1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/sysmacros.h>
33 #include <sys/mntent.h>
34 #include <sys/u8_textprep.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vfs.h>
37 #include <sys/vnode.h>
38 #include <sys/file.h>
39 #include <sys/kmem.h>
40 #include <sys/errno.h>
41 #include <sys/atomic.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zfs_acl.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zfs_rlock.h>
46 #include <sys/zfs_fuid.h>
47 #include <sys/zfs_vnops.h>
48 #include <sys/zfs_ctldir.h>
49 #include <sys/dnode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zpl.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zfs_refcount.h>
56 #include <sys/stat.h>
57 #include <sys/zap.h>
58 #include <sys/zfs_znode.h>
59 #include <sys/sa.h>
60 #include <sys/zfs_sa.h>
61 #include <sys/zfs_stat.h>
62 #include <linux/mm_compat.h>
63
64 #include "zfs_prop.h"
65 #include "zfs_comutil.h"
66
67 static kmem_cache_t *znode_cache = NULL;
68 static kmem_cache_t *znode_hold_cache = NULL;
69 unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
70
71 /*
72 * This is used by the test suite so that it can delay znodes from being
73 * freed in order to inspect the unlinked set.
74 */
75 static int zfs_unlink_suspend_progress = 0;
76
77 /*
78 * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
79 * z_rangelock. It will modify the offset and length of the lock to reflect
80 * znode-specific information, and convert RL_APPEND to RL_WRITER. This is
81 * called with the rangelock_t's rl_lock held, which avoids races.
82 */
83 static void
zfs_rangelock_cb(zfs_locked_range_t * new,void * arg)84 zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
85 {
86 znode_t *zp = arg;
87
88 /*
89 * If in append mode, convert to writer and lock starting at the
90 * current end of file.
91 */
92 if (new->lr_type == RL_APPEND) {
93 new->lr_offset = zp->z_size;
94 new->lr_type = RL_WRITER;
95 }
96
97 /*
98 * If we need to grow the block size then lock the whole file range.
99 */
100 uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
101 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
102 zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
103 new->lr_offset = 0;
104 new->lr_length = UINT64_MAX;
105 }
106 }
107
108 static int
zfs_znode_cache_constructor(void * buf,void * arg,int kmflags)109 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
110 {
111 (void) arg, (void) kmflags;
112 znode_t *zp = buf;
113
114 inode_init_once(ZTOI(zp));
115 list_link_init(&zp->z_link_node);
116
117 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
118 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
119 rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
120 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
121 rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
122
123 zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
124
125 zp->z_dirlocks = NULL;
126 zp->z_acl_cached = NULL;
127 zp->z_xattr_cached = NULL;
128 zp->z_xattr_parent = 0;
129 zp->z_sync_writes_cnt = 0;
130 zp->z_async_writes_cnt = 0;
131
132 return (0);
133 }
134
135 static void
zfs_znode_cache_destructor(void * buf,void * arg)136 zfs_znode_cache_destructor(void *buf, void *arg)
137 {
138 (void) arg;
139 znode_t *zp = buf;
140
141 ASSERT(!list_link_active(&zp->z_link_node));
142 mutex_destroy(&zp->z_lock);
143 rw_destroy(&zp->z_parent_lock);
144 rw_destroy(&zp->z_name_lock);
145 mutex_destroy(&zp->z_acl_lock);
146 rw_destroy(&zp->z_xattr_lock);
147 zfs_rangelock_fini(&zp->z_rangelock);
148
149 ASSERT3P(zp->z_dirlocks, ==, NULL);
150 ASSERT3P(zp->z_acl_cached, ==, NULL);
151 ASSERT3P(zp->z_xattr_cached, ==, NULL);
152
153 ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
154 ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
155 }
156
157 static int
zfs_znode_hold_cache_constructor(void * buf,void * arg,int kmflags)158 zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
159 {
160 (void) arg, (void) kmflags;
161 znode_hold_t *zh = buf;
162
163 mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
164 zh->zh_refcount = 0;
165
166 return (0);
167 }
168
169 static void
zfs_znode_hold_cache_destructor(void * buf,void * arg)170 zfs_znode_hold_cache_destructor(void *buf, void *arg)
171 {
172 (void) arg;
173 znode_hold_t *zh = buf;
174
175 mutex_destroy(&zh->zh_lock);
176 }
177
178 void
zfs_znode_init(void)179 zfs_znode_init(void)
180 {
181 /*
182 * Initialize zcache. The KMC_SLAB hint is used in order that it be
183 * backed by kmalloc() when on the Linux slab in order that any
184 * wait_on_bit() operations on the related inode operate properly.
185 */
186 ASSERT(znode_cache == NULL);
187 znode_cache = kmem_cache_create("zfs_znode_cache",
188 sizeof (znode_t), 0, zfs_znode_cache_constructor,
189 zfs_znode_cache_destructor, NULL, NULL, NULL,
190 KMC_SLAB | KMC_RECLAIMABLE);
191
192 ASSERT(znode_hold_cache == NULL);
193 znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
194 sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
195 zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
196 }
197
198 void
zfs_znode_fini(void)199 zfs_znode_fini(void)
200 {
201 /*
202 * Cleanup zcache
203 */
204 if (znode_cache)
205 kmem_cache_destroy(znode_cache);
206 znode_cache = NULL;
207
208 if (znode_hold_cache)
209 kmem_cache_destroy(znode_hold_cache);
210 znode_hold_cache = NULL;
211 }
212
213 /*
214 * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
215 * serialize access to a znode and its SA buffer while the object is being
216 * created or destroyed. This kind of locking would normally reside in the
217 * znode itself but in this case that's impossible because the znode and SA
218 * buffer may not yet exist. Therefore the locking is handled externally
219 * with an array of mutexes and AVLs trees which contain per-object locks.
220 *
221 * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
222 * in to the correct AVL tree and finally the per-object lock is held. In
223 * zfs_znode_hold_exit() the process is reversed. The per-object lock is
224 * released, removed from the AVL tree and destroyed if there are no waiters.
225 *
226 * This scheme has two important properties:
227 *
228 * 1) No memory allocations are performed while holding one of the z_hold_locks.
229 * This ensures evict(), which can be called from direct memory reclaim, will
230 * never block waiting on a z_hold_locks which just happens to have hashed
231 * to the same index.
232 *
233 * 2) All locks used to serialize access to an object are per-object and never
234 * shared. This minimizes lock contention without creating a large number
235 * of dedicated locks.
236 *
237 * On the downside it does require znode_lock_t structures to be frequently
238 * allocated and freed. However, because these are backed by a kmem cache
239 * and very short lived this cost is minimal.
