
3327 		zfs_exit(zfsvfs, FTAG);
3328 		return (SET_ERROR(ENAMETOOLONG));
3329 	}
3330 
3331 	if ((error = zfs_acl_ids_create(dzp, 0,
3332 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3333 		zfs_exit(zfsvfs, FTAG);
3334 		return (error);
3335 	}
3336 top:
3337 	*zpp = NULL;
3338 
3339 	/*
3340 	 * Attempt to lock directory; fail if entry already exists.
3341 	 */
3342 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3343 	if (error) {
3344 		zfs_acl_ids_free(&acl_ids);
3345 		zfs_exit(zfsvfs, FTAG);
3346 		return (error);
3347 	}
3348 
3349 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3350 		zfs_acl_ids_free(&acl_ids);
3351 		zfs_dirent_unlock(dl);
3352 		zfs_exit(zfsvfs, FTAG);
3353 		return (error);
3354 	}
3355 
3356 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3357 		zfs_acl_ids_free(&acl_ids);
3358 		zfs_dirent_unlock(dl);
3359 		zfs_exit(zfsvfs, FTAG);
3360 		return (SET_ERROR(EDQUOT));
3361 	}
3362 	tx = dmu_tx_create(zfsvfs->z_os);
3363 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3364 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3365 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3366 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3367 	    ZFS_SA_BASE_ATTR_SIZE + len);
3368 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3369 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3370 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3371 		    acl_ids.z_aclp->z_acl_bytes);
3372 	}
3373 	if (fuid_dirtied)
3374 		zfs_fuid_txhold(zfsvfs, tx);
3375 	error = dmu_tx_assign(tx,
3376 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3377 	if (error) {
3378 		zfs_dirent_unlock(dl);
3379 		if (error == ERESTART) {
3380 			waited = B_TRUE;
3381 			dmu_tx_wait(tx);
3382 			dmu_tx_abort(tx);
3383 			goto top;
3384 		}
3385 		zfs_acl_ids_free(&acl_ids);
3386 		dmu_tx_abort(tx);
3387 		zfs_exit(zfsvfs, FTAG);
3388 		return (error);
3389 	}
3390 
3391 	/*
3392 	 * Create a new object for the symlink.
3393 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3394 	 */
3395 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3396 
3397 	if (fuid_dirtied)
3398 		zfs_fuid_sync(zfsvfs, tx);
3399 
3400 	mutex_enter(&zp->z_lock);
3401 	if (zp->z_is_sa)
3402 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3403 		    link, len, tx);
3404 	else
3405 		zfs_sa_symlink(zp, link, len, tx);
3406 	mutex_exit(&zp->z_lock);
3407 
3408 	zp->z_size = len;
3409 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3410 	    &zp->z_size, sizeof (zp->z_size), tx);
3411 	/*
3412 	 * Insert the new object into the directory.
3413 	 */
3414 	error = zfs_link_create(dl, zp, tx, ZNEW);
3415 	if (error != 0) {
3416 		zfs_znode_delete(zp, tx);
3417 		remove_inode_hash(ZTOI(zp));
3418 	} else {
3419 		if (flags & FIGNORECASE)
3420 			txtype |= TX_CI;
3421 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3422 
3423 		zfs_znode_update_vfs(dzp);
3424 		zfs_znode_update_vfs(zp);
3425 	}
3426 
3427 	zfs_acl_ids_free(&acl_ids);
3428 
3429 	dmu_tx_commit(tx);
3430 
3431 	zfs_dirent_unlock(dl);
3432 
3433 	if (error == 0) {
3434 		*zpp = zp;
3435 
3436 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3437 			error = zil_commit(zilog, 0);
3438 	} else {
3439 		zrele(zp);
3440 	}
3441 
3442 	zfs_exit(zfsvfs, FTAG);
3443 	return (error);
3444 }
3445 
3446 /*
3447  * Return, in the buffer contained in the provided uio structure,
3448  * the symbolic path referred to by ip.
3449  *
3450  *	IN:	ip	- inode of symbolic link
3451  *		uio	- structure to contain the link path.
3452  *		cr	- credentials of caller.
3453  *
3454  *	RETURN:	0 if success
3455  *		error code if failure
3456  *
3457  * Timestamps:
3458  *	ip - atime updated
3459  */
3460 int
zfs_readlink(struct inode * ip,zfs_uio_t * uio,cred_t * cr)3461 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3462 {
3463 	(void) cr;
3464 	znode_t		*zp = ITOZ(ip);
3465 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3466 	int		error;
3467 
3468 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3469 		return (error);
3470 
3471 	mutex_enter(&zp->z_lock);
3472 	if (zp->z_is_sa)
3473 		error = sa_lookup_uio(zp->z_sa_hdl,
3474 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3475 	else
3476 		error = zfs_sa_readlink(zp, uio);
3477 	mutex_exit(&zp->z_lock);
3478 
3479 	zfs_exit(zfsvfs, FTAG);
3480 	return (error);
3481 }
3482 
3483 /*
3484  * Insert a new entry into directory tdzp referencing szp.
