1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41
42 /*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104 #ifdef _KERNEL
105
106 /*
107 * Return B_TRUE if the event actually posted, B_FALSE if not.
108 */
109 static boolean_t
zfs_ereport_start(nvlist_t ** ereport_out,nvlist_t ** detector_out,const char * subclass,spa_t * spa,vdev_t * vd,const zbookmark_phys_t * zb,zio_t * zio,uint64_t stateoroffset,uint64_t size)110 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
111 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
112 zio_t *zio, uint64_t stateoroffset, uint64_t size)
113 {
114 nvlist_t *ereport, *detector;
115
116 uint64_t ena;
117 char class[64];
118
119 if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
120 return (B_FALSE);
121
122 if ((ereport = fm_nvlist_create(NULL)) == NULL)
123 return (B_FALSE);
124
125 if ((detector = fm_nvlist_create(NULL)) == NULL) {
126 fm_nvlist_destroy(ereport, FM_NVA_FREE);
127 return (B_FALSE);
128 }
129
130 /*
131 * Serialize ereport generation
132 */
133 mutex_enter(&spa->spa_errlist_lock);
134
135 /*
136 * Determine the ENA to use for this event. If we are in a loading
137 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
138 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
139 */
140 if (spa_load_state(spa) != SPA_LOAD_NONE) {
141 if (spa->spa_ena == 0)
142 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
143 ena = spa->spa_ena;
144 } else if (zio != NULL && zio->io_logical != NULL) {
145 if (zio->io_logical->io_ena == 0)
146 zio->io_logical->io_ena =
147 fm_ena_generate(0, FM_ENA_FMT1);
148 ena = zio->io_logical->io_ena;
149 } else {
150 ena = fm_ena_generate(0, FM_ENA_FMT1);
151 }
152
153 /*
154 * Construct the full class, detector, and other standard FMA fields.
155 */
156 (void) snprintf(class, sizeof (class), "%s.%s",
157 ZFS_ERROR_CLASS, subclass);
158
159 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
160 vd != NULL ? vd->vdev_guid : 0);
161
162 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
163
164 /*
165 * Construct the per-ereport payload, depending on which parameters are
166 * passed in.
167 */
168
169 /*
170 * Generic payload members common to all ereports.
171 */
172 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
173 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
174 DATA_TYPE_UINT64, spa_guid(spa),
175 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
176 spa_load_state(spa), NULL);
177
178 if (spa != NULL) {
179 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
180 DATA_TYPE_STRING,
181 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
182 FM_EREPORT_FAILMODE_WAIT :
183 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
184 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
185 NULL);
186 }
187
188 if (vd != NULL) {
189 vdev_t *pvd = vd->vdev_parent;
190
191 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
192 DATA_TYPE_UINT64, vd->vdev_guid,
193 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
194 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
195 if (vd->vdev_path != NULL)
196 fm_payload_set(ereport,
197 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
198 DATA_TYPE_STRING, vd->vdev_path, NULL);
199 if (vd->vdev_devid != NULL)
200 fm_payload_set(ereport,
201 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
202 DATA_TYPE_STRING, vd->vdev_devid, NULL);
203 if (vd->vdev_fru != NULL)
204 fm_payload_set(ereport,
205 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
206 DATA_TYPE_STRING, vd->vdev_fru, NULL);
207 if (vd->vdev_ashift)
208 fm_payload_set(ereport,
209 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
210 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
211
212 if (pvd != NULL) {
213 fm_payload_set(ereport,
214 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
215 DATA_TYPE_UINT64, pvd->vdev_guid,
216 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
217 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
218 NULL);
219 if (pvd->vdev_path)
220 fm_payload_set(ereport,
221 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
222 DATA_TYPE_STRING, pvd->vdev_path, NULL);
223 if (pvd->vdev_devid)
224 fm_payload_set(ereport,
225 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
226 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
227 }
228 }
229
230 if (zio != NULL) {
231 /*
232 * Payload common to all I/Os.
233 */
234 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
235 DATA_TYPE_INT32, zio->io_error, NULL);
236
237 /*
238 * If the 'size' parameter is non-zero, it indicates this is a
239 * RAID-Z or other I/O where the physical offset and length are
240 * provided for us, instead of within the zio_t.