240 */
241 int
zfs_znode_hold_compare(const void * a,const void * b)242 zfs_znode_hold_compare(const void *a, const void *b)
243 {
244 const znode_hold_t *zh_a = (const znode_hold_t *)a;
245 const znode_hold_t *zh_b = (const znode_hold_t *)b;
246
247 return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
248 }
249
250 static boolean_t __maybe_unused
zfs_znode_held(zfsvfs_t * zfsvfs,uint64_t obj)251 zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
252 {
253 znode_hold_t *zh, search;
254 int i = ZFS_OBJ_HASH(zfsvfs, obj);
255 boolean_t held;
256
257 search.zh_obj = obj;
258
259 mutex_enter(&zfsvfs->z_hold_locks[i]);
260 zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
261 held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
262 mutex_exit(&zfsvfs->z_hold_locks[i]);
263
264 return (held);
265 }
266
267 znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t * zfsvfs,uint64_t obj)268 zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
269 {
270 znode_hold_t *zh, *zh_new, search;
271 int i = ZFS_OBJ_HASH(zfsvfs, obj);
272 boolean_t found = B_FALSE;
273
274 zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
275 search.zh_obj = obj;
276
277 mutex_enter(&zfsvfs->z_hold_locks[i]);
278 zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
279 if (likely(zh == NULL)) {
280 zh = zh_new;
281 zh->zh_obj = obj;
282 avl_add(&zfsvfs->z_hold_trees[i], zh);
283 } else {
284 ASSERT3U(zh->zh_obj, ==, obj);
285 found = B_TRUE;
286 }
287 zh->zh_refcount++;
288 ASSERT3S(zh->zh_refcount, >, 0);
289 mutex_exit(&zfsvfs->z_hold_locks[i]);
290
291 if (found == B_TRUE)
292 kmem_cache_free(znode_hold_cache, zh_new);
293
294 ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
295 mutex_enter(&zh->zh_lock);
296
297 return (zh);
298 }
299
300 void
zfs_znode_hold_exit(zfsvfs_t * zfsvfs,znode_hold_t * zh)301 zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
302 {
303 int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
304 boolean_t remove = B_FALSE;
305
306 ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
307 mutex_exit(&zh->zh_lock);
308
309 mutex_enter(&zfsvfs->z_hold_locks[i]);
310 ASSERT3S(zh->zh_refcount, >, 0);
311 if (--zh->zh_refcount == 0) {
312 avl_remove(&zfsvfs->z_hold_trees[i], zh);
313 remove = B_TRUE;
314 }
315 mutex_exit(&zfsvfs->z_hold_locks[i]);
316
317 if (remove == B_TRUE)
318 kmem_cache_free(znode_hold_cache, zh);
319 }
320
321 dev_t
zfs_cmpldev(uint64_t dev)322 zfs_cmpldev(uint64_t dev)
323 {
324 return (dev);
325 }
326
327 static void
zfs_znode_sa_init(zfsvfs_t * zfsvfs,znode_t * zp,dmu_buf_t * db,dmu_object_type_t obj_type,sa_handle_t * sa_hdl)328 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
329 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
330 {
331 ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
332
333 mutex_enter(&zp->z_lock);
334
335 ASSERT(zp->z_sa_hdl == NULL);
336 ASSERT(zp->z_acl_cached == NULL);
337 if (sa_hdl == NULL) {
338 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
339 SA_HDL_SHARED, &zp->z_sa_hdl));
340 } else {
341 zp->z_sa_hdl = sa_hdl;
342 sa_set_userp(sa_hdl, zp);
343 }
344
345 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
346
347 mutex_exit(&zp->z_lock);
348 }
349
350 void
zfs_znode_dmu_fini(znode_t * zp)351 zfs_znode_dmu_fini(znode_t *zp)
352 {
353 ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
354 RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
355
356 sa_handle_destroy(zp->z_sa_hdl);
357 zp->z_sa_hdl = NULL;
358 }
359
360 /*
361 * Called by new_inode() to allocate a new inode.
362 */
363 int
zfs_inode_alloc(struct super_block * sb,struct inode ** ip)364 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
365 {
366 znode_t *zp;
367
368 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
369 *ip = ZTOI(zp);
370
371 return (0);
372 }
373
374 /*
375 * Called in multiple places when an inode should be destroyed.
376 */
377 void
zfs_inode_destroy(struct inode * ip)378 zfs_inode_destroy(struct inode *ip)
379 {
380 znode_t *zp = ITOZ(ip);
381 zfsvfs_t *zfsvfs = ZTOZSB(zp);
382
383 mutex_enter(&zfsvfs->z_znodes_lock);
384 if (list_link_active(&zp->z_link_node)) {
385 list_remove(&zfsvfs->z_all_znodes, zp);
386 }
387 mutex_exit(&zfsvfs->z_znodes_lock);
388
389 if (zp->z_acl_cached) {
390 zfs_acl_free(zp->z_acl_cached);
391 zp->z_acl_cached = NULL;
392 }
393
394 if (zp->z_xattr_cached) {
395 nvlist_free(zp->z_xattr_cached);
396 zp->z_xattr_cached = NULL;
397 }
398
399 kmem_cache_free(znode_cache, zp);
400 }
401
402 static void
zfs_inode_set_ops(zfsvfs_t * zfsvfs,struct inode * ip)403 zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
404 {
405 uint64_t rdev = 0;
406
407 switch (ip->i_mode & S_IFMT) {
408 case S_IFREG:
409 ip->i_op = &zpl_inode_operations;
410 ip->i_fop = &zpl_file_operations;
411 ip->i_mapping->a_ops = &zpl_address_space_operations;
412 break;
413
414 case S_IFDIR:
415 ip->i_op = &zpl_dir_inode_operations;
416 ip->i_fop = &zpl_dir_file_operations;
417 ITOZ(ip)->z_zn_prefetch = B_TRUE;
418 break;
419
420 case S_IFLNK:
421 ip->i_op = &zpl_symlink_inode_operations;
422 break;
423
424 /*
425 * rdev is only stored in a SA only for device files.
426 */
427 case S_IFCHR:
428 case S_IFBLK:
429 (void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
430 sizeof (rdev));
431 zfs_fallthrough;
432 case S_IFIFO:
433 case S_IFSOCK:
434 init_special_inode(ip, ip->i_mode, rdev);
435 ip->i_op = &zpl_special_inode_operations;
436 break;
437
438 default:
439 zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
440 (u_longlong_t)ip->i_ino, ip->i_mode);
441
442 /* Assume the inode is a file and attempt to continue */
443 ip->i_mode = S_IFREG | 0644;
444 ip->i_op = &zpl_inode_operations;
445 ip->i_fop = &zpl_file_operations;
446 ip->i_mapping->a_ops = &zpl_address_space_operations;
447 break;
448 }
449 }
450
451 static void
zfs_set_inode_flags(znode_t * zp,struct inode * ip)452 zfs_set_inode_flags(znode_t *zp, struct inode *ip)
453 {
454 /*
455 * Linux and Solaris have different sets of file attributes, so we
456 * restrict this conversion to the intersection of the two.
457 */
458 unsigned int flags = 0;
459 if (zp->z_pflags & ZFS_IMMUTABLE)
460 flags |= S_IMMUTABLE;
461 if (zp->z_pflags & ZFS_APPENDONLY)
462 flags |= S_APPEND;
463
464 inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
465 }
466
467 /*
468 * Update the embedded inode given the znode.
469 */
470 void
zfs_znode_update_vfs(znode_t * zp)471 zfs_znode_update_vfs(znode_t *zp)
472 {
473 struct inode *ip;
474 uint32_t blksize;
475 u_longlong_t i_blocks;
476
477 ASSERT(zp != NULL);
478 ip = ZTOI(zp);
479
480 /* Skip .zfs control nodes which do not exist on disk. */
481 if (zfsctl_is_node(ip))
482 return;
483
484 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
485
486 spin_lock(&ip->i_lock);
487 ip->i_mode = zp->z_mode;
488 ip->i_blocks = i_blocks;
489 i_size_write(ip, zp->z_size);
490 spin_unlock(&ip->i_lock);
491 }
492
493
494 /*
495 * Construct a znode+inode and initialize.
