xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 17aab35a77a1b1bf02fc85bb8ffadccb0ca5006d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 #include <linux/mm_compat.h>
73 
74 /*
75  * Programming rules.
76  *
77  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
78  * properly lock its in-core state, create a DMU transaction, do the work,
79  * record this work in the intent log (ZIL), commit the DMU transaction,
80  * and wait for the intent log to commit if it is a synchronous operation.
81  * Moreover, the vnode ops must work in both normal and log replay context.
82  * The ordering of events is important to avoid deadlocks and references
83  * to freed memory.  The example below illustrates the following Big Rules:
84  *
85  *  (1) A check must be made in each zfs thread for a mounted file system.
86  *	This is done avoiding races using zfs_enter(zfsvfs).
87  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
88  *      must be checked with zfs_verify_zp(zp).  Both of these macros
89  *      can return EIO from the calling function.
90  *
91  *  (2) zrele() should always be the last thing except for zil_commit() (if
92  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
93  *	last reference, the vnode/znode can be freed, so the zp may point to
94  *	freed memory.  Second, the last reference will call zfs_zinactive(),
95  *	which may induce a lot of work -- pushing cached pages (which acquires
96  *	range locks) and syncing out cached atime changes.  Third,
97  *	zfs_zinactive() may require a new tx, which could deadlock the system
98  *	if you were already holding one. This deadlock occurs because the tx
99  *	currently being operated on prevents a txg from syncing, which
100  *	prevents the new tx from progressing, resulting in a deadlock.  If you
101  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
102  *	is a synonym for zrele().
103  *
104  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
105  *	as they can span dmu_tx_assign() calls.
106  *
107  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
108  *      dmu_tx_assign().  This is critical because we don't want to block
109  *      while holding locks.
110  *
111  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
112  *	reduces lock contention and CPU usage when we must wait (note that if
113  *	throughput is constrained by the storage, nearly every transaction
114  *	must wait).
115  *
116  *      Note, in particular, that if a lock is sometimes acquired before
117  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
118  *      to use a non-blocking assign can deadlock the system.  The scenario:
119  *
120  *	Thread A has grabbed a lock before calling dmu_tx_assign().
121  *	Thread B is in an already-assigned tx, and blocks for this lock.
122  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123  *	forever, because the previous txg can't quiesce until B's tx commits.
124  *
125  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
127  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
128  *	to indicate that this operation has already called dmu_tx_wait().
129  *	This will ensure that we don't retry forever, waiting a short bit
130  *	each time.
131  *
132  *  (5)	If the operation succeeded, generate the intent log entry for it
133  *	before dropping locks.  This ensures that the ordering of events
134  *	in the intent log matches the order in which they actually occurred.
135  *	During ZIL replay the zfs_log_* functions will update the sequence
136  *	number to indicate the zil transaction has replayed.
137  *
138  *  (6)	At the end of each vnode op, the DMU tx must always commit,
139  *	regardless of whether there were any errors.
140  *
141  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
142  *	to ensure that synchronous semantics are provided when necessary.
143  *
144  * In general, this is how things should be ordered in each vnode op:
145  *
146  *	zfs_enter(zfsvfs);		// exit if unmounted
147  * top:
148  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
149  *	rw_enter(...);			// grab any other locks you need
150  *	tx = dmu_tx_create(...);	// get DMU tx
151  *	dmu_tx_hold_*();		// hold each object you might modify
152  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
153  *	if (error) {
154  *		rw_exit(...);		// drop locks
155  *		zfs_dirent_unlock(dl);	// unlock directory entry
156  *		zrele(...);		// release held znodes
157  *		if (error == ERESTART) {
158  *			waited = B_TRUE;
159  *			dmu_tx_wait(tx);
160  *			dmu_tx_abort(tx);
161  *			goto top;
162  *		}
163  *		dmu_tx_abort(tx);	// abort DMU tx
164  *		zfs_exit(zfsvfs);	// finished in zfs
165  *		return (error);		// really out of space
166  *	}
167  *	error = do_real_work();		// do whatever this VOP does
168  *	if (error == 0)
169  *		zfs_log_*(...);		// on success, make ZIL entry
170  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
171  *	rw_exit(...);			// drop locks
172  *	zfs_dirent_unlock(dl);		// unlock directory entry
173  *	zrele(...);			// release held znodes
174  *	zil_commit(zilog, foid);	// synchronous when necessary
175  *	zfs_exit(zfsvfs);		// finished in zfs
176  *	return (error);			// done, report error
177  */
178 int
zfs_open(struct inode * ip,int mode,int flag,cred_t * cr)179 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
180 {
181 	(void) cr;
182 	znode_t	*zp = ITOZ(ip);
183 	zfsvfs_t *zfsvfs = ITOZSB(ip);
184 	int error;
185 
186 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
187 		return (error);
188 
189 	/* Honor ZFS_APPENDONLY file attribute */
190 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
191 	    ((flag & O_APPEND) == 0)) {
192 		zfs_exit(zfsvfs, FTAG);
193 		return (SET_ERROR(EPERM));
194 	}
195 
196 	/*
197 	 * Keep a count of the synchronous opens in the znode.  On first
198 	 * synchronous open we must convert all previous async transactions
199 	 * into sync to keep correct ordering.
200 	 */
201 	if (flag & O_SYNC) {
202 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
203 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
204 	}
205 
206 	zfs_exit(zfsvfs, FTAG);
207 	return (0);
208 }
209 
210 int
zfs_close(struct inode * ip,int flag,cred_t * cr)211 zfs_close(struct inode *ip, int flag, cred_t *cr)
212 {
213 	(void) cr;
214 	znode_t	*zp = ITOZ(ip);
215 	zfsvfs_t *zfsvfs = ITOZSB(ip);
216 	int error;
217 
218 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 		return (error);
220 
221 	/* Decrement the synchronous opens in the znode */
222 	if (flag & O_SYNC)
223 		atomic_dec_32(&zp->z_sync_cnt);
224 
225 	zfs_exit(zfsvfs, FTAG);
226 	return (0);
227 }
228 
229 #if defined(_KERNEL)
230 
231 static int zfs_fillpage(struct inode *ip, struct page *pp);
232 
233 /*
234  * When a file is memory mapped, we must keep the IO data synchronized
235  * between the DMU cache and the memory mapped pages.  Update all mapped
236  * pages with the contents of the coresponding dmu buffer.
237  */
238 void
update_pages(znode_t * zp,int64_t start,int len,objset_t * os)239 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
240 {
241 	struct address_space *mp = ZTOI(zp)->i_mapping;
242 	int64_t off = start & (PAGE_SIZE - 1);
243 
244 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
245 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
246 
247 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
248 		if (pp) {
249 			if (mapping_writably_mapped(mp))
250 				flush_dcache_page(pp);
251 
252 			void *pb = kmap(pp);
253 			int error = dmu_read(os, zp->z_id, start + off,
254 			    nbytes, pb + off, DMU_READ_PREFETCH);
255 			kunmap(pp);
256 
257 			if (error) {
258 				SetPageError(pp);
259 				ClearPageUptodate(pp);
260 			} else {
261 				ClearPageError(pp);
262 				SetPageUptodate(pp);
263 
264 				if (mapping_writably_mapped(mp))
265 					flush_dcache_page(pp);
266 
267 				mark_page_accessed(pp);
268 			}
269 
270 			unlock_page(pp);
271 			put_page(pp);
272 		}
273 
274 		len -= nbytes;
275 		off = 0;
276 	}
277 }
278 
279 /*
280  * When a file is memory mapped, we must keep the I/O data synchronized
281  * between the DMU cache and the memory mapped pages.  Preferentially read
282  * from memory mapped pages, otherwise fallback to reading through the dmu.
283  */
284 int
mappedread(znode_t * zp,int nbytes,zfs_uio_t * uio)285 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
286 {
287 	struct inode *ip = ZTOI(zp);
288 	struct address_space *mp = ip->i_mapping;
289 	int64_t start = uio->uio_loffset;
290 	int64_t off = start & (PAGE_SIZE - 1);
291 	int len = nbytes;
292 	int error = 0;
293 
294 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
295 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
296 
297 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
298 		if (pp) {
299 
300 			/*
301 			 * If filemap_fault() retries there exists a window
302 			 * where the page will be unlocked and not up to date.
303 			 * In this case we must try and fill the page.
304 			 */
305 			if (unlikely(!PageUptodate(pp))) {
306 				error = zfs_fillpage(ip, pp);
307 				if (error) {
308 					unlock_page(pp);
309 					put_page(pp);
310 					return (error);
311 				}
312 			}
313 
314 			ASSERT(PageUptodate(pp) || PageDirty(pp));
315 
316 			unlock_page(pp);
317 
318 			void *pb = kmap(pp);
319 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
320 			kunmap(pp);
321 
322 			if (mapping_writably_mapped(mp))
323 				flush_dcache_page(pp);
324 
325 			mark_page_accessed(pp);
326 			put_page(pp);
327 		} else {
328 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
329 			    uio, bytes);
330 		}
331 
332 		len -= bytes;
333 		off = 0;
334 
335 		if (error)
336 			break;
337 	}
338 
339 	return (error);
340 }
341 #endif /* _KERNEL */
342 
343 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
344 
345 /*
346  * Write the bytes to a file.
347  *
348  *	IN:	zp	- znode of file to be written to
349  *		data	- bytes to write
350  *		len	- number of bytes to write
351  *		pos	- offset to start writing at
352  *
353  *	OUT:	resid	- remaining bytes to write
354  *
355  *	RETURN:	0 if success
356  *		positive error code if failure.  EIO is	returned
357  *		for a short write when residp isn't provided.
358  *
359  * Timestamps:
360  *	zp - ctime|mtime updated if byte count > 0
361  */
362 int
zfs_write_simple(znode_t * zp,const void * data,size_t len,loff_t pos,size_t * residp)363 zfs_write_simple(znode_t *zp, const void *data, size_t len,
364     loff_t pos, size_t *residp)
365 {
366 	fstrans_cookie_t cookie;
367 	int error;
368 
369 	struct iovec iov;
370 	iov.iov_base = (void *)data;
371 	iov.iov_len = len;
372 
373 	zfs_uio_t uio;
374 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
375 
376 	cookie = spl_fstrans_mark();
377 	error = zfs_write(zp, &uio, 0, kcred);
378 	spl_fstrans_unmark(cookie);
379 
380 	if (error == 0) {
381 		if (residp != NULL)
382 			*residp = zfs_uio_resid(&uio);
383 		else if (zfs_uio_resid(&uio) != 0)
384 			error = SET_ERROR(EIO);
385 	}
386 
387 	return (error);
388 }
389 
390 static void
zfs_rele_async_task(void * arg)391 zfs_rele_async_task(void *arg)
392 {
393 	iput(arg);
394 }
395 
396 void
zfs_zrele_async(znode_t * zp)397 zfs_zrele_async(znode_t *zp)
398 {
399 	struct inode *ip = ZTOI(zp);
400 	objset_t *os = ITOZSB(ip)->z_os;
401 
402 	ASSERT(atomic_read(&ip->i_count) > 0);
403 	ASSERT(os != NULL);
404 
405 	/*
406 	 * If decrementing the count would put us at 0, we can't do it inline
407 	 * here, because that would be synchronous. Instead, dispatch an iput
408 	 * to run later.
409 	 *
410 	 * For more information on the dangers of a synchronous iput, see the
411 	 * header comment of this file.
412 	 */
413 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
414 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
415 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
416 	}
417 }
418 
419 
420 /*
421  * Lookup an entry in a directory, or an extended attribute directory.
422  * If it exists, return a held inode reference for it.
423  *
424  *	IN:	zdp	- znode of directory to search.
425  *		nm	- name of entry to lookup.
426  *		flags	- LOOKUP_XATTR set if looking for an attribute.
427  *		cr	- credentials of caller.
428  *		direntflags - directory lookup flags
429  *		realpnp - returned pathname.
430  *
431  *	OUT:	zpp	- znode of located entry, NULL if not found.
432  *
433  *	RETURN:	0 on success, error code on failure.
434  *
435  * Timestamps:
436  *	NA
437  */
438 int
zfs_lookup(znode_t * zdp,char * nm,znode_t ** zpp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)439 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
440     int *direntflags, pathname_t *realpnp)
441 {
442 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
443 	int error = 0;
444 
445 	/*
446 	 * Fast path lookup, however we must skip DNLC lookup
447 	 * for case folding or normalizing lookups because the
448 	 * DNLC code only stores the passed in name.  This means
449 	 * creating 'a' and removing 'A' on a case insensitive
450 	 * file system would work, but DNLC still thinks 'a'
451 	 * exists and won't let you create it again on the next
452 	 * pass through fast path.
453 	 */
454 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
455 
456 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
457 			return (SET_ERROR(ENOTDIR));
458 		} else if (zdp->z_sa_hdl == NULL) {
459 			return (SET_ERROR(EIO));
460 		}
461 
462 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
463 			error = zfs_fastaccesschk_execute(zdp, cr);
464 			if (!error) {
465 				*zpp = zdp;
466 				zhold(*zpp);
467 				return (0);
468 			}
469 			return (error);
470 		}
471 	}
472 
473 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
474 		return (error);
475 
476 	*zpp = NULL;
477 
478 	if (flags & LOOKUP_XATTR) {
479 		/*
480 		 * We don't allow recursive attributes..
481 		 * Maybe someday we will.
482 		 */
483 		if (zdp->z_pflags & ZFS_XATTR) {
484 			zfs_exit(zfsvfs, FTAG);
485 			return (SET_ERROR(EINVAL));
486 		}
487 
488 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
489 			zfs_exit(zfsvfs, FTAG);
490 			return (error);
491 		}
492 
493 		/*
494 		 * Do we have permission to get into attribute directory?
495 		 */
496 
497 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
498 		    B_TRUE, cr, zfs_init_idmap))) {
499 			zrele(*zpp);
500 			*zpp = NULL;
501 		}
502 
503 		zfs_exit(zfsvfs, FTAG);
504 		return (error);
505 	}
506 
507 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
508 		zfs_exit(zfsvfs, FTAG);
509 		return (SET_ERROR(ENOTDIR));
510 	}
511 
512 	/*
513 	 * Check accessibility of directory.
514 	 */
515 
516 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
517 	    zfs_init_idmap))) {
518 		zfs_exit(zfsvfs, FTAG);
519 		return (error);
520 	}
521 
522 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
523 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
524 		zfs_exit(zfsvfs, FTAG);
525 		return (SET_ERROR(EILSEQ));
526 	}
527 
528 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
529 	if ((error == 0) && (*zpp))
530 		zfs_znode_update_vfs(*zpp);
531 
532 	zfs_exit(zfsvfs, FTAG);
533 	return (error);
534 }
535 
536 /*
537  * Perform a linear search in directory for the name of specific inode.
538  * Note we don't pass in the buffer size of name because it's hardcoded to
539  * NAME_MAX+1(256) in Linux.
540  *
541  *	IN:	dzp	- znode of directory to search.
542  *		zp	- znode of the target
543  *
544  *	OUT:	name	- dentry name of the target
545  *
546  *	RETURN:	0 on success, error code on failure.
547  */
548 int
zfs_get_name(znode_t * dzp,char * name,znode_t * zp)549 zfs_get_name(znode_t *dzp, char *name, znode_t *zp)
550 {
551 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
552 	int error = 0;
553 
554 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
555 		return (error);
556 
557 	if ((error = zfs_verify_zp(zp)) != 0) {
558 		zfs_exit(zfsvfs, FTAG);
559 		return (error);
560 	}
561 
562 	/* ctldir should have got their name in zfs_vget */
563 	if (dzp->z_is_ctldir || zp->z_is_ctldir) {
564 		zfs_exit(zfsvfs, FTAG);
565 		return (ENOENT);
566 	}
567 
568 	/* buffer len is hardcoded to 256 in Linux kernel */
569 	error = zap_value_search(zfsvfs->z_os, dzp->z_id, zp->z_id,
570 	    ZFS_DIRENT_OBJ(-1ULL), name, ZAP_MAXNAMELEN);
571 
572 	zfs_exit(zfsvfs, FTAG);
573 	return (error);
574 }
575 
576 /*
577  * Attempt to create a new entry in a directory.  If the entry
578  * already exists, truncate the file if permissible, else return
579  * an error.  Return the ip of the created or trunc'd file.
580  *
581  *	IN:	dzp	- znode of directory to put new file entry in.
582  *		name	- name of new file entry.
583  *		vap	- attributes of new file.
584  *		excl	- flag indicating exclusive or non-exclusive mode.
585  *		mode	- mode to open file with.
586  *		cr	- credentials of caller.
587  *		flag	- file flag.
