xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 546d3d08e5993cbe2d6141b256e8c2ebad5aa102)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27  * Copyright 2017 Nexenta Systems, Inc.
28  * Copyright (c) 2025, Klara, Inc.
29  */
30 
31 /* Portions Copyright 2007 Jeremy Teo */
32 /* Portions Copyright 2010 Robert Milkowski */
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/time.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/pathname.h>
47 #include <sys/cmn_err.h>
48 #include <sys/errno.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/spa.h>
56 #include <sys/txg.h>
57 #include <sys/dbuf.h>
58 #include <sys/zap.h>
59 #include <sys/sa.h>
60 #include <sys/policy.h>
61 #include <sys/sunddi.h>
62 #include <sys/sid.h>
63 #include <sys/zfs_ctldir.h>
64 #include <sys/zfs_fuid.h>
65 #include <sys/zfs_quota.h>
66 #include <sys/zfs_sa.h>
67 #include <sys/zfs_vnops.h>
68 #include <sys/zfs_rlock.h>
69 #include <sys/cred.h>
70 #include <sys/zpl.h>
71 #include <sys/zil.h>
72 #include <sys/sa_impl.h>
73 #include <linux/mm_compat.h>
74 
75 /*
76  * Programming rules.
77  *
78  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
79  * properly lock its in-core state, create a DMU transaction, do the work,
80  * record this work in the intent log (ZIL), commit the DMU transaction,
81  * and wait for the intent log to commit if it is a synchronous operation.
82  * Moreover, the vnode ops must work in both normal and log replay context.
83  * The ordering of events is important to avoid deadlocks and references
84  * to freed memory.  The example below illustrates the following Big Rules:
85  *
86  *  (1) A check must be made in each zfs thread for a mounted file system.
87  *	This is done avoiding races using zfs_enter(zfsvfs).
88  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
89  *      must be checked with zfs_verify_zp(zp).  Both of these macros
90  *      can return EIO from the calling function.
91  *
92  *  (2) zrele() should always be the last thing except for zil_commit() (if
93  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
94  *	last reference, the vnode/znode can be freed, so the zp may point to
95  *	freed memory.  Second, the last reference will call zfs_zinactive(),
96  *	which may induce a lot of work -- pushing cached pages (which acquires
97  *	range locks) and syncing out cached atime changes.  Third,
98  *	zfs_zinactive() may require a new tx, which could deadlock the system
99  *	if you were already holding one. This deadlock occurs because the tx
100  *	currently being operated on prevents a txg from syncing, which
101  *	prevents the new tx from progressing, resulting in a deadlock.  If you
102  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
103  *	is a synonym for zrele().
104  *
105  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
106  *	as they can span dmu_tx_assign() calls.
107  *
108  *  (4) If ZPL locks are held, pass DMU_TX_NOWAIT as the second argument to
109  *      dmu_tx_assign().  This is critical because we don't want to block
110  *      while holding locks.
111  *
112  *	If no ZPL locks are held (aside from zfs_enter()), use DMU_TX_WAIT.
113  *	This reduces lock contention and CPU usage when we must wait (note
114  *	that if throughput is constrained by the storage, nearly every
115  *	transaction must wait).
116  *
117  *      Note, in particular, that if a lock is sometimes acquired before
118  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
119  *      to use a non-blocking assign can deadlock the system.  The scenario:
120  *
121  *	Thread A has grabbed a lock before calling dmu_tx_assign().
122  *	Thread B is in an already-assigned tx, and blocks for this lock.
123  *	Thread A calls dmu_tx_assign(DMU_TX_WAIT) and blocks in
124  *	txg_wait_open() forever, because the previous txg can't quiesce
125  *	until B's tx commits.
126  *
127  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is
128  *	DMU_TX_NOWAIT, then drop all locks, call dmu_tx_wait(), and try
129  *	again.  On subsequent calls to dmu_tx_assign(), pass
130  *	DMU_TX_NOTHROTTLE in addition to DMU_TX_NOWAIT, to indicate that
131  *	this operation has already called dmu_tx_wait().  This will ensure
132  *	that we don't retry forever, waiting a short bit each time.
133  *
134  *  (5)	If the operation succeeded, generate the intent log entry for it
135  *	before dropping locks.  This ensures that the ordering of events
136  *	in the intent log matches the order in which they actually occurred.
137  *	During ZIL replay the zfs_log_* functions will update the sequence
138  *	number to indicate the zil transaction has replayed.
139  *
140  *  (6)	At the end of each vnode op, the DMU tx must always commit,
141  *	regardless of whether there were any errors.
142  *
143  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144  *	to ensure that synchronous semantics are provided when necessary.
145  *
146  * In general, this is how things should be ordered in each vnode op:
147  *
148  *	zfs_enter(zfsvfs);		// exit if unmounted
149  * top:
150  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
151  *	rw_enter(...);			// grab any other locks you need
152  *	tx = dmu_tx_create(...);	// get DMU tx
153  *	dmu_tx_hold_*();		// hold each object you might modify
154  *	error = dmu_tx_assign(tx,
155  *	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
156  *	if (error) {
157  *		rw_exit(...);		// drop locks
158  *		zfs_dirent_unlock(dl);	// unlock directory entry
159  *		zrele(...);		// release held znodes
160  *		if (error == ERESTART) {
161  *			waited = B_TRUE;
162  *			dmu_tx_wait(tx);
163  *			dmu_tx_abort(tx);
164  *			goto top;
165  *		}
166  *		dmu_tx_abort(tx);	// abort DMU tx
167  *		zfs_exit(zfsvfs);	// finished in zfs
168  *		return (error);		// really out of space
169  *	}
170  *	error = do_real_work();		// do whatever this VOP does
171  *	if (error == 0)
172  *		zfs_log_*(...);		// on success, make ZIL entry
173  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
174  *	rw_exit(...);			// drop locks
175  *	zfs_dirent_unlock(dl);		// unlock directory entry
176  *	zrele(...);			// release held znodes
177  *	zil_commit(zilog, foid);	// synchronous when necessary
178  *	zfs_exit(zfsvfs);		// finished in zfs
179  *	return (error);			// done, report error
180  */
181 int
zfs_open(struct inode * ip,int mode,int flag,cred_t * cr)182 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
183 {
184 	(void) cr;
185 	znode_t	*zp = ITOZ(ip);
186 	zfsvfs_t *zfsvfs = ITOZSB(ip);
187 	int error;
188 
189 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
190 		return (error);
191 
192 	/* Honor ZFS_APPENDONLY file attribute */
193 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
194 	    ((flag & O_APPEND) == 0)) {
195 		zfs_exit(zfsvfs, FTAG);
196 		return (SET_ERROR(EPERM));
197 	}
198 
199 	/*
200 	 * Keep a count of the synchronous opens in the znode.  On first
201 	 * synchronous open we must convert all previous async transactions
202 	 * into sync to keep correct ordering.
203 	 */
204 	if (flag & O_SYNC) {
205 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
206 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
207 	}
208 
209 	zfs_exit(zfsvfs, FTAG);
210 	return (0);
211 }
212 
213 int
zfs_close(struct inode * ip,int flag,cred_t * cr)214 zfs_close(struct inode *ip, int flag, cred_t *cr)
215 {
216 	(void) cr;
217 	znode_t	*zp = ITOZ(ip);
218 	zfsvfs_t *zfsvfs = ITOZSB(ip);
219 	int error;
220 
221 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
222 		return (error);
223 
224 	/* Decrement the synchronous opens in the znode */
225 	if (flag & O_SYNC)
226 		atomic_dec_32(&zp->z_sync_cnt);
227 
228 	zfs_exit(zfsvfs, FTAG);
229 	return (0);
230 }
231 
232 #if defined(_KERNEL)
233 
234 static int zfs_fillpage(struct inode *ip, struct page *pp);
235 
236 /*
237  * When a file is memory mapped, we must keep the IO data synchronized
238  * between the DMU cache and the memory mapped pages.  Update all mapped
239  * pages with the contents of the coresponding dmu buffer.
240  */
241 void
update_pages(znode_t * zp,int64_t start,int len,objset_t * os)242 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
243 {
244 	struct address_space *mp = ZTOI(zp)->i_mapping;
245 	int64_t off = start & (PAGE_SIZE - 1);
246 
247 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
248 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
249 
250 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
251 		if (pp) {
252 			if (mapping_writably_mapped(mp))
253 				flush_dcache_page(pp);
254 
255 			void *pb = kmap(pp);
256 			int error = dmu_read(os, zp->z_id, start + off,
257 			    nbytes, pb + off, DMU_READ_PREFETCH);
258 			kunmap(pp);
259 
260 			if (error) {
261 				SetPageError(pp);
262 				ClearPageUptodate(pp);
263 			} else {
264 				ClearPageError(pp);
265 				SetPageUptodate(pp);
266 
267 				if (mapping_writably_mapped(mp))
268 					flush_dcache_page(pp);
269 
270 				mark_page_accessed(pp);
271 			}
272 
273 			unlock_page(pp);
274 			put_page(pp);
275 		}
276 
277 		len -= nbytes;
278 		off = 0;
279 	}
280 }
281 
282 /*
283  * When a file is memory mapped, we must keep the I/O data synchronized
284  * between the DMU cache and the memory mapped pages.  Preferentially read
285  * from memory mapped pages, otherwise fallback to reading through the dmu.
286  */
287 int
mappedread(znode_t * zp,int nbytes,zfs_uio_t * uio)288 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
289 {
290 	struct inode *ip = ZTOI(zp);
291 	struct address_space *mp = ip->i_mapping;
292 	int64_t start = uio->uio_loffset;
293 	int64_t off = start & (PAGE_SIZE - 1);
294 	int len = nbytes;
295 	int error = 0;
296 
297 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
298 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
299 
300 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
301 		if (pp) {
302 
303 			/*
304 			 * If filemap_fault() retries there exists a window
305 			 * where the page will be unlocked and not up to date.
306 			 * In this case we must try and fill the page.
307 			 */
308 			if (unlikely(!PageUptodate(pp))) {
309 				error = zfs_fillpage(ip, pp);
310 				if (error) {
311 					unlock_page(pp);
312 					put_page(pp);
313 					return (error);
314 				}
315 			}
316 
317 			ASSERT(PageUptodate(pp) || PageDirty(pp));
318 
319 			unlock_page(pp);
320 
321 			void *pb = kmap(pp);
322 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
323 			kunmap(pp);
324 
325 			if (mapping_writably_mapped(mp))
326 				flush_dcache_page(pp);
327 
328 			mark_page_accessed(pp);
329 			put_page(pp);
330 		} else {
331 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
332 			    uio, bytes, DMU_READ_PREFETCH);
333 		}
334 
335 		len -= bytes;
336 		off = 0;
337 
338 		if (error)
339 			break;
340 	}
341 
342 	return (error);
343 }
344 #endif /* _KERNEL */
345 
346 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
347 
348 /*
349  * Write the bytes to a file.
350  *
351  *	IN:	zp	- znode of file to be written to
352  *		data	- bytes to write
353  *		len	- number of bytes to write
354  *		pos	- offset to start writing at
355  *
356  *	OUT:	resid	- remaining bytes to write
357  *
358  *	RETURN:	0 if success
359  *		positive error code if failure.  EIO is	returned
360  *		for a short write when residp isn't provided.
361  *
362  * Timestamps:
363  *	zp - ctime|mtime updated if byte count > 0
364  */
365 int
zfs_write_simple(znode_t * zp,const void * data,size_t len,loff_t pos,size_t * residp)366 zfs_write_simple(znode_t *zp, const void *data, size_t len,
367     loff_t pos, size_t *residp)
368 {
369 	fstrans_cookie_t cookie;
370 	int error;
371 
372 	struct iovec iov;
373 	iov.iov_base = (void *)data;
374 	iov.iov_len = len;
375 
376 	zfs_uio_t uio;
377 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
378 
379 	cookie = spl_fstrans_mark();
380 	error = zfs_write(zp, &uio, 0, kcred);
381 	spl_fstrans_unmark(cookie);
382 
383 	if (error == 0) {
384 		if (residp != NULL)
385 			*residp = zfs_uio_resid(&uio);
386 		else if (zfs_uio_resid(&uio) != 0)
387 			error = SET_ERROR(EIO);
388 	}
389 
390 	return (error);
391 }
392 
393 static void
zfs_rele_async_task(void * arg)394 zfs_rele_async_task(void *arg)
395 {
396 	iput(arg);
397 }
398 
399 void
zfs_zrele_async(znode_t * zp)400 zfs_zrele_async(znode_t *zp)
401 {
402 	struct inode *ip = ZTOI(zp);
403 	objset_t *os = ITOZSB(ip)->z_os;
404 
405 	ASSERT(atomic_read(&ip->i_count) > 0);
406 	ASSERT(os != NULL);
407 
408 	/*
409 	 * If decrementing the count would put us at 0, we can't do it inline
410 	 * here, because that would be synchronous. Instead, dispatch an iput
411 	 * to run later.
412 	 *
413 	 * For more information on the dangers of a synchronous iput, see the
414 	 * header comment of this file.
415 	 */
416 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
417 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
418 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
419 	}
420 }
421 
422 
423 /*
424  * Lookup an entry in a directory, or an extended attribute directory.
425  * If it exists, return a held inode reference for it.
426  *
427  *	IN:	zdp	- znode of directory to search.
428  *		nm	- name of entry to lookup.
429  *		flags	- LOOKUP_XATTR set if looking for an attribute.
430  *		cr	- credentials of caller.
431  *		direntflags - directory lookup flags
432  *		realpnp - returned pathname.
433  *
434  *	OUT:	zpp	- znode of located entry, NULL if not found.
435  *
436  *	RETURN:	0 on success, error code on failure.
437  *
438  * Timestamps:
439  *	NA
440  */
441 int
zfs_lookup(znode_t * zdp,char * nm,znode_t ** zpp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)442 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
443     int *direntflags, pathname_t *realpnp)
444 {
445 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
446 	int error = 0;
447 
448 	/*
449 	 * Fast path lookup, however we must skip DNLC lookup
450 	 * for case folding or normalizing lookups because the
451 	 * DNLC code only stores the passed in name.  This means
452 	 * creating 'a' and removing 'A' on a case insensitive
453 	 * file system would work, but DNLC still thinks 'a'
454 	 * exists and won't let you create it again on the next
455 	 * pass through fast path.
456 	 */
457 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
458 
459 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
460 			return (SET_ERROR(ENOTDIR));
461 		} else if (zdp->z_sa_hdl == NULL) {
462 			return (SET_ERROR(EIO));
463 		}
464 
465 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
466 			error = zfs_fastaccesschk_execute(zdp, cr);
467 			if (!error) {
468 				*zpp = zdp;
469 				zhold(*zpp);
470 				return (0);
471 			}
472 			return (error);
473 		}
474 	}
475 
476 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
477 		return (error);
478 
479 	*zpp = NULL;
480 
481 	if (flags & LOOKUP_XATTR) {
482 		/*
483 		 * We don't allow recursive attributes..
484 		 * Maybe someday we will.
485 		 */
486 		if (zdp->z_pflags & ZFS_XATTR) {
487 			zfs_exit(zfsvfs, FTAG);
488 			return (SET_ERROR(EINVAL));
489 		}
490 
491 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
492 			zfs_exit(zfsvfs, FTAG);
493 			return (error);
494 		}
495 
496 		/*
497 		 * Do we have permission to get into attribute directory?
498 		 */
499 
500 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
501 		    B_TRUE, cr, zfs_init_idmap))) {
502 			zrele(*zpp);
503 			*zpp = NULL;
504 		}
505 
506 		zfs_exit(zfsvfs, FTAG);
507 		return (error);
508 	}
509 
510 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
511 		zfs_exit(zfsvfs, FTAG);
512 		return (SET_ERROR(ENOTDIR));
513 	}
514 
515 	/*
516 	 * Check accessibility of directory.
517 	 */
518 
519 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
520 	    zfs_init_idmap))) {
521 		zfs_exit(zfsvfs, FTAG);
522 		return (error);
523 	}
524 
525 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
526 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
527 		zfs_exit(zfsvfs, FTAG);
528 		return (SET_ERROR(EILSEQ));
529 	}
530 
531 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
532 	if ((error == 0) && (*zpp))
533 		zfs_znode_update_vfs(*zpp);
534 
535 	zfs_exit(zfsvfs, FTAG);
536 	return (error);
537 }
538 
539 /*
540  * Perform a linear search in directory for the name of specific inode.
541  * Note we don't pass in the buffer size of name because it's hardcoded to
542  * NAME_MAX+1(256) in Linux.
543  *
544  *	IN:	dzp	- znode of directory to search.
545  *		zp	- znode of the target
546  *
547  *	OUT:	name	- dentry name of the target
548  *
549  *	RETURN:	0 on success, error code on failure.
