xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_znode_os.c (revision d0abb9a6399accc9053e2808052be00a6754ecef)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/sysmacros.h>
33 #include <sys/mntent.h>
34 #include <sys/u8_textprep.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/errno.h>
41 #include <sys/atomic.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zfs_acl.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zfs_rlock.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_vnops.h>
48 #include <sys/zfs_ctldir.h>
49 #include <sys/dnode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zpl.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zfs_refcount.h>
56 #include <sys/stat.h>
57 #include <sys/zap.h>
58 #include <sys/zfs_znode.h>
59 #include <sys/sa.h>
60 #include <sys/zfs_sa.h>
61 #include <sys/zfs_stat.h>
62 #include <linux/mm_compat.h>
63 
64 #include "zfs_prop.h"
65 #include "zfs_comutil.h"
66 
67 static kmem_cache_t *znode_cache = NULL;
68 static kmem_cache_t *znode_hold_cache = NULL;
69 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
70 
71 /*
72  * This is used by the test suite so that it can delay znodes from being
73  * freed in order to inspect the unlinked set.
74  */
75 static int zfs_unlink_suspend_progress = 0;
76 
77 /*
78  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
79  * z_rangelock. It will modify the offset and length of the lock to reflect
80  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
81  * called with the rangelock_t's rl_lock held, which avoids races.
82  */
83 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)84 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
85 {
86 	znode_t *zp = arg;
87 
88 	/*
89 	 * If in append mode, convert to writer and lock starting at the
90 	 * current end of file.
91 	 */
92 	if (new->lr_type == RL_APPEND) {
93 		new->lr_offset = zp->z_size;
94 		new->lr_type = RL_WRITER;
95 	}
96 
97 	/*
98 	 * If we need to grow the block size then lock the whole file range.
99 	 */
100 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
101 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
102 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
103 		new->lr_offset = 0;
104 		new->lr_length = UINT64_MAX;
105 	}
106 }
107 
108 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)109 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
110 {
111 	(void) arg, (void) kmflags;
112 	znode_t *zp = buf;
113 
114 	inode_init_once(ZTOI(zp));
115 	list_link_init(&zp->z_link_node);
116 
117 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
118 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
119 	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
120 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
121 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
122 
123 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
124 
125 	zp->z_dirlocks = NULL;
126 	zp->z_acl_cached = NULL;
127 	zp->z_xattr_cached = NULL;
128 	zp->z_xattr_parent = 0;
129 
130 	return (0);
131 }
132 
133 static void
zfs_znode_cache_destructor(void * buf,void * arg)134 zfs_znode_cache_destructor(void *buf, void *arg)
135 {
136 	(void) arg;
137 	znode_t *zp = buf;
138 
139 	ASSERT(!list_link_active(&zp->z_link_node));
140 	mutex_destroy(&zp->z_lock);
141 	rw_destroy(&zp->z_parent_lock);
142 	rw_destroy(&zp->z_name_lock);
143 	mutex_destroy(&zp->z_acl_lock);
144 	rw_destroy(&zp->z_xattr_lock);
145 	zfs_rangelock_fini(&zp->z_rangelock);
146 
147 	ASSERT0P(zp->z_dirlocks);
148 	ASSERT0P(zp->z_acl_cached);
149 	ASSERT0P(zp->z_xattr_cached);
150 }
151 
152 static int
zfs_znode_hold_cache_constructor(void * buf,void * arg,int kmflags)153 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
154 {
155 	(void) arg, (void) kmflags;
156 	znode_hold_t *zh = buf;
157 
158 	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
159 	zh->zh_refcount = 0;
160 
161 	return (0);
162 }
163 
164 static void
zfs_znode_hold_cache_destructor(void * buf,void * arg)165 zfs_znode_hold_cache_destructor(void *buf, void *arg)
166 {
167 	(void) arg;
168 	znode_hold_t *zh = buf;
169 
170 	mutex_destroy(&zh->zh_lock);
171 }
172 
173 void
zfs_znode_init(void)174 zfs_znode_init(void)
175 {
176 	/*
177 	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
178 	 * backed by kmalloc() when on the Linux slab in order that any
179 	 * wait_on_bit() operations on the related inode operate properly.
180 	 */
181 	ASSERT0P(znode_cache);
182 	znode_cache = kmem_cache_create("zfs_znode_cache",
183 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
184 	    zfs_znode_cache_destructor, NULL, NULL, NULL,
185 	    KMC_SLAB | KMC_RECLAIMABLE);
186 
187 	ASSERT0P(znode_hold_cache);
188 	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
189 	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
190 	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
191 }
192 
193 void
zfs_znode_fini(void)194 zfs_znode_fini(void)
195 {
196 	/*
197 	 * Cleanup zcache
198 	 */
199 	if (znode_cache)
200 		kmem_cache_destroy(znode_cache);
201 	znode_cache = NULL;
202 
203 	if (znode_hold_cache)
204 		kmem_cache_destroy(znode_hold_cache);
205 	znode_hold_cache = NULL;
206 }
207 
208 /*
209  * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
210  * serialize access to a znode and its SA buffer while the object is being
211  * created or destroyed.  This kind of locking would normally reside in the
212  * znode itself but in this case that's impossible because the znode and SA
213  * buffer may not yet exist.  Therefore the locking is handled externally
214  * with an array of mutexes and AVLs trees which contain per-object locks.
215  *
216  * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
217  * in to the correct AVL tree and finally the per-object lock is held.  In
218  * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
219  * released, removed from the AVL tree and destroyed if there are no waiters.
220  *
221  * This scheme has two important properties:
222  *
223  * 1) No memory allocations are performed while holding one of the z_hold_locks.
224  *    This ensures evict(), which can be called from direct memory reclaim, will
225  *    never block waiting on a z_hold_locks which just happens to have hashed
226  *    to the same index.
227  *
228  * 2) All locks used to serialize access to an object are per-object and never
229  *    shared.  This minimizes lock contention without creating a large number
230  *    of dedicated locks.
231  *
232  * On the downside it does require znode_lock_t structures to be frequently
233  * allocated and freed.  However, because these are backed by a kmem cache
234  * and very short lived this cost is minimal.