588  *		vsecp	- ACL to be set
589  *		mnt_ns	- user namespace of the mount
590  *
591  *	OUT:	zpp	- znode of created or trunc'd entry.
592  *
593  *	RETURN:	0 on success, error code on failure.
594  *
595  * Timestamps:
596  *	dzp - ctime|mtime updated if new entry created
597  *	 zp - ctime|mtime always, atime if new
598  */
599 int
zfs_create(znode_t * dzp,char * name,vattr_t * vap,int excl,int mode,znode_t ** zpp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)600 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
601     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
602     zidmap_t *mnt_ns)
603 {
604 	znode_t		*zp;
605 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
606 	zilog_t		*zilog;
607 	objset_t	*os;
608 	zfs_dirlock_t	*dl;
609 	dmu_tx_t	*tx;
610 	int		error;
611 	uid_t		uid;
612 	gid_t		gid;
613 	zfs_acl_ids_t   acl_ids;
614 	boolean_t	fuid_dirtied;
615 	boolean_t	have_acl = B_FALSE;
616 	boolean_t	waited = B_FALSE;
617 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
618 
619 	/*
620 	 * If we have an ephemeral id, ACL, or XVATTR then
621 	 * make sure file system is at proper version
622 	 */
623 
624 	gid = crgetgid(cr);
625 	uid = crgetuid(cr);
626 
627 	if (zfsvfs->z_use_fuids == B_FALSE &&
628 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
629 		return (SET_ERROR(EINVAL));
630 
631 	if (name == NULL)
632 		return (SET_ERROR(EINVAL));
633 
634 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
635 		return (error);
636 	os = zfsvfs->z_os;
637 	zilog = zfsvfs->z_log;
638 
639 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
640 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
641 		zfs_exit(zfsvfs, FTAG);
642 		return (SET_ERROR(EILSEQ));
643 	}
644 
645 	if (vap->va_mask & ATTR_XVATTR) {
646 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
647 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
648 			zfs_exit(zfsvfs, FTAG);
649 			return (error);
650 		}
651 	}
652 
653 top:
654 	*zpp = NULL;
655 	if (*name == '\0') {
656 		/*
657 		 * Null component name refers to the directory itself.
658 		 */
659 		zhold(dzp);
660 		zp = dzp;
661 		dl = NULL;
662 		error = 0;
663 	} else {
664 		/* possible igrab(zp) */
665 		int zflg = 0;
666 
667 		if (flag & FIGNORECASE)
668 			zflg |= ZCILOOK;
669 
670 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
671 		    NULL, NULL);
672 		if (error) {
673 			if (have_acl)
674 				zfs_acl_ids_free(&acl_ids);
675 			if (strcmp(name, "..") == 0)
676 				error = SET_ERROR(EISDIR);
677 			zfs_exit(zfsvfs, FTAG);
678 			return (error);
679 		}
680 	}
681 
682 	if (zp == NULL) {
683 		uint64_t txtype;
684 		uint64_t projid = ZFS_DEFAULT_PROJID;
685 
686 		/*
687 		 * Create a new file object and update the directory
688 		 * to reference it.
689 		 */
690 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
691 		    mnt_ns))) {
692 			if (have_acl)
693 				zfs_acl_ids_free(&acl_ids);
694 			goto out;
695 		}
696 
697 		/*
698 		 * We only support the creation of regular files in
699 		 * extended attribute directories.
700 		 */
701 
702 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
703 			if (have_acl)
704 				zfs_acl_ids_free(&acl_ids);
705 			error = SET_ERROR(EINVAL);
706 			goto out;
707 		}
708 
709 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
710 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
711 			goto out;
712 		have_acl = B_TRUE;
713 
714 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
715 			projid = zfs_inherit_projid(dzp);
716 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
717 			zfs_acl_ids_free(&acl_ids);
718 			error = SET_ERROR(EDQUOT);
719 			goto out;
720 		}
721 
722 		tx = dmu_tx_create(os);
723 
724 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
725 		    ZFS_SA_BASE_ATTR_SIZE);
726 
727 		fuid_dirtied = zfsvfs->z_fuid_dirty;
728 		if (fuid_dirtied)
729 			zfs_fuid_txhold(zfsvfs, tx);
730 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
731 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
732 		if (!zfsvfs->z_use_sa &&
733 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
734 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
735 			    0, acl_ids.z_aclp->z_acl_bytes);
736 		}
737 
738 		error = dmu_tx_assign(tx,
739 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
740 		if (error) {
741 			zfs_dirent_unlock(dl);
742 			if (error == ERESTART) {
743 				waited = B_TRUE;
744 				dmu_tx_wait(tx);
745 				dmu_tx_abort(tx);
746 				goto top;
747 			}
748 			zfs_acl_ids_free(&acl_ids);
749 			dmu_tx_abort(tx);
750 			zfs_exit(zfsvfs, FTAG);
751 			return (error);
752 		}
753 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
754 
755 		error = zfs_link_create(dl, zp, tx, ZNEW);
756 		if (error != 0) {
757 			/*
758 			 * Since, we failed to add the directory entry for it,
759 			 * delete the newly created dnode.
760 			 */
761 			zfs_znode_delete(zp, tx);
762 			remove_inode_hash(ZTOI(zp));
763 			zfs_acl_ids_free(&acl_ids);
764 			dmu_tx_commit(tx);
765 			goto out;
766 		}
767 
768 		if (fuid_dirtied)
769 			zfs_fuid_sync(zfsvfs, tx);
770 
771 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
772 		if (flag & FIGNORECASE)
773 			txtype |= TX_CI;
774 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
775 		    vsecp, acl_ids.z_fuidp, vap);
776 		zfs_acl_ids_free(&acl_ids);
777 		dmu_tx_commit(tx);
778 	} else {
779 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
780 
781 		if (have_acl)
782 			zfs_acl_ids_free(&acl_ids);
783 
784 		/*
785 		 * A directory entry already exists for this name.
786 		 */
787 		/*
788 		 * Can't truncate an existing file if in exclusive mode.
789 		 */
790 		if (excl) {
791 			error = SET_ERROR(EEXIST);
792 			goto out;
793 		}
794 		/*
795 		 * Can't open a directory for writing.
796 		 */
797 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
798 			error = SET_ERROR(EISDIR);
799 			goto out;
800 		}
801 		/*
802 		 * Verify requested access to file.
803 		 */
804 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
805 		    mnt_ns))) {
806 			goto out;
807 		}
808 
809 		mutex_enter(&dzp->z_lock);
810 		dzp->z_seq++;
811 		mutex_exit(&dzp->z_lock);
812 
813 		/*
814 		 * Truncate regular files if requested.
815 		 */
816 		if (S_ISREG(ZTOI(zp)->i_mode) &&
817 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
818 			/* we can't hold any locks when calling zfs_freesp() */
819 			if (dl) {
820 				zfs_dirent_unlock(dl);
821 				dl = NULL;
822 			}
823 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
824 		}
825 	}
826 out:
827 
828 	if (dl)
829 		zfs_dirent_unlock(dl);
830 
831 	if (error) {
832 		if (zp)
833 			zrele(zp);
834 	} else {
835 		zfs_znode_update_vfs(dzp);
836 		zfs_znode_update_vfs(zp);
837 		*zpp = zp;
838 	}
839 
840 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
841 		zil_commit(zilog, 0);
842 
843 	zfs_exit(zfsvfs, FTAG);
844 	return (error);
845 }
846 
847 int
zfs_tmpfile(struct inode * dip,vattr_t * vap,int excl,int mode,struct inode ** ipp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)848 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
849     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
850     zidmap_t *mnt_ns)
851 {
852 	(void) excl, (void) mode, (void) flag;
853 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
854 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
855 	objset_t	*os;
856 	dmu_tx_t	*tx;
857 	int		error;
858 	uid_t		uid;
859 	gid_t		gid;
860 	zfs_acl_ids_t   acl_ids;
861 	uint64_t	projid = ZFS_DEFAULT_PROJID;
862 	boolean_t	fuid_dirtied;
863 	boolean_t	have_acl = B_FALSE;
864 	boolean_t	waited = B_FALSE;
865 
866 	/*
867 	 * If we have an ephemeral id, ACL, or XVATTR then
868 	 * make sure file system is at proper version
869 	 */
870 
871 	gid = crgetgid(cr);
872 	uid = crgetuid(cr);
873 
874 	if (zfsvfs->z_use_fuids == B_FALSE &&
875 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
876 		return (SET_ERROR(EINVAL));
877 
878 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
879 		return (error);
880 	os = zfsvfs->z_os;
881 
882 	if (vap->va_mask & ATTR_XVATTR) {
883 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
884 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
885 			zfs_exit(zfsvfs, FTAG);
886 			return (error);
887 		}
888 	}
889 
890 top:
891 	*ipp = NULL;
892 
893 	/*
894 	 * Create a new file object and update the directory
895 	 * to reference it.
896 	 */
897 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
898 		if (have_acl)
899 			zfs_acl_ids_free(&acl_ids);
900 		goto out;
901 	}
902 
903 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
904 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
905 		goto out;
906 	have_acl = B_TRUE;
907 
908 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
909 		projid = zfs_inherit_projid(dzp);
910 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
911 		zfs_acl_ids_free(&acl_ids);
912 		error = SET_ERROR(EDQUOT);
913 		goto out;
914 	}
915 
916 	tx = dmu_tx_create(os);
917 
918 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
919 	    ZFS_SA_BASE_ATTR_SIZE);
920 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
921 
922 	fuid_dirtied = zfsvfs->z_fuid_dirty;
923 	if (fuid_dirtied)
924 		zfs_fuid_txhold(zfsvfs, tx);
925 	if (!zfsvfs->z_use_sa &&
926 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
927 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
928 		    0, acl_ids.z_aclp->z_acl_bytes);
929 	}
930 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
931 	if (error) {
932 		if (error == ERESTART) {
933 			waited = B_TRUE;
934 			dmu_tx_wait(tx);
935 			dmu_tx_abort(tx);
936 			goto top;
937 		}
938 		zfs_acl_ids_free(&acl_ids);
939 		dmu_tx_abort(tx);
940 		zfs_exit(zfsvfs, FTAG);
941 		return (error);
942 	}
943 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
944 
945 	if (fuid_dirtied)
946 		zfs_fuid_sync(zfsvfs, tx);
947 
948 	/* Add to unlinked set */
949 	zp->z_unlinked = B_TRUE;
950 	zfs_unlinked_add(zp, tx);
951 	zfs_acl_ids_free(&acl_ids);
952 	dmu_tx_commit(tx);
953 out:
954 
955 	if (error) {
956 		if (zp)
957 			zrele(zp);
958 	} else {
959 		zfs_znode_update_vfs(dzp);
960 		zfs_znode_update_vfs(zp);
961 		*ipp = ZTOI(zp);
962 	}
963 
964 	zfs_exit(zfsvfs, FTAG);
965 	return (error);
966 }
967 
968 /*
969  * Remove an entry from a directory.
970  *
971  *	IN:	dzp	- znode of directory to remove entry from.
972  *		name	- name of entry to remove.
973  *		cr	- credentials of caller.
974  *		flags	- case flags.
975  *
976  *	RETURN:	0 if success
977  *		error code if failure
978  *
979  * Timestamps:
980  *	dzp - ctime|mtime
981  *	 ip - ctime (if nlink > 0)
982  */
983 
984 static uint64_t null_xattr = 0;
985 
986 int
zfs_remove(znode_t * dzp,char * name,cred_t * cr,int flags)987 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
988 {
989 	znode_t		*zp;
990 	znode_t		*xzp;
991 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
992 	zilog_t		*zilog;
993 	uint64_t	acl_obj, xattr_obj;
994 	uint64_t	xattr_obj_unlinked = 0;
995 	uint64_t	obj = 0;
996 	uint64_t	links;
997 	zfs_dirlock_t	*dl;
998 	dmu_tx_t	*tx;
999 	boolean_t	may_delete_now, delete_now = FALSE;
1000 	boolean_t	unlinked, toobig = FALSE;
1001 	uint64_t	txtype;
1002 	pathname_t	*realnmp = NULL;
1003 	pathname_t	realnm;
1004 	int		error;
1005 	int		zflg = ZEXISTS;
1006 	boolean_t	waited = B_FALSE;
1007 
1008 	if (name == NULL)
1009 		return (SET_ERROR(EINVAL));
1010 
1011 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1012 		return (error);
1013 	zilog = zfsvfs->z_log;
1014 
1015 	if (flags & FIGNORECASE) {
1016 		zflg |= ZCILOOK;
1017 		pn_alloc(&realnm);
1018 		realnmp = &realnm;
1019 	}
1020 
1021 top:
1022 	xattr_obj = 0;
1023 	xzp = NULL;
1024 	/*
1025 	 * Attempt to lock directory; fail if entry doesn't exist.
1026 	 */
1027 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1028 	    NULL, realnmp))) {
1029 		if (realnmp)
1030 			pn_free(realnmp);
1031 		zfs_exit(zfsvfs, FTAG);
1032 		return (error);
1033 	}
1034 
1035 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1036 		goto out;
1037 	}
1038 
1039 	/*
1040 	 * Need to use rmdir for removing directories.
1041 	 */
1042 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1043 		error = SET_ERROR(EPERM);
1044 		goto out;
1045 	}
1046 
1047 	mutex_enter(&zp->z_lock);
1048 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1049 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1050 	mutex_exit(&zp->z_lock);
1051 
1052 	/*
1053 	 * We may delete the znode now, or we may put it in the unlinked set;
1054 	 * it depends on whether we're the last link, and on whether there are
1055 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1056 	 * allow for either case.
1057 	 */
1058 	obj = zp->z_id;
1059 	tx = dmu_tx_create(zfsvfs->z_os);
1060 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1061 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1062 	zfs_sa_upgrade_txholds(tx, zp);
1063 	zfs_sa_upgrade_txholds(tx, dzp);
1064 	if (may_delete_now) {
1065 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1066 		/* if the file is too big, only hold_free a token amount */
1067 		dmu_tx_hold_free(tx, zp->z_id, 0,
1068 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1069 	}
1070 
1071 	/* are there any extended attributes? */
1072 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1073 	    &xattr_obj, sizeof (xattr_obj));
1074 	if (error == 0 && xattr_obj) {
1075 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1076 		ASSERT0(error);
1077 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1078 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1079 	}
1080 
1081 	mutex_enter(&zp->z_lock);
1082 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1083 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1084 	mutex_exit(&zp->z_lock);
1085 
1086 	/* charge as an update -- would be nice not to charge at all */
1087 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1088 
1089 	/*
1090 	 * Mark this transaction as typically resulting in a net free of space
1091 	 */
1092 	dmu_tx_mark_netfree(tx);
1093 
1094 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1095 	if (error) {
1096 		zfs_dirent_unlock(dl);
1097 		if (error == ERESTART) {
1098 			waited = B_TRUE;
1099 			dmu_tx_wait(tx);
1100 			dmu_tx_abort(tx);
1101 			zrele(zp);
1102 			if (xzp)
1103 				zrele(xzp);
1104 			goto top;
1105 		}
1106 		if (realnmp)
1107 			pn_free(realnmp);
1108 		dmu_tx_abort(tx);
1109 		zrele(zp);
1110 		if (xzp)
1111 			zrele(xzp);
1112 		zfs_exit(zfsvfs, FTAG);
1113 		return (error);
1114 	}
1115 
1116 	/*
1117 	 * Remove the directory entry.
1118 	 */
1119 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1120 
1121 	if (error) {
1122 		dmu_tx_commit(tx);
1123 		goto out;
1124 	}
1125 
1126 	if (unlinked) {
1127 		/*
1128 		 * Hold z_lock so that we can make sure that the ACL obj
1129 		 * hasn't changed.  Could have been deleted due to
1130 		 * zfs_sa_upgrade().
1131 		 */
1132 		mutex_enter(&zp->z_lock);
1133 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1134 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1135 		delete_now = may_delete_now && !toobig &&
1136 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1137 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1138 		    xattr_obj == xattr_obj_unlinked &&
1139 		    zfs_external_acl(zp) == acl_obj;
1140 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1141 	}
1142 
1143 	if (delete_now) {
1144 		if (xattr_obj_unlinked) {
1145 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1146 			mutex_enter(&xzp->z_lock);
1147 			xzp->z_unlinked = B_TRUE;
1148 			clear_nlink(ZTOI(xzp));
1149 			links = 0;
1150 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1151 			    &links, sizeof (links), tx);
1152 			ASSERT3U(error,  ==,  0);
1153 			mutex_exit(&xzp->z_lock);
1154 			zfs_unlinked_add(xzp, tx);
1155 
1156 			if (zp->z_is_sa)
1157 				error = sa_remove(zp->z_sa_hdl,
1158 				    SA_ZPL_XATTR(zfsvfs), tx);
1159 			else
1160 				error = sa_update(zp->z_sa_hdl,
1161 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1162 				    sizeof (uint64_t), tx);
1163 			ASSERT0(error);
1164 		}
1165 		/*
1166 		 * Add to the unlinked set because a new reference could be
1167 		 * taken concurrently resulting in a deferred destruction.