3485  *
3486  *	IN:	tdzp	- Directory to contain new entry.
3487  *		szp	- znode of new entry.
3488  *		name	- name of new entry.
3489  *		cr	- credentials of caller.
3490  *		flags	- case flags.
3491  *
3492  *	RETURN:	0 if success
3493  *		error code if failure
3494  *
3495  * Timestamps:
3496  *	tdzp - ctime|mtime updated
3497  *	 szp - ctime updated
3498  */
3499 int
zfs_link(znode_t * tdzp,znode_t * szp,char * name,cred_t * cr,int flags)3500 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3501     int flags)
3502 {
3503 	struct inode *sip = ZTOI(szp);
3504 	znode_t		*tzp;
3505 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3506 	zilog_t		*zilog;
3507 	zfs_dirlock_t	*dl;
3508 	dmu_tx_t	*tx;
3509 	int		error;
3510 	int		zf = ZNEW;
3511 	uint64_t	parent;
3512 	uid_t		owner;
3513 	boolean_t	waited = B_FALSE;
3514 	boolean_t	is_tmpfile = 0;
3515 	uint64_t	txg;
3516 
3517 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3518 
3519 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3520 
3521 	if (name == NULL)
3522 		return (SET_ERROR(EINVAL));
3523 
3524 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3525 		return (error);
3526 	zilog = zfsvfs->z_log;
3527 
3528 	/*
3529 	 * POSIX dictates that we return EPERM here.
3530 	 * Better choices include ENOTSUP or EISDIR.
3531 	 */
3532 	if (S_ISDIR(sip->i_mode)) {
3533 		zfs_exit(zfsvfs, FTAG);
3534 		return (SET_ERROR(EPERM));
3535 	}
3536 
3537 	if ((error = zfs_verify_zp(szp)) != 0) {
3538 		zfs_exit(zfsvfs, FTAG);
3539 		return (error);
3540 	}
3541 
3542 	/*
3543 	 * If we are using project inheritance, means if the directory has
3544 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3545 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3546 	 * such case, we only allow hard link creation in our tree when the
3547 	 * project IDs are the same.
3548 	 */
3549 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3550 	    tdzp->z_projid != szp->z_projid) {
3551 		zfs_exit(zfsvfs, FTAG);
3552 		return (SET_ERROR(EXDEV));
3553 	}
3554 
3555 	/*
3556 	 * We check i_sb because snapshots and the ctldir must have different
3557 	 * super blocks.
3558 	 */
3559 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3560 		zfs_exit(zfsvfs, FTAG);
3561 		return (SET_ERROR(EXDEV));
3562 	}
3563 
3564 	/* Prevent links to .zfs/shares files */
3565 
3566 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3567 	    &parent, sizeof (uint64_t))) != 0) {
3568 		zfs_exit(zfsvfs, FTAG);
3569 		return (error);
3570 	}
3571 	if (parent == zfsvfs->z_shares_dir) {
3572 		zfs_exit(zfsvfs, FTAG);
3573 		return (SET_ERROR(EPERM));
3574 	}
3575 
3576 	if (zfsvfs->z_utf8 && u8_validate(name,
3577 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3578 		zfs_exit(zfsvfs, FTAG);
3579 		return (SET_ERROR(EILSEQ));
3580 	}
3581 	if (flags & FIGNORECASE)
3582 		zf |= ZCILOOK;
3583 
3584 	/*
3585 	 * We do not support links between attributes and non-attributes
3586 	 * because of the potential security risk of creating links
3587 	 * into "normal" file space in order to circumvent restrictions
3588 	 * imposed in attribute space.
3589 	 */
3590 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3591 		zfs_exit(zfsvfs, FTAG);
3592 		return (SET_ERROR(EINVAL));
3593 	}
3594 
3595 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3596 	    cr, ZFS_OWNER);
3597 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3598 		zfs_exit(zfsvfs, FTAG);
3599 		return (SET_ERROR(EPERM));
3600 	}
3601 
3602 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3603 	    zfs_init_idmap))) {
3604 		zfs_exit(zfsvfs, FTAG);
3605 		return (error);
3606 	}
3607 
3608 top:
3609 	/*
3610 	 * Attempt to lock directory; fail if entry already exists.