550  */
551 int
zfs_get_name(znode_t * dzp,char * name,znode_t * zp)552 zfs_get_name(znode_t *dzp, char *name, znode_t *zp)
553 {
554 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
555 	int error = 0;
556 
557 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
558 		return (error);
559 
560 	if ((error = zfs_verify_zp(zp)) != 0) {
561 		zfs_exit(zfsvfs, FTAG);
562 		return (error);
563 	}
564 
565 	/* ctldir should have got their name in zfs_vget */
566 	if (dzp->z_is_ctldir || zp->z_is_ctldir) {
567 		zfs_exit(zfsvfs, FTAG);
568 		return (ENOENT);
569 	}
570 
571 	/* buffer len is hardcoded to 256 in Linux kernel */
572 	error = zap_value_search(zfsvfs->z_os, dzp->z_id, zp->z_id,
573 	    ZFS_DIRENT_OBJ(-1ULL), name, ZAP_MAXNAMELEN);
574 
575 	zfs_exit(zfsvfs, FTAG);
576 	return (error);
577 }
578 
579 /*
580  * Attempt to create a new entry in a directory.  If the entry
581  * already exists, truncate the file if permissible, else return
582  * an error.  Return the ip of the created or trunc'd file.
583  *
584  *	IN:	dzp	- znode of directory to put new file entry in.
585  *		name	- name of new file entry.
586  *		vap	- attributes of new file.
587  *		excl	- flag indicating exclusive or non-exclusive mode.
588  *		mode	- mode to open file with.
589  *		cr	- credentials of caller.
590  *		flag	- file flag.
591  *		vsecp	- ACL to be set
592  *		mnt_ns	- user namespace of the mount
593  *
594  *	OUT:	zpp	- znode of created or trunc'd entry.
595  *
596  *	RETURN:	0 on success, error code on failure.
597  *
598  * Timestamps:
599  *	dzp - ctime|mtime updated if new entry created
600  *	 zp - ctime|mtime always, atime if new
601  */
602 int
zfs_create(znode_t * dzp,char * name,vattr_t * vap,int excl,int mode,znode_t ** zpp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)603 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
604     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
605     zidmap_t *mnt_ns)
606 {
607 	znode_t		*zp;
608 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
609 	zilog_t		*zilog;
610 	objset_t	*os;
611 	zfs_dirlock_t	*dl;
612 	dmu_tx_t	*tx;
613 	int		error;
614 	uid_t		uid;
615 	gid_t		gid;
616 	zfs_acl_ids_t   acl_ids;
617 	boolean_t	fuid_dirtied;
618 	boolean_t	have_acl = B_FALSE;
619 	boolean_t	waited = B_FALSE;
620 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
621 
622 	/*
623 	 * If we have an ephemeral id, ACL, or XVATTR then
624 	 * make sure file system is at proper version
625 	 */
626 
627 	gid = crgetgid(cr);
628 	uid = crgetuid(cr);
629 
630 	if (zfsvfs->z_use_fuids == B_FALSE &&
631 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
632 		return (SET_ERROR(EINVAL));
633 
634 	if (name == NULL)
635 		return (SET_ERROR(EINVAL));
636 
637 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
638 		return (error);
639 	os = zfsvfs->z_os;
640 	zilog = zfsvfs->z_log;
641 
642 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
643 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
644 		zfs_exit(zfsvfs, FTAG);
645 		return (SET_ERROR(EILSEQ));
646 	}
647 
648 	if (vap->va_mask & ATTR_XVATTR) {
649 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
650 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
651 			zfs_exit(zfsvfs, FTAG);
652 			return (error);
653 		}
654 	}
655 
656 top:
657 	*zpp = NULL;
658 	if (*name == '\0') {
659 		/*
660 		 * Null component name refers to the directory itself.
661 		 */
662 		zhold(dzp);
663 		zp = dzp;
664 		dl = NULL;
665 		error = 0;
666 	} else {
667 		/* possible igrab(zp) */
668 		int zflg = 0;
669 
670 		if (flag & FIGNORECASE)
671 			zflg |= ZCILOOK;
672 
673 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
674 		    NULL, NULL);
675 		if (error) {
676 			if (have_acl)
677 				zfs_acl_ids_free(&acl_ids);
678 			if (strcmp(name, "..") == 0)
679 				error = SET_ERROR(EISDIR);
680 			zfs_exit(zfsvfs, FTAG);
681 			return (error);
682 		}
683 	}
684 
685 	if (zp == NULL) {
686 		uint64_t txtype;
687 		uint64_t projid = ZFS_DEFAULT_PROJID;
688 
689 		/*
690 		 * Create a new file object and update the directory
691 		 * to reference it.
692 		 */
693 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
694 		    mnt_ns))) {
695 			if (have_acl)
696 				zfs_acl_ids_free(&acl_ids);
697 			goto out;
698 		}
699 
700 		/*
701 		 * We only support the creation of regular files in
702 		 * extended attribute directories.
703 		 */
704 
705 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
706 			if (have_acl)
707 				zfs_acl_ids_free(&acl_ids);
708 			error = SET_ERROR(EINVAL);
709 			goto out;
710 		}
711 
712 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
713 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
714 			goto out;
715 		have_acl = B_TRUE;
716 
717 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
718 			projid = zfs_inherit_projid(dzp);
719 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
720 			zfs_acl_ids_free(&acl_ids);
721 			error = SET_ERROR(EDQUOT);
722 			goto out;
723 		}
724 
725 		tx = dmu_tx_create(os);
726 
727 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
728 		    ZFS_SA_BASE_ATTR_SIZE);
729 
730 		fuid_dirtied = zfsvfs->z_fuid_dirty;
731 		if (fuid_dirtied)
732 			zfs_fuid_txhold(zfsvfs, tx);
733 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
734 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
735 		if (!zfsvfs->z_use_sa &&
736 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
737 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
738 			    0, acl_ids.z_aclp->z_acl_bytes);
739 		}
740 
741 		error = dmu_tx_assign(tx,
742 		    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
743 		if (error) {
744 			zfs_dirent_unlock(dl);
745 			if (error == ERESTART) {
746 				waited = B_TRUE;
747 				dmu_tx_wait(tx);
748 				dmu_tx_abort(tx);
749 				goto top;
750 			}
751 			zfs_acl_ids_free(&acl_ids);
752 			dmu_tx_abort(tx);
753 			zfs_exit(zfsvfs, FTAG);
754 			return (error);
755 		}
756 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
757 
758 		error = zfs_link_create(dl, zp, tx, ZNEW);
759 		if (error != 0) {
760 			/*
761 			 * Since, we failed to add the directory entry for it,
762 			 * delete the newly created dnode.
763 			 */
764 			zfs_znode_delete(zp, tx);
765 			remove_inode_hash(ZTOI(zp));
766 			zfs_acl_ids_free(&acl_ids);
767 			dmu_tx_commit(tx);
768 			goto out;
769 		}
770 
771 		if (fuid_dirtied)
772 			zfs_fuid_sync(zfsvfs, tx);
773 
774 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
775 		if (flag & FIGNORECASE)
776 			txtype |= TX_CI;
777 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
778 		    vsecp, acl_ids.z_fuidp, vap);
779 		zfs_acl_ids_free(&acl_ids);
780 		dmu_tx_commit(tx);
781 	} else {
782 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
783 
784 		if (have_acl)
785 			zfs_acl_ids_free(&acl_ids);
786 
787 		/*
788 		 * A directory entry already exists for this name.
789 		 */
790 		/*
791 		 * Can't truncate an existing file if in exclusive mode.
792 		 */
793 		if (excl) {
794 			error = SET_ERROR(EEXIST);
795 			goto out;
796 		}
797 		/*
798 		 * Can't open a directory for writing.
799 		 */
800 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
801 			error = SET_ERROR(EISDIR);
802 			goto out;
803 		}
804 		/*
805 		 * Verify requested access to file.
806 		 */
807 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
808 		    mnt_ns))) {
809 			goto out;
810 		}
811 
812 		mutex_enter(&dzp->z_lock);
813 		dzp->z_seq++;
814 		mutex_exit(&dzp->z_lock);
815 
816 		/*
817 		 * Truncate regular files if requested.
818 		 */
819 		if (S_ISREG(ZTOI(zp)->i_mode) &&
820 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
821 			/* we can't hold any locks when calling zfs_freesp() */
822 			if (dl) {
823 				zfs_dirent_unlock(dl);
824 				dl = NULL;
825 			}
826 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
827 		}
828 	}
829 out:
830 
831 	if (dl)
832 		zfs_dirent_unlock(dl);
833 
834 	if (error) {
835 		if (zp)
836 			zrele(zp);
837 	} else {
838 		zfs_znode_update_vfs(dzp);
839 		zfs_znode_update_vfs(zp);
840 		*zpp = zp;
841 	}
842 
843 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
844 		error = zil_commit(zilog, 0);
845 
846 	zfs_exit(zfsvfs, FTAG);
847 	return (error);
848 }
849 
850 int
zfs_tmpfile(struct inode * dip,vattr_t * vap,int excl,int mode,struct inode ** ipp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)851 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
852     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
853     zidmap_t *mnt_ns)
854 {
855 	(void) excl, (void) mode, (void) flag;
856 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
857 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
858 	objset_t	*os;
859 	dmu_tx_t	*tx;
860 	int		error;
861 	uid_t		uid;
862 	gid_t		gid;
863 	zfs_acl_ids_t   acl_ids;
864 	uint64_t	projid = ZFS_DEFAULT_PROJID;
865 	boolean_t	fuid_dirtied;
866 	boolean_t	have_acl = B_FALSE;
867 	boolean_t	waited = B_FALSE;
868 
869 	/*
870 	 * If we have an ephemeral id, ACL, or XVATTR then
871 	 * make sure file system is at proper version
872 	 */
873 
874 	gid = crgetgid(cr);
875 	uid = crgetuid(cr);
876 
877 	if (zfsvfs->z_use_fuids == B_FALSE &&
878 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
879 		return (SET_ERROR(EINVAL));
880 
881 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
882 		return (error);
883 	os = zfsvfs->z_os;
884 
885 	if (vap->va_mask & ATTR_XVATTR) {
886 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
887 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
888 			zfs_exit(zfsvfs, FTAG);
889 			return (error);
890 		}
891 	}
892 
893 top:
894 	*ipp = NULL;
895 
896 	/*
897 	 * Create a new file object and update the directory
898 	 * to reference it.
899 	 */
900 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
901 		if (have_acl)
902 			zfs_acl_ids_free(&acl_ids);
903 		goto out;
904 	}
905 
906 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
907 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
908 		goto out;
909 	have_acl = B_TRUE;
910 
911 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
912 		projid = zfs_inherit_projid(dzp);
913 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
914 		zfs_acl_ids_free(&acl_ids);
915 		error = SET_ERROR(EDQUOT);
916 		goto out;
917 	}
918 
919 	tx = dmu_tx_create(os);
920 
921 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
922 	    ZFS_SA_BASE_ATTR_SIZE);
923 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
924 
925 	fuid_dirtied = zfsvfs->z_fuid_dirty;
926 	if (fuid_dirtied)
927 		zfs_fuid_txhold(zfsvfs, tx);
928 	if (!zfsvfs->z_use_sa &&
929 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
930 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
931 		    0, acl_ids.z_aclp->z_acl_bytes);
932 	}
933 	error = dmu_tx_assign(tx,
934 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
935 	if (error) {
936 		if (error == ERESTART) {
937 			waited = B_TRUE;
938 			dmu_tx_wait(tx);
939 			dmu_tx_abort(tx);
940 			goto top;
941 		}
942 		zfs_acl_ids_free(&acl_ids);
943 		dmu_tx_abort(tx);
944 		zfs_exit(zfsvfs, FTAG);
945 		return (error);
946 	}
947 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
948 
949 	if (fuid_dirtied)
950 		zfs_fuid_sync(zfsvfs, tx);
951 
952 	/* Add to unlinked set */
953 	zp->z_unlinked = B_TRUE;
954 	zfs_unlinked_add(zp, tx);
955 	zfs_acl_ids_free(&acl_ids);
956 	dmu_tx_commit(tx);
957 out:
958 
959 	if (error) {
960 		if (zp)
961 			zrele(zp);
962 	} else {
963 		zfs_znode_update_vfs(dzp);
964 		zfs_znode_update_vfs(zp);
965 		*ipp = ZTOI(zp);
966 	}
967 
968 	zfs_exit(zfsvfs, FTAG);
969 	return (error);
970 }
971 
972 /*
973  * Remove an entry from a directory.
974  *
975  *	IN:	dzp	- znode of directory to remove entry from.
976  *		name	- name of entry to remove.
977  *		cr	- credentials of caller.
978  *		flags	- case flags.
979  *
980  *	RETURN:	0 if success
981  *		error code if failure
982  *
983  * Timestamps:
984  *	dzp - ctime|mtime
985  *	 ip - ctime (if nlink > 0)
986  */
987 
988 static uint64_t null_xattr = 0;
989 
990 int
zfs_remove(znode_t * dzp,char * name,cred_t * cr,int flags)991 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
992 {
993 	znode_t		*zp;
994 	znode_t		*xzp;
995 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
996 	zilog_t		*zilog;
997 	uint64_t	acl_obj, xattr_obj;
998 	uint64_t	xattr_obj_unlinked = 0;
999 	uint64_t	obj = 0;
1000 	uint64_t	links;
1001 	zfs_dirlock_t	*dl;
1002 	dmu_tx_t	*tx;
1003 	boolean_t	may_delete_now, delete_now = FALSE;
1004 	boolean_t	unlinked, toobig = FALSE;
1005 	uint64_t	txtype;
1006 	pathname_t	*realnmp = NULL;
1007 	pathname_t	realnm;
1008 	int		error;
1009 	int		zflg = ZEXISTS;
1010 	boolean_t	waited = B_FALSE;
1011 
1012 	if (name == NULL)
1013 		return (SET_ERROR(EINVAL));
1014 
1015 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1016 		return (error);
1017 	zilog = zfsvfs->z_log;
1018 
1019 	if (flags & FIGNORECASE) {
1020 		zflg |= ZCILOOK;
1021 		pn_alloc(&realnm);
1022 		realnmp = &realnm;
1023 	}
1024 
1025 top:
1026 	xattr_obj = 0;
1027 	xzp = NULL;
1028 	/*
1029 	 * Attempt to lock directory; fail if entry doesn't exist.
1030 	 */
1031 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1032 	    NULL, realnmp))) {
1033 		if (realnmp)
1034 			pn_free(realnmp);
1035 		zfs_exit(zfsvfs, FTAG);
1036 		return (error);
1037 	}
1038 
1039 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * Need to use rmdir for removing directories.
1045 	 */
1046 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1047 		error = SET_ERROR(EPERM);
1048 		goto out;
1049 	}
1050 
1051 	mutex_enter(&zp->z_lock);
1052 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1053 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1054 	mutex_exit(&zp->z_lock);
1055 
1056 	/*
1057 	 * We may delete the znode now, or we may put it in the unlinked set;
1058 	 * it depends on whether we're the last link, and on whether there are
1059 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1060 	 * allow for either case.
1061 	 */
1062 	obj = zp->z_id;
1063 	tx = dmu_tx_create(zfsvfs->z_os);
1064 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1065 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1066 	zfs_sa_upgrade_txholds(tx, zp);
1067 	zfs_sa_upgrade_txholds(tx, dzp);
1068 	if (may_delete_now) {
1069 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1070 		/* if the file is too big, only hold_free a token amount */
1071 		dmu_tx_hold_free(tx, zp->z_id, 0,
1072 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1073 	}
1074 
1075 	/* are there any extended attributes? */
1076 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1077 	    &xattr_obj, sizeof (xattr_obj));
1078 	if (error == 0 && xattr_obj) {
1079 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1080 		ASSERT0(error);
1081 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1082 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1083 	}
1084 
1085 	mutex_enter(&zp->z_lock);
1086 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1087 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1088 	mutex_exit(&zp->z_lock);
1089 
1090 	/* charge as an update -- would be nice not to charge at all */
1091 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1092 
1093 	/*
1094 	 * Mark this transaction as typically resulting in a net free of space
1095 	 */
1096 	dmu_tx_mark_netfree(tx);
1097 
1098 	error = dmu_tx_assign(tx,
1099 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1100 	if (error) {
1101 		zfs_dirent_unlock(dl);
1102 		if (error == ERESTART) {
1103 			waited = B_TRUE;
1104 			dmu_tx_wait(tx);
1105 			dmu_tx_abort(tx);
1106 			zrele(zp);
1107 			if (xzp)
1108 				zrele(xzp);
1109 			goto top;
1110 		}
1111 		if (realnmp)
1112 			pn_free(realnmp);
1113 		dmu_tx_abort(tx);
1114 		zrele(zp);
1115 		if (xzp)
1116 			zrele(xzp);
1117 		zfs_exit(zfsvfs, FTAG);
1118 		return (error);
1119 	}
1120 
1121 	/*
1122 	 * Remove the directory entry.
1123 	 */
1124 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1125 
1126 	if (error) {
1127 		dmu_tx_commit(tx);
1128 		goto out;
1129 	}
1130 
1131 	if (unlinked) {
1132 		/*
1133 		 * Hold z_lock so that we can make sure that the ACL obj
1134 		 * hasn't changed.  Could have been deleted due to
1135 		 * zfs_sa_upgrade().
