xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision d0abb9a6399accc9053e2808052be00a6754ecef)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27  * Copyright 2017 Nexenta Systems, Inc.
28  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
29  * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
30  * Copyright (c) 2025, Klara, Inc.
31  */
32 
33 /* Portions Copyright 2007 Jeremy Teo */
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/time.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/cmn_err.h>
45 #include <sys/errno.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zfs_acl.h>
48 #include <sys/zfs_ioctl.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/dsl_crypt.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/policy.h>
58 #include <sys/zfeature.h>
59 #include <sys/zfs_vnops.h>
60 #include <sys/zfs_quota.h>
61 #include <sys/zfs_vfsops.h>
62 #include <sys/zfs_znode.h>
63 
64 /*
65  * Enables access to the block cloning feature. If this setting is 0, then even
66  * if feature@block_cloning is enabled, using functions and system calls that
67  * attempt to clone blocks will act as though the feature is disabled.
68  */
69 int zfs_bclone_enabled = 1;
70 
71 /*
72  * When set to 1 the FICLONE and FICLONERANGE ioctls will wait for any dirty
73  * data to be written to disk before proceeding. This ensures that the clone
74  * operation reliably succeeds, even if a file is modified and then immediately
75  * cloned. Note that for small files this may be slower than simply copying
76  * the file. When set to 0 the clone operation will immediately fail if it
77  * encounters any dirty blocks. By default waiting is enabled.
78  */
79 int zfs_bclone_wait_dirty = 1;
80 
81 /*
82  * Enable Direct I/O. If this setting is 0, then all I/O requests will be
83  * directed through the ARC acting as though the dataset property direct was
84  * set to disabled.
85  *
86  * Disabled by default on FreeBSD until a potential range locking issue in
87  * zfs_getpages() can be resolved.
88  */
89 #ifdef __FreeBSD__
90 static int zfs_dio_enabled = 0;
91 #else
92 static int zfs_dio_enabled = 1;
93 #endif
94 
95 /*
96  * Strictly enforce alignment for Direct I/O requests, returning EINVAL
97  * if not page-aligned instead of silently falling back to uncached I/O.
98  */
99 static int zfs_dio_strict = 0;
100 
101 
102 /*
103  * Maximum bytes to read per chunk in zfs_read().
104  */
105 #ifdef _ILP32
106 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
107 #else
108 static uint64_t zfs_vnops_read_chunk_size = DMU_MAX_ACCESS / 2;
109 #endif
110 
111 int
zfs_fsync(znode_t * zp,int syncflag,cred_t * cr)112 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
113 {
114 	int error = 0;
115 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
116 
117 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
118 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
119 			return (error);
120 		error = zil_commit(zfsvfs->z_log, zp->z_id);
121 		zfs_exit(zfsvfs, FTAG);
122 	}
123 	return (error);
124 }
125 
126 
127 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
128 /*
129  * Lseek support for finding holes (cmd == SEEK_HOLE) and
130  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
131  */
132 static int
zfs_holey_common(znode_t * zp,ulong_t cmd,loff_t * off)133 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
134 {
135 	zfs_locked_range_t *lr;
136 	uint64_t noff = (uint64_t)*off; /* new offset */
137 	uint64_t file_sz;
138 	int error;
139 	boolean_t hole;
140 
141 	file_sz = zp->z_size;
142 	if (noff >= file_sz)  {
143 		return (SET_ERROR(ENXIO));
144 	}
145 
146 	if (cmd == F_SEEK_HOLE)
147 		hole = B_TRUE;
148 	else
149 		hole = B_FALSE;
150 
151 	/* Flush any mmap()'d data to disk */
152 	if (zn_has_cached_data(zp, 0, file_sz - 1))
153 		zn_flush_cached_data(zp, B_TRUE);
154 
155 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
156 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
157 	zfs_rangelock_exit(lr);
158 
159 	if (error == ESRCH)
160 		return (SET_ERROR(ENXIO));
161 
162 	/* File was dirty, so fall back to using generic logic */
163 	if (error == EBUSY) {
164 		if (hole)
165 			*off = file_sz;
166 
167 		return (0);
168 	}
169 
170 	/*
171 	 * We could find a hole that begins after the logical end-of-file,
172 	 * because dmu_offset_next() only works on whole blocks.  If the
173 	 * EOF falls mid-block, then indicate that the "virtual hole"
174 	 * at the end of the file begins at the logical EOF, rather than
175 	 * at the end of the last block.
176 	 */
177 	if (noff > file_sz) {
178 		ASSERT(hole);
179 		noff = file_sz;
180 	}
181 
182 	if (noff < *off)
183 		return (error);
184 	*off = noff;
185 	return (error);
186 }
187 
188 int
zfs_holey(znode_t * zp,ulong_t cmd,loff_t * off)189 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
190 {
191 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
192 	int error;
193 
194 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
195 		return (error);
196 
197 	error = zfs_holey_common(zp, cmd, off);
198 
199 	zfs_exit(zfsvfs, FTAG);
200 	return (error);
201 }
202 #endif /* SEEK_HOLE && SEEK_DATA */
203 
204 int
zfs_access(znode_t * zp,int mode,int flag,cred_t * cr)205 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
206 {
207 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
208 	int error;
209 
210 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
211 		return (error);
212 
213 	if (flag & V_ACE_MASK)
214 #if defined(__linux__)
215 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
216 		    zfs_init_idmap);
217 #else
218 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
219 		    NULL);
220 #endif
221 	else
222 #if defined(__linux__)
223 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
224 #else
225 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
226 #endif
227 
228 	zfs_exit(zfsvfs, FTAG);
229 	return (error);
230 }
231 
232 /*
233  * Determine if Direct I/O has been requested (either via the O_DIRECT flag or
234  * the "direct" dataset property). When inherited by the property only apply
235  * the O_DIRECT flag to correctly aligned IO requests. The rational for this
236  * is it allows the property to be safely set on a dataset without forcing
237  * all of the applications to be aware of the alignment restrictions. When
238  * O_DIRECT is explicitly requested by an application return EINVAL if the
239  * request is unaligned.  In all cases, if the range for this request has
240  * been mmap'ed then we will perform buffered I/O to keep the mapped region
241  * synhronized with the ARC.
242  *
243  * It is possible that a file's pages could be mmap'ed after it is checked
244  * here. If so, that is handled coorarding in zfs_write(). See comments in the
245  * following area for how this is handled:
246  * zfs_write() -> update_pages()
247  */
248 static int
zfs_setup_direct(struct znode * zp,zfs_uio_t * uio,zfs_uio_rw_t rw,int * ioflagp)249 zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw,
250     int *ioflagp)
251 {
252 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
253 	objset_t *os = zfsvfs->z_os;
254 	int ioflag = *ioflagp;
255 	int error = 0;
256 
257 	if (os->os_direct == ZFS_DIRECT_ALWAYS) {
258 		/* Force either direct or uncached I/O. */
259 		ioflag |= O_DIRECT;
260 	}
261 
262 	if ((ioflag & O_DIRECT) == 0)
263 		goto out;
264 
265 	if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED) {
266 		/*
267 		 * Direct I/O is disabled.  The I/O request will be directed
268 		 * through the ARC as uncached I/O.
269 		 */
270 		goto out;
271 	}
272 
273 	if (!zfs_uio_page_aligned(uio) ||
274 	    !zfs_uio_aligned(uio, PAGE_SIZE)) {
275 		/*
276 		 * Misaligned requests can be executed through the ARC as
277 		 * uncached I/O.  But if O_DIRECT was set by user and we
278 		 * were set to be strict, then it is a failure.
