xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 3a8960711f4319f9b894ea2453c89065ee1b3a10)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27  * Copyright 2017 Nexenta Systems, Inc.
28  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
29  * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
30  */
31 
32 /* Portions Copyright 2007 Jeremy Teo */
33 /* Portions Copyright 2010 Robert Milkowski */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/time.h>
38 #include <sys/sysmacros.h>
39 #include <sys/vfs.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kmem.h>
43 #include <sys/cmn_err.h>
44 #include <sys/errno.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zfs_acl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/dsl_crypt.h>
52 #include <sys/spa.h>
53 #include <sys/txg.h>
54 #include <sys/dbuf.h>
55 #include <sys/policy.h>
56 #include <sys/zfeature.h>
57 #include <sys/zfs_vnops.h>
58 #include <sys/zfs_quota.h>
59 #include <sys/zfs_vfsops.h>
60 #include <sys/zfs_znode.h>
61 
62 /*
63  * Enables access to the block cloning feature. If this setting is 0, then even
64  * if feature@block_cloning is enabled, using functions and system calls that
65  * attempt to clone blocks will act as though the feature is disabled.
66  */
67 int zfs_bclone_enabled = 1;
68 
69 /*
70  * When set zfs_clone_range() waits for dirty data to be written to disk.
71  * This allows the clone operation to reliably succeed when a file is modified
72  * and then immediately cloned. For small files this may be slower than making
73  * a copy of the file and is therefore not the default.  However, in certain
74  * scenarios this behavior may be desirable so a tunable is provided.
75  */
76 int zfs_bclone_wait_dirty = 0;
77 
78 /*
79  * Enable Direct I/O. If this setting is 0, then all I/O requests will be
80  * directed through the ARC acting as though the dataset property direct was
81  * set to disabled.
82  *
83  * Disabled by default on FreeBSD until a potential range locking issue in
84  * zfs_getpages() can be resolved.
85  */
86 #ifdef __FreeBSD__
87 static int zfs_dio_enabled = 0;
88 #else
89 static int zfs_dio_enabled = 1;
90 #endif
91 
92 /*
93  * Strictly enforce alignment for Direct I/O requests, returning EINVAL
94  * if not page-aligned instead of silently falling back to uncached I/O.
95  */
96 static int zfs_dio_strict = 0;
97 
98 
99 /*
100  * Maximum bytes to read per chunk in zfs_read().
101  */
102 #ifdef _ILP32
103 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
104 #else
105 static uint64_t zfs_vnops_read_chunk_size = DMU_MAX_ACCESS / 2;
106 #endif
107 
108 int
zfs_fsync(znode_t * zp,int syncflag,cred_t * cr)109 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
110 {
111 	int error = 0;
112 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
113 
114 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
115 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
116 			return (error);
117 		atomic_inc_32(&zp->z_sync_writes_cnt);
118 		zil_commit(zfsvfs->z_log, zp->z_id);
119 		atomic_dec_32(&zp->z_sync_writes_cnt);
120 		zfs_exit(zfsvfs, FTAG);
121 	}
122 	return (error);
123 }
124 
125 
126 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
127 /*
128  * Lseek support for finding holes (cmd == SEEK_HOLE) and
129  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
130  */
131 static int
zfs_holey_common(znode_t * zp,ulong_t cmd,loff_t * off)132 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
133 {
134 	zfs_locked_range_t *lr;
135 	uint64_t noff = (uint64_t)*off; /* new offset */
136 	uint64_t file_sz;
137 	int error;
138 	boolean_t hole;
139 
140 	file_sz = zp->z_size;
141 	if (noff >= file_sz)  {
142 		return (SET_ERROR(ENXIO));
143 	}
144 
145 	if (cmd == F_SEEK_HOLE)
146 		hole = B_TRUE;
147 	else
148 		hole = B_FALSE;
149 
150 	/* Flush any mmap()'d data to disk */
151 	if (zn_has_cached_data(zp, 0, file_sz - 1))
152 		zn_flush_cached_data(zp, B_TRUE);
153 
154 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
155 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
156 	zfs_rangelock_exit(lr);
157 
158 	if (error == ESRCH)
159 		return (SET_ERROR(ENXIO));
160 
161 	/* File was dirty, so fall back to using generic logic */
162 	if (error == EBUSY) {
163 		if (hole)
164 			*off = file_sz;
165 
166 		return (0);
167 	}
168 
169 	/*
170 	 * We could find a hole that begins after the logical end-of-file,
171 	 * because dmu_offset_next() only works on whole blocks.  If the
172 	 * EOF falls mid-block, then indicate that the "virtual hole"
173 	 * at the end of the file begins at the logical EOF, rather than
174 	 * at the end of the last block.
175 	 */
176 	if (noff > file_sz) {
177 		ASSERT(hole);
178 		noff = file_sz;
179 	}
180 
181 	if (noff < *off)
182 		return (error);
183 	*off = noff;
184 	return (error);
185 }
186 
187 int
zfs_holey(znode_t * zp,ulong_t cmd,loff_t * off)188 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
189 {
190 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
191 	int error;
192 
193 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
194 		return (error);
195 
196 	error = zfs_holey_common(zp, cmd, off);
197 
198 	zfs_exit(zfsvfs, FTAG);
199 	return (error);
200 }
201 #endif /* SEEK_HOLE && SEEK_DATA */
202 
203 int
zfs_access(znode_t * zp,int mode,int flag,cred_t * cr)204 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
205 {
206 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
207 	int error;
208 
209 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
210 		return (error);
211 
212 	if (flag & V_ACE_MASK)
213 #if defined(__linux__)
214 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
215 		    zfs_init_idmap);
216 #else
217 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
218 		    NULL);
219 #endif
220 	else
221 #if defined(__linux__)
222 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
223 #else
224 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
225 #endif
226 
227 	zfs_exit(zfsvfs, FTAG);
228 	return (error);
229 }
230 
231 /*
232  * Determine if Direct I/O has been requested (either via the O_DIRECT flag or
233  * the "direct" dataset property). When inherited by the property only apply
234  * the O_DIRECT flag to correctly aligned IO requests. The rational for this
235  * is it allows the property to be safely set on a dataset without forcing
236  * all of the applications to be aware of the alignment restrictions. When
237  * O_DIRECT is explicitly requested by an application return EINVAL if the
238  * request is unaligned.  In all cases, if the range for this request has
239  * been mmap'ed then we will perform buffered I/O to keep the mapped region
240  * synhronized with the ARC.
241  *
242  * It is possible that a file's pages could be mmap'ed after it is checked
243  * here. If so, that is handled coorarding in zfs_write(). See comments in the
244  * following area for how this is handled:
245  * zfs_write() -> update_pages()
246  */
247 static int
zfs_setup_direct(struct znode * zp,zfs_uio_t * uio,zfs_uio_rw_t rw,int * ioflagp)248 zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw,
249     int *ioflagp)
250 {
251 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
252 	objset_t *os = zfsvfs->z_os;
253 	int ioflag = *ioflagp;
254 	int error = 0;
255 
256 	if (os->os_direct == ZFS_DIRECT_ALWAYS) {
257 		/* Force either direct or uncached I/O. */
258 		ioflag |= O_DIRECT;
259 	}
260 
261 	if ((ioflag & O_DIRECT) == 0)
262 		goto out;
263 
264 	if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED) {
265 		/*
266 		 * Direct I/O is disabled.  The I/O request will be directed
267 		 * through the ARC as uncached I/O.
268 		 */
269 		goto out;
270 	}
271 
272 	if (!zfs_uio_page_aligned(uio) ||
273 	    !zfs_uio_aligned(uio, PAGE_SIZE)) {
274 		/*
275 		 * Misaligned requests can be executed through the ARC as
276 		 * uncached I/O.  But if O_DIRECT was set by user and we
277 		 * were set to be strict, then it is a failure.
278 		 */
279 		if ((*ioflagp & O_DIRECT) && zfs_dio_strict)
280 			error = SET_ERROR(EINVAL);
281 		goto out;
282 	}
283 
284 	if (zn_has_cached_data(zp, zfs_uio_offset(uio),
285 	    zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) {
286 		/*
287 		 * The region is mmap'ed.  The I/O request will be directed
288 		 * through the ARC as uncached I/O.
289 		 */
290 		goto out;
291 	}
292 
293 	/*
294 	 * For short writes the page mapping of Direct I/O makes no sense.
295 	 * Direct them through the ARC as uncached I/O.