241 */
242 if (vd != NULL) {
243 if (size)
244 fm_payload_set(ereport,
245 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
246 DATA_TYPE_UINT64, stateoroffset,
247 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
248 DATA_TYPE_UINT64, size, NULL);
249 else
250 fm_payload_set(ereport,
251 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
252 DATA_TYPE_UINT64, zio->io_offset,
253 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
254 DATA_TYPE_UINT64, zio->io_size, NULL);
255 }
256 } else if (vd != NULL) {
257 /*
258 * If we have a vdev but no zio, this is a device fault, and the
259 * 'stateoroffset' parameter indicates the previous state of the
260 * vdev.
261 */
262 fm_payload_set(ereport,
263 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
264 DATA_TYPE_UINT64, stateoroffset, NULL);
265 }
266
267 /*
268 * Payload for I/Os with corresponding logical information.
269 */
270 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
271 fm_payload_set(ereport,
272 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
273 DATA_TYPE_UINT64, zb->zb_objset,
274 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
275 DATA_TYPE_UINT64, zb->zb_object,
276 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
277 DATA_TYPE_INT64, zb->zb_level,
278 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
279 DATA_TYPE_UINT64, zb->zb_blkid, NULL);
280 }
281
282 mutex_exit(&spa->spa_errlist_lock);
283
284 *ereport_out = ereport;
285 *detector_out = detector;
286 return (B_TRUE);
287 }
288
289 /* if it's <= 128 bytes, save the corruption directly */
290 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
291
292 #define MAX_RANGES 16
293
294 typedef struct zfs_ecksum_info {
295 /* histograms of set and cleared bits by bit number in a 64-bit word */
296 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
297 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
298
299 /* inline arrays of bits set and cleared. */
300 uint64_t zei_bits_set[ZFM_MAX_INLINE];
301 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
302
303 /*
304 * for each range, the number of bits set and cleared. The Hamming
305 * distance between the good and bad buffers is the sum of them all.
306 */
307 uint32_t zei_range_sets[MAX_RANGES];
308 uint32_t zei_range_clears[MAX_RANGES];
309
310 struct zei_ranges {
311 uint32_t zr_start;
312 uint32_t zr_end;
313 } zei_ranges[MAX_RANGES];
314
315 size_t zei_range_count;
316 uint32_t zei_mingap;
317 uint32_t zei_allowed_mingap;
318
319 } zfs_ecksum_info_t;
320
321 static void
update_histogram(uint64_t value_arg,uint32_t * hist,uint32_t * count)322 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
323 {
324 size_t i;
325 size_t bits = 0;
326 uint64_t value = BE_64(value_arg);
327
328 /* We store the bits in big-endian (largest-first) order */
329 for (i = 0; i < 64; i++) {
330 if (value & (1ull << i)) {
331 hist[63 - i]++;
332 ++bits;
333 }
334 }
335 /* update the count of bits changed */
336 *count += bits;
337 }
338
339 /*
340 * We've now filled up the range array, and need to increase "mingap" and
341 * shrink the range list accordingly. zei_mingap is always the smallest
342 * distance between array entries, so we set the new_allowed_gap to be
343 * one greater than that. We then go through the list, joining together
344 * any ranges which are closer than the new_allowed_gap.
345 *
346 * By construction, there will be at least one. We also update zei_mingap
347 * to the new smallest gap, to prepare for our next invocation.