1136 		 */
1137 		mutex_enter(&zp->z_lock);
1138 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1139 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1140 		delete_now = may_delete_now && !toobig &&
1141 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1142 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1143 		    xattr_obj == xattr_obj_unlinked &&
1144 		    zfs_external_acl(zp) == acl_obj;
1145 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1146 	}
1147 
1148 	if (delete_now) {
1149 		if (xattr_obj_unlinked) {
1150 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1151 			mutex_enter(&xzp->z_lock);
1152 			xzp->z_unlinked = B_TRUE;
1153 			clear_nlink(ZTOI(xzp));
1154 			links = 0;
1155 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1156 			    &links, sizeof (links), tx);
1157 			ASSERT3U(error,  ==,  0);
1158 			mutex_exit(&xzp->z_lock);
1159 			zfs_unlinked_add(xzp, tx);
1160 
1161 			if (zp->z_is_sa)
1162 				error = sa_remove(zp->z_sa_hdl,
1163 				    SA_ZPL_XATTR(zfsvfs), tx);
1164 			else
1165 				error = sa_update(zp->z_sa_hdl,
1166 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1167 				    sizeof (uint64_t), tx);
1168 			ASSERT0(error);
1169 		}
1170 		/*
1171 		 * Add to the unlinked set because a new reference could be
1172 		 * taken concurrently resulting in a deferred destruction.
1173 		 */
1174 		zfs_unlinked_add(zp, tx);
1175 		mutex_exit(&zp->z_lock);
1176 	} else if (unlinked) {
1177 		mutex_exit(&zp->z_lock);
1178 		zfs_unlinked_add(zp, tx);
1179 	}
1180 
1181 	txtype = TX_REMOVE;
1182 	if (flags & FIGNORECASE)
1183 		txtype |= TX_CI;
1184 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1185 
1186 	dmu_tx_commit(tx);
1187 out:
1188 	if (realnmp)
1189 		pn_free(realnmp);
1190 
1191 	zfs_dirent_unlock(dl);
1192 	zfs_znode_update_vfs(dzp);
1193 	zfs_znode_update_vfs(zp);
1194 
1195 	if (delete_now)
1196 		zrele(zp);
1197 	else
1198 		zfs_zrele_async(zp);
1199 
1200 	if (xzp) {
1201 		zfs_znode_update_vfs(xzp);
1202 		zfs_zrele_async(xzp);
1203 	}
1204 
1205 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1206 		error = zil_commit(zilog, 0);
1207 
1208 	zfs_exit(zfsvfs, FTAG);
1209 	return (error);
1210 }
1211 
1212 /*
1213  * Create a new directory and insert it into dzp using the name
1214  * provided.  Return a pointer to the inserted directory.
1215  *
1216  *	IN:	dzp	- znode of directory to add subdir to.
1217  *		dirname	- name of new directory.
1218  *		vap	- attributes of new directory.
1219  *		cr	- credentials of caller.
1220  *		flags	- case flags.
1221  *		vsecp	- ACL to be set
1222  *		mnt_ns	- user namespace of the mount
1223  *
1224  *	OUT:	zpp	- znode of created directory.
1225  *
1226  *	RETURN:	0 if success
1227  *		error code if failure
1228  *
1229  * Timestamps:
1230  *	dzp - ctime|mtime updated
1231  *	zpp - ctime|mtime|atime updated
1232  */
1233 int
zfs_mkdir(znode_t * dzp,char * dirname,vattr_t * vap,znode_t ** zpp,cred_t * cr,int flags,vsecattr_t * vsecp,zidmap_t * mnt_ns)1234 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1235     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1236 {
1237 	znode_t		*zp;
1238 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1239 	zilog_t		*zilog;
1240 	zfs_dirlock_t	*dl;
1241 	uint64_t	txtype;
1242 	dmu_tx_t	*tx;
1243 	int		error;
1244 	int		zf = ZNEW;
1245 	uid_t		uid;
1246 	gid_t		gid = crgetgid(cr);
1247 	zfs_acl_ids_t   acl_ids;
1248 	boolean_t	fuid_dirtied;
1249 	boolean_t	waited = B_FALSE;
1250 
1251 	ASSERT(S_ISDIR(vap->va_mode));
1252 
1253 	/*
1254 	 * If we have an ephemeral id, ACL, or XVATTR then
1255 	 * make sure file system is at proper version
1256 	 */
1257 
1258 	uid = crgetuid(cr);
1259 	if (zfsvfs->z_use_fuids == B_FALSE &&
1260 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1261 		return (SET_ERROR(EINVAL));
1262 
1263 	if (dirname == NULL)
1264 		return (SET_ERROR(EINVAL));
1265 
1266 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1267 		return (error);
1268 	zilog = zfsvfs->z_log;
1269 
1270 	if (dzp->z_pflags & ZFS_XATTR) {
1271 		zfs_exit(zfsvfs, FTAG);
1272 		return (SET_ERROR(EINVAL));
1273 	}
1274 
1275 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1276 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1277 		zfs_exit(zfsvfs, FTAG);
1278 		return (SET_ERROR(EILSEQ));
1279 	}
1280 	if (flags & FIGNORECASE)
1281 		zf |= ZCILOOK;
1282 
1283 	if (vap->va_mask & ATTR_XVATTR) {
1284 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1285 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1286 			zfs_exit(zfsvfs, FTAG);
1287 			return (error);
1288 		}
1289 	}
1290 
1291 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1292 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1293 		zfs_exit(zfsvfs, FTAG);
1294 		return (error);
1295 	}
1296 	/*
1297 	 * First make sure the new directory doesn't exist.
1298 	 *
1299 	 * Existence is checked first to make sure we don't return
1300 	 * EACCES instead of EEXIST which can cause some applications
1301 	 * to fail.
1302 	 */
1303 top:
1304 	*zpp = NULL;
1305 
1306 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1307 	    NULL, NULL))) {
1308 		zfs_acl_ids_free(&acl_ids);
1309 		zfs_exit(zfsvfs, FTAG);
1310 		return (error);
1311 	}
1312 
1313 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1314 	    mnt_ns))) {
1315 		zfs_acl_ids_free(&acl_ids);
1316 		zfs_dirent_unlock(dl);
1317 		zfs_exit(zfsvfs, FTAG);
1318 		return (error);
1319 	}
1320 
1321 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1322 		zfs_acl_ids_free(&acl_ids);
1323 		zfs_dirent_unlock(dl);
1324 		zfs_exit(zfsvfs, FTAG);
1325 		return (SET_ERROR(EDQUOT));
1326 	}
1327 
1328 	/*
1329 	 * Add a new entry to the directory.
1330 	 */
1331 	tx = dmu_tx_create(zfsvfs->z_os);
1332 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1333 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1334 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1335 	if (fuid_dirtied)
1336 		zfs_fuid_txhold(zfsvfs, tx);
1337 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1338 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1339 		    acl_ids.z_aclp->z_acl_bytes);
1340 	}
1341 
1342 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1343 	    ZFS_SA_BASE_ATTR_SIZE);
1344 
1345 	error = dmu_tx_assign(tx,
1346 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1347 	if (error) {
1348 		zfs_dirent_unlock(dl);
1349 		if (error == ERESTART) {
1350 			waited = B_TRUE;
1351 			dmu_tx_wait(tx);
1352 			dmu_tx_abort(tx);
1353 			goto top;
1354 		}
1355 		zfs_acl_ids_free(&acl_ids);
1356 		dmu_tx_abort(tx);
1357 		zfs_exit(zfsvfs, FTAG);
1358 		return (error);
1359 	}
1360 
1361 	/*
1362 	 * Create new node.
1363 	 */
1364 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1365 
1366 	/*
1367 	 * Now put new name in parent dir.
1368 	 */
1369 	error = zfs_link_create(dl, zp, tx, ZNEW);
1370 	if (error != 0) {
1371 		zfs_znode_delete(zp, tx);
1372 		remove_inode_hash(ZTOI(zp));
1373 		goto out;
1374 	}
1375 
1376 	if (fuid_dirtied)
1377 		zfs_fuid_sync(zfsvfs, tx);
1378 
1379 	*zpp = zp;
1380 
1381 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1382 	if (flags & FIGNORECASE)
1383 		txtype |= TX_CI;
1384 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1385 	    acl_ids.z_fuidp, vap);
1386 
1387 out:
1388 	zfs_acl_ids_free(&acl_ids);
1389 
1390 	dmu_tx_commit(tx);
1391 
1392 	zfs_dirent_unlock(dl);
1393 
1394 	if (error != 0) {
1395 		zrele(zp);
1396 	} else {
1397 		zfs_znode_update_vfs(dzp);
1398 		zfs_znode_update_vfs(zp);
1399 
1400 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1401 			error = zil_commit(zilog, 0);
1402 
1403 	}
1404 	zfs_exit(zfsvfs, FTAG);
1405 	return (error);
1406 }
1407 
1408 /*
1409  * Remove a directory subdir entry.  If the current working
1410  * directory is the same as the subdir to be removed, the
1411  * remove will fail.
1412  *
1413  *	IN:	dzp	- znode of directory to remove from.
1414  *		name	- name of directory to be removed.
1415  *		cwd	- inode of current working directory.
1416  *		cr	- credentials of caller.
1417  *		flags	- case flags
1418  *
1419  *	RETURN:	0 on success, error code on failure.
1420  *
1421  * Timestamps:
1422  *	dzp - ctime|mtime updated
1423  */
1424 int
zfs_rmdir(znode_t * dzp,char * name,znode_t * cwd,cred_t * cr,int flags)1425 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1426     int flags)
1427 {
1428 	znode_t		*zp;
1429 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1430 	zilog_t		*zilog;
1431 	zfs_dirlock_t	*dl;
1432 	dmu_tx_t	*tx;
1433 	int		error;
1434 	int		zflg = ZEXISTS;
1435 	boolean_t	waited = B_FALSE;
1436 
1437 	if (name == NULL)
1438 		return (SET_ERROR(EINVAL));
1439 
1440 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1441 		return (error);
1442 	zilog = zfsvfs->z_log;
1443 
1444 	if (flags & FIGNORECASE)
1445 		zflg |= ZCILOOK;
1446 top:
1447 	zp = NULL;
1448 
1449 	/*
1450 	 * Attempt to lock directory; fail if entry doesn't exist.
1451 	 */
1452 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1453 	    NULL, NULL))) {
1454 		zfs_exit(zfsvfs, FTAG);
1455 		return (error);
1456 	}
1457 
1458 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1459 		goto out;
1460 	}
1461 
1462 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1463 		error = SET_ERROR(ENOTDIR);
1464 		goto out;
1465 	}
1466 
1467 	if (zp == cwd) {
1468 		error = SET_ERROR(EINVAL);
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * Grab a lock on the directory to make sure that no one is
1474 	 * trying to add (or lookup) entries while we are removing it.
1475 	 */
1476 	rw_enter(&zp->z_name_lock, RW_WRITER);
1477 
1478 	/*
1479 	 * Grab a lock on the parent pointer to make sure we play well
1480 	 * with the treewalk and directory rename code.
1481 	 */
1482 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1483 
1484 	tx = dmu_tx_create(zfsvfs->z_os);
1485 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1486 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1487 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1488 	zfs_sa_upgrade_txholds(tx, zp);
1489 	zfs_sa_upgrade_txholds(tx, dzp);
1490 	dmu_tx_mark_netfree(tx);
1491 	error = dmu_tx_assign(tx,
1492 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1493 	if (error) {
1494 		rw_exit(&zp->z_parent_lock);
1495 		rw_exit(&zp->z_name_lock);
1496 		zfs_dirent_unlock(dl);
1497 		if (error == ERESTART) {
1498 			waited = B_TRUE;
1499 			dmu_tx_wait(tx);
1500 			dmu_tx_abort(tx);
1501 			zrele(zp);
1502 			goto top;
1503 		}
1504 		dmu_tx_abort(tx);
1505 		zrele(zp);
1506 		zfs_exit(zfsvfs, FTAG);
1507 		return (error);
1508 	}
1509 
1510 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1511 
1512 	if (error == 0) {
1513 		uint64_t txtype = TX_RMDIR;
1514 		if (flags & FIGNORECASE)
1515 			txtype |= TX_CI;
1516 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1517 		    B_FALSE);
1518 	}
1519 
1520 	dmu_tx_commit(tx);
1521 
1522 	rw_exit(&zp->z_parent_lock);
1523 	rw_exit(&zp->z_name_lock);
1524 out:
1525 	zfs_dirent_unlock(dl);
1526 
1527 	zfs_znode_update_vfs(dzp);
1528 	zfs_znode_update_vfs(zp);
1529 	zrele(zp);
1530 
1531 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1532 		error = zil_commit(zilog, 0);
1533 
1534 	zfs_exit(zfsvfs, FTAG);
1535 	return (error);
1536 }
1537 
1538 /*
1539  * Read directory entries from the given directory cursor position and emit
1540  * name and position for each entry.
1541  *
1542  *	IN:	ip	- inode of directory to read.
1543  *		ctx	- directory entry context.
1544  *		cr	- credentials of caller.
1545  *
1546  *	RETURN:	0 if success
1547  *		error code if failure
1548  *
1549  * Timestamps:
1550  *	ip - atime updated
1551  *
1552  * Note that the low 4 bits of the cookie returned by zap is always zero.
1553  * This allows us to use the low range for "special" directory entries:
1554  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1555  * we use the offset 2 for the '.zfs' directory.
1556  */
1557 int
zfs_readdir(struct inode * ip,struct dir_context * ctx,cred_t * cr)1558 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
1559 {
1560 	(void) cr;
1561 	znode_t		*zp = ITOZ(ip);
1562 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1563 	objset_t	*os;
1564 	zap_cursor_t	zc;
1565 	zap_attribute_t	*zap;
1566 	int		error;
1567 	uint8_t		prefetch;
1568 	uint8_t		type;
1569 	int		done = 0;
1570 	uint64_t	parent;
1571 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1572 
1573 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1574 		return (error);
1575 
1576 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1577 	    &parent, sizeof (parent))) != 0)
1578 		goto out;
1579 
1580 	/*
1581 	 * Quit if directory has been removed (posix)
1582 	 */
1583 	if (zp->z_unlinked)
1584 		goto out;
1585 
1586 	error = 0;
1587 	os = zfsvfs->z_os;
1588 	offset = ctx->pos;
1589 	prefetch = zp->z_zn_prefetch;
1590 	zap = zap_attribute_long_alloc();
1591 
1592 	/*
1593 	 * Initialize the iterator cursor.
1594 	 */
1595 	if (offset <= 3) {
1596 		/*
1597 		 * Start iteration from the beginning of the directory.
1598 		 */
1599 		zap_cursor_init(&zc, os, zp->z_id);
1600 	} else {
1601 		/*
1602 		 * The offset is a serialized cursor.
1603 		 */
1604 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1605 	}
1606 
1607 	/*
1608 	 * Transform to file-system independent format
1609 	 */
1610 	while (!done) {
1611 		uint64_t objnum;
1612 		/*
1613 		 * Special case `.', `..', and `.zfs'.
1614 		 */
1615 		if (offset == 0) {
1616 			(void) strcpy(zap->za_name, ".");
1617 			zap->za_normalization_conflict = 0;
1618 			objnum = zp->z_id;
1619 			type = DT_DIR;
1620 		} else if (offset == 1) {
1621 			(void) strcpy(zap->za_name, "..");
1622 			zap->za_normalization_conflict = 0;
1623 			objnum = parent;
1624 			type = DT_DIR;
1625 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1626 			(void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1627 			zap->za_normalization_conflict = 0;
1628 			objnum = ZFSCTL_INO_ROOT;
1629 			type = DT_DIR;
1630 		} else {
1631 			/*
1632 			 * Grab next entry.
1633 			 */
1634 			if ((error = zap_cursor_retrieve(&zc, zap))) {
1635 				if (error == ENOENT)
1636 					break;
1637 				else
1638 					goto update;
1639 			}
1640 
1641 			/*
1642 			 * Allow multiple entries provided the first entry is
1643 			 * the object id.  Non-zpl consumers may safely make
1644 			 * use of the additional space.
1645 			 *
1646 			 * XXX: This should be a feature flag for compatibility
1647 			 */
1648 			if (zap->za_integer_length != 8 ||
1649 			    zap->za_num_integers == 0) {
1650 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1651 				    "entry, obj = %lld, offset = %lld, "
1652 				    "length = %d, num = %lld\n",
1653 				    (u_longlong_t)zp->z_id,
1654 				    (u_longlong_t)offset,
1655 				    zap->za_integer_length,
1656 				    (u_longlong_t)zap->za_num_integers);
1657 				error = SET_ERROR(ENXIO);
1658 				goto update;
1659 			}
1660 
1661 			objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1662 			type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1663 		}
1664 
1665 		done = !dir_emit(ctx, zap->za_name, strlen(zap->za_name),
1666 		    objnum, type);
1667 		if (done)
1668 			break;
1669 
1670 		if (prefetch)
1671 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1672 
1673 		/*
1674 		 * Move to the next entry, fill in the previous offset.
1675 		 */
1676 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1677 			zap_cursor_advance(&zc);
1678 			offset = zap_cursor_serialize(&zc);
1679 		} else {
1680 			offset += 1;
1681 		}
1682 		ctx->pos = offset;
1683 	}
1684 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1685 
1686 update:
1687 	zap_cursor_fini(&zc);
1688 	zap_attribute_free(zap);
1689 	if (error == ENOENT)
1690 		error = 0;
1691 out:
1692 	zfs_exit(zfsvfs, FTAG);
1693 
1694 	return (error);
1695 }
1696 
1697 /*
1698  * Get the basic file attributes and place them in the provided kstat
1699  * structure.  The inode is assumed to be the authoritative source
1700  * for most of the attributes.  However, the znode currently has the
1701  * authoritative atime, blksize, and block count.