235  */
236 int
zfs_znode_hold_compare(const void * a,const void * b)237 zfs_znode_hold_compare(const void *a, const void *b)
238 {
239 	const znode_hold_t *zh_a = (const znode_hold_t *)a;
240 	const znode_hold_t *zh_b = (const znode_hold_t *)b;
241 
242 	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
243 }
244 
245 static boolean_t __maybe_unused
zfs_znode_held(zfsvfs_t * zfsvfs,uint64_t obj)246 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
247 {
248 	znode_hold_t *zh, search;
249 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
250 	boolean_t held;
251 
252 	search.zh_obj = obj;
253 
254 	mutex_enter(&zfsvfs->z_hold_locks[i]);
255 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
256 	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
257 	mutex_exit(&zfsvfs->z_hold_locks[i]);
258 
259 	return (held);
260 }
261 
262 znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t * zfsvfs,uint64_t obj)263 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
264 {
265 	znode_hold_t *zh, *zh_new, search;
266 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
267 	boolean_t found = B_FALSE;
268 
269 	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
270 	search.zh_obj = obj;
271 
272 	mutex_enter(&zfsvfs->z_hold_locks[i]);
273 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
274 	if (likely(zh == NULL)) {
275 		zh = zh_new;
276 		zh->zh_obj = obj;
277 		avl_add(&zfsvfs->z_hold_trees[i], zh);
278 	} else {
279 		ASSERT3U(zh->zh_obj, ==, obj);
280 		found = B_TRUE;
281 	}
282 	zh->zh_refcount++;
283 	ASSERT3S(zh->zh_refcount, >, 0);
284 	mutex_exit(&zfsvfs->z_hold_locks[i]);
285 
286 	if (found == B_TRUE)
287 		kmem_cache_free(znode_hold_cache, zh_new);
288 
289 	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
290 	mutex_enter(&zh->zh_lock);
291 
292 	return (zh);
293 }
294 
295 void
zfs_znode_hold_exit(zfsvfs_t * zfsvfs,znode_hold_t * zh)296 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
297 {
298 	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
299 	boolean_t remove = B_FALSE;
300 
301 	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
302 	mutex_exit(&zh->zh_lock);
303 
304 	mutex_enter(&zfsvfs->z_hold_locks[i]);
305 	ASSERT3S(zh->zh_refcount, >, 0);
306 	if (--zh->zh_refcount == 0) {
307 		avl_remove(&zfsvfs->z_hold_trees[i], zh);
308 		remove = B_TRUE;
309 	}
310 	mutex_exit(&zfsvfs->z_hold_locks[i]);
311 
312 	if (remove == B_TRUE)
313 		kmem_cache_free(znode_hold_cache, zh);
314 }
315 
316 dev_t
zfs_cmpldev(uint64_t dev)317 zfs_cmpldev(uint64_t dev)
318 {
319 	return (dev);
320 }
321 
322 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)323 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
324     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
325 {
326 	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
327 
328 	mutex_enter(&zp->z_lock);
329 
330 	ASSERT0P(zp->z_sa_hdl);
331 	ASSERT0P(zp->z_acl_cached);
332 	if (sa_hdl == NULL) {
333 		VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, zp,
334 		    SA_HDL_SHARED, &zp->z_sa_hdl));
335 	} else {
336 		zp->z_sa_hdl = sa_hdl;
337 		sa_set_userp(sa_hdl, zp);
338 	}
339 
340 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
341 
342 	mutex_exit(&zp->z_lock);
343 }
344 
345 void
zfs_znode_dmu_fini(znode_t * zp)346 zfs_znode_dmu_fini(znode_t *zp)
347 {
348 	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
349 	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
350 
351 	sa_handle_destroy(zp->z_sa_hdl);
352 	zp->z_sa_hdl = NULL;
353 }
354 
355 /*
356  * Called by new_inode() to allocate a new inode.
357  */
358 int
zfs_inode_alloc(struct super_block * sb,struct inode ** ip)359 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
360 {
361 	znode_t *zp;
362 
363 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
364 	*ip = ZTOI(zp);
365 
366 	return (0);
367 }
368 
369 void
zfs_inode_free(struct inode * ip)370 zfs_inode_free(struct inode *ip)
371 {
372 	kmem_cache_free(znode_cache, ITOZ(ip));
373 }
374 
375 /*
376  * Called in multiple places when an inode should be destroyed.
377  */
378 void
zfs_inode_destroy(struct inode * ip)379 zfs_inode_destroy(struct inode *ip)
380 {
381 	znode_t *zp = ITOZ(ip);
382 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
383 
384 	mutex_enter(&zfsvfs->z_znodes_lock);
385 	if (list_link_active(&zp->z_link_node)) {
386 		list_remove(&zfsvfs->z_all_znodes, zp);
387 	}
388 	mutex_exit(&zfsvfs->z_znodes_lock);
389 
390 	if (zp->z_acl_cached) {
391 		zfs_acl_free(zp->z_acl_cached);
392 		zp->z_acl_cached = NULL;
393 	}
394 
395 	if (zp->z_xattr_cached) {
396 		nvlist_free(zp->z_xattr_cached);
397 		zp->z_xattr_cached = NULL;
398 	}
399 #ifndef HAVE_SOPS_FREE_INODE
400 	/*
401 	 * inode needs to be freed in RCU callback.  If we have
402 	 * super_operations->free_inode, Linux kernel will do call_rcu
403 	 * for us.  But if we don't have it, since call_rcu is GPL-only
404 	 * symbol, we can only free synchronously and accept the risk.
405 	 */
406 	zfs_inode_free(ip);
407 #endif
408 }
409 
410 static void
zfs_inode_set_ops(zfsvfs_t * zfsvfs,struct inode * ip)411 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
412 {
413 	uint64_t rdev = 0;
414 
415 	switch (ip->i_mode & S_IFMT) {
416 	case S_IFREG:
417 		ip->i_op = &zpl_inode_operations;
418 		ip->i_fop = &zpl_file_operations;
419 		ip->i_mapping->a_ops = &zpl_address_space_operations;
420 		break;
421 
422 	case S_IFDIR:
423 		ip->i_op = &zpl_dir_inode_operations;
424 		ip->i_fop = &zpl_dir_file_operations;
425 		ITOZ(ip)->z_zn_prefetch = B_TRUE;
426 		break;
427 
428 	case S_IFLNK:
429 		ip->i_op = &zpl_symlink_inode_operations;
430 		break;
431 
432 	/*
433 	 * rdev is only stored in a SA only for device files.
434 	 */
435 	case S_IFCHR:
436 	case S_IFBLK:
437 		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
438 		    sizeof (rdev));
439 		zfs_fallthrough;
440 	case S_IFIFO:
441 	case S_IFSOCK:
442 		init_special_inode(ip, ip->i_mode, rdev);
443 		ip->i_op = &zpl_special_inode_operations;
444 		break;
445 
446 	default:
447 		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
448 		    (u_longlong_t)ip->i_ino, ip->i_mode);
449 
450 		/* Assume the inode is a file and attempt to continue */
451 		ip->i_mode = S_IFREG | 0644;
452 		ip->i_op = &zpl_inode_operations;
453 		ip->i_fop = &zpl_file_operations;
454 		ip->i_mapping->a_ops = &zpl_address_space_operations;
455 		break;
456 	}
457 }
458 
459 static void
zfs_set_inode_flags(znode_t * zp,struct inode * ip)460 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
461 {
462 	/*
463 	 * Linux and Solaris have different sets of file attributes, so we
464 	 * restrict this conversion to the intersection of the two.
465 	 */
466 	unsigned int flags = 0;
467 	if (zp->z_pflags & ZFS_IMMUTABLE)
468 		flags |= S_IMMUTABLE;
469 	if (zp->z_pflags & ZFS_APPENDONLY)
470 		flags |= S_APPEND;
471 
472 	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
473 }
474 
475 /*
476  * Update the embedded inode given the znode.
477  */
478 void
zfs_znode_update_vfs(znode_t * zp)479 zfs_znode_update_vfs(znode_t *zp)
480 {
481 	struct inode	*ip;
482 	uint32_t	blksize;
483 	u_longlong_t	i_blocks;
484 
485 	ASSERT(zp != NULL);
486 	ip = ZTOI(zp);
487 
488 	/* Skip .zfs control nodes which do not exist on disk. */
489 	if (zfsctl_is_node(ip))
490 		return;
491 
492 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
493 
494 	spin_lock(&ip->i_lock);
495 	ip->i_mode = zp->z_mode;
496 	ip->i_blocks = i_blocks;
497 	i_size_write(ip, zp->z_size);
498 	spin_unlock(&ip->i_lock);
499 }
500 
501 
502 /*
503  * Construct a znode+inode and initialize.