296 	 */
297 	if (rw == UIO_WRITE && zfs_uio_resid(uio) < zp->z_blksz)
298 		goto out;
299 
300 	error = zfs_uio_get_dio_pages_alloc(uio, rw);
301 	if (error)
302 		goto out;
303 	ASSERT(uio->uio_extflg & UIO_DIRECT);
304 
305 out:
306 	*ioflagp = ioflag;
307 	return (error);
308 }
309 
310 /*
311  * Read bytes from specified file into supplied buffer.
312  *
313  *	IN:	zp	- inode of file to be read from.
314  *		uio	- structure supplying read location, range info,
315  *			  and return buffer.
316  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
317  *			  O_DIRECT flag; used to bypass page cache.
318  *		cr	- credentials of caller.
319  *
320  *	OUT:	uio	- updated offset and range, buffer filled.
321  *
322  *	RETURN:	0 on success, error code on failure.
323  *
324  * Side Effects:
325  *	inode - atime updated if byte count > 0
326  */
327 int
zfs_read(struct znode * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)328 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
329 {
330 	(void) cr;
331 	int error = 0;
332 	boolean_t frsync = B_FALSE;
333 	boolean_t dio_checksum_failure = B_FALSE;
334 
335 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
336 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
337 		return (error);
338 
339 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
340 		zfs_exit(zfsvfs, FTAG);
341 		return (SET_ERROR(EACCES));
342 	}
343 
344 	/* We don't copy out anything useful for directories. */
345 	if (Z_ISDIR(ZTOTYPE(zp))) {
346 		zfs_exit(zfsvfs, FTAG);
347 		return (SET_ERROR(EISDIR));
348 	}
349 
350 	/*
351 	 * Validate file offset
352 	 */
353 	if (zfs_uio_offset(uio) < (offset_t)0) {
354 		zfs_exit(zfsvfs, FTAG);
355 		return (SET_ERROR(EINVAL));
356 	}
357 
358 	/*
359 	 * Fasttrack empty reads
360 	 */
361 	if (zfs_uio_resid(uio) == 0) {
362 		zfs_exit(zfsvfs, FTAG);
363 		return (0);
364 	}
365 
366 #ifdef FRSYNC
367 	/*
368 	 * If we're in FRSYNC mode, sync out this znode before reading it.
369 	 * Only do this for non-snapshots.
370 	 *
371 	 * Some platforms do not support FRSYNC and instead map it
372 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
373 	 * only honor FRSYNC requests on platforms which support it.
374 	 */
375 	frsync = !!(ioflag & FRSYNC);
376 #endif
377 	if (zfsvfs->z_log &&
378 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
379 		zil_commit(zfsvfs->z_log, zp->z_id);
380 
381 	/*
382 	 * Lock the range against changes.
383 	 */
384 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
385 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
386 
387 	/*
388 	 * If we are reading past end-of-file we can skip
389 	 * to the end; but we might still need to set atime.
390 	 */
391 	if (zfs_uio_offset(uio) >= zp->z_size) {
392 		error = 0;
393 		goto out;
394 	}
395 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
396 
397 	/*
398 	 * Setting up Direct I/O if requested.
399 	 */
400 	error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag);
401 	if (error) {
402 		goto out;
403 	}
404 
405 #if defined(__linux__)
406 	ssize_t start_offset = zfs_uio_offset(uio);
407 #endif
408 	uint_t blksz = zp->z_blksz;
409 	ssize_t chunk_size;
410 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
411 	ssize_t start_resid = n;
412 	ssize_t dio_remaining_resid = 0;
413 
414 	dmu_flags_t dflags = DMU_READ_PREFETCH;
415 	if (ioflag & O_DIRECT)
416 		dflags |= DMU_UNCACHEDIO;
417 	if (uio->uio_extflg & UIO_DIRECT) {
418 		/*
419 		 * All pages for an O_DIRECT request ahve already been mapped
420 		 * so there's no compelling reason to handle this uio in
421 		 * smaller chunks.
422 		 */
423 		chunk_size = DMU_MAX_ACCESS;
424 
425 		/*
426 		 * In the event that the O_DIRECT request is reading the entire
427 		 * file, it is possible file's length is not page sized
428 		 * aligned. However, lower layers expect that the Direct I/O
429 		 * request is page-aligned. In this case, as much of the file
430 		 * that can be read using Direct I/O happens and the remaining
431 		 * amount will be read through the ARC.
432 		 *
433 		 * This is still consistent with the semantics of Direct I/O in
434 		 * ZFS as at a minimum the I/O request must be page-aligned.
435 		 */
436 		dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t);
437 		if (dio_remaining_resid != 0)
438 			n -= dio_remaining_resid;
439 		dflags |= DMU_DIRECTIO;
440 	} else {
441 		chunk_size = MIN(MAX(zfs_vnops_read_chunk_size, blksz),
442 		    DMU_MAX_ACCESS / 2);
443 	}
444 
445 	while (n > 0) {
446 		ssize_t nbytes = MIN(n, chunk_size -
447 		    P2PHASE(zfs_uio_offset(uio), blksz));
448 #ifdef UIO_NOCOPY
449 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
450 			error = mappedread_sf(zp, nbytes, uio);
451 		else
452 #endif
453 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
454 		    zfs_uio_offset(uio) + nbytes - 1)) {
455 			error = mappedread(zp, nbytes, uio);
456 		} else {
457 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
458 			    uio, nbytes, dflags);
459 		}
460 
461 		if (error) {
462 			/* convert checksum errors into IO errors */
463 			if (error == ECKSUM) {
464 				/*
465 				 * If a Direct I/O read returned a checksum
466 				 * verify error, then it must be treated as
467 				 * suspicious. The contents of the buffer could
468 				 * have beeen manipulated while the I/O was in
469 				 * flight. In this case, the remainder of I/O
470 				 * request will just be reissued through the
471 				 * ARC.
472 				 */
473 				if (uio->uio_extflg & UIO_DIRECT) {
474 					dio_checksum_failure = B_TRUE;
475 					uio->uio_extflg &= ~UIO_DIRECT;
476 					n += dio_remaining_resid;
477 					dio_remaining_resid = 0;
478 					continue;
479 				} else {
480 					error = SET_ERROR(EIO);
481 				}
482 			}
483 
484 #if defined(__linux__)
485 			/*
486 			 * if we actually read some bytes, bubbling EFAULT
487 			 * up to become EAGAIN isn't what we want here...
488 			 *
489 			 * ...on Linux, at least. On FBSD, doing this breaks.
490 			 */
491 			if (error == EFAULT &&
492 			    (zfs_uio_offset(uio) - start_offset) != 0)
493 				error = 0;
494 #endif
495 			break;
496 		}
497 
498 		n -= nbytes;
499 	}
500 
501 	if (error == 0 && (uio->uio_extflg & UIO_DIRECT) &&
502 	    dio_remaining_resid != 0) {
503 		/*
504 		 * Temporarily remove the UIO_DIRECT flag from the UIO so the
505 		 * remainder of the file can be read using the ARC.
506 		 */
507 		uio->uio_extflg &= ~UIO_DIRECT;
508 		dflags &= ~DMU_DIRECTIO;
509 
510 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
511 		    zfs_uio_offset(uio) + dio_remaining_resid - 1)) {
512 			error = mappedread(zp, dio_remaining_resid, uio);
513 		} else {
514 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio,
515 			    dio_remaining_resid, dflags);
516 		}
517 		uio->uio_extflg |= UIO_DIRECT;
518 		dflags |= DMU_DIRECTIO;
519 
520 		if (error != 0)
521 			n += dio_remaining_resid;
522 	} else if (error && (uio->uio_extflg & UIO_DIRECT)) {
523 		n += dio_remaining_resid;
524 	}
525 	int64_t nread = start_resid - n;
526 
527 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
528 out:
529 	zfs_rangelock_exit(lr);
530 
531 	if (dio_checksum_failure == B_TRUE)
532 		uio->uio_extflg |= UIO_DIRECT;
533 
534 	/*
535 	 * Cleanup for Direct I/O if requested.
536 	 */
537 	if (uio->uio_extflg & UIO_DIRECT)
538 		zfs_uio_free_dio_pages(uio, UIO_READ);
539 
540 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
541 	zfs_exit(zfsvfs, FTAG);
542 	return (error);
543 }
544 
545 static void
zfs_clear_setid_bits_if_necessary(zfsvfs_t * zfsvfs,znode_t * zp,cred_t * cr,uint64_t * clear_setid_bits_txgp,dmu_tx_t * tx)546 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
547     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
548 {
549 	zilog_t *zilog = zfsvfs->z_log;
550 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
551 
552 	ASSERT(clear_setid_bits_txgp != NULL);
553 	ASSERT(tx != NULL);
554 
555 	/*
556 	 * Clear Set-UID/Set-GID bits on successful write if not
557 	 * privileged and at least one of the execute bits is set.