1702  *
1703  *	IN:	ip	- inode of file.
1704  *
1705  *	OUT:	sp	- kstat values.
1706  *
1707  *	RETURN:	0 (always succeeds)
1708  */
1709 int
1710 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
zfs_getattr_fast(zidmap_t * user_ns,u32 request_mask,struct inode * ip,struct kstat * sp)1711 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1712     struct kstat *sp)
1713 #else
1714 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1715 #endif
1716 {
1717 	znode_t *zp = ITOZ(ip);
1718 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1719 	uint32_t blksize;
1720 	u_longlong_t nblocks;
1721 	int error;
1722 
1723 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1724 		return (error);
1725 
1726 	mutex_enter(&zp->z_lock);
1727 
1728 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1729 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1730 #else
1731 	zpl_generic_fillattr(user_ns, ip, sp);
1732 #endif
1733 	/*
1734 	 * +1 link count for root inode with visible '.zfs' directory.
1735 	 */
1736 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1737 		if (sp->nlink < ZFS_LINK_MAX)
1738 			sp->nlink++;
1739 
1740 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1741 	sp->blksize = blksize;
1742 	sp->blocks = nblocks;
1743 
1744 	if (unlikely(zp->z_blksz == 0)) {
1745 		/*
1746 		 * Block size hasn't been set; suggest maximal I/O transfers.
1747 		 */
1748 		sp->blksize = zfsvfs->z_max_blksz;
1749 	}
1750 
1751 	mutex_exit(&zp->z_lock);
1752 
1753 	/*
1754 	 * Required to prevent NFS client from detecting different inode
1755 	 * numbers of snapshot root dentry before and after snapshot mount.
1756 	 */
1757 	if (zfsvfs->z_issnap) {
1758 		if (ip->i_sb->s_root->d_inode == ip)
1759 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1760 			    dmu_objset_id(zfsvfs->z_os);
1761 	}
1762 
1763 	zfs_exit(zfsvfs, FTAG);
1764 
1765 	return (0);
1766 }
1767 
1768 /*
1769  * For the operation of changing file's user/group/project, we need to
1770  * handle not only the main object that is assigned to the file directly,
1771  * but also the ones that are used by the file via hidden xattr directory.
1772  *
1773  * Because the xattr directory may contains many EA entries, as to it may
1774  * be impossible to change all of them via the transaction of changing the
1775  * main object's user/group/project attributes. Then we have to change them
1776  * via other multiple independent transactions one by one. It may be not good
1777  * solution, but we have no better idea yet.
1778  */
1779 static int
zfs_setattr_dir(znode_t * dzp)1780 zfs_setattr_dir(znode_t *dzp)
1781 {
1782 	struct inode	*dxip = ZTOI(dzp);
1783 	struct inode	*xip = NULL;
1784 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1785 	objset_t	*os = zfsvfs->z_os;
1786 	zap_cursor_t	zc;
1787 	zap_attribute_t	*zap;
1788 	zfs_dirlock_t	*dl;
1789 	znode_t		*zp = NULL;
1790 	dmu_tx_t	*tx = NULL;
1791 	uint64_t	uid, gid;
1792 	sa_bulk_attr_t	bulk[4];
1793 	int		count;
1794 	int		err;
1795 
1796 	zap = zap_attribute_alloc();
1797 	zap_cursor_init(&zc, os, dzp->z_id);
1798 	while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
1799 		count = 0;
1800 		if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
1801 			err = ENXIO;
1802 			break;
1803 		}
1804 
1805 		err = zfs_dirent_lock(&dl, dzp, (char *)zap->za_name, &zp,
1806 		    ZEXISTS, NULL, NULL);
1807 		if (err == ENOENT)
1808 			goto next;
1809 		if (err)
1810 			break;
1811 
1812 		xip = ZTOI(zp);
1813 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1814 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1815 		    zp->z_projid == dzp->z_projid)
1816 			goto next;
1817 
1818 		tx = dmu_tx_create(os);
1819 		if (!(zp->z_pflags & ZFS_PROJID))
1820 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1821 		else
1822 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1823 
1824 		err = dmu_tx_assign(tx, DMU_TX_WAIT);
1825 		if (err)
1826 			break;
1827 
1828 		mutex_enter(&dzp->z_lock);
1829 
1830 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1831 			xip->i_uid = dxip->i_uid;
1832 			uid = zfs_uid_read(dxip);
1833 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1834 			    &uid, sizeof (uid));
1835 		}
1836 
1837 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1838 			xip->i_gid = dxip->i_gid;
1839 			gid = zfs_gid_read(dxip);
1840 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1841 			    &gid, sizeof (gid));
1842 		}
1843 
1844 
1845 		uint64_t projid = dzp->z_projid;
1846 		if (zp->z_projid != projid) {
1847 			if (!(zp->z_pflags & ZFS_PROJID)) {
1848 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1849 				if (unlikely(err == EEXIST)) {
1850 					err = 0;
1851 				} else if (err != 0) {
1852 					goto sa_add_projid_err;
1853 				} else {
1854 					projid = ZFS_INVALID_PROJID;
1855 				}
1856 			}
1857 
1858 			if (projid != ZFS_INVALID_PROJID) {
1859 				zp->z_projid = projid;
1860 				SA_ADD_BULK_ATTR(bulk, count,
1861 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1862 				    sizeof (zp->z_projid));
1863 			}
1864 		}
1865 
1866 sa_add_projid_err:
1867 		mutex_exit(&dzp->z_lock);
1868 
1869 		if (likely(count > 0)) {
1870 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1871 			dmu_tx_commit(tx);
1872 		} else if (projid == ZFS_INVALID_PROJID) {
1873 			dmu_tx_commit(tx);
1874 		} else {
1875 			dmu_tx_abort(tx);
1876 		}
1877 		tx = NULL;
1878 		if (err != 0 && err != ENOENT)
1879 			break;
1880 
1881 next:
1882 		if (zp) {
1883 			zrele(zp);
1884 			zp = NULL;
1885 			zfs_dirent_unlock(dl);
1886 		}
1887 		zap_cursor_advance(&zc);
1888 	}
1889 
1890 	if (tx)
1891 		dmu_tx_abort(tx);
1892 	if (zp) {
1893 		zrele(zp);
1894 		zfs_dirent_unlock(dl);
1895 	}
1896 	zap_cursor_fini(&zc);
1897 	zap_attribute_free(zap);
1898 
1899 	return (err == ENOENT ? 0 : err);
1900 }
1901 
1902 /*
1903  * Set the file attributes to the values contained in the
1904  * vattr structure.
1905  *
1906  *	IN:	zp	- znode of file to be modified.
1907  *		vap	- new attribute values.
1908  *			  If ATTR_XVATTR set, then optional attrs are being set
1909  *		flags	- ATTR_UTIME set if non-default time values provided.
1910  *			- ATTR_NOACLCHECK (CIFS context only).
1911  *		cr	- credentials of caller.
1912  *		mnt_ns	- user namespace of the mount
1913  *
1914  *	RETURN:	0 if success
1915  *		error code if failure
1916  *
1917  * Timestamps:
1918  *	ip - ctime updated, mtime updated if size changed.
1919  */
1920 int
zfs_setattr(znode_t * zp,vattr_t * vap,int flags,cred_t * cr,zidmap_t * mnt_ns)1921 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1922 {
1923 	struct inode	*ip;
1924 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1925 	objset_t	*os;
1926 	zilog_t		*zilog;
1927 	dmu_tx_t	*tx;
1928 	vattr_t		oldva;
1929 	xvattr_t	*tmpxvattr;
1930 	uint_t		mask = vap->va_mask;
1931 	uint_t		saved_mask = 0;
1932 	int		trim_mask = 0;
1933 	uint64_t	new_mode;
1934 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1935 	uint64_t	xattr_obj;
1936 	uint64_t	mtime[2], ctime[2], atime[2];
1937 	uint64_t	projid = ZFS_INVALID_PROJID;
1938 	znode_t		*attrzp;
1939 	int		need_policy = FALSE;
1940 	int		err, err2 = 0;
1941 	zfs_fuid_info_t *fuidp = NULL;
1942 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1943 	xoptattr_t	*xoap;
1944 	zfs_acl_t	*aclp;
1945 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1946 	boolean_t	fuid_dirtied = B_FALSE;
1947 	boolean_t	handle_eadir = B_FALSE;
1948 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1949 	int		count = 0, xattr_count = 0, bulks = 8;
1950 
1951 	if (mask == 0)
1952 		return (0);
1953 
1954 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1955 		return (err);
1956 	ip = ZTOI(zp);
1957 	os = zfsvfs->z_os;
1958 
1959 	/*
1960 	 * If this is a xvattr_t, then get a pointer to the structure of
1961 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1962 	 */
1963 	xoap = xva_getxoptattr(xvap);
1964 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1965 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1966 			if (!dmu_objset_projectquota_enabled(os) ||
1967 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1968 				zfs_exit(zfsvfs, FTAG);
1969 				return (SET_ERROR(ENOTSUP));
1970 			}
1971 
1972 			projid = xoap->xoa_projid;
1973 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1974 				zfs_exit(zfsvfs, FTAG);
1975 				return (SET_ERROR(EINVAL));
1976 			}
1977 
1978 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1979 				projid = ZFS_INVALID_PROJID;
1980 			else
1981 				need_policy = TRUE;
1982 		}
1983 
1984 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1985 		    (xoap->xoa_projinherit !=
1986 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1987 		    (!dmu_objset_projectquota_enabled(os) ||
1988 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1989 			zfs_exit(zfsvfs, FTAG);
1990 			return (SET_ERROR(ENOTSUP));
1991 		}
1992 	}
1993 
1994 	zilog = zfsvfs->z_log;
1995 
1996 	/*
1997 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1998 	 * that file system is at proper version level
1999 	 */
2000 
2001 	if (zfsvfs->z_use_fuids == B_FALSE &&
2002 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2003 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2004 	    (mask & ATTR_XVATTR))) {
2005 		zfs_exit(zfsvfs, FTAG);
2006 		return (SET_ERROR(EINVAL));
2007 	}
2008 
2009 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2010 		zfs_exit(zfsvfs, FTAG);
2011 		return (SET_ERROR(EISDIR));
2012 	}
2013 
2014 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2015 		zfs_exit(zfsvfs, FTAG);
2016 		return (SET_ERROR(EINVAL));
2017 	}
2018 
2019 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2020 	xva_init(tmpxvattr);
2021 
2022 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2023 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2024 
2025 	/*
2026 	 * Immutable files can only alter immutable bit and atime
2027 	 */
2028 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2029 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2030 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2031 		err = SET_ERROR(EPERM);
2032 		goto out3;
2033 	}
2034 
2035 	/* ZFS_READONLY will be handled in zfs_zaccess() */
2036 
2037 	/*
2038 	 * Verify timestamps doesn't overflow 32 bits.
2039 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2040 	 * handle times greater than 2039.  This check should be removed
2041 	 * once large timestamps are fully supported.
2042 	 */
2043 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2044 		if (((mask & ATTR_ATIME) &&
2045 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2046 		    ((mask & ATTR_MTIME) &&
2047 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2048 			err = SET_ERROR(EOVERFLOW);
2049 			goto out3;
2050 		}
2051 	}
2052 
2053 top:
2054 	attrzp = NULL;
2055 	aclp = NULL;
2056 
2057 	/* Can this be moved to before the top label? */
2058 	if (zfs_is_readonly(zfsvfs)) {
2059 		err = SET_ERROR(EROFS);
2060 		goto out3;
2061 	}
2062 
2063 	/*
2064 	 * First validate permissions
2065 	 */
2066 
2067 	if (mask & ATTR_SIZE) {
2068 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2069 		    mnt_ns);
2070 		if (err)
2071 			goto out3;
2072 
2073 		/*
2074 		 * XXX - Note, we are not providing any open
2075 		 * mode flags here (like FNDELAY), so we may
2076 		 * block if there are locks present... this
2077 		 * should be addressed in openat().
2078 		 */
2079 		/* XXX - would it be OK to generate a log record here? */
2080 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2081 		if (err)
2082 			goto out3;
2083 	}
2084 
2085 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2086 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2087 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2088 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2089 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2090 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2091 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2092 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2093 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2094 		    skipaclchk, cr, mnt_ns);
2095 	}
2096 
2097 	if (mask & (ATTR_UID|ATTR_GID)) {
2098 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2099 		int	take_owner;
2100 		int	take_group;
2101 		uid_t	uid;
2102 		gid_t	gid;
2103 
2104 		/*
2105 		 * NOTE: even if a new mode is being set,
2106 		 * we may clear S_ISUID/S_ISGID bits.
2107 		 */
2108 
2109 		if (!(mask & ATTR_MODE))
2110 			vap->va_mode = zp->z_mode;
2111 
2112 		/*
2113 		 * Take ownership or chgrp to group we are a member of
2114 		 */
2115 
2116 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2117 		    vap->va_uid);
2118 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2119 		    vap->va_gid);
2120 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2121 		take_group = (mask & ATTR_GID) &&
2122 		    zfs_groupmember(zfsvfs, gid, cr);
2123 
2124 		/*
2125 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2126 		 * take_group must both be set in order to allow taking
2127 		 * ownership.
2128 		 *
2129 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2130 		 *
2131 		 */
2132 
2133 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2134 		    take_owner && take_group) ||
2135 		    ((idmask == ATTR_UID) && take_owner) ||
2136 		    ((idmask == ATTR_GID) && take_group)) {
2137 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2138 			    skipaclchk, cr, mnt_ns) == 0) {
2139 				/*
2140 				 * Remove setuid/setgid for non-privileged users
2141 				 */
2142 				(void) secpolicy_setid_clear(vap, cr);
2143 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2144 			} else {
2145 				need_policy =  TRUE;
2146 			}
2147 		} else {
2148 			need_policy =  TRUE;
2149 		}
2150 	}
2151 
2152 	mutex_enter(&zp->z_lock);
2153 	oldva.va_mode = zp->z_mode;
2154 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2155 	if (mask & ATTR_XVATTR) {
2156 		/*
2157 		 * Update xvattr mask to include only those attributes
2158 		 * that are actually changing.
2159 		 *
2160 		 * the bits will be restored prior to actually setting
2161 		 * the attributes so the caller thinks they were set.
2162 		 */
2163 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2164 			if (xoap->xoa_appendonly !=
2165 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2166 				need_policy = TRUE;
2167 			} else {
2168 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2169 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2170 			}
2171 		}
2172 
2173 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2174 			if (xoap->xoa_projinherit !=
2175 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2176 				need_policy = TRUE;
2177 			} else {
2178 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2179 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2180 			}
2181 		}
2182 
2183 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2184 			if (xoap->xoa_nounlink !=
2185 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2186 				need_policy = TRUE;
2187 			} else {
2188 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2189 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2190 			}
2191 		}
2192 
2193 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2194 			if (xoap->xoa_immutable !=
2195 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2196 				need_policy = TRUE;
2197 			} else {
2198 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2199 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2200 			}
2201 		}
2202 
2203 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2204 			if (xoap->xoa_nodump !=
2205 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2206 				need_policy = TRUE;
2207 			} else {
2208 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2209 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2210 			}
2211 		}
2212 
2213 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2214 			if (xoap->xoa_av_modified !=
2215 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2216 				need_policy = TRUE;
2217 			} else {
2218 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2219 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2220 			}
2221 		}
2222 
2223 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2224 			if ((!S_ISREG(ip->i_mode) &&
2225 			    xoap->xoa_av_quarantined) ||
2226 			    xoap->xoa_av_quarantined !=
2227 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2228 				need_policy = TRUE;
2229 			} else {
2230 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2231 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2232 			}
2233 		}
2234 
2235 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2236 			mutex_exit(&zp->z_lock);
2237 			err = SET_ERROR(EPERM);
2238 			goto out3;
2239 		}
2240 
2241 		if (need_policy == FALSE &&
2242 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2243 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2244 			need_policy = TRUE;
2245 		}
2246 	}
2247 
2248 	mutex_exit(&zp->z_lock);
2249 
2250 	if (mask & ATTR_MODE) {
2251 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2252 		    mnt_ns) == 0) {
2253 			err = secpolicy_setid_setsticky_clear(ip, vap,
2254 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2255 			if (err)
2256 				goto out3;
2257 			trim_mask |= ATTR_MODE;
2258 		} else {
2259 			need_policy = TRUE;
2260 		}
2261 	}
2262 
2263 	if (need_policy) {
2264 		/*
2265 		 * If trim_mask is set then take ownership
2266 		 * has been granted or write_acl is present and user
2267 		 * has the ability to modify mode.  In that case remove
2268 		 * UID|GID and or MODE from mask so that
2269 		 * secpolicy_vnode_setattr() doesn't revoke it.