1168 		 */
1169 		zfs_unlinked_add(zp, tx);
1170 		mutex_exit(&zp->z_lock);
1171 	} else if (unlinked) {
1172 		mutex_exit(&zp->z_lock);
1173 		zfs_unlinked_add(zp, tx);
1174 	}
1175 
1176 	txtype = TX_REMOVE;
1177 	if (flags & FIGNORECASE)
1178 		txtype |= TX_CI;
1179 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1180 
1181 	dmu_tx_commit(tx);
1182 out:
1183 	if (realnmp)
1184 		pn_free(realnmp);
1185 
1186 	zfs_dirent_unlock(dl);
1187 	zfs_znode_update_vfs(dzp);
1188 	zfs_znode_update_vfs(zp);
1189 
1190 	if (delete_now)
1191 		zrele(zp);
1192 	else
1193 		zfs_zrele_async(zp);
1194 
1195 	if (xzp) {
1196 		zfs_znode_update_vfs(xzp);
1197 		zfs_zrele_async(xzp);
1198 	}
1199 
1200 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1201 		zil_commit(zilog, 0);
1202 
1203 	zfs_exit(zfsvfs, FTAG);
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Create a new directory and insert it into dzp using the name
1209  * provided.  Return a pointer to the inserted directory.
1210  *
1211  *	IN:	dzp	- znode of directory to add subdir to.
1212  *		dirname	- name of new directory.
1213  *		vap	- attributes of new directory.
1214  *		cr	- credentials of caller.
1215  *		flags	- case flags.
1216  *		vsecp	- ACL to be set
1217  *		mnt_ns	- user namespace of the mount
1218  *
1219  *	OUT:	zpp	- znode of created directory.
1220  *
1221  *	RETURN:	0 if success
1222  *		error code if failure
1223  *
1224  * Timestamps:
1225  *	dzp - ctime|mtime updated
1226  *	zpp - ctime|mtime|atime updated
1227  */
1228 int
zfs_mkdir(znode_t * dzp,char * dirname,vattr_t * vap,znode_t ** zpp,cred_t * cr,int flags,vsecattr_t * vsecp,zidmap_t * mnt_ns)1229 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1230     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1231 {
1232 	znode_t		*zp;
1233 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1234 	zilog_t		*zilog;
1235 	zfs_dirlock_t	*dl;
1236 	uint64_t	txtype;
1237 	dmu_tx_t	*tx;
1238 	int		error;
1239 	int		zf = ZNEW;
1240 	uid_t		uid;
1241 	gid_t		gid = crgetgid(cr);
1242 	zfs_acl_ids_t   acl_ids;
1243 	boolean_t	fuid_dirtied;
1244 	boolean_t	waited = B_FALSE;
1245 
1246 	ASSERT(S_ISDIR(vap->va_mode));
1247 
1248 	/*
1249 	 * If we have an ephemeral id, ACL, or XVATTR then
1250 	 * make sure file system is at proper version
1251 	 */
1252 
1253 	uid = crgetuid(cr);
1254 	if (zfsvfs->z_use_fuids == B_FALSE &&
1255 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1256 		return (SET_ERROR(EINVAL));
1257 
1258 	if (dirname == NULL)
1259 		return (SET_ERROR(EINVAL));
1260 
1261 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1262 		return (error);
1263 	zilog = zfsvfs->z_log;
1264 
1265 	if (dzp->z_pflags & ZFS_XATTR) {
1266 		zfs_exit(zfsvfs, FTAG);
1267 		return (SET_ERROR(EINVAL));
1268 	}
1269 
1270 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1271 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1272 		zfs_exit(zfsvfs, FTAG);
1273 		return (SET_ERROR(EILSEQ));
1274 	}
1275 	if (flags & FIGNORECASE)
1276 		zf |= ZCILOOK;
1277 
1278 	if (vap->va_mask & ATTR_XVATTR) {
1279 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1280 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1281 			zfs_exit(zfsvfs, FTAG);
1282 			return (error);
1283 		}
1284 	}
1285 
1286 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1287 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1288 		zfs_exit(zfsvfs, FTAG);
1289 		return (error);
1290 	}
1291 	/*
1292 	 * First make sure the new directory doesn't exist.
1293 	 *
1294 	 * Existence is checked first to make sure we don't return
1295 	 * EACCES instead of EEXIST which can cause some applications
1296 	 * to fail.
1297 	 */
1298 top:
1299 	*zpp = NULL;
1300 
1301 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1302 	    NULL, NULL))) {
1303 		zfs_acl_ids_free(&acl_ids);
1304 		zfs_exit(zfsvfs, FTAG);
1305 		return (error);
1306 	}
1307 
1308 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1309 	    mnt_ns))) {
1310 		zfs_acl_ids_free(&acl_ids);
1311 		zfs_dirent_unlock(dl);
1312 		zfs_exit(zfsvfs, FTAG);
1313 		return (error);
1314 	}
1315 
1316 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1317 		zfs_acl_ids_free(&acl_ids);
1318 		zfs_dirent_unlock(dl);
1319 		zfs_exit(zfsvfs, FTAG);
1320 		return (SET_ERROR(EDQUOT));
1321 	}
1322 
1323 	/*
1324 	 * Add a new entry to the directory.
1325 	 */
1326 	tx = dmu_tx_create(zfsvfs->z_os);
1327 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1328 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1329 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1330 	if (fuid_dirtied)
1331 		zfs_fuid_txhold(zfsvfs, tx);
1332 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1333 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1334 		    acl_ids.z_aclp->z_acl_bytes);
1335 	}
1336 
1337 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1338 	    ZFS_SA_BASE_ATTR_SIZE);
1339 
1340 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1341 	if (error) {
1342 		zfs_dirent_unlock(dl);
1343 		if (error == ERESTART) {
1344 			waited = B_TRUE;
1345 			dmu_tx_wait(tx);
1346 			dmu_tx_abort(tx);
1347 			goto top;
1348 		}
1349 		zfs_acl_ids_free(&acl_ids);
1350 		dmu_tx_abort(tx);
1351 		zfs_exit(zfsvfs, FTAG);
1352 		return (error);
1353 	}
1354 
1355 	/*
1356 	 * Create new node.
1357 	 */
1358 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1359 
1360 	/*
1361 	 * Now put new name in parent dir.
1362 	 */
1363 	error = zfs_link_create(dl, zp, tx, ZNEW);
1364 	if (error != 0) {
1365 		zfs_znode_delete(zp, tx);
1366 		remove_inode_hash(ZTOI(zp));
1367 		goto out;
1368 	}
1369 
1370 	if (fuid_dirtied)
1371 		zfs_fuid_sync(zfsvfs, tx);
1372 
1373 	*zpp = zp;
1374 
1375 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1376 	if (flags & FIGNORECASE)
1377 		txtype |= TX_CI;
1378 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1379 	    acl_ids.z_fuidp, vap);
1380 
1381 out:
1382 	zfs_acl_ids_free(&acl_ids);
1383 
1384 	dmu_tx_commit(tx);
1385 
1386 	zfs_dirent_unlock(dl);
1387 
1388 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1389 		zil_commit(zilog, 0);
1390 
1391 	if (error != 0) {
1392 		zrele(zp);
1393 	} else {
1394 		zfs_znode_update_vfs(dzp);
1395 		zfs_znode_update_vfs(zp);
1396 	}
1397 	zfs_exit(zfsvfs, FTAG);
1398 	return (error);
1399 }
1400 
1401 /*
1402  * Remove a directory subdir entry.  If the current working
1403  * directory is the same as the subdir to be removed, the
1404  * remove will fail.
1405  *
1406  *	IN:	dzp	- znode of directory to remove from.
1407  *		name	- name of directory to be removed.
1408  *		cwd	- inode of current working directory.
1409  *		cr	- credentials of caller.
1410  *		flags	- case flags
1411  *
1412  *	RETURN:	0 on success, error code on failure.
1413  *
1414  * Timestamps:
1415  *	dzp - ctime|mtime updated
1416  */
1417 int
zfs_rmdir(znode_t * dzp,char * name,znode_t * cwd,cred_t * cr,int flags)1418 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1419     int flags)
1420 {
1421 	znode_t		*zp;
1422 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1423 	zilog_t		*zilog;
1424 	zfs_dirlock_t	*dl;
1425 	dmu_tx_t	*tx;
1426 	int		error;
1427 	int		zflg = ZEXISTS;
1428 	boolean_t	waited = B_FALSE;
1429 
1430 	if (name == NULL)
1431 		return (SET_ERROR(EINVAL));
1432 
1433 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1434 		return (error);
1435 	zilog = zfsvfs->z_log;
1436 
1437 	if (flags & FIGNORECASE)
1438 		zflg |= ZCILOOK;
1439 top:
1440 	zp = NULL;
1441 
1442 	/*
1443 	 * Attempt to lock directory; fail if entry doesn't exist.
1444 	 */
1445 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1446 	    NULL, NULL))) {
1447 		zfs_exit(zfsvfs, FTAG);
1448 		return (error);
1449 	}
1450 
1451 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1452 		goto out;
1453 	}
1454 
1455 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1456 		error = SET_ERROR(ENOTDIR);
1457 		goto out;
1458 	}
1459 
1460 	if (zp == cwd) {
1461 		error = SET_ERROR(EINVAL);
1462 		goto out;
1463 	}
1464 
1465 	/*
1466 	 * Grab a lock on the directory to make sure that no one is
1467 	 * trying to add (or lookup) entries while we are removing it.
1468 	 */
1469 	rw_enter(&zp->z_name_lock, RW_WRITER);
1470 
1471 	/*
1472 	 * Grab a lock on the parent pointer to make sure we play well
1473 	 * with the treewalk and directory rename code.
1474 	 */
1475 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1476 
1477 	tx = dmu_tx_create(zfsvfs->z_os);
1478 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1479 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1480 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1481 	zfs_sa_upgrade_txholds(tx, zp);
1482 	zfs_sa_upgrade_txholds(tx, dzp);
1483 	dmu_tx_mark_netfree(tx);
1484 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1485 	if (error) {
1486 		rw_exit(&zp->z_parent_lock);
1487 		rw_exit(&zp->z_name_lock);
1488 		zfs_dirent_unlock(dl);
1489 		if (error == ERESTART) {
1490 			waited = B_TRUE;
1491 			dmu_tx_wait(tx);
1492 			dmu_tx_abort(tx);
1493 			zrele(zp);
1494 			goto top;
1495 		}
1496 		dmu_tx_abort(tx);
1497 		zrele(zp);
1498 		zfs_exit(zfsvfs, FTAG);
1499 		return (error);
1500 	}
1501 
1502 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1503 
1504 	if (error == 0) {
1505 		uint64_t txtype = TX_RMDIR;
1506 		if (flags & FIGNORECASE)
1507 			txtype |= TX_CI;
1508 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1509 		    B_FALSE);
1510 	}
1511 
1512 	dmu_tx_commit(tx);
1513 
1514 	rw_exit(&zp->z_parent_lock);
1515 	rw_exit(&zp->z_name_lock);
1516 out:
1517 	zfs_dirent_unlock(dl);
1518 
1519 	zfs_znode_update_vfs(dzp);
1520 	zfs_znode_update_vfs(zp);
1521 	zrele(zp);
1522 
1523 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1524 		zil_commit(zilog, 0);
1525 
1526 	zfs_exit(zfsvfs, FTAG);
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Read directory entries from the given directory cursor position and emit
1532  * name and position for each entry.
1533  *
1534  *	IN:	ip	- inode of directory to read.
1535  *		ctx	- directory entry context.
1536  *		cr	- credentials of caller.
1537  *
1538  *	RETURN:	0 if success
1539  *		error code if failure
1540  *
1541  * Timestamps:
1542  *	ip - atime updated
1543  *
1544  * Note that the low 4 bits of the cookie returned by zap is always zero.
1545  * This allows us to use the low range for "special" directory entries:
1546  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1547  * we use the offset 2 for the '.zfs' directory.
1548  */
1549 int
zfs_readdir(struct inode * ip,struct dir_context * ctx,cred_t * cr)1550 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
1551 {
1552 	(void) cr;
1553 	znode_t		*zp = ITOZ(ip);
1554 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1555 	objset_t	*os;
1556 	zap_cursor_t	zc;
1557 	zap_attribute_t	*zap;
1558 	int		error;
1559 	uint8_t		prefetch;
1560 	uint8_t		type;
1561 	int		done = 0;
1562 	uint64_t	parent;
1563 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1564 
1565 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1566 		return (error);
1567 
1568 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1569 	    &parent, sizeof (parent))) != 0)
1570 		goto out;
1571 
1572 	/*
1573 	 * Quit if directory has been removed (posix)
1574 	 */
1575 	if (zp->z_unlinked)
1576 		goto out;
1577 
1578 	error = 0;
1579 	os = zfsvfs->z_os;
1580 	offset = ctx->pos;
1581 	prefetch = zp->z_zn_prefetch;
1582 	zap = zap_attribute_long_alloc();
1583 
1584 	/*
1585 	 * Initialize the iterator cursor.
1586 	 */
1587 	if (offset <= 3) {
1588 		/*
1589 		 * Start iteration from the beginning of the directory.
1590 		 */
1591 		zap_cursor_init(&zc, os, zp->z_id);
1592 	} else {
1593 		/*
1594 		 * The offset is a serialized cursor.
1595 		 */
1596 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1597 	}
1598 
1599 	/*
1600 	 * Transform to file-system independent format
1601 	 */
1602 	while (!done) {
1603 		uint64_t objnum;
1604 		/*
1605 		 * Special case `.', `..', and `.zfs'.
1606 		 */
1607 		if (offset == 0) {
1608 			(void) strcpy(zap->za_name, ".");
1609 			zap->za_normalization_conflict = 0;
1610 			objnum = zp->z_id;
1611 			type = DT_DIR;
1612 		} else if (offset == 1) {
1613 			(void) strcpy(zap->za_name, "..");
1614 			zap->za_normalization_conflict = 0;
1615 			objnum = parent;
1616 			type = DT_DIR;
1617 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1618 			(void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1619 			zap->za_normalization_conflict = 0;
1620 			objnum = ZFSCTL_INO_ROOT;
1621 			type = DT_DIR;
1622 		} else {
1623 			/*
1624 			 * Grab next entry.
1625 			 */
1626 			if ((error = zap_cursor_retrieve(&zc, zap))) {
1627 				if (error == ENOENT)
1628 					break;
1629 				else
1630 					goto update;
1631 			}
1632 
1633 			/*
1634 			 * Allow multiple entries provided the first entry is
1635 			 * the object id.  Non-zpl consumers may safely make
1636 			 * use of the additional space.
1637 			 *
1638 			 * XXX: This should be a feature flag for compatibility
1639 			 */
1640 			if (zap->za_integer_length != 8 ||
1641 			    zap->za_num_integers == 0) {
1642 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1643 				    "entry, obj = %lld, offset = %lld, "
1644 				    "length = %d, num = %lld\n",
1645 				    (u_longlong_t)zp->z_id,
1646 				    (u_longlong_t)offset,
1647 				    zap->za_integer_length,
1648 				    (u_longlong_t)zap->za_num_integers);
1649 				error = SET_ERROR(ENXIO);
1650 				goto update;
1651 			}
1652 
1653 			objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1654 			type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1655 		}
1656 
1657 		done = !dir_emit(ctx, zap->za_name, strlen(zap->za_name),
1658 		    objnum, type);
1659 		if (done)
1660 			break;
1661 
1662 		if (prefetch)
1663 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1664 
1665 		/*
1666 		 * Move to the next entry, fill in the previous offset.
1667 		 */
1668 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1669 			zap_cursor_advance(&zc);
1670 			offset = zap_cursor_serialize(&zc);
1671 		} else {
1672 			offset += 1;
1673 		}
1674 		ctx->pos = offset;
1675 	}
1676 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1677 
1678 update:
1679 	zap_cursor_fini(&zc);
1680 	zap_attribute_free(zap);
1681 	if (error == ENOENT)
1682 		error = 0;
1683 out:
1684 	zfs_exit(zfsvfs, FTAG);
1685 
1686 	return (error);
1687 }
1688 
1689 /*
1690  * Get the basic file attributes and place them in the provided kstat
1691  * structure.  The inode is assumed to be the authoritative source
1692  * for most of the attributes.  However, the znode currently has the
1693  * authoritative atime, blksize, and block count.
