1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
26 * Copyright 2022 Oxide Computer Company
27 */
28
29 /*
30 * ZFS syseventd module.
31 *
32 * The purpose of this module is to identify when devices are added to the
33 * system, and appropriately online or replace the affected vdevs.
34 *
35 * When a device is added to the system:
36 *
37 * 1. Search for any vdevs whose devid matches that of the newly added
38 * device.
39 *
40 * 2. If no vdevs are found, then search for any vdevs whose devfs path
41 * matches that of the new device.
42 *
43 * 3. If no vdevs match by either method, then ignore the event.
44 *
45 * 4. Attempt to online the device with a flag to indicate that it should
46 * be unspared when resilvering completes. If this succeeds, then the
47 * same device was inserted and we should continue normally.
48 *
49 * 5. If the pool does not have the 'autoreplace' property set, attempt to
50 * online the device again without the unspare flag, which will
51 * generate a FMA fault.
52 *
53 * 6. If the pool has the 'autoreplace' property set, and the matching vdev
54 * is a whole disk, then label the new disk and attempt a 'zpool
55 * replace'.
56 *
57 * The module responds to EC_DEV_ADD events for both disks and lofi devices,
58 * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event
59 * indicates that a device failed to open during pool load, but the autoreplace
60 * property was set. In this case, we deferred the associated FMA fault until
61 * our module had a chance to process the autoreplace logic. If the device
62 * could not be replaced, then the second online attempt will trigger the FMA
63 * fault that we skipped earlier.
64 */
65
66 #include <alloca.h>
67 #include <devid.h>
68 #include <fcntl.h>
69 #include <libnvpair.h>
70 #include <libsysevent.h>
71 #include <libzfs.h>
72 #include <limits.h>
73 #include <stdlib.h>
74 #include <string.h>
75 #include <syslog.h>
76 #include <sys/list.h>
77 #include <sys/sunddi.h>
78 #include <sys/sysevent/eventdefs.h>
79 #include <sys/sysevent/dev.h>
80 #include <thread_pool.h>
81 #include <unistd.h>
82 #include "syseventd.h"
83
84 #if defined(__i386) || defined(__amd64)
85 #define PHYS_PATH ":q"
86 #define RAW_SLICE "p0"
87 #elif defined(__sparc)
88 #define PHYS_PATH ":c"
89 #define RAW_SLICE "s2"
90 #else
91 #error Unknown architecture
92 #endif
93
94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
95
96 libzfs_handle_t *g_zfshdl;
97 list_t g_pool_list;
98 tpool_t *g_tpool;
99 boolean_t g_enumeration_done;
100 thread_t g_zfs_tid;
101
102 typedef struct unavailpool {
103 zpool_handle_t *uap_zhp;
104 list_node_t uap_node;
105 } unavailpool_t;
106
107 int
zfs_toplevel_state(zpool_handle_t * zhp)108 zfs_toplevel_state(zpool_handle_t *zhp)
109 {
110 nvlist_t *nvroot;
111 vdev_stat_t *vs;
112 unsigned int c;
113
114 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
115 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
116 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
117 (uint64_t **)&vs, &c) == 0);
118 return (vs->vs_state);
119 }
120
121 static int
zfs_unavail_pool(zpool_handle_t * zhp,void * data)122 zfs_unavail_pool(zpool_handle_t *zhp, void *data)
123 {
124 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
125 unavailpool_t *uap;
126 uap = malloc(sizeof (unavailpool_t));
127 uap->uap_zhp = zhp;
128 list_insert_tail((list_t *)data, uap);
129 } else {
130 zpool_close(zhp);
131 }
132 return (0);
133 }
134
135 /*
136 * The device associated with the given vdev (either by devid or physical path)
137 * has been added to the system. If 'isdisk' is set, then we only attempt a
138 * replacement if it's a whole disk. This also implies that we should label the
139 * disk first.