558 	 *
559 	 * It would be nice to do this after all writes have
560 	 * been done, but that would still expose the ISUID/ISGID
561 	 * to another app after the partial write is committed.
562 	 *
563 	 * Note: we don't call zfs_fuid_map_id() here because
564 	 * user 0 is not an ephemeral uid.
565 	 */
566 	mutex_enter(&zp->z_acl_lock);
567 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
568 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
569 	    secpolicy_vnode_setid_retain(zp, cr,
570 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
571 		uint64_t newmode;
572 
573 		zp->z_mode &= ~(S_ISUID | S_ISGID);
574 		newmode = zp->z_mode;
575 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
576 		    (void *)&newmode, sizeof (uint64_t), tx);
577 
578 		mutex_exit(&zp->z_acl_lock);
579 
580 		/*
581 		 * Make sure SUID/SGID bits will be removed when we replay the
582 		 * log. If the setid bits are keep coming back, don't log more
583 		 * than one TX_SETATTR per transaction group.
584 		 */
585 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
586 			vattr_t va = {0};
587 
588 			va.va_mask = ATTR_MODE;
589 			va.va_nodeid = zp->z_id;
590 			va.va_mode = newmode;
591 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
592 			    ATTR_MODE, NULL);
593 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
594 		}
595 	} else {
596 		mutex_exit(&zp->z_acl_lock);
597 	}
598 }
599 
600 /*
601  * Write the bytes to a file.
602  *
603  *	IN:	zp	- znode of file to be written to.
604  *		uio	- structure supplying write location, range info,
605  *			  and data buffer.
606  *		ioflag	- O_APPEND flag set if in append mode.
607  *			  O_DIRECT flag; used to bypass page cache.
608  *		cr	- credentials of caller.
609  *
610  *	OUT:	uio	- updated offset and range.
611  *
612  *	RETURN:	0 if success
613  *		error code if failure
614  *
615  * Timestamps:
616  *	ip - ctime|mtime updated if byte count > 0
617  */
618 int
zfs_write(znode_t * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)619 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
620 {
621 	int error = 0, error1;
622 	ssize_t start_resid = zfs_uio_resid(uio);
623 	uint64_t clear_setid_bits_txg = 0;
624 	boolean_t o_direct_defer = B_FALSE;
625 
626 	/*
627 	 * Fasttrack empty write
628 	 */
629 	ssize_t n = start_resid;
630 	if (n == 0)
631 		return (0);
632 
633 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
634 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
635 		return (error);
636 
637 	sa_bulk_attr_t bulk[4];
638 	int count = 0;
639 	uint64_t mtime[2], ctime[2];
640 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
641 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
642 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
643 	    &zp->z_size, 8);
644 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
645 	    &zp->z_pflags, 8);
646 
647 	/*
648 	 * Callers might not be able to detect properly that we are read-only,
649 	 * so check it explicitly here.
650 	 */
651 	if (zfs_is_readonly(zfsvfs)) {
652 		zfs_exit(zfsvfs, FTAG);
653 		return (SET_ERROR(EROFS));
654 	}
655 
656 	/*
657 	 * If immutable or not appending then return EPERM.
658 	 * Intentionally allow ZFS_READONLY through here.
659 	 * See zfs_zaccess_common()
660 	 */
661 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
662 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
663 	    (zfs_uio_offset(uio) < zp->z_size))) {
664 		zfs_exit(zfsvfs, FTAG);
665 		return (SET_ERROR(EPERM));
666 	}
667 
668 	/*
669 	 * Validate file offset
670 	 */
671 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
672 	if (woff < 0) {
673 		zfs_exit(zfsvfs, FTAG);
674 		return (SET_ERROR(EINVAL));
675 	}
676 
677 	/*
678 	 * Setting up Direct I/O if requested.
679 	 */
680 	error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag);
681 	if (error) {
682 		zfs_exit(zfsvfs, FTAG);
683 		return (SET_ERROR(error));
684 	}
685 
686 	/*
687 	 * Pre-fault the pages to ensure slow (eg NFS) pages
688 	 * don't hold up txg.
689 	 */
690 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
691 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
692 		zfs_exit(zfsvfs, FTAG);
693 		return (SET_ERROR(EFAULT));
694 	}
695 
696 	/*
697 	 * If in append mode, set the io offset pointer to eof.
698 	 */
699 	zfs_locked_range_t *lr;
700 	if (ioflag & O_APPEND) {
701 		/*
702 		 * Obtain an appending range lock to guarantee file append
703 		 * semantics.  We reset the write offset once we have the lock.
704 		 */
705 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
706 		woff = lr->lr_offset;
707 		if (lr->lr_length == UINT64_MAX) {
708 			/*
709 			 * We overlocked the file because this write will cause
710 			 * the file block size to increase.
711 			 * Note that zp_size cannot change with this lock held.
712 			 */
713 			woff = zp->z_size;
714 		}
715 		zfs_uio_setoffset(uio, woff);
716 		/*
717 		 * We need to update the starting offset as well because it is
718 		 * set previously in the ZPL (Linux) and VNOPS (FreeBSD)
719 		 * layers.
720 		 */
721 		zfs_uio_setsoffset(uio, woff);
722 	} else {
723 		/*
724 		 * Note that if the file block size will change as a result of
725 		 * this write, then this range lock will lock the entire file
726 		 * so that we can re-write the block safely.
727 		 */
728 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
729 	}
730 
731 	if (zn_rlimit_fsize_uio(zp, uio)) {
732 		zfs_rangelock_exit(lr);
733 		zfs_exit(zfsvfs, FTAG);
734 		return (SET_ERROR(EFBIG));
735 	}
736 
737 	const rlim64_t limit = MAXOFFSET_T;
738 
739 	if (woff >= limit) {
740 		zfs_rangelock_exit(lr);
741 		zfs_exit(zfsvfs, FTAG);
742 		return (SET_ERROR(EFBIG));
743 	}
744 
745 	if (n > limit - woff)
746 		n = limit - woff;
747 
748 	uint64_t end_size = MAX(zp->z_size, woff + n);
749 	zilog_t *zilog = zfsvfs->z_log;
750 	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
751 	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
752 
753 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
754 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
755 	const uint64_t projid = zp->z_projid;
756 
757 	/*
758 	 * In the event we are increasing the file block size
759 	 * (lr_length == UINT64_MAX), we will direct the write to the ARC.
760 	 * Because zfs_grow_blocksize() will read from the ARC in order to
761 	 * grow the dbuf, we avoid doing Direct I/O here as that would cause
762 	 * data written to disk to be overwritten by data in the ARC during
763 	 * the sync phase. Besides writing data twice to disk, we also
764 	 * want to avoid consistency concerns between data in the the ARC and
765 	 * on disk while growing the file's blocksize.
766 	 *
767 	 * We will only temporarily remove Direct I/O and put it back after
768 	 * we have grown the blocksize. We do this in the event a request
769 	 * is larger than max_blksz, so further requests to
770 	 * dmu_write_uio_dbuf() will still issue the requests using Direct
771 	 * IO.
772 	 *
773 	 * As an example:
774 	 * The first block to file is being written as a 4k request with
775 	 * a recorsize of 1K. The first 1K issued in the loop below will go
776 	 * through the ARC; however, the following 3 1K requests will
777 	 * use Direct I/O.
778 	 */
779 	if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) {
780 		uio->uio_extflg &= ~UIO_DIRECT;
781 		o_direct_defer = B_TRUE;
782 	}
783 
784 	/*
785 	 * Write the file in reasonable size chunks.  Each chunk is written
786 	 * in a separate transaction; this keeps the intent log records small
787 	 * and allows us to do more fine-grained space accounting.
788 	 */
789 	while (n > 0) {
790 		woff = zfs_uio_offset(uio);
791 
792 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
793 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
794 		    (projid != ZFS_DEFAULT_PROJID &&
795 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
796 		    projid))) {
797 			error = SET_ERROR(EDQUOT);
798 			break;
799 		}
800 
801 		uint64_t blksz;
802 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
803 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
804 			    !ISP2(zp->z_blksz)) {
805 				/*
806 				 * File's blocksize is already larger than the
807 				 * "recordsize" property.  Only let it grow to
808 				 * the next power of 2.