496 *
497 * This does not do a call to dmu_set_user() that is
498 * up to the caller to do, in case you don't want to
499 * return the znode
500 */
501 static znode_t *
zfs_znode_alloc(zfsvfs_t * zfsvfs,dmu_buf_t * db,int blksz,dmu_object_type_t obj_type,sa_handle_t * hdl)502 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
503 dmu_object_type_t obj_type, sa_handle_t *hdl)
504 {
505 znode_t *zp;
506 struct inode *ip;
507 uint64_t mode;
508 uint64_t parent;
509 uint64_t tmp_gen;
510 uint64_t links;
511 uint64_t z_uid, z_gid;
512 uint64_t atime[2], mtime[2], ctime[2], btime[2];
513 inode_timespec_t tmp_ts;
514 uint64_t projid = ZFS_DEFAULT_PROJID;
515 sa_bulk_attr_t bulk[12];
516 int count = 0;
517
518 ASSERT(zfsvfs != NULL);
519
520 ip = new_inode(zfsvfs->z_sb);
521 if (ip == NULL)
522 return (NULL);
523
524 zp = ITOZ(ip);
525 ASSERT(zp->z_dirlocks == NULL);
526 ASSERT3P(zp->z_acl_cached, ==, NULL);
527 ASSERT3P(zp->z_xattr_cached, ==, NULL);
528 zp->z_unlinked = B_FALSE;
529 zp->z_atime_dirty = B_FALSE;
530 zp->z_is_ctldir = B_FALSE;
531 zp->z_suspended = B_FALSE;
532 zp->z_sa_hdl = NULL;
533 zp->z_mapcnt = 0;
534 zp->z_id = db->db_object;
535 zp->z_blksz = blksz;
536 zp->z_seq = 0x7A4653;
537 zp->z_sync_cnt = 0;
538 zp->z_sync_writes_cnt = 0;
539 zp->z_async_writes_cnt = 0;
540
541 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
542
543 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
544 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
545 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
546 &zp->z_size, 8);
547 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
548 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
549 &zp->z_pflags, 8);
550 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
551 &parent, 8);
552 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
553 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
554 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
555 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
556 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
557 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
558
559 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
560 (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
561 (zp->z_pflags & ZFS_PROJID) &&
562 sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
563 if (hdl == NULL)
564 sa_handle_destroy(zp->z_sa_hdl);
565 zp->z_sa_hdl = NULL;
566 goto error;
567 }
568
569 zp->z_projid = projid;
570 zp->z_mode = ip->i_mode = mode;
571 ip->i_generation = (uint32_t)tmp_gen;
572 ip->i_blkbits = SPA_MINBLOCKSHIFT;
573 set_nlink(ip, (uint32_t)links);
574 zfs_uid_write(ip, z_uid);
575 zfs_gid_write(ip, z_gid);
576 zfs_set_inode_flags(zp, ip);
577
578 /* Cache the xattr parent id */
579 if (zp->z_pflags & ZFS_XATTR)
580 zp->z_xattr_parent = parent;
581
582 ZFS_TIME_DECODE(&tmp_ts, atime);
583 zpl_inode_set_atime_to_ts(ip, tmp_ts);
584 ZFS_TIME_DECODE(&tmp_ts, mtime);
585 zpl_inode_set_mtime_to_ts(ip, tmp_ts);
586 ZFS_TIME_DECODE(&tmp_ts, ctime);
587 zpl_inode_set_ctime_to_ts(ip, tmp_ts);
588 ZFS_TIME_DECODE(&zp->z_btime, btime);
589
590 ip->i_ino = zp->z_id;
591 zfs_znode_update_vfs(zp);
592 zfs_inode_set_ops(zfsvfs, ip);
593
594 /*
595 * The only way insert_inode_locked() can fail is if the ip->i_ino
596 * number is already hashed for this super block. This can never
597 * happen because the inode numbers map 1:1 with the object numbers.
598 *
599 * Exceptions include rolling back a mounted file system, either
600 * from the zfs rollback or zfs recv command.
601 *
602 * Active inodes are unhashed during the rollback, but since zrele
603 * can happen asynchronously, we can't guarantee they've been
604 * unhashed. This can cause hash collisions in unlinked drain
605 * processing so do not hash unlinked znodes.
606 */
607 if (links > 0)
608 VERIFY3S(insert_inode_locked(ip), ==, 0);
609
610 mutex_enter(&zfsvfs->z_znodes_lock);
611 list_insert_tail(&zfsvfs->z_all_znodes, zp);
612 mutex_exit(&zfsvfs->z_znodes_lock);
613
614 if (links > 0)
615 unlock_new_inode(ip);
616 return (zp);
617
618 error:
619 iput(ip);
620 return (NULL);
621 }
622
623 /*
624 * Safely mark an inode dirty. Inodes which are part of a read-only
625 * file system or snapshot may not be dirtied.
626 */
627 void
zfs_mark_inode_dirty(struct inode * ip)628 zfs_mark_inode_dirty(struct inode *ip)
629 {
630 zfsvfs_t *zfsvfs = ITOZSB(ip);
631
632 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
633 return;
634
635 mark_inode_dirty(ip);
636 }
637
638 static uint64_t empty_xattr;
639 static uint64_t pad[4];
640 static zfs_acl_phys_t acl_phys;
641 /*
642 * Create a new DMU object to hold a zfs znode.
643 *
644 * IN: dzp - parent directory for new znode
645 * vap - file attributes for new znode
646 * tx - dmu transaction id for zap operations
647 * cr - credentials of caller
648 * flag - flags:
649 * IS_ROOT_NODE - new object will be root
650 * IS_TMPFILE - new object is of O_TMPFILE
651 * IS_XATTR - new object is an attribute
652 * acl_ids - ACL related attributes
653 *
654 * OUT: zpp - allocated znode (set to dzp if IS_ROOT_NODE)
655 *
656 */
657 void
zfs_mknode(znode_t * dzp,vattr_t * vap,dmu_tx_t * tx,cred_t * cr,uint_t flag,znode_t ** zpp,zfs_acl_ids_t * acl_ids)658 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
659 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
660 {
661 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
662 uint64_t mode, size, links, parent, pflags;
663 uint64_t projid = ZFS_DEFAULT_PROJID;
664 uint64_t rdev = 0;
665 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
666 dmu_buf_t *db;
667 inode_timespec_t now;
668 uint64_t gen, obj;
669 int bonuslen;
670 int dnodesize;
671 sa_handle_t *sa_hdl;
672 dmu_object_type_t obj_type;
673 sa_bulk_attr_t *sa_attrs;
674 int cnt = 0;
675 zfs_acl_locator_cb_t locate = { 0 };
676 znode_hold_t *zh;
677
678 if (zfsvfs->z_replay) {
679 obj = vap->va_nodeid;
680 now = vap->va_ctime; /* see zfs_replay_create() */
681 gen = vap->va_nblocks; /* ditto */
682 dnodesize = vap->va_fsid; /* ditto */
683 } else {
684 obj = 0;
685 gethrestime(&now);
686 gen = dmu_tx_get_txg(tx);
687 dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
688 }
689
690 if (dnodesize == 0)
691 dnodesize = DNODE_MIN_SIZE;
692
693 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
694
695 bonuslen = (obj_type == DMU_OT_SA) ?
696 DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
697
698 /*
699 * Create a new DMU object.
700 */
701 /*
702 * There's currently no mechanism for pre-reading the blocks that will
703 * be needed to allocate a new object, so we accept the small chance
704 * that there will be an i/o error and we will fail one of the
705 * assertions below.