279 		 */
280 		if ((*ioflagp & O_DIRECT) && zfs_dio_strict)
281 			error = SET_ERROR(EINVAL);
282 		goto out;
283 	}
284 
285 	if (zn_has_cached_data(zp, zfs_uio_offset(uio),
286 	    zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) {
287 		/*
288 		 * The region is mmap'ed.  The I/O request will be directed
289 		 * through the ARC as uncached I/O.
290 		 */
291 		goto out;
292 	}
293 
294 	/*
295 	 * For short writes the page mapping of Direct I/O makes no sense.
296 	 * Direct them through the ARC as uncached I/O.
297 	 */
298 	if (rw == UIO_WRITE && zfs_uio_resid(uio) < zp->z_blksz)
299 		goto out;
300 
301 	error = zfs_uio_get_dio_pages_alloc(uio, rw);
302 	if (error)
303 		goto out;
304 	ASSERT(uio->uio_extflg & UIO_DIRECT);
305 
306 out:
307 	*ioflagp = ioflag;
308 	return (error);
309 }
310 
311 /*
312  * Read bytes from specified file into supplied buffer.
313  *
314  *	IN:	zp	- inode of file to be read from.
315  *		uio	- structure supplying read location, range info,
316  *			  and return buffer.
317  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
318  *			  O_DIRECT flag; used to bypass page cache.
319  *		cr	- credentials of caller.
320  *
321  *	OUT:	uio	- updated offset and range, buffer filled.
322  *
323  *	RETURN:	0 on success, error code on failure.
324  *
325  * Side Effects:
326  *	inode - atime updated if byte count > 0
327  */
328 int
zfs_read(struct znode * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)329 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
330 {
331 	(void) cr;
332 	int error = 0;
333 	boolean_t frsync = B_FALSE;
334 	boolean_t dio_checksum_failure = B_FALSE;
335 
336 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
337 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
338 		return (error);
339 
340 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
341 		zfs_exit(zfsvfs, FTAG);
342 		return (SET_ERROR(EACCES));
343 	}
344 
345 	/* We don't copy out anything useful for directories. */
346 	if (Z_ISDIR(ZTOTYPE(zp))) {
347 		zfs_exit(zfsvfs, FTAG);
348 		return (SET_ERROR(EISDIR));
349 	}
350 
351 	/*
352 	 * Validate file offset
353 	 */
354 	if (zfs_uio_offset(uio) < (offset_t)0) {
355 		zfs_exit(zfsvfs, FTAG);
356 		return (SET_ERROR(EINVAL));
357 	}
358 
359 	/*
360 	 * Fasttrack empty reads
361 	 */
362 	if (zfs_uio_resid(uio) == 0) {
363 		zfs_exit(zfsvfs, FTAG);
364 		return (0);
365 	}
366 
367 #ifdef FRSYNC
368 	/*
369 	 * If we're in FRSYNC mode, sync out this znode before reading it.
370 	 * Only do this for non-snapshots.
371 	 *
372 	 * Some platforms do not support FRSYNC and instead map it
373 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
374 	 * only honor FRSYNC requests on platforms which support it.
375 	 */
376 	frsync = !!(ioflag & FRSYNC);
377 #endif
378 	if (zfsvfs->z_log &&
379 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) {
380 		error = zil_commit(zfsvfs->z_log, zp->z_id);
381 		if (error != 0) {
382 			zfs_exit(zfsvfs, FTAG);
383 			return (error);
384 		}
385 	}
386 
387 	/*
388 	 * Lock the range against changes.
389 	 */
390 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
391 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
392 
393 	/*
394 	 * If we are reading past end-of-file we can skip
395 	 * to the end; but we might still need to set atime.
396 	 */
397 	if (zfs_uio_offset(uio) >= zp->z_size) {
398 		error = 0;
399 		goto out;
400 	}
401 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
402 
403 	/*
404 	 * Setting up Direct I/O if requested.
405 	 */
406 	error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag);
407 	if (error) {
408 		goto out;
409 	}
410 
411 #if defined(__linux__)
412 	ssize_t start_offset = zfs_uio_offset(uio);
413 #endif
414 	uint_t blksz = zp->z_blksz;
415 	ssize_t chunk_size;
416 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
417 	ssize_t start_resid = n;
418 	ssize_t dio_remaining_resid = 0;
419 
420 	dmu_flags_t dflags = DMU_READ_PREFETCH;
421 	if (ioflag & O_DIRECT)
422 		dflags |= DMU_UNCACHEDIO;
423 	if (uio->uio_extflg & UIO_DIRECT) {
424 		/*
425 		 * All pages for an O_DIRECT request ahve already been mapped
426 		 * so there's no compelling reason to handle this uio in
427 		 * smaller chunks.
428 		 */
429 		chunk_size = DMU_MAX_ACCESS;
430 
431 		/*
432 		 * In the event that the O_DIRECT request is reading the entire
433 		 * file, it is possible file's length is not page sized
434 		 * aligned. However, lower layers expect that the Direct I/O
435 		 * request is page-aligned. In this case, as much of the file
436 		 * that can be read using Direct I/O happens and the remaining
437 		 * amount will be read through the ARC.
438 		 *
439 		 * This is still consistent with the semantics of Direct I/O in
440 		 * ZFS as at a minimum the I/O request must be page-aligned.
441 		 */
442 		dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t);
443 		if (dio_remaining_resid != 0)
444 			n -= dio_remaining_resid;
445 		dflags |= DMU_DIRECTIO;
446 	} else {
447 		chunk_size = MIN(MAX(zfs_vnops_read_chunk_size, blksz),
448 		    DMU_MAX_ACCESS / 2);
449 	}
450 
451 	while (n > 0) {
452 		ssize_t nbytes = MIN(n, chunk_size -
453 		    P2PHASE(zfs_uio_offset(uio), blksz));
454 #ifdef UIO_NOCOPY
455 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
456 			error = mappedread_sf(zp, nbytes, uio);
457 		else
458 #endif
459 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
460 		    zfs_uio_offset(uio) + nbytes - 1)) {
461 			error = mappedread(zp, nbytes, uio);
462 		} else {
463 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
464 			    uio, nbytes, dflags);
465 		}
466 
467 		if (error) {
468 			/* convert checksum errors into IO errors */
469 			if (error == ECKSUM) {
470 				/*
471 				 * If a Direct I/O read returned a checksum
472 				 * verify error, then it must be treated as
473 				 * suspicious. The contents of the buffer could
474 				 * have beeen manipulated while the I/O was in
475 				 * flight. In this case, the remainder of I/O
476 				 * request will just be reissued through the
477 				 * ARC.
478 				 */
479 				if (uio->uio_extflg & UIO_DIRECT) {
480 					dio_checksum_failure = B_TRUE;
481 					uio->uio_extflg &= ~UIO_DIRECT;
482 					n += dio_remaining_resid;
483 					dio_remaining_resid = 0;
484 					continue;
485 				} else {
486 					error = SET_ERROR(EIO);
487 				}
488 			}
489 
490 #if defined(__linux__)
491 			/*
492 			 * if we actually read some bytes, bubbling EFAULT
493 			 * up to become EAGAIN isn't what we want here...
494 			 *
495 			 * ...on Linux, at least. On FBSD, doing this breaks.