809 				 */
810 				blksz = 1 << highbit64(zp->z_blksz);
811 			} else {
812 				blksz = zfsvfs->z_max_blksz;
813 			}
814 			blksz = MIN(blksz, P2ROUNDUP(end_size,
815 			    SPA_MINBLOCKSIZE));
816 			blksz = MAX(blksz, zp->z_blksz);
817 		} else {
818 			blksz = zp->z_blksz;
819 		}
820 
821 		arc_buf_t *abuf = NULL;
822 		ssize_t nbytes = n;
823 		if (n >= blksz && woff >= zp->z_size &&
824 		    P2PHASE(woff, blksz) == 0 &&
825 		    !(uio->uio_extflg & UIO_DIRECT) &&
826 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
827 			/*
828 			 * This write covers a full block.  "Borrow" a buffer
829 			 * from the dmu so that we can fill it before we enter
830 			 * a transaction.  This avoids the possibility of
831 			 * holding up the transaction if the data copy hangs
832 			 * up on a pagefault (e.g., from an NFS server mapping).
833 			 */
834 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
835 			    blksz);
836 			ASSERT(abuf != NULL);
837 			ASSERT(arc_buf_size(abuf) == blksz);
838 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
839 			    UIO_WRITE, uio, &nbytes))) {
840 				dmu_return_arcbuf(abuf);
841 				break;
842 			}
843 			ASSERT3S(nbytes, ==, blksz);
844 		} else {
845 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
846 			    P2PHASE(woff, blksz));
847 			if (pfbytes < nbytes) {
848 				if (zfs_uio_prefaultpages(nbytes, uio)) {
849 					error = SET_ERROR(EFAULT);
850 					break;
851 				}
852 				pfbytes = nbytes;
853 			}
854 		}
855 
856 		/*
857 		 * Start a transaction.
858 		 */
859 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
860 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
861 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
862 		DB_DNODE_ENTER(db);
863 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
864 		DB_DNODE_EXIT(db);
865 		zfs_sa_upgrade_txholds(tx, zp);
866 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
867 		if (error) {
868 			dmu_tx_abort(tx);
869 			if (abuf != NULL)
870 				dmu_return_arcbuf(abuf);
871 			break;
872 		}
873 
874 		/*
875 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
876 		 * committing the transaction!
877 		 */
878 
879 		/*
880 		 * If rangelock_enter() over-locked we grow the blocksize
881 		 * and then reduce the lock range.  This will only happen
882 		 * on the first iteration since rangelock_reduce() will
883 		 * shrink down lr_length to the appropriate size.
884 		 */
885 		if (lr->lr_length == UINT64_MAX) {
886 			zfs_grow_blocksize(zp, blksz, tx);
887 			zfs_rangelock_reduce(lr, woff, n);
888 		}
889 
890 		dmu_flags_t dflags = DMU_READ_PREFETCH;
891 		if (ioflag & O_DIRECT)
892 			dflags |= DMU_UNCACHEDIO;
893 		if (uio->uio_extflg & UIO_DIRECT)
894 			dflags |= DMU_DIRECTIO;
895 
896 		ssize_t tx_bytes;
897 		if (abuf == NULL) {
898 			tx_bytes = zfs_uio_resid(uio);
899 			zfs_uio_fault_disable(uio, B_TRUE);
900 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
901 			    uio, nbytes, tx, dflags);
902 			zfs_uio_fault_disable(uio, B_FALSE);
903 #ifdef __linux__
904 			if (error == EFAULT) {
905 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
906 				    cr, &clear_setid_bits_txg, tx);
907 				dmu_tx_commit(tx);
908 				/*
909 				 * Account for partial writes before
910 				 * continuing the loop.
911 				 * Update needs to occur before the next
912 				 * zfs_uio_prefaultpages, or prefaultpages may
913 				 * error, and we may break the loop early.
914 				 */
915 				n -= tx_bytes - zfs_uio_resid(uio);
916 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
917 				continue;
918 			}
919 #endif
920 			/*
921 			 * On FreeBSD, EFAULT should be propagated back to the
922 			 * VFS, which will handle faulting and will retry.
923 			 */
924 			if (error != 0 && error != EFAULT) {
925 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
926 				    cr, &clear_setid_bits_txg, tx);
927 				dmu_tx_commit(tx);
928 				break;
929 			}
930 			tx_bytes -= zfs_uio_resid(uio);
931 		} else {
932 			/*
933 			 * Thus, we're writing a full block at a block-aligned
934 			 * offset and extending the file past EOF.
935 			 *
936 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
937 			 * arc buffer to a dbuf.
938 			 */
939 			error = dmu_assign_arcbuf_by_dbuf(
940 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx, dflags);
941 			if (error != 0) {
942 				/*
943 				 * XXX This might not be necessary if
944 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
945 				 * to be atomic.
946 				 */
947 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
948 				    cr, &clear_setid_bits_txg, tx);
949 				dmu_return_arcbuf(abuf);
950 				dmu_tx_commit(tx);
951 				break;
952 			}
953 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
954 			zfs_uioskip(uio, nbytes);
955 			tx_bytes = nbytes;
956 		}
957 		/*
958 		 * There is a window where a file's pages can be mmap'ed after
959 		 * zfs_setup_direct() is called. This is due to the fact that
960 		 * the rangelock in this function is acquired after calling
961 		 * zfs_setup_direct(). This is done so that
962 		 * zfs_uio_prefaultpages() does not attempt to fault in pages
963 		 * on Linux for Direct I/O requests. This is not necessary as
964 		 * the pages are pinned in memory and can not be faulted out.
965 		 * Ideally, the rangelock would be held before calling
966 		 * zfs_setup_direct() and zfs_uio_prefaultpages(); however,
967 		 * this can lead to a deadlock as zfs_getpage() also acquires
968 		 * the rangelock as a RL_WRITER and prefaulting the pages can
969 		 * lead to zfs_getpage() being called.
970 		 *
971 		 * In the case of the pages being mapped after
972 		 * zfs_setup_direct() is called, the call to update_pages()
973 		 * will still be made to make sure there is consistency between
974 		 * the ARC and the Linux page cache. This is an ufortunate
975 		 * situation as the data will be read back into the ARC after
976 		 * the Direct I/O write has completed, but this is the penality
977 		 * for writing to a mmap'ed region of a file using Direct I/O.
978 		 */
979 		if (tx_bytes &&
980 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) {
981 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
982 		}
983 
984 		/*
985 		 * If we made no progress, we're done.  If we made even
986 		 * partial progress, update the znode and ZIL accordingly.
987 		 */
988 		if (tx_bytes == 0) {
989 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
990 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
991 			dmu_tx_commit(tx);
992 			ASSERT(error != 0);
993 			break;
994 		}
995 
996 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
997 		    &clear_setid_bits_txg, tx);
998 
999 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1000 
1001 		/*
1002 		 * Update the file size (zp_size) if it has changed;
1003 		 * account for possible concurrent updates.
1004 		 */
1005 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
1006 			(void) atomic_cas_64(&zp->z_size, end_size,
1007 			    zfs_uio_offset(uio));
1008 			ASSERT(error == 0 || error == EFAULT);
1009 		}
1010 		/*
1011 		 * If we are replaying and eof is non zero then force
1012 		 * the file size to the specified eof. Note, there's no
1013 		 * concurrency during replay.
1014 		 */
1015 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1016 			zp->z_size = zfsvfs->z_replay_eof;
1017 
1018 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1019 		if (error1 != 0)
1020 			/* Avoid clobbering EFAULT. */
1021 			error = error1;
1022 
1023 		/*
1024 		 * NB: During replay, the TX_SETATTR record logged by
1025 		 * zfs_clear_setid_bits_if_necessary must precede any of
1026 		 * the TX_WRITE records logged here.
1027 		 */
1028 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
1029 		    uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL,
1030 		    NULL);
1031 
1032 		dmu_tx_commit(tx);
1033 
1034 		/*
1035 		 * Direct I/O was deferred in order to grow the first block.
1036 		 * At this point it can be re-enabled for subsequent writes.