348 */
349 static void
shrink_ranges(zfs_ecksum_info_t * eip)350 shrink_ranges(zfs_ecksum_info_t *eip)
351 {
352 uint32_t mingap = UINT32_MAX;
353 uint32_t new_allowed_gap = eip->zei_mingap + 1;
354
355 size_t idx, output;
356 size_t max = eip->zei_range_count;
357
358 struct zei_ranges *r = eip->zei_ranges;
359
360 ASSERT3U(eip->zei_range_count, >, 0);
361 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
362
363 output = idx = 0;
364 while (idx < max - 1) {
365 uint32_t start = r[idx].zr_start;
366 uint32_t end = r[idx].zr_end;
367
368 while (idx < max - 1) {
369 idx++;
370
371 uint32_t nstart = r[idx].zr_start;
372 uint32_t nend = r[idx].zr_end;
373
374 uint32_t gap = nstart - end;
375 if (gap < new_allowed_gap) {
376 end = nend;
377 continue;
378 }
379 if (gap < mingap)
380 mingap = gap;
381 break;
382 }
383 r[output].zr_start = start;
384 r[output].zr_end = end;
385 output++;
386 }
387 ASSERT3U(output, <, eip->zei_range_count);
388 eip->zei_range_count = output;
389 eip->zei_mingap = mingap;
390 eip->zei_allowed_mingap = new_allowed_gap;
391 }
392
393 static void
add_range(zfs_ecksum_info_t * eip,int start,int end)394 add_range(zfs_ecksum_info_t *eip, int start, int end)
395 {
396 struct zei_ranges *r = eip->zei_ranges;
397 size_t count = eip->zei_range_count;
398
399 if (count >= MAX_RANGES) {
400 shrink_ranges(eip);
401 count = eip->zei_range_count;
402 }
403 if (count == 0) {
404 eip->zei_mingap = UINT32_MAX;
405 eip->zei_allowed_mingap = 1;
406 } else {
407 int gap = start - r[count - 1].zr_end;
408
409 if (gap < eip->zei_allowed_mingap) {
410 r[count - 1].zr_end = end;
411 return;
412 }
413 if (gap < eip->zei_mingap)
414 eip->zei_mingap = gap;
415 }
416 r[count].zr_start = start;
417 r[count].zr_end = end;
418 eip->zei_range_count++;
419 }
420
421 static size_t
range_total_size(zfs_ecksum_info_t * eip)422 range_total_size(zfs_ecksum_info_t *eip)
423 {
424 struct zei_ranges *r = eip->zei_ranges;
425 size_t count = eip->zei_range_count;
426 size_t result = 0;
427 size_t idx;
428
429 for (idx = 0; idx < count; idx++)
430 result += (r[idx].zr_end - r[idx].zr_start);
431
432 return (result);
433 }
434
435 static zfs_ecksum_info_t *
annotate_ecksum(nvlist_t * ereport,zio_bad_cksum_t * info,const abd_t * goodabd,const abd_t * badabd,size_t size,boolean_t drop_if_identical)436 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
437 const abd_t *goodabd, const abd_t *badabd, size_t size,
438 boolean_t drop_if_identical)
439 {
440 const uint64_t *good;
441 const uint64_t *bad;
442
443 uint64_t allset = 0;
444 uint64_t allcleared = 0;
445
446 size_t nui64s = size / sizeof (uint64_t);
447
448 size_t inline_size;
449 int no_inline = 0;
450 size_t idx;
451 size_t range;
452
453 size_t offset = 0;
454 ssize_t start = -1;
455
456 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
457
458 /* don't do any annotation for injected checksum errors */
459 if (info != NULL && info->zbc_injected)
460 return (eip);
461
462 if (info != NULL && info->zbc_has_cksum) {
463 fm_payload_set(ereport,
464 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
465 DATA_TYPE_UINT64_ARRAY,
466 sizeof (info->zbc_expected) / sizeof (uint64_t),
467 (uint64_t *)&info->zbc_expected,
468 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
469 DATA_TYPE_UINT64_ARRAY,
470 sizeof (info->zbc_actual) / sizeof (uint64_t),
471 (uint64_t *)&info->zbc_actual,
472 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
473 DATA_TYPE_STRING,
474 info->zbc_checksum_name,
475 NULL);
476
477 if (info->zbc_byteswapped) {
478 fm_payload_set(ereport,
479 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
480 DATA_TYPE_BOOLEAN, 1,
481 NULL);
482 }
483 }
484
485 if (badabd == NULL || goodabd == NULL)
486 return (eip);
487
488 ASSERT3U(nui64s, <=, UINT32_MAX);
489 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
490 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
491 ASSERT3U(size, <=, UINT32_MAX);
492
493 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
494 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
495
496 /* build up the range list by comparing the two buffers. */
497 for (idx = 0; idx < nui64s; idx++) {
498 if (good[idx] == bad[idx]) {
499 if (start == -1)
500 continue;
501
502 add_range(eip, start, idx);
503 start = -1;
504 } else {
505 if (start != -1)
506 continue;
507
508 start = idx;
509 }
510 }
511 if (start != -1)
512 add_range(eip, start, idx);
513
514 /* See if it will fit in our inline buffers */
515 inline_size = range_total_size(eip);
516 if (inline_size > ZFM_MAX_INLINE)
517 no_inline = 1;
518
519 /*
520 * If there is no change and we want to drop if the buffers are
521 * identical, do so.