140 *
141 * First, we attempt to online the device (making sure to undo any spare
142 * operation when finished). If this succeeds, then we're done. If it fails,
143 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
144 * but that the label was not what we expected. If the 'autoreplace' property
145 * is not set, then we relabel the disk (if specified), and attempt a 'zpool
146 * replace'. If the online is successful, but the new state is something else
147 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
148 * race, and we should avoid attempting to relabel the disk.
149 */
150 static void
zfs_process_add(zpool_handle_t * zhp,nvlist_t * vdev,boolean_t isdisk)151 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk)
152 {
153 char *path;
154 vdev_state_t newstate;
155 nvlist_t *nvroot, *newvd;
156 uint64_t wholedisk = 0ULL;
157 uint64_t offline = 0ULL;
158 char *physpath = NULL;
159 char rawpath[PATH_MAX], fullpath[PATH_MAX];
160 zpool_boot_label_t boot_type;
161 uint64_t boot_size;
162 size_t len;
163
164 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
165 return;
166
167 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
168 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
169 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
170
171 /*
172 * We should have a way to online a device by guid. With the current
173 * interface, we are forced to chop off the 's0' for whole disks.
174 */
175 (void) strlcpy(fullpath, path, sizeof (fullpath));
176 if (wholedisk)
177 fullpath[strlen(fullpath) - 2] = '\0';
178
179 /*
180 * Attempt to online the device. It would be nice to online this by
181 * GUID, but the current interface only supports lookup by path.
182 */
183 if (offline ||
184 (zpool_vdev_online(zhp, fullpath,
185 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
186 (newstate == VDEV_STATE_HEALTHY ||
187 newstate == VDEV_STATE_DEGRADED)))
188 return;
189
190 /*
191 * If the pool doesn't have the autoreplace property set, then attempt a
192 * true online (without the unspare flag), which will trigger a FMA
193 * fault.
194 */
195 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
196 (isdisk && !wholedisk)) {
197 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
198 &newstate);
199 return;
200 }
201
202 if (isdisk) {
203 /*
204 * If this is a request to label a whole disk, then attempt to
205 * write out the label. Before we can label the disk, we need
206 * access to a raw node. Ideally, we'd like to walk the devinfo
207 * tree and find a raw node from the corresponding parent node.
208 * This is overly complicated, and since we know how we labeled
209 * this device in the first place, we know it's save to switch
210 * from /dev/dsk to /dev/rdsk and append the backup slice.
211 *
212 * If any part of this process fails, then do a force online to
213 * trigger a ZFS fault for the device (and any hot spare
214 * replacement).
215 */
216 if (strncmp(path, ZFS_DISK_ROOTD,
217 strlen(ZFS_DISK_ROOTD)) != 0) {
218 (void) zpool_vdev_online(zhp, fullpath,
219 ZFS_ONLINE_FORCEFAULT, &newstate);
220 return;
221 }
222
223 (void) strlcpy(rawpath, path + 9, sizeof (rawpath));
224 len = strlen(rawpath);
225 rawpath[len - 2] = '\0';
226
227 if (zpool_is_bootable(zhp))
228 boot_type = ZPOOL_COPY_BOOT_LABEL;
229 else
230 boot_type = ZPOOL_NO_BOOT_LABEL;
231
232 boot_size = zpool_get_prop_int(zhp, ZPOOL_PROP_BOOTSIZE, NULL);
233 if (zpool_label_disk(g_zfshdl, zhp, rawpath,
234 boot_type, boot_size, NULL) != 0) {
235 (void) zpool_vdev_online(zhp, fullpath,
236 ZFS_ONLINE_FORCEFAULT, &newstate);
237 return;
238 }
239 }
240
241 /*
242 * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding
243 * the entire vdev structure is harmless, we construct a reduced set of
244 * path/physpath/wholedisk to keep it simple.
245 */
246 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
247 return;
248
249 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
250 nvlist_free(nvroot);
251 return;
252 }
253
254 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
255 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
256 (physpath != NULL && nvlist_add_string(newvd,
257 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
258 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
259 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
260 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd,
261 1) != 0) {
262 nvlist_free(newvd);
263 nvlist_free(nvroot);
264 return;
265 }
266
267 nvlist_free(newvd);
268
269 (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE);
270
271 nvlist_free(nvroot);
272
273 }
274
275 /*
276 * Utility functions to find a vdev matching given criteria.