706 */
707 if (S_ISDIR(vap->va_mode)) {
708 if (zfsvfs->z_replay) {
709 VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
710 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
711 obj_type, bonuslen, dnodesize, tx));
712 } else {
713 obj = zap_create_norm_dnsize(zfsvfs->z_os,
714 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
715 obj_type, bonuslen, dnodesize, tx);
716 }
717 } else {
718 if (zfsvfs->z_replay) {
719 VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
720 DMU_OT_PLAIN_FILE_CONTENTS, 0,
721 obj_type, bonuslen, dnodesize, tx));
722 } else {
723 obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
724 DMU_OT_PLAIN_FILE_CONTENTS, 0,
725 obj_type, bonuslen, dnodesize, tx);
726 }
727 }
728
729 zh = zfs_znode_hold_enter(zfsvfs, obj);
730 VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
731
732 /*
733 * If this is the root, fix up the half-initialized parent pointer
734 * to reference the just-allocated physical data area.
735 */
736 if (flag & IS_ROOT_NODE) {
737 dzp->z_id = obj;
738 }
739
740 /*
741 * If parent is an xattr, so am I.
742 */
743 if (dzp->z_pflags & ZFS_XATTR) {
744 flag |= IS_XATTR;
745 }
746
747 if (zfsvfs->z_use_fuids)
748 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
749 else
750 pflags = 0;
751
752 if (S_ISDIR(vap->va_mode)) {
753 size = 2; /* contents ("." and "..") */
754 links = 2;
755 } else {
756 size = 0;
757 links = (flag & IS_TMPFILE) ? 0 : 1;
758 }
759
760 if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
761 rdev = vap->va_rdev;
762
763 parent = dzp->z_id;
764 mode = acl_ids->z_mode;
765 if (flag & IS_XATTR)
766 pflags |= ZFS_XATTR;
767
768 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
769 /*
770 * With ZFS_PROJID flag, we can easily know whether there is
771 * project ID stored on disk or not. See zfs_space_delta_cb().
772 */
773 if (obj_type != DMU_OT_ZNODE &&
774 dmu_objset_projectquota_enabled(zfsvfs->z_os))
775 pflags |= ZFS_PROJID;
776
777 /*
778 * Inherit project ID from parent if required.
779 */
780 projid = zfs_inherit_projid(dzp);
781 if (dzp->z_pflags & ZFS_PROJINHERIT)
782 pflags |= ZFS_PROJINHERIT;
783 }
784
785 /*
786 * No execs denied will be determined when zfs_mode_compute() is called.
787 */
788 pflags |= acl_ids->z_aclp->z_hints &
789 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
790 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
791
792 ZFS_TIME_ENCODE(&now, crtime);
793 ZFS_TIME_ENCODE(&now, ctime);
794
795 if (vap->va_mask & ATTR_ATIME) {
796 ZFS_TIME_ENCODE(&vap->va_atime, atime);
797 } else {
798 ZFS_TIME_ENCODE(&now, atime);
799 }
800
801 if (vap->va_mask & ATTR_MTIME) {
802 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
803 } else {
804 ZFS_TIME_ENCODE(&now, mtime);
805 }
806
807 /* Now add in all of the "SA" attributes */
808 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
809 &sa_hdl));
810
811 /*
812 * Setup the array of attributes to be replaced/set on the new file
813 *
814 * order for DMU_OT_ZNODE is critical since it needs to be constructed
815 * in the old znode_phys_t format. Don't change this ordering
816 */
817 sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
818
819 if (obj_type == DMU_OT_ZNODE) {
820 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
821 NULL, &atime, 16);
822 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
823 NULL, &mtime, 16);
824 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
825 NULL, &ctime, 16);
826 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
827 NULL, &crtime, 16);
828 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
829 NULL, &gen, 8);
830 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
831 NULL, &mode, 8);
832 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
833 NULL, &size, 8);
834 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
835 NULL, &parent, 8);
836 } else {
837 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
838 NULL, &mode, 8);
839 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
840 NULL, &size, 8);
841 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
842 NULL, &gen, 8);
843 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
844 NULL, &acl_ids->z_fuid, 8);
845 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
846 NULL, &acl_ids->z_fgid, 8);
847 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
848 NULL, &parent, 8);
849 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
850 NULL, &pflags, 8);
851 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
852 NULL, &atime, 16);
853 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
854 NULL, &mtime, 16);
855 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
856 NULL, &ctime, 16);
857 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
858 NULL, &crtime, 16);
859 }
860
861 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
862
863 if (obj_type == DMU_OT_ZNODE) {
864 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
865 &empty_xattr, 8);
866 } else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
867 pflags & ZFS_PROJID) {
868 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
869 NULL, &projid, 8);
870 }
871 if (obj_type == DMU_OT_ZNODE ||
872 (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
873 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
874 NULL, &rdev, 8);
875 }
876 if (obj_type == DMU_OT_ZNODE) {
877 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
878 NULL, &pflags, 8);
879 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
880 &acl_ids->z_fuid, 8);
881 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
882 &acl_ids->z_fgid, 8);
883 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
884 sizeof (uint64_t) * 4);
885 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
886 &acl_phys, sizeof (zfs_acl_phys_t));
887 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
888 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
889 &acl_ids->z_aclp->z_acl_count, 8);
890 locate.cb_aclp = acl_ids->z_aclp;
891 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
892 zfs_acl_data_locator, &locate,
893 acl_ids->z_aclp->z_acl_bytes);
894 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
895 acl_ids->z_fuid, acl_ids->z_fgid);
896 }
897
898 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
899
900 if (!(flag & IS_ROOT_NODE)) {
901 /*
902 * The call to zfs_znode_alloc() may fail if memory is low
903 * via the call path: alloc_inode() -> inode_init_always() ->
904 * security_inode_alloc() -> inode_alloc_security(). Since
905 * the existing code is written such that zfs_mknode() can
906 * not fail retry until sufficient memory has been reclaimed.
907 */
908 do {
909 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
910 } while (*zpp == NULL);
911
912 VERIFY(*zpp != NULL);
913 VERIFY(dzp != NULL);
914 } else {
915 /*
916 * If we are creating the root node, the "parent" we
917 * passed in is the znode for the root.
918 */
919 *zpp = dzp;
920
921 (*zpp)->z_sa_hdl = sa_hdl;
922 }
923
924 (*zpp)->z_pflags = pflags;
925 (*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
926 (*zpp)->z_dnodesize = dnodesize;
927 (*zpp)->z_projid = projid;
928
929 if (obj_type == DMU_OT_ZNODE ||
930 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
931 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
932 }
933 kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
934 zfs_znode_hold_exit(zfsvfs, zh);
935 }
936
937 /*
938 * Update in-core attributes. It is assumed the caller will be doing an
939 * sa_bulk_update to push the changes out.