504  *
505  * This does not do a call to dmu_set_user() that is
506  * up to the caller to do, in case you don't want to
507  * return the znode
508  */
509 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)510 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
511     dmu_object_type_t obj_type, sa_handle_t *hdl)
512 {
513 	znode_t	*zp;
514 	struct inode *ip;
515 	uint64_t mode;
516 	uint64_t parent;
517 	uint64_t tmp_gen;
518 	uint64_t links;
519 	uint64_t z_uid, z_gid;
520 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
521 	inode_timespec_t tmp_ts;
522 	uint64_t projid = ZFS_DEFAULT_PROJID;
523 	sa_bulk_attr_t bulk[12];
524 	int count = 0;
525 
526 	ASSERT(zfsvfs != NULL);
527 
528 	ip = new_inode(zfsvfs->z_sb);
529 	if (ip == NULL)
530 		return (NULL);
531 
532 	zp = ITOZ(ip);
533 	ASSERT0P(zp->z_dirlocks);
534 	ASSERT0P(zp->z_acl_cached);
535 	ASSERT0P(zp->z_xattr_cached);
536 	zp->z_unlinked = B_FALSE;
537 	zp->z_atime_dirty = B_FALSE;
538 	zp->z_is_ctldir = B_FALSE;
539 	zp->z_suspended = B_FALSE;
540 	zp->z_sa_hdl = NULL;
541 	zp->z_mapcnt = 0;
542 	zp->z_id = db->db_object;
543 	zp->z_blksz = blksz;
544 	zp->z_seq = 0x7A4653;
545 	zp->z_sync_cnt = 0;
546 
547 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
548 
549 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
550 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
551 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
552 	    &zp->z_size, 8);
553 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
554 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
555 	    &zp->z_pflags, 8);
556 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
557 	    &parent, 8);
558 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
559 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
560 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
561 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
562 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
563 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
564 
565 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
566 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
567 	    (zp->z_pflags & ZFS_PROJID) &&
568 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
569 		if (hdl == NULL)
570 			sa_handle_destroy(zp->z_sa_hdl);
571 		zp->z_sa_hdl = NULL;
572 		goto error;
573 	}
574 
575 	zp->z_projid = projid;
576 	zp->z_mode = ip->i_mode = mode;
577 	ip->i_generation = (uint32_t)tmp_gen;
578 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
579 	set_nlink(ip, (uint32_t)links);
580 	zfs_uid_write(ip, z_uid);
581 	zfs_gid_write(ip, z_gid);
582 	zfs_set_inode_flags(zp, ip);
583 
584 	/* Cache the xattr parent id */
585 	if (zp->z_pflags & ZFS_XATTR)
586 		zp->z_xattr_parent = parent;
587 
588 	ZFS_TIME_DECODE(&tmp_ts, atime);
589 	zpl_inode_set_atime_to_ts(ip, tmp_ts);
590 	ZFS_TIME_DECODE(&tmp_ts, mtime);
591 	zpl_inode_set_mtime_to_ts(ip, tmp_ts);
592 	ZFS_TIME_DECODE(&tmp_ts, ctime);
593 	zpl_inode_set_ctime_to_ts(ip, tmp_ts);
594 	ZFS_TIME_DECODE(&zp->z_btime, btime);
595 
596 	ip->i_ino = zp->z_id;
597 	zfs_znode_update_vfs(zp);
598 	zfs_inode_set_ops(zfsvfs, ip);
599 
600 	/*
601 	 * The only way insert_inode_locked() can fail is if the ip->i_ino
602 	 * number is already hashed for this super block.  This can never
603 	 * happen because the inode numbers map 1:1 with the object numbers.
604 	 *
605 	 * Exceptions include rolling back a mounted file system, either
606 	 * from the zfs rollback or zfs recv command.
607 	 *
608 	 * Active inodes are unhashed during the rollback, but since zrele
609 	 * can happen asynchronously, we can't guarantee they've been
610 	 * unhashed.  This can cause hash collisions in unlinked drain
611 	 * processing so do not hash unlinked znodes.
612 	 */
613 	if (links > 0)
614 		VERIFY0(insert_inode_locked(ip));
615 
616 	mutex_enter(&zfsvfs->z_znodes_lock);
617 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
618 	mutex_exit(&zfsvfs->z_znodes_lock);
619 
620 	if (links > 0)
621 		unlock_new_inode(ip);
622 	return (zp);
623 
624 error:
625 	iput(ip);
626 	return (NULL);
627 }
628 
629 /*
630  * Safely mark an inode dirty.  Inodes which are part of a read-only
631  * file system or snapshot may not be dirtied.
632  */
633 void
zfs_mark_inode_dirty(struct inode * ip)634 zfs_mark_inode_dirty(struct inode *ip)
635 {
636 	zfsvfs_t *zfsvfs = ITOZSB(ip);
637 
638 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
639 		return;
640 
641 	mark_inode_dirty(ip);
642 }
643 
644 static uint64_t empty_xattr;
645 static uint64_t pad[4];
646 static zfs_acl_phys_t acl_phys;
647 /*
648  * Create a new DMU object to hold a zfs znode.
649  *
650  *	IN:	dzp	- parent directory for new znode
651  *		vap	- file attributes for new znode
652  *		tx	- dmu transaction id for zap operations
653  *		cr	- credentials of caller
654  *		flag	- flags:
655  *			  IS_ROOT_NODE	- new object will be root
656  *			  IS_TMPFILE	- new object is of O_TMPFILE
657  *			  IS_XATTR	- new object is an attribute
658  *		acl_ids	- ACL related attributes
659  *
660  *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
661  *
662  */
663 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)664 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
665     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
666 {
667 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
668 	uint64_t	mode, size, links, parent, pflags;
669 	uint64_t	projid = ZFS_DEFAULT_PROJID;
670 	uint64_t	rdev = 0;
671 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
672 	dmu_buf_t	*db;
673 	inode_timespec_t now;
674 	uint64_t	gen, obj;
675 	int		bonuslen;
676 	int		dnodesize;
677 	sa_handle_t	*sa_hdl;
678 	dmu_object_type_t obj_type;
679 	sa_bulk_attr_t	*sa_attrs;
680 	int		cnt = 0;
681 	zfs_acl_locator_cb_t locate = { 0 };
682 	znode_hold_t	*zh;
683 
684 	if (zfsvfs->z_replay) {
685 		obj = vap->va_nodeid;
686 		now = vap->va_ctime;		/* see zfs_replay_create() */
687 		gen = vap->va_nblocks;		/* ditto */
688 		dnodesize = vap->va_fsid;	/* ditto */
689 	} else {
690 		obj = 0;
691 		gethrestime(&now);
692 		gen = dmu_tx_get_txg(tx);
693 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
694 	}
695 
696 	if (dnodesize == 0)
697 		dnodesize = DNODE_MIN_SIZE;
698 
699 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
700 
701 	bonuslen = (obj_type == DMU_OT_SA) ?
702 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
703 
704 	/*
705 	 * Create a new DMU object.
706 	 */
707 	/*
708 	 * There's currently no mechanism for pre-reading the blocks that will
709 	 * be needed to allocate a new object, so we accept the small chance
710 	 * that there will be an i/o error and we will fail one of the
711 	 * assertions below.
712 	 */
713 	if (S_ISDIR(vap->va_mode)) {
714 		if (zfsvfs->z_replay) {
715 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
716 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
717 			    obj_type, bonuslen, dnodesize, tx));
718 		} else {
719 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
720 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
721 			    obj_type, bonuslen, dnodesize, tx);
722 		}
723 	} else {
724 		if (zfsvfs->z_replay) {
725 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
726 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
727 			    obj_type, bonuslen, dnodesize, tx));
728 		} else {
729 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
730 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
731 			    obj_type, bonuslen, dnodesize, tx);
732 		}
733 	}
734 
735 	zh = zfs_znode_hold_enter(zfsvfs, obj);
736 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
737 
738 	/*
739 	 * If this is the root, fix up the half-initialized parent pointer
740 	 * to reference the just-allocated physical data area.
741 	 */
742 	if (flag & IS_ROOT_NODE) {
743 		dzp->z_id = obj;
744 	}
745 
746 	/*
747 	 * If parent is an xattr, so am I.