522 */
523 if (inline_size == 0 && drop_if_identical) {
524 kmem_free(eip, sizeof (*eip));
525 abd_return_buf((abd_t *)goodabd, (void *)good, size);
526 abd_return_buf((abd_t *)badabd, (void *)bad, size);
527 return (NULL);
528 }
529
530 /*
531 * Now walk through the ranges, filling in the details of the
532 * differences. Also convert our uint64_t-array offsets to byte
533 * offsets.
534 */
535 for (range = 0; range < eip->zei_range_count; range++) {
536 size_t start = eip->zei_ranges[range].zr_start;
537 size_t end = eip->zei_ranges[range].zr_end;
538
539 for (idx = start; idx < end; idx++) {
540 uint64_t set, cleared;
541
542 // bits set in bad, but not in good
543 set = ((~good[idx]) & bad[idx]);
544 // bits set in good, but not in bad
545 cleared = (good[idx] & (~bad[idx]));
546
547 allset |= set;
548 allcleared |= cleared;
549
550 if (!no_inline) {
551 ASSERT3U(offset, <, inline_size);
552 eip->zei_bits_set[offset] = set;
553 eip->zei_bits_cleared[offset] = cleared;
554 offset++;
555 }
556
557 update_histogram(set, eip->zei_histogram_set,
558 &eip->zei_range_sets[range]);
559 update_histogram(cleared, eip->zei_histogram_cleared,
560 &eip->zei_range_clears[range]);
561 }
562
563 /* convert to byte offsets */
564 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
565 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
566 }
567
568 abd_return_buf((abd_t *)goodabd, (void *)good, size);
569 abd_return_buf((abd_t *)badabd, (void *)bad, size);
570
571 eip->zei_allowed_mingap *= sizeof (uint64_t);
572 inline_size *= sizeof (uint64_t);
573
574 /* fill in ereport */
575 fm_payload_set(ereport,
576 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
577 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
578 (uint32_t *)eip->zei_ranges,
579 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
580 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
581 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
582 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
583 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
584 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
585 NULL);
586
587 if (!no_inline) {
588 fm_payload_set(ereport,
589 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
590 DATA_TYPE_UINT8_ARRAY,
591 inline_size, (uint8_t *)eip->zei_bits_set,
592 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
593 DATA_TYPE_UINT8_ARRAY,
594 inline_size, (uint8_t *)eip->zei_bits_cleared,
595 NULL);
596 } else {
597 fm_payload_set(ereport,
598 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
599 DATA_TYPE_UINT32_ARRAY,
600 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
601 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
602 DATA_TYPE_UINT32_ARRAY,
603 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
604 NULL);
605 }
606 return (eip);
607 }
608 #endif
609
610 /*
611 * Make sure our event is still valid for the given zio/vdev/pool. For example,
612 * we don't want to keep logging events for a faulted or missing vdev.
613 */
614 boolean_t
zfs_ereport_is_valid(const char * subclass,spa_t * spa,vdev_t * vd,zio_t * zio)615 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
616 {
617 #ifdef _KERNEL
618 /*
619 * If we are doing a spa_tryimport() or in recovery mode,
620 * ignore errors.
621 */
622 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
623 spa_load_state(spa) == SPA_LOAD_RECOVER)
624 return (B_FALSE);
625
626 /*
627 * If we are in the middle of opening a pool, and the previous attempt
628 * failed, don't bother logging any new ereports - we're just going to
629 * get the same diagnosis anyway.