940 */
941 void
zfs_xvattr_set(znode_t * zp,xvattr_t * xvap,dmu_tx_t * tx)942 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
943 {
944 xoptattr_t *xoap;
945 boolean_t update_inode = B_FALSE;
946
947 xoap = xva_getxoptattr(xvap);
948 ASSERT(xoap);
949
950 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
951 uint64_t times[2];
952 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
953 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
954 ×, sizeof (times), tx);
955 XVA_SET_RTN(xvap, XAT_CREATETIME);
956 }
957 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
958 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
959 zp->z_pflags, tx);
960 XVA_SET_RTN(xvap, XAT_READONLY);
961 }
962 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
963 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
964 zp->z_pflags, tx);
965 XVA_SET_RTN(xvap, XAT_HIDDEN);
966 }
967 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
968 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
969 zp->z_pflags, tx);
970 XVA_SET_RTN(xvap, XAT_SYSTEM);
971 }
972 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
973 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
974 zp->z_pflags, tx);
975 XVA_SET_RTN(xvap, XAT_ARCHIVE);
976 }
977 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
978 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
979 zp->z_pflags, tx);
980 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
981
982 update_inode = B_TRUE;
983 }
984 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
985 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
986 zp->z_pflags, tx);
987 XVA_SET_RTN(xvap, XAT_NOUNLINK);
988 }
989 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
990 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
991 zp->z_pflags, tx);
992 XVA_SET_RTN(xvap, XAT_APPENDONLY);
993
994 update_inode = B_TRUE;
995 }
996 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
997 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
998 zp->z_pflags, tx);
999 XVA_SET_RTN(xvap, XAT_NODUMP);
1000 }
1001 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1002 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1003 zp->z_pflags, tx);
1004 XVA_SET_RTN(xvap, XAT_OPAQUE);
1005 }
1006 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1007 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1008 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1009 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1010 }
1011 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1012 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1013 zp->z_pflags, tx);
1014 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1015 }
1016 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1017 zfs_sa_set_scanstamp(zp, xvap, tx);
1018 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1019 }
1020 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1021 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1022 zp->z_pflags, tx);
1023 XVA_SET_RTN(xvap, XAT_REPARSE);
1024 }
1025 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1026 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1027 zp->z_pflags, tx);
1028 XVA_SET_RTN(xvap, XAT_OFFLINE);
1029 }
1030 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1031 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1032 zp->z_pflags, tx);
1033 XVA_SET_RTN(xvap, XAT_SPARSE);
1034 }
1035 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1036 ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1037 zp->z_pflags, tx);
1038 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1039 }
1040
1041 if (update_inode)
1042 zfs_set_inode_flags(zp, ZTOI(zp));
1043 }
1044
1045 int
zfs_zget(zfsvfs_t * zfsvfs,uint64_t obj_num,znode_t ** zpp)1046 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1047 {
1048 dmu_object_info_t doi;
1049 dmu_buf_t *db;
1050 znode_t *zp;
1051 znode_hold_t *zh;
1052 int err;
1053 sa_handle_t *hdl;
1054
1055 *zpp = NULL;
1056
1057 again:
1058 zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1059
1060 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1061 if (err) {
1062 zfs_znode_hold_exit(zfsvfs, zh);
1063 return (err);
1064 }
1065
1066 dmu_object_info_from_db(db, &doi);
1067 if (doi.doi_bonus_type != DMU_OT_SA &&
1068 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1069 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1070 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1071 sa_buf_rele(db, NULL);
1072 zfs_znode_hold_exit(zfsvfs, zh);
1073 return (SET_ERROR(EINVAL));
1074 }
1075
1076 hdl = dmu_buf_get_user(db);
1077 if (hdl != NULL) {
1078 zp = sa_get_userdata(hdl);
1079
1080
1081 /*
1082 * Since "SA" does immediate eviction we
1083 * should never find a sa handle that doesn't
1084 * know about the znode.
1085 */
1086
1087 ASSERT3P(zp, !=, NULL);
1088
1089 mutex_enter(&zp->z_lock);
1090 ASSERT3U(zp->z_id, ==, obj_num);
1091 /*
1092 * If zp->z_unlinked is set, the znode is already marked
1093 * for deletion and should not be discovered. Check this
1094 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1095 *
1096 * If igrab() returns NULL the VFS has independently
1097 * determined the inode should be evicted and has
1098 * called iput_final() to start the eviction process.
1099 * The SA handle is still valid but because the VFS
1100 * requires that the eviction succeed we must drop
1101 * our locks and references to allow the eviction to
1102 * complete. The zfs_zget() may then be retried.
1103 *
1104 * This unlikely case could be optimized by registering
1105 * a sops->drop_inode() callback. The callback would
1106 * need to detect the active SA hold thereby informing
1107 * the VFS that this inode should not be evicted.
1108 */
1109 if (igrab(ZTOI(zp)) == NULL) {
1110 if (zp->z_unlinked)
1111 err = SET_ERROR(ENOENT);
1112 else
1113 err = SET_ERROR(EAGAIN);
1114 } else {
1115 *zpp = zp;
1116 err = 0;
1117 }
1118
1119 mutex_exit(&zp->z_lock);
1120 sa_buf_rele(db, NULL);
1121 zfs_znode_hold_exit(zfsvfs, zh);
1122
1123 if (err == EAGAIN) {
1124 /* inode might need this to finish evict */
1125 cond_resched();
1126 goto again;
1127 }
1128 return (err);
1129 }
1130
1131 /*
1132 * Not found create new znode/vnode but only if file exists.
1133 *
1134 * There is a small window where zfs_vget() could
1135 * find this object while a file create is still in
1136 * progress. This is checked for in zfs_znode_alloc()
1137 *
1138 * if zfs_znode_alloc() fails it will drop the hold on the
1139 * bonus buffer.
1140 */
1141 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1142 doi.doi_bonus_type, NULL);
1143 if (zp == NULL) {
1144 err = SET_ERROR(ENOENT);
1145 } else {
1146 *zpp = zp;
1147 }
1148 zfs_znode_hold_exit(zfsvfs, zh);
1149 return (err);
1150 }
1151
1152 int
zfs_rezget(znode_t * zp)1153 zfs_rezget(znode_t *zp)
1154 {
1155 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1156 dmu_object_info_t doi;
1157 dmu_buf_t *db;
1158 uint64_t obj_num = zp->z_id;
1159 uint64_t mode;
1160 uint64_t links;
1161 sa_bulk_attr_t bulk[11];
1162 int err;
1163 int count = 0;
1164 uint64_t gen;
1165 uint64_t z_uid, z_gid;
1166 uint64_t atime[2], mtime[2], ctime[2], btime[2];
1167 inode_timespec_t tmp_ts;
1168 uint64_t projid = ZFS_DEFAULT_PROJID;
1169 znode_hold_t *zh;
1170
1171 /*
1172 * skip ctldir, otherwise they will always get invalidated. This will
1173 * cause funny behaviour for the mounted snapdirs. Especially for
1174 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1175 * anyone automount it again as long as someone is still using the
1176 * detached mount.