748 	 */
749 	if (dzp->z_pflags & ZFS_XATTR) {
750 		flag |= IS_XATTR;
751 	}
752 
753 	if (zfsvfs->z_use_fuids)
754 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
755 	else
756 		pflags = 0;
757 
758 	if (S_ISDIR(vap->va_mode)) {
759 		size = 2;		/* contents ("." and "..") */
760 		links = 2;
761 	} else {
762 		size = 0;
763 		links = (flag & IS_TMPFILE) ? 0 : 1;
764 	}
765 
766 	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
767 		rdev = vap->va_rdev;
768 
769 	parent = dzp->z_id;
770 	mode = acl_ids->z_mode;
771 	if (flag & IS_XATTR)
772 		pflags |= ZFS_XATTR;
773 
774 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
775 		/*
776 		 * With ZFS_PROJID flag, we can easily know whether there is
777 		 * project ID stored on disk or not. See zpl_get_file_info().
778 		 */
779 		if (obj_type != DMU_OT_ZNODE &&
780 		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
781 			pflags |= ZFS_PROJID;
782 
783 		/*
784 		 * Inherit project ID from parent if required.
785 		 */
786 		projid = zfs_inherit_projid(dzp);
787 		if (dzp->z_pflags & ZFS_PROJINHERIT)
788 			pflags |= ZFS_PROJINHERIT;
789 	}
790 
791 	/*
792 	 * No execs denied will be determined when zfs_mode_compute() is called.
793 	 */
794 	pflags |= acl_ids->z_aclp->z_hints &
795 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
796 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
797 
798 	ZFS_TIME_ENCODE(&now, crtime);
799 	ZFS_TIME_ENCODE(&now, ctime);
800 
801 	if (vap->va_mask & ATTR_ATIME) {
802 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
803 	} else {
804 		ZFS_TIME_ENCODE(&now, atime);
805 	}
806 
807 	if (vap->va_mask & ATTR_MTIME) {
808 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
809 	} else {
810 		ZFS_TIME_ENCODE(&now, mtime);
811 	}
812 
813 	/* Now add in all of the "SA" attributes */
814 	VERIFY0(sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
815 	    &sa_hdl));
816 
817 	/*
818 	 * Setup the array of attributes to be replaced/set on the new file
819 	 *
820 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
821 	 * in the old znode_phys_t format.  Don't change this ordering
822 	 */
823 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
824 
825 	if (obj_type == DMU_OT_ZNODE) {
826 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
827 		    NULL, &atime, 16);
828 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
829 		    NULL, &mtime, 16);
830 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
831 		    NULL, &ctime, 16);
832 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
833 		    NULL, &crtime, 16);
834 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
835 		    NULL, &gen, 8);
836 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
837 		    NULL, &mode, 8);
838 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
839 		    NULL, &size, 8);
840 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
841 		    NULL, &parent, 8);
842 	} else {
843 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
844 		    NULL, &mode, 8);
845 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
846 		    NULL, &size, 8);
847 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
848 		    NULL, &gen, 8);
849 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
850 		    NULL, &acl_ids->z_fuid, 8);
851 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
852 		    NULL, &acl_ids->z_fgid, 8);
853 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
854 		    NULL, &parent, 8);
855 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
856 		    NULL, &pflags, 8);
857 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
858 		    NULL, &atime, 16);
859 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
860 		    NULL, &mtime, 16);
861 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
862 		    NULL, &ctime, 16);
863 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
864 		    NULL, &crtime, 16);
865 	}
866 
867 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
868 
869 	if (obj_type == DMU_OT_ZNODE) {
870 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
871 		    &empty_xattr, 8);
872 	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
873 	    pflags & ZFS_PROJID) {
874 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
875 		    NULL, &projid, 8);
876 	}
877 	if (obj_type == DMU_OT_ZNODE ||
878 	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
879 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
880 		    NULL, &rdev, 8);
881 	}
882 	if (obj_type == DMU_OT_ZNODE) {
883 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
884 		    NULL, &pflags, 8);
885 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
886 		    &acl_ids->z_fuid, 8);
887 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
888 		    &acl_ids->z_fgid, 8);
889 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
890 		    sizeof (uint64_t) * 4);
891 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
892 		    &acl_phys, sizeof (zfs_acl_phys_t));
893 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
894 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
895 		    &acl_ids->z_aclp->z_acl_count, 8);
896 		locate.cb_aclp = acl_ids->z_aclp;
897 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
898 		    zfs_acl_data_locator, &locate,
899 		    acl_ids->z_aclp->z_acl_bytes);
900 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
901 		    acl_ids->z_fuid, acl_ids->z_fgid);
902 	}
903 
904 	VERIFY0(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx));
905 
906 	if (!(flag & IS_ROOT_NODE)) {
907 		/*
908 		 * The call to zfs_znode_alloc() may fail if memory is low
909 		 * via the call path: alloc_inode() -> inode_init_always() ->
910 		 * security_inode_alloc() -> inode_alloc_security().  Since
911 		 * the existing code is written such that zfs_mknode() can
912 		 * not fail retry until sufficient memory has been reclaimed.
913 		 */
914 		do {
915 			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
916 		} while (*zpp == NULL);
917 
918 		VERIFY(*zpp != NULL);
919 		VERIFY(dzp != NULL);
920 	} else {
921 		/*
922 		 * If we are creating the root node, the "parent" we
923 		 * passed in is the znode for the root.
924 		 */
925 		*zpp = dzp;
926 
927 		(*zpp)->z_sa_hdl = sa_hdl;
928 	}
929 
930 	(*zpp)->z_pflags = pflags;
931 	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
932 	(*zpp)->z_dnodesize = dnodesize;
933 	(*zpp)->z_projid = projid;
934 
935 	if (obj_type == DMU_OT_ZNODE ||
936 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
937 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
938 	}
939 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
940 	zfs_znode_hold_exit(zfsvfs, zh);
941 }
942 
943 /*
944  * Update in-core attributes.  It is assumed the caller will be doing an
945  * sa_bulk_update to push the changes out.