496 			 */
497 			if (error == EFAULT &&
498 			    (zfs_uio_offset(uio) - start_offset) != 0)
499 				error = 0;
500 #endif
501 			break;
502 		}
503 
504 		n -= nbytes;
505 	}
506 
507 	if (error == 0 && (uio->uio_extflg & UIO_DIRECT) &&
508 	    dio_remaining_resid != 0) {
509 		/*
510 		 * Temporarily remove the UIO_DIRECT flag from the UIO so the
511 		 * remainder of the file can be read using the ARC.
512 		 */
513 		uio->uio_extflg &= ~UIO_DIRECT;
514 		dflags &= ~DMU_DIRECTIO;
515 
516 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
517 		    zfs_uio_offset(uio) + dio_remaining_resid - 1)) {
518 			error = mappedread(zp, dio_remaining_resid, uio);
519 		} else {
520 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio,
521 			    dio_remaining_resid, dflags);
522 		}
523 		uio->uio_extflg |= UIO_DIRECT;
524 		dflags |= DMU_DIRECTIO;
525 
526 		if (error != 0)
527 			n += dio_remaining_resid;
528 	} else if (error && (uio->uio_extflg & UIO_DIRECT)) {
529 		n += dio_remaining_resid;
530 	}
531 	int64_t nread = start_resid - n;
532 
533 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
534 out:
535 	zfs_rangelock_exit(lr);
536 
537 	if (dio_checksum_failure == B_TRUE)
538 		uio->uio_extflg |= UIO_DIRECT;
539 
540 	/*
541 	 * Cleanup for Direct I/O if requested.
542 	 */
543 	if (uio->uio_extflg & UIO_DIRECT)
544 		zfs_uio_free_dio_pages(uio, UIO_READ);
545 
546 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
547 	zfs_exit(zfsvfs, FTAG);
548 	return (error);
549 }
550 
551 static void
zfs_clear_setid_bits_if_necessary(zfsvfs_t * zfsvfs,znode_t * zp,cred_t * cr,uint64_t * clear_setid_bits_txgp,dmu_tx_t * tx)552 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
553     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
554 {
555 	zilog_t *zilog = zfsvfs->z_log;
556 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
557 
558 	ASSERT(clear_setid_bits_txgp != NULL);
559 	ASSERT(tx != NULL);
560 
561 	/*
562 	 * Clear Set-UID/Set-GID bits on successful write if not
563 	 * privileged and at least one of the execute bits is set.
564 	 *
565 	 * It would be nice to do this after all writes have
566 	 * been done, but that would still expose the ISUID/ISGID
567 	 * to another app after the partial write is committed.
568 	 *
569 	 * Note: we don't call zfs_fuid_map_id() here because
570 	 * user 0 is not an ephemeral uid.
571 	 */
572 	mutex_enter(&zp->z_acl_lock);
573 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
574 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
575 	    secpolicy_vnode_setid_retain(zp, cr,
576 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
577 		uint64_t newmode;
578 
579 		zp->z_mode &= ~(S_ISUID | S_ISGID);
580 		newmode = zp->z_mode;
581 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
582 		    (void *)&newmode, sizeof (uint64_t), tx);
583 
584 		mutex_exit(&zp->z_acl_lock);
585 
586 		/*
587 		 * Make sure SUID/SGID bits will be removed when we replay the
588 		 * log. If the setid bits are keep coming back, don't log more
589 		 * than one TX_SETATTR per transaction group.
590 		 */
591 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
592 			vattr_t va = {0};
593 
594 			va.va_mask = ATTR_MODE;
595 			va.va_nodeid = zp->z_id;
596 			va.va_mode = newmode;
597 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
598 			    ATTR_MODE, NULL);
599 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
600 		}
601 	} else {
602 		mutex_exit(&zp->z_acl_lock);
603 	}
604 }
605 
606 /*
607  * Write the bytes to a file.
608  *
609  *	IN:	zp	- znode of file to be written to.
610  *		uio	- structure supplying write location, range info,
611  *			  and data buffer.
612  *		ioflag	- O_APPEND flag set if in append mode.
613  *			  O_DIRECT flag; used to bypass page cache.
614  *		cr	- credentials of caller.
615  *
616  *	OUT:	uio	- updated offset and range.
617  *
618  *	RETURN:	0 if success
619  *		error code if failure
620  *
621  * Timestamps:
622  *	ip - ctime|mtime updated if byte count > 0
623  */
624 int
zfs_write(znode_t * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)625 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
626 {
627 	int error = 0, error1;
628 	ssize_t start_resid = zfs_uio_resid(uio);
629 	uint64_t clear_setid_bits_txg = 0;
630 	boolean_t o_direct_defer = B_FALSE;
631 
632 	/*
633 	 * Fasttrack empty write
634 	 */
635 	ssize_t n = start_resid;
636 	if (n == 0)
637 		return (0);
638 
639 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
640 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
641 		return (error);
642 
643 	sa_bulk_attr_t bulk[4];
644 	int count = 0;
645 	uint64_t mtime[2], ctime[2];
646 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
647 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
648 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
649 	    &zp->z_size, 8);
650 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
651 	    &zp->z_pflags, 8);
652 
653 	/*
654 	 * Callers might not be able to detect properly that we are read-only,
655 	 * so check it explicitly here.
656 	 */
657 	if (zfs_is_readonly(zfsvfs)) {
658 		zfs_exit(zfsvfs, FTAG);
659 		return (SET_ERROR(EROFS));
660 	}
661 
662 	/*
663 	 * If immutable or not appending then return EPERM.
664 	 * Intentionally allow ZFS_READONLY through here.
665 	 * See zfs_zaccess_common()
666 	 */
667 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
668 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
669 	    (zfs_uio_offset(uio) < zp->z_size))) {
670 		zfs_exit(zfsvfs, FTAG);
671 		return (SET_ERROR(EPERM));
672 	}
673 
674 	/*
675 	 * Validate file offset
676 	 */
677 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
678 	if (woff < 0) {
679 		zfs_exit(zfsvfs, FTAG);
680 		return (SET_ERROR(EINVAL));
681 	}
682 
683 	/*
684 	 * Setting up Direct I/O if requested.
685 	 */
686 	error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag);
687 	if (error) {
688 		zfs_exit(zfsvfs, FTAG);
689 		return (SET_ERROR(error));
690 	}
691 
692 	/*
693 	 * Pre-fault the pages to ensure slow (eg NFS) pages
694 	 * don't hold up txg.
695 	 */
696 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
697 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
698 		zfs_exit(zfsvfs, FTAG);
699 		return (SET_ERROR(EFAULT));
700 	}
701 
702 	/*
703 	 * If in append mode, set the io offset pointer to eof.
704 	 */
705 	zfs_locked_range_t *lr;
706 	if (ioflag & O_APPEND) {
707 		/*
708 		 * Obtain an appending range lock to guarantee file append
709 		 * semantics.  We reset the write offset once we have the lock.
710 		 */
711 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
712 		woff = lr->lr_offset;
713 		if (lr->lr_length == UINT64_MAX) {
714 			/*
715 			 * We overlocked the file because this write will cause
716 			 * the file block size to increase.
717 			 * Note that zp_size cannot change with this lock held.
718 			 */
719 			woff = zp->z_size;
720 		}
721 		zfs_uio_setoffset(uio, woff);
722 		/*
723 		 * We need to update the starting offset as well because it is
724 		 * set previously in the ZPL (Linux) and VNOPS (FreeBSD)
725 		 * layers.