1177 */
1178 if (zp->z_is_ctldir)
1179 return (0);
1180
1181 zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1182
1183 mutex_enter(&zp->z_acl_lock);
1184 if (zp->z_acl_cached) {
1185 zfs_acl_free(zp->z_acl_cached);
1186 zp->z_acl_cached = NULL;
1187 }
1188 mutex_exit(&zp->z_acl_lock);
1189
1190 rw_enter(&zp->z_xattr_lock, RW_WRITER);
1191 if (zp->z_xattr_cached) {
1192 nvlist_free(zp->z_xattr_cached);
1193 zp->z_xattr_cached = NULL;
1194 }
1195 rw_exit(&zp->z_xattr_lock);
1196
1197 ASSERT(zp->z_sa_hdl == NULL);
1198 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1199 if (err) {
1200 zfs_znode_hold_exit(zfsvfs, zh);
1201 return (err);
1202 }
1203
1204 dmu_object_info_from_db(db, &doi);
1205 if (doi.doi_bonus_type != DMU_OT_SA &&
1206 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1207 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1208 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1209 sa_buf_rele(db, NULL);
1210 zfs_znode_hold_exit(zfsvfs, zh);
1211 return (SET_ERROR(EINVAL));
1212 }
1213
1214 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1215
1216 /* reload cached values */
1217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1218 &gen, sizeof (gen));
1219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1220 &zp->z_size, sizeof (zp->z_size));
1221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1222 &links, sizeof (links));
1223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1224 &zp->z_pflags, sizeof (zp->z_pflags));
1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1226 &z_uid, sizeof (z_uid));
1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1228 &z_gid, sizeof (z_gid));
1229 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1230 &mode, sizeof (mode));
1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1232 &atime, 16);
1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1234 &mtime, 16);
1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1236 &ctime, 16);
1237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
1238
1239 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1240 zfs_znode_dmu_fini(zp);
1241 zfs_znode_hold_exit(zfsvfs, zh);
1242 return (SET_ERROR(EIO));
1243 }
1244
1245 if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1246 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1247 &projid, 8);
1248 if (err != 0 && err != ENOENT) {
1249 zfs_znode_dmu_fini(zp);
1250 zfs_znode_hold_exit(zfsvfs, zh);
1251 return (SET_ERROR(err));
1252 }
1253 }
1254
1255 zp->z_projid = projid;
1256 zp->z_mode = ZTOI(zp)->i_mode = mode;
1257 zfs_uid_write(ZTOI(zp), z_uid);
1258 zfs_gid_write(ZTOI(zp), z_gid);
1259
1260 ZFS_TIME_DECODE(&tmp_ts, atime);
1261 zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
1262 ZFS_TIME_DECODE(&tmp_ts, mtime);
1263 zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1264 ZFS_TIME_DECODE(&tmp_ts, ctime);
1265 zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1266 ZFS_TIME_DECODE(&zp->z_btime, btime);
1267
1268 if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1269 zfs_znode_dmu_fini(zp);
1270 zfs_znode_hold_exit(zfsvfs, zh);
1271 return (SET_ERROR(EIO));
1272 }
1273
1274 set_nlink(ZTOI(zp), (uint32_t)links);
1275 zfs_set_inode_flags(zp, ZTOI(zp));
1276
1277 zp->z_blksz = doi.doi_data_block_size;
1278 zp->z_atime_dirty = B_FALSE;
1279 zfs_znode_update_vfs(zp);
1280
1281 /*
1282 * If the file has zero links, then it has been unlinked on the send
1283 * side and it must be in the received unlinked set.
1284 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1285 * stale data and to prevent automatic removal of the file in
1286 * zfs_zinactive(). The file will be removed either when it is removed
1287 * on the send side and the next incremental stream is received or
1288 * when the unlinked set gets processed.
1289 */
1290 zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1291 if (zp->z_unlinked)
1292 zfs_znode_dmu_fini(zp);
1293
1294 zfs_znode_hold_exit(zfsvfs, zh);
1295
1296 return (0);
1297 }
1298
1299 void
zfs_znode_delete(znode_t * zp,dmu_tx_t * tx)1300 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1301 {
1302 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1303 objset_t *os = zfsvfs->z_os;
1304 uint64_t obj = zp->z_id;
1305 uint64_t acl_obj = zfs_external_acl(zp);
1306 znode_hold_t *zh;
1307
1308 zh = zfs_znode_hold_enter(zfsvfs, obj);
1309 if (acl_obj) {
1310 VERIFY(!zp->z_is_sa);
1311 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1312 }
1313 VERIFY(0 == dmu_object_free(os, obj, tx));
1314 zfs_znode_dmu_fini(zp);
1315 zfs_znode_hold_exit(zfsvfs, zh);
1316 }
1317
1318 void
zfs_zinactive(znode_t * zp)1319 zfs_zinactive(znode_t *zp)
1320 {
1321 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1322 uint64_t z_id = zp->z_id;
1323 znode_hold_t *zh;
1324
1325 ASSERT(zp->z_sa_hdl);
1326
1327 /*
1328 * Don't allow a zfs_zget() while were trying to release this znode.
1329 */
1330 zh = zfs_znode_hold_enter(zfsvfs, z_id);
1331
1332 mutex_enter(&zp->z_lock);
1333
1334 /*
1335 * If this was the last reference to a file with no links, remove
1336 * the file from the file system unless the file system is mounted
1337 * read-only. That can happen, for example, if the file system was
1338 * originally read-write, the file was opened, then unlinked and
1339 * the file system was made read-only before the file was finally
1340 * closed. The file will remain in the unlinked set.
1341 */
1342 if (zp->z_unlinked) {
1343 ASSERT(!zfsvfs->z_issnap);
1344 if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1345 mutex_exit(&zp->z_lock);
1346 zfs_znode_hold_exit(zfsvfs, zh);
1347 zfs_rmnode(zp);
1348 return;
1349 }
1350 }
1351
1352 mutex_exit(&zp->z_lock);
1353 zfs_znode_dmu_fini(zp);
1354
1355 zfs_znode_hold_exit(zfsvfs, zh);
1356 }
1357
1358 /*
1359 * Determine whether the znode's atime must be updated. The logic mostly
1360 * duplicates the Linux kernel's relatime_need_update() functionality.
1361 * This function is only called if the underlying filesystem actually has
1362 * atime updates enabled.
1363 */
1364 boolean_t
zfs_relatime_need_update(const struct inode * ip)1365 zfs_relatime_need_update(const struct inode *ip)
1366 {
1367 inode_timespec_t now, tmp_atime, tmp_ts;
1368
1369 gethrestime(&now);
1370 tmp_atime = zpl_inode_get_atime(ip);
1371 /*
1372 * In relatime mode, only update the atime if the previous atime
1373 * is earlier than either the ctime or mtime or if at least a day
1374 * has passed since the last update of atime.
1375 */
1376 tmp_ts = zpl_inode_get_mtime(ip);
1377 if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1378 return (B_TRUE);
1379
1380 tmp_ts = zpl_inode_get_ctime(ip);
1381 if (timespec64_compare(&tmp_ts, &tmp_atime) >= 0)
1382 return (B_TRUE);
1383
1384 if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
1385 return (B_TRUE);
1386
1387 return (B_FALSE);
1388 }
1389
1390 /*
1391 * Prepare to update znode time stamps.
1392 *
1393 * IN: zp - znode requiring timestamp update
1394 * flag - ATTR_MTIME, ATTR_CTIME flags
1395 *
1396 * OUT: zp - z_seq
1397 * mtime - new mtime
1398 * ctime - new ctime
1399 *
1400 * Note: We don't update atime here, because we rely on Linux VFS to do
1401 * atime updating.
1402 */
1403 void
zfs_tstamp_update_setup(znode_t * zp,uint_t flag,uint64_t mtime[2],uint64_t ctime[2])1404 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1405 uint64_t ctime[2])
1406 {
1407 inode_timespec_t now, tmp_ts;
1408
1409 gethrestime(&now);
1410
1411 zp->z_seq++;
1412
1413 if (flag & ATTR_MTIME) {
1414 ZFS_TIME_ENCODE(&now, mtime);
1415 ZFS_TIME_DECODE(&tmp_ts, mtime);
1416 zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
1417 if (ZTOZSB(zp)->z_use_fuids) {
1418 zp->z_pflags |= (ZFS_ARCHIVE |
1419 ZFS_AV_MODIFIED);
1420 }
1421 }
1422
1423 if (flag & ATTR_CTIME) {
1424 ZFS_TIME_ENCODE(&now, ctime);
1425 ZFS_TIME_DECODE(&tmp_ts, ctime);
1426 zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
1427 if (ZTOZSB(zp)->z_use_fuids)
1428 zp->z_pflags |= ZFS_ARCHIVE;
1429 }
1430 }
1431
1432 /*
1433 * Grow the block size for a file.
1434 *
1435 * IN: zp - znode of file to free data in.
1436 * size - requested block size
1437 * tx - open transaction.
1438 *
1439 * NOTE: this function assumes that the znode is write locked.
