xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zpl_file.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
24  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
25  */
26 
27 
28 #ifdef CONFIG_COMPAT
29 #include <linux/compat.h>
30 #endif
31 #include <linux/fs.h>
32 #include <linux/migrate.h>
33 #include <sys/file.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/zfs_znode.h>
36 #include <sys/zfs_vfsops.h>
37 #include <sys/zfs_vnops.h>
38 #include <sys/zfs_project.h>
39 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
40     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
41 #include <linux/pagemap.h>
42 #endif
43 #include <linux/fadvise.h>
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
46 #endif
47 
48 /*
49  * When using fallocate(2) to preallocate space, inflate the requested
50  * capacity check by 10% to account for the required metadata blocks.
51  */
52 static unsigned int zfs_fallocate_reserve_percent = 110;
53 
54 static int
zpl_open(struct inode * ip,struct file * filp)55 zpl_open(struct inode *ip, struct file *filp)
56 {
57 	cred_t *cr = CRED();
58 	int error;
59 	fstrans_cookie_t cookie;
60 
61 	error = generic_file_open(ip, filp);
62 	if (error)
63 		return (error);
64 
65 	crhold(cr);
66 	cookie = spl_fstrans_mark();
67 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
68 	spl_fstrans_unmark(cookie);
69 	crfree(cr);
70 	ASSERT3S(error, <=, 0);
71 
72 	return (error);
73 }
74 
75 static int
zpl_release(struct inode * ip,struct file * filp)76 zpl_release(struct inode *ip, struct file *filp)
77 {
78 	cred_t *cr = CRED();
79 	int error;
80 	fstrans_cookie_t cookie;
81 
82 	cookie = spl_fstrans_mark();
83 	if (ITOZ(ip)->z_atime_dirty)
84 		zfs_mark_inode_dirty(ip);
85 
86 	crhold(cr);
87 	error = -zfs_close(ip, filp->f_flags, cr);
88 	spl_fstrans_unmark(cookie);
89 	crfree(cr);
90 	ASSERT3S(error, <=, 0);
91 
92 	return (error);
93 }
94 
95 static int
zpl_iterate(struct file * filp,struct dir_context * ctx)96 zpl_iterate(struct file *filp, struct dir_context *ctx)
97 {
98 	cred_t *cr = CRED();
99 	int error;
100 	fstrans_cookie_t cookie;
101 
102 	crhold(cr);
103 	cookie = spl_fstrans_mark();
104 	error = -zfs_readdir(file_inode(filp), ctx, cr);
105 	spl_fstrans_unmark(cookie);
106 	crfree(cr);
107 	ASSERT3S(error, <=, 0);
108 
109 	return (error);
110 }
111 
112 static int
zpl_fsync(struct file * filp,loff_t start,loff_t end,int datasync)113 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
114 {
115 	struct inode *inode = filp->f_mapping->host;
116 	znode_t *zp = ITOZ(inode);
117 	zfsvfs_t *zfsvfs = ITOZSB(inode);
118 	cred_t *cr = CRED();
119 	int error;
120 	fstrans_cookie_t cookie;
121 
122 	/*
123 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
124 	 * tandem so that sync writes can detect if there are any non-sync
125 	 * writes going on and vice-versa. The "vice-versa" part to this logic
126 	 * is located in zfs_putpage() where non-sync writes check if there are
127 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
128 	 * we do a commit to complete the non-sync writes since the latter can
129 	 * potentially take several seconds to complete and thus block sync
130 	 * writes in the upcoming call to filemap_write_and_wait_range().
131 	 */
132 	atomic_inc_32(&zp->z_sync_writes_cnt);
133 	/*
134 	 * If the following check does not detect an overlapping non-sync write
135 	 * (say because it's just about to start), then it is guaranteed that
136 	 * the non-sync write will detect this sync write. This is because we
137 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
138 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
139 	 * zfs_putpage() respectively.
140 	 */
141 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
142 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
143 			atomic_dec_32(&zp->z_sync_writes_cnt);
144 			return (error);
145 		}
146 		zil_commit(zfsvfs->z_log, zp->z_id);
147 		zpl_exit(zfsvfs, FTAG);
148 	}
149 
150 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
151 
152 	/*
153 	 * The sync write is not complete yet but we decrement
154 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
155 	 * it internally. If a non-sync write starts just after the decrement
156 	 * operation but before we call zfs_fsync(), it may not detect this
157 	 * overlapping sync write but it does not matter since we have already
158 	 * gone past filemap_write_and_wait_range() and we won't block due to
159 	 * the non-sync write.