726 		 */
727 		zfs_uio_setsoffset(uio, woff);
728 	} else {
729 		/*
730 		 * Note that if the file block size will change as a result of
731 		 * this write, then this range lock will lock the entire file
732 		 * so that we can re-write the block safely.
733 		 */
734 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
735 	}
736 
737 	if (zn_rlimit_fsize_uio(zp, uio)) {
738 		zfs_rangelock_exit(lr);
739 		zfs_exit(zfsvfs, FTAG);
740 		return (SET_ERROR(EFBIG));
741 	}
742 
743 	const rlim64_t limit = MAXOFFSET_T;
744 
745 	if (woff >= limit) {
746 		zfs_rangelock_exit(lr);
747 		zfs_exit(zfsvfs, FTAG);
748 		return (SET_ERROR(EFBIG));
749 	}
750 
751 	if (n > limit - woff)
752 		n = limit - woff;
753 
754 	uint64_t end_size = MAX(zp->z_size, woff + n);
755 	zilog_t *zilog = zfsvfs->z_log;
756 	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
757 	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
758 
759 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
760 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
761 	const uint64_t projid = zp->z_projid;
762 
763 	/*
764 	 * In the event we are increasing the file block size
765 	 * (lr_length == UINT64_MAX), we will direct the write to the ARC.
766 	 * Because zfs_grow_blocksize() will read from the ARC in order to
767 	 * grow the dbuf, we avoid doing Direct I/O here as that would cause
768 	 * data written to disk to be overwritten by data in the ARC during
769 	 * the sync phase. Besides writing data twice to disk, we also
770 	 * want to avoid consistency concerns between data in the the ARC and
771 	 * on disk while growing the file's blocksize.
772 	 *
773 	 * We will only temporarily remove Direct I/O and put it back after
774 	 * we have grown the blocksize. We do this in the event a request
775 	 * is larger than max_blksz, so further requests to
776 	 * dmu_write_uio_dbuf() will still issue the requests using Direct
777 	 * IO.
778 	 *
779 	 * As an example:
780 	 * The first block to file is being written as a 4k request with
781 	 * a recorsize of 1K. The first 1K issued in the loop below will go
782 	 * through the ARC; however, the following 3 1K requests will
783 	 * use Direct I/O.
784 	 */
785 	if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) {
786 		uio->uio_extflg &= ~UIO_DIRECT;
787 		o_direct_defer = B_TRUE;
788 	}
789 
790 	/*
791 	 * Write the file in reasonable size chunks.  Each chunk is written
792 	 * in a separate transaction; this keeps the intent log records small
793 	 * and allows us to do more fine-grained space accounting.
794 	 */
795 	while (n > 0) {
796 		woff = zfs_uio_offset(uio);
797 
798 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
799 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
800 		    (projid != ZFS_DEFAULT_PROJID &&
801 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
802 		    projid))) {
803 			error = SET_ERROR(EDQUOT);
804 			break;
805 		}
806 
807 		uint64_t blksz;
808 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
809 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
810 			    !ISP2(zp->z_blksz)) {
811 				/*
812 				 * File's blocksize is already larger than the
813 				 * "recordsize" property.  Only let it grow to
814 				 * the next power of 2.
815 				 */
816 				blksz = 1 << highbit64(zp->z_blksz);
817 			} else {
818 				blksz = zfsvfs->z_max_blksz;
819 			}
820 			blksz = MIN(blksz, P2ROUNDUP(end_size,
821 			    SPA_MINBLOCKSIZE));
822 			blksz = MAX(blksz, zp->z_blksz);
823 		} else {
824 			blksz = zp->z_blksz;
825 		}
826 
827 		arc_buf_t *abuf = NULL;
828 		ssize_t nbytes = n;
829 		if (n >= blksz && woff >= zp->z_size &&
830 		    P2PHASE(woff, blksz) == 0 &&
831 		    !(uio->uio_extflg & UIO_DIRECT) &&
832 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
833 			/*
834 			 * This write covers a full block.  "Borrow" a buffer
835 			 * from the dmu so that we can fill it before we enter
836 			 * a transaction.  This avoids the possibility of
837 			 * holding up the transaction if the data copy hangs
838 			 * up on a pagefault (e.g., from an NFS server mapping).
839 			 */
840 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
841 			    blksz);
842 			ASSERT(abuf != NULL);
843 			ASSERT(arc_buf_size(abuf) == blksz);
844 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
845 			    UIO_WRITE, uio, &nbytes))) {
846 				dmu_return_arcbuf(abuf);
847 				break;
848 			}
849 			ASSERT3S(nbytes, ==, blksz);
850 		} else {
851 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
852 			    P2PHASE(woff, blksz));
853 			if (pfbytes < nbytes) {
854 				if (zfs_uio_prefaultpages(nbytes, uio)) {
855 					error = SET_ERROR(EFAULT);
856 					break;
857 				}
858 				pfbytes = nbytes;
859 			}
860 		}
861 
862 		/*
863 		 * Start a transaction.
864 		 */
865 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
866 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
867 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
868 		DB_DNODE_ENTER(db);
869 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
870 		DB_DNODE_EXIT(db);
871 		zfs_sa_upgrade_txholds(tx, zp);
872 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
873 		if (error) {
874 			dmu_tx_abort(tx);
875 			if (abuf != NULL)
876 				dmu_return_arcbuf(abuf);
877 			break;
878 		}
879 
880 		/*
881 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
882 		 * committing the transaction!
883 		 */
884 
885 		/*
886 		 * If rangelock_enter() over-locked we grow the blocksize
887 		 * and then reduce the lock range.  This will only happen
888 		 * on the first iteration since rangelock_reduce() will
889 		 * shrink down lr_length to the appropriate size.
890 		 */
891 		if (lr->lr_length == UINT64_MAX) {
892 			zfs_grow_blocksize(zp, blksz, tx);
893 			zfs_rangelock_reduce(lr, woff, n);
894 		}
895 
896 		dmu_flags_t dflags = DMU_READ_PREFETCH;
897 		if (ioflag & O_DIRECT)
898 			dflags |= DMU_UNCACHEDIO;
899 		if (uio->uio_extflg & UIO_DIRECT)
900 			dflags |= DMU_DIRECTIO;
901 
902 		ssize_t tx_bytes;
903 		if (abuf == NULL) {
904 			tx_bytes = zfs_uio_resid(uio);
905 			zfs_uio_fault_disable(uio, B_TRUE);
906 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
907 			    uio, nbytes, tx, dflags);
908 			zfs_uio_fault_disable(uio, B_FALSE);
909 #ifdef __linux__
910 			if (error == EFAULT) {
911 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
912 				    cr, &clear_setid_bits_txg, tx);
913 				dmu_tx_commit(tx);
914 				/*
915 				 * Account for partial writes before
916 				 * continuing the loop.
917 				 * Update needs to occur before the next
918 				 * zfs_uio_prefaultpages, or prefaultpages may
919 				 * error, and we may break the loop early.
920 				 */
921 				n -= tx_bytes - zfs_uio_resid(uio);
922 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
923 				continue;
924 			}
925 #endif
926 			/*
927 			 * On FreeBSD, EFAULT should be propagated back to the
928 			 * VFS, which will handle faulting and will retry.