1694  *
1695  *	IN:	ip	- inode of file.
1696  *
1697  *	OUT:	sp	- kstat values.
1698  *
1699  *	RETURN:	0 (always succeeds)
1700  */
1701 int
1702 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
zfs_getattr_fast(zidmap_t * user_ns,u32 request_mask,struct inode * ip,struct kstat * sp)1703 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1704     struct kstat *sp)
1705 #else
1706 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1707 #endif
1708 {
1709 	znode_t *zp = ITOZ(ip);
1710 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1711 	uint32_t blksize;
1712 	u_longlong_t nblocks;
1713 	int error;
1714 
1715 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1716 		return (error);
1717 
1718 	mutex_enter(&zp->z_lock);
1719 
1720 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1721 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1722 #else
1723 	zpl_generic_fillattr(user_ns, ip, sp);
1724 #endif
1725 	/*
1726 	 * +1 link count for root inode with visible '.zfs' directory.
1727 	 */
1728 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1729 		if (sp->nlink < ZFS_LINK_MAX)
1730 			sp->nlink++;
1731 
1732 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1733 	sp->blksize = blksize;
1734 	sp->blocks = nblocks;
1735 
1736 	if (unlikely(zp->z_blksz == 0)) {
1737 		/*
1738 		 * Block size hasn't been set; suggest maximal I/O transfers.
1739 		 */
1740 		sp->blksize = zfsvfs->z_max_blksz;
1741 	}
1742 
1743 	mutex_exit(&zp->z_lock);
1744 
1745 	/*
1746 	 * Required to prevent NFS client from detecting different inode
1747 	 * numbers of snapshot root dentry before and after snapshot mount.
1748 	 */
1749 	if (zfsvfs->z_issnap) {
1750 		if (ip->i_sb->s_root->d_inode == ip)
1751 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1752 			    dmu_objset_id(zfsvfs->z_os);
1753 	}
1754 
1755 	zfs_exit(zfsvfs, FTAG);
1756 
1757 	return (0);
1758 }
1759 
1760 /*
1761  * For the operation of changing file's user/group/project, we need to
1762  * handle not only the main object that is assigned to the file directly,
1763  * but also the ones that are used by the file via hidden xattr directory.
1764  *
1765  * Because the xattr directory may contains many EA entries, as to it may
1766  * be impossible to change all of them via the transaction of changing the
1767  * main object's user/group/project attributes. Then we have to change them
1768  * via other multiple independent transactions one by one. It may be not good
1769  * solution, but we have no better idea yet.
1770  */
1771 static int
zfs_setattr_dir(znode_t * dzp)1772 zfs_setattr_dir(znode_t *dzp)
1773 {
1774 	struct inode	*dxip = ZTOI(dzp);
1775 	struct inode	*xip = NULL;
1776 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1777 	objset_t	*os = zfsvfs->z_os;
1778 	zap_cursor_t	zc;
1779 	zap_attribute_t	*zap;
1780 	zfs_dirlock_t	*dl;
1781 	znode_t		*zp = NULL;
1782 	dmu_tx_t	*tx = NULL;
1783 	uint64_t	uid, gid;
1784 	sa_bulk_attr_t	bulk[4];
1785 	int		count;
1786 	int		err;
1787 
1788 	zap = zap_attribute_alloc();
1789 	zap_cursor_init(&zc, os, dzp->z_id);
1790 	while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
1791 		count = 0;
1792 		if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
1793 			err = ENXIO;
1794 			break;
1795 		}
1796 
1797 		err = zfs_dirent_lock(&dl, dzp, (char *)zap->za_name, &zp,
1798 		    ZEXISTS, NULL, NULL);
1799 		if (err == ENOENT)
1800 			goto next;
1801 		if (err)
1802 			break;
1803 
1804 		xip = ZTOI(zp);
1805 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1806 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1807 		    zp->z_projid == dzp->z_projid)
1808 			goto next;
1809 
1810 		tx = dmu_tx_create(os);
1811 		if (!(zp->z_pflags & ZFS_PROJID))
1812 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1813 		else
1814 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1815 
1816 		err = dmu_tx_assign(tx, TXG_WAIT);
1817 		if (err)
1818 			break;
1819 
1820 		mutex_enter(&dzp->z_lock);
1821 
1822 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1823 			xip->i_uid = dxip->i_uid;
1824 			uid = zfs_uid_read(dxip);
1825 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1826 			    &uid, sizeof (uid));
1827 		}
1828 
1829 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1830 			xip->i_gid = dxip->i_gid;
1831 			gid = zfs_gid_read(dxip);
1832 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1833 			    &gid, sizeof (gid));
1834 		}
1835 
1836 
1837 		uint64_t projid = dzp->z_projid;
1838 		if (zp->z_projid != projid) {
1839 			if (!(zp->z_pflags & ZFS_PROJID)) {
1840 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1841 				if (unlikely(err == EEXIST)) {
1842 					err = 0;
1843 				} else if (err != 0) {
1844 					goto sa_add_projid_err;
1845 				} else {
1846 					projid = ZFS_INVALID_PROJID;
1847 				}
1848 			}
1849 
1850 			if (projid != ZFS_INVALID_PROJID) {
1851 				zp->z_projid = projid;
1852 				SA_ADD_BULK_ATTR(bulk, count,
1853 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1854 				    sizeof (zp->z_projid));
1855 			}
1856 		}
1857 
1858 sa_add_projid_err:
1859 		mutex_exit(&dzp->z_lock);
1860 
1861 		if (likely(count > 0)) {
1862 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1863 			dmu_tx_commit(tx);
1864 		} else if (projid == ZFS_INVALID_PROJID) {
1865 			dmu_tx_commit(tx);
1866 		} else {
1867 			dmu_tx_abort(tx);
1868 		}
1869 		tx = NULL;
1870 		if (err != 0 && err != ENOENT)
1871 			break;
1872 
1873 next:
1874 		if (zp) {
1875 			zrele(zp);
1876 			zp = NULL;
1877 			zfs_dirent_unlock(dl);
1878 		}
1879 		zap_cursor_advance(&zc);
1880 	}
1881 
1882 	if (tx)
1883 		dmu_tx_abort(tx);
1884 	if (zp) {
1885 		zrele(zp);
1886 		zfs_dirent_unlock(dl);
1887 	}
1888 	zap_cursor_fini(&zc);
1889 	zap_attribute_free(zap);
1890 
1891 	return (err == ENOENT ? 0 : err);
1892 }
1893 
1894 /*
1895  * Set the file attributes to the values contained in the
1896  * vattr structure.
1897  *
1898  *	IN:	zp	- znode of file to be modified.
1899  *		vap	- new attribute values.
1900  *			  If ATTR_XVATTR set, then optional attrs are being set
1901  *		flags	- ATTR_UTIME set if non-default time values provided.
1902  *			- ATTR_NOACLCHECK (CIFS context only).
1903  *		cr	- credentials of caller.
1904  *		mnt_ns	- user namespace of the mount
1905  *
1906  *	RETURN:	0 if success
1907  *		error code if failure
1908  *
1909  * Timestamps:
1910  *	ip - ctime updated, mtime updated if size changed.
1911  */
1912 int
zfs_setattr(znode_t * zp,vattr_t * vap,int flags,cred_t * cr,zidmap_t * mnt_ns)1913 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1914 {
1915 	struct inode	*ip;
1916 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1917 	objset_t	*os;
1918 	zilog_t		*zilog;
1919 	dmu_tx_t	*tx;
1920 	vattr_t		oldva;
1921 	xvattr_t	*tmpxvattr;
1922 	uint_t		mask = vap->va_mask;
1923 	uint_t		saved_mask = 0;
1924 	int		trim_mask = 0;
1925 	uint64_t	new_mode;
1926 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1927 	uint64_t	xattr_obj;
1928 	uint64_t	mtime[2], ctime[2], atime[2];
1929 	uint64_t	projid = ZFS_INVALID_PROJID;
1930 	znode_t		*attrzp;
1931 	int		need_policy = FALSE;
1932 	int		err, err2 = 0;
1933 	zfs_fuid_info_t *fuidp = NULL;
1934 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1935 	xoptattr_t	*xoap;
1936 	zfs_acl_t	*aclp;
1937 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1938 	boolean_t	fuid_dirtied = B_FALSE;
1939 	boolean_t	handle_eadir = B_FALSE;
1940 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1941 	int		count = 0, xattr_count = 0, bulks = 8;
1942 
1943 	if (mask == 0)
1944 		return (0);
1945 
1946 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1947 		return (err);
1948 	ip = ZTOI(zp);
1949 	os = zfsvfs->z_os;
1950 
1951 	/*
1952 	 * If this is a xvattr_t, then get a pointer to the structure of
1953 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1954 	 */
1955 	xoap = xva_getxoptattr(xvap);
1956 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1957 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1958 			if (!dmu_objset_projectquota_enabled(os) ||
1959 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1960 				zfs_exit(zfsvfs, FTAG);
1961 				return (SET_ERROR(ENOTSUP));
1962 			}
1963 
1964 			projid = xoap->xoa_projid;
1965 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1966 				zfs_exit(zfsvfs, FTAG);
1967 				return (SET_ERROR(EINVAL));
1968 			}
1969 
1970 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1971 				projid = ZFS_INVALID_PROJID;
1972 			else
1973 				need_policy = TRUE;
1974 		}
1975 
1976 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1977 		    (xoap->xoa_projinherit !=
1978 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1979 		    (!dmu_objset_projectquota_enabled(os) ||
1980 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1981 			zfs_exit(zfsvfs, FTAG);
1982 			return (SET_ERROR(ENOTSUP));
1983 		}
1984 	}
1985 
1986 	zilog = zfsvfs->z_log;
1987 
1988 	/*
1989 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1990 	 * that file system is at proper version level
1991 	 */
1992 
1993 	if (zfsvfs->z_use_fuids == B_FALSE &&
1994 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1995 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1996 	    (mask & ATTR_XVATTR))) {
1997 		zfs_exit(zfsvfs, FTAG);
1998 		return (SET_ERROR(EINVAL));
1999 	}
2000 
2001 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2002 		zfs_exit(zfsvfs, FTAG);
2003 		return (SET_ERROR(EISDIR));
2004 	}
2005 
2006 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2007 		zfs_exit(zfsvfs, FTAG);
2008 		return (SET_ERROR(EINVAL));
2009 	}
2010 
2011 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2012 	xva_init(tmpxvattr);
2013 
2014 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2015 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2016 
2017 	/*
2018 	 * Immutable files can only alter immutable bit and atime
2019 	 */
2020 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2021 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2022 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2023 		err = SET_ERROR(EPERM);
2024 		goto out3;
2025 	}
2026 
2027 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2028 		err = SET_ERROR(EPERM);
2029 		goto out3;
2030 	}
2031 
2032 	/*
2033 	 * Verify timestamps doesn't overflow 32 bits.
2034 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2035 	 * handle times greater than 2039.  This check should be removed
2036 	 * once large timestamps are fully supported.
2037 	 */
2038 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2039 		if (((mask & ATTR_ATIME) &&
2040 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2041 		    ((mask & ATTR_MTIME) &&
2042 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2043 			err = SET_ERROR(EOVERFLOW);
2044 			goto out3;
2045 		}
2046 	}
2047 
2048 top:
2049 	attrzp = NULL;
2050 	aclp = NULL;
2051 
2052 	/* Can this be moved to before the top label? */
2053 	if (zfs_is_readonly(zfsvfs)) {
2054 		err = SET_ERROR(EROFS);
2055 		goto out3;
2056 	}
2057 
2058 	/*
2059 	 * First validate permissions
2060 	 */
2061 
2062 	if (mask & ATTR_SIZE) {
2063 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2064 		    mnt_ns);
2065 		if (err)
2066 			goto out3;
2067 
2068 		/*
2069 		 * XXX - Note, we are not providing any open
2070 		 * mode flags here (like FNDELAY), so we may
2071 		 * block if there are locks present... this
2072 		 * should be addressed in openat().
2073 		 */
2074 		/* XXX - would it be OK to generate a log record here? */
2075 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2076 		if (err)
2077 			goto out3;
2078 	}
2079 
2080 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2081 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2082 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2083 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2084 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2085 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2086 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2087 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2088 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2089 		    skipaclchk, cr, mnt_ns);
2090 	}
2091 
2092 	if (mask & (ATTR_UID|ATTR_GID)) {
2093 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2094 		int	take_owner;
2095 		int	take_group;
2096 		uid_t	uid;
2097 		gid_t	gid;
2098 
2099 		/*
2100 		 * NOTE: even if a new mode is being set,
2101 		 * we may clear S_ISUID/S_ISGID bits.
2102 		 */
2103 
2104 		if (!(mask & ATTR_MODE))
2105 			vap->va_mode = zp->z_mode;
2106 
2107 		/*
2108 		 * Take ownership or chgrp to group we are a member of
2109 		 */
2110 
2111 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2112 		    vap->va_uid);
2113 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2114 		    vap->va_gid);
2115 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2116 		take_group = (mask & ATTR_GID) &&
2117 		    zfs_groupmember(zfsvfs, gid, cr);
2118 
2119 		/*
2120 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2121 		 * take_group must both be set in order to allow taking
2122 		 * ownership.
2123 		 *
2124 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2125 		 *
2126 		 */
2127 
2128 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2129 		    take_owner && take_group) ||
2130 		    ((idmask == ATTR_UID) && take_owner) ||
2131 		    ((idmask == ATTR_GID) && take_group)) {
2132 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2133 			    skipaclchk, cr, mnt_ns) == 0) {
2134 				/*
2135 				 * Remove setuid/setgid for non-privileged users
2136 				 */
2137 				(void) secpolicy_setid_clear(vap, cr);
2138 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2139 			} else {
2140 				need_policy =  TRUE;
2141 			}
2142 		} else {
2143 			need_policy =  TRUE;
2144 		}
2145 	}
2146 
2147 	mutex_enter(&zp->z_lock);
2148 	oldva.va_mode = zp->z_mode;
2149 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2150 	if (mask & ATTR_XVATTR) {
2151 		/*
2152 		 * Update xvattr mask to include only those attributes
2153 		 * that are actually changing.
2154 		 *
2155 		 * the bits will be restored prior to actually setting
2156 		 * the attributes so the caller thinks they were set.
2157 		 */
2158 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2159 			if (xoap->xoa_appendonly !=
2160 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2161 				need_policy = TRUE;
2162 			} else {
2163 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2164 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2165 			}
2166 		}
2167 
2168 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2169 			if (xoap->xoa_projinherit !=
2170 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2171 				need_policy = TRUE;
2172 			} else {
2173 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2174 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2175 			}
2176 		}
2177 
2178 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2179 			if (xoap->xoa_nounlink !=
2180 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2181 				need_policy = TRUE;
2182 			} else {
2183 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2184 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2185 			}
2186 		}
2187 
2188 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2189 			if (xoap->xoa_immutable !=
2190 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2191 				need_policy = TRUE;
2192 			} else {
2193 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2194 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2195 			}
2196 		}
2197 
2198 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2199 			if (xoap->xoa_nodump !=
2200 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2201 				need_policy = TRUE;
2202 			} else {
2203 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2204 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2205 			}
2206 		}
2207 
2208 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2209 			if (xoap->xoa_av_modified !=
2210 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2211 				need_policy = TRUE;
2212 			} else {
2213 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2214 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2215 			}
2216 		}
2217 
2218 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2219 			if ((!S_ISREG(ip->i_mode) &&
2220 			    xoap->xoa_av_quarantined) ||
2221 			    xoap->xoa_av_quarantined !=
2222 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2223 				need_policy = TRUE;
2224 			} else {
2225 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2226 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2227 			}
2228 		}
2229 
2230 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2231 			mutex_exit(&zp->z_lock);
2232 			err = SET_ERROR(EPERM);
2233 			goto out3;
2234 		}
2235 
2236 		if (need_policy == FALSE &&
2237 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2238 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2239 			need_policy = TRUE;
2240 		}
2241 	}
2242 
2243 	mutex_exit(&zp->z_lock);
2244 
2245 	if (mask & ATTR_MODE) {
2246 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2247 		    mnt_ns) == 0) {
2248 			err = secpolicy_setid_setsticky_clear(ip, vap,
2249 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2250 			if (err)
2251 				goto out3;
2252 			trim_mask |= ATTR_MODE;
2253 		} else {
2254 			need_policy = TRUE;
2255 		}
2256 	}
2257 
2258 	if (need_policy) {
2259 		/*
2260 		 * If trim_mask is set then take ownership
2261 		 * has been granted or write_acl is present and user
2262 		 * has the ability to modify mode.  In that case remove
2263 		 * UID|GID and or MODE from mask so that
2264 		 * secpolicy_vnode_setattr() doesn't revoke it.