946  */
947 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)948 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
949 {
950 	xoptattr_t *xoap;
951 	boolean_t update_inode = B_FALSE;
952 
953 	xoap = xva_getxoptattr(xvap);
954 	ASSERT(xoap);
955 
956 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
957 		uint64_t times[2];
958 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
959 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
960 		    &times, sizeof (times), tx);
961 		XVA_SET_RTN(xvap, XAT_CREATETIME);
962 	}
963 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
964 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
965 		    zp->z_pflags, tx);
966 		XVA_SET_RTN(xvap, XAT_READONLY);
967 	}
968 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
969 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
970 		    zp->z_pflags, tx);
971 		XVA_SET_RTN(xvap, XAT_HIDDEN);
972 	}
973 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
974 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
975 		    zp->z_pflags, tx);
976 		XVA_SET_RTN(xvap, XAT_SYSTEM);
977 	}
978 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
979 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
980 		    zp->z_pflags, tx);
981 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
982 	}
983 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
984 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
985 		    zp->z_pflags, tx);
986 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
987 
988 		update_inode = B_TRUE;
989 	}
990 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
991 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
992 		    zp->z_pflags, tx);
993 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
994 	}
995 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
996 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
997 		    zp->z_pflags, tx);
998 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
999 
1000 		update_inode = B_TRUE;
1001 	}
1002 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1003 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1004 		    zp->z_pflags, tx);
1005 		XVA_SET_RTN(xvap, XAT_NODUMP);
1006 	}
1007 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1008 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1009 		    zp->z_pflags, tx);
1010 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1011 	}
1012 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1013 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1014 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1015 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1016 	}
1017 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1018 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1019 		    zp->z_pflags, tx);
1020 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1021 	}
1022 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1023 		zfs_sa_set_scanstamp(zp, xvap, tx);
1024 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1025 	}
1026 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1027 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1028 		    zp->z_pflags, tx);
1029 		XVA_SET_RTN(xvap, XAT_REPARSE);
1030 	}
1031 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1032 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1033 		    zp->z_pflags, tx);
1034 		XVA_SET_RTN(xvap, XAT_OFFLINE);
1035 	}
1036 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1037 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1038 		    zp->z_pflags, tx);
1039 		XVA_SET_RTN(xvap, XAT_SPARSE);
1040 	}
1041 	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1042 		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1043 		    zp->z_pflags, tx);
1044 		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1045 	}
1046 
1047 	if (update_inode)
1048 		zfs_set_inode_flags(zp, ZTOI(zp));
1049 }
1050 
1051 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)1052 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1053 {
1054 	dmu_object_info_t doi;
1055 	dmu_buf_t	*db;
1056 	znode_t		*zp;
1057 	znode_hold_t	*zh;
1058 	int err;
1059 	sa_handle_t	*hdl;
1060 
1061 	*zpp = NULL;
1062 
1063 again:
1064 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1065 
1066 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1067 	if (err) {
1068 		zfs_znode_hold_exit(zfsvfs, zh);
1069 		return (err);
1070 	}
1071 
1072 	dmu_object_info_from_db(db, &doi);
1073 	if (doi.doi_bonus_type != DMU_OT_SA &&
1074 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1075 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1076 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1077 		sa_buf_rele(db, NULL);
1078 		zfs_znode_hold_exit(zfsvfs, zh);
1079 		return (SET_ERROR(EINVAL));
1080 	}
1081 
1082 	hdl = dmu_buf_get_user(db);
1083 	if (hdl != NULL) {
1084 		zp = sa_get_userdata(hdl);
1085 
1086 
1087 		/*
1088 		 * Since "SA" does immediate eviction we
1089 		 * should never find a sa handle that doesn't
1090 		 * know about the znode.
1091 		 */
1092 
1093 		ASSERT3P(zp, !=, NULL);
1094 
1095 		mutex_enter(&zp->z_lock);
1096 		ASSERT3U(zp->z_id, ==, obj_num);
1097 		/*
1098 		 * If zp->z_unlinked is set, the znode is already marked
1099 		 * for deletion and should not be discovered. Check this
1100 		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1101 		 *
1102 		 * If igrab() returns NULL the VFS has independently
1103 		 * determined the inode should be evicted and has
1104 		 * called iput_final() to start the eviction process.
1105 		 * The SA handle is still valid but because the VFS
1106 		 * requires that the eviction succeed we must drop
1107 		 * our locks and references to allow the eviction to
1108 		 * complete.  The zfs_zget() may then be retried.
1109 		 *
1110 		 * This unlikely case could be optimized by registering
1111 		 * a sops->drop_inode() callback.  The callback would
1112 		 * need to detect the active SA hold thereby informing
1113 		 * the VFS that this inode should not be evicted.
1114 		 */
1115 		if (igrab(ZTOI(zp)) == NULL) {
1116 			if (zp->z_unlinked)
1117 				err = SET_ERROR(ENOENT);
1118 			else
1119 				err = SET_ERROR(EAGAIN);
1120 		} else {
1121 			*zpp = zp;
1122 			err = 0;
1123 		}
1124 
1125 		mutex_exit(&zp->z_lock);
1126 		sa_buf_rele(db, NULL);
1127 		zfs_znode_hold_exit(zfsvfs, zh);
1128 
1129 		if (err == EAGAIN) {
1130 			/* inode might need this to finish evict */
1131 			cond_resched();
1132 			goto again;
1133 		}
1134 		return (err);
1135 	}
1136 
1137 	/*
1138 	 * Not found create new znode/vnode but only if file exists.
1139 	 *
1140 	 * There is a small window where zfs_vget() could
1141 	 * find this object while a file create is still in
1142 	 * progress.  This is checked for in zfs_znode_alloc()
1143 	 *
1144 	 * if zfs_znode_alloc() fails it will drop the hold on the
1145 	 * bonus buffer.
1146 	 */
1147 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1148 	    doi.doi_bonus_type, NULL);
1149 	if (zp == NULL) {
1150 		err = SET_ERROR(ENOENT);
1151 	} else {
1152 		*zpp = zp;
1153 	}
1154 	zfs_znode_hold_exit(zfsvfs, zh);
1155 	return (err);
1156 }
1157 
1158 int
zfs_rezget(znode_t * zp)1159 zfs_rezget(znode_t *zp)
1160 {
1161 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1162 	dmu_object_info_t doi;
1163 	dmu_buf_t *db;
1164 	uint64_t obj_num = zp->z_id;
1165 	uint64_t mode;
1166 	uint64_t links;
1167 	sa_bulk_attr_t bulk[11];
1168 	int err;
1169 	int count = 0;
1170 	uint64_t gen;
1171 	uint64_t z_uid, z_gid;
1172 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
1173 	inode_timespec_t tmp_ts;
1174 	uint64_t projid = ZFS_DEFAULT_PROJID;
1175 	znode_hold_t *zh;
1176 
1177 	/*
1178 	 * skip ctldir, otherwise they will always get invalidated. This will
1179 	 * cause funny behaviour for the mounted snapdirs. Especially for
1180 	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1181 	 * anyone automount it again as long as someone is still using the
1182 	 * detached mount.
1183 	 */
1184 	if (zp->z_is_ctldir)
1185 		return (0);
1186 
1187 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1188 
1189 	mutex_enter(&zp->z_acl_lock);
1190 	if (zp->z_acl_cached) {
1191 		zfs_acl_free(zp->z_acl_cached);
1192 		zp->z_acl_cached = NULL;
1193 	}
1194 	mutex_exit(&zp->z_acl_lock);
1195 
1196 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1197 	if (zp->z_xattr_cached) {
1198 		nvlist_free(zp->z_xattr_cached);
1199 		zp->z_xattr_cached = NULL;
1200 	}
1201 	rw_exit(&zp->z_xattr_lock);
1202 
1203 	ASSERT0P(zp->z_sa_hdl);
1204 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1205 	if (err) {
1206 		zfs_znode_hold_exit(zfsvfs, zh);
1207 		return (err);
1208 	}
1209 
1210 	dmu_object_info_from_db(db, &doi);
1211 	if (doi.doi_bonus_type != DMU_OT_SA &&
1212 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1213 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1214 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1215 		sa_buf_rele(db, NULL);
1216 		zfs_znode_hold_exit(zfsvfs, zh);
1217 		return (SET_ERROR(EINVAL));
1218 	}
1219 
1220 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1221 
1222 	/* reload cached values */
1223 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1224 	    &gen, sizeof (gen));
1225 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1226 	    &zp->z_size, sizeof (zp->z_size));
1227 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1228 	    &links, sizeof (links));
1229 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1230 	    &zp->z_pflags, sizeof (zp->z_pflags));
1231 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1232 	    &z_uid, sizeof (z_uid));
1233 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1234 	    &z_gid, sizeof (z_gid));
1235 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1236 	    &mode, sizeof (mode));
1237 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1238 	    &atime, 16);
1239 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1240 	    &mtime, 16);
1241 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1242 	    &ctime, 16);
1243 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
1244 
1245 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1246 		zfs_znode_dmu_fini(zp);
1247 		zfs_znode_hold_exit(zfsvfs, zh);
1248 		return (SET_ERROR(EIO));
1249 	}
1250 
1251 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1252 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1253 		    &projid, 8);
1254 		if (err != 0 && err != ENOENT) {
1255 			zfs_znode_dmu_fini(zp);
1256 			zfs_znode_hold_exit(zfsvfs, zh);
1257 			return (SET_ERROR(err));
1258 		}
1259 	}
1260 
1261 	zp->z_projid = projid;
1262 	zp->z_mode = ZTOI(zp)->i_mode = mode;
1263 	zfs_uid_write(ZTOI(zp), z_uid);
1264 	zfs_gid_write(ZTOI(zp), z_gid);
1265 
1266 	ZFS_TIME_DECODE(&tmp_ts, atime);
1267 	zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
1268 	ZFS_TIME_DECODE(&tmp_ts, mtime);
1269 	zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1270 	ZFS_TIME_DECODE(&tmp_ts, ctime);
1271 	zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1272 	ZFS_TIME_DECODE(&zp->z_btime, btime);
1273 
1274 	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1275 		zfs_znode_dmu_fini(zp);
1276 		zfs_znode_hold_exit(zfsvfs, zh);
1277 		return (SET_ERROR(EIO));
1278 	}
1279 
1280 	set_nlink(ZTOI(zp), (uint32_t)links);
1281 	zfs_set_inode_flags(zp, ZTOI(zp));
1282 
1283 	zp->z_blksz = doi.doi_data_block_size;
1284 	zp->z_atime_dirty = B_FALSE;
1285 	zfs_znode_update_vfs(zp);
1286 
1287 	/*
1288 	 * If the file has zero links, then it has been unlinked on the send
1289 	 * side and it must be in the received unlinked set.