160 	 */
161 	atomic_dec_32(&zp->z_sync_writes_cnt);
162 
163 	if (error)
164 		return (error);
165 
166 	crhold(cr);
167 	cookie = spl_fstrans_mark();
168 	error = -zfs_fsync(zp, datasync, cr);
169 	spl_fstrans_unmark(cookie);
170 	crfree(cr);
171 	ASSERT3S(error, <=, 0);
172 
173 	return (error);
174 }
175 
176 static inline int
zfs_io_flags(struct kiocb * kiocb)177 zfs_io_flags(struct kiocb *kiocb)
178 {
179 	int flags = 0;
180 
181 #if defined(IOCB_DSYNC)
182 	if (kiocb->ki_flags & IOCB_DSYNC)
183 		flags |= O_DSYNC;
184 #endif
185 #if defined(IOCB_SYNC)
186 	if (kiocb->ki_flags & IOCB_SYNC)
187 		flags |= O_SYNC;
188 #endif
189 #if defined(IOCB_APPEND)
190 	if (kiocb->ki_flags & IOCB_APPEND)
191 		flags |= O_APPEND;
192 #endif
193 #if defined(IOCB_DIRECT)
194 	if (kiocb->ki_flags & IOCB_DIRECT)
195 		flags |= O_DIRECT;
196 #endif
197 	return (flags);
198 }
199 
200 /*
201  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
202  * is true.  This is needed since datasets with inherited "relatime" property
203  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
204  * `zfs set relatime=...`), which is what relatime test in VFS by
205  * relatime_need_update() is based on.
206  */
207 static inline void
zpl_file_accessed(struct file * filp)208 zpl_file_accessed(struct file *filp)
209 {
210 	struct inode *ip = filp->f_mapping->host;
211 
212 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
213 		if (zfs_relatime_need_update(ip))
214 			file_accessed(filp);
215 	} else {
216 		file_accessed(filp);
217 	}
218 }
219 
220 static ssize_t
zpl_iter_read(struct kiocb * kiocb,struct iov_iter * to)221 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
222 {
223 	cred_t *cr = CRED();
224 	fstrans_cookie_t cookie;
225 	struct file *filp = kiocb->ki_filp;
226 	ssize_t count = iov_iter_count(to);
227 	zfs_uio_t uio;
228 
229 	zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count, 0);
230 
231 	crhold(cr);
232 	cookie = spl_fstrans_mark();
233 
234 	ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
235 	    filp->f_flags | zfs_io_flags(kiocb), cr);
236 
237 	spl_fstrans_unmark(cookie);
238 	crfree(cr);
239 
240 	if (ret < 0)
241 		return (ret);
242 
243 	ssize_t read = count - uio.uio_resid;
244 	kiocb->ki_pos += read;
245 
246 	zpl_file_accessed(filp);
247 
248 	return (read);
249 }
250 
251 static inline ssize_t
zpl_generic_write_checks(struct kiocb * kiocb,struct iov_iter * from,size_t * countp)252 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
253     size_t *countp)
254 {
255 	ssize_t ret = generic_write_checks(kiocb, from);
256 	if (ret <= 0)
257 		return (ret);
258 
259 	*countp = ret;
260 
261 	return (0);
262 }
263 
264 static ssize_t
zpl_iter_write(struct kiocb * kiocb,struct iov_iter * from)265 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
266 {
267 	cred_t *cr = CRED();
268 	fstrans_cookie_t cookie;
269 	struct file *filp = kiocb->ki_filp;
270 	struct inode *ip = filp->f_mapping->host;
271 	zfs_uio_t uio;
272 	size_t count = 0;
273 	ssize_t ret;
274 
275 	ret = zpl_generic_write_checks(kiocb, from, &count);
276 	if (ret)
277 		return (ret);
278 
279 	zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count,
280 	    from->iov_offset);
281 
282 	crhold(cr);
283 	cookie = spl_fstrans_mark();
284 
285 	ret = -zfs_write(ITOZ(ip), &uio,
286 	    filp->f_flags | zfs_io_flags(kiocb), cr);
287 
288 	spl_fstrans_unmark(cookie);
289 	crfree(cr);
290 
291 	if (ret < 0)
292 		return (ret);
293 
294 	ssize_t wrote = count - uio.uio_resid;
295 	kiocb->ki_pos += wrote;
296 
297 	return (wrote);
298 }
299 
300 static ssize_t
zpl_direct_IO(struct kiocb * kiocb,struct iov_iter * iter)301 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
302 {
303 	/*
304 	 * All O_DIRECT requests should be handled by
305 	 * zpl_iter_write/read}(). There is no way kernel generic code should
306 	 * call the direct_IO address_space_operations function. We set this
307 	 * code path to be fatal if it is executed.