2265 		 */
2266 
2267 		if (trim_mask) {
2268 			saved_mask = vap->va_mask;
2269 			vap->va_mask &= ~trim_mask;
2270 		}
2271 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2272 		    zfs_zaccess_unix, zp);
2273 		if (err)
2274 			goto out3;
2275 
2276 		if (trim_mask)
2277 			vap->va_mask |= saved_mask;
2278 	}
2279 
2280 	/*
2281 	 * secpolicy_vnode_setattr, or take ownership may have
2282 	 * changed va_mask
2283 	 */
2284 	mask = vap->va_mask;
2285 
2286 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2287 		handle_eadir = B_TRUE;
2288 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2289 		    &xattr_obj, sizeof (xattr_obj));
2290 
2291 		if (err == 0 && xattr_obj) {
2292 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2293 			if (err)
2294 				goto out2;
2295 		}
2296 		if (mask & ATTR_UID) {
2297 			new_kuid = zfs_fuid_create(zfsvfs,
2298 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2299 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2300 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2301 			    new_kuid)) {
2302 				if (attrzp)
2303 					zrele(attrzp);
2304 				err = SET_ERROR(EDQUOT);
2305 				goto out2;
2306 			}
2307 		}
2308 
2309 		if (mask & ATTR_GID) {
2310 			new_kgid = zfs_fuid_create(zfsvfs,
2311 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2312 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2313 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2314 			    new_kgid)) {
2315 				if (attrzp)
2316 					zrele(attrzp);
2317 				err = SET_ERROR(EDQUOT);
2318 				goto out2;
2319 			}
2320 		}
2321 
2322 		if (projid != ZFS_INVALID_PROJID &&
2323 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2324 			if (attrzp)
2325 				zrele(attrzp);
2326 			err = EDQUOT;
2327 			goto out2;
2328 		}
2329 	}
2330 	tx = dmu_tx_create(os);
2331 
2332 	if (mask & ATTR_MODE) {
2333 		uint64_t pmode = zp->z_mode;
2334 		uint64_t acl_obj;
2335 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2336 
2337 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2338 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2339 			err = EPERM;
2340 			goto out;
2341 		}
2342 
2343 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2344 			goto out;
2345 
2346 		mutex_enter(&zp->z_lock);
2347 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2348 			/*
2349 			 * Are we upgrading ACL from old V0 format
2350 			 * to V1 format?
2351 			 */
2352 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2353 			    zfs_znode_acl_version(zp) ==
2354 			    ZFS_ACL_VERSION_INITIAL) {
2355 				dmu_tx_hold_free(tx, acl_obj, 0,
2356 				    DMU_OBJECT_END);
2357 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2358 				    0, aclp->z_acl_bytes);
2359 			} else {
2360 				dmu_tx_hold_write(tx, acl_obj, 0,
2361 				    aclp->z_acl_bytes);
2362 			}
2363 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2364 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2365 			    0, aclp->z_acl_bytes);
2366 		}
2367 		mutex_exit(&zp->z_lock);
2368 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2369 	} else {
2370 		if (((mask & ATTR_XVATTR) &&
2371 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2372 		    (projid != ZFS_INVALID_PROJID &&
2373 		    !(zp->z_pflags & ZFS_PROJID)))
2374 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2375 		else
2376 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2377 	}
2378 
2379 	if (attrzp) {
2380 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2381 	}
2382 
2383 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2384 	if (fuid_dirtied)
2385 		zfs_fuid_txhold(zfsvfs, tx);
2386 
2387 	zfs_sa_upgrade_txholds(tx, zp);
2388 
2389 	err = dmu_tx_assign(tx, TXG_WAIT);
2390 	if (err)
2391 		goto out;
2392 
2393 	count = 0;
2394 	/*
2395 	 * Set each attribute requested.
2396 	 * We group settings according to the locks they need to acquire.
2397 	 *
2398 	 * Note: you cannot set ctime directly, although it will be
2399 	 * updated as a side-effect of calling this function.
2400 	 */
2401 
2402 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2403 		/*
2404 		 * For the existed object that is upgraded from old system,
2405 		 * its on-disk layout has no slot for the project ID attribute.
2406 		 * But quota accounting logic needs to access related slots by
2407 		 * offset directly. So we need to adjust old objects' layout
2408 		 * to make the project ID to some unified and fixed offset.
2409 		 */
2410 		if (attrzp)
2411 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2412 		if (err == 0)
2413 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2414 
2415 		if (unlikely(err == EEXIST))
2416 			err = 0;
2417 		else if (err != 0)
2418 			goto out;
2419 		else
2420 			projid = ZFS_INVALID_PROJID;
2421 	}
2422 
2423 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2424 		mutex_enter(&zp->z_acl_lock);
2425 	mutex_enter(&zp->z_lock);
2426 
2427 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2428 	    &zp->z_pflags, sizeof (zp->z_pflags));
2429 
2430 	if (attrzp) {
2431 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2432 			mutex_enter(&attrzp->z_acl_lock);
2433 		mutex_enter(&attrzp->z_lock);
2434 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2435 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2436 		    sizeof (attrzp->z_pflags));
2437 		if (projid != ZFS_INVALID_PROJID) {
2438 			attrzp->z_projid = projid;
2439 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2440 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2441 			    sizeof (attrzp->z_projid));
2442 		}
2443 	}
2444 
2445 	if (mask & (ATTR_UID|ATTR_GID)) {
2446 
2447 		if (mask & ATTR_UID) {
2448 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2449 			new_uid = zfs_uid_read(ZTOI(zp));
2450 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2451 			    &new_uid, sizeof (new_uid));
2452 			if (attrzp) {
2453 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2454 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2455 				    sizeof (new_uid));
2456 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2457 			}
2458 		}
2459 
2460 		if (mask & ATTR_GID) {
2461 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2462 			new_gid = zfs_gid_read(ZTOI(zp));
2463 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2464 			    NULL, &new_gid, sizeof (new_gid));
2465 			if (attrzp) {
2466 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2467 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2468 				    sizeof (new_gid));
2469 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2470 			}
2471 		}
2472 		if (!(mask & ATTR_MODE)) {
2473 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2474 			    NULL, &new_mode, sizeof (new_mode));
2475 			new_mode = zp->z_mode;
2476 		}
2477 		err = zfs_acl_chown_setattr(zp);
2478 		ASSERT(err == 0);
2479 		if (attrzp) {
2480 			err = zfs_acl_chown_setattr(attrzp);
2481 			ASSERT(err == 0);
2482 		}
2483 	}
2484 
2485 	if (mask & ATTR_MODE) {
2486 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2487 		    &new_mode, sizeof (new_mode));
2488 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2489 		ASSERT3P(aclp, !=, NULL);
2490 		err = zfs_aclset_common(zp, aclp, cr, tx);
2491 		ASSERT0(err);
2492 		if (zp->z_acl_cached)
2493 			zfs_acl_free(zp->z_acl_cached);
2494 		zp->z_acl_cached = aclp;
2495 		aclp = NULL;
2496 	}
2497 
2498 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2499 		zp->z_atime_dirty = B_FALSE;
2500 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2501 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2502 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2503 		    &atime, sizeof (atime));
2504 	}
2505 
2506 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2507 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2508 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2509 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2510 
2511 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2512 		    mtime, sizeof (mtime));
2513 	}
2514 
2515 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2516 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2517 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2518 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2519 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2520 		    ctime, sizeof (ctime));
2521 	}
2522 
2523 	if (projid != ZFS_INVALID_PROJID) {
2524 		zp->z_projid = projid;
2525 		SA_ADD_BULK_ATTR(bulk, count,
2526 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2527 		    sizeof (zp->z_projid));
2528 	}
2529 
2530 	if (attrzp && mask) {
2531 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2532 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2533 		    sizeof (ctime));
2534 	}
2535 
2536 	/*
2537 	 * Do this after setting timestamps to prevent timestamp
2538 	 * update from toggling bit
2539 	 */
2540 
2541 	if (xoap && (mask & ATTR_XVATTR)) {
2542 
2543 		/*
2544 		 * restore trimmed off masks
2545 		 * so that return masks can be set for caller.
2546 		 */
2547 
2548 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2549 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2550 		}
2551 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2552 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2553 		}
2554 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2555 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2556 		}
2557 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2558 			XVA_SET_REQ(xvap, XAT_NODUMP);
2559 		}
2560 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2561 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2562 		}
2563 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2564 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2565 		}
2566 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2567 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2568 		}
2569 
2570 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2571 			ASSERT(S_ISREG(ip->i_mode));
2572 
2573 		zfs_xvattr_set(zp, xvap, tx);
2574 	}
2575 
2576 	if (fuid_dirtied)
2577 		zfs_fuid_sync(zfsvfs, tx);
2578 
2579 	if (mask != 0)
2580 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2581 
2582 	mutex_exit(&zp->z_lock);
2583 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2584 		mutex_exit(&zp->z_acl_lock);
2585 
2586 	if (attrzp) {
2587 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2588 			mutex_exit(&attrzp->z_acl_lock);
2589 		mutex_exit(&attrzp->z_lock);
2590 	}
2591 out:
2592 	if (err == 0 && xattr_count > 0) {
2593 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2594 		    xattr_count, tx);
2595 		ASSERT(err2 == 0);
2596 	}
2597 
2598 	if (aclp)
2599 		zfs_acl_free(aclp);
2600 
2601 	if (fuidp) {
2602 		zfs_fuid_info_free(fuidp);
2603 		fuidp = NULL;
2604 	}
2605 
2606 	if (err) {
2607 		dmu_tx_abort(tx);
2608 		if (attrzp)
2609 			zrele(attrzp);
2610 		if (err == ERESTART)
2611 			goto top;
2612 	} else {
2613 		if (count > 0)
2614 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2615 		dmu_tx_commit(tx);
2616 		if (attrzp) {
2617 			if (err2 == 0 && handle_eadir)
2618 				err = zfs_setattr_dir(attrzp);
2619 			zrele(attrzp);
2620 		}
2621 		zfs_znode_update_vfs(zp);
2622 	}
2623 
2624 out2:
2625 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2626 		zil_commit(zilog, 0);
2627 
2628 out3:
2629 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2630 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2631 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2632 	zfs_exit(zfsvfs, FTAG);
2633 	return (err);
2634 }
2635 
2636 typedef struct zfs_zlock {
2637 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2638 	znode_t		*zl_znode;	/* znode we held */
2639 	struct zfs_zlock *zl_next;	/* next in list */
2640 } zfs_zlock_t;
2641 
2642 /*
2643  * Drop locks and release vnodes that were held by zfs_rename_lock().
2644  */
2645 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)2646 zfs_rename_unlock(zfs_zlock_t **zlpp)
2647 {
2648 	zfs_zlock_t *zl;
2649 
2650 	while ((zl = *zlpp) != NULL) {
2651 		if (zl->zl_znode != NULL)
2652 			zfs_zrele_async(zl->zl_znode);
2653 		rw_exit(zl->zl_rwlock);
2654 		*zlpp = zl->zl_next;
2655 		kmem_free(zl, sizeof (*zl));
2656 	}
2657 }
2658 
2659 /*
2660  * Search back through the directory tree, using the ".." entries.
2661  * Lock each directory in the chain to prevent concurrent renames.
2662  * Fail any attempt to move a directory into one of its own descendants.
2663  * XXX - z_parent_lock can overlap with map or grow locks
2664  */
2665 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)2666 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2667 {
2668 	zfs_zlock_t	*zl;
2669 	znode_t		*zp = tdzp;
2670 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2671 	uint64_t	oidp = zp->z_id;
2672 	krwlock_t	*rwlp = &szp->z_parent_lock;
2673 	krw_t		rw = RW_WRITER;
2674 
2675 	/*
2676 	 * First pass write-locks szp and compares to zp->z_id.
2677 	 * Later passes read-lock zp and compare to zp->z_parent.
2678 	 */
2679 	do {
2680 		if (!rw_tryenter(rwlp, rw)) {
2681 			/*
2682 			 * Another thread is renaming in this path.
2683 			 * Note that if we are a WRITER, we don't have any
2684 			 * parent_locks held yet.
2685 			 */
2686 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2687 				/*
2688 				 * Drop our locks and restart
2689 				 */
2690 				zfs_rename_unlock(&zl);
2691 				*zlpp = NULL;
2692 				zp = tdzp;
2693 				oidp = zp->z_id;
2694 				rwlp = &szp->z_parent_lock;
2695 				rw = RW_WRITER;
2696 				continue;
2697 			} else {
2698 				/*
2699 				 * Wait for other thread to drop its locks
2700 				 */
2701 				rw_enter(rwlp, rw);
2702 			}
2703 		}
2704 
2705 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2706 		zl->zl_rwlock = rwlp;
2707 		zl->zl_znode = NULL;
2708 		zl->zl_next = *zlpp;
2709 		*zlpp = zl;
2710 
2711 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2712 			return (SET_ERROR(EINVAL));
2713 
2714 		if (oidp == rootid)		/* We've hit the top */
2715 			return (0);
2716 
2717 		if (rw == RW_READER) {		/* i.e. not the first pass */
2718 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2719 			if (error)
2720 				return (error);
2721 			zl->zl_znode = zp;
2722 		}
2723 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2724 		    &oidp, sizeof (oidp));
2725 		rwlp = &zp->z_parent_lock;
2726 		rw = RW_READER;
2727 
2728 	} while (zp->z_id != sdzp->z_id);
2729 
2730 	return (0);
2731 }
2732 
2733 /*
2734  * Move an entry from the provided source directory to the target
2735  * directory.  Change the entry name as indicated.
2736  *
2737  *	IN:	sdzp	- Source directory containing the "old entry".
2738  *		snm	- Old entry name.
2739  *		tdzp	- Target directory to contain the "new entry".
2740  *		tnm	- New entry name.
2741  *		cr	- credentials of caller.
2742  *		flags	- case flags
2743  *		rflags  - RENAME_* flags
2744  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2745  *		mnt_ns	- user namespace of the mount
2746  *
2747  *	RETURN:	0 on success, error code on failure.
2748  *
2749  * Timestamps:
2750  *	sdzp,tdzp - ctime|mtime updated
2751  */
2752 int
zfs_rename(znode_t * sdzp,char * snm,znode_t * tdzp,char * tnm,cred_t * cr,int flags,uint64_t rflags,vattr_t * wo_vap,zidmap_t * mnt_ns)2753 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2754     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2755 {
2756 	znode_t		*szp, *tzp;
2757 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2758 	zilog_t		*zilog;
2759 	zfs_dirlock_t	*sdl, *tdl;
2760 	dmu_tx_t	*tx;
2761 	zfs_zlock_t	*zl;
2762 	int		cmp, serr, terr;
2763 	int		error = 0;
2764 	int		zflg = 0;
2765 	boolean_t	waited = B_FALSE;
2766 	/* Needed for whiteout inode creation. */
2767 	boolean_t	fuid_dirtied;
2768 	zfs_acl_ids_t	acl_ids;
2769 	boolean_t	have_acl = B_FALSE;
2770 	znode_t		*wzp = NULL;
2771 
2772 
2773 	if (snm == NULL || tnm == NULL)
2774 		return (SET_ERROR(EINVAL));
2775 
2776 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2777 		return (SET_ERROR(EINVAL));
2778 
2779 	/* Already checked by Linux VFS, but just to make sure. */
2780 	if (rflags & RENAME_EXCHANGE &&
2781 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2782 		return (SET_ERROR(EINVAL));
2783 
2784 	/*
2785 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2786 	 * right kind of vattr_t for the whiteout file. These are set
2787 	 * internally by ZFS so should never be incorrect.
2788 	 */
2789 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2790 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2791 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2792 
2793 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2794 		return (error);
2795 	zilog = zfsvfs->z_log;
2796 
2797 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2798 		zfs_exit(zfsvfs, FTAG);
2799 		return (error);
2800 	}
2801 
2802 	/*
2803 	 * We check i_sb because snapshots and the ctldir must have different
2804 	 * super blocks.
2805 	 */
2806 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2807 	    zfsctl_is_node(ZTOI(tdzp))) {
2808 		zfs_exit(zfsvfs, FTAG);
2809 		return (SET_ERROR(EXDEV));
2810 	}
2811 
2812 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2813 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2814 		zfs_exit(zfsvfs, FTAG);
2815 		return (SET_ERROR(EILSEQ));
2816 	}
2817 
2818 	if (flags & FIGNORECASE)
2819 		zflg |= ZCILOOK;
2820 
2821 top:
2822 	szp = NULL;
2823 	tzp = NULL;
2824 	zl = NULL;
2825 
2826 	/*
2827 	 * This is to prevent the creation of links into attribute space
2828 	 * by renaming a linked file into/outof an attribute directory.