3611 	 */
3612 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3613 	if (error) {
3614 		zfs_exit(zfsvfs, FTAG);
3615 		return (error);
3616 	}
3617 
3618 	tx = dmu_tx_create(zfsvfs->z_os);
3619 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3620 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3621 	if (is_tmpfile)
3622 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3623 
3624 	zfs_sa_upgrade_txholds(tx, szp);
3625 	zfs_sa_upgrade_txholds(tx, tdzp);
3626 	error = dmu_tx_assign(tx,
3627 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3628 	if (error) {
3629 		zfs_dirent_unlock(dl);
3630 		if (error == ERESTART) {
3631 			waited = B_TRUE;
3632 			dmu_tx_wait(tx);
3633 			dmu_tx_abort(tx);
3634 			goto top;
3635 		}
3636 		dmu_tx_abort(tx);
3637 		zfs_exit(zfsvfs, FTAG);
3638 		return (error);
3639 	}
3640 	/* unmark z_unlinked so zfs_link_create will not reject */
3641 	if (is_tmpfile)
3642 		szp->z_unlinked = B_FALSE;
3643 	error = zfs_link_create(dl, szp, tx, 0);
3644 
3645 	if (error == 0) {
3646 		uint64_t txtype = TX_LINK;
3647 		/*
3648 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3649 		 * Also, we don't log in ZIL, because all previous file
3650 		 * operation on the tmpfile are ignored by ZIL. Instead we
3651 		 * always wait for txg to sync to make sure all previous
3652 		 * operation are sync safe.
3653 		 */
3654 		if (is_tmpfile) {
3655 			VERIFY0(zap_remove_int(zfsvfs->z_os,
3656 			    zfsvfs->z_unlinkedobj, szp->z_id, tx));
3657 		} else {
3658 			if (flags & FIGNORECASE)
3659 				txtype |= TX_CI;
3660 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3661 		}
3662 	} else if (is_tmpfile) {
3663 		/* restore z_unlinked since when linking failed */
3664 		szp->z_unlinked = B_TRUE;
3665 	}
3666 	txg = dmu_tx_get_txg(tx);
3667 	dmu_tx_commit(tx);
3668 
3669 	zfs_dirent_unlock(dl);
3670 
3671 	if (error == 0) {
3672 		if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3673 			error = zil_commit(zilog, 0);
3674 
3675 		if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
3676 			txg_wait_flag_t wait_flags =
3677 			    spa_get_failmode(dmu_objset_spa(zfsvfs->z_os)) ==
3678 			    ZIO_FAILURE_MODE_CONTINUE ? TXG_WAIT_SUSPEND : 0;
3679 			error = txg_wait_synced_flags(
3680 			    dmu_objset_pool(zfsvfs->z_os), txg, wait_flags);
3681 			if (error != 0) {
3682 				ASSERT3U(error, ==, ESHUTDOWN);
3683 				error = SET_ERROR(EIO);
3684 			}
3685 		}
3686 	}
3687 
3688 	zfs_znode_update_vfs(tdzp);
3689 	zfs_znode_update_vfs(szp);
3690 	zfs_exit(zfsvfs, FTAG);
3691 	return (error);
3692 }
3693 
3694 /* Finish page writeback. */
3695 static inline void
zfs_page_writeback_done(struct page * pp,int err)3696 zfs_page_writeback_done(struct page *pp, int err)
3697 {
3698 	if (err != 0) {
3699 		/*
3700 		 * Writeback failed. Re-dirty the page. It was undirtied before
3701 		 * the IO was issued (in zfs_putpage() or write_cache_pages()).
3702 		 * The kernel only considers writeback for dirty pages; if we
3703 		 * don't do this, it is eligible for eviction without being
3704 		 * written out, which we definitely don't want.
3705 		 */
3706 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3707 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3708 #else
3709 		__set_page_dirty_nobuffers(pp);
3710 #endif
3711 	}
3712 
3713 	ClearPageError(pp);
3714 	end_page_writeback(pp);
3715 }
3716 
3717 /*
3718  * ZIL callback for page writeback. Passes to zfs_log_write() in zfs_putpage()
3719  * for syncing writes. Called when the ZIL itx has been written to the log or
3720  * the whole txg syncs, or if the ZIL crashes or the pool suspends. Any failure
3721  * is passed as `err`.
3722  */
3723 static void
zfs_putpage_commit_cb(void * arg,int err)3724 zfs_putpage_commit_cb(void *arg, int err)
3725 {
3726 	zfs_page_writeback_done(arg, err);
3727 }
3728 
3729 /*
3730  * Push a page out to disk, once the page is on stable storage the
3731  * registered commit callback will be run as notification of completion.
3732  *
3733  *	IN:	ip	 - page mapped for inode.
3734  *		pp	 - page to push (page is locked)
3735  *		wbc	 - writeback control data
3736  *		for_sync - does the caller intend to wait synchronously for the
3737  *			   page writeback to complete?