2270 		 */
2271 
2272 		if (trim_mask) {
2273 			saved_mask = vap->va_mask;
2274 			vap->va_mask &= ~trim_mask;
2275 		}
2276 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2277 		    zfs_zaccess_unix, zp);
2278 		if (err)
2279 			goto out3;
2280 
2281 		if (trim_mask)
2282 			vap->va_mask |= saved_mask;
2283 	}
2284 
2285 	/*
2286 	 * secpolicy_vnode_setattr, or take ownership may have
2287 	 * changed va_mask
2288 	 */
2289 	mask = vap->va_mask;
2290 
2291 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2292 		handle_eadir = B_TRUE;
2293 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2294 		    &xattr_obj, sizeof (xattr_obj));
2295 
2296 		if (err == 0 && xattr_obj) {
2297 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2298 			if (err)
2299 				goto out2;
2300 		}
2301 		if (mask & ATTR_UID) {
2302 			new_kuid = zfs_fuid_create(zfsvfs,
2303 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2304 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2305 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2306 			    new_kuid)) {
2307 				if (attrzp)
2308 					zrele(attrzp);
2309 				err = SET_ERROR(EDQUOT);
2310 				goto out2;
2311 			}
2312 		}
2313 
2314 		if (mask & ATTR_GID) {
2315 			new_kgid = zfs_fuid_create(zfsvfs,
2316 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2317 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2318 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2319 			    new_kgid)) {
2320 				if (attrzp)
2321 					zrele(attrzp);
2322 				err = SET_ERROR(EDQUOT);
2323 				goto out2;
2324 			}
2325 		}
2326 
2327 		if (projid != ZFS_INVALID_PROJID &&
2328 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2329 			if (attrzp)
2330 				zrele(attrzp);
2331 			err = EDQUOT;
2332 			goto out2;
2333 		}
2334 	}
2335 	tx = dmu_tx_create(os);
2336 
2337 	if (mask & ATTR_MODE) {
2338 		uint64_t pmode = zp->z_mode;
2339 		uint64_t acl_obj;
2340 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2341 
2342 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2343 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2344 			err = EPERM;
2345 			goto out;
2346 		}
2347 
2348 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2349 			goto out;
2350 
2351 		mutex_enter(&zp->z_lock);
2352 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2353 			/*
2354 			 * Are we upgrading ACL from old V0 format
2355 			 * to V1 format?
2356 			 */
2357 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2358 			    zfs_znode_acl_version(zp) ==
2359 			    ZFS_ACL_VERSION_INITIAL) {
2360 				dmu_tx_hold_free(tx, acl_obj, 0,
2361 				    DMU_OBJECT_END);
2362 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2363 				    0, aclp->z_acl_bytes);
2364 			} else {
2365 				dmu_tx_hold_write(tx, acl_obj, 0,
2366 				    aclp->z_acl_bytes);
2367 			}
2368 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2369 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2370 			    0, aclp->z_acl_bytes);
2371 		}
2372 		mutex_exit(&zp->z_lock);
2373 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2374 	} else {
2375 		if (((mask & ATTR_XVATTR) &&
2376 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2377 		    (projid != ZFS_INVALID_PROJID &&
2378 		    !(zp->z_pflags & ZFS_PROJID)))
2379 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2380 		else
2381 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2382 	}
2383 
2384 	if (attrzp) {
2385 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2386 	}
2387 
2388 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2389 	if (fuid_dirtied)
2390 		zfs_fuid_txhold(zfsvfs, tx);
2391 
2392 	zfs_sa_upgrade_txholds(tx, zp);
2393 
2394 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2395 	if (err)
2396 		goto out;
2397 
2398 	count = 0;
2399 	/*
2400 	 * Set each attribute requested.
2401 	 * We group settings according to the locks they need to acquire.
2402 	 *
2403 	 * Note: you cannot set ctime directly, although it will be
2404 	 * updated as a side-effect of calling this function.
2405 	 */
2406 
2407 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2408 		/*
2409 		 * For the existed object that is upgraded from old system,
2410 		 * its on-disk layout has no slot for the project ID attribute.
2411 		 * But quota accounting logic needs to access related slots by
2412 		 * offset directly. So we need to adjust old objects' layout
2413 		 * to make the project ID to some unified and fixed offset.
2414 		 */
2415 		if (attrzp)
2416 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2417 		if (err == 0)
2418 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2419 
2420 		if (unlikely(err == EEXIST))
2421 			err = 0;
2422 		else if (err != 0)
2423 			goto out;
2424 		else
2425 			projid = ZFS_INVALID_PROJID;
2426 	}
2427 
2428 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2429 		mutex_enter(&zp->z_acl_lock);
2430 	mutex_enter(&zp->z_lock);
2431 
2432 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2433 	    &zp->z_pflags, sizeof (zp->z_pflags));
2434 
2435 	if (attrzp) {
2436 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2437 			mutex_enter(&attrzp->z_acl_lock);
2438 		mutex_enter(&attrzp->z_lock);
2439 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2440 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2441 		    sizeof (attrzp->z_pflags));
2442 		if (projid != ZFS_INVALID_PROJID) {
2443 			attrzp->z_projid = projid;
2444 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2445 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2446 			    sizeof (attrzp->z_projid));
2447 		}
2448 	}
2449 
2450 	if (mask & (ATTR_UID|ATTR_GID)) {
2451 
2452 		if (mask & ATTR_UID) {
2453 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2454 			new_uid = zfs_uid_read(ZTOI(zp));
2455 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2456 			    &new_uid, sizeof (new_uid));
2457 			if (attrzp) {
2458 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2459 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2460 				    sizeof (new_uid));
2461 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2462 			}
2463 		}
2464 
2465 		if (mask & ATTR_GID) {
2466 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2467 			new_gid = zfs_gid_read(ZTOI(zp));
2468 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2469 			    NULL, &new_gid, sizeof (new_gid));
2470 			if (attrzp) {
2471 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2472 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2473 				    sizeof (new_gid));
2474 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2475 			}
2476 		}
2477 		if (!(mask & ATTR_MODE)) {
2478 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2479 			    NULL, &new_mode, sizeof (new_mode));
2480 			new_mode = zp->z_mode;
2481 		}
2482 		err = zfs_acl_chown_setattr(zp);
2483 		ASSERT0(err);
2484 		if (attrzp) {
2485 			err = zfs_acl_chown_setattr(attrzp);
2486 			ASSERT0(err);
2487 		}
2488 	}
2489 
2490 	if (mask & ATTR_MODE) {
2491 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2492 		    &new_mode, sizeof (new_mode));
2493 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2494 		ASSERT3P(aclp, !=, NULL);
2495 		err = zfs_aclset_common(zp, aclp, cr, tx);
2496 		ASSERT0(err);
2497 		if (zp->z_acl_cached)
2498 			zfs_acl_free(zp->z_acl_cached);
2499 		zp->z_acl_cached = aclp;
2500 		aclp = NULL;
2501 	}
2502 
2503 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2504 		zp->z_atime_dirty = B_FALSE;
2505 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2506 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2507 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2508 		    &atime, sizeof (atime));
2509 	}
2510 
2511 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2512 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2513 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2514 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2515 
2516 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2517 		    mtime, sizeof (mtime));
2518 	}
2519 
2520 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2521 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2522 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2523 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2524 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2525 		    ctime, sizeof (ctime));
2526 	}
2527 
2528 	if (projid != ZFS_INVALID_PROJID) {
2529 		zp->z_projid = projid;
2530 		SA_ADD_BULK_ATTR(bulk, count,
2531 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2532 		    sizeof (zp->z_projid));
2533 	}
2534 
2535 	if (attrzp && mask) {
2536 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2537 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2538 		    sizeof (ctime));
2539 	}
2540 
2541 	/*
2542 	 * Do this after setting timestamps to prevent timestamp
2543 	 * update from toggling bit
2544 	 */
2545 
2546 	if (xoap && (mask & ATTR_XVATTR)) {
2547 
2548 		/*
2549 		 * restore trimmed off masks
2550 		 * so that return masks can be set for caller.
2551 		 */
2552 
2553 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2554 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2555 		}
2556 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2557 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2558 		}
2559 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2560 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2561 		}
2562 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2563 			XVA_SET_REQ(xvap, XAT_NODUMP);
2564 		}
2565 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2566 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2567 		}
2568 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2569 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2570 		}
2571 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2572 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2573 		}
2574 
2575 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2576 			ASSERT(S_ISREG(ip->i_mode));
2577 
2578 		zfs_xvattr_set(zp, xvap, tx);
2579 	}
2580 
2581 	if (fuid_dirtied)
2582 		zfs_fuid_sync(zfsvfs, tx);
2583 
2584 	if (mask != 0)
2585 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2586 
2587 	mutex_exit(&zp->z_lock);
2588 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2589 		mutex_exit(&zp->z_acl_lock);
2590 
2591 	if (attrzp) {
2592 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2593 			mutex_exit(&attrzp->z_acl_lock);
2594 		mutex_exit(&attrzp->z_lock);
2595 	}
2596 out:
2597 	if (err == 0 && xattr_count > 0) {
2598 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2599 		    xattr_count, tx);
2600 		ASSERT0(err2);
2601 	}
2602 
2603 	if (aclp)
2604 		zfs_acl_free(aclp);
2605 
2606 	if (fuidp) {
2607 		zfs_fuid_info_free(fuidp);
2608 		fuidp = NULL;
2609 	}
2610 
2611 	if (err) {
2612 		dmu_tx_abort(tx);
2613 		if (attrzp)
2614 			zrele(attrzp);
2615 		if (err == ERESTART)
2616 			goto top;
2617 	} else {
2618 		if (count > 0)
2619 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2620 		dmu_tx_commit(tx);
2621 		if (attrzp) {
2622 			if (err2 == 0 && handle_eadir)
2623 				err = zfs_setattr_dir(attrzp);
2624 			zrele(attrzp);
2625 		}
2626 		zfs_znode_update_vfs(zp);
2627 	}
2628 
2629 out2:
2630 	if (err == 0 && os->os_sync == ZFS_SYNC_ALWAYS)
2631 		err = zil_commit(zilog, 0);
2632 
2633 out3:
2634 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2635 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2636 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2637 	zfs_exit(zfsvfs, FTAG);
2638 	return (err);
2639 }
2640 
2641 typedef struct zfs_zlock {
2642 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2643 	znode_t		*zl_znode;	/* znode we held */
2644 	struct zfs_zlock *zl_next;	/* next in list */
2645 } zfs_zlock_t;
2646 
2647 /*
2648  * Drop locks and release vnodes that were held by zfs_rename_lock().
2649  */
2650 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)2651 zfs_rename_unlock(zfs_zlock_t **zlpp)
2652 {
2653 	zfs_zlock_t *zl;
2654 
2655 	while ((zl = *zlpp) != NULL) {
2656 		if (zl->zl_znode != NULL)
2657 			zfs_zrele_async(zl->zl_znode);
2658 		rw_exit(zl->zl_rwlock);
2659 		*zlpp = zl->zl_next;
2660 		kmem_free(zl, sizeof (*zl));
2661 	}
2662 }
2663 
2664 /*
2665  * Search back through the directory tree, using the ".." entries.
2666  * Lock each directory in the chain to prevent concurrent renames.
2667  * Fail any attempt to move a directory into one of its own descendants.
2668  * XXX - z_parent_lock can overlap with map or grow locks
2669  */
2670 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)2671 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2672 {
2673 	zfs_zlock_t	*zl;
2674 	znode_t		*zp = tdzp;
2675 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2676 	uint64_t	oidp = zp->z_id;
2677 	krwlock_t	*rwlp = &szp->z_parent_lock;
2678 	krw_t		rw = RW_WRITER;
2679 
2680 	/*
2681 	 * First pass write-locks szp and compares to zp->z_id.
2682 	 * Later passes read-lock zp and compare to zp->z_parent.
2683 	 */
2684 	do {
2685 		if (!rw_tryenter(rwlp, rw)) {
2686 			/*
2687 			 * Another thread is renaming in this path.
2688 			 * Note that if we are a WRITER, we don't have any
2689 			 * parent_locks held yet.
2690 			 */
2691 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2692 				/*
2693 				 * Drop our locks and restart
2694 				 */
2695 				zfs_rename_unlock(&zl);
2696 				*zlpp = NULL;
2697 				zp = tdzp;
2698 				oidp = zp->z_id;
2699 				rwlp = &szp->z_parent_lock;
2700 				rw = RW_WRITER;
2701 				continue;
2702 			} else {
2703 				/*
2704 				 * Wait for other thread to drop its locks
2705 				 */
2706 				rw_enter(rwlp, rw);
2707 			}
2708 		}
2709 
2710 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2711 		zl->zl_rwlock = rwlp;
2712 		zl->zl_znode = NULL;
2713 		zl->zl_next = *zlpp;
2714 		*zlpp = zl;
2715 
2716 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2717 			return (SET_ERROR(EINVAL));
2718 
2719 		if (oidp == rootid)		/* We've hit the top */
2720 			return (0);
2721 
2722 		if (rw == RW_READER) {		/* i.e. not the first pass */
2723 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2724 			if (error)
2725 				return (error);
2726 			zl->zl_znode = zp;
2727 		}
2728 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2729 		    &oidp, sizeof (oidp));
2730 		rwlp = &zp->z_parent_lock;
2731 		rw = RW_READER;
2732 
2733 	} while (zp->z_id != sdzp->z_id);
2734 
2735 	return (0);
2736 }
2737 
2738 /*
2739  * Move an entry from the provided source directory to the target
2740  * directory.  Change the entry name as indicated.
2741  *
2742  *	IN:	sdzp	- Source directory containing the "old entry".
2743  *		snm	- Old entry name.
2744  *		tdzp	- Target directory to contain the "new entry".
2745  *		tnm	- New entry name.
2746  *		cr	- credentials of caller.
2747  *		flags	- case flags
2748  *		rflags  - RENAME_* flags
2749  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2750  *		mnt_ns	- user namespace of the mount
2751  *
2752  *	RETURN:	0 on success, error code on failure.
2753  *
2754  * Timestamps:
2755  *	sdzp,tdzp - ctime|mtime updated
2756  */
2757 int
zfs_rename(znode_t * sdzp,char * snm,znode_t * tdzp,char * tnm,cred_t * cr,int flags,uint64_t rflags,vattr_t * wo_vap,zidmap_t * mnt_ns)2758 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2759     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2760 {
2761 	znode_t		*szp, *tzp;
2762 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2763 	zilog_t		*zilog;
2764 	zfs_dirlock_t	*sdl, *tdl;
2765 	dmu_tx_t	*tx;
2766 	zfs_zlock_t	*zl;
2767 	int		cmp, serr, terr;
2768 	int		error = 0;
2769 	int		zflg = 0;
2770 	boolean_t	waited = B_FALSE;
2771 	/* Needed for whiteout inode creation. */
2772 	boolean_t	fuid_dirtied;
2773 	zfs_acl_ids_t	acl_ids;
2774 	boolean_t	have_acl = B_FALSE;
2775 	znode_t		*wzp = NULL;
2776 
2777 
2778 	if (snm == NULL || tnm == NULL)
2779 		return (SET_ERROR(EINVAL));
2780 
2781 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2782 		return (SET_ERROR(EINVAL));
2783 
2784 	/* Already checked by Linux VFS, but just to make sure. */
2785 	if (rflags & RENAME_EXCHANGE &&
2786 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2787 		return (SET_ERROR(EINVAL));
2788 
2789 	/*
2790 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2791 	 * right kind of vattr_t for the whiteout file. These are set
2792 	 * internally by ZFS so should never be incorrect.
2793 	 */
2794 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2795 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2796 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2797 
2798 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2799 		return (error);
2800 	zilog = zfsvfs->z_log;
2801 
2802 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2803 		zfs_exit(zfsvfs, FTAG);
2804 		return (error);
2805 	}
2806 
2807 	/*
2808 	 * We check i_sb because snapshots and the ctldir must have different
2809 	 * super blocks.
2810 	 */
2811 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2812 	    zfsctl_is_node(ZTOI(tdzp))) {
2813 		zfs_exit(zfsvfs, FTAG);
2814 		return (SET_ERROR(EXDEV));
2815 	}
2816 
2817 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2818 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2819 		zfs_exit(zfsvfs, FTAG);
2820 		return (SET_ERROR(EILSEQ));
2821 	}
2822 
2823 	if (flags & FIGNORECASE)
2824 		zflg |= ZCILOOK;
2825 
2826 top:
2827 	szp = NULL;
2828 	tzp = NULL;
2829 	zl = NULL;
2830 
2831 	/*
2832 	 * This is to prevent the creation of links into attribute space
2833 	 * by renaming a linked file into/outof an attribute directory.
2834 	 * See the comment in zfs_link() for why this is considered bad.
2835 	 */
2836 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2837 		zfs_exit(zfsvfs, FTAG);
2838 		return (SET_ERROR(EINVAL));
2839 	}
2840 
2841 	/*
2842 	 * Lock source and target directory entries.  To prevent deadlock,
2843 	 * a lock ordering must be defined.  We lock the directory with
2844 	 * the smallest object id first, or if it's a tie, the one with
2845 	 * the lexically first name.
2846 	 */
2847 	if (sdzp->z_id < tdzp->z_id) {
2848 		cmp = -1;
2849 	} else if (sdzp->z_id > tdzp->z_id) {
2850 		cmp = 1;
2851 	} else {
2852 		/*
2853 		 * First compare the two name arguments without
2854 		 * considering any case folding.
2855 		 */
2856 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2857 
2858 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2859 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2860 		if (cmp == 0) {
2861 			/*
2862 			 * POSIX: "If the old argument and the new argument
2863 			 * both refer to links to the same existing file,
2864 			 * the rename() function shall return successfully
2865 			 * and perform no other action."