2829 	 * See the comment in zfs_link() for why this is considered bad.
2830 	 */
2831 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2832 		zfs_exit(zfsvfs, FTAG);
2833 		return (SET_ERROR(EINVAL));
2834 	}
2835 
2836 	/*
2837 	 * Lock source and target directory entries.  To prevent deadlock,
2838 	 * a lock ordering must be defined.  We lock the directory with
2839 	 * the smallest object id first, or if it's a tie, the one with
2840 	 * the lexically first name.
2841 	 */
2842 	if (sdzp->z_id < tdzp->z_id) {
2843 		cmp = -1;
2844 	} else if (sdzp->z_id > tdzp->z_id) {
2845 		cmp = 1;
2846 	} else {
2847 		/*
2848 		 * First compare the two name arguments without
2849 		 * considering any case folding.
2850 		 */
2851 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2852 
2853 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2854 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2855 		if (cmp == 0) {
2856 			/*
2857 			 * POSIX: "If the old argument and the new argument
2858 			 * both refer to links to the same existing file,
2859 			 * the rename() function shall return successfully
2860 			 * and perform no other action."
2861 			 */
2862 			zfs_exit(zfsvfs, FTAG);
2863 			return (0);
2864 		}
2865 		/*
2866 		 * If the file system is case-folding, then we may
2867 		 * have some more checking to do.  A case-folding file
2868 		 * system is either supporting mixed case sensitivity
2869 		 * access or is completely case-insensitive.  Note
2870 		 * that the file system is always case preserving.
2871 		 *
2872 		 * In mixed sensitivity mode case sensitive behavior
2873 		 * is the default.  FIGNORECASE must be used to
2874 		 * explicitly request case insensitive behavior.
2875 		 *
2876 		 * If the source and target names provided differ only
2877 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2878 		 * we will treat this as a special case in the
2879 		 * case-insensitive mode: as long as the source name
2880 		 * is an exact match, we will allow this to proceed as
2881 		 * a name-change request.
2882 		 */
2883 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2884 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2885 		    flags & FIGNORECASE)) &&
2886 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2887 		    &error) == 0) {
2888 			/*
2889 			 * case preserving rename request, require exact
2890 			 * name matches
2891 			 */
2892 			zflg |= ZCIEXACT;
2893 			zflg &= ~ZCILOOK;
2894 		}
2895 	}
2896 
2897 	/*
2898 	 * If the source and destination directories are the same, we should
2899 	 * grab the z_name_lock of that directory only once.
2900 	 */
2901 	if (sdzp == tdzp) {
2902 		zflg |= ZHAVELOCK;
2903 		rw_enter(&sdzp->z_name_lock, RW_READER);
2904 	}
2905 
2906 	if (cmp < 0) {
2907 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2908 		    ZEXISTS | zflg, NULL, NULL);
2909 		terr = zfs_dirent_lock(&tdl,
2910 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2911 	} else {
2912 		terr = zfs_dirent_lock(&tdl,
2913 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2914 		serr = zfs_dirent_lock(&sdl,
2915 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2916 		    NULL, NULL);
2917 	}
2918 
2919 	if (serr) {
2920 		/*
2921 		 * Source entry invalid or not there.
2922 		 */
2923 		if (!terr) {
2924 			zfs_dirent_unlock(tdl);
2925 			if (tzp)
2926 				zrele(tzp);
2927 		}
2928 
2929 		if (sdzp == tdzp)
2930 			rw_exit(&sdzp->z_name_lock);
2931 
2932 		if (strcmp(snm, "..") == 0)
2933 			serr = EINVAL;
2934 		zfs_exit(zfsvfs, FTAG);
2935 		return (serr);
2936 	}
2937 	if (terr) {
2938 		zfs_dirent_unlock(sdl);
2939 		zrele(szp);
2940 
2941 		if (sdzp == tdzp)
2942 			rw_exit(&sdzp->z_name_lock);
2943 
2944 		if (strcmp(tnm, "..") == 0)
2945 			terr = EINVAL;
2946 		zfs_exit(zfsvfs, FTAG);
2947 		return (terr);
2948 	}
2949 
2950 	/*
2951 	 * If we are using project inheritance, means if the directory has
2952 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2953 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2954 	 * such case, we only allow renames into our tree when the project
2955 	 * IDs are the same.
2956 	 */
2957 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2958 	    tdzp->z_projid != szp->z_projid) {
2959 		error = SET_ERROR(EXDEV);
2960 		goto out;
2961 	}
2962 
2963 	/*
2964 	 * Must have write access at the source to remove the old entry
2965 	 * and write access at the target to create the new entry.
2966 	 * Note that if target and source are the same, this can be
2967 	 * done in a single check.
2968 	 */
2969 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2970 		goto out;
2971 
2972 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2973 		/*
2974 		 * Check to make sure rename is valid.
2975 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2976 		 */
2977 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2978 			goto out;
2979 	}
2980 
2981 	/*
2982 	 * Does target exist?
2983 	 */
2984 	if (tzp) {
2985 		if (rflags & RENAME_NOREPLACE) {
2986 			error = SET_ERROR(EEXIST);
2987 			goto out;
2988 		}
2989 		/*
2990 		 * Source and target must be the same type (unless exchanging).
2991 		 */
2992 		if (!(rflags & RENAME_EXCHANGE)) {
2993 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2994 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2995 
2996 			if (s_is_dir != t_is_dir) {
2997 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2998 				goto out;
2999 			}
3000 		}
3001 		/*
3002 		 * POSIX dictates that when the source and target
3003 		 * entries refer to the same file object, rename
3004 		 * must do nothing and exit without error.
3005 		 */
3006 		if (szp->z_id == tzp->z_id) {
3007 			error = 0;
3008 			goto out;
3009 		}
3010 	} else if (rflags & RENAME_EXCHANGE) {
3011 		/* Target must exist for RENAME_EXCHANGE. */
3012 		error = SET_ERROR(ENOENT);
3013 		goto out;
3014 	}
3015 
3016 	/* Set up inode creation for RENAME_WHITEOUT. */
3017 	if (rflags & RENAME_WHITEOUT) {
3018 		/*
3019 		 * Whiteout files are not regular files or directories, so to
3020 		 * match zfs_create() we do not inherit the project id.
3021 		 */
3022 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
3023 
3024 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
3025 		if (error)
3026 			goto out;
3027 
3028 		if (!have_acl) {
3029 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
3030 			    &acl_ids, mnt_ns);
3031 			if (error)
3032 				goto out;
3033 			have_acl = B_TRUE;
3034 		}
3035 
3036 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
3037 			error = SET_ERROR(EDQUOT);
3038 			goto out;
3039 		}
3040 	}
3041 
3042 	tx = dmu_tx_create(zfsvfs->z_os);
3043 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3044 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3045 	dmu_tx_hold_zap(tx, sdzp->z_id,
3046 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3047 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3048 	if (sdzp != tdzp) {
3049 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3050 		zfs_sa_upgrade_txholds(tx, tdzp);
3051 	}
3052 	if (tzp) {
3053 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3054 		zfs_sa_upgrade_txholds(tx, tzp);
3055 	}
3056 	if (rflags & RENAME_WHITEOUT) {
3057 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3058 		    ZFS_SA_BASE_ATTR_SIZE);
3059 
3060 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3061 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3062 		if (!zfsvfs->z_use_sa &&
3063 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3064 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3065 			    0, acl_ids.z_aclp->z_acl_bytes);
3066 		}
3067 	}
3068 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3069 	if (fuid_dirtied)
3070 		zfs_fuid_txhold(zfsvfs, tx);
3071 	zfs_sa_upgrade_txholds(tx, szp);
3072 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3073 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3074 	if (error) {
3075 		if (zl != NULL)
3076 			zfs_rename_unlock(&zl);
3077 		zfs_dirent_unlock(sdl);
3078 		zfs_dirent_unlock(tdl);
3079 
3080 		if (sdzp == tdzp)
3081 			rw_exit(&sdzp->z_name_lock);
3082 
3083 		if (error == ERESTART) {
3084 			waited = B_TRUE;
3085 			dmu_tx_wait(tx);
3086 			dmu_tx_abort(tx);
3087 			zrele(szp);
3088 			if (tzp)
3089 				zrele(tzp);
3090 			goto top;
3091 		}
3092 		dmu_tx_abort(tx);
3093 		zrele(szp);
3094 		if (tzp)
3095 			zrele(tzp);
3096 		zfs_exit(zfsvfs, FTAG);
3097 		return (error);
3098 	}
3099 
3100 	/*
3101 	 * Unlink the source.
3102 	 */
3103 	szp->z_pflags |= ZFS_AV_MODIFIED;
3104 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3105 		szp->z_pflags |= ZFS_PROJINHERIT;
3106 
3107 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3108 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3109 	VERIFY0(error);
3110 
3111 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3112 	if (error)
3113 		goto commit;
3114 
3115 	/*
3116 	 * Unlink the target.
3117 	 */
3118 	if (tzp) {
3119 		int tzflg = zflg;
3120 
3121 		if (rflags & RENAME_EXCHANGE) {
3122 			/* This inode will be re-linked soon. */
3123 			tzflg |= ZRENAMING;
3124 
3125 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3126 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3127 				tzp->z_pflags |= ZFS_PROJINHERIT;
3128 
3129 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3130 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3131 			ASSERT0(error);
3132 		}
3133 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3134 		if (error)
3135 			goto commit_link_szp;
3136 	}
3137 
3138 	/*
3139 	 * Create the new target links:
3140 	 *   * We always link the target.
3141 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3142 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3143 	 */
3144 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3145 	if (error) {
3146 		/*
3147 		 * If we have removed the existing target, a subsequent call to
3148 		 * zfs_link_create() to add back the same entry, but with a new
3149 		 * dnode (szp), should not fail.
3150 		 */
3151 		ASSERT3P(tzp, ==, NULL);
3152 		goto commit_link_tzp;
3153 	}
3154 
3155 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3156 	case RENAME_EXCHANGE:
3157 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3158 		/*
3159 		 * The same argument as zfs_link_create() failing for
3160 		 * szp applies here, since the source directory must
3161 		 * have had an entry we are replacing.
3162 		 */
3163 		ASSERT0(error);
3164 		if (error)
3165 			goto commit_unlink_td_szp;
3166 		break;
3167 	case RENAME_WHITEOUT:
3168 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3169 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3170 		if (error) {
3171 			zfs_znode_delete(wzp, tx);
3172 			remove_inode_hash(ZTOI(wzp));
3173 			goto commit_unlink_td_szp;
3174 		}
3175 		break;
3176 	}
3177 
3178 	if (fuid_dirtied)
3179 		zfs_fuid_sync(zfsvfs, tx);
3180 
3181 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3182 	case RENAME_EXCHANGE:
3183 		zfs_log_rename_exchange(zilog, tx,
3184 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3185 		    tdzp, tdl->dl_name, szp);
3186 		break;
3187 	case RENAME_WHITEOUT:
3188 		zfs_log_rename_whiteout(zilog, tx,
3189 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3190 		    tdzp, tdl->dl_name, szp, wzp);
3191 		break;
3192 	default:
3193 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3194 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3195 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3196 		break;
3197 	}
3198 
3199 commit:
3200 	dmu_tx_commit(tx);
3201 out:
3202 	if (have_acl)
3203 		zfs_acl_ids_free(&acl_ids);
3204 
3205 	zfs_znode_update_vfs(sdzp);
3206 	if (sdzp == tdzp)
3207 		rw_exit(&sdzp->z_name_lock);
3208 
3209 	if (sdzp != tdzp)
3210 		zfs_znode_update_vfs(tdzp);
3211 
3212 	zfs_znode_update_vfs(szp);
3213 	zrele(szp);
3214 	if (wzp) {
3215 		zfs_znode_update_vfs(wzp);
3216 		zrele(wzp);
3217 	}
3218 	if (tzp) {
3219 		zfs_znode_update_vfs(tzp);
3220 		zrele(tzp);
3221 	}
3222 
3223 	if (zl != NULL)
3224 		zfs_rename_unlock(&zl);
3225 
3226 	zfs_dirent_unlock(sdl);
3227 	zfs_dirent_unlock(tdl);
3228 
3229 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3230 		zil_commit(zilog, 0);
3231 
3232 	zfs_exit(zfsvfs, FTAG);
3233 	return (error);
3234 
3235 	/*
3236 	 * Clean-up path for broken link state.
3237 	 *
3238 	 * At this point we are in a (very) bad state, so we need to do our
3239 	 * best to correct the state. In particular, all of the nlinks are
3240 	 * wrong because we were destroying and creating links with ZRENAMING.
3241 	 *
3242 	 * In some form, all of these operations have to resolve the state:
3243 	 *
3244 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3245 	 *    since we only just created it.
3246 	 *
3247 	 *  * link_create()s are allowed to fail (though they shouldn't because
3248 	 *    we only just unlinked them and are putting the entries back
3249 	 *    during clean-up). But if they fail, we can just forcefully drop
3250 	 *    the nlink value to (at the very least) avoid broken nlink values
3251 	 *    -- though in the case of non-empty directories we will have to
3252 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3253 	 */
3254 commit_unlink_td_szp:
3255 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3256 commit_link_tzp:
3257 	if (tzp) {
3258 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3259 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3260 	}
3261 commit_link_szp:
3262 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3263 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3264 	goto commit;
3265 }
3266 
3267 /*
3268  * Insert the indicated symbolic reference entry into the directory.
3269  *
3270  *	IN:	dzp	- Directory to contain new symbolic link.
3271  *		name	- Name of directory entry in dip.
3272  *		vap	- Attributes of new entry.
3273  *		link	- Name for new symlink entry.
3274  *		cr	- credentials of caller.
3275  *		flags	- case flags
3276  *		mnt_ns	- user namespace of the mount
3277  *
3278  *	OUT:	zpp	- Znode for new symbolic link.
3279  *
3280  *	RETURN:	0 on success, error code on failure.
3281  *
3282  * Timestamps:
3283  *	dip - ctime|mtime updated
3284  */
3285 int
zfs_symlink(znode_t * dzp,char * name,vattr_t * vap,char * link,znode_t ** zpp,cred_t * cr,int flags,zidmap_t * mnt_ns)3286 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3287     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3288 {
3289 	znode_t		*zp;
3290 	zfs_dirlock_t	*dl;
3291 	dmu_tx_t	*tx;
3292 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3293 	zilog_t		*zilog;
3294 	uint64_t	len = strlen(link);
3295 	int		error;
3296 	int		zflg = ZNEW;
3297 	zfs_acl_ids_t	acl_ids;
3298 	boolean_t	fuid_dirtied;
3299 	uint64_t	txtype = TX_SYMLINK;
3300 	boolean_t	waited = B_FALSE;
3301 
3302 	ASSERT(S_ISLNK(vap->va_mode));
3303 
3304 	if (name == NULL)
3305 		return (SET_ERROR(EINVAL));
3306 
3307 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3308 		return (error);
3309 	zilog = zfsvfs->z_log;
3310 
3311 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3312 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3313 		zfs_exit(zfsvfs, FTAG);
3314 		return (SET_ERROR(EILSEQ));
3315 	}
3316 	if (flags & FIGNORECASE)
3317 		zflg |= ZCILOOK;
3318 
3319 	if (len > MAXPATHLEN) {
3320 		zfs_exit(zfsvfs, FTAG);
3321 		return (SET_ERROR(ENAMETOOLONG));
3322 	}
3323 
3324 	if ((error = zfs_acl_ids_create(dzp, 0,
3325 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3326 		zfs_exit(zfsvfs, FTAG);
3327 		return (error);
3328 	}
3329 top:
3330 	*zpp = NULL;
3331 
3332 	/*
3333 	 * Attempt to lock directory; fail if entry already exists.