277 */
278 typedef struct dev_data {
279 const char *dd_compare;
280 const char *dd_prop;
281 zfs_process_func_t dd_func;
282 boolean_t dd_found;
283 boolean_t dd_isdisk;
284 uint64_t dd_pool_guid;
285 uint64_t dd_vdev_guid;
286 } dev_data_t;
287
288 static void
zfs_iter_vdev(zpool_handle_t * zhp,nvlist_t * nvl,void * data)289 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
290 {
291 dev_data_t *dp = data;
292 char *path;
293 uint_t c, children;
294 nvlist_t **child;
295 size_t len;
296 uint64_t guid;
297
298 /*
299 * First iterate over any children.
300 */
301 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
302 &child, &children) == 0) {
303 for (c = 0; c < children; c++)
304 zfs_iter_vdev(zhp, child[c], data);
305 return;
306 }
307
308 if (dp->dd_vdev_guid != 0) {
309 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
310 &guid) != 0 || guid != dp->dd_vdev_guid)
311 return;
312 } else if (dp->dd_compare != NULL) {
313 len = strlen(dp->dd_compare);
314
315 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
316 strncmp(dp->dd_compare, path, len) != 0)
317 return;
318
319 /*
320 * Normally, we want to have an exact match for the comparison
321 * string. However, we allow substring matches in the following
322 * cases:
323 *
324 * <path>: This is a devpath, and the target is one
325 * of its children.
326 *
327 * <path/> This is a devid for a whole disk, and
328 * the target is one of its children.
329 */
330 if (path[len] != '\0' && path[len] != ':' &&
331 path[len - 1] != '/')
332 return;
333 }
334
335 (dp->dd_func)(zhp, nvl, dp->dd_isdisk);
336 }
337
338 void
zfs_enable_ds(void * arg)339 zfs_enable_ds(void *arg)
340 {
341 unavailpool_t *pool = (unavailpool_t *)arg;
342
343 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
344 zpool_close(pool->uap_zhp);
345 free(pool);
346 }
347
348 static int
zfs_iter_pool(zpool_handle_t * zhp,void * data)349 zfs_iter_pool(zpool_handle_t *zhp, void *data)
350 {
351 nvlist_t *config, *nvl;
352 dev_data_t *dp = data;
353 uint64_t pool_guid;
354 unavailpool_t *pool;
355
356 if ((config = zpool_get_config(zhp, NULL)) != NULL) {
357 if (dp->dd_pool_guid == 0 ||
358 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
359 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
360 (void) nvlist_lookup_nvlist(config,
361 ZPOOL_CONFIG_VDEV_TREE, &nvl);
362 zfs_iter_vdev(zhp, nvl, data);
363 }
364 }
365 if (g_enumeration_done) {
366 for (pool = list_head(&g_pool_list); pool != NULL;
367 pool = list_next(&g_pool_list, pool)) {
368
369 if (strcmp(zpool_get_name(zhp),
370 zpool_get_name(pool->uap_zhp)))
371 continue;
372 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
373 list_remove(&g_pool_list, pool);
374 (void) tpool_dispatch(g_tpool, zfs_enable_ds,
375 pool);
376 break;
377 }
378 }
379 }
380
381 zpool_close(zhp);
382 return (0);
383 }
384
385 /*
386 * Given a physical device path, iterate over all (pool, vdev) pairs which
387 * correspond to the given path.