1290 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1291 	 * stale data and to prevent automatic removal of the file in
1292 	 * zfs_zinactive().  The file will be removed either when it is removed
1293 	 * on the send side and the next incremental stream is received or
1294 	 * when the unlinked set gets processed.
1295 	 */
1296 	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1297 	if (zp->z_unlinked)
1298 		zfs_znode_dmu_fini(zp);
1299 
1300 	zfs_znode_hold_exit(zfsvfs, zh);
1301 
1302 	return (0);
1303 }
1304 
1305 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1306 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1307 {
1308 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1309 	objset_t *os = zfsvfs->z_os;
1310 	uint64_t obj = zp->z_id;
1311 	uint64_t acl_obj = zfs_external_acl(zp);
1312 	znode_hold_t *zh;
1313 
1314 	zh = zfs_znode_hold_enter(zfsvfs, obj);
1315 	if (acl_obj) {
1316 		VERIFY(!zp->z_is_sa);
1317 		VERIFY0(dmu_object_free(os, acl_obj, tx));
1318 	}
1319 	VERIFY0(dmu_object_free(os, obj, tx));
1320 	zfs_znode_dmu_fini(zp);
1321 	zfs_znode_hold_exit(zfsvfs, zh);
1322 }
1323 
1324 void
zfs_zinactive(znode_t * zp)1325 zfs_zinactive(znode_t *zp)
1326 {
1327 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1328 	uint64_t z_id = zp->z_id;
1329 	znode_hold_t *zh;
1330 
1331 	ASSERT(zp->z_sa_hdl);
1332 
1333 	/*
1334 	 * Don't allow a zfs_zget() while were trying to release this znode.
1335 	 */
1336 	zh = zfs_znode_hold_enter(zfsvfs, z_id);
1337 
1338 	mutex_enter(&zp->z_lock);
1339 
1340 	/*
1341 	 * If this was the last reference to a file with no links, remove
1342 	 * the file from the file system unless the file system is mounted
1343 	 * read-only.  That can happen, for example, if the file system was
1344 	 * originally read-write, the file was opened, then unlinked and
1345 	 * the file system was made read-only before the file was finally
1346 	 * closed.  The file will remain in the unlinked set.
1347 	 */
1348 	if (zp->z_unlinked) {
1349 		ASSERT(!zfsvfs->z_issnap);
1350 		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1351 			mutex_exit(&zp->z_lock);
1352 			zfs_znode_hold_exit(zfsvfs, zh);
1353 			zfs_rmnode(zp);
1354 			return;
1355 		}
1356 	}
1357 
1358 	mutex_exit(&zp->z_lock);
1359 	zfs_znode_dmu_fini(zp);
1360 
1361 	zfs_znode_hold_exit(zfsvfs, zh);
1362 }
1363 
1364 /*
1365  * Determine whether the znode's atime must be updated.  The logic mostly
1366  * duplicates the Linux kernel's relatime_need_update() functionality.
1367  * This function is only called if the underlying filesystem actually has
1368  * atime updates enabled.
1369  */
1370 boolean_t
zfs_relatime_need_update(const struct inode * ip)1371 zfs_relatime_need_update(const struct inode *ip)
1372 {
1373 	inode_timespec_t now, tmp_atime, tmp_ts;
1374 
1375 	gethrestime(&now);
1376 	tmp_atime = zpl_inode_get_atime(ip);
1377 	/*
1378 	 * In relatime mode, only update the atime if the previous atime
1379 	 * is earlier than either the ctime or mtime or if at least a day
1380 	 * has passed since the last update of atime.
1381 	 */
1382 	tmp_ts = zpl_inode_get_mtime(ip);
1383 	if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1384 		return (B_TRUE);
1385 
1386 	tmp_ts = zpl_inode_get_ctime(ip);
1387 	if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1388 		return (B_TRUE);
1389 
1390 	if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
1391 		return (B_TRUE);
1392 
1393 	return (B_FALSE);
1394 }
1395 
1396 /*
1397  * Prepare to update znode time stamps.
1398  *
1399  *	IN:	zp	- znode requiring timestamp update
1400  *		flag	- ATTR_MTIME, ATTR_CTIME flags
1401  *
1402  *	OUT:	zp	- z_seq
1403  *		mtime	- new mtime
1404  *		ctime	- new ctime
1405  *
1406  *	Note: We don't update atime here, because we rely on Linux VFS to do
1407  *	atime updating.
1408  */
1409 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1410 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1411     uint64_t ctime[2])
1412 {
1413 	inode_timespec_t now, tmp_ts;
1414 
1415 	gethrestime(&now);
1416 
1417 	zp->z_seq++;
1418 
1419 	if (flag & ATTR_MTIME) {
1420 		ZFS_TIME_ENCODE(&now, mtime);
1421 		ZFS_TIME_DECODE(&tmp_ts, mtime);
1422 		zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1423 		if (ZTOZSB(zp)->z_use_fuids) {
1424 			zp->z_pflags |= (ZFS_ARCHIVE |
1425 			    ZFS_AV_MODIFIED);
1426 		}
1427 	}
1428 
1429 	if (flag & ATTR_CTIME) {
1430 		ZFS_TIME_ENCODE(&now, ctime);
1431 		ZFS_TIME_DECODE(&tmp_ts, ctime);
1432 		zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1433 		if (ZTOZSB(zp)->z_use_fuids)
1434 			zp->z_pflags |= ZFS_ARCHIVE;
1435 	}
1436 }
1437 
1438 /*
1439  * Grow the block size for a file.
1440  *
1441  *	IN:	zp	- znode of file to free data in.
1442  *		size	- requested block size
1443  *		tx	- open transaction.
1444  *
1445  * NOTE: this function assumes that the znode is write locked.
1446  */
1447 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1448 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1449 {
1450 	int		error;
1451 	u_longlong_t	dummy;
1452 
1453 	if (size <= zp->z_blksz)
1454 		return;
1455 	/*
1456 	 * If the file size is already greater than the current blocksize,
1457 	 * we will not grow.  If there is more than one block in a file,
1458 	 * the blocksize cannot change.