308 	 */
309 	PANIC(0);
310 	return (0);
311 }
312 
313 static loff_t
zpl_llseek(struct file * filp,loff_t offset,int whence)314 zpl_llseek(struct file *filp, loff_t offset, int whence)
315 {
316 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
317 	fstrans_cookie_t cookie;
318 
319 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
320 		struct inode *ip = filp->f_mapping->host;
321 		loff_t maxbytes = ip->i_sb->s_maxbytes;
322 		loff_t error;
323 
324 		spl_inode_lock_shared(ip);
325 		cookie = spl_fstrans_mark();
326 		error = -zfs_holey(ITOZ(ip), whence, &offset);
327 		spl_fstrans_unmark(cookie);
328 		if (error == 0)
329 			error = lseek_execute(filp, ip, offset, maxbytes);
330 		spl_inode_unlock_shared(ip);
331 
332 		return (error);
333 	}
334 #endif /* SEEK_HOLE && SEEK_DATA */
335 
336 	return (generic_file_llseek(filp, offset, whence));
337 }
338 
339 /*
340  * It's worth taking a moment to describe how mmap is implemented
341  * for zfs because it differs considerably from other Linux filesystems.
342  * However, this issue is handled the same way under OpenSolaris.
343  *
344  * The issue is that by design zfs bypasses the Linux page cache and
345  * leaves all caching up to the ARC.  This has been shown to work
346  * well for the common read(2)/write(2) case.  However, mmap(2)
347  * is problem because it relies on being tightly integrated with the
348  * page cache.  To handle this we cache mmap'ed files twice, once in
349  * the ARC and a second time in the page cache.  The code is careful
350  * to keep both copies synchronized.
351  *
352  * When a file with an mmap'ed region is written to using write(2)
353  * both the data in the ARC and existing pages in the page cache
354  * are updated.  For a read(2) data will be read first from the page
355  * cache then the ARC if needed.  Neither a write(2) or read(2) will
356  * will ever result in new pages being added to the page cache.
357  *
358  * New pages are added to the page cache only via .readpage() which
359  * is called when the vfs needs to read a page off disk to back the
360  * virtual memory region.  These pages may be modified without
361  * notifying the ARC and will be written out periodically via
362  * .writepage().  This will occur due to either a sync or the usual
363  * page aging behavior.  Note because a read(2) of a mmap'ed file
364  * will always check the page cache first even when the ARC is out
365  * of date correct data will still be returned.
366  *
367  * While this implementation ensures correct behavior it does have
368  * have some drawbacks.  The most obvious of which is that it
369  * increases the required memory footprint when access mmap'ed
370  * files.  It also adds additional complexity to the code keeping
371  * both caches synchronized.
372  *
373  * Longer term it may be possible to cleanly resolve this wart by
374  * mapping page cache pages directly on to the ARC buffers.  The
375  * Linux address space operations are flexible enough to allow
376  * selection of which pages back a particular index.  The trick
377  * would be working out the details of which subsystem is in
378  * charge, the ARC, the page cache, or both.  It may also prove
379  * helpful to move the ARC buffers to a scatter-gather lists
380  * rather than a vmalloc'ed region.
381  */
382 static int
zpl_mmap(struct file * filp,struct vm_area_struct * vma)383 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
384 {
385 	struct inode *ip = filp->f_mapping->host;
386 	int error;
387 	fstrans_cookie_t cookie;
388 
389 	cookie = spl_fstrans_mark();
390 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
391 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
392 	spl_fstrans_unmark(cookie);
393 
394 	if (error)
395 		return (error);
396 
397 	error = generic_file_mmap(filp, vma);
398 	if (error)
399 		return (error);
400 
401 	return (error);
402 }
403 
404 /*
405  * Populate a page with data for the Linux page cache.  This function is
406  * only used to support mmap(2).  There will be an identical copy of the
407  * data in the ARC which is kept up to date via .write() and .writepage().