388 */
389 static boolean_t
devpath_iter(const char * devpath,zfs_process_func_t func,boolean_t wholedisk)390 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
391 {
392 dev_data_t data = { 0 };
393
394 data.dd_compare = devpath;
395 data.dd_func = func;
396 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
397 data.dd_found = B_FALSE;
398 data.dd_isdisk = wholedisk;
399
400 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
401
402 return (data.dd_found);
403 }
404
405 /*
406 * Given a /devices path, lookup the corresponding devid for each minor node,
407 * and find any vdevs with matching devids. Doing this straight up would be
408 * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of
409 * the fact that each devid ends with "/<minornode>". Once we find any valid
410 * minor node, we chop off the portion after the last slash, and then search for
411 * matching vdevs, which is O(vdevs in system).
412 */
413 static boolean_t
devid_iter(const char * devpath,zfs_process_func_t func,boolean_t wholedisk)414 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
415 {
416 size_t len = strlen(devpath) + sizeof ("/devices") +
417 sizeof (PHYS_PATH) - 1;
418 char *fullpath;
419 int fd;
420 ddi_devid_t devid;
421 char *devidstr, *fulldevid;
422 dev_data_t data = { 0 };
423
424 /*
425 * Try to open a known minor node.
426 */
427 fullpath = alloca(len);
428 (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH);
429 if ((fd = open(fullpath, O_RDONLY)) < 0)
430 return (B_FALSE);
431
432 /*
433 * Determine the devid as a string, with no trailing slash for the minor
434 * node.
435 */
436 if (devid_get(fd, &devid) != 0) {
437 (void) close(fd);
438 return (B_FALSE);
439 }
440 (void) close(fd);
441
442 if ((devidstr = devid_str_encode(devid, NULL)) == NULL) {
443 devid_free(devid);
444 return (B_FALSE);
445 }
446
447 len = strlen(devidstr) + 2;
448 fulldevid = alloca(len);
449 (void) snprintf(fulldevid, len, "%s/", devidstr);
450
451 data.dd_compare = fulldevid;
452 data.dd_func = func;
453 data.dd_prop = ZPOOL_CONFIG_DEVID;
454 data.dd_found = B_FALSE;
455 data.dd_isdisk = wholedisk;
456
457 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
458
459 devid_str_free(devidstr);
460 devid_free(devid);
461
462 return (data.dd_found);
463 }
464
465 /*
466 * This function is called when we receive a devfs add event. This can be
467 * either a disk event or a lofi event, and the behavior is slightly different
468 * depending on which it is.
469 */
470 static int
zfs_deliver_add(nvlist_t * nvl,boolean_t is_lofi)471 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi)
472 {
473 char *devpath, *devname;
474 char path[PATH_MAX], realpath[PATH_MAX];
475 char *colon, *raw;
476 int ret;
477
478 /*
479 * The main unit of operation is the physical device path. For disks,
480 * this is the device node, as all minor nodes are affected. For lofi
481 * devices, this includes the minor path. Unfortunately, this isn't
482 * represented in the DEV_PHYS_PATH for various reasons.
483 */
484 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0)
485 return (-1);
486
487 /*
488 * If this is a lofi device, then also get the minor instance name.
489 * Unfortunately, the current payload doesn't include an easy way to get
490 * this information. So we cheat by resolving the 'dev_name' (which
491 * refers to the raw device) and taking the portion between ':(*),raw'.
492 */
493 (void) strlcpy(realpath, devpath, sizeof (realpath));
494 if (is_lofi) {
495 if (nvlist_lookup_string(nvl, DEV_NAME,
496 &devname) == 0 &&
497 (ret = resolvepath(devname, path,
498 sizeof (path))) > 0) {
499 path[ret] = '\0';
500 colon = strchr(path, ':');
501 if (colon != NULL)
502 raw = strstr(colon + 1, ",raw");
503 if (colon != NULL && raw != NULL) {
504 *raw = '\0';
505 (void) snprintf(realpath,
506 sizeof (realpath), "%s%s",
507 devpath, colon);
508 *raw = ',';
509 }
510 }
511 }
512
513 /*
514 * Iterate over all vdevs with a matching devid, and then those with a
515 * matching /devices path. For disks, we only want to pay attention to
516 * vdevs marked as whole disks. For lofi, we don't care (because we're
517 * matching an exact minor name).