3738  *
3739  *	RETURN:	0 if success
3740  *		error code if failure
3741  *
3742  * Timestamps:
3743  *	ip - ctime|mtime updated
3744  */
3745 int
zfs_putpage(struct inode * ip,struct page * pp,struct writeback_control * wbc,boolean_t for_sync)3746 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3747     boolean_t for_sync)
3748 {
3749 	znode_t		*zp = ITOZ(ip);
3750 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3751 	loff_t		offset;
3752 	loff_t		pgoff;
3753 	unsigned int	pglen;
3754 	dmu_tx_t	*tx;
3755 	caddr_t		va;
3756 	int		err = 0;
3757 	uint64_t	mtime[2], ctime[2];
3758 	inode_timespec_t tmp_ts;
3759 	sa_bulk_attr_t	bulk[3];
3760 	int		cnt = 0;
3761 	struct address_space *mapping;
3762 
3763 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3764 		return (err);
3765 
3766 	ASSERT(PageLocked(pp));
3767 
3768 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3769 	offset = i_size_read(ip);	/* File length in bytes */
3770 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3771 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3772 
3773 	/* Page is beyond end of file */
3774 	if (pgoff >= offset) {
3775 		unlock_page(pp);
3776 		zfs_exit(zfsvfs, FTAG);
3777 		return (0);
3778 	}
3779 
3780 	/* Truncate page length to end of file */
3781 	if (pgoff + pglen > offset)
3782 		pglen = offset - pgoff;
3783 
3784 #if 0
3785 	/*
3786 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3787 	 * is to register a page_mkwrite() handler to count the page
3788 	 * against its quota when it is about to be dirtied.
3789 	 */
3790 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3791 	    KUID_TO_SUID(ip->i_uid)) ||
3792 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3793 	    KGID_TO_SGID(ip->i_gid)) ||
3794 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3795 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3796 	    zp->z_projid))) {
3797 		err = EDQUOT;
3798 	}
3799 #endif
3800 
3801 	/*
3802 	 * The ordering here is critical and must adhere to the following
3803 	 * rules in order to avoid deadlocking in either zfs_read() or
3804 	 * zfs_free_range() due to a lock inversion.
3805 	 *
3806 	 * 1) The page must be unlocked prior to acquiring the range lock.
3807 	 *    This is critical because zfs_read() calls find_lock_page()
3808 	 *    which may block on the page lock while holding the range lock.
3809 	 *
3810 	 * 2) Before setting or clearing write back on a page the range lock
3811 	 *    must be held in order to prevent a lock inversion with the
3812 	 *    zfs_free_range() function.
3813 	 *
3814 	 * This presents a problem because upon entering this function the
3815 	 * page lock is already held.  To safely acquire the range lock the
3816 	 * page lock must be dropped.  This creates a window where another
3817 	 * process could truncate, invalidate, dirty, or write out the page.
3818 	 *
3819 	 * Therefore, after successfully reacquiring the range and page locks
3820 	 * the current page state is checked.  In the common case everything
3821 	 * will be as is expected and it can be written out.  However, if
3822 	 * the page state has changed it must be handled accordingly.
3823 	 */
3824 	mapping = pp->mapping;
3825 	redirty_page_for_writepage(wbc, pp);
3826 	unlock_page(pp);
3827 
3828 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3829 	    pgoff, pglen, RL_WRITER);
3830 	lock_page(pp);
3831 
3832 	/* Page mapping changed or it was no longer dirty, we're done */
3833 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3834 		unlock_page(pp);
3835 		zfs_rangelock_exit(lr);
3836 		zfs_exit(zfsvfs, FTAG);
3837 		return (0);
3838 	}
3839 
3840 	/* Another process started write block if required */
3841 	if (PageWriteback(pp)) {
3842 		unlock_page(pp);
3843 		zfs_rangelock_exit(lr);
3844 
3845 		if (wbc->sync_mode != WB_SYNC_NONE) {
3846 			if (PageWriteback(pp))
3847 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3848 				folio_wait_bit(page_folio(pp), PG_writeback);
3849 #else
3850 				wait_on_page_bit(pp, PG_writeback);
3851 #endif
3852 		}
3853 
3854 		zfs_exit(zfsvfs, FTAG);
3855 		return (0);
3856 	}
3857 
3858 	/* Clear the dirty flag the required locks are held */
3859 	if (!clear_page_dirty_for_io(pp)) {
3860 		unlock_page(pp);
3861 		zfs_rangelock_exit(lr);
3862 		zfs_exit(zfsvfs, FTAG);
3863 		return (0);
3864 	}
3865 
3866 	/*
3867 	 * Counterpart for redirty_page_for_writepage() above.  This page
3868 	 * was in fact not skipped and should not be counted as if it were.