2866 			 */
2867 			zfs_exit(zfsvfs, FTAG);
2868 			return (0);
2869 		}
2870 		/*
2871 		 * If the file system is case-folding, then we may
2872 		 * have some more checking to do.  A case-folding file
2873 		 * system is either supporting mixed case sensitivity
2874 		 * access or is completely case-insensitive.  Note
2875 		 * that the file system is always case preserving.
2876 		 *
2877 		 * In mixed sensitivity mode case sensitive behavior
2878 		 * is the default.  FIGNORECASE must be used to
2879 		 * explicitly request case insensitive behavior.
2880 		 *
2881 		 * If the source and target names provided differ only
2882 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2883 		 * we will treat this as a special case in the
2884 		 * case-insensitive mode: as long as the source name
2885 		 * is an exact match, we will allow this to proceed as
2886 		 * a name-change request.
2887 		 */
2888 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2889 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2890 		    flags & FIGNORECASE)) &&
2891 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2892 		    &error) == 0) {
2893 			/*
2894 			 * case preserving rename request, require exact
2895 			 * name matches
2896 			 */
2897 			zflg |= ZCIEXACT;
2898 			zflg &= ~ZCILOOK;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * If the source and destination directories are the same, we should
2904 	 * grab the z_name_lock of that directory only once.
2905 	 */
2906 	if (sdzp == tdzp) {
2907 		zflg |= ZHAVELOCK;
2908 		rw_enter(&sdzp->z_name_lock, RW_READER);
2909 	}
2910 
2911 	if (cmp < 0) {
2912 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2913 		    ZEXISTS | zflg, NULL, NULL);
2914 		terr = zfs_dirent_lock(&tdl,
2915 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2916 	} else {
2917 		terr = zfs_dirent_lock(&tdl,
2918 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2919 		serr = zfs_dirent_lock(&sdl,
2920 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2921 		    NULL, NULL);
2922 	}
2923 
2924 	if (serr) {
2925 		/*
2926 		 * Source entry invalid or not there.
2927 		 */
2928 		if (!terr) {
2929 			zfs_dirent_unlock(tdl);
2930 			if (tzp)
2931 				zrele(tzp);
2932 		}
2933 
2934 		if (sdzp == tdzp)
2935 			rw_exit(&sdzp->z_name_lock);
2936 
2937 		if (strcmp(snm, "..") == 0)
2938 			serr = EINVAL;
2939 		zfs_exit(zfsvfs, FTAG);
2940 		return (serr);
2941 	}
2942 	if (terr) {
2943 		zfs_dirent_unlock(sdl);
2944 		zrele(szp);
2945 
2946 		if (sdzp == tdzp)
2947 			rw_exit(&sdzp->z_name_lock);
2948 
2949 		if (strcmp(tnm, "..") == 0)
2950 			terr = EINVAL;
2951 		zfs_exit(zfsvfs, FTAG);
2952 		return (terr);
2953 	}
2954 
2955 	/*
2956 	 * If we are using project inheritance, means if the directory has
2957 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2958 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2959 	 * such case, we only allow renames into our tree when the project
2960 	 * IDs are the same.
2961 	 */
2962 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2963 	    tdzp->z_projid != szp->z_projid) {
2964 		error = SET_ERROR(EXDEV);
2965 		goto out;
2966 	}
2967 
2968 	/*
2969 	 * Must have write access at the source to remove the old entry
2970 	 * and write access at the target to create the new entry.
2971 	 * Note that if target and source are the same, this can be
2972 	 * done in a single check.
2973 	 */
2974 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2975 		goto out;
2976 
2977 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2978 		/*
2979 		 * Check to make sure rename is valid.
2980 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2981 		 */
2982 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2983 			goto out;
2984 	}
2985 
2986 	/*
2987 	 * Does target exist?
2988 	 */
2989 	if (tzp) {
2990 		if (rflags & RENAME_NOREPLACE) {
2991 			error = SET_ERROR(EEXIST);
2992 			goto out;
2993 		}
2994 		/*
2995 		 * Source and target must be the same type (unless exchanging).
2996 		 */
2997 		if (!(rflags & RENAME_EXCHANGE)) {
2998 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2999 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
3000 
3001 			if (s_is_dir != t_is_dir) {
3002 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
3003 				goto out;
3004 			}
3005 		}
3006 		/*
3007 		 * POSIX dictates that when the source and target
3008 		 * entries refer to the same file object, rename
3009 		 * must do nothing and exit without error.
3010 		 */
3011 		if (szp->z_id == tzp->z_id) {
3012 			error = 0;
3013 			goto out;
3014 		}
3015 	} else if (rflags & RENAME_EXCHANGE) {
3016 		/* Target must exist for RENAME_EXCHANGE. */
3017 		error = SET_ERROR(ENOENT);
3018 		goto out;
3019 	}
3020 
3021 	/* Set up inode creation for RENAME_WHITEOUT. */
3022 	if (rflags & RENAME_WHITEOUT) {
3023 		/*
3024 		 * Whiteout files are not regular files or directories, so to
3025 		 * match zfs_create() we do not inherit the project id.
3026 		 */
3027 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
3028 
3029 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
3030 		if (error)
3031 			goto out;
3032 
3033 		if (!have_acl) {
3034 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
3035 			    &acl_ids, mnt_ns);
3036 			if (error)
3037 				goto out;
3038 			have_acl = B_TRUE;
3039 		}
3040 
3041 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
3042 			error = SET_ERROR(EDQUOT);
3043 			goto out;
3044 		}
3045 	}
3046 
3047 	tx = dmu_tx_create(zfsvfs->z_os);
3048 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3049 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3050 	dmu_tx_hold_zap(tx, sdzp->z_id,
3051 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3052 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3053 	if (sdzp != tdzp) {
3054 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3055 		zfs_sa_upgrade_txholds(tx, tdzp);
3056 	}
3057 	if (tzp) {
3058 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3059 		zfs_sa_upgrade_txholds(tx, tzp);
3060 	}
3061 	if (rflags & RENAME_WHITEOUT) {
3062 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3063 		    ZFS_SA_BASE_ATTR_SIZE);
3064 
3065 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3066 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3067 		if (!zfsvfs->z_use_sa &&
3068 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3069 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3070 			    0, acl_ids.z_aclp->z_acl_bytes);
3071 		}
3072 	}
3073 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3074 	if (fuid_dirtied)
3075 		zfs_fuid_txhold(zfsvfs, tx);
3076 	zfs_sa_upgrade_txholds(tx, szp);
3077 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3078 	error = dmu_tx_assign(tx,
3079 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3080 	if (error) {
3081 		if (zl != NULL)
3082 			zfs_rename_unlock(&zl);
3083 		zfs_dirent_unlock(sdl);
3084 		zfs_dirent_unlock(tdl);
3085 
3086 		if (sdzp == tdzp)
3087 			rw_exit(&sdzp->z_name_lock);
3088 
3089 		if (error == ERESTART) {
3090 			waited = B_TRUE;
3091 			dmu_tx_wait(tx);
3092 			dmu_tx_abort(tx);
3093 			zrele(szp);
3094 			if (tzp)
3095 				zrele(tzp);
3096 			goto top;
3097 		}
3098 		dmu_tx_abort(tx);
3099 		zrele(szp);
3100 		if (tzp)
3101 			zrele(tzp);
3102 		zfs_exit(zfsvfs, FTAG);
3103 		return (error);
3104 	}
3105 
3106 	/*
3107 	 * Unlink the source.
3108 	 */
3109 	szp->z_pflags |= ZFS_AV_MODIFIED;
3110 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3111 		szp->z_pflags |= ZFS_PROJINHERIT;
3112 
3113 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3114 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3115 	VERIFY0(error);
3116 
3117 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3118 	if (error)
3119 		goto commit;
3120 
3121 	/*
3122 	 * Unlink the target.
3123 	 */
3124 	if (tzp) {
3125 		int tzflg = zflg;
3126 
3127 		if (rflags & RENAME_EXCHANGE) {
3128 			/* This inode will be re-linked soon. */
3129 			tzflg |= ZRENAMING;
3130 
3131 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3132 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3133 				tzp->z_pflags |= ZFS_PROJINHERIT;
3134 
3135 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3136 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3137 			ASSERT0(error);
3138 		}
3139 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3140 		if (error)
3141 			goto commit_link_szp;
3142 	}
3143 
3144 	/*
3145 	 * Create the new target links:
3146 	 *   * We always link the target.
3147 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3148 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3149 	 */
3150 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3151 	if (error) {
3152 		/*
3153 		 * If we have removed the existing target, a subsequent call to
3154 		 * zfs_link_create() to add back the same entry, but with a new
3155 		 * dnode (szp), should not fail.
3156 		 */
3157 		ASSERT0P(tzp);
3158 		goto commit_link_tzp;
3159 	}
3160 
3161 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3162 	case RENAME_EXCHANGE:
3163 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3164 		/*
3165 		 * The same argument as zfs_link_create() failing for
3166 		 * szp applies here, since the source directory must
3167 		 * have had an entry we are replacing.
3168 		 */
3169 		ASSERT0(error);
3170 		if (error)
3171 			goto commit_unlink_td_szp;
3172 		break;
3173 	case RENAME_WHITEOUT:
3174 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3175 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3176 		if (error) {
3177 			zfs_znode_delete(wzp, tx);
3178 			remove_inode_hash(ZTOI(wzp));
3179 			goto commit_unlink_td_szp;
3180 		}
3181 		break;
3182 	}
3183 
3184 	if (fuid_dirtied)
3185 		zfs_fuid_sync(zfsvfs, tx);
3186 
3187 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3188 	case RENAME_EXCHANGE:
3189 		zfs_log_rename_exchange(zilog, tx,
3190 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3191 		    tdzp, tdl->dl_name, szp);
3192 		break;
3193 	case RENAME_WHITEOUT:
3194 		zfs_log_rename_whiteout(zilog, tx,
3195 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3196 		    tdzp, tdl->dl_name, szp, wzp);
3197 		break;
3198 	default:
3199 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3200 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3201 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3202 		break;
3203 	}
3204 
3205 commit:
3206 	dmu_tx_commit(tx);
3207 out:
3208 	if (have_acl)
3209 		zfs_acl_ids_free(&acl_ids);
3210 
3211 	zfs_znode_update_vfs(sdzp);
3212 	if (sdzp == tdzp)
3213 		rw_exit(&sdzp->z_name_lock);
3214 
3215 	if (sdzp != tdzp)
3216 		zfs_znode_update_vfs(tdzp);
3217 
3218 	zfs_znode_update_vfs(szp);
3219 	zrele(szp);
3220 	if (wzp) {
3221 		zfs_znode_update_vfs(wzp);
3222 		zrele(wzp);
3223 	}
3224 	if (tzp) {
3225 		zfs_znode_update_vfs(tzp);
3226 		zrele(tzp);
3227 	}
3228 
3229 	if (zl != NULL)
3230 		zfs_rename_unlock(&zl);
3231 
3232 	zfs_dirent_unlock(sdl);
3233 	zfs_dirent_unlock(tdl);
3234 
3235 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3236 		error = zil_commit(zilog, 0);
3237 
3238 	zfs_exit(zfsvfs, FTAG);
3239 	return (error);
3240 
3241 	/*
3242 	 * Clean-up path for broken link state.
3243 	 *
3244 	 * At this point we are in a (very) bad state, so we need to do our
3245 	 * best to correct the state. In particular, all of the nlinks are
3246 	 * wrong because we were destroying and creating links with ZRENAMING.
3247 	 *
3248 	 * In some form, all of these operations have to resolve the state:
3249 	 *
3250 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3251 	 *    since we only just created it.
3252 	 *
3253 	 *  * link_create()s are allowed to fail (though they shouldn't because
3254 	 *    we only just unlinked them and are putting the entries back
3255 	 *    during clean-up). But if they fail, we can just forcefully drop
3256 	 *    the nlink value to (at the very least) avoid broken nlink values
3257 	 *    -- though in the case of non-empty directories we will have to
3258 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3259 	 */
3260 commit_unlink_td_szp:
3261 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3262 commit_link_tzp:
3263 	if (tzp) {
3264 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3265 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3266 	}
3267 commit_link_szp:
3268 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3269 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3270 	goto commit;
3271 }
3272 
3273 /*
3274  * Insert the indicated symbolic reference entry into the directory.
3275  *
3276  *	IN:	dzp	- Directory to contain new symbolic link.
3277  *		name	- Name of directory entry in dip.
3278  *		vap	- Attributes of new entry.
3279  *		link	- Name for new symlink entry.
3280  *		cr	- credentials of caller.
3281  *		flags	- case flags
3282  *		mnt_ns	- user namespace of the mount
3283  *
3284  *	OUT:	zpp	- Znode for new symbolic link.
3285  *
3286  *	RETURN:	0 on success, error code on failure.
3287  *
3288  * Timestamps:
3289  *	dip - ctime|mtime updated
3290  */
3291 int
zfs_symlink(znode_t * dzp,char * name,vattr_t * vap,char * link,znode_t ** zpp,cred_t * cr,int flags,zidmap_t * mnt_ns)3292 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3293     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3294 {
3295 	znode_t		*zp;
3296 	zfs_dirlock_t	*dl;
3297 	dmu_tx_t	*tx;
3298 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3299 	zilog_t		*zilog;
3300 	uint64_t	len = strlen(link);
3301 	int		error;
3302 	int		zflg = ZNEW;
3303 	zfs_acl_ids_t	acl_ids;
3304 	boolean_t	fuid_dirtied;
3305 	uint64_t	txtype = TX_SYMLINK;
3306 	boolean_t	waited = B_FALSE;
3307 
3308 	ASSERT(S_ISLNK(vap->va_mode));
3309 
3310 	if (name == NULL)
3311 		return (SET_ERROR(EINVAL));
3312 
3313 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3314 		return (error);
3315 	zilog = zfsvfs->z_log;
3316 
3317 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3318 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3319 		zfs_exit(zfsvfs, FTAG);
3320 		return (SET_ERROR(EILSEQ));
3321 	}
3322 	if (flags & FIGNORECASE)
3323 		zflg |= ZCILOOK;
3324 
3325 	if (len > MAXPATHLEN) {
3326 		zfs_exit(zfsvfs, FTAG);
3327 		return (SET_ERROR(ENAMETOOLONG));
3328 	}
3329 
3330 	if ((error = zfs_acl_ids_create(dzp, 0,
3331 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3332 		zfs_exit(zfsvfs, FTAG);
3333 		return (error);
3334 	}
3335 top:
3336 	*zpp = NULL;
3337 
3338 	/*
3339 	 * Attempt to lock directory; fail if entry already exists.
3340 	 */
3341 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3342 	if (error) {
3343 		zfs_acl_ids_free(&acl_ids);
3344 		zfs_exit(zfsvfs, FTAG);
3345 		return (error);
3346 	}
3347 
3348 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3349 		zfs_acl_ids_free(&acl_ids);
3350 		zfs_dirent_unlock(dl);
3351 		zfs_exit(zfsvfs, FTAG);
3352 		return (error);
3353 	}
3354 
3355 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3356 		zfs_acl_ids_free(&acl_ids);
3357 		zfs_dirent_unlock(dl);
3358 		zfs_exit(zfsvfs, FTAG);
3359 		return (SET_ERROR(EDQUOT));
3360 	}
3361 	tx = dmu_tx_create(zfsvfs->z_os);
3362 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3363 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3364 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3365 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3366 	    ZFS_SA_BASE_ATTR_SIZE + len);
3367 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3368 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3369 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3370 		    acl_ids.z_aclp->z_acl_bytes);
3371 	}
3372 	if (fuid_dirtied)
3373 		zfs_fuid_txhold(zfsvfs, tx);
3374 	error = dmu_tx_assign(tx,
3375 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3376 	if (error) {
3377 		zfs_dirent_unlock(dl);
3378 		if (error == ERESTART) {
3379 			waited = B_TRUE;
3380 			dmu_tx_wait(tx);
3381 			dmu_tx_abort(tx);
3382 			goto top;
3383 		}
3384 		zfs_acl_ids_free(&acl_ids);
3385 		dmu_tx_abort(tx);
3386 		zfs_exit(zfsvfs, FTAG);
3387 		return (error);
3388 	}
3389 
3390 	/*
3391 	 * Create a new object for the symlink.
3392 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3393 	 */
3394 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3395 
3396 	if (fuid_dirtied)
3397 		zfs_fuid_sync(zfsvfs, tx);
3398 
3399 	mutex_enter(&zp->z_lock);
3400 	if (zp->z_is_sa)
3401 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3402 		    link, len, tx);
3403 	else
3404 		zfs_sa_symlink(zp, link, len, tx);
3405 	mutex_exit(&zp->z_lock);
3406 
3407 	zp->z_size = len;
3408 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3409 	    &zp->z_size, sizeof (zp->z_size), tx);
3410 	/*
3411 	 * Insert the new object into the directory.