630 */
631 if (spa_load_state(spa) != SPA_LOAD_NONE &&
632 spa->spa_last_open_failed)
633 return (B_FALSE);
634
635 if (zio != NULL) {
636 /*
637 * If this is not a read or write zio, ignore the error. This
638 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
639 */
640 if (zio->io_type != ZIO_TYPE_READ &&
641 zio->io_type != ZIO_TYPE_WRITE)
642 return (B_FALSE);
643
644 if (vd != NULL) {
645 /*
646 * If the vdev has already been marked as failing due
647 * to a failed probe, then ignore any subsequent I/O
648 * errors, as the DE will automatically fault the vdev
649 * on the first such failure. This also catches cases
650 * where vdev_remove_wanted is set and the device has
651 * not yet been asynchronously placed into the REMOVED
652 * state.
653 */
654 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
655 return (B_FALSE);
656
657 /*
658 * Ignore checksum errors for reads from DTL regions of
659 * leaf vdevs.
660 */
661 if (zio->io_type == ZIO_TYPE_READ &&
662 zio->io_error == ECKSUM &&
663 vd->vdev_ops->vdev_op_leaf &&
664 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
665 return (B_FALSE);
666 }
667 }
668
669 /*
670 * For probe failure, we want to avoid posting ereports if we've
671 * already removed the device in the meantime.
672 */
673 if (vd != NULL &&
674 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
675 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
676 return (B_FALSE);
677
678 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
679 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
680 (zio != NULL) && (!zio->io_timestamp)) {
681 return (B_FALSE);
682 }
683 #endif
684 return (B_TRUE);
685 }
686
687 /*
688 * Return 0 if event was posted, EINVAL if there was a problem posting it or
689 * EBUSY if the event was rate limited.
690 */
691 int
zfs_ereport_post(const char * subclass,spa_t * spa,vdev_t * vd,const struct zbookmark_phys * zb,zio_t * zio,uint64_t stateoroffset,uint64_t size)692 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
693 const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset,
694 uint64_t size)
695 {
696 int rc = 0;
697 #ifdef _KERNEL
698 nvlist_t *ereport = NULL;
699 nvlist_t *detector = NULL;
700
701 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
702 zb, zio, stateoroffset, size))
703 return (SET_ERROR(EINVAL)); /* couldn't post event */
704
705 if (ereport == NULL)
706 return (SET_ERROR(EINVAL));
707
708 fm_ereport_post(ereport, EVCH_SLEEP);
709
710 fm_nvlist_destroy(ereport, FM_NVA_FREE);
711 fm_nvlist_destroy(detector, FM_NVA_FREE);
712 #endif
713 return (rc);
714 }
715
716 void
zfs_ereport_start_checksum(spa_t * spa,vdev_t * vd,const zbookmark_phys_t * zb,struct zio * zio,uint64_t offset,uint64_t length,void * arg,zio_bad_cksum_t * info)717 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
718 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
719 zio_bad_cksum_t *info)
720 {
721 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
722
723 if (zio->io_vsd != NULL)
724 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
725 else
726 zio_vsd_default_cksum_report(zio, report, arg);
727
728 /* copy the checksum failure information if it was provided */
729 if (info != NULL) {
730 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
731 bcopy(info, report->zcr_ckinfo, sizeof (*info));
732 }
733
734 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
735 report->zcr_length = length;
736
737 #ifdef _KERNEL
738 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
739 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
740
741 if (report->zcr_ereport == NULL) {
742 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
743 if (report->zcr_ckinfo != NULL) {
744 kmem_free(report->zcr_ckinfo,
745 sizeof (*report->zcr_ckinfo));
746 }
747 kmem_free(report, sizeof (*report));
748 return;
749 }
750 #endif
751
752 mutex_enter(&spa->spa_errlist_lock);
753 report->zcr_next = zio->io_logical->io_cksum_report;
754 zio->io_logical->io_cksum_report = report;
755 mutex_exit(&spa->spa_errlist_lock);
756 }
757
758 void
zfs_ereport_finish_checksum(zio_cksum_report_t * report,const abd_t * good_data,const abd_t * bad_data,boolean_t drop_if_identical)759 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
760 const abd_t *bad_data, boolean_t drop_if_identical)
761 {
762 #ifdef _KERNEL
763 zfs_ecksum_info_t *info = NULL;