1459 	 */
1460 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1461 		return;
1462 
1463 	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1464 	    size, 0, tx);
1465 
1466 	if (error == ENOTSUP)
1467 		return;
1468 	ASSERT0(error);
1469 
1470 	/* What blocksize did we actually get? */
1471 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1472 }
1473 
1474 /*
1475  * Increase the file length
1476  *
1477  *	IN:	zp	- znode of file to free data in.
1478  *		end	- new end-of-file
1479  *
1480  *	RETURN:	0 on success, error code on failure
1481  */
1482 static int
zfs_extend(znode_t * zp,uint64_t end)1483 zfs_extend(znode_t *zp, uint64_t end)
1484 {
1485 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1486 	dmu_tx_t *tx;
1487 	zfs_locked_range_t *lr;
1488 	uint64_t newblksz;
1489 	int error;
1490 
1491 	/*
1492 	 * We will change zp_size, lock the whole file.
1493 	 */
1494 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1495 
1496 	/*
1497 	 * Nothing to do if file already at desired length.
1498 	 */
1499 	if (end <= zp->z_size) {
1500 		zfs_rangelock_exit(lr);
1501 		return (0);
1502 	}
1503 	tx = dmu_tx_create(zfsvfs->z_os);
1504 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1505 	zfs_sa_upgrade_txholds(tx, zp);
1506 	if (end > zp->z_blksz &&
1507 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1508 		/*
1509 		 * We are growing the file past the current block size.
1510 		 */
1511 		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1512 			/*
1513 			 * File's blocksize is already larger than the
1514 			 * "recordsize" property.  Only let it grow to
1515 			 * the next power of 2.
1516 			 */
1517 			ASSERT(!ISP2(zp->z_blksz));
1518 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1519 		} else {
1520 			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1521 		}
1522 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1523 	} else {
1524 		newblksz = 0;
1525 	}
1526 
1527 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
1528 	if (error) {
1529 		dmu_tx_abort(tx);
1530 		zfs_rangelock_exit(lr);
1531 		return (error);
1532 	}
1533 
1534 	if (newblksz)
1535 		zfs_grow_blocksize(zp, newblksz, tx);
1536 
1537 	zp->z_size = end;
1538 
1539 	VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1540 	    &zp->z_size, sizeof (zp->z_size), tx));
1541 
1542 	zfs_rangelock_exit(lr);
1543 
1544 	dmu_tx_commit(tx);
1545 
1546 	return (0);
1547 }
1548 
1549 /*
1550  * zfs_zero_partial_page - Modeled after update_pages() but
1551  * with different arguments and semantics for use by zfs_freesp().
1552  *
1553  * Zeroes a piece of a single page cache entry for zp at offset
1554  * start and length len.
1555  *
1556  * Caller must acquire a range lock on the file for the region
1557  * being zeroed in order that the ARC and page cache stay in sync.
1558  */
1559 static void
zfs_zero_partial_page(znode_t * zp,uint64_t start,uint64_t len)1560 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1561 {
1562 	struct address_space *mp = ZTOI(zp)->i_mapping;
1563 	struct page *pp;
1564 	int64_t	off;
1565 	void *pb;
1566 
1567 	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1568 
1569 	off = start & (PAGE_SIZE - 1);
1570 	start &= PAGE_MASK;
1571 
1572 	pp = find_lock_page(mp, start >> PAGE_SHIFT);
1573 	if (pp) {
1574 		if (mapping_writably_mapped(mp))
1575 			flush_dcache_page(pp);
1576 
1577 		pb = kmap(pp);
1578 		memset(pb + off, 0, len);
1579 		kunmap(pp);
1580 
1581 		if (mapping_writably_mapped(mp))
1582 			flush_dcache_page(pp);
1583 
1584 		mark_page_accessed(pp);
1585 		SetPageUptodate(pp);
1586 		ClearPageError(pp);
1587 		unlock_page(pp);
1588 		put_page(pp);
1589 	}
1590 }
1591 
1592 /*
1593  * Free space in a file.
1594  *
1595  *	IN:	zp	- znode of file to free data in.
1596  *		off	- start of section to free.
1597  *		len	- length of section to free.
1598  *
1599  *	RETURN:	0 on success, error code on failure
1600  */
1601 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1602 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1603 {
1604 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1605 	zfs_locked_range_t *lr;
1606 	int error;
1607 
1608 	/*
1609 	 * Lock the range being freed.
1610 	 */
1611 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1612 
1613 	/*
1614 	 * Nothing to do if file already at desired length.
1615 	 */
1616 	if (off >= zp->z_size) {
1617 		zfs_rangelock_exit(lr);
1618 		return (0);
1619 	}
1620 
1621 	if (off + len > zp->z_size)
1622 		len = zp->z_size - off;
1623 
1624 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1625 
1626 	/*
1627 	 * Zero partial page cache entries.  This must be done under a
1628 	 * range lock in order to keep the ARC and page cache in sync.
1629 	 */
1630 	if (zn_has_cached_data(zp, off, off + len - 1)) {
1631 		loff_t first_page, last_page, page_len;
1632 		loff_t first_page_offset, last_page_offset;
1633 
1634 		/* first possible full page in hole */
1635 		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1636 		/* last page of hole */
1637 		last_page = (off + len) >> PAGE_SHIFT;
1638 
1639 		/* offset of first_page */
1640 		first_page_offset = first_page << PAGE_SHIFT;
1641 		/* offset of last_page */
1642 		last_page_offset = last_page << PAGE_SHIFT;
1643 
1644 		/* truncate whole pages */
1645 		if (last_page_offset > first_page_offset) {
1646 			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1647 			    first_page_offset, last_page_offset - 1);
1648 		}
1649 
1650 		/* truncate sub-page ranges */
1651 		if (first_page > last_page) {
1652 			/* entire punched area within a single page */
1653 			zfs_zero_partial_page(zp, off, len);
1654 		} else {
1655 			/* beginning of punched area at the end of a page */
1656 			page_len  = first_page_offset - off;
1657 			if (page_len > 0)
1658 				zfs_zero_partial_page(zp, off, page_len);
1659 
1660 			/* end of punched area at the beginning of a page */
1661 			page_len = off + len - last_page_offset;
1662 			if (page_len > 0)
1663 				zfs_zero_partial_page(zp, last_page_offset,
1664 				    page_len);
1665 		}
1666 	}
1667 	zfs_rangelock_exit(lr);
1668 
1669 	return (error);
1670 }
1671 
1672 /*
1673  * Truncate a file
1674  *
1675  *	IN:	zp	- znode of file to free data in.
1676  *		end	- new end-of-file.
1677  *
1678  *	RETURN:	0 on success, error code on failure
1679  */
1680 static int
zfs_trunc(znode_t * zp,uint64_t end)1681 zfs_trunc(znode_t *zp, uint64_t end)
1682 {
1683 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1684 	dmu_tx_t *tx;
1685 	zfs_locked_range_t *lr;
1686 	int error;
1687 	sa_bulk_attr_t bulk[2];
1688 	int count = 0;
1689 
1690 	/*
1691 	 * We will change zp_size, lock the whole file.
1692 	 */
1693 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1694 
1695 	/*
1696 	 * Nothing to do if file already at desired length.
1697 	 */
1698 	if (end >= zp->z_size) {
1699 		zfs_rangelock_exit(lr);
1700 		return (0);
1701 	}
1702 
1703 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1704 	    DMU_OBJECT_END);
1705 	if (error) {
1706 		zfs_rangelock_exit(lr);
1707 		return (error);
1708 	}
1709 	tx = dmu_tx_create(zfsvfs->z_os);
1710 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1711 	zfs_sa_upgrade_txholds(tx, zp);
1712 	dmu_tx_mark_netfree(tx);
1713 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
1714 	if (error) {
1715 		dmu_tx_abort(tx);
1716 		zfs_rangelock_exit(lr);
1717 		return (error);
1718 	}
1719 
1720 	zp->z_size = end;
1721 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1722 	    NULL, &zp->z_size, sizeof (zp->z_size));
1723 
1724 	if (end == 0) {
1725 		zp->z_pflags &= ~ZFS_SPARSE;
1726 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1727 		    NULL, &zp->z_pflags, 8);
1728 	}
1729 	VERIFY0(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1730 
1731 	dmu_tx_commit(tx);
1732 	zfs_rangelock_exit(lr);
1733 
1734 	return (0);
1735 }
1736 
1737 /*
1738  * Free space in a file
1739  *
1740  *	IN:	zp	- znode of file to free data in.