3412 	 */
3413 	error = zfs_link_create(dl, zp, tx, ZNEW);
3414 	if (error != 0) {
3415 		zfs_znode_delete(zp, tx);
3416 		remove_inode_hash(ZTOI(zp));
3417 	} else {
3418 		if (flags & FIGNORECASE)
3419 			txtype |= TX_CI;
3420 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3421 
3422 		zfs_znode_update_vfs(dzp);
3423 		zfs_znode_update_vfs(zp);
3424 	}
3425 
3426 	zfs_acl_ids_free(&acl_ids);
3427 
3428 	dmu_tx_commit(tx);
3429 
3430 	zfs_dirent_unlock(dl);
3431 
3432 	if (error == 0) {
3433 		*zpp = zp;
3434 
3435 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3436 			error = zil_commit(zilog, 0);
3437 	} else {
3438 		zrele(zp);
3439 	}
3440 
3441 	zfs_exit(zfsvfs, FTAG);
3442 	return (error);
3443 }
3444 
3445 /*
3446  * Return, in the buffer contained in the provided uio structure,
3447  * the symbolic path referred to by ip.
3448  *
3449  *	IN:	ip	- inode of symbolic link
3450  *		uio	- structure to contain the link path.
3451  *		cr	- credentials of caller.
3452  *
3453  *	RETURN:	0 if success
3454  *		error code if failure
3455  *
3456  * Timestamps:
3457  *	ip - atime updated
3458  */
3459 int
zfs_readlink(struct inode * ip,zfs_uio_t * uio,cred_t * cr)3460 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3461 {
3462 	(void) cr;
3463 	znode_t		*zp = ITOZ(ip);
3464 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3465 	int		error;
3466 
3467 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3468 		return (error);
3469 
3470 	mutex_enter(&zp->z_lock);
3471 	if (zp->z_is_sa)
3472 		error = sa_lookup_uio(zp->z_sa_hdl,
3473 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3474 	else
3475 		error = zfs_sa_readlink(zp, uio);
3476 	mutex_exit(&zp->z_lock);
3477 
3478 	zfs_exit(zfsvfs, FTAG);
3479 	return (error);
3480 }
3481 
3482 /*
3483  * Insert a new entry into directory tdzp referencing szp.
3484  *
3485  *	IN:	tdzp	- Directory to contain new entry.
3486  *		szp	- znode of new entry.
3487  *		name	- name of new entry.
3488  *		cr	- credentials of caller.
3489  *		flags	- case flags.
3490  *
3491  *	RETURN:	0 if success
3492  *		error code if failure
3493  *
3494  * Timestamps:
3495  *	tdzp - ctime|mtime updated
3496  *	 szp - ctime updated
3497  */
3498 int
zfs_link(znode_t * tdzp,znode_t * szp,char * name,cred_t * cr,int flags)3499 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3500     int flags)
3501 {
3502 	struct inode *sip = ZTOI(szp);
3503 	znode_t		*tzp;
3504 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3505 	zilog_t		*zilog;
3506 	zfs_dirlock_t	*dl;
3507 	dmu_tx_t	*tx;
3508 	int		error;
3509 	int		zf = ZNEW;
3510 	uint64_t	parent;
3511 	uid_t		owner;
3512 	boolean_t	waited = B_FALSE;
3513 	boolean_t	is_tmpfile = 0;
3514 	uint64_t	txg;
3515 
3516 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3517 
3518 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3519 
3520 	if (name == NULL)
3521 		return (SET_ERROR(EINVAL));
3522 
3523 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3524 		return (error);
3525 	zilog = zfsvfs->z_log;
3526 
3527 	/*
3528 	 * POSIX dictates that we return EPERM here.
3529 	 * Better choices include ENOTSUP or EISDIR.
3530 	 */
3531 	if (S_ISDIR(sip->i_mode)) {
3532 		zfs_exit(zfsvfs, FTAG);
3533 		return (SET_ERROR(EPERM));
3534 	}
3535 
3536 	if ((error = zfs_verify_zp(szp)) != 0) {
3537 		zfs_exit(zfsvfs, FTAG);
3538 		return (error);
3539 	}
3540 
3541 	/*
3542 	 * If we are using project inheritance, means if the directory has
3543 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3544 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3545 	 * such case, we only allow hard link creation in our tree when the
3546 	 * project IDs are the same.
3547 	 */
3548 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3549 	    tdzp->z_projid != szp->z_projid) {
3550 		zfs_exit(zfsvfs, FTAG);
3551 		return (SET_ERROR(EXDEV));
3552 	}
3553 
3554 	/*
3555 	 * We check i_sb because snapshots and the ctldir must have different
3556 	 * super blocks.
3557 	 */
3558 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3559 		zfs_exit(zfsvfs, FTAG);
3560 		return (SET_ERROR(EXDEV));
3561 	}
3562 
3563 	/* Prevent links to .zfs/shares files */
3564 
3565 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3566 	    &parent, sizeof (uint64_t))) != 0) {
3567 		zfs_exit(zfsvfs, FTAG);
3568 		return (error);
3569 	}
3570 	if (parent == zfsvfs->z_shares_dir) {
3571 		zfs_exit(zfsvfs, FTAG);
3572 		return (SET_ERROR(EPERM));
3573 	}
3574 
3575 	if (zfsvfs->z_utf8 && u8_validate(name,
3576 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3577 		zfs_exit(zfsvfs, FTAG);
3578 		return (SET_ERROR(EILSEQ));
3579 	}
3580 	if (flags & FIGNORECASE)
3581 		zf |= ZCILOOK;
3582 
3583 	/*
3584 	 * We do not support links between attributes and non-attributes
3585 	 * because of the potential security risk of creating links
3586 	 * into "normal" file space in order to circumvent restrictions
3587 	 * imposed in attribute space.
3588 	 */
3589 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3590 		zfs_exit(zfsvfs, FTAG);
3591 		return (SET_ERROR(EINVAL));
3592 	}
3593 
3594 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3595 	    cr, ZFS_OWNER);
3596 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3597 		zfs_exit(zfsvfs, FTAG);
3598 		return (SET_ERROR(EPERM));
3599 	}
3600 
3601 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3602 	    zfs_init_idmap))) {
3603 		zfs_exit(zfsvfs, FTAG);
3604 		return (error);
3605 	}
3606 
3607 top:
3608 	/*
3609 	 * Attempt to lock directory; fail if entry already exists.
3610 	 */
3611 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3612 	if (error) {
3613 		zfs_exit(zfsvfs, FTAG);
3614 		return (error);
3615 	}
3616 
3617 	tx = dmu_tx_create(zfsvfs->z_os);
3618 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3619 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3620 	if (is_tmpfile)
3621 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3622 
3623 	zfs_sa_upgrade_txholds(tx, szp);
3624 	zfs_sa_upgrade_txholds(tx, tdzp);
3625 	error = dmu_tx_assign(tx,
3626 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3627 	if (error) {
3628 		zfs_dirent_unlock(dl);
3629 		if (error == ERESTART) {
3630 			waited = B_TRUE;
3631 			dmu_tx_wait(tx);
3632 			dmu_tx_abort(tx);
3633 			goto top;
3634 		}
3635 		dmu_tx_abort(tx);
3636 		zfs_exit(zfsvfs, FTAG);
3637 		return (error);
3638 	}
3639 	/* unmark z_unlinked so zfs_link_create will not reject */
3640 	if (is_tmpfile)
3641 		szp->z_unlinked = B_FALSE;
3642 	error = zfs_link_create(dl, szp, tx, 0);
3643 
3644 	if (error == 0) {
3645 		uint64_t txtype = TX_LINK;
3646 		/*
3647 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3648 		 * Also, we don't log in ZIL, because all previous file
3649 		 * operation on the tmpfile are ignored by ZIL. Instead we
3650 		 * always wait for txg to sync to make sure all previous
3651 		 * operation are sync safe.
3652 		 */
3653 		if (is_tmpfile) {
3654 			VERIFY0(zap_remove_int(zfsvfs->z_os,
3655 			    zfsvfs->z_unlinkedobj, szp->z_id, tx));
3656 		} else {
3657 			if (flags & FIGNORECASE)
3658 				txtype |= TX_CI;
3659 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3660 		}
3661 	} else if (is_tmpfile) {
3662 		/* restore z_unlinked since when linking failed */
3663 		szp->z_unlinked = B_TRUE;
3664 	}
3665 	txg = dmu_tx_get_txg(tx);
3666 	dmu_tx_commit(tx);
3667 
3668 	zfs_dirent_unlock(dl);
3669 
3670 	if (error == 0) {
3671 		if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3672 			error = zil_commit(zilog, 0);
3673 
3674 		if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
3675 			txg_wait_flag_t wait_flags =
3676 			    spa_get_failmode(dmu_objset_spa(zfsvfs->z_os)) ==
3677 			    ZIO_FAILURE_MODE_CONTINUE ? TXG_WAIT_SUSPEND : 0;
3678 			error = txg_wait_synced_flags(
3679 			    dmu_objset_pool(zfsvfs->z_os), txg, wait_flags);
3680 			if (error != 0) {
3681 				ASSERT3U(error, ==, ESHUTDOWN);
3682 				error = SET_ERROR(EIO);
3683 			}
3684 		}
3685 	}
3686 
3687 	zfs_znode_update_vfs(tdzp);
3688 	zfs_znode_update_vfs(szp);
3689 	zfs_exit(zfsvfs, FTAG);
3690 	return (error);
3691 }
3692 
3693 /* Finish page writeback. */
3694 static inline void
zfs_page_writeback_done(struct page * pp,int err)3695 zfs_page_writeback_done(struct page *pp, int err)
3696 {
3697 	if (err != 0) {
3698 		/*
3699 		 * Writeback failed. Re-dirty the page. It was undirtied before
3700 		 * the IO was issued (in zfs_putpage() or write_cache_pages()).
3701 		 * The kernel only considers writeback for dirty pages; if we
3702 		 * don't do this, it is eligible for eviction without being
3703 		 * written out, which we definitely don't want.
3704 		 */
3705 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3706 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3707 #else
3708 		__set_page_dirty_nobuffers(pp);
3709 #endif
3710 	}
3711 
3712 	ClearPageError(pp);
3713 	end_page_writeback(pp);
3714 }
3715 
3716 /*
3717  * ZIL callback for page writeback. Passes to zfs_log_write() in zfs_putpage()
3718  * for syncing writes. Called when the ZIL itx has been written to the log or
3719  * the whole txg syncs, or if the ZIL crashes or the pool suspends. Any failure
3720  * is passed as `err`.
3721  */
3722 static void
zfs_putpage_commit_cb(void * arg,int err)3723 zfs_putpage_commit_cb(void *arg, int err)
3724 {
3725 	zfs_page_writeback_done(arg, err);
3726 }
3727 
3728 /*
3729  * Push a page out to disk, once the page is on stable storage the
3730  * registered commit callback will be run as notification of completion.
3731  *
3732  *	IN:	ip	 - page mapped for inode.
3733  *		pp	 - page to push (page is locked)
3734  *		wbc	 - writeback control data
3735  *		for_sync - does the caller intend to wait synchronously for the
3736  *			   page writeback to complete?
3737  *
3738  *	RETURN:	0 if success
3739  *		error code if failure
3740  *
3741  * Timestamps:
3742  *	ip - ctime|mtime updated
3743  */
3744 int
zfs_putpage(struct inode * ip,struct page * pp,struct writeback_control * wbc,boolean_t for_sync)3745 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3746     boolean_t for_sync)
3747 {
3748 	znode_t		*zp = ITOZ(ip);
3749 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3750 	loff_t		offset;
3751 	loff_t		pgoff;
3752 	unsigned int	pglen;
3753 	dmu_tx_t	*tx;
3754 	caddr_t		va;
3755 	int		err = 0;
3756 	uint64_t	mtime[2], ctime[2];
3757 	inode_timespec_t tmp_ts;
3758 	sa_bulk_attr_t	bulk[3];
3759 	int		cnt = 0;
3760 	struct address_space *mapping;
3761 
3762 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3763 		return (err);
3764 
3765 	ASSERT(PageLocked(pp));
3766 
3767 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3768 	offset = i_size_read(ip);	/* File length in bytes */
3769 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3770 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3771 
3772 	/* Page is beyond end of file */
3773 	if (pgoff >= offset) {
3774 		unlock_page(pp);
3775 		zfs_exit(zfsvfs, FTAG);
3776 		return (0);
3777 	}
3778 
3779 	/* Truncate page length to end of file */
3780 	if (pgoff + pglen > offset)
3781 		pglen = offset - pgoff;
3782 
3783 #if 0
3784 	/*
3785 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3786 	 * is to register a page_mkwrite() handler to count the page
3787 	 * against its quota when it is about to be dirtied.
3788 	 */
3789 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3790 	    KUID_TO_SUID(ip->i_uid)) ||
3791 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3792 	    KGID_TO_SGID(ip->i_gid)) ||
3793 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3794 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3795 	    zp->z_projid))) {
3796 		err = EDQUOT;
3797 	}
3798 #endif
3799 
3800 	/*
3801 	 * The ordering here is critical and must adhere to the following
3802 	 * rules in order to avoid deadlocking in either zfs_read() or
3803 	 * zfs_free_range() due to a lock inversion.
3804 	 *
3805 	 * 1) The page must be unlocked prior to acquiring the range lock.
3806 	 *    This is critical because zfs_read() calls find_lock_page()
3807 	 *    which may block on the page lock while holding the range lock.
3808 	 *
3809 	 * 2) Before setting or clearing write back on a page the range lock
3810 	 *    must be held in order to prevent a lock inversion with the
3811 	 *    zfs_free_range() function.
3812 	 *
3813 	 * This presents a problem because upon entering this function the
3814 	 * page lock is already held.  To safely acquire the range lock the
3815 	 * page lock must be dropped.  This creates a window where another
3816 	 * process could truncate, invalidate, dirty, or write out the page.
3817 	 *
3818 	 * Therefore, after successfully reacquiring the range and page locks
3819 	 * the current page state is checked.  In the common case everything
3820 	 * will be as is expected and it can be written out.  However, if
3821 	 * the page state has changed it must be handled accordingly.
3822 	 */
3823 	mapping = pp->mapping;
3824 	redirty_page_for_writepage(wbc, pp);
3825 	unlock_page(pp);
3826 
3827 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3828 	    pgoff, pglen, RL_WRITER);
3829 	lock_page(pp);
3830 
3831 	/* Page mapping changed or it was no longer dirty, we're done */
3832 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3833 		unlock_page(pp);
3834 		zfs_rangelock_exit(lr);
3835 		zfs_exit(zfsvfs, FTAG);
3836 		return (0);
3837 	}
3838 
3839 	/* Another process started write block if required */
3840 	if (PageWriteback(pp)) {
3841 		unlock_page(pp);
3842 		zfs_rangelock_exit(lr);
3843 
3844 		if (wbc->sync_mode != WB_SYNC_NONE) {
3845 			if (PageWriteback(pp))
3846 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3847 				folio_wait_bit(page_folio(pp), PG_writeback);
3848 #else
3849 				wait_on_page_bit(pp, PG_writeback);
3850 #endif
3851 		}
3852 
3853 		zfs_exit(zfsvfs, FTAG);
3854 		return (0);
3855 	}
3856 
3857 	/* Clear the dirty flag the required locks are held */
3858 	if (!clear_page_dirty_for_io(pp)) {
3859 		unlock_page(pp);
3860 		zfs_rangelock_exit(lr);
3861 		zfs_exit(zfsvfs, FTAG);
3862 		return (0);
3863 	}
3864 
3865 	/*
3866 	 * Counterpart for redirty_page_for_writepage() above.  This page
3867 	 * was in fact not skipped and should not be counted as if it were.
3868 	 */
3869 	wbc->pages_skipped--;
3870 	set_page_writeback(pp);
3871 	unlock_page(pp);
3872 
3873 	tx = dmu_tx_create(zfsvfs->z_os);
3874 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3875 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3876 	zfs_sa_upgrade_txholds(tx, zp);
3877 
3878 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
3879 	if (err != 0) {
3880 		dmu_tx_abort(tx);
3881 		zfs_page_writeback_done(pp, err);
3882 		zfs_rangelock_exit(lr);
3883 		zfs_exit(zfsvfs, FTAG);
3884 
3885 		/*
3886 		 * Don't return error for an async writeback; we've re-dirtied
3887 		 * the page so it will be tried again some other time.
3888 		 */
3889 		return (for_sync ? err : 0);
3890 	}
3891 
3892 	va = kmap(pp);
3893 	ASSERT3U(pglen, <=, PAGE_SIZE);
3894 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx,
3895 	    DMU_READ_PREFETCH);
3896 	kunmap(pp);
3897 
3898 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3899 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3900 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3901 	    &zp->z_pflags, 8);
3902 
3903 	/* Preserve the mtime and ctime provided by the inode */
3904 	tmp_ts = zpl_inode_get_mtime(ip);
3905 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3906 	tmp_ts = zpl_inode_get_ctime(ip);
3907 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3908 	zp->z_atime_dirty = B_FALSE;
3909 	zp->z_seq++;
3910 
3911 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3912 
3913 	/*
3914 	 * A note about for_sync vs wbc->sync_mode.
3915 	 *
3916 	 * for_sync indicates that this is a syncing writeback, that is, kernel
3917 	 * caller expects the data to be durably stored before being notified.
3918 	 * Often, but not always, the call was triggered by a userspace syncing
3919 	 * op (eg fsync(), msync(MS_SYNC)). For our purposes, for_sync==TRUE
3920 	 * means that that page should remain "locked" (in the writeback state)
3921 	 * until it is definitely on disk (ie zil_commit() or spa_sync()).