3334 	 */
3335 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3336 	if (error) {
3337 		zfs_acl_ids_free(&acl_ids);
3338 		zfs_exit(zfsvfs, FTAG);
3339 		return (error);
3340 	}
3341 
3342 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3343 		zfs_acl_ids_free(&acl_ids);
3344 		zfs_dirent_unlock(dl);
3345 		zfs_exit(zfsvfs, FTAG);
3346 		return (error);
3347 	}
3348 
3349 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3350 		zfs_acl_ids_free(&acl_ids);
3351 		zfs_dirent_unlock(dl);
3352 		zfs_exit(zfsvfs, FTAG);
3353 		return (SET_ERROR(EDQUOT));
3354 	}
3355 	tx = dmu_tx_create(zfsvfs->z_os);
3356 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3357 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3358 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3359 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3360 	    ZFS_SA_BASE_ATTR_SIZE + len);
3361 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3362 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3363 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3364 		    acl_ids.z_aclp->z_acl_bytes);
3365 	}
3366 	if (fuid_dirtied)
3367 		zfs_fuid_txhold(zfsvfs, tx);
3368 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3369 	if (error) {
3370 		zfs_dirent_unlock(dl);
3371 		if (error == ERESTART) {
3372 			waited = B_TRUE;
3373 			dmu_tx_wait(tx);
3374 			dmu_tx_abort(tx);
3375 			goto top;
3376 		}
3377 		zfs_acl_ids_free(&acl_ids);
3378 		dmu_tx_abort(tx);
3379 		zfs_exit(zfsvfs, FTAG);
3380 		return (error);
3381 	}
3382 
3383 	/*
3384 	 * Create a new object for the symlink.
3385 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3386 	 */
3387 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3388 
3389 	if (fuid_dirtied)
3390 		zfs_fuid_sync(zfsvfs, tx);
3391 
3392 	mutex_enter(&zp->z_lock);
3393 	if (zp->z_is_sa)
3394 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3395 		    link, len, tx);
3396 	else
3397 		zfs_sa_symlink(zp, link, len, tx);
3398 	mutex_exit(&zp->z_lock);
3399 
3400 	zp->z_size = len;
3401 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3402 	    &zp->z_size, sizeof (zp->z_size), tx);
3403 	/*
3404 	 * Insert the new object into the directory.
3405 	 */
3406 	error = zfs_link_create(dl, zp, tx, ZNEW);
3407 	if (error != 0) {
3408 		zfs_znode_delete(zp, tx);
3409 		remove_inode_hash(ZTOI(zp));
3410 	} else {
3411 		if (flags & FIGNORECASE)
3412 			txtype |= TX_CI;
3413 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3414 
3415 		zfs_znode_update_vfs(dzp);
3416 		zfs_znode_update_vfs(zp);
3417 	}
3418 
3419 	zfs_acl_ids_free(&acl_ids);
3420 
3421 	dmu_tx_commit(tx);
3422 
3423 	zfs_dirent_unlock(dl);
3424 
3425 	if (error == 0) {
3426 		*zpp = zp;
3427 
3428 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3429 			zil_commit(zilog, 0);
3430 	} else {
3431 		zrele(zp);
3432 	}
3433 
3434 	zfs_exit(zfsvfs, FTAG);
3435 	return (error);
3436 }
3437 
3438 /*
3439  * Return, in the buffer contained in the provided uio structure,
3440  * the symbolic path referred to by ip.
3441  *
3442  *	IN:	ip	- inode of symbolic link
3443  *		uio	- structure to contain the link path.
3444  *		cr	- credentials of caller.
3445  *
3446  *	RETURN:	0 if success
3447  *		error code if failure
3448  *
3449  * Timestamps:
3450  *	ip - atime updated
3451  */
3452 int
zfs_readlink(struct inode * ip,zfs_uio_t * uio,cred_t * cr)3453 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3454 {
3455 	(void) cr;
3456 	znode_t		*zp = ITOZ(ip);
3457 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3458 	int		error;
3459 
3460 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3461 		return (error);
3462 
3463 	mutex_enter(&zp->z_lock);
3464 	if (zp->z_is_sa)
3465 		error = sa_lookup_uio(zp->z_sa_hdl,
3466 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3467 	else
3468 		error = zfs_sa_readlink(zp, uio);
3469 	mutex_exit(&zp->z_lock);
3470 
3471 	zfs_exit(zfsvfs, FTAG);
3472 	return (error);
3473 }
3474 
3475 /*
3476  * Insert a new entry into directory tdzp referencing szp.
3477  *
3478  *	IN:	tdzp	- Directory to contain new entry.
3479  *		szp	- znode of new entry.
3480  *		name	- name of new entry.
3481  *		cr	- credentials of caller.
3482  *		flags	- case flags.
3483  *
3484  *	RETURN:	0 if success
3485  *		error code if failure
3486  *
3487  * Timestamps:
3488  *	tdzp - ctime|mtime updated
3489  *	 szp - ctime updated
3490  */
3491 int
zfs_link(znode_t * tdzp,znode_t * szp,char * name,cred_t * cr,int flags)3492 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3493     int flags)
3494 {
3495 	struct inode *sip = ZTOI(szp);
3496 	znode_t		*tzp;
3497 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3498 	zilog_t		*zilog;
3499 	zfs_dirlock_t	*dl;
3500 	dmu_tx_t	*tx;
3501 	int		error;
3502 	int		zf = ZNEW;
3503 	uint64_t	parent;
3504 	uid_t		owner;
3505 	boolean_t	waited = B_FALSE;
3506 	boolean_t	is_tmpfile = 0;
3507 	uint64_t	txg;
3508 
3509 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3510 
3511 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3512 
3513 	if (name == NULL)
3514 		return (SET_ERROR(EINVAL));
3515 
3516 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3517 		return (error);
3518 	zilog = zfsvfs->z_log;
3519 
3520 	/*
3521 	 * POSIX dictates that we return EPERM here.
3522 	 * Better choices include ENOTSUP or EISDIR.
3523 	 */
3524 	if (S_ISDIR(sip->i_mode)) {
3525 		zfs_exit(zfsvfs, FTAG);
3526 		return (SET_ERROR(EPERM));
3527 	}
3528 
3529 	if ((error = zfs_verify_zp(szp)) != 0) {
3530 		zfs_exit(zfsvfs, FTAG);
3531 		return (error);
3532 	}
3533 
3534 	/*
3535 	 * If we are using project inheritance, means if the directory has
3536 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3537 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3538 	 * such case, we only allow hard link creation in our tree when the
3539 	 * project IDs are the same.
3540 	 */
3541 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3542 	    tdzp->z_projid != szp->z_projid) {
3543 		zfs_exit(zfsvfs, FTAG);
3544 		return (SET_ERROR(EXDEV));
3545 	}
3546 
3547 	/*
3548 	 * We check i_sb because snapshots and the ctldir must have different
3549 	 * super blocks.
3550 	 */
3551 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3552 		zfs_exit(zfsvfs, FTAG);
3553 		return (SET_ERROR(EXDEV));
3554 	}
3555 
3556 	/* Prevent links to .zfs/shares files */
3557 
3558 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3559 	    &parent, sizeof (uint64_t))) != 0) {
3560 		zfs_exit(zfsvfs, FTAG);
3561 		return (error);
3562 	}
3563 	if (parent == zfsvfs->z_shares_dir) {
3564 		zfs_exit(zfsvfs, FTAG);
3565 		return (SET_ERROR(EPERM));
3566 	}
3567 
3568 	if (zfsvfs->z_utf8 && u8_validate(name,
3569 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3570 		zfs_exit(zfsvfs, FTAG);
3571 		return (SET_ERROR(EILSEQ));
3572 	}
3573 	if (flags & FIGNORECASE)
3574 		zf |= ZCILOOK;
3575 
3576 	/*
3577 	 * We do not support links between attributes and non-attributes
3578 	 * because of the potential security risk of creating links
3579 	 * into "normal" file space in order to circumvent restrictions
3580 	 * imposed in attribute space.
3581 	 */
3582 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3583 		zfs_exit(zfsvfs, FTAG);
3584 		return (SET_ERROR(EINVAL));
3585 	}
3586 
3587 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3588 	    cr, ZFS_OWNER);
3589 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3590 		zfs_exit(zfsvfs, FTAG);
3591 		return (SET_ERROR(EPERM));
3592 	}
3593 
3594 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3595 	    zfs_init_idmap))) {
3596 		zfs_exit(zfsvfs, FTAG);
3597 		return (error);
3598 	}
3599 
3600 top:
3601 	/*
3602 	 * Attempt to lock directory; fail if entry already exists.
3603 	 */
3604 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3605 	if (error) {
3606 		zfs_exit(zfsvfs, FTAG);
3607 		return (error);
3608 	}
3609 
3610 	tx = dmu_tx_create(zfsvfs->z_os);
3611 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3612 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3613 	if (is_tmpfile)
3614 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3615 
3616 	zfs_sa_upgrade_txholds(tx, szp);
3617 	zfs_sa_upgrade_txholds(tx, tdzp);
3618 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3619 	if (error) {
3620 		zfs_dirent_unlock(dl);
3621 		if (error == ERESTART) {
3622 			waited = B_TRUE;
3623 			dmu_tx_wait(tx);
3624 			dmu_tx_abort(tx);
3625 			goto top;
3626 		}
3627 		dmu_tx_abort(tx);
3628 		zfs_exit(zfsvfs, FTAG);
3629 		return (error);
3630 	}
3631 	/* unmark z_unlinked so zfs_link_create will not reject */
3632 	if (is_tmpfile)
3633 		szp->z_unlinked = B_FALSE;
3634 	error = zfs_link_create(dl, szp, tx, 0);
3635 
3636 	if (error == 0) {
3637 		uint64_t txtype = TX_LINK;
3638 		/*
3639 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3640 		 * Also, we don't log in ZIL, because all previous file
3641 		 * operation on the tmpfile are ignored by ZIL. Instead we
3642 		 * always wait for txg to sync to make sure all previous
3643 		 * operation are sync safe.
3644 		 */
3645 		if (is_tmpfile) {
3646 			VERIFY(zap_remove_int(zfsvfs->z_os,
3647 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3648 		} else {
3649 			if (flags & FIGNORECASE)
3650 				txtype |= TX_CI;
3651 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3652 		}
3653 	} else if (is_tmpfile) {
3654 		/* restore z_unlinked since when linking failed */
3655 		szp->z_unlinked = B_TRUE;
3656 	}
3657 	txg = dmu_tx_get_txg(tx);
3658 	dmu_tx_commit(tx);
3659 
3660 	zfs_dirent_unlock(dl);
3661 
3662 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3663 		zil_commit(zilog, 0);
3664 
3665 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3666 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3667 
3668 	zfs_znode_update_vfs(tdzp);
3669 	zfs_znode_update_vfs(szp);
3670 	zfs_exit(zfsvfs, FTAG);
3671 	return (error);
3672 }
3673 
3674 static void
zfs_putpage_sync_commit_cb(void * arg)3675 zfs_putpage_sync_commit_cb(void *arg)
3676 {
3677 	struct page *pp = arg;
3678 
3679 	ClearPageError(pp);
3680 	end_page_writeback(pp);
3681 }
3682 
3683 static void
zfs_putpage_async_commit_cb(void * arg)3684 zfs_putpage_async_commit_cb(void *arg)
3685 {
3686 	struct page *pp = arg;
3687 	znode_t *zp = ITOZ(pp->mapping->host);
3688 
3689 	ClearPageError(pp);
3690 	end_page_writeback(pp);
3691 	atomic_dec_32(&zp->z_async_writes_cnt);
3692 }
3693 
3694 /*
3695  * Push a page out to disk, once the page is on stable storage the
3696  * registered commit callback will be run as notification of completion.
3697  *
3698  *	IN:	ip	 - page mapped for inode.
3699  *		pp	 - page to push (page is locked)
3700  *		wbc	 - writeback control data
3701  *		for_sync - does the caller intend to wait synchronously for the
3702  *			   page writeback to complete?
3703  *
3704  *	RETURN:	0 if success
3705  *		error code if failure
3706  *
3707  * Timestamps:
3708  *	ip - ctime|mtime updated
3709  */
3710 int
zfs_putpage(struct inode * ip,struct page * pp,struct writeback_control * wbc,boolean_t for_sync)3711 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3712     boolean_t for_sync)
3713 {
3714 	znode_t		*zp = ITOZ(ip);
3715 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3716 	loff_t		offset;
3717 	loff_t		pgoff;
3718 	unsigned int	pglen;
3719 	dmu_tx_t	*tx;
3720 	caddr_t		va;
3721 	int		err = 0;
3722 	uint64_t	mtime[2], ctime[2];
3723 	inode_timespec_t tmp_ts;
3724 	sa_bulk_attr_t	bulk[3];
3725 	int		cnt = 0;
3726 	struct address_space *mapping;
3727 
3728 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3729 		return (err);
3730 
3731 	ASSERT(PageLocked(pp));
3732 
3733 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3734 	offset = i_size_read(ip);	/* File length in bytes */
3735 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3736 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3737 
3738 	/* Page is beyond end of file */
3739 	if (pgoff >= offset) {
3740 		unlock_page(pp);
3741 		zfs_exit(zfsvfs, FTAG);
3742 		return (0);
3743 	}
3744 
3745 	/* Truncate page length to end of file */
3746 	if (pgoff + pglen > offset)
3747 		pglen = offset - pgoff;
3748 
3749 #if 0
3750 	/*
3751 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3752 	 * is to register a page_mkwrite() handler to count the page
3753 	 * against its quota when it is about to be dirtied.
3754 	 */
3755 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3756 	    KUID_TO_SUID(ip->i_uid)) ||
3757 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3758 	    KGID_TO_SGID(ip->i_gid)) ||
3759 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3760 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3761 	    zp->z_projid))) {
3762 		err = EDQUOT;
3763 	}
3764 #endif
3765 
3766 	/*
3767 	 * The ordering here is critical and must adhere to the following
3768 	 * rules in order to avoid deadlocking in either zfs_read() or
3769 	 * zfs_free_range() due to a lock inversion.
3770 	 *
3771 	 * 1) The page must be unlocked prior to acquiring the range lock.
3772 	 *    This is critical because zfs_read() calls find_lock_page()
3773 	 *    which may block on the page lock while holding the range lock.
3774 	 *
3775 	 * 2) Before setting or clearing write back on a page the range lock
3776 	 *    must be held in order to prevent a lock inversion with the
3777 	 *    zfs_free_range() function.
3778 	 *
3779 	 * This presents a problem because upon entering this function the
3780 	 * page lock is already held.  To safely acquire the range lock the
3781 	 * page lock must be dropped.  This creates a window where another
3782 	 * process could truncate, invalidate, dirty, or write out the page.
3783 	 *
3784 	 * Therefore, after successfully reacquiring the range and page locks
3785 	 * the current page state is checked.  In the common case everything
3786 	 * will be as is expected and it can be written out.  However, if
3787 	 * the page state has changed it must be handled accordingly.
3788 	 */
3789 	mapping = pp->mapping;
3790 	redirty_page_for_writepage(wbc, pp);
3791 	unlock_page(pp);
3792 
3793 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3794 	    pgoff, pglen, RL_WRITER);
3795 	lock_page(pp);
3796 
3797 	/* Page mapping changed or it was no longer dirty, we're done */
3798 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3799 		unlock_page(pp);
3800 		zfs_rangelock_exit(lr);
3801 		zfs_exit(zfsvfs, FTAG);
3802 		return (0);
3803 	}
3804 
3805 	/* Another process started write block if required */
3806 	if (PageWriteback(pp)) {
3807 		unlock_page(pp);
3808 		zfs_rangelock_exit(lr);
3809 
3810 		if (wbc->sync_mode != WB_SYNC_NONE) {
3811 			/*
3812 			 * Speed up any non-sync page writebacks since
3813 			 * they may take several seconds to complete.
3814 			 * Refer to the comment in zpl_fsync() for details.
3815 			 */
3816 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3817 				zil_commit(zfsvfs->z_log, zp->z_id);
3818 			}
3819 
3820 			if (PageWriteback(pp))
3821 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3822 				folio_wait_bit(page_folio(pp), PG_writeback);
3823 #else
3824 				wait_on_page_bit(pp, PG_writeback);
3825 #endif
3826 		}
3827 
3828 		zfs_exit(zfsvfs, FTAG);
3829 		return (0);
3830 	}
3831 
3832 	/* Clear the dirty flag the required locks are held */
3833 	if (!clear_page_dirty_for_io(pp)) {
3834 		unlock_page(pp);
3835 		zfs_rangelock_exit(lr);
3836 		zfs_exit(zfsvfs, FTAG);
3837 		return (0);
3838 	}
3839 
3840 	/*
3841 	 * Counterpart for redirty_page_for_writepage() above.  This page
3842 	 * was in fact not skipped and should not be counted as if it were.