764 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
765 good_data, bad_data, report->zcr_length, drop_if_identical);
766
767 if (info != NULL)
768 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
769
770 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
771 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
772 report->zcr_ereport = report->zcr_detector = NULL;
773
774 if (info != NULL)
775 kmem_free(info, sizeof (*info));
776 #endif
777 }
778
779 void
zfs_ereport_free_checksum(zio_cksum_report_t * rpt)780 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
781 {
782 #ifdef _KERNEL
783 if (rpt->zcr_ereport != NULL) {
784 fm_nvlist_destroy(rpt->zcr_ereport,
785 FM_NVA_FREE);
786 fm_nvlist_destroy(rpt->zcr_detector,
787 FM_NVA_FREE);
788 }
789 #endif
790 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
791
792 if (rpt->zcr_ckinfo != NULL)
793 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
794
795 kmem_free(rpt, sizeof (*rpt));
796 }
797
798 void
zfs_ereport_send_interim_checksum(zio_cksum_report_t * report)799 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
800 {
801 #ifdef _KERNEL
802 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
803 #endif
804 }
805
806 int
zfs_ereport_post_checksum(spa_t * spa,vdev_t * vd,const zbookmark_phys_t * zb,struct zio * zio,uint64_t offset,uint64_t length,const abd_t * good_data,const abd_t * bad_data,zio_bad_cksum_t * zbc)807 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
808 struct zio *zio, uint64_t offset, uint64_t length,
809 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
810 {
811 int rc = 0;
812 #ifdef _KERNEL
813 nvlist_t *ereport = NULL;
814 nvlist_t *detector = NULL;
815 zfs_ecksum_info_t *info;
816
817 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
818 spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
819 return (SET_ERROR(EINVAL));
820 }
821
822 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
823 B_FALSE);
824
825 if (info != NULL)
826 fm_ereport_post(ereport, EVCH_SLEEP);
827
828 fm_nvlist_destroy(ereport, FM_NVA_FREE);
829 fm_nvlist_destroy(detector, FM_NVA_FREE);
830
831 if (info != NULL)
832 kmem_free(info, sizeof (*info));
833 #endif
834 return (rc);
835 }
836
837 static void
zfs_post_common(spa_t * spa,vdev_t * vd,const char * name)838 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
839 {
840 #ifdef _KERNEL
841 nvlist_t *resource;
842 char class[64];
843
844 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
845 return;
846
847 if ((resource = fm_nvlist_create(NULL)) == NULL)
848 return;
849
850 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
851 ZFS_ERROR_CLASS, name);
852 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
853 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
854 VERIFY(nvlist_add_uint64(resource,
855 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
856 if (vd)
857 VERIFY(nvlist_add_uint64(resource,
858 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
859
860 fm_ereport_post(resource, EVCH_SLEEP);
861
862 fm_nvlist_destroy(resource, FM_NVA_FREE);
863 #endif
864 }
865
866 /*
867 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
868 * has been removed from the system. This will cause the DE to ignore any
869 * recent I/O errors, inferring that they are due to the asynchronous device
870 * removal.
871 */
872 void
zfs_post_remove(spa_t * spa,vdev_t * vd)873 zfs_post_remove(spa_t *spa, vdev_t *vd)
874 {
875 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
876 }
877
878 /*
879 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
880 * has the 'autoreplace' property set, and therefore any broken vdevs will be
881 * handled by higher level logic, and no vdev fault should be generated.
882 */
883 void
zfs_post_autoreplace(spa_t * spa,vdev_t * vd)884 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
885 {
886 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
887 }
888
889 /*
890 * The 'resource.fs.zfs.statechange' event is an internal signal that the
891 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
892 * cause the retire agent to repair any outstanding fault management cases
893 * open because the device was not found (fault.fs.zfs.device).
894 */
895 void
zfs_post_state_change(spa_t * spa,vdev_t * vd)896 zfs_post_state_change(spa_t *spa, vdev_t *vd)
897 {
898 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
899 }
900