408  */
409 static inline int
zpl_readpage_common(struct page * pp)410 zpl_readpage_common(struct page *pp)
411 {
412 	fstrans_cookie_t cookie;
413 
414 	ASSERT(PageLocked(pp));
415 
416 	cookie = spl_fstrans_mark();
417 	int error = -zfs_getpage(pp->mapping->host, pp);
418 	spl_fstrans_unmark(cookie);
419 
420 	unlock_page(pp);
421 
422 	return (error);
423 }
424 
425 #ifdef HAVE_VFS_READ_FOLIO
426 static int
zpl_read_folio(struct file * filp,struct folio * folio)427 zpl_read_folio(struct file *filp, struct folio *folio)
428 {
429 	return (zpl_readpage_common(&folio->page));
430 }
431 #else
432 static int
zpl_readpage(struct file * filp,struct page * pp)433 zpl_readpage(struct file *filp, struct page *pp)
434 {
435 	return (zpl_readpage_common(pp));
436 }
437 #endif
438 
439 static int
zpl_readpage_filler(void * data,struct page * pp)440 zpl_readpage_filler(void *data, struct page *pp)
441 {
442 	return (zpl_readpage_common(pp));
443 }
444 
445 /*
446  * Populate a set of pages with data for the Linux page cache.  This
447  * function will only be called for read ahead and never for demand
448  * paging.  For simplicity, the code relies on read_cache_pages() to
449  * correctly lock each page for IO and call zpl_readpage().
450  */
451 #ifdef HAVE_VFS_READPAGES
452 static int
zpl_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)453 zpl_readpages(struct file *filp, struct address_space *mapping,
454     struct list_head *pages, unsigned nr_pages)
455 {
456 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
457 }
458 #else
459 static void
zpl_readahead(struct readahead_control * ractl)460 zpl_readahead(struct readahead_control *ractl)
461 {
462 	struct page *page;
463 
464 	while ((page = readahead_page(ractl)) != NULL) {
465 		int ret;
466 
467 		ret = zpl_readpage_filler(NULL, page);
468 		put_page(page);
469 		if (ret)
470 			break;
471 	}
472 }
473 #endif
474 
475 static int
zpl_putpage(struct page * pp,struct writeback_control * wbc,void * data)476 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
477 {
478 	boolean_t *for_sync = data;
479 	fstrans_cookie_t cookie;
480 	int ret;
481 
482 	ASSERT(PageLocked(pp));
483 	ASSERT(!PageWriteback(pp));
484 
485 	cookie = spl_fstrans_mark();
486 	ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
487 	spl_fstrans_unmark(cookie);
488 
489 	return (ret);
490 }
491 
492 #ifdef HAVE_WRITEPAGE_T_FOLIO
493 static int
zpl_putfolio(struct folio * pp,struct writeback_control * wbc,void * data)494 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
495 {
496 	return (zpl_putpage(&pp->page, wbc, data));
497 }
498 #endif
499 
500 static inline int
zpl_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,void * data)501 zpl_write_cache_pages(struct address_space *mapping,
502     struct writeback_control *wbc, void *data)
503 {
504 	int result;
505 
506 #ifdef HAVE_WRITEPAGE_T_FOLIO
507 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
508 #else
509 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
510 #endif
511 	return (result);
512 }
513 
514 static int
zpl_writepages(struct address_space * mapping,struct writeback_control * wbc)515 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
516 {
517 	znode_t		*zp = ITOZ(mapping->host);
518 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
519 	enum writeback_sync_modes sync_mode;
520 	int result;
521 
522 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
523 		return (result);
524 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
525 		wbc->sync_mode = WB_SYNC_ALL;
526 	zpl_exit(zfsvfs, FTAG);
527 	sync_mode = wbc->sync_mode;
528 
529 	/*
530 	 * We don't want to run write_cache_pages() in SYNC mode here, because
531 	 * that would make putpage() wait for a single page to be committed to
532 	 * disk every single time, resulting in atrocious performance. Instead
533 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
534 	 * and then we commit it all in one go.
535 	 */
536 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
537 	wbc->sync_mode = WB_SYNC_NONE;
538 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
539 	if (sync_mode != wbc->sync_mode) {
540 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
541 			return (result);
542 		if (zfsvfs->z_log != NULL)
543 			zil_commit(zfsvfs->z_log, zp->z_id);
544 		zpl_exit(zfsvfs, FTAG);
545 
546 		/*
547 		 * We need to call write_cache_pages() again (we can't just
548 		 * return after the commit) because the previous call in
549 		 * non-SYNC mode does not guarantee that we got all the dirty
550 		 * pages (see the implementation of write_cache_pages() for
551 		 * details). That being said, this is a no-op in most cases.