929 			 */
930 			if (error != 0 && error != EFAULT) {
931 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
932 				    cr, &clear_setid_bits_txg, tx);
933 				dmu_tx_commit(tx);
934 				break;
935 			}
936 			tx_bytes -= zfs_uio_resid(uio);
937 		} else {
938 			/*
939 			 * Thus, we're writing a full block at a block-aligned
940 			 * offset and extending the file past EOF.
941 			 *
942 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
943 			 * arc buffer to a dbuf.
944 			 */
945 			error = dmu_assign_arcbuf_by_dbuf(
946 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx, dflags);
947 			if (error != 0) {
948 				/*
949 				 * XXX This might not be necessary if
950 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
951 				 * to be atomic.
952 				 */
953 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
954 				    cr, &clear_setid_bits_txg, tx);
955 				dmu_return_arcbuf(abuf);
956 				dmu_tx_commit(tx);
957 				break;
958 			}
959 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
960 			zfs_uioskip(uio, nbytes);
961 			tx_bytes = nbytes;
962 		}
963 		/*
964 		 * There is a window where a file's pages can be mmap'ed after
965 		 * zfs_setup_direct() is called. This is due to the fact that
966 		 * the rangelock in this function is acquired after calling
967 		 * zfs_setup_direct(). This is done so that
968 		 * zfs_uio_prefaultpages() does not attempt to fault in pages
969 		 * on Linux for Direct I/O requests. This is not necessary as
970 		 * the pages are pinned in memory and can not be faulted out.
971 		 * Ideally, the rangelock would be held before calling
972 		 * zfs_setup_direct() and zfs_uio_prefaultpages(); however,
973 		 * this can lead to a deadlock as zfs_getpage() also acquires
974 		 * the rangelock as a RL_WRITER and prefaulting the pages can
975 		 * lead to zfs_getpage() being called.
976 		 *
977 		 * In the case of the pages being mapped after
978 		 * zfs_setup_direct() is called, the call to update_pages()
979 		 * will still be made to make sure there is consistency between
980 		 * the ARC and the Linux page cache. This is an ufortunate
981 		 * situation as the data will be read back into the ARC after
982 		 * the Direct I/O write has completed, but this is the penality
983 		 * for writing to a mmap'ed region of a file using Direct I/O.
984 		 */
985 		if (tx_bytes &&
986 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) {
987 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
988 		}
989 
990 		/*
991 		 * If we made no progress, we're done.  If we made even
992 		 * partial progress, update the znode and ZIL accordingly.
993 		 */
994 		if (tx_bytes == 0) {
995 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
996 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
997 			dmu_tx_commit(tx);
998 			ASSERT(error != 0);
999 			break;
1000 		}
1001 
1002 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
1003 		    &clear_setid_bits_txg, tx);
1004 
1005 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1006 
1007 		/*
1008 		 * Update the file size (zp_size) if it has changed;
1009 		 * account for possible concurrent updates.
1010 		 */
1011 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
1012 			(void) atomic_cas_64(&zp->z_size, end_size,
1013 			    zfs_uio_offset(uio));
1014 			ASSERT(error == 0 || error == EFAULT);
1015 		}
1016 		/*
1017 		 * If we are replaying and eof is non zero then force
1018 		 * the file size to the specified eof. Note, there's no
1019 		 * concurrency during replay.
1020 		 */
1021 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1022 			zp->z_size = zfsvfs->z_replay_eof;
1023 
1024 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1025 		if (error1 != 0)
1026 			/* Avoid clobbering EFAULT. */
1027 			error = error1;
1028 
1029 		/*
1030 		 * NB: During replay, the TX_SETATTR record logged by
1031 		 * zfs_clear_setid_bits_if_necessary must precede any of
1032 		 * the TX_WRITE records logged here.
1033 		 */
1034 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
1035 		    uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL,
1036 		    NULL);
1037 
1038 		dmu_tx_commit(tx);
1039 
1040 		/*
1041 		 * Direct I/O was deferred in order to grow the first block.
1042 		 * At this point it can be re-enabled for subsequent writes.
1043 		 */
1044 		if (o_direct_defer) {
1045 			ASSERT(ioflag & O_DIRECT);
1046 			uio->uio_extflg |= UIO_DIRECT;
1047 			o_direct_defer = B_FALSE;
1048 		}
1049 
1050 		if (error != 0)
1051 			break;
1052 		ASSERT3S(tx_bytes, ==, nbytes);
1053 		n -= nbytes;
1054 		pfbytes -= nbytes;
1055 	}
1056 
1057 	if (o_direct_defer) {
1058 		ASSERT(ioflag & O_DIRECT);
1059 		uio->uio_extflg |= UIO_DIRECT;
1060 		o_direct_defer = B_FALSE;
1061 	}
1062 
1063 	zfs_znode_update_vfs(zp);
1064 	zfs_rangelock_exit(lr);
1065 
1066 	/*
1067 	 * Cleanup for Direct I/O if requested.
1068 	 */
1069 	if (uio->uio_extflg & UIO_DIRECT)
1070 		zfs_uio_free_dio_pages(uio, UIO_WRITE);
1071 
1072 	/*
1073 	 * If we're in replay mode, or we made no progress, or the
1074 	 * uio data is inaccessible return an error.  Otherwise, it's
1075 	 * at least a partial write, so it's successful.
1076 	 */
1077 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
1078 	    error == EFAULT) {
1079 		zfs_exit(zfsvfs, FTAG);
1080 		return (error);
1081 	}
1082 
1083 	if (commit) {
1084 		error = zil_commit(zilog, zp->z_id);
1085 		if (error != 0) {
1086 			zfs_exit(zfsvfs, FTAG);
1087 			return (error);
1088 		}
1089 	}
1090 
1091 	int64_t nwritten = start_resid - zfs_uio_resid(uio);
1092 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
1093 
1094 	zfs_exit(zfsvfs, FTAG);
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Rewrite a range of file as-is without modification.
1100  *
1101  *	IN:	zp	- znode of file to be rewritten.
1102  *		off	- Offset of the range to rewrite.
1103  *		len	- Length of the range to rewrite.
1104  *		flags	- Random rewrite parameters.
1105  *		arg	- flags-specific argument.
1106  *
1107  *	RETURN:	0 if success
1108  *		error code if failure
1109  */
1110 int
zfs_rewrite(znode_t * zp,uint64_t off,uint64_t len,uint64_t flags,uint64_t arg)1111 zfs_rewrite(znode_t *zp, uint64_t off, uint64_t len, uint64_t flags,
1112     uint64_t arg)
1113 {
1114 	int error;
1115 
1116 	if ((flags & ~ZFS_REWRITE_PHYSICAL) != 0 || arg != 0)
1117 		return (SET_ERROR(EINVAL));
1118 
1119 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1120 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1121 		return (error);
1122 
1123 	/* Check if physical rewrite is allowed */
1124 	spa_t *spa = zfsvfs->z_os->os_spa;
1125 	if ((flags & ZFS_REWRITE_PHYSICAL) &&
1126 	    !spa_feature_is_enabled(spa, SPA_FEATURE_PHYSICAL_REWRITE)) {
1127 		zfs_exit(zfsvfs, FTAG);
1128 		return (SET_ERROR(ENOTSUP));
1129 	}
1130 
1131 	if (zfs_is_readonly(zfsvfs)) {
1132 		zfs_exit(zfsvfs, FTAG);
1133 		return (SET_ERROR(EROFS));
1134 	}
1135 
1136 	if (off >= zp->z_size) {
1137 		zfs_exit(zfsvfs, FTAG);
1138 		return (0);
1139 	}
1140 	if (len == 0 || len > zp->z_size - off)
1141 		len = zp->z_size - off;
1142 
1143 	/* Flush any mmap()'d data to disk */
1144 	if (zn_has_cached_data(zp, off, off + len - 1))
1145 		zn_flush_cached_data(zp, B_TRUE);
1146 
1147 	zfs_locked_range_t *lr;
1148 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1149 
1150 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
1151 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
1152 	const uint64_t projid = zp->z_projid;
1153 
1154 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1155 	DB_DNODE_ENTER(db);
1156 	dnode_t *dn = DB_DNODE(db);
1157 
1158 	uint64_t n, noff = off, nr = 0, nw = 0;
1159 	while (len > 0) {
1160 		/*
1161 		 * Rewrite only actual data, skipping any holes.  This might
1162 		 * be inaccurate for dirty files, but we don't really care.