3922 	 * Otherwise, we can unlock and return as soon as it is on the
3923 	 * in-memory ZIL.
3924 	 *
3925 	 * wbc->sync_mode has similar meaning. wbc is passed from the kernel to
3926 	 * zpl_writepages()/zpl_writepage(); wbc->sync_mode==WB_SYNC_NONE
3927 	 * indicates this a regular async writeback (eg a cache eviction) and
3928 	 * so does not need a durability guarantee, while WB_SYNC_ALL indicates
3929 	 * a syncing op that must be waited on (by convention, we test for
3930 	 * !WB_SYNC_NONE rather than WB_SYNC_ALL, to prefer durability over
3931 	 * performance should there ever be a new mode that we have not yet
3932 	 * added support for).
3933 	 *
3934 	 * So, why a separate for_sync field? This is because zpl_writepages()
3935 	 * calls zfs_putpage() multiple times for a single "logical" operation.
3936 	 * It wants all the individual pages to be for_sync==TRUE ie only
3937 	 * unlocked once durably stored, but it only wants one call to
3938 	 * zil_commit() at the very end, once all the pages are synced. So,
3939 	 * it repurposes sync_mode slightly to indicate who issue and wait for
3940 	 * the IO: for NONE, the caller to zfs_putpage() will do it, while for
3941 	 * ALL, zfs_putpage should do it.
3942 	 *
3943 	 * Summary:
3944 	 *   for_sync:  0=unlock immediately; 1=unlock once on disk
3945 	 *   sync_mode: NONE=caller will commit; ALL=we will commit
3946 	 */
3947 	boolean_t need_commit = (wbc->sync_mode != WB_SYNC_NONE);
3948 
3949 	/*
3950 	 * We use for_sync as the "commit" arg to zfs_log_write() (arg 7)
3951 	 * because it is a policy flag that indicates "someone will call
3952 	 * zil_commit() soon". for_sync=TRUE means exactly that; the only
3953 	 * question is whether it will be us, or zpl_writepages().
3954 	 */
3955 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, for_sync,
3956 	    B_FALSE, for_sync ? zfs_putpage_commit_cb : NULL, pp);
3957 
3958 	if (!for_sync) {
3959 		/*
3960 		 * Async writeback is logged and written to the DMU, so page
3961 		 * can now be unlocked.
3962 		 */
3963 		zfs_page_writeback_done(pp, 0);
3964 	}
3965 
3966 	dmu_tx_commit(tx);
3967 
3968 	zfs_rangelock_exit(lr);
3969 
3970 	if (need_commit) {
3971 		err = zil_commit_flags(zfsvfs->z_log, zp->z_id, ZIL_COMMIT_NOW);
3972 		if (err != 0) {
3973 			zfs_exit(zfsvfs, FTAG);
3974 			return (err);
3975 		}
3976 	}
3977 
3978 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3979 
3980 	zfs_exit(zfsvfs, FTAG);
3981 	return (err);
3982 }
3983 
3984 /*
3985  * Update the system attributes when the inode has been dirtied.  For the
3986  * moment we only update the mode, atime, mtime, and ctime.
3987  */
3988 int
zfs_dirty_inode(struct inode * ip,int flags)3989 zfs_dirty_inode(struct inode *ip, int flags)
3990 {
3991 	znode_t		*zp = ITOZ(ip);
3992 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3993 	dmu_tx_t	*tx;
3994 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3995 	inode_timespec_t tmp_ts;
3996 	sa_bulk_attr_t	bulk[4];
3997 	int		error = 0;
3998 	int		cnt = 0;
3999 
4000 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4001 		return (0);
4002 
4003 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4004 		return (error);
4005 
4006 #ifdef I_DIRTY_TIME
4007 	/*
4008 	 * This is the lazytime semantic introduced in Linux 4.0
4009 	 * This flag will only be called from update_time when lazytime is set.
4010 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4011 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
4012 	 * only need to dirty atime.
4013 	 */
4014 	if (flags == I_DIRTY_TIME) {
4015 		zp->z_atime_dirty = B_TRUE;
4016 		goto out;
4017 	}
4018 #endif
4019 
4020 	tx = dmu_tx_create(zfsvfs->z_os);
4021 
4022 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4023 	zfs_sa_upgrade_txholds(tx, zp);
4024 
4025 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
4026 	if (error) {
4027 		dmu_tx_abort(tx);
4028 		goto out;
4029 	}
4030 
4031 	mutex_enter(&zp->z_lock);
4032 	zp->z_atime_dirty = B_FALSE;
4033 
4034 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4035 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4036 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4037 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4038 
4039 	/* Preserve the mode, mtime and ctime provided by the inode */
4040 	tmp_ts = zpl_inode_get_atime(ip);
4041 	ZFS_TIME_ENCODE(&tmp_ts, atime);
4042 	tmp_ts = zpl_inode_get_mtime(ip);
4043 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
4044 	tmp_ts = zpl_inode_get_ctime(ip);
4045 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
4046 	mode = ip->i_mode;
4047 
4048 	zp->z_mode = mode;
4049 
4050 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4051 	mutex_exit(&zp->z_lock);
4052 
4053 	dmu_tx_commit(tx);
4054 out:
4055 	zfs_exit(zfsvfs, FTAG);
4056 	return (error);
4057 }
4058 
4059 void
zfs_inactive(struct inode * ip)4060 zfs_inactive(struct inode *ip)
4061 {
4062 	znode_t	*zp = ITOZ(ip);
4063 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4064 	uint64_t atime[2];
4065 	int error;
4066 	int need_unlock = 0;
4067 
4068 	/* Only read lock if we haven't already write locked, e.g. rollback */
4069 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4070 		need_unlock = 1;
4071 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4072 	}
4073 	if (zp->z_sa_hdl == NULL) {
4074 		if (need_unlock)
4075 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
4076 		return;
4077 	}
4078 
4079 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
4080 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4081 
4082 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4083 		zfs_sa_upgrade_txholds(tx, zp);
4084 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
4085 		if (error) {
4086 			dmu_tx_abort(tx);
4087 		} else {
4088 			inode_timespec_t tmp_atime;
4089 			tmp_atime = zpl_inode_get_atime(ip);
4090 			ZFS_TIME_ENCODE(&tmp_atime, atime);
4091 			mutex_enter(&zp->z_lock);
4092 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4093 			    (void *)&atime, sizeof (atime), tx);
4094 			zp->z_atime_dirty = B_FALSE;
4095 			mutex_exit(&zp->z_lock);
4096 			dmu_tx_commit(tx);
4097 		}
4098 	}
4099 
4100 	zfs_zinactive(zp);
4101 	if (need_unlock)
4102 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4103 }
4104 
4105 /*
4106  * Fill pages with data from the disk.
4107  */
4108 static int
zfs_fillpage(struct inode * ip,struct page * pp)4109 zfs_fillpage(struct inode *ip, struct page *pp)
4110 {
4111 	znode_t *zp = ITOZ(ip);
4112 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4113 	loff_t i_size = i_size_read(ip);
4114 	u_offset_t io_off = page_offset(pp);
4115 	size_t io_len = PAGE_SIZE;
4116 
4117 	ASSERT3U(io_off, <, i_size);
4118 
4119 	if (io_off + io_len > i_size)
4120 		io_len = i_size - io_off;
4121 
4122 	void *va = kmap(pp);
4123 	int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off,
4124 	    io_len, va, DMU_READ_PREFETCH);
4125 	if (io_len != PAGE_SIZE)
4126 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4127 	kunmap(pp);
4128 
4129 	if (error) {
4130 		/* convert checksum errors into IO errors */
4131 		if (error == ECKSUM)
4132 			error = SET_ERROR(EIO);
4133 
4134 		SetPageError(pp);
4135 		ClearPageUptodate(pp);
4136 	} else {
4137 		ClearPageError(pp);
4138 		SetPageUptodate(pp);
4139 	}
4140 
4141 	return (error);
4142 }
4143 
4144 /*
4145  * Uses zfs_fillpage to read data from the file and fill the page.
4146  *
4147  *	IN:	ip	 - inode of file to get data from.
4148  *		pp	 - page to read
4149  *
4150  *	RETURN:	0 on success, error code on failure.
4151  *
4152  * Timestamps:
4153  *	vp - atime updated
4154  */
4155 int
zfs_getpage(struct inode * ip,struct page * pp)4156 zfs_getpage(struct inode *ip, struct page *pp)
4157 {
4158 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4159 	znode_t *zp = ITOZ(ip);
4160 	int error;
4161 	loff_t i_size = i_size_read(ip);
4162 	u_offset_t io_off = page_offset(pp);
4163 	size_t io_len = PAGE_SIZE;
4164 
4165 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4166 		return (error);
4167 
4168 	ASSERT3U(io_off, <, i_size);
4169 
4170 	if (io_off + io_len > i_size)
4171 		io_len = i_size - io_off;
4172 
4173 	/*
4174 	 * It is important to hold the rangelock here because it is possible
4175 	 * a Direct I/O write or block clone might be taking place at the same
4176 	 * time that a page is being faulted in through filemap_fault(). With
4177 	 * Direct I/O writes and block cloning db->db_data will be set to NULL
4178 	 * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the
4179 	 * rangelock is not held, then there is a race between faulting in a
4180 	 * page and writing out a Direct I/O write or block cloning. Without
4181 	 * the rangelock a NULL pointer dereference can occur in
4182 	 * dmu_read_impl() for db->db_data during the mempcy operation when
4183 	 * zfs_fillpage() calls dmu_read().
4184 	 */
4185 	zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4186 	    io_off, io_len, RL_READER);
4187 	if (lr == NULL) {
4188 		/*
4189 		 * It is important to drop the page lock before grabbing the
4190 		 * rangelock to avoid another deadlock between here and
4191 		 * zfs_write() -> update_pages(). update_pages() holds both the
4192 		 * rangelock and the page lock.
4193 		 */
4194 		get_page(pp);
4195 		unlock_page(pp);
4196 		lr = zfs_rangelock_enter(&zp->z_rangelock, io_off,
4197 		    io_len, RL_READER);
4198 		lock_page(pp);
4199 		put_page(pp);
4200 	}
4201 	error = zfs_fillpage(ip, pp);
4202 	zfs_rangelock_exit(lr);
4203 
4204 	if (error == 0)
4205 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4206 
4207 	zfs_exit(zfsvfs, FTAG);
4208 
4209 	return (error);
4210 }
4211 
4212 /*
4213  * Check ZFS specific permissions to memory map a section of a file.
4214  *
4215  *	IN:	ip	- inode of the file to mmap
4216  *		off	- file offset
4217  *		addrp	- start address in memory region
4218  *		len	- length of memory region
4219  *		vm_flags- address flags
4220  *
4221  *	RETURN:	0 if success
4222  *		error code if failure
4223  */
4224 int
zfs_map(struct inode * ip,offset_t off,caddr_t * addrp,size_t len,unsigned long vm_flags)4225 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4226     unsigned long vm_flags)
4227 {
4228 	(void) addrp;
4229 	znode_t  *zp = ITOZ(ip);
4230 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4231 	int error;
4232 
4233 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4234 		return (error);
4235 
4236 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4237 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4238 		zfs_exit(zfsvfs, FTAG);
4239 		return (SET_ERROR(EPERM));
4240 	}
4241 
4242 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4243 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4244 		zfs_exit(zfsvfs, FTAG);
4245 		return (SET_ERROR(EACCES));
4246 	}
4247 
4248 	if (off < 0 || len > MAXOFFSET_T - off) {
4249 		zfs_exit(zfsvfs, FTAG);
4250 		return (SET_ERROR(ENXIO));
4251 	}
4252 
4253 	zfs_exit(zfsvfs, FTAG);
4254 	return (0);
4255 }
4256 
4257 /*
4258  * Free or allocate space in a file.  Currently, this function only
4259  * supports the `F_FREESP' command.  However, this command is somewhat
4260  * misnamed, as its functionality includes the ability to allocate as
4261  * well as free space.
4262  *
4263  *	IN:	zp	- znode of file to free data in.
4264  *		cmd	- action to take (only F_FREESP supported).
4265  *		bfp	- section of file to free/alloc.
4266  *		flag	- current file open mode flags.
4267  *		offset	- current file offset.
4268  *		cr	- credentials of caller.
4269  *
4270  *	RETURN:	0 on success, error code on failure.
4271  *
4272  * Timestamps:
4273  *	zp - ctime|mtime updated
4274  */
4275 int
zfs_space(znode_t * zp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr)4276 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4277     offset_t offset, cred_t *cr)
4278 {
4279 	(void) offset;
4280 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4281 	uint64_t	off, len;
4282 	int		error;
4283 
4284 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4285 		return (error);
4286 
4287 	if (cmd != F_FREESP) {
4288 		zfs_exit(zfsvfs, FTAG);
4289 		return (SET_ERROR(EINVAL));
4290 	}
4291 
4292 	/*
4293 	 * Callers might not be able to detect properly that we are read-only,
4294 	 * so check it explicitly here.
4295 	 */
4296 	if (zfs_is_readonly(zfsvfs)) {
4297 		zfs_exit(zfsvfs, FTAG);
4298 		return (SET_ERROR(EROFS));
4299 	}
4300 
4301 	if (bfp->l_len < 0) {
4302 		zfs_exit(zfsvfs, FTAG);
4303 		return (SET_ERROR(EINVAL));
4304 	}
4305 
4306 	/*
4307 	 * Permissions aren't checked on Solaris because on this OS
4308 	 * zfs_space() can only be called with an opened file handle.
4309 	 * On Linux we can get here through truncate_range() which
4310 	 * operates directly on inodes, so we need to check access rights.
4311 	 */
4312 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4313 	    zfs_init_idmap))) {
4314 		zfs_exit(zfsvfs, FTAG);
4315 		return (error);
4316 	}
4317 
4318 	off = bfp->l_start;
4319 	len = bfp->l_len; /* 0 means from off to end of file */
4320 
4321 	error = zfs_freesp(zp, off, len, flag, TRUE);
4322 
4323 	zfs_exit(zfsvfs, FTAG);
4324 	return (error);
4325 }
4326 
4327 int
zfs_fid(struct inode * ip,fid_t * fidp)4328 zfs_fid(struct inode *ip, fid_t *fidp)
4329 {
4330 	znode_t		*zp = ITOZ(ip);
4331 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4332 	uint32_t	gen;
4333 	uint64_t	gen64;
4334 	uint64_t	object = zp->z_id;
4335 	zfid_short_t	*zfid;
4336 	int		size, i, error;
4337 
4338 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4339 		return (error);
4340 
4341 	if (fidp->fid_len < SHORT_FID_LEN) {
4342 		fidp->fid_len = SHORT_FID_LEN;
4343 		zfs_exit(zfsvfs, FTAG);
4344 		return (SET_ERROR(ENOSPC));
4345 	}
4346 
4347 	if ((error = zfs_verify_zp(zp)) != 0) {
4348 		zfs_exit(zfsvfs, FTAG);
4349 		return (error);
4350 	}
4351 
4352 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4353 	    &gen64, sizeof (uint64_t))) != 0) {
4354 		zfs_exit(zfsvfs, FTAG);
4355 		return (error);
4356 	}
4357 
4358 	gen = (uint32_t)gen64;
4359 
4360 	size = SHORT_FID_LEN;
4361 
4362 	zfid = (zfid_short_t *)fidp;
4363 
4364 	zfid->zf_len = size;
4365 
4366 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4367 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4368 
4369 	/* Must have a non-zero generation number to distinguish from .zfs */
4370 	if (gen == 0)
4371 		gen = 1;
4372 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4373 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4374 
4375 	zfs_exit(zfsvfs, FTAG);
4376 	return (0);
4377 }
4378 
4379 #if defined(_KERNEL)
4380 EXPORT_SYMBOL(zfs_open);
4381 EXPORT_SYMBOL(zfs_close);
4382 EXPORT_SYMBOL(zfs_lookup);
4383 EXPORT_SYMBOL(zfs_create);
4384 EXPORT_SYMBOL(zfs_tmpfile);
4385 EXPORT_SYMBOL(zfs_remove);
4386 EXPORT_SYMBOL(zfs_mkdir);
4387 EXPORT_SYMBOL(zfs_rmdir);
4388 EXPORT_SYMBOL(zfs_readdir);
4389 EXPORT_SYMBOL(zfs_getattr_fast);
4390 EXPORT_SYMBOL(zfs_setattr);
4391 EXPORT_SYMBOL(zfs_rename);
4392 EXPORT_SYMBOL(zfs_symlink);
4393 EXPORT_SYMBOL(zfs_readlink);
4394 EXPORT_SYMBOL(zfs_link);
4395 EXPORT_SYMBOL(zfs_inactive);
4396 EXPORT_SYMBOL(zfs_space);
4397 EXPORT_SYMBOL(zfs_fid);
4398 EXPORT_SYMBOL(zfs_getpage);
4399 EXPORT_SYMBOL(zfs_putpage);
4400 EXPORT_SYMBOL(zfs_dirty_inode);
4401 EXPORT_SYMBOL(zfs_map);
4402 
4403 module_param(zfs_delete_blocks, ulong, 0644);
4404 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4405 #endif
4406