552 		 */
553 		wbc->sync_mode = sync_mode;
554 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
555 	}
556 	return (result);
557 }
558 
559 /*
560  * Write out dirty pages to the ARC, this function is only required to
561  * support mmap(2).  Mapped pages may be dirtied by memory operations
562  * which never call .write().  These dirty pages are kept in sync with
563  * the ARC buffers via this hook.
564  */
565 static int
zpl_writepage(struct page * pp,struct writeback_control * wbc)566 zpl_writepage(struct page *pp, struct writeback_control *wbc)
567 {
568 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
569 		wbc->sync_mode = WB_SYNC_ALL;
570 
571 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
572 
573 	return (zpl_putpage(pp, wbc, &for_sync));
574 }
575 
576 /*
577  * The flag combination which matches the behavior of zfs_space() is
578  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
579  * flag was introduced in the 2.6.38 kernel.
580  *
581  * The original mode=0 (allocate space) behavior can be reasonably emulated
582  * by checking if enough space exists and creating a sparse file, as real
583  * persistent space reservation is not possible due to COW, snapshots, etc.
584  */
585 static long
zpl_fallocate_common(struct inode * ip,int mode,loff_t offset,loff_t len)586 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
587 {
588 	cred_t *cr = CRED();
589 	loff_t olen;
590 	fstrans_cookie_t cookie;
591 	int error = 0;
592 
593 	int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
594 
595 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
596 		return (-EOPNOTSUPP);
597 
598 	if (offset < 0 || len <= 0)
599 		return (-EINVAL);
600 
601 	spl_inode_lock(ip);
602 	olen = i_size_read(ip);
603 
604 	crhold(cr);
605 	cookie = spl_fstrans_mark();
606 	if (mode & (test_mode)) {
607 		flock64_t bf;
608 
609 		if (mode & FALLOC_FL_KEEP_SIZE) {
610 			if (offset > olen)
611 				goto out_unmark;
612 
613 			if (offset + len > olen)
614 				len = olen - offset;
615 		}
616 		bf.l_type = F_WRLCK;
617 		bf.l_whence = SEEK_SET;
618 		bf.l_start = offset;
619 		bf.l_len = len;
620 		bf.l_pid = 0;
621 
622 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
623 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
624 		unsigned int percent = zfs_fallocate_reserve_percent;
625 		struct kstatfs statfs;
626 
627 		/* Legacy mode, disable fallocate compatibility. */
628 		if (percent == 0) {
629 			error = -EOPNOTSUPP;
630 			goto out_unmark;
631 		}
632 
633 		/*
634 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
635 		 * also checks project quota limits, which are relevant here.
636 		 */
637 		error = zfs_statvfs(ip, &statfs);
638 		if (error)
639 			goto out_unmark;
640 
641 		/*
642 		 * Shrink available space a bit to account for overhead/races.
643 		 * We know the product previously fit into availbytes from
644 		 * dmu_objset_space(), so the smaller product will also fit.
645 		 */
646 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
647 			error = -ENOSPC;
648 			goto out_unmark;
649 		}
650 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
651 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
652 	}
653 out_unmark:
654 	spl_fstrans_unmark(cookie);
655 	spl_inode_unlock(ip);
656 
657 	crfree(cr);
658 
659 	return (error);
660 }
661 
662 static long
zpl_fallocate(struct file * filp,int mode,loff_t offset,loff_t len)663 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
664 {
665 	return zpl_fallocate_common(file_inode(filp),
666 	    mode, offset, len);
667 }
668 
669 static int
zpl_ioctl_getversion(struct file * filp,void __user * arg)670 zpl_ioctl_getversion(struct file *filp, void __user *arg)
671 {
672 	uint32_t generation = file_inode(filp)->i_generation;
673 
674 	return (copy_to_user(arg, &generation, sizeof (generation)));
675 }
676 
677 static int
zpl_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)678 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
679 {
680 	struct inode *ip = file_inode(filp);
681 	znode_t *zp = ITOZ(ip);
682 	zfsvfs_t *zfsvfs = ITOZSB(ip);
683 	objset_t *os = zfsvfs->z_os;
684 	int error = 0;
685 
686 	if (S_ISFIFO(ip->i_mode))
687 		return (-ESPIPE);
688 
689 	if (offset < 0 || len < 0)
690 		return (-EINVAL);
691 
692 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
693 		return (error);
694 
695 	switch (advice) {
696 	case POSIX_FADV_SEQUENTIAL:
697 	case POSIX_FADV_WILLNEED:
698 #ifdef HAVE_GENERIC_FADVISE
699 		if (zn_has_cached_data(zp, offset, offset + len - 1))
700 			error = generic_fadvise(filp, offset, len, advice);
701 #endif
702 		/*
703 		 * Pass on the caller's size directly, but note that
704 		 * dmu_prefetch_max will effectively cap it.  If there
705 		 * really is a larger sequential access pattern, perhaps
706 		 * dmu_zfetch will detect it.