1037 		 */
1038 		if (o_direct_defer) {
1039 			ASSERT(ioflag & O_DIRECT);
1040 			uio->uio_extflg |= UIO_DIRECT;
1041 			o_direct_defer = B_FALSE;
1042 		}
1043 
1044 		if (error != 0)
1045 			break;
1046 		ASSERT3S(tx_bytes, ==, nbytes);
1047 		n -= nbytes;
1048 		pfbytes -= nbytes;
1049 	}
1050 
1051 	if (o_direct_defer) {
1052 		ASSERT(ioflag & O_DIRECT);
1053 		uio->uio_extflg |= UIO_DIRECT;
1054 		o_direct_defer = B_FALSE;
1055 	}
1056 
1057 	zfs_znode_update_vfs(zp);
1058 	zfs_rangelock_exit(lr);
1059 
1060 	/*
1061 	 * Cleanup for Direct I/O if requested.
1062 	 */
1063 	if (uio->uio_extflg & UIO_DIRECT)
1064 		zfs_uio_free_dio_pages(uio, UIO_WRITE);
1065 
1066 	/*
1067 	 * If we're in replay mode, or we made no progress, or the
1068 	 * uio data is inaccessible return an error.  Otherwise, it's
1069 	 * at least a partial write, so it's successful.
1070 	 */
1071 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
1072 	    error == EFAULT) {
1073 		zfs_exit(zfsvfs, FTAG);
1074 		return (error);
1075 	}
1076 
1077 	if (commit)
1078 		zil_commit(zilog, zp->z_id);
1079 
1080 	int64_t nwritten = start_resid - zfs_uio_resid(uio);
1081 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
1082 
1083 	zfs_exit(zfsvfs, FTAG);
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Rewrite a range of file as-is without modification.
1089  *
1090  *	IN:	zp	- znode of file to be rewritten.
1091  *		off	- Offset of the range to rewrite.
1092  *		len	- Length of the range to rewrite.
1093  *		flags	- Random rewrite parameters.
1094  *		arg	- flags-specific argument.
1095  *
1096  *	RETURN:	0 if success
1097  *		error code if failure
1098  */
1099 int
zfs_rewrite(znode_t * zp,uint64_t off,uint64_t len,uint64_t flags,uint64_t arg)1100 zfs_rewrite(znode_t *zp, uint64_t off, uint64_t len, uint64_t flags,
1101     uint64_t arg)
1102 {
1103 	int error;
1104 
1105 	if (flags != 0 || arg != 0)
1106 		return (SET_ERROR(EINVAL));
1107 
1108 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1109 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1110 		return (error);
1111 
1112 	if (zfs_is_readonly(zfsvfs)) {
1113 		zfs_exit(zfsvfs, FTAG);
1114 		return (SET_ERROR(EROFS));
1115 	}
1116 
1117 	if (off >= zp->z_size) {
1118 		zfs_exit(zfsvfs, FTAG);
1119 		return (0);
1120 	}
1121 	if (len == 0 || len > zp->z_size - off)
1122 		len = zp->z_size - off;
1123 
1124 	/* Flush any mmap()'d data to disk */
1125 	if (zn_has_cached_data(zp, off, off + len - 1))
1126 		zn_flush_cached_data(zp, B_TRUE);
1127 
1128 	zfs_locked_range_t *lr;
1129 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1130 
1131 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
1132 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
1133 	const uint64_t projid = zp->z_projid;
1134 
1135 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1136 	DB_DNODE_ENTER(db);
1137 	dnode_t *dn = DB_DNODE(db);
1138 
1139 	uint64_t n, noff = off, nr = 0, nw = 0;
1140 	while (len > 0) {
1141 		/*
1142 		 * Rewrite only actual data, skipping any holes.  This might
1143 		 * be inaccurate for dirty files, but we don't really care.
1144 		 */
1145 		if (noff == off) {
1146 			/* Find next data in the file. */
1147 			error = dnode_next_offset(dn, 0, &noff, 1, 1, 0);
1148 			if (error || noff >= off + len) {
1149 				if (error == ESRCH)	/* No more data. */
1150 					error = 0;
1151 				break;
1152 			}
1153 			ASSERT3U(noff, >=, off);
1154 			len -= noff - off;
1155 			off = noff;
1156 
1157 			/* Find where the data end. */
1158 			error = dnode_next_offset(dn, DNODE_FIND_HOLE, &noff,
1159 			    1, 1, 0);
1160 			if (error != 0)
1161 				noff = off + len;
1162 		}
1163 		ASSERT3U(noff, >, off);
1164 
1165 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
1166 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
1167 		    (projid != ZFS_DEFAULT_PROJID &&
1168 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
1169 		    projid))) {
1170 			error = SET_ERROR(EDQUOT);
1171 			break;
1172 		}
1173 
1174 		n = MIN(MIN(len, noff - off),
1175 		    DMU_MAX_ACCESS / 2 - P2PHASE(off, zp->z_blksz));
1176 
1177 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
1178 		dmu_tx_hold_write_by_dnode(tx, dn, off, n);
1179 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
1180 		if (error) {
1181 			dmu_tx_abort(tx);
1182 			break;
1183 		}
1184 
1185 		/* Mark all dbufs within range as dirty to trigger rewrite. */
1186 		dmu_buf_t **dbp;
1187 		int numbufs;
1188 		error = dmu_buf_hold_array_by_dnode(dn, off, n, TRUE, FTAG,
1189 		    &numbufs, &dbp, DMU_READ_PREFETCH | DMU_UNCACHEDIO);
1190 		if (error) {
1191 			dmu_tx_commit(tx);
1192 			break;
1193 		}
1194 		for (int i = 0; i < numbufs; i++) {
1195 			nr += dbp[i]->db_size;
1196 			if (dmu_buf_is_dirty(dbp[i], tx))
1197 				continue;
1198 			nw += dbp[i]->db_size;
1199 			dmu_buf_will_dirty(dbp[i], tx);
1200 		}
1201 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1202 
1203 		dmu_tx_commit(tx);
1204 
1205 		len -= n;
1206 		off += n;
1207 
1208 		if (issig()) {
1209 			error = SET_ERROR(EINTR);
1210 			break;
1211 		}
1212 	}
1213 
1214 	DB_DNODE_EXIT(db);
1215 
1216 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr);
1217 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nw);
1218 
1219 	zfs_rangelock_exit(lr);
1220 	zfs_exit(zfsvfs, FTAG);
1221 	return (error);
1222 }
1223 
1224 int
zfs_getsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1225 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1226 {
1227 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1228 	int error;
1229 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1230 
1231 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1232 		return (error);
1233 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
1234 	zfs_exit(zfsvfs, FTAG);
1235 
1236 	return (error);
1237 }
1238 
1239 int
zfs_setsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1240 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1241 {
1242 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1243 	int error;
1244 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1245 	zilog_t	*zilog;
1246 
1247 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1248 		return (error);
1249 	zilog = zfsvfs->z_log;
1250 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
1251 
1252 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1253 		zil_commit(zilog, 0);
1254 
1255 	zfs_exit(zfsvfs, FTAG);
1256 	return (error);
1257 }
1258 
1259 /*
1260  * Get the optimal alignment to ensure direct IO can be performed without
1261  * incurring any RMW penalty on write. If direct IO is not enabled for this
1262  * file, returns an error.
1263  */
1264 int
zfs_get_direct_alignment(znode_t * zp,uint64_t * alignp)1265 zfs_get_direct_alignment(znode_t *zp, uint64_t *alignp)
1266 {
1267 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1268 
1269 	if (!zfs_dio_enabled || zfsvfs->z_os->os_direct == ZFS_DIRECT_DISABLED)
1270 		return (SET_ERROR(EOPNOTSUPP));
1271 
1272 	/*
1273 	 * If the file has multiple blocks, then its block size is fixed
1274 	 * forever, and so is the ideal alignment.
1275 	 *
1276 	 * If however it only has a single block, then we want to return the
1277 	 * max block size it could possibly grown to (ie, the dataset
1278 	 * recordsize). We do this so that a program querying alignment
1279 	 * immediately after the file is created gets a value that won't change
1280 	 * once the file has grown into the second block and beyond.
1281 	 *
1282 	 * Because we don't have a count of blocks easily available here, we
1283 	 * check if the apparent file size is smaller than its current block
1284 	 * size (meaning, the file hasn't yet grown into the current block
1285 	 * size) and then, check if the block size is smaller than the dataset
1286 	 * maximum (meaning, if the file grew past the current block size, the
1287 	 * block size could would be increased).