3869 	 */
3870 	wbc->pages_skipped--;
3871 	set_page_writeback(pp);
3872 	unlock_page(pp);
3873 
3874 	tx = dmu_tx_create(zfsvfs->z_os);
3875 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3876 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3877 	zfs_sa_upgrade_txholds(tx, zp);
3878 
3879 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
3880 	if (err != 0) {
3881 		dmu_tx_abort(tx);
3882 		zfs_page_writeback_done(pp, err);
3883 		zfs_rangelock_exit(lr);
3884 		zfs_exit(zfsvfs, FTAG);
3885 
3886 		/*
3887 		 * Don't return error for an async writeback; we've re-dirtied
3888 		 * the page so it will be tried again some other time.
3889 		 */
3890 		return (for_sync ? err : 0);
3891 	}
3892 
3893 	va = kmap(pp);
3894 	ASSERT3U(pglen, <=, PAGE_SIZE);
3895 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3896 	kunmap(pp);
3897 
3898 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3899 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3900 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3901 	    &zp->z_pflags, 8);
3902 
3903 	/* Preserve the mtime and ctime provided by the inode */
3904 	tmp_ts = zpl_inode_get_mtime(ip);
3905 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3906 	tmp_ts = zpl_inode_get_ctime(ip);
3907 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3908 	zp->z_atime_dirty = B_FALSE;
3909 	zp->z_seq++;
3910 
3911 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3912 
3913 	/*
3914 	 * A note about for_sync vs wbc->sync_mode.
3915 	 *
3916 	 * for_sync indicates that this is a syncing writeback, that is, kernel
3917 	 * caller expects the data to be durably stored before being notified.
3918 	 * Often, but not always, the call was triggered by a userspace syncing
3919 	 * op (eg fsync(), msync(MS_SYNC)). For our purposes, for_sync==TRUE
3920 	 * means that that page should remain "locked" (in the writeback state)
3921 	 * until it is definitely on disk (ie zil_commit() or spa_sync()).
3922 	 * Otherwise, we can unlock and return as soon as it is on the
3923 	 * in-memory ZIL.
3924 	 *
3925 	 * wbc->sync_mode has similar meaning. wbc is passed from the kernel to
3926 	 * zpl_writepages()/zpl_writepage(); wbc->sync_mode==WB_SYNC_NONE
3927 	 * indicates this a regular async writeback (eg a cache eviction) and
3928 	 * so does not need a durability guarantee, while WB_SYNC_ALL indicates
3929 	 * a syncing op that must be waited on (by convention, we test for
3930 	 * !WB_SYNC_NONE rather than WB_SYNC_ALL, to prefer durability over
3931 	 * performance should there ever be a new mode that we have not yet
3932 	 * added support for).
3933 	 *
3934 	 * So, why a separate for_sync field? This is because zpl_writepages()
3935 	 * calls zfs_putpage() multiple times for a single "logical" operation.
3936 	 * It wants all the individual pages to be for_sync==TRUE ie only
3937 	 * unlocked once durably stored, but it only wants one call to
3938 	 * zil_commit() at the very end, once all the pages are synced. So,
3939 	 * it repurposes sync_mode slightly to indicate who issue and wait for
3940 	 * the IO: for NONE, the caller to zfs_putpage() will do it, while for
3941 	 * ALL, zfs_putpage should do it.
3942 	 *
3943 	 * Summary:
3944 	 *   for_sync:  0=unlock immediately; 1=unlock once on disk
3945 	 *   sync_mode: NONE=caller will commit; ALL=we will commit
3946 	 */
3947 	boolean_t need_commit = (wbc->sync_mode != WB_SYNC_NONE);
3948 
3949 	/*
3950 	 * We use for_sync as the "commit" arg to zfs_log_write() (arg 7)
3951 	 * because it is a policy flag that indicates "someone will call
3952 	 * zil_commit() soon". for_sync=TRUE means exactly that; the only
3953 	 * question is whether it will be us, or zpl_writepages().
3954 	 */
3955 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, for_sync,
3956 	    B_FALSE, for_sync ? zfs_putpage_commit_cb : NULL, pp);
3957 
3958 	if (!for_sync) {
3959 		/*
3960 		 * Async writeback is logged and written to the DMU, so page
3961 		 * can now be unlocked.
3962 		 */
3963 		zfs_page_writeback_done(pp, 0);
3964 	}
3965 
3966 	dmu_tx_commit(tx);
3967 
3968 	zfs_rangelock_exit(lr);
3969 
3970 	if (need_commit) {
3971 		err = zil_commit_flags(zfsvfs->z_log, zp->z_id, ZIL_COMMIT_NOW);
3972 		if (err != 0) {
3973 			zfs_exit(zfsvfs, FTAG);
3974 			return (err);
3975 		}
3976 	}
3977 
3978 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3979 
3980 	zfs_exit(zfsvfs, FTAG);
3981 	return (err);
3982 }
3983 
3984 /*
3985  * Update the system attributes when the inode has been dirtied.  For the
3986  * moment we only update the mode, atime, mtime, and ctime.