1163 		 */
1164 		if (noff == off) {
1165 			/* Find next data in the file. */
1166 			error = dnode_next_offset(dn, 0, &noff, 1, 1, 0);
1167 			if (error || noff >= off + len) {
1168 				if (error == ESRCH)	/* No more data. */
1169 					error = 0;
1170 				break;
1171 			}
1172 			ASSERT3U(noff, >=, off);
1173 			len -= noff - off;
1174 			off = noff;
1175 
1176 			/* Find where the data end. */
1177 			error = dnode_next_offset(dn, DNODE_FIND_HOLE, &noff,
1178 			    1, 1, 0);
1179 			if (error != 0)
1180 				noff = off + len;
1181 		}
1182 		ASSERT3U(noff, >, off);
1183 
1184 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
1185 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
1186 		    (projid != ZFS_DEFAULT_PROJID &&
1187 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
1188 		    projid))) {
1189 			error = SET_ERROR(EDQUOT);
1190 			break;
1191 		}
1192 
1193 		n = MIN(MIN(len, noff - off),
1194 		    DMU_MAX_ACCESS / 2 - P2PHASE(off, zp->z_blksz));
1195 
1196 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
1197 		dmu_tx_hold_write_by_dnode(tx, dn, off, n);
1198 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
1199 		if (error) {
1200 			dmu_tx_abort(tx);
1201 			break;
1202 		}
1203 
1204 		/* Mark all dbufs within range as dirty to trigger rewrite. */
1205 		dmu_buf_t **dbp;
1206 		int numbufs;
1207 		error = dmu_buf_hold_array_by_dnode(dn, off, n, TRUE, FTAG,
1208 		    &numbufs, &dbp, DMU_READ_PREFETCH | DMU_UNCACHEDIO);
1209 		if (error) {
1210 			dmu_tx_commit(tx);
1211 			break;
1212 		}
1213 		for (int i = 0; i < numbufs; i++) {
1214 			nr += dbp[i]->db_size;
1215 			if (dmu_buf_is_dirty(dbp[i], tx))
1216 				continue;
1217 			nw += dbp[i]->db_size;
1218 			if (flags & ZFS_REWRITE_PHYSICAL)
1219 				dmu_buf_will_rewrite(dbp[i], tx);
1220 			else
1221 				dmu_buf_will_dirty(dbp[i], tx);
1222 		}
1223 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1224 
1225 		dmu_tx_commit(tx);
1226 
1227 		len -= n;
1228 		off += n;
1229 
1230 		if (issig()) {
1231 			error = SET_ERROR(EINTR);
1232 			break;
1233 		}
1234 	}
1235 
1236 	DB_DNODE_EXIT(db);
1237 
1238 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr);
1239 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nw);
1240 
1241 	zfs_rangelock_exit(lr);
1242 	zfs_exit(zfsvfs, FTAG);
1243 	return (error);
1244 }
1245 
1246 int
zfs_getsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1247 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1248 {
1249 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1250 	int error;
1251 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1252 
1253 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1254 		return (error);
1255 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
1256 	zfs_exit(zfsvfs, FTAG);
1257 
1258 	return (error);
1259 }
1260 
1261 int
zfs_setsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1262 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1263 {
1264 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1265 	int error;
1266 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1267 	zilog_t	*zilog;
1268 
1269 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1270 		return (error);
1271 	zilog = zfsvfs->z_log;
1272 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
1273 
1274 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1275 		error = zil_commit(zilog, 0);
1276 
1277 	zfs_exit(zfsvfs, FTAG);
1278 	return (error);
1279 }
1280 
1281 /*
1282  * Get the optimal alignment to ensure direct IO can be performed without
1283  * incurring any RMW penalty on write. If direct IO is not enabled for this
1284  * file, returns an error.
1285  */
1286 int
zfs_get_direct_alignment(znode_t * zp,uint64_t * alignp)1287 zfs_get_direct_alignment(znode_t *zp, uint64_t *alignp)
1288 {
1289 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1290 
1291 	if (!zfs_dio_enabled || zfsvfs->z_os->os_direct == ZFS_DIRECT_DISABLED)
1292 		return (SET_ERROR(EOPNOTSUPP));
1293 
1294 	/*
1295 	 * If the file has multiple blocks, then its block size is fixed
1296 	 * forever, and so is the ideal alignment.
1297 	 *
1298 	 * If however it only has a single block, then we want to return the
1299 	 * max block size it could possibly grown to (ie, the dataset
1300 	 * recordsize). We do this so that a program querying alignment
1301 	 * immediately after the file is created gets a value that won't change
1302 	 * once the file has grown into the second block and beyond.
1303 	 *
1304 	 * Because we don't have a count of blocks easily available here, we
1305 	 * check if the apparent file size is smaller than its current block
1306 	 * size (meaning, the file hasn't yet grown into the current block
1307 	 * size) and then, check if the block size is smaller than the dataset
1308 	 * maximum (meaning, if the file grew past the current block size, the
1309 	 * block size could would be increased).
1310 	 */
1311 	if (zp->z_size <= zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz)
1312 		*alignp = MAX(zfsvfs->z_max_blksz, PAGE_SIZE);
1313 	else
1314 		*alignp = MAX(zp->z_blksz, PAGE_SIZE);
1315 
1316 	return (0);
1317 }
1318 
1319 #ifdef ZFS_DEBUG
1320 static int zil_fault_io = 0;
1321 #endif
1322 
1323 static void zfs_get_done(zgd_t *zgd, int error);
1324 
1325 /*
1326  * Get data to generate a TX_WRITE intent log record.
1327  */
1328 int
zfs_get_data(void * arg,uint64_t gen,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1329 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
1330     struct lwb *lwb, zio_t *zio)
1331 {
1332 	zfsvfs_t *zfsvfs = arg;
1333 	objset_t *os = zfsvfs->z_os;
1334 	znode_t *zp;
1335 	uint64_t object = lr->lr_foid;
1336 	uint64_t offset = lr->lr_offset;
1337 	uint64_t size = lr->lr_length;
1338 	zgd_t *zgd;
1339 	int error = 0;
1340 	uint64_t zp_gen;
1341 
1342 	ASSERT3P(lwb, !=, NULL);
1343 	ASSERT3U(size, !=, 0);
1344 
1345 	/*
1346 	 * Nothing to do if the file has been removed
1347 	 */
1348 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1349 		return (SET_ERROR(ENOENT));
1350 	if (zp->z_unlinked) {
1351 		/*
1352 		 * Release the vnode asynchronously as we currently have the
1353 		 * txg stopped from syncing.