518 */
519 if (!devid_iter(realpath, zfs_process_add, !is_lofi))
520 (void) devpath_iter(realpath, zfs_process_add, !is_lofi);
521
522 return (0);
523 }
524
525 /*
526 * Called when we receive a VDEV_CHECK event, which indicates a device could not
527 * be opened during initial pool open, but the autoreplace property was set on
528 * the pool. In this case, we treat it as if it were an add event.
529 */
530 static int
zfs_deliver_check(nvlist_t * nvl)531 zfs_deliver_check(nvlist_t *nvl)
532 {
533 dev_data_t data = { 0 };
534
535 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
536 &data.dd_pool_guid) != 0 ||
537 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
538 &data.dd_vdev_guid) != 0 ||
539 data.dd_vdev_guid == 0)
540 return (0);
541
542 data.dd_isdisk = B_TRUE;
543 data.dd_func = zfs_process_add;
544
545 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
546
547 return (0);
548 }
549
550 #define DEVICE_PREFIX "/devices"
551
552 static int
zfsdle_vdev_online(zpool_handle_t * zhp,void * data)553 zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
554 {
555 char *devname = data;
556 boolean_t avail_spare, l2cache;
557 vdev_state_t newstate;
558 nvlist_t *tgt;
559
560 syseventd_print(9, "%s: searching for %s in pool %s\n", __func__,
561 devname, zpool_get_name(zhp));
562
563 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
564 &avail_spare, &l2cache, NULL)) != NULL) {
565 char *path, fullpath[MAXPATHLEN];
566 uint64_t wholedisk = 0ULL;
567
568 /*
569 * If the /dev path of the device is invalid because the disk
570 * has been moved to a new location, we need to try to refresh
571 * that path before onlining the device.
572 */
573 zpool_vdev_refresh_path(g_zfshdl, zhp, tgt);
574
575 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH,
576 &path) == 0);
577 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
578 &wholedisk) == 0);
579
580 syseventd_print(9, "%s: "
581 "found %s in pool %s (wholedisk: %s)\n", __func__,
582 path, zpool_get_name(zhp),
583 wholedisk != 0 ? "true" : "false");
584
585 (void) strlcpy(fullpath, path, sizeof (fullpath));
586 if (wholedisk) {
587 fullpath[strlen(fullpath) - 2] = '\0';
588
589 /*
590 * We need to reopen the pool associated with this
591 * device so that the kernel can update the size
592 * of the expanded device.
593 */
594 (void) zpool_reopen(zhp);
595 }
596
597 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
598 syseventd_print(9, "%s: "
599 "setting device %s to ONLINE state in pool %s.\n",
600 __func__, fullpath, zpool_get_name(zhp));
601 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
602 (void) zpool_vdev_online(zhp, fullpath, 0,
603 &newstate);
604 }
605 }
606 zpool_close(zhp);
607 return (1);
608 }
609 zpool_close(zhp);
610 return (0);
611 }
612
613 /*
614 * This function is called for each vdev of a pool for which any of the
615 * following events was recieved:
616 * - ESC_ZFS_vdev_add
617 * - ESC_ZFS_vdev_attach
618 * - ESC_ZFS_vdev_clear
619 * - ESC_ZFS_vdev_online
620 * - ESC_ZFS_pool_create
621 * - ESC_ZFS_pool_import
622 * It will update the vdevs FRU property if it is out of date.