1288 	 */
1289 	if (zp->z_size <= zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz)
1290 		*alignp = MAX(zfsvfs->z_max_blksz, PAGE_SIZE);
1291 	else
1292 		*alignp = MAX(zp->z_blksz, PAGE_SIZE);
1293 
1294 	return (0);
1295 }
1296 
1297 #ifdef ZFS_DEBUG
1298 static int zil_fault_io = 0;
1299 #endif
1300 
1301 static void zfs_get_done(zgd_t *zgd, int error);
1302 
1303 /*
1304  * Get data to generate a TX_WRITE intent log record.
1305  */
1306 int
zfs_get_data(void * arg,uint64_t gen,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1307 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
1308     struct lwb *lwb, zio_t *zio)
1309 {
1310 	zfsvfs_t *zfsvfs = arg;
1311 	objset_t *os = zfsvfs->z_os;
1312 	znode_t *zp;
1313 	uint64_t object = lr->lr_foid;
1314 	uint64_t offset = lr->lr_offset;
1315 	uint64_t size = lr->lr_length;
1316 	zgd_t *zgd;
1317 	int error = 0;
1318 	uint64_t zp_gen;
1319 
1320 	ASSERT3P(lwb, !=, NULL);
1321 	ASSERT3U(size, !=, 0);
1322 
1323 	/*
1324 	 * Nothing to do if the file has been removed
1325 	 */
1326 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1327 		return (SET_ERROR(ENOENT));
1328 	if (zp->z_unlinked) {
1329 		/*
1330 		 * Release the vnode asynchronously as we currently have the
1331 		 * txg stopped from syncing.
1332 		 */
1333 		zfs_zrele_async(zp);
1334 		return (SET_ERROR(ENOENT));
1335 	}
1336 	/* check if generation number matches */
1337 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1338 	    sizeof (zp_gen)) != 0) {
1339 		zfs_zrele_async(zp);
1340 		return (SET_ERROR(EIO));
1341 	}
1342 	if (zp_gen != gen) {
1343 		zfs_zrele_async(zp);
1344 		return (SET_ERROR(ENOENT));
1345 	}
1346 
1347 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1348 	zgd->zgd_lwb = lwb;
1349 	zgd->zgd_private = zp;
1350 
1351 	/*
1352 	 * Write records come in two flavors: immediate and indirect.
1353 	 * For small writes it's cheaper to store the data with the
1354 	 * log record (immediate); for large writes it's cheaper to
1355 	 * sync the data and get a pointer to it (indirect) so that
1356 	 * we don't have to write the data twice.
1357 	 */
1358 	if (buf != NULL) { /* immediate write */
1359 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset,
1360 		    size, RL_READER);
1361 		/* test for truncation needs to be done while range locked */
1362 		if (offset >= zp->z_size) {
1363 			error = SET_ERROR(ENOENT);
1364 		} else {
1365 			error = dmu_read(os, object, offset, size, buf,
1366 			    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1367 		}
1368 		ASSERT(error == 0 || error == ENOENT);
1369 	} else { /* indirect write */
1370 		ASSERT3P(zio, !=, NULL);
1371 		/*
1372 		 * Have to lock the whole block to ensure when it's
1373 		 * written out and its checksum is being calculated
1374 		 * that no one can change the data. We need to re-check
1375 		 * blocksize after we get the lock in case it's changed!
1376 		 */
1377 		for (;;) {
1378 			uint64_t blkoff;
1379 			size = zp->z_blksz;
1380 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1381 			offset -= blkoff;
1382 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
1383 			    offset, size, RL_READER);
1384 			if (zp->z_blksz == size)
1385 				break;
1386 			offset += blkoff;
1387 			zfs_rangelock_exit(zgd->zgd_lr);
1388 		}
1389 		/* test for truncation needs to be done while range locked */
1390 		if (lr->lr_offset >= zp->z_size)
1391 			error = SET_ERROR(ENOENT);
1392 #ifdef ZFS_DEBUG
1393 		if (zil_fault_io) {
1394 			error = SET_ERROR(EIO);
1395 			zil_fault_io = 0;
1396 		}
1397 #endif
1398 
1399 		dmu_buf_t *dbp;
1400 		if (error == 0)
1401 			error = dmu_buf_hold_noread(os, object, offset, zgd,
1402 			    &dbp);
1403 
1404 		if (error == 0) {
1405 			zgd->zgd_db = dbp;
1406 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp;
1407 			boolean_t direct_write = B_FALSE;
1408 			mutex_enter(&db->db_mtx);
1409 			dbuf_dirty_record_t *dr =
1410 			    dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg);
1411 			if (dr != NULL && dr->dt.dl.dr_diowrite)
1412 				direct_write = B_TRUE;
1413 			mutex_exit(&db->db_mtx);
1414 
1415 			/*
1416 			 * All Direct I/O writes will have already completed and
1417 			 * the block pointer can be immediately stored in the
1418 			 * log record.
1419 			 */
1420 			if (direct_write) {
1421 				/*
1422 				 * A Direct I/O write always covers an entire
1423 				 * block.
1424 				 */
1425 				ASSERT3U(dbp->db_size, ==, zp->z_blksz);
1426 				lr->lr_blkptr = dr->dt.dl.dr_overridden_by;
1427 				zfs_get_done(zgd, 0);
1428 				return (0);
1429 			}
1430 
1431 			blkptr_t *bp = &lr->lr_blkptr;
1432 			zgd->zgd_bp = bp;
1433 
1434 			ASSERT3U(dbp->db_offset, ==, offset);
1435 			ASSERT3U(dbp->db_size, ==, size);
1436 
1437 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1438 			    zfs_get_done, zgd);
1439 			ASSERT(error || lr->lr_length <= size);
1440 
1441 			/*
1442 			 * On success, we need to wait for the write I/O
1443 			 * initiated by dmu_sync() to complete before we can
1444 			 * release this dbuf.  We will finish everything up
1445 			 * in the zfs_get_done() callback.
1446 			 */
1447 			if (error == 0)
1448 				return (0);
1449 
1450 			if (error == EALREADY) {
1451 				lr->lr_common.lrc_txtype = TX_WRITE2;
1452 				/*
1453 				 * TX_WRITE2 relies on the data previously
1454 				 * written by the TX_WRITE that caused
1455 				 * EALREADY.  We zero out the BP because
1456 				 * it is the old, currently-on-disk BP.
1457 				 */
1458 				zgd->zgd_bp = NULL;
1459 				BP_ZERO(bp);
1460 				error = 0;
1461 			}
1462 		}
1463 	}
1464 
1465 	zfs_get_done(zgd, error);
1466 
1467 	return (error);
1468 }
1469 
1470 static void
zfs_get_done(zgd_t * zgd,int error)1471 zfs_get_done(zgd_t *zgd, int error)
1472 {
1473 	(void) error;
1474 	znode_t *zp = zgd->zgd_private;
1475 
1476 	if (zgd->zgd_db)
1477 		dmu_buf_rele(zgd->zgd_db, zgd);
1478 
1479 	zfs_rangelock_exit(zgd->zgd_lr);
1480 
1481 	/*
1482 	 * Release the vnode asynchronously as we currently have the
1483 	 * txg stopped from syncing.
1484 	 */
1485 	zfs_zrele_async(zp);
1486 
1487 	kmem_free(zgd, sizeof (zgd_t));
1488 }
1489 
1490 static int
zfs_enter_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1491 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1492 {
1493 	int error;
1494 
1495 	/* Swap. Not sure if the order of zfs_enter()s is important. */
1496 	if (zfsvfs1 > zfsvfs2) {
1497 		zfsvfs_t *tmpzfsvfs;
1498 
1499 		tmpzfsvfs = zfsvfs2;
1500 		zfsvfs2 = zfsvfs1;
1501 		zfsvfs1 = tmpzfsvfs;
1502 	}
1503 
1504 	error = zfs_enter(zfsvfs1, tag);
1505 	if (error != 0)
1506 		return (error);
1507 	if (zfsvfs1 != zfsvfs2) {
1508 		error = zfs_enter(zfsvfs2, tag);
1509 		if (error != 0) {
1510 			zfs_exit(zfsvfs1, tag);
1511 			return (error);
1512 		}
1513 	}
1514 
1515 	return (0);
1516 }
1517 
1518 static void
zfs_exit_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1519 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1520 {
1521 
1522 	zfs_exit(zfsvfs1, tag);
1523 	if (zfsvfs1 != zfsvfs2)
1524 		zfs_exit(zfsvfs2, tag);
1525 }
1526 
1527 /*
1528  * We split each clone request in chunks that can fit into a single ZIL
1529  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1530  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1531  * us room for storing 1022 block pointers.
1532  *
1533  * On success, the function return the number of bytes copied in *lenp.