3843 	 */
3844 	wbc->pages_skipped--;
3845 	if (!for_sync)
3846 		atomic_inc_32(&zp->z_async_writes_cnt);
3847 	set_page_writeback(pp);
3848 	unlock_page(pp);
3849 
3850 	tx = dmu_tx_create(zfsvfs->z_os);
3851 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3852 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3853 	zfs_sa_upgrade_txholds(tx, zp);
3854 
3855 	err = dmu_tx_assign(tx, TXG_WAIT);
3856 	if (err != 0) {
3857 		dmu_tx_abort(tx);
3858 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3859 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3860 #else
3861 		__set_page_dirty_nobuffers(pp);
3862 #endif
3863 		ClearPageError(pp);
3864 		end_page_writeback(pp);
3865 		if (!for_sync)
3866 			atomic_dec_32(&zp->z_async_writes_cnt);
3867 		zfs_rangelock_exit(lr);
3868 		zfs_exit(zfsvfs, FTAG);
3869 		return (err);
3870 	}
3871 
3872 	va = kmap(pp);
3873 	ASSERT3U(pglen, <=, PAGE_SIZE);
3874 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3875 	kunmap(pp);
3876 
3877 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3878 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3879 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3880 	    &zp->z_pflags, 8);
3881 
3882 	/* Preserve the mtime and ctime provided by the inode */
3883 	tmp_ts = zpl_inode_get_mtime(ip);
3884 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3885 	tmp_ts = zpl_inode_get_ctime(ip);
3886 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3887 	zp->z_atime_dirty = B_FALSE;
3888 	zp->z_seq++;
3889 
3890 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3891 
3892 	boolean_t commit = B_FALSE;
3893 	if (wbc->sync_mode != WB_SYNC_NONE) {
3894 		/*
3895 		 * Note that this is rarely called under writepages(), because
3896 		 * writepages() normally handles the entire commit for
3897 		 * performance reasons.
3898 		 */
3899 		commit = B_TRUE;
3900 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3901 		/*
3902 		 * If the caller does not intend to wait synchronously
3903 		 * for this page writeback to complete and there are active
3904 		 * synchronous calls on this file, do a commit so that
3905 		 * the latter don't accidentally end up waiting for
3906 		 * our writeback to complete. Refer to the comment in
3907 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3908 		 */
3909 		commit = B_TRUE;
3910 	}
3911 
3912 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit,
3913 	    B_FALSE, for_sync ? zfs_putpage_sync_commit_cb :
3914 	    zfs_putpage_async_commit_cb, pp);
3915 
3916 	dmu_tx_commit(tx);
3917 
3918 	zfs_rangelock_exit(lr);
3919 
3920 	if (commit)
3921 		zil_commit(zfsvfs->z_log, zp->z_id);
3922 
3923 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3924 
3925 	zfs_exit(zfsvfs, FTAG);
3926 	return (err);
3927 }
3928 
3929 /*
3930  * Update the system attributes when the inode has been dirtied.  For the
3931  * moment we only update the mode, atime, mtime, and ctime.
3932  */
3933 int
zfs_dirty_inode(struct inode * ip,int flags)3934 zfs_dirty_inode(struct inode *ip, int flags)
3935 {
3936 	znode_t		*zp = ITOZ(ip);
3937 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3938 	dmu_tx_t	*tx;
3939 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3940 	inode_timespec_t tmp_ts;
3941 	sa_bulk_attr_t	bulk[4];
3942 	int		error = 0;
3943 	int		cnt = 0;
3944 
3945 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3946 		return (0);
3947 
3948 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3949 		return (error);
3950 
3951 #ifdef I_DIRTY_TIME
3952 	/*
3953 	 * This is the lazytime semantic introduced in Linux 4.0
3954 	 * This flag will only be called from update_time when lazytime is set.
3955 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3956 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3957 	 * only need to dirty atime.
3958 	 */
3959 	if (flags == I_DIRTY_TIME) {
3960 		zp->z_atime_dirty = B_TRUE;
3961 		goto out;
3962 	}
3963 #endif
3964 
3965 	tx = dmu_tx_create(zfsvfs->z_os);
3966 
3967 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3968 	zfs_sa_upgrade_txholds(tx, zp);
3969 
3970 	error = dmu_tx_assign(tx, TXG_WAIT);
3971 	if (error) {
3972 		dmu_tx_abort(tx);
3973 		goto out;
3974 	}
3975 
3976 	mutex_enter(&zp->z_lock);
3977 	zp->z_atime_dirty = B_FALSE;
3978 
3979 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3980 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3981 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3982 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3983 
3984 	/* Preserve the mode, mtime and ctime provided by the inode */
3985 	tmp_ts = zpl_inode_get_atime(ip);
3986 	ZFS_TIME_ENCODE(&tmp_ts, atime);
3987 	tmp_ts = zpl_inode_get_mtime(ip);
3988 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3989 	tmp_ts = zpl_inode_get_ctime(ip);
3990 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3991 	mode = ip->i_mode;
3992 
3993 	zp->z_mode = mode;
3994 
3995 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3996 	mutex_exit(&zp->z_lock);
3997 
3998 	dmu_tx_commit(tx);
3999 out:
4000 	zfs_exit(zfsvfs, FTAG);
4001 	return (error);
4002 }
4003 
4004 void
zfs_inactive(struct inode * ip)4005 zfs_inactive(struct inode *ip)
4006 {
4007 	znode_t	*zp = ITOZ(ip);
4008 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4009 	uint64_t atime[2];
4010 	int error;
4011 	int need_unlock = 0;
4012 
4013 	/* Only read lock if we haven't already write locked, e.g. rollback */
4014 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4015 		need_unlock = 1;
4016 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4017 	}
4018 	if (zp->z_sa_hdl == NULL) {
4019 		if (need_unlock)
4020 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
4021 		return;
4022 	}
4023 
4024 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
4025 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4026 
4027 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4028 		zfs_sa_upgrade_txholds(tx, zp);
4029 		error = dmu_tx_assign(tx, TXG_WAIT);
4030 		if (error) {
4031 			dmu_tx_abort(tx);
4032 		} else {
4033 			inode_timespec_t tmp_atime;
4034 			tmp_atime = zpl_inode_get_atime(ip);
4035 			ZFS_TIME_ENCODE(&tmp_atime, atime);
4036 			mutex_enter(&zp->z_lock);
4037 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4038 			    (void *)&atime, sizeof (atime), tx);
4039 			zp->z_atime_dirty = B_FALSE;
4040 			mutex_exit(&zp->z_lock);
4041 			dmu_tx_commit(tx);
4042 		}
4043 	}
4044 
4045 	zfs_zinactive(zp);
4046 	if (need_unlock)
4047 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4048 }
4049 
4050 /*
4051  * Fill pages with data from the disk.
4052  */
4053 static int
zfs_fillpage(struct inode * ip,struct page * pp)4054 zfs_fillpage(struct inode *ip, struct page *pp)
4055 {
4056 	znode_t *zp = ITOZ(ip);
4057 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4058 	loff_t i_size = i_size_read(ip);
4059 	u_offset_t io_off = page_offset(pp);
4060 	size_t io_len = PAGE_SIZE;
4061 
4062 	ASSERT3U(io_off, <, i_size);
4063 
4064 	if (io_off + io_len > i_size)
4065 		io_len = i_size - io_off;
4066 
4067 	void *va = kmap(pp);
4068 	int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off,
4069 	    io_len, va, DMU_READ_PREFETCH);
4070 	if (io_len != PAGE_SIZE)
4071 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4072 	kunmap(pp);
4073 
4074 	if (error) {
4075 		/* convert checksum errors into IO errors */
4076 		if (error == ECKSUM)
4077 			error = SET_ERROR(EIO);
4078 
4079 		SetPageError(pp);
4080 		ClearPageUptodate(pp);
4081 	} else {
4082 		ClearPageError(pp);
4083 		SetPageUptodate(pp);
4084 	}
4085 
4086 	return (error);
4087 }
4088 
4089 /*
4090  * Uses zfs_fillpage to read data from the file and fill the page.
4091  *
4092  *	IN:	ip	 - inode of file to get data from.
4093  *		pp	 - page to read
4094  *
4095  *	RETURN:	0 on success, error code on failure.
4096  *
4097  * Timestamps:
4098  *	vp - atime updated
4099  */
4100 int
zfs_getpage(struct inode * ip,struct page * pp)4101 zfs_getpage(struct inode *ip, struct page *pp)
4102 {
4103 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4104 	znode_t *zp = ITOZ(ip);
4105 	int error;
4106 	loff_t i_size = i_size_read(ip);
4107 	u_offset_t io_off = page_offset(pp);
4108 	size_t io_len = PAGE_SIZE;
4109 
4110 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4111 		return (error);
4112 
4113 	ASSERT3U(io_off, <, i_size);
4114 
4115 	if (io_off + io_len > i_size)
4116 		io_len = i_size - io_off;
4117 
4118 	/*
4119 	 * It is important to hold the rangelock here because it is possible
4120 	 * a Direct I/O write or block clone might be taking place at the same
4121 	 * time that a page is being faulted in through filemap_fault(). With
4122 	 * Direct I/O writes and block cloning db->db_data will be set to NULL
4123 	 * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the
4124 	 * rangelock is not held, then there is a race between faulting in a
4125 	 * page and writing out a Direct I/O write or block cloning. Without
4126 	 * the rangelock a NULL pointer dereference can occur in
4127 	 * dmu_read_impl() for db->db_data during the mempcy operation when
4128 	 * zfs_fillpage() calls dmu_read().
4129 	 */
4130 	zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4131 	    io_off, io_len, RL_READER);
4132 	if (lr == NULL) {
4133 		/*
4134 		 * It is important to drop the page lock before grabbing the
4135 		 * rangelock to avoid another deadlock between here and
4136 		 * zfs_write() -> update_pages(). update_pages() holds both the
4137 		 * rangelock and the page lock.
4138 		 */
4139 		get_page(pp);
4140 		unlock_page(pp);
4141 		lr = zfs_rangelock_enter(&zp->z_rangelock, io_off,
4142 		    io_len, RL_READER);
4143 		lock_page(pp);
4144 		put_page(pp);
4145 	}
4146 	error = zfs_fillpage(ip, pp);
4147 	zfs_rangelock_exit(lr);
4148 
4149 	if (error == 0)
4150 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4151 
4152 	zfs_exit(zfsvfs, FTAG);
4153 
4154 	return (error);
4155 }
4156 
4157 /*
4158  * Check ZFS specific permissions to memory map a section of a file.
4159  *
4160  *	IN:	ip	- inode of the file to mmap
4161  *		off	- file offset
4162  *		addrp	- start address in memory region
4163  *		len	- length of memory region
4164  *		vm_flags- address flags
4165  *
4166  *	RETURN:	0 if success
4167  *		error code if failure
4168  */
4169 int
zfs_map(struct inode * ip,offset_t off,caddr_t * addrp,size_t len,unsigned long vm_flags)4170 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4171     unsigned long vm_flags)
4172 {
4173 	(void) addrp;
4174 	znode_t  *zp = ITOZ(ip);
4175 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4176 	int error;
4177 
4178 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4179 		return (error);
4180 
4181 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4182 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4183 		zfs_exit(zfsvfs, FTAG);
4184 		return (SET_ERROR(EPERM));
4185 	}
4186 
4187 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4188 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4189 		zfs_exit(zfsvfs, FTAG);
4190 		return (SET_ERROR(EACCES));
4191 	}
4192 
4193 	if (off < 0 || len > MAXOFFSET_T - off) {
4194 		zfs_exit(zfsvfs, FTAG);
4195 		return (SET_ERROR(ENXIO));
4196 	}
4197 
4198 	zfs_exit(zfsvfs, FTAG);
4199 	return (0);
4200 }
4201 
4202 /*
4203  * Free or allocate space in a file.  Currently, this function only
4204  * supports the `F_FREESP' command.  However, this command is somewhat
4205  * misnamed, as its functionality includes the ability to allocate as
4206  * well as free space.
4207  *
4208  *	IN:	zp	- znode of file to free data in.
4209  *		cmd	- action to take (only F_FREESP supported).
4210  *		bfp	- section of file to free/alloc.
4211  *		flag	- current file open mode flags.
4212  *		offset	- current file offset.
4213  *		cr	- credentials of caller.
4214  *
4215  *	RETURN:	0 on success, error code on failure.
4216  *
4217  * Timestamps:
4218  *	zp - ctime|mtime updated
4219  */
4220 int
zfs_space(znode_t * zp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr)4221 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4222     offset_t offset, cred_t *cr)
4223 {
4224 	(void) offset;
4225 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4226 	uint64_t	off, len;
4227 	int		error;
4228 
4229 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4230 		return (error);
4231 
4232 	if (cmd != F_FREESP) {
4233 		zfs_exit(zfsvfs, FTAG);
4234 		return (SET_ERROR(EINVAL));
4235 	}
4236 
4237 	/*
4238 	 * Callers might not be able to detect properly that we are read-only,
4239 	 * so check it explicitly here.
4240 	 */
4241 	if (zfs_is_readonly(zfsvfs)) {
4242 		zfs_exit(zfsvfs, FTAG);
4243 		return (SET_ERROR(EROFS));
4244 	}
4245 
4246 	if (bfp->l_len < 0) {
4247 		zfs_exit(zfsvfs, FTAG);
4248 		return (SET_ERROR(EINVAL));
4249 	}
4250 
4251 	/*
4252 	 * Permissions aren't checked on Solaris because on this OS
4253 	 * zfs_space() can only be called with an opened file handle.
4254 	 * On Linux we can get here through truncate_range() which
4255 	 * operates directly on inodes, so we need to check access rights.
4256 	 */
4257 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4258 	    zfs_init_idmap))) {
4259 		zfs_exit(zfsvfs, FTAG);
4260 		return (error);
4261 	}
4262 
4263 	off = bfp->l_start;
4264 	len = bfp->l_len; /* 0 means from off to end of file */
4265 
4266 	error = zfs_freesp(zp, off, len, flag, TRUE);
4267 
4268 	zfs_exit(zfsvfs, FTAG);
4269 	return (error);
4270 }
4271 
4272 int
zfs_fid(struct inode * ip,fid_t * fidp)4273 zfs_fid(struct inode *ip, fid_t *fidp)
4274 {
4275 	znode_t		*zp = ITOZ(ip);
4276 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4277 	uint32_t	gen;
4278 	uint64_t	gen64;
4279 	uint64_t	object = zp->z_id;
4280 	zfid_short_t	*zfid;
4281 	int		size, i, error;
4282 
4283 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4284 		return (error);
4285 
4286 	if (fidp->fid_len < SHORT_FID_LEN) {
4287 		fidp->fid_len = SHORT_FID_LEN;
4288 		zfs_exit(zfsvfs, FTAG);
4289 		return (SET_ERROR(ENOSPC));
4290 	}
4291 
4292 	if ((error = zfs_verify_zp(zp)) != 0) {
4293 		zfs_exit(zfsvfs, FTAG);
4294 		return (error);
4295 	}
4296 
4297 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4298 	    &gen64, sizeof (uint64_t))) != 0) {
4299 		zfs_exit(zfsvfs, FTAG);
4300 		return (error);
4301 	}
4302 
4303 	gen = (uint32_t)gen64;
4304 
4305 	size = SHORT_FID_LEN;
4306 
4307 	zfid = (zfid_short_t *)fidp;
4308 
4309 	zfid->zf_len = size;
4310 
4311 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4312 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4313 
4314 	/* Must have a non-zero generation number to distinguish from .zfs */
4315 	if (gen == 0)
4316 		gen = 1;
4317 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4318 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4319 
4320 	zfs_exit(zfsvfs, FTAG);
4321 	return (0);
4322 }
4323 
4324 #if defined(_KERNEL)
4325 EXPORT_SYMBOL(zfs_open);
4326 EXPORT_SYMBOL(zfs_close);
4327 EXPORT_SYMBOL(zfs_lookup);
4328 EXPORT_SYMBOL(zfs_create);
4329 EXPORT_SYMBOL(zfs_tmpfile);
4330 EXPORT_SYMBOL(zfs_remove);
4331 EXPORT_SYMBOL(zfs_mkdir);
4332 EXPORT_SYMBOL(zfs_rmdir);
4333 EXPORT_SYMBOL(zfs_readdir);
4334 EXPORT_SYMBOL(zfs_getattr_fast);
4335 EXPORT_SYMBOL(zfs_setattr);
4336 EXPORT_SYMBOL(zfs_rename);
4337 EXPORT_SYMBOL(zfs_symlink);
4338 EXPORT_SYMBOL(zfs_readlink);
4339 EXPORT_SYMBOL(zfs_link);
4340 EXPORT_SYMBOL(zfs_inactive);
4341 EXPORT_SYMBOL(zfs_space);
4342 EXPORT_SYMBOL(zfs_fid);
4343 EXPORT_SYMBOL(zfs_getpage);
4344 EXPORT_SYMBOL(zfs_putpage);
4345 EXPORT_SYMBOL(zfs_dirty_inode);
4346 EXPORT_SYMBOL(zfs_map);
4347 
4348 module_param(zfs_delete_blocks, ulong, 0644);
4349 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4350 #endif
4351