1440 */
1441 void
zfs_grow_blocksize(znode_t * zp,uint64_t size,dmu_tx_t * tx)1442 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1443 {
1444 int error;
1445 u_longlong_t dummy;
1446
1447 if (size <= zp->z_blksz)
1448 return;
1449 /*
1450 * If the file size is already greater than the current blocksize,
1451 * we will not grow. If there is more than one block in a file,
1452 * the blocksize cannot change.
1453 */
1454 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1455 return;
1456
1457 error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1458 size, 0, tx);
1459
1460 if (error == ENOTSUP)
1461 return;
1462 ASSERT0(error);
1463
1464 /* What blocksize did we actually get? */
1465 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1466 }
1467
1468 /*
1469 * Increase the file length
1470 *
1471 * IN: zp - znode of file to free data in.
1472 * end - new end-of-file
1473 *
1474 * RETURN: 0 on success, error code on failure
1475 */
1476 static int
zfs_extend(znode_t * zp,uint64_t end)1477 zfs_extend(znode_t *zp, uint64_t end)
1478 {
1479 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1480 dmu_tx_t *tx;
1481 zfs_locked_range_t *lr;
1482 uint64_t newblksz;
1483 int error;
1484
1485 /*
1486 * We will change zp_size, lock the whole file.
1487 */
1488 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1489
1490 /*
1491 * Nothing to do if file already at desired length.
1492 */
1493 if (end <= zp->z_size) {
1494 zfs_rangelock_exit(lr);
1495 return (0);
1496 }
1497 tx = dmu_tx_create(zfsvfs->z_os);
1498 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1499 zfs_sa_upgrade_txholds(tx, zp);
1500 if (end > zp->z_blksz &&
1501 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1502 /*
1503 * We are growing the file past the current block size.
1504 */
1505 if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1506 /*
1507 * File's blocksize is already larger than the
1508 * "recordsize" property. Only let it grow to
1509 * the next power of 2.
1510 */
1511 ASSERT(!ISP2(zp->z_blksz));
1512 newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1513 } else {
1514 newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1515 }
1516 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1517 } else {
1518 newblksz = 0;
1519 }
1520
1521 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1522 if (error) {
1523 dmu_tx_abort(tx);
1524 zfs_rangelock_exit(lr);
1525 return (error);
1526 }
1527
1528 if (newblksz)
1529 zfs_grow_blocksize(zp, newblksz, tx);
1530
1531 zp->z_size = end;
1532
1533 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1534 &zp->z_size, sizeof (zp->z_size), tx));
1535
1536 zfs_rangelock_exit(lr);
1537
1538 dmu_tx_commit(tx);
1539
1540 return (0);
1541 }
1542
1543 /*
1544 * zfs_zero_partial_page - Modeled after update_pages() but
1545 * with different arguments and semantics for use by zfs_freesp().
1546 *
1547 * Zeroes a piece of a single page cache entry for zp at offset
1548 * start and length len.
1549 *
1550 * Caller must acquire a range lock on the file for the region
1551 * being zeroed in order that the ARC and page cache stay in sync.
1552 */
1553 static void
zfs_zero_partial_page(znode_t * zp,uint64_t start,uint64_t len)1554 zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1555 {
1556 struct address_space *mp = ZTOI(zp)->i_mapping;
1557 struct page *pp;
1558 int64_t off;
1559 void *pb;
1560
1561 ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1562
1563 off = start & (PAGE_SIZE - 1);
1564 start &= PAGE_MASK;
1565
1566 pp = find_lock_page(mp, start >> PAGE_SHIFT);
1567 if (pp) {
1568 if (mapping_writably_mapped(mp))
1569 flush_dcache_page(pp);
1570
1571 pb = kmap(pp);
1572 memset(pb + off, 0, len);
1573 kunmap(pp);
1574
1575 if (mapping_writably_mapped(mp))
1576 flush_dcache_page(pp);
1577
1578 mark_page_accessed(pp);
1579 SetPageUptodate(pp);
1580 ClearPageError(pp);
1581 unlock_page(pp);
1582 put_page(pp);
1583 }
1584 }
1585
1586 /*
1587 * Free space in a file.
1588 *
1589 * IN: zp - znode of file to free data in.
1590 * off - start of section to free.
1591 * len - length of section to free.
1592 *
1593 * RETURN: 0 on success, error code on failure
1594 */
1595 static int
zfs_free_range(znode_t * zp,uint64_t off,uint64_t len)1596 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1597 {
1598 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1599 zfs_locked_range_t *lr;
1600 int error;
1601
1602 /*
1603 * Lock the range being freed.
1604 */
1605 lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1606
1607 /*
1608 * Nothing to do if file already at desired length.
1609 */
1610 if (off >= zp->z_size) {
1611 zfs_rangelock_exit(lr);
1612 return (0);
1613 }
1614
1615 if (off + len > zp->z_size)
1616 len = zp->z_size - off;
1617
1618 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1619
1620 /*
1621 * Zero partial page cache entries. This must be done under a
1622 * range lock in order to keep the ARC and page cache in sync.
1623 */
1624 if (zn_has_cached_data(zp, off, off + len - 1)) {
1625 loff_t first_page, last_page, page_len;
1626 loff_t first_page_offset, last_page_offset;
1627
1628 /* first possible full page in hole */
1629 first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1630 /* last page of hole */
1631 last_page = (off + len) >> PAGE_SHIFT;
1632
1633 /* offset of first_page */
1634 first_page_offset = first_page << PAGE_SHIFT;
1635 /* offset of last_page */
1636 last_page_offset = last_page << PAGE_SHIFT;
1637
1638 /* truncate whole pages */
1639 if (last_page_offset > first_page_offset) {
1640 truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1641 first_page_offset, last_page_offset - 1);
1642 }
1643
1644 /* truncate sub-page ranges */
1645 if (first_page > last_page) {
1646 /* entire punched area within a single page */
1647 zfs_zero_partial_page(zp, off, len);
1648 } else {
1649 /* beginning of punched area at the end of a page */
1650 page_len = first_page_offset - off;
1651 if (page_len > 0)
1652 zfs_zero_partial_page(zp, off, page_len);
1653
1654 /* end of punched area at the beginning of a page */
1655 page_len = off + len - last_page_offset;
1656 if (page_len > 0)
1657 zfs_zero_partial_page(zp, last_page_offset,
1658 page_len);
1659 }
1660 }
1661 zfs_rangelock_exit(lr);
1662
1663 return (error);
1664 }
1665
1666 /*
1667 * Truncate a file
1668 *
1669 * IN: zp - znode of file to free data in.
1670 * end - new end-of-file.
1671 *
1672 * RETURN: 0 on success, error code on failure
1673 */
1674 static int
zfs_trunc(znode_t * zp,uint64_t end)1675 zfs_trunc(znode_t *zp, uint64_t end)
1676 {
1677 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1678 dmu_tx_t *tx;
1679 zfs_locked_range_t *lr;
1680 int error;
1681 sa_bulk_attr_t bulk[2];
1682 int count = 0;
1683
1684 /*
1685 * We will change zp_size, lock the whole file.
1686 */
1687 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1688
1689 /*
1690 * Nothing to do if file already at desired length.