1534  * Note, it doesn't return how much bytes are left to be copied.
1535  * On errors which are caused by any file system limitations or
1536  * brt limitations `EINVAL` is returned. In the most cases a user
1537  * requested bad parameters, it could be possible to clone the file but
1538  * some parameters don't match the requirements.
1539  */
1540 int
zfs_clone_range(znode_t * inzp,uint64_t * inoffp,znode_t * outzp,uint64_t * outoffp,uint64_t * lenp,cred_t * cr)1541 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1542     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1543 {
1544 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1545 	objset_t	*inos, *outos;
1546 	zfs_locked_range_t *inlr, *outlr;
1547 	dmu_buf_impl_t	*db;
1548 	dmu_tx_t	*tx;
1549 	zilog_t		*zilog;
1550 	uint64_t	inoff, outoff, len, done;
1551 	uint64_t	outsize, size;
1552 	int		error;
1553 	int		count = 0;
1554 	sa_bulk_attr_t	bulk[3];
1555 	uint64_t	mtime[2], ctime[2];
1556 	uint64_t	uid, gid, projid;
1557 	blkptr_t	*bps;
1558 	size_t		maxblocks, nbps;
1559 	uint_t		inblksz;
1560 	uint64_t	clear_setid_bits_txg = 0;
1561 	uint64_t	last_synced_txg = 0;
1562 
1563 	inoff = *inoffp;
1564 	outoff = *outoffp;
1565 	len = *lenp;
1566 	done = 0;
1567 
1568 	inzfsvfs = ZTOZSB(inzp);
1569 	outzfsvfs = ZTOZSB(outzp);
1570 
1571 	/*
1572 	 * We need to call zfs_enter() potentially on two different datasets,
1573 	 * so we need a dedicated function for that.
1574 	 */
1575 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1576 	if (error != 0)
1577 		return (error);
1578 
1579 	inos = inzfsvfs->z_os;
1580 	outos = outzfsvfs->z_os;
1581 
1582 	/*
1583 	 * Both source and destination have to belong to the same storage pool.
1584 	 */
1585 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1586 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1587 		return (SET_ERROR(EXDEV));
1588 	}
1589 
1590 	/*
1591 	 * outos and inos belongs to the same storage pool.
1592 	 * see a few lines above, only one check.
1593 	 */
1594 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1595 	    SPA_FEATURE_BLOCK_CLONING)) {
1596 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1597 		return (SET_ERROR(EOPNOTSUPP));
1598 	}
1599 
1600 	ASSERT(!outzfsvfs->z_replay);
1601 
1602 	/*
1603 	 * Block cloning from an unencrypted dataset into an encrypted
1604 	 * dataset and vice versa is not supported.
1605 	 */
1606 	if (inos->os_encrypted != outos->os_encrypted) {
1607 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1608 		return (SET_ERROR(EXDEV));
1609 	}
1610 
1611 	/*
1612 	 * Cloning across encrypted datasets is possible only if they
1613 	 * share the same master key.
1614 	 */
1615 	if (inos != outos && inos->os_encrypted &&
1616 	    !dmu_objset_crypto_key_equal(inos, outos)) {
1617 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1618 		return (SET_ERROR(EXDEV));
1619 	}
1620 
1621 	error = zfs_verify_zp(inzp);
1622 	if (error == 0)
1623 		error = zfs_verify_zp(outzp);
1624 	if (error != 0) {
1625 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1626 		return (error);
1627 	}
1628 
1629 	/*
1630 	 * We don't copy source file's flags that's why we don't allow to clone
1631 	 * files that are in quarantine.
1632 	 */
1633 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1634 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1635 		return (SET_ERROR(EACCES));
1636 	}
1637 
1638 	if (inoff >= inzp->z_size) {
1639 		*lenp = 0;
1640 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1641 		return (0);
1642 	}
1643 	if (len > inzp->z_size - inoff) {
1644 		len = inzp->z_size - inoff;
1645 	}
1646 	if (len == 0) {
1647 		*lenp = 0;
1648 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1649 		return (0);
1650 	}
1651 
1652 	/*
1653 	 * Callers might not be able to detect properly that we are read-only,
1654 	 * so check it explicitly here.
1655 	 */
1656 	if (zfs_is_readonly(outzfsvfs)) {
1657 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1658 		return (SET_ERROR(EROFS));
1659 	}
1660 
1661 	/*
1662 	 * If immutable or not appending then return EPERM.
1663 	 * Intentionally allow ZFS_READONLY through here.
1664 	 * See zfs_zaccess_common()
1665 	 */
1666 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1667 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1668 		return (SET_ERROR(EPERM));
1669 	}
1670 
1671 	/*
1672 	 * No overlapping if we are cloning within the same file.
1673 	 */
1674 	if (inzp == outzp) {
1675 		if (inoff < outoff + len && outoff < inoff + len) {
1676 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1677 			return (SET_ERROR(EINVAL));
1678 		}
1679 	}
1680 
1681 	/* Flush any mmap()'d data to disk */
1682 	if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
1683 		zn_flush_cached_data(inzp, B_TRUE);
1684 
1685 	/*
1686 	 * Maintain predictable lock order.
1687 	 */
1688 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1689 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1690 		    RL_READER);
1691 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1692 		    RL_WRITER);
1693 	} else {
1694 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1695 		    RL_WRITER);
1696 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1697 		    RL_READER);
1698 	}
1699 
1700 	inblksz = inzp->z_blksz;
1701 
1702 	/*
1703 	 * We cannot clone into a file with different block size if we can't
1704 	 * grow it (block size is already bigger, has more than one block, or
1705 	 * not locked for growth).  There are other possible reasons for the
1706 	 * grow to fail, but we cover what we can before opening transaction
1707 	 * and the rest detect after we try to do it.
1708 	 */
1709 	if (inblksz < outzp->z_blksz) {
1710 		error = SET_ERROR(EINVAL);
1711 		goto unlock;
1712 	}
1713 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1714 	    outlr->lr_length != UINT64_MAX)) {
1715 		error = SET_ERROR(EINVAL);
1716 		goto unlock;
1717 	}
1718 
1719 	/*
1720 	 * Block size must be power-of-2 if destination offset != 0.
1721 	 * There can be no multiple blocks of non-power-of-2 size.
1722 	 */
1723 	if (outoff != 0 && !ISP2(inblksz)) {
1724 		error = SET_ERROR(EINVAL);
1725 		goto unlock;
1726 	}
1727 
1728 	/*
1729 	 * Offsets and len must be at block boundries.
1730 	 */
1731 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1732 		error = SET_ERROR(EINVAL);
1733 		goto unlock;
1734 	}
1735 	/*
1736 	 * Length must be multipe of blksz, except for the end of the file.
1737 	 */
1738 	if ((len % inblksz) != 0 &&
1739 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1740 		error = SET_ERROR(EINVAL);
1741 		goto unlock;
1742 	}
1743 
1744 	/*
1745 	 * If we are copying only one block and it is smaller than recordsize
1746 	 * property, do not allow destination to grow beyond one block if it
1747 	 * is not there yet.  Otherwise the destination will get stuck with
1748 	 * that block size forever, that can be as small as 512 bytes, no
1749 	 * matter how big the destination grow later.
1750 	 */
1751 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1752 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1753 		error = SET_ERROR(EINVAL);
1754 		goto unlock;
1755 	}
1756 
1757 	error = zn_rlimit_fsize(outoff + len);
1758 	if (error != 0) {
1759 		goto unlock;
1760 	}
1761 
1762 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1763 		error = SET_ERROR(EFBIG);
1764 		goto unlock;
1765 	}
1766 
1767 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1768 	    &mtime, 16);
1769 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1770 	    &ctime, 16);
1771 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1772 	    &outzp->z_size, 8);
1773 
1774 	zilog = outzfsvfs->z_log;
1775 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1776 	    sizeof (bps[0]);
1777 
1778 	uid = KUID_TO_SUID(ZTOUID(outzp));
1779 	gid = KGID_TO_SGID(ZTOGID(outzp));
1780 	projid = outzp->z_projid;
1781 
1782 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1783 
1784 	/*
1785 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1786 	 * in a separate transaction; this keeps the intent log records small
1787 	 * and allows us to do more fine-grained space accounting.