3987  */
3988 int
zfs_dirty_inode(struct inode * ip,int flags)3989 zfs_dirty_inode(struct inode *ip, int flags)
3990 {
3991 	znode_t		*zp = ITOZ(ip);
3992 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3993 	dmu_tx_t	*tx;
3994 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3995 	inode_timespec_t tmp_ts;
3996 	sa_bulk_attr_t	bulk[4];
3997 	int		error = 0;
3998 	int		cnt = 0;
3999 
4000 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4001 		return (0);
4002 
4003 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4004 		return (error);
4005 
4006 #ifdef I_DIRTY_TIME
4007 	/*
4008 	 * This is the lazytime semantic introduced in Linux 4.0
4009 	 * This flag will only be called from update_time when lazytime is set.
4010 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4011 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
4012 	 * only need to dirty atime.
4013 	 */
4014 	if (flags == I_DIRTY_TIME) {
4015 		zp->z_atime_dirty = B_TRUE;
4016 		goto out;
4017 	}
4018 #endif
4019 
4020 	tx = dmu_tx_create(zfsvfs->z_os);
4021 
4022 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4023 	zfs_sa_upgrade_txholds(tx, zp);
4024 
4025 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
4026 	if (error) {
4027 		dmu_tx_abort(tx);
4028 		goto out;
4029 	}
4030 
4031 	mutex_enter(&zp->z_lock);
4032 	zp->z_atime_dirty = B_FALSE;
4033 
4034 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4035 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4036 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4037 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4038 
4039 	/* Preserve the mode, mtime and ctime provided by the inode */
4040 	tmp_ts = zpl_inode_get_atime(ip);
4041 	ZFS_TIME_ENCODE(&tmp_ts, atime);
4042 	tmp_ts = zpl_inode_get_mtime(ip);
4043 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
4044 	tmp_ts = zpl_inode_get_ctime(ip);
4045 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
4046 	mode = ip->i_mode;
4047 
4048 	zp->z_mode = mode;
4049 
4050 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4051 	mutex_exit(&zp->z_lock);
4052 
4053 	dmu_tx_commit(tx);
4054 out:
4055 	zfs_exit(zfsvfs, FTAG);
4056 	return (error);
4057 }
4058 
4059 void
zfs_inactive(struct inode * ip)4060 zfs_inactive(struct inode *ip)
4061 {
4062 	znode_t	*zp = ITOZ(ip);
4063 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4064 	uint64_t atime[2];
4065 	int error;
4066 	int need_unlock = 0;
4067 
4068 	/* Only read lock if we haven't already write locked, e.g. rollback */
4069 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4070 		need_unlock = 1;
4071 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4072 	}
4073 	if (zp->z_sa_hdl == NULL) {
4074 		if (need_unlock)
4075 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
4076 		return;
4077 	}
4078 
4079 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
4080 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4081 
4082 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4083 		zfs_sa_upgrade_txholds(tx, zp);
4084 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
4085 		if (error) {
4086 			dmu_tx_abort(tx);
4087 		} else {
4088 			inode_timespec_t tmp_atime;
4089 			tmp_atime = zpl_inode_get_atime(ip);
4090 			ZFS_TIME_ENCODE(&tmp_atime, atime);
4091 			mutex_enter(&zp->z_lock);
4092 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4093 			    (void *)&atime, sizeof (atime), tx);
4094 			zp->z_atime_dirty = B_FALSE;
4095 			mutex_exit(&zp->z_lock);
4096 			dmu_tx_commit(tx);
4097 		}
4098 	}
4099 
4100 	zfs_zinactive(zp);
4101 	if (need_unlock)
4102 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4103 }
4104 
4105 /*
4106  * Fill pages with data from the disk.
4107  */
4108 static int
zfs_fillpage(struct inode * ip,struct page * pp)4109 zfs_fillpage(struct inode *ip, struct page *pp)
4110 {
4111 	znode_t *zp = ITOZ(ip);
4112 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4113 	loff_t i_size = i_size_read(ip);
4114 	u_offset_t io_off = page_offset(pp);
4115 	size_t io_len = PAGE_SIZE;
4116 
4117 	ASSERT3U(io_off, <, i_size);
4118 
4119 	if (io_off + io_len > i_size)
4120 		io_len = i_size - io_off;
4121 
4122 	void *va = kmap(pp);
4123 	int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off,
4124 	    io_len, va, DMU_READ_PREFETCH);
4125 	if (io_len != PAGE_SIZE)
4126 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4127 	kunmap(pp);
4128 
4129 	if (error) {
4130 		/* convert checksum errors into IO errors */
4131 		if (error == ECKSUM)
4132 			error = SET_ERROR(EIO);
4133 
4134 		SetPageError(pp);
4135 		ClearPageUptodate(pp);
4136 	} else {
4137 		ClearPageError(pp);
4138 		SetPageUptodate(pp);
4139 	}
4140 
4141 	return (error);
4142 }
4143 
4144 /*
4145  * Uses zfs_fillpage to read data from the file and fill the page.