1691 */
1692 if (end >= zp->z_size) {
1693 zfs_rangelock_exit(lr);
1694 return (0);
1695 }
1696
1697 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1698 DMU_OBJECT_END);
1699 if (error) {
1700 zfs_rangelock_exit(lr);
1701 return (error);
1702 }
1703 tx = dmu_tx_create(zfsvfs->z_os);
1704 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1705 zfs_sa_upgrade_txholds(tx, zp);
1706 dmu_tx_mark_netfree(tx);
1707 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1708 if (error) {
1709 dmu_tx_abort(tx);
1710 zfs_rangelock_exit(lr);
1711 return (error);
1712 }
1713
1714 zp->z_size = end;
1715 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1716 NULL, &zp->z_size, sizeof (zp->z_size));
1717
1718 if (end == 0) {
1719 zp->z_pflags &= ~ZFS_SPARSE;
1720 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1721 NULL, &zp->z_pflags, 8);
1722 }
1723 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1724
1725 dmu_tx_commit(tx);
1726 zfs_rangelock_exit(lr);
1727
1728 return (0);
1729 }
1730
1731 /*
1732 * Free space in a file
1733 *
1734 * IN: zp - znode of file to free data in.
1735 * off - start of range
1736 * len - end of range (0 => EOF)
1737 * flag - current file open mode flags.
1738 * log - TRUE if this action should be logged
1739 *
1740 * RETURN: 0 on success, error code on failure
1741 */
1742 int
zfs_freesp(znode_t * zp,uint64_t off,uint64_t len,int flag,boolean_t log)1743 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1744 {
1745 dmu_tx_t *tx;
1746 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1747 zilog_t *zilog = zfsvfs->z_log;
1748 uint64_t mode;
1749 uint64_t mtime[2], ctime[2];
1750 sa_bulk_attr_t bulk[3];
1751 int count = 0;
1752 int error;
1753
1754 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1755 sizeof (mode))) != 0)
1756 return (error);
1757
1758 if (off > zp->z_size) {
1759 error = zfs_extend(zp, off+len);
1760 if (error == 0 && log)
1761 goto log;
1762 goto out;
1763 }
1764
1765 if (len == 0) {
1766 error = zfs_trunc(zp, off);
1767 } else {
1768 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1769 off + len > zp->z_size)
1770 error = zfs_extend(zp, off+len);
1771 }
1772 if (error || !log)
1773 goto out;
1774 log:
1775 tx = dmu_tx_create(zfsvfs->z_os);
1776 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1777 zfs_sa_upgrade_txholds(tx, zp);
1778 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1779 if (error) {
1780 dmu_tx_abort(tx);
1781 goto out;
1782 }
1783
1784 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1785 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1786 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1787 NULL, &zp->z_pflags, 8);
1788 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1789 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1790 ASSERT(error == 0);
1791
1792 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1793
1794 dmu_tx_commit(tx);
1795
1796 zfs_znode_update_vfs(zp);
1797 error = 0;
1798
1799 out:
1800 /*
1801 * Truncate the page cache - for file truncate operations, use
1802 * the purpose-built API for truncations. For punching operations,
1803 * the truncation is handled under a range lock in zfs_free_range.
1804 */
1805 if (len == 0)
1806 truncate_setsize(ZTOI(zp), off);
1807 return (error);
1808 }
1809
1810 void
zfs_create_fs(objset_t * os,cred_t * cr,nvlist_t * zplprops,dmu_tx_t * tx)1811 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1812 {
1813 struct super_block *sb;
1814 zfsvfs_t *zfsvfs;
1815 uint64_t moid, obj, sa_obj, version;
1816 uint64_t sense = ZFS_CASE_SENSITIVE;
1817 uint64_t norm = 0;
1818 nvpair_t *elem;
1819 int size;
1820 int error;
1821 int i;
1822 znode_t *rootzp = NULL;
1823 vattr_t vattr;
1824 znode_t *zp;
1825 zfs_acl_ids_t acl_ids;
1826
1827 /*
1828 * First attempt to create master node.
1829 */
1830 /*
1831 * In an empty objset, there are no blocks to read and thus
1832 * there can be no i/o errors (which we assert below).
1833 */
1834 moid = MASTER_NODE_OBJ;
1835 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1836 DMU_OT_NONE, 0, tx);
1837 ASSERT(error == 0);
1838
1839 /*
1840 * Set starting attributes.
1841 */
1842 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1843 elem = NULL;
1844 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1845 /* For the moment we expect all zpl props to be uint64_ts */
1846 uint64_t val;
1847 const char *name;
1848
1849 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1850 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1851 name = nvpair_name(elem);
1852 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1853 if (val < version)
1854 version = val;
1855 } else {
1856 error = zap_update(os, moid, name, 8, 1, &val, tx);
1857 }
1858 ASSERT(error == 0);
1859 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1860 norm = val;
1861 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1862 sense = val;
1863 }
1864 ASSERT(version != 0);
1865 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1866 ASSERT(error == 0);
1867
1868 /*
1869 * Create zap object used for SA attribute registration
1870 */
1871
1872 if (version >= ZPL_VERSION_SA) {
1873 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1874 DMU_OT_NONE, 0, tx);
1875 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1876 ASSERT(error == 0);
1877 } else {
1878 sa_obj = 0;
1879 }
1880 /*
1881 * Create a delete queue.
1882 */
1883 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1884
1885 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1886 ASSERT(error == 0);
1887
1888 /*
1889 * Create root znode. Create minimal znode/inode/zfsvfs/sb
1890 * to allow zfs_mknode to work.
1891 */
1892 vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1893 vattr.va_mode = S_IFDIR|0755;
1894 vattr.va_uid = crgetuid(cr);
1895 vattr.va_gid = crgetgid(cr);
1896
1897 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1898 rootzp->z_unlinked = B_FALSE;
1899 rootzp->z_atime_dirty = B_FALSE;
1900 rootzp->z_is_sa = USE_SA(version, os);
1901 rootzp->z_pflags = 0;
1902
1903 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1904 zfsvfs->z_os = os;
1905 zfsvfs->z_parent = zfsvfs;
1906 zfsvfs->z_version = version;
1907 zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1908 zfsvfs->z_use_sa = USE_SA(version, os);
1909 zfsvfs->z_norm = norm;
1910
1911 sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1912 sb->s_fs_info = zfsvfs;
1913
1914 ZTOI(rootzp)->i_sb = sb;
1915
1916 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1917 &zfsvfs->z_attr_table);
1918
1919 ASSERT(error == 0);
1920
1921 /*
1922 * Fold case on file systems that are always or sometimes case
1923 * insensitive.
1924 */
1925 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1926 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1927
1928 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1929 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1930 offsetof(znode_t, z_link_node));
1931
1932 size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1933 zfsvfs->z_hold_size = size;
1934 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1935 KM_SLEEP);
1936 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1937 for (i = 0; i != size; i++) {
1938 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1939 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1940 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1941 }
1942
1943 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1944 cr, NULL, &acl_ids, zfs_init_idmap));
1945 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1946 ASSERT3P(zp, ==, rootzp);
1947 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1948 ASSERT(error == 0);
1949 zfs_acl_ids_free(&acl_ids);
1950
1951 atomic_set(&ZTOI(rootzp)->i_count, 0);
1952 sa_handle_destroy(rootzp->z_sa_hdl);
1953 kmem_cache_free(znode_cache, rootzp);
1954
1955 for (i = 0; i != size; i++) {
1956 avl_destroy(&zfsvfs->z_hold_trees[i]);
1957 mutex_destroy(&zfsvfs->z_hold_locks[i]);
1958 }
1959
1960 mutex_destroy(&zfsvfs->z_znodes_lock);
1961
1962 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1963 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1964 kmem_free(sb, sizeof (struct super_block));
1965 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1966 }
1967
1968 EXPORT_SYMBOL(zfs_create_fs);
1969 EXPORT_SYMBOL(zfs_obj_to_path);
1970
1971 module_param(zfs_object_mutex_size, uint, 0644);
1972 MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
1973 module_param(zfs_unlink_suspend_progress, int, 0644);
1974 MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
1975 "(debug - leaks space into the unlinked set)");
1976