1788 	 */
1789 	while (len > 0) {
1790 		size = MIN(inblksz * maxblocks, len);
1791 
1792 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1793 		    uid) ||
1794 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1795 		    gid) ||
1796 		    (projid != ZFS_DEFAULT_PROJID &&
1797 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1798 		    projid))) {
1799 			error = SET_ERROR(EDQUOT);
1800 			break;
1801 		}
1802 
1803 		nbps = maxblocks;
1804 		last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
1805 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1806 		    &nbps);
1807 		if (error != 0) {
1808 			/*
1809 			 * If we are trying to clone a block that was created
1810 			 * in the current transaction group, the error will be
1811 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
1812 			 * return a shortened range to the caller so it can
1813 			 * fallback, or wait for the next TXG and check again.
1814 			 */
1815 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
1816 				txg_wait_flag_t wait_flags =
1817 				    spa_get_failmode(dmu_objset_spa(inos)) ==
1818 				    ZIO_FAILURE_MODE_CONTINUE ?
1819 				    TXG_WAIT_SUSPEND : 0;
1820 				error = txg_wait_synced_flags(
1821 				    dmu_objset_pool(inos), last_synced_txg + 1,
1822 				    wait_flags);
1823 				if (error == 0)
1824 					continue;
1825 				ASSERT3U(error, ==, ESHUTDOWN);
1826 				error = SET_ERROR(EIO);
1827 			}
1828 
1829 			break;
1830 		}
1831 
1832 		/*
1833 		 * Start a transaction.
1834 		 */
1835 		tx = dmu_tx_create(outos);
1836 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1837 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1838 		DB_DNODE_ENTER(db);
1839 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size,
1840 		    inblksz);
1841 		DB_DNODE_EXIT(db);
1842 		zfs_sa_upgrade_txholds(tx, outzp);
1843 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
1844 		if (error != 0) {
1845 			dmu_tx_abort(tx);
1846 			break;
1847 		}
1848 
1849 		/*
1850 		 * Copy source znode's block size. This is done only if the
1851 		 * whole znode is locked (see zfs_rangelock_cb()) and only
1852 		 * on the first iteration since zfs_rangelock_reduce() will
1853 		 * shrink down lr_length to the appropriate size.
1854 		 */
1855 		if (outlr->lr_length == UINT64_MAX) {
1856 			zfs_grow_blocksize(outzp, inblksz, tx);
1857 
1858 			/*
1859 			 * Block growth may fail for many reasons we can not
1860 			 * predict here.  If it happen the cloning is doomed.
1861 			 */
1862 			if (inblksz != outzp->z_blksz) {
1863 				error = SET_ERROR(EINVAL);
1864 				dmu_tx_commit(tx);
1865 				break;
1866 			}
1867 
1868 			/*
1869 			 * Round range lock up to the block boundary, so we
1870 			 * prevent appends until we are done.
1871 			 */
1872 			zfs_rangelock_reduce(outlr, outoff,
1873 			    ((len - 1) / inblksz + 1) * inblksz);
1874 		}
1875 
1876 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1877 		    bps, nbps);
1878 		if (error != 0) {
1879 			dmu_tx_commit(tx);
1880 			break;
1881 		}
1882 
1883 		if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1884 			update_pages(outzp, outoff, size, outos);
1885 		}
1886 
1887 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1888 		    &clear_setid_bits_txg, tx);
1889 
1890 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1891 
1892 		/*
1893 		 * Update the file size (zp_size) if it has changed;
1894 		 * account for possible concurrent updates.
1895 		 */
1896 		while ((outsize = outzp->z_size) < outoff + size) {
1897 			(void) atomic_cas_64(&outzp->z_size, outsize,
1898 			    outoff + size);
1899 		}
1900 
1901 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1902 
1903 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1904 		    size, inblksz, bps, nbps);
1905 
1906 		dmu_tx_commit(tx);
1907 
1908 		if (error != 0)
1909 			break;
1910 
1911 		inoff += size;
1912 		outoff += size;
1913 		len -= size;
1914 		done += size;
1915 
1916 		if (issig()) {
1917 			error = SET_ERROR(EINTR);
1918 			break;
1919 		}
1920 	}
1921 
1922 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1923 	zfs_znode_update_vfs(outzp);
1924 
1925 unlock:
1926 	zfs_rangelock_exit(outlr);
1927 	zfs_rangelock_exit(inlr);
1928 
1929 	if (done > 0) {
1930 		/*
1931 		 * If we have made at least partial progress, reset the error.
1932 		 */
1933 		error = 0;
1934 
1935 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1936 
1937 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1938 			zil_commit(zilog, outzp->z_id);
1939 		}
1940 
1941 		*inoffp += done;
1942 		*outoffp += done;
1943 		*lenp = done;
1944 	} else {
1945 		/*
1946 		 * If we made no progress, there must be a good reason.
1947 		 * EOF is handled explicitly above, before the loop.
1948 		 */
1949 		ASSERT3S(error, !=, 0);
1950 	}
1951 
1952 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1953 
1954 	return (error);
1955 }
1956 
1957 /*
1958  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1959  * but we cannot do that, because when replaying we don't have source znode
1960  * available. This is why we need a dedicated replay function.
1961  */
1962 int
zfs_clone_range_replay(znode_t * zp,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)1963 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1964     const blkptr_t *bps, size_t nbps)
1965 {
1966 	zfsvfs_t	*zfsvfs;
1967 	dmu_buf_impl_t	*db;
1968 	dmu_tx_t	*tx;
1969 	int		error;
1970 	int		count = 0;
1971 	sa_bulk_attr_t	bulk[3];
1972 	uint64_t	mtime[2], ctime[2];
1973 
1974 	ASSERT3U(off, <, MAXOFFSET_T);
1975 	ASSERT3U(len, >, 0);
1976 	ASSERT3U(nbps, >, 0);
1977 
1978 	zfsvfs = ZTOZSB(zp);
1979 
1980 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1981 	    SPA_FEATURE_BLOCK_CLONING));
1982 
1983 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1984 		return (error);
1985 
1986 	ASSERT(zfsvfs->z_replay);
1987 	ASSERT(!zfs_is_readonly(zfsvfs));
1988 
1989 	if ((off % blksz) != 0) {
1990 		zfs_exit(zfsvfs, FTAG);
1991 		return (SET_ERROR(EINVAL));
1992 	}
1993 
1994 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1995 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1996 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1997 	    &zp->z_size, 8);
1998 
1999 	/*
2000 	 * Start a transaction.
2001 	 */
2002 	tx = dmu_tx_create(zfsvfs->z_os);
2003 
2004 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2005 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
2006 	DB_DNODE_ENTER(db);
2007 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len, blksz);
2008 	DB_DNODE_EXIT(db);
2009 	zfs_sa_upgrade_txholds(tx, zp);
2010 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
2011 	if (error != 0) {
2012 		dmu_tx_abort(tx);
2013 		zfs_exit(zfsvfs, FTAG);
2014 		return (error);
2015 	}
2016 
2017 	if (zp->z_blksz < blksz)
2018 		zfs_grow_blocksize(zp, blksz, tx);
2019 
2020 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
2021 
2022 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
2023 
2024 	if (zp->z_size < off + len)
2025 		zp->z_size = off + len;
2026 
2027 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2028 
2029 	/*
2030 	 * zil_replaying() not only check if we are replaying ZIL, but also
2031 	 * updates the ZIL header to record replay progress.
2032 	 */
2033 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
2034 
2035 	dmu_tx_commit(tx);
2036 
2037 	zfs_znode_update_vfs(zp);
2038 
2039 	zfs_exit(zfsvfs, FTAG);
2040 
2041 	return (error);
2042 }
2043 
2044 EXPORT_SYMBOL(zfs_access);
2045 EXPORT_SYMBOL(zfs_fsync);
2046 EXPORT_SYMBOL(zfs_holey);
2047 EXPORT_SYMBOL(zfs_read);
2048 EXPORT_SYMBOL(zfs_write);
2049 EXPORT_SYMBOL(zfs_getsecattr);
2050 EXPORT_SYMBOL(zfs_setsecattr);
2051 EXPORT_SYMBOL(zfs_clone_range);
2052 EXPORT_SYMBOL(zfs_clone_range_replay);
2053 
2054 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
2055 	"Bytes to read per chunk");
2056 
2057 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
2058 	"Enable block cloning");
2059 
2060 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
2061 	"Wait for dirty blocks when cloning");
2062 
2063 ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW,
2064 	"Enable Direct I/O");
2065 
2066 ZFS_MODULE_PARAM(zfs, zfs_, dio_strict, INT, ZMOD_RW,
2067 	"Return errors on misaligned Direct I/O");
2068