1741  *		off	- start of range
1742  *		len	- end of range (0 => EOF)
1743  *		flag	- current file open mode flags.
1744  *		log	- TRUE if this action should be logged
1745  *
1746  *	RETURN:	0 on success, error code on failure
1747  */
1748 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1749 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1750 {
1751 	dmu_tx_t *tx;
1752 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1753 	zilog_t *zilog = zfsvfs->z_log;
1754 	uint64_t mode;
1755 	uint64_t mtime[2], ctime[2];
1756 	sa_bulk_attr_t bulk[3];
1757 	int count = 0;
1758 	int error;
1759 
1760 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1761 	    sizeof (mode))) != 0)
1762 		return (error);
1763 
1764 	if (off > zp->z_size) {
1765 		error =  zfs_extend(zp, off+len);
1766 		if (error == 0 && log)
1767 			goto log;
1768 		goto out;
1769 	}
1770 
1771 	if (len == 0) {
1772 		error = zfs_trunc(zp, off);
1773 	} else {
1774 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1775 		    off + len > zp->z_size)
1776 			error = zfs_extend(zp, off+len);
1777 	}
1778 	if (error || !log)
1779 		goto out;
1780 log:
1781 	tx = dmu_tx_create(zfsvfs->z_os);
1782 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1783 	zfs_sa_upgrade_txholds(tx, zp);
1784 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
1785 	if (error) {
1786 		dmu_tx_abort(tx);
1787 		goto out;
1788 	}
1789 
1790 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1791 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1792 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1793 	    NULL, &zp->z_pflags, 8);
1794 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1795 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1796 	ASSERT0(error);
1797 
1798 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1799 
1800 	dmu_tx_commit(tx);
1801 
1802 	zfs_znode_update_vfs(zp);
1803 	error = 0;
1804 
1805 out:
1806 	/*
1807 	 * Truncate the page cache - for file truncate operations, use
1808 	 * the purpose-built API for truncations.  For punching operations,
1809 	 * the truncation is handled under a range lock in zfs_free_range.
1810 	 */
1811 	if (len == 0)
1812 		truncate_setsize(ZTOI(zp), off);
1813 	return (error);
1814 }
1815 
1816 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1817 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1818 {
1819 	struct super_block *sb;
1820 	zfsvfs_t	*zfsvfs;
1821 	uint64_t	moid, obj, sa_obj, version;
1822 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1823 	uint64_t	norm = 0;
1824 	nvpair_t	*elem;
1825 	int		size;
1826 	int		error;
1827 	int		i;
1828 	znode_t		*rootzp = NULL;
1829 	vattr_t		vattr;
1830 	znode_t		*zp;
1831 	zfs_acl_ids_t	acl_ids;
1832 
1833 	/*
1834 	 * First attempt to create master node.
1835 	 */
1836 	/*
1837 	 * In an empty objset, there are no blocks to read and thus
1838 	 * there can be no i/o errors (which we assert below).
1839 	 */
1840 	moid = MASTER_NODE_OBJ;
1841 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1842 	    DMU_OT_NONE, 0, tx);
1843 	ASSERT0(error);
1844 
1845 	/*
1846 	 * Set starting attributes.
1847 	 */
1848 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1849 	elem = NULL;
1850 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1851 		/* For the moment we expect all zpl props to be uint64_ts */
1852 		uint64_t val;
1853 		const char *name;
1854 
1855 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1856 		VERIFY0(nvpair_value_uint64(elem, &val));
1857 		name = nvpair_name(elem);
1858 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1859 			if (val < version)
1860 				version = val;
1861 		} else {
1862 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1863 		}
1864 		ASSERT0(error);
1865 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1866 			norm = val;
1867 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1868 			sense = val;
1869 	}
1870 	ASSERT(version != 0);
1871 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1872 	ASSERT0(error);
1873 
1874 	/*
1875 	 * Create zap object used for SA attribute registration
1876 	 */
1877 
1878 	if (version >= ZPL_VERSION_SA) {
1879 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1880 		    DMU_OT_NONE, 0, tx);
1881 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1882 		ASSERT0(error);
1883 	} else {
1884 		sa_obj = 0;
1885 	}
1886 	/*
1887 	 * Create a delete queue.
1888 	 */
1889 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1890 
1891 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1892 	ASSERT0(error);
1893 
1894 	/*
1895 	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
1896 	 * to allow zfs_mknode to work.
1897 	 */
1898 	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1899 	vattr.va_mode = S_IFDIR|0755;
1900 	vattr.va_uid = crgetuid(cr);
1901 	vattr.va_gid = crgetgid(cr);
1902 
1903 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1904 	rootzp->z_unlinked = B_FALSE;
1905 	rootzp->z_atime_dirty = B_FALSE;
1906 	rootzp->z_is_sa = USE_SA(version, os);
1907 	rootzp->z_pflags = 0;
1908 
1909 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1910 	zfsvfs->z_os = os;
1911 	zfsvfs->z_parent = zfsvfs;
1912 	zfsvfs->z_version = version;
1913 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1914 	zfsvfs->z_use_sa = USE_SA(version, os);
1915 	zfsvfs->z_norm = norm;
1916 
1917 	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1918 	sb->s_fs_info = zfsvfs;
1919 
1920 	ZTOI(rootzp)->i_sb = sb;
1921 
1922 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1923 	    &zfsvfs->z_attr_table);
1924 
1925 	ASSERT0(error);
1926 
1927 	/*
1928 	 * Fold case on file systems that are always or sometimes case
1929 	 * insensitive.
1930 	 */
1931 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1932 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1933 
1934 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1935 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1936 	    offsetof(znode_t, z_link_node));
1937 
1938 	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1939 	zfsvfs->z_hold_size = size;
1940 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1941 	    KM_SLEEP);
1942 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1943 	for (i = 0; i != size; i++) {
1944 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1945 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1946 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1947 	}
1948 
1949 	VERIFY0(zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1950 	    cr, NULL, &acl_ids, zfs_init_idmap));
1951 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1952 	ASSERT3P(zp, ==, rootzp);
1953 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1954 	ASSERT0(error);
1955 	zfs_acl_ids_free(&acl_ids);
1956 
1957 	atomic_set(&ZTOI(rootzp)->i_count, 0);
1958 	sa_handle_destroy(rootzp->z_sa_hdl);
1959 	kmem_cache_free(znode_cache, rootzp);
1960 
1961 	for (i = 0; i != size; i++) {
1962 		avl_destroy(&zfsvfs->z_hold_trees[i]);
1963 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1964 	}
1965 
1966 	mutex_destroy(&zfsvfs->z_znodes_lock);
1967 
1968 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1969 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1970 	kmem_free(sb, sizeof (struct super_block));
1971 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1972 }
1973 
1974 EXPORT_SYMBOL(zfs_create_fs);
1975 EXPORT_SYMBOL(zfs_obj_to_path);
1976 
1977 module_param(zfs_object_mutex_size, uint, 0644);
1978 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
1979 module_param(zfs_unlink_suspend_progress, int, 0644);
1980 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
1981 "(debug - leaks space into the unlinked set)");
1982