707 		 */
708 		if (len == 0)
709 			len = i_size_read(ip) - offset;
710 
711 		dmu_prefetch(os, zp->z_id, 0, offset, len,
712 		    ZIO_PRIORITY_ASYNC_READ);
713 		break;
714 	case POSIX_FADV_NORMAL:
715 	case POSIX_FADV_RANDOM:
716 	case POSIX_FADV_DONTNEED:
717 	case POSIX_FADV_NOREUSE:
718 		/* ignored for now */
719 		break;
720 	default:
721 		error = -EINVAL;
722 		break;
723 	}
724 
725 	zfs_exit(zfsvfs, FTAG);
726 
727 	return (error);
728 }
729 
730 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
731 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
732 
733 static uint32_t
__zpl_ioctl_getflags(struct inode * ip)734 __zpl_ioctl_getflags(struct inode *ip)
735 {
736 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
737 	uint32_t ioctl_flags = 0;
738 
739 	if (zfs_flags & ZFS_IMMUTABLE)
740 		ioctl_flags |= FS_IMMUTABLE_FL;
741 
742 	if (zfs_flags & ZFS_APPENDONLY)
743 		ioctl_flags |= FS_APPEND_FL;
744 
745 	if (zfs_flags & ZFS_NODUMP)
746 		ioctl_flags |= FS_NODUMP_FL;
747 
748 	if (zfs_flags & ZFS_PROJINHERIT)
749 		ioctl_flags |= ZFS_PROJINHERIT_FL;
750 
751 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
752 }
753 
754 /*
755  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
756  * attributes common to both Linux and Solaris are mapped.
757  */
758 static int
zpl_ioctl_getflags(struct file * filp,void __user * arg)759 zpl_ioctl_getflags(struct file *filp, void __user *arg)
760 {
761 	uint32_t flags;
762 	int err;
763 
764 	flags = __zpl_ioctl_getflags(file_inode(filp));
765 	err = copy_to_user(arg, &flags, sizeof (flags));
766 
767 	return (err);
768 }
769 
770 /*
771  * fchange() is a helper macro to detect if we have been asked to change a
772  * flag. This is ugly, but the requirement that we do this is a consequence of
773  * how the Linux file attribute interface was designed. Another consequence is
774  * that concurrent modification of files suffers from a TOCTOU race. Neither
775  * are things we can fix without modifying the kernel-userland interface, which
776  * is outside of our jurisdiction.
777  */
778 
779 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
780 
781 static int
__zpl_ioctl_setflags(struct inode * ip,uint32_t ioctl_flags,xvattr_t * xva)782 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
783 {
784 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
785 	xoptattr_t *xoap;
786 
787 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
788 	    ZFS_PROJINHERIT_FL))
789 		return (-EOPNOTSUPP);
790 
791 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
792 		return (-EACCES);
793 
794 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
795 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
796 	    !capable(CAP_LINUX_IMMUTABLE))
797 		return (-EPERM);
798 
799 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
800 		return (-EACCES);
801 
802 	xva_init(xva);
803 	xoap = xva_getxoptattr(xva);
804 
805 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
806 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
807 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
808 		XVA_SET_REQ(xva, (xflag));	\
809 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
810 	}	\
811 } while (0)
812 
813 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
814 	    xoap->xoa_immutable);
815 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
816 	    xoap->xoa_appendonly);
817 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
818 	    xoap->xoa_nodump);
819 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
820 	    xoap->xoa_projinherit);
821 
822 #undef	FLAG_CHANGE
823 
824 	return (0);
825 }
826 
827 static int
zpl_ioctl_setflags(struct file * filp,void __user * arg)828 zpl_ioctl_setflags(struct file *filp, void __user *arg)
829 {
830 	struct inode *ip = file_inode(filp);
831 	uint32_t flags;
832 	cred_t *cr = CRED();
833 	xvattr_t xva;