1354 		 */
1355 		zfs_zrele_async(zp);
1356 		return (SET_ERROR(ENOENT));
1357 	}
1358 	/* check if generation number matches */
1359 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1360 	    sizeof (zp_gen)) != 0) {
1361 		zfs_zrele_async(zp);
1362 		return (SET_ERROR(EIO));
1363 	}
1364 	if (zp_gen != gen) {
1365 		zfs_zrele_async(zp);
1366 		return (SET_ERROR(ENOENT));
1367 	}
1368 
1369 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1370 	zgd->zgd_lwb = lwb;
1371 	zgd->zgd_private = zp;
1372 
1373 	/*
1374 	 * Write records come in two flavors: immediate and indirect.
1375 	 * For small writes it's cheaper to store the data with the
1376 	 * log record (immediate); for large writes it's cheaper to
1377 	 * sync the data and get a pointer to it (indirect) so that
1378 	 * we don't have to write the data twice.
1379 	 */
1380 	if (buf != NULL) { /* immediate write */
1381 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset,
1382 		    size, RL_READER);
1383 		/* test for truncation needs to be done while range locked */
1384 		if (offset >= zp->z_size) {
1385 			error = SET_ERROR(ENOENT);
1386 		} else {
1387 			error = dmu_read(os, object, offset, size, buf,
1388 			    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1389 		}
1390 		ASSERT(error == 0 || error == ENOENT);
1391 	} else { /* indirect write */
1392 		ASSERT3P(zio, !=, NULL);
1393 		/*
1394 		 * Have to lock the whole block to ensure when it's
1395 		 * written out and its checksum is being calculated
1396 		 * that no one can change the data. We need to re-check
1397 		 * blocksize after we get the lock in case it's changed!
1398 		 */
1399 		for (;;) {
1400 			uint64_t blkoff;
1401 			size = zp->z_blksz;
1402 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1403 			offset -= blkoff;
1404 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
1405 			    offset, size, RL_READER);
1406 			if (zp->z_blksz == size)
1407 				break;
1408 			offset += blkoff;
1409 			zfs_rangelock_exit(zgd->zgd_lr);
1410 		}
1411 		/* test for truncation needs to be done while range locked */
1412 		if (lr->lr_offset >= zp->z_size)
1413 			error = SET_ERROR(ENOENT);
1414 #ifdef ZFS_DEBUG
1415 		if (zil_fault_io) {
1416 			error = SET_ERROR(EIO);
1417 			zil_fault_io = 0;
1418 		}
1419 #endif
1420 
1421 		dmu_buf_t *dbp;
1422 		if (error == 0)
1423 			error = dmu_buf_hold_noread(os, object, offset, zgd,
1424 			    &dbp);
1425 
1426 		if (error == 0) {
1427 			zgd->zgd_db = dbp;
1428 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp;
1429 			boolean_t direct_write = B_FALSE;
1430 			mutex_enter(&db->db_mtx);
1431 			dbuf_dirty_record_t *dr =
1432 			    dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg);
1433 			if (dr != NULL && dr->dt.dl.dr_diowrite)
1434 				direct_write = B_TRUE;
1435 			mutex_exit(&db->db_mtx);
1436 
1437 			/*
1438 			 * All Direct I/O writes will have already completed and
1439 			 * the block pointer can be immediately stored in the
1440 			 * log record.
1441 			 */
1442 			if (direct_write) {
1443 				/*
1444 				 * A Direct I/O write always covers an entire
1445 				 * block.
1446 				 */
1447 				ASSERT3U(dbp->db_size, ==, zp->z_blksz);
1448 				lr->lr_blkptr = dr->dt.dl.dr_overridden_by;
1449 				zfs_get_done(zgd, 0);
1450 				return (0);
1451 			}
1452 
1453 			blkptr_t *bp = &lr->lr_blkptr;
1454 			zgd->zgd_bp = bp;
1455 
1456 			ASSERT3U(dbp->db_offset, ==, offset);
1457 			ASSERT3U(dbp->db_size, ==, size);
1458 
1459 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1460 			    zfs_get_done, zgd);
1461 			ASSERT(error || lr->lr_length <= size);
1462 
1463 			/*
1464 			 * On success, we need to wait for the write I/O
1465 			 * initiated by dmu_sync() to complete before we can
1466 			 * release this dbuf.  We will finish everything up
1467 			 * in the zfs_get_done() callback.
1468 			 */
1469 			if (error == 0)
1470 				return (0);
1471 
1472 			if (error == EALREADY) {
1473 				lr->lr_common.lrc_txtype = TX_WRITE2;
1474 				/*
1475 				 * TX_WRITE2 relies on the data previously
1476 				 * written by the TX_WRITE that caused
1477 				 * EALREADY.  We zero out the BP because
1478 				 * it is the old, currently-on-disk BP.
1479 				 */
1480 				zgd->zgd_bp = NULL;
1481 				BP_ZERO(bp);
1482 				error = 0;
1483 			}
1484 		}
1485 	}
1486 
1487 	zfs_get_done(zgd, error);
1488 
1489 	return (error);
1490 }
1491 
1492 static void
zfs_get_done(zgd_t * zgd,int error)1493 zfs_get_done(zgd_t *zgd, int error)
1494 {
1495 	(void) error;
1496 	znode_t *zp = zgd->zgd_private;
1497 
1498 	if (zgd->zgd_db)
1499 		dmu_buf_rele(zgd->zgd_db, zgd);
1500 
1501 	zfs_rangelock_exit(zgd->zgd_lr);
1502 
1503 	/*
1504 	 * Release the vnode asynchronously as we currently have the
1505 	 * txg stopped from syncing.
1506 	 */
1507 	zfs_zrele_async(zp);
1508 
1509 	kmem_free(zgd, sizeof (zgd_t));
1510 }
1511 
1512 static int
zfs_enter_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1513 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1514 {
1515 	int error;
1516 
1517 	/* Swap. Not sure if the order of zfs_enter()s is important. */
1518 	if (zfsvfs1 > zfsvfs2) {
1519 		zfsvfs_t *tmpzfsvfs;
1520 
1521 		tmpzfsvfs = zfsvfs2;
1522 		zfsvfs2 = zfsvfs1;
1523 		zfsvfs1 = tmpzfsvfs;
1524 	}
1525 
1526 	error = zfs_enter(zfsvfs1, tag);
1527 	if (error != 0)
1528 		return (error);
1529 	if (zfsvfs1 != zfsvfs2) {
1530 		error = zfs_enter(zfsvfs2, tag);
1531 		if (error != 0) {
1532 			zfs_exit(zfsvfs1, tag);
1533 			return (error);
1534 		}
1535 	}
1536 
1537 	return (0);
1538 }
1539 
1540 static void
zfs_exit_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1541 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1542 {
1543 
1544 	zfs_exit(zfsvfs1, tag);
1545 	if (zfsvfs1 != zfsvfs2)
1546 		zfs_exit(zfsvfs2, tag);
1547 }
1548 
1549 /*
1550  * We split each clone request in chunks that can fit into a single ZIL
1551  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1552  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1553  * us room for storing 1022 block pointers.
1554  *
1555  * On success, the function return the number of bytes copied in *lenp.
1556  * Note, it doesn't return how much bytes are left to be copied.
1557  * On errors which are caused by any file system limitations or
1558  * brt limitations `EINVAL` is returned. In the most cases a user
1559  * requested bad parameters, it could be possible to clone the file but
1560  * some parameters don't match the requirements.