623 */
624 /*ARGSUSED2*/
625 static void
zfs_update_vdev_fru(zpool_handle_t * zhp,nvlist_t * vdev,boolean_t isdisk)626 zfs_update_vdev_fru(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk)
627 {
628 char *devpath, *cptr, *oldfru = NULL;
629 const char *newfru;
630 uint64_t vdev_guid;
631
632 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &vdev_guid);
633 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &devpath);
634 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_FRU, &oldfru);
635
636 /* remove :<slice> from devpath */
637 cptr = strrchr(devpath, ':');
638 if (cptr != NULL)
639 *cptr = '\0';
640
641 newfru = libzfs_fru_lookup(g_zfshdl, devpath);
642 if (newfru == NULL) {
643 syseventd_print(9, "zfs_update_vdev_fru: no FRU for %s\n",
644 devpath);
645 return;
646 }
647
648 /* do nothing if the FRU hasn't changed */
649 if (oldfru != NULL && libzfs_fru_compare(g_zfshdl, oldfru, newfru)) {
650 syseventd_print(9, "zfs_update_vdev_fru: FRU unchanged\n");
651 return;
652 }
653
654 syseventd_print(9, "zfs_update_vdev_fru: devpath = %s\n", devpath);
655 syseventd_print(9, "zfs_update_vdev_fru: FRU = %s\n", newfru);
656
657 (void) zpool_fru_set(zhp, vdev_guid, newfru);
658 }
659
660 /*
661 * This function handles the following events:
662 * - ESC_ZFS_vdev_add
663 * - ESC_ZFS_vdev_attach
664 * - ESC_ZFS_vdev_clear
665 * - ESC_ZFS_vdev_online
666 * - ESC_ZFS_pool_create
667 * - ESC_ZFS_pool_import
668 * It will iterate over the pool vdevs to update the FRU property.
669 */
670 int
zfs_deliver_update(nvlist_t * nvl)671 zfs_deliver_update(nvlist_t *nvl)
672 {
673 dev_data_t dd = { 0 };
674 char *pname;
675 zpool_handle_t *zhp;
676 nvlist_t *config, *vdev;
677
678 if (nvlist_lookup_string(nvl, "pool_name", &pname) != 0) {
679 syseventd_print(9, "zfs_deliver_update: no pool name\n");
680 return (-1);
681 }
682
683 /*
684 * If this event was triggered by a pool export or destroy we cannot
685 * open the pool. This is not an error, just return 0 as we don't care
686 * about these events.
687 */
688 zhp = zpool_open_canfail(g_zfshdl, pname);
689 if (zhp == NULL)
690 return (0);
691
692 config = zpool_get_config(zhp, NULL);
693 if (config == NULL) {
694 syseventd_print(9, "zfs_deliver_update: "
695 "failed to get pool config for %s\n", pname);
696 zpool_close(zhp);
697 return (-1);
698 }
699
700 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev) != 0) {
701 syseventd_print(0, "zfs_deliver_update: "
702 "failed to get vdev tree for %s\n", pname);
703 zpool_close(zhp);
704 return (-1);
705 }
706
707 libzfs_fru_refresh(g_zfshdl);
708
709 dd.dd_func = zfs_update_vdev_fru;
710 zfs_iter_vdev(zhp, vdev, &dd);
711
712 zpool_close(zhp);
713 return (0);
714 }
715
716 int
zfs_deliver_dle(nvlist_t * nvl)717 zfs_deliver_dle(nvlist_t *nvl)
718 {
719 char *devname;
720 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) {
721 syseventd_print(9, "zfs_deliver_event: no physpath\n");
722 return (-1);
723 }
724 if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) {
725 syseventd_print(9, "zfs_deliver_event: invalid "
726 "device '%s'", devname);
727 return (-1);
728 }
729
730 /*
731 * We try to find the device using the physical
732 * path that has been supplied. We need to strip off
733 * the /devices prefix before starting our search.
734 */
735 devname += strlen(DEVICE_PREFIX);
736 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) {
737 syseventd_print(9, "zfs_deliver_event: device '%s' not"
738 " found\n", devname);
739 return (1);
740 }
741 return (0);
742 }
743
744
745 /*ARGSUSED*/
746 static int
zfs_deliver_event(sysevent_t * ev,int unused)747 zfs_deliver_event(sysevent_t *ev, int unused)
748 {
749 const char *class = sysevent_get_class_name(ev);
750 const char *subclass = sysevent_get_subclass_name(ev);
751 nvlist_t *nvl;
752 int ret;
753 boolean_t is_lofi = B_FALSE, is_check = B_FALSE;
754 boolean_t is_dle = B_FALSE, is_update = B_FALSE;
755
756 if (strcmp(class, EC_DEV_ADD) == 0) {
757 /*
758 * We're mainly interested in disk additions, but we also listen
759 * for new lofi devices, to allow for simplified testing.