834 	int err;
835 	fstrans_cookie_t cookie;
836 
837 	if (copy_from_user(&flags, arg, sizeof (flags)))
838 		return (-EFAULT);
839 
840 	err = __zpl_ioctl_setflags(ip, flags, &xva);
841 	if (err)
842 		return (err);
843 
844 	crhold(cr);
845 	cookie = spl_fstrans_mark();
846 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
847 	spl_fstrans_unmark(cookie);
848 	crfree(cr);
849 
850 	return (err);
851 }
852 
853 static int
zpl_ioctl_getxattr(struct file * filp,void __user * arg)854 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
855 {
856 	zfsxattr_t fsx = { 0 };
857 	struct inode *ip = file_inode(filp);
858 	int err;
859 
860 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
861 	fsx.fsx_projid = ITOZ(ip)->z_projid;
862 	err = copy_to_user(arg, &fsx, sizeof (fsx));
863 
864 	return (err);
865 }
866 
867 static int
zpl_ioctl_setxattr(struct file * filp,void __user * arg)868 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
869 {
870 	struct inode *ip = file_inode(filp);
871 	zfsxattr_t fsx;
872 	cred_t *cr = CRED();
873 	xvattr_t xva;
874 	xoptattr_t *xoap;
875 	int err;
876 	fstrans_cookie_t cookie;
877 
878 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
879 		return (-EFAULT);
880 
881 	if (!zpl_is_valid_projid(fsx.fsx_projid))
882 		return (-EINVAL);
883 
884 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
885 	if (err)
886 		return (err);
887 
888 	xoap = xva_getxoptattr(&xva);
889 	XVA_SET_REQ(&xva, XAT_PROJID);
890 	xoap->xoa_projid = fsx.fsx_projid;
891 
892 	crhold(cr);
893 	cookie = spl_fstrans_mark();
894 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
895 	spl_fstrans_unmark(cookie);
896 	crfree(cr);
897 
898 	return (err);
899 }
900 
901 /*
902  * Expose Additional File Level Attributes of ZFS.
903  */
904 static int
zpl_ioctl_getdosflags(struct file * filp,void __user * arg)905 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
906 {
907 	struct inode *ip = file_inode(filp);
908 	uint64_t dosflags = ITOZ(ip)->z_pflags;
909 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
910 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
911 
912 	return (err);
913 }
914 
915 static int
__zpl_ioctl_setdosflags(struct inode * ip,uint64_t ioctl_flags,xvattr_t * xva)916 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
917 {
918 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
919 	xoptattr_t *xoap;
920 
921 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
922 		return (-EOPNOTSUPP);
923 
924 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
925 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
926 	    !capable(CAP_LINUX_IMMUTABLE))
927 		return (-EPERM);
928 
929 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
930 		return (-EACCES);
931 
932 	xva_init(xva);
933 	xoap = xva_getxoptattr(xva);
934 
935 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
936 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
937 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
938 		XVA_SET_REQ(xva, (xflag));	\
939 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
940 	}	\
941 } while (0)
942 
943 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
944 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
945 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
946 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
947 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
948 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
949 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
950 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
951 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
952 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
953 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
954 
955 #undef	FLAG_CHANGE
956 
957 	return (0);
958 }
959 
960 /*
961  * Set Additional File Level Attributes of ZFS.