4146  *
4147  *	IN:	ip	 - inode of file to get data from.
4148  *		pp	 - page to read
4149  *
4150  *	RETURN:	0 on success, error code on failure.
4151  *
4152  * Timestamps:
4153  *	vp - atime updated
4154  */
4155 int
zfs_getpage(struct inode * ip,struct page * pp)4156 zfs_getpage(struct inode *ip, struct page *pp)
4157 {
4158 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4159 	znode_t *zp = ITOZ(ip);
4160 	int error;
4161 	loff_t i_size = i_size_read(ip);
4162 	u_offset_t io_off = page_offset(pp);
4163 	size_t io_len = PAGE_SIZE;
4164 
4165 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4166 		return (error);
4167 
4168 	ASSERT3U(io_off, <, i_size);
4169 
4170 	if (io_off + io_len > i_size)
4171 		io_len = i_size - io_off;
4172 
4173 	/*
4174 	 * It is important to hold the rangelock here because it is possible
4175 	 * a Direct I/O write or block clone might be taking place at the same
4176 	 * time that a page is being faulted in through filemap_fault(). With
4177 	 * Direct I/O writes and block cloning db->db_data will be set to NULL
4178 	 * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the
4179 	 * rangelock is not held, then there is a race between faulting in a
4180 	 * page and writing out a Direct I/O write or block cloning. Without
4181 	 * the rangelock a NULL pointer dereference can occur in
4182 	 * dmu_read_impl() for db->db_data during the mempcy operation when
4183 	 * zfs_fillpage() calls dmu_read().
4184 	 */
4185 	zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4186 	    io_off, io_len, RL_READER);
4187 	if (lr == NULL) {
4188 		/*
4189 		 * It is important to drop the page lock before grabbing the
4190 		 * rangelock to avoid another deadlock between here and
4191 		 * zfs_write() -> update_pages(). update_pages() holds both the
4192 		 * rangelock and the page lock.
4193 		 */
4194 		get_page(pp);
4195 		unlock_page(pp);
4196 		lr = zfs_rangelock_enter(&zp->z_rangelock, io_off,
4197 		    io_len, RL_READER);
4198 		lock_page(pp);
4199 		put_page(pp);
4200 	}
4201 	error = zfs_fillpage(ip, pp);
4202 	zfs_rangelock_exit(lr);
4203 
4204 	if (error == 0)
4205 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4206 
4207 	zfs_exit(zfsvfs, FTAG);
4208 
4209 	return (error);
4210 }
4211 
4212 /*
4213  * Check ZFS specific permissions to memory map a section of a file.
4214  *
4215  *	IN:	ip	- inode of the file to mmap
4216  *		off	- file offset
4217  *		addrp	- start address in memory region
4218  *		len	- length of memory region
4219  *		vm_flags- address flags
4220  *
4221  *	RETURN:	0 if success
4222  *		error code if failure
4223  */
4224 int
zfs_map(struct inode * ip,offset_t off,caddr_t * addrp,size_t len,unsigned long vm_flags)4225 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4226     unsigned long vm_flags)
4227 {
4228 	(void) addrp;
4229 	znode_t  *zp = ITOZ(ip);
4230 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4231 	int error;
4232 
4233 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4234 		return (error);
4235 
4236 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4237 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4238 		zfs_exit(zfsvfs, FTAG);
4239 		return (SET_ERROR(EPERM));
4240 	}
4241 
4242 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4243 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4244 		zfs_exit(zfsvfs, FTAG);
4245 		return (SET_ERROR(EACCES));
4246 	}
4247 
4248 	if (off < 0 || len > MAXOFFSET_T - off) {
4249 		zfs_exit(zfsvfs, FTAG);
4250 		return (SET_ERROR(ENXIO));
4251 	}
4252 
4253 	zfs_exit(zfsvfs, FTAG);
4254 	return (0);
4255 }
4256 
4257 /*
4258  * Free or allocate space in a file.  Currently, this function only
4259  * supports the `F_FREESP' command.  However, this command is somewhat
4260  * misnamed, as its functionality includes the ability to allocate as
4261  * well as free space.
4262  *
4263  *	IN:	zp	- znode of file to free data in.
4264  *		cmd	- action to take (only F_FREESP supported).
4265  *		bfp	- section of file to free/alloc.
4266  *		flag	- current file open mode flags.
4267  *		offset	- current file offset.
4268  *		cr	- credentials of caller.
4269  *
4270  *	RETURN:	0 on success, error code on failure.