760 */
761 if (strcmp(subclass, ESC_DISK) == 0)
762 is_lofi = B_FALSE;
763 else if (strcmp(subclass, ESC_LOFI) == 0)
764 is_lofi = B_TRUE;
765 else
766 return (0);
767
768 is_check = B_FALSE;
769 } else if (strcmp(class, EC_ZFS) == 0) {
770 if (strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
771 /*
772 * This event signifies that a device failed to open
773 * during pool load, but the 'autoreplace' property was
774 * set, so we should pretend it's just been added.
775 */
776 is_check = B_TRUE;
777 } else if ((strcmp(subclass, ESC_ZFS_VDEV_ADD) == 0) ||
778 (strcmp(subclass, ESC_ZFS_VDEV_ATTACH) == 0) ||
779 (strcmp(subclass, ESC_ZFS_VDEV_CLEAR) == 0) ||
780 (strcmp(subclass, ESC_ZFS_VDEV_ONLINE) == 0) ||
781 (strcmp(subclass, ESC_ZFS_POOL_CREATE) == 0) ||
782 (strcmp(subclass, ESC_ZFS_POOL_IMPORT) == 0)) {
783 /*
784 * When we receive these events we check the pool
785 * configuration and update the vdev FRUs if necessary.
786 */
787 is_update = B_TRUE;
788 }
789 } else if (strcmp(class, EC_DEV_STATUS) == 0 &&
790 strcmp(subclass, ESC_DEV_DLE) == 0) {
791 is_dle = B_TRUE;
792 } else {
793 return (0);
794 }
795
796 if (sysevent_get_attr_list(ev, &nvl) != 0)
797 return (-1);
798
799 if (is_dle)
800 ret = zfs_deliver_dle(nvl);
801 else if (is_update)
802 ret = zfs_deliver_update(nvl);
803 else if (is_check)
804 ret = zfs_deliver_check(nvl);
805 else
806 ret = zfs_deliver_add(nvl, is_lofi);
807
808 nvlist_free(nvl);
809 return (ret);
810 }
811
812 /*ARGSUSED*/
813 void *
zfs_enum_pools(void * arg)814 zfs_enum_pools(void *arg)
815 {
816 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
817 if (!list_is_empty(&g_pool_list))
818 g_tpool = tpool_create(1, sysconf(_SC_NPROCESSORS_ONLN),
819 0, NULL);
820 g_enumeration_done = B_TRUE;
821 return (NULL);
822 }
823
824 static struct slm_mod_ops zfs_mod_ops = {
825 SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event
826 };
827
828 struct slm_mod_ops *
slm_init()829 slm_init()
830 {
831 if ((g_zfshdl = libzfs_init()) == NULL)
832 return (NULL);
833 /*
834 * collect a list of unavailable pools (asynchronously,
835 * since this can take a while)
836 */
837 list_create(&g_pool_list, sizeof (struct unavailpool),
838 offsetof(struct unavailpool, uap_node));
839 if (thr_create(NULL, 0, zfs_enum_pools, NULL, 0, &g_zfs_tid) != 0)
840 return (NULL);
841 return (&zfs_mod_ops);
842 }
843
844 void
slm_fini()845 slm_fini()
846 {
847 unavailpool_t *pool;
848
849 (void) thr_join(g_zfs_tid, NULL, NULL);
850 if (g_tpool != NULL) {
851 tpool_wait(g_tpool);
852 tpool_destroy(g_tpool);
853 }
854 while ((pool = (list_head(&g_pool_list))) != NULL) {
855 list_remove(&g_pool_list, pool);
856 zpool_close(pool->uap_zhp);
857 free(pool);
858 }
859 list_destroy(&g_pool_list);
860 libzfs_fini(g_zfshdl);
861 }
862