962  */
963 static int
zpl_ioctl_setdosflags(struct file * filp,void __user * arg)964 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
965 {
966 	struct inode *ip = file_inode(filp);
967 	uint64_t dosflags;
968 	cred_t *cr = CRED();
969 	xvattr_t xva;
970 	int err;
971 	fstrans_cookie_t cookie;
972 
973 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
974 		return (-EFAULT);
975 
976 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
977 	if (err)
978 		return (err);
979 
980 	crhold(cr);
981 	cookie = spl_fstrans_mark();
982 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
983 	spl_fstrans_unmark(cookie);
984 	crfree(cr);
985 
986 	return (err);
987 }
988 
989 static long
zpl_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)990 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
991 {
992 	switch (cmd) {
993 	case FS_IOC_GETVERSION:
994 		return (zpl_ioctl_getversion(filp, (void *)arg));
995 	case FS_IOC_GETFLAGS:
996 		return (zpl_ioctl_getflags(filp, (void *)arg));
997 	case FS_IOC_SETFLAGS:
998 		return (zpl_ioctl_setflags(filp, (void *)arg));
999 	case ZFS_IOC_FSGETXATTR:
1000 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1001 	case ZFS_IOC_FSSETXATTR:
1002 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1003 	case ZFS_IOC_GETDOSFLAGS:
1004 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1005 	case ZFS_IOC_SETDOSFLAGS:
1006 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1007 	case ZFS_IOC_COMPAT_FICLONE:
1008 		return (zpl_ioctl_ficlone(filp, (void *)arg));
1009 	case ZFS_IOC_COMPAT_FICLONERANGE:
1010 		return (zpl_ioctl_ficlonerange(filp, (void *)arg));
1011 	case ZFS_IOC_COMPAT_FIDEDUPERANGE:
1012 		return (zpl_ioctl_fideduperange(filp, (void *)arg));
1013 	default:
1014 		return (-ENOTTY);
1015 	}
1016 }
1017 
1018 #ifdef CONFIG_COMPAT
1019 static long
zpl_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1020 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1021 {
1022 	switch (cmd) {
1023 	case FS_IOC32_GETVERSION:
1024 		cmd = FS_IOC_GETVERSION;
1025 		break;
1026 	case FS_IOC32_GETFLAGS:
1027 		cmd = FS_IOC_GETFLAGS;
1028 		break;
1029 	case FS_IOC32_SETFLAGS:
1030 		cmd = FS_IOC_SETFLAGS;
1031 		break;
1032 	default:
1033 		return (-ENOTTY);
1034 	}
1035 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1036 }
1037 #endif /* CONFIG_COMPAT */
1038 
1039 const struct address_space_operations zpl_address_space_operations = {
1040 #ifdef HAVE_VFS_READPAGES
1041 	.readpages	= zpl_readpages,
1042 #else
1043 	.readahead	= zpl_readahead,
1044 #endif
1045 #ifdef HAVE_VFS_READ_FOLIO
1046 	.read_folio	= zpl_read_folio,
1047 #else
1048 	.readpage	= zpl_readpage,
1049 #endif
1050 	.writepage	= zpl_writepage,
1051 	.writepages	= zpl_writepages,
1052 	.direct_IO	= zpl_direct_IO,
1053 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1054 	.set_page_dirty = __set_page_dirty_nobuffers,
1055 #endif
1056 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1057 	.dirty_folio	= filemap_dirty_folio,
1058 #endif
1059 #ifdef HAVE_VFS_MIGRATE_FOLIO
1060 	.migrate_folio	= migrate_folio,
1061 #else
1062 	.migratepage	= migrate_page,
1063 #endif
1064 };
1065 
1066 const struct file_operations zpl_file_operations = {
1067 	.open		= zpl_open,
1068 	.release	= zpl_release,
1069 	.llseek		= zpl_llseek,
1070 	.read_iter	= zpl_iter_read,
1071 	.write_iter	= zpl_iter_write,
1072 #ifdef HAVE_COPY_SPLICE_READ
1073 	.splice_read	= copy_splice_read,
1074 #else
1075 	.splice_read	= generic_file_splice_read,
1076 #endif
1077 	.splice_write	= iter_file_splice_write,
1078 	.mmap		= zpl_mmap,
1079 	.fsync		= zpl_fsync,
1080 	.fallocate	= zpl_fallocate,
1081 	.copy_file_range	= zpl_copy_file_range,
1082 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1083 	.clone_file_range	= zpl_clone_file_range,
1084 #endif
1085 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1086 	.remap_file_range	= zpl_remap_file_range,
1087 #endif
1088 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1089 	.dedupe_file_range	= zpl_dedupe_file_range,
1090 #endif
1091 	.fadvise	= zpl_fadvise,
1092 	.unlocked_ioctl	= zpl_ioctl,
1093 #ifdef CONFIG_COMPAT
1094 	.compat_ioctl	= zpl_compat_ioctl,
1095 #endif
1096 };
1097 
1098 const struct file_operations zpl_dir_file_operations = {
1099 	.llseek		= generic_file_llseek,
1100 	.read		= generic_read_dir,
1101 	.iterate_shared	= zpl_iterate,
1102 	.fsync		= zpl_fsync,
1103 	.unlocked_ioctl = zpl_ioctl,
1104 #ifdef CONFIG_COMPAT
1105 	.compat_ioctl   = zpl_compat_ioctl,
1106 #endif
1107 };
1108 
1109 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1110 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1111 	"Percentage of length to use for the available capacity check");
1112