4271  *
4272  * Timestamps:
4273  *	zp - ctime|mtime updated
4274  */
4275 int
zfs_space(znode_t * zp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr)4276 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4277     offset_t offset, cred_t *cr)
4278 {
4279 	(void) offset;
4280 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4281 	uint64_t	off, len;
4282 	int		error;
4283 
4284 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4285 		return (error);
4286 
4287 	if (cmd != F_FREESP) {
4288 		zfs_exit(zfsvfs, FTAG);
4289 		return (SET_ERROR(EINVAL));
4290 	}
4291 
4292 	/*
4293 	 * Callers might not be able to detect properly that we are read-only,
4294 	 * so check it explicitly here.
4295 	 */
4296 	if (zfs_is_readonly(zfsvfs)) {
4297 		zfs_exit(zfsvfs, FTAG);
4298 		return (SET_ERROR(EROFS));
4299 	}
4300 
4301 	if (bfp->l_len < 0) {
4302 		zfs_exit(zfsvfs, FTAG);
4303 		return (SET_ERROR(EINVAL));
4304 	}
4305 
4306 	/*
4307 	 * Permissions aren't checked on Solaris because on this OS
4308 	 * zfs_space() can only be called with an opened file handle.
4309 	 * On Linux we can get here through truncate_range() which
4310 	 * operates directly on inodes, so we need to check access rights.
4311 	 */
4312 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4313 	    zfs_init_idmap))) {
4314 		zfs_exit(zfsvfs, FTAG);
4315 		return (error);
4316 	}
4317 
4318 	off = bfp->l_start;
4319 	len = bfp->l_len; /* 0 means from off to end of file */
4320 
4321 	error = zfs_freesp(zp, off, len, flag, TRUE);
4322 
4323 	zfs_exit(zfsvfs, FTAG);
4324 	return (error);
4325 }
4326 
4327 int
zfs_fid(struct inode * ip,fid_t * fidp)4328 zfs_fid(struct inode *ip, fid_t *fidp)
4329 {
4330 	znode_t		*zp = ITOZ(ip);
4331 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4332 	uint32_t	gen;
4333 	uint64_t	gen64;
4334 	uint64_t	object = zp->z_id;
4335 	zfid_short_t	*zfid;
4336 	int		size, i, error;
4337 
4338 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4339 		return (error);
4340 
4341 	if (fidp->fid_len < SHORT_FID_LEN) {
4342 		fidp->fid_len = SHORT_FID_LEN;
4343 		zfs_exit(zfsvfs, FTAG);
4344 		return (SET_ERROR(ENOSPC));
4345 	}
4346 
4347 	if ((error = zfs_verify_zp(zp)) != 0) {
4348 		zfs_exit(zfsvfs, FTAG);
4349 		return (error);
4350 	}
4351 
4352 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4353 	    &gen64, sizeof (uint64_t))) != 0) {
4354 		zfs_exit(zfsvfs, FTAG);
4355 		return (error);
4356 	}
4357 
4358 	gen = (uint32_t)gen64;
4359 
4360 	size = SHORT_FID_LEN;
4361 
4362 	zfid = (zfid_short_t *)fidp;
4363 
4364 	zfid->zf_len = size;
4365 
4366 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4367 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4368 
4369 	/* Must have a non-zero generation number to distinguish from .zfs */
4370 	if (gen == 0)
4371 		gen = 1;
4372 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4373 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4374 
4375 	zfs_exit(zfsvfs, FTAG);
4376 	return (0);
4377 }
4378 
4379 #if defined(_KERNEL)
4380 EXPORT_SYMBOL(zfs_open);
4381 EXPORT_SYMBOL(zfs_close);
4382 EXPORT_SYMBOL(zfs_lookup);
4383 EXPORT_SYMBOL(zfs_create);
4384 EXPORT_SYMBOL(zfs_tmpfile);
4385 EXPORT_SYMBOL(zfs_remove);
4386 EXPORT_SYMBOL(zfs_mkdir);
4387 EXPORT_SYMBOL(zfs_rmdir);
4388 EXPORT_SYMBOL(zfs_readdir);
4389 EXPORT_SYMBOL(zfs_getattr_fast);
4390 EXPORT_SYMBOL(zfs_setattr);
4391 EXPORT_SYMBOL(zfs_rename);
4392 EXPORT_SYMBOL(zfs_symlink);
4393 EXPORT_SYMBOL(zfs_readlink);
4394 EXPORT_SYMBOL(zfs_link);
4395 EXPORT_SYMBOL(zfs_inactive);
4396 EXPORT_SYMBOL(zfs_space);
4397 EXPORT_SYMBOL(zfs_fid);
4398 EXPORT_SYMBOL(zfs_getpage);
4399 EXPORT_SYMBOL(zfs_putpage);
4400 EXPORT_SYMBOL(zfs_dirty_inode);
4401 EXPORT_SYMBOL(zfs_map);
4402 
4403 module_param(zfs_delete_blocks, ulong, 0644);
4404 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4405 #endif
4406