1561  */
1562 int
zfs_clone_range(znode_t * inzp,uint64_t * inoffp,znode_t * outzp,uint64_t * outoffp,uint64_t * lenp,cred_t * cr)1563 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1564     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1565 {
1566 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1567 	objset_t	*inos, *outos;
1568 	zfs_locked_range_t *inlr, *outlr;
1569 	dmu_buf_impl_t	*db;
1570 	dmu_tx_t	*tx;
1571 	zilog_t		*zilog;
1572 	uint64_t	inoff, outoff, len, done;
1573 	uint64_t	outsize, size;
1574 	int		error;
1575 	int		count = 0;
1576 	sa_bulk_attr_t	bulk[3];
1577 	uint64_t	mtime[2], ctime[2];
1578 	uint64_t	uid, gid, projid;
1579 	blkptr_t	*bps;
1580 	size_t		maxblocks, nbps;
1581 	uint_t		inblksz;
1582 	uint64_t	clear_setid_bits_txg = 0;
1583 	uint64_t	last_synced_txg = 0;
1584 
1585 	inoff = *inoffp;
1586 	outoff = *outoffp;
1587 	len = *lenp;
1588 	done = 0;
1589 
1590 	inzfsvfs = ZTOZSB(inzp);
1591 	outzfsvfs = ZTOZSB(outzp);
1592 
1593 	/*
1594 	 * We need to call zfs_enter() potentially on two different datasets,
1595 	 * so we need a dedicated function for that.
1596 	 */
1597 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1598 	if (error != 0)
1599 		return (error);
1600 
1601 	inos = inzfsvfs->z_os;
1602 	outos = outzfsvfs->z_os;
1603 
1604 	/*
1605 	 * Both source and destination have to belong to the same storage pool.
1606 	 */
1607 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1608 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1609 		return (SET_ERROR(EXDEV));
1610 	}
1611 
1612 	/*
1613 	 * outos and inos belongs to the same storage pool.
1614 	 * see a few lines above, only one check.
1615 	 */
1616 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1617 	    SPA_FEATURE_BLOCK_CLONING)) {
1618 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1619 		return (SET_ERROR(EOPNOTSUPP));
1620 	}
1621 
1622 	ASSERT(!outzfsvfs->z_replay);
1623 
1624 	/*
1625 	 * Block cloning from an unencrypted dataset into an encrypted
1626 	 * dataset and vice versa is not supported.
1627 	 */
1628 	if (inos->os_encrypted != outos->os_encrypted) {
1629 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1630 		return (SET_ERROR(EXDEV));
1631 	}
1632 
1633 	/*
1634 	 * Cloning across encrypted datasets is possible only if they
1635 	 * share the same master key.
1636 	 */
1637 	if (inos != outos && inos->os_encrypted &&
1638 	    !dmu_objset_crypto_key_equal(inos, outos)) {
1639 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1640 		return (SET_ERROR(EXDEV));
1641 	}
1642 
1643 	error = zfs_verify_zp(inzp);
1644 	if (error == 0)
1645 		error = zfs_verify_zp(outzp);
1646 	if (error != 0) {
1647 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1648 		return (error);
1649 	}
1650 
1651 	/*
1652 	 * We don't copy source file's flags that's why we don't allow to clone
1653 	 * files that are in quarantine.
1654 	 */
1655 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1656 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1657 		return (SET_ERROR(EACCES));
1658 	}
1659 
1660 	if (inoff >= inzp->z_size) {
1661 		*lenp = 0;
1662 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1663 		return (0);
1664 	}
1665 	if (len > inzp->z_size - inoff) {
1666 		len = inzp->z_size - inoff;
1667 	}
1668 	if (len == 0) {
1669 		*lenp = 0;
1670 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1671 		return (0);
1672 	}
1673 
1674 	/*
1675 	 * Callers might not be able to detect properly that we are read-only,
1676 	 * so check it explicitly here.
1677 	 */
1678 	if (zfs_is_readonly(outzfsvfs)) {
1679 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1680 		return (SET_ERROR(EROFS));
1681 	}
1682 
1683 	/*
1684 	 * If immutable or not appending then return EPERM.
1685 	 * Intentionally allow ZFS_READONLY through here.
1686 	 * See zfs_zaccess_common()
1687 	 */
1688 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1689 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1690 		return (SET_ERROR(EPERM));
1691 	}
1692 
1693 	/*
1694 	 * No overlapping if we are cloning within the same file.
1695 	 */
1696 	if (inzp == outzp) {
1697 		if (inoff < outoff + len && outoff < inoff + len) {
1698 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1699 			return (SET_ERROR(EINVAL));
1700 		}
1701 	}
1702 
1703 	/* Flush any mmap()'d data to disk */
1704 	if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
1705 		zn_flush_cached_data(inzp, B_TRUE);
1706 
1707 	/*
1708 	 * Maintain predictable lock order.
1709 	 */
1710 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1711 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1712 		    RL_READER);
1713 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1714 		    RL_WRITER);
1715 	} else {
1716 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1717 		    RL_WRITER);
1718 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1719 		    RL_READER);
1720 	}
1721 
1722 	inblksz = inzp->z_blksz;
1723 
1724 	/*
1725 	 * We cannot clone into a file with different block size if we can't
1726 	 * grow it (block size is already bigger, has more than one block, or
1727 	 * not locked for growth).  There are other possible reasons for the
1728 	 * grow to fail, but we cover what we can before opening transaction
1729 	 * and the rest detect after we try to do it.
1730 	 */
1731 	if (inblksz < outzp->z_blksz) {
1732 		error = SET_ERROR(EINVAL);
1733 		goto unlock;
1734 	}
1735 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1736 	    outlr->lr_length != UINT64_MAX)) {
1737 		error = SET_ERROR(EINVAL);
1738 		goto unlock;
1739 	}
1740 
1741 	/*
1742 	 * Block size must be power-of-2 if destination offset != 0.
1743 	 * There can be no multiple blocks of non-power-of-2 size.
1744 	 */
1745 	if (outoff != 0 && !ISP2(inblksz)) {
1746 		error = SET_ERROR(EINVAL);
1747 		goto unlock;
1748 	}
1749 
1750 	/*
1751 	 * Offsets and len must be at block boundries.
1752 	 */
1753 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1754 		error = SET_ERROR(EINVAL);
1755 		goto unlock;
1756 	}
1757 	/*
1758 	 * Length must be multipe of blksz, except for the end of the file.
1759 	 */
1760 	if ((len % inblksz) != 0 &&
1761 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1762 		error = SET_ERROR(EINVAL);
1763 		goto unlock;
1764 	}
1765 
1766 	/*
1767 	 * If we are copying only one block and it is smaller than recordsize
1768 	 * property, do not allow destination to grow beyond one block if it
1769 	 * is not there yet.  Otherwise the destination will get stuck with
1770 	 * that block size forever, that can be as small as 512 bytes, no
1771 	 * matter how big the destination grow later.
1772 	 */
1773 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1774 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1775 		error = SET_ERROR(EINVAL);
1776 		goto unlock;
1777 	}
1778 
1779 	error = zn_rlimit_fsize(outoff + len);
1780 	if (error != 0) {
1781 		goto unlock;
1782 	}
1783 
1784 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1785 		error = SET_ERROR(EFBIG);
1786 		goto unlock;
1787 	}
1788 
1789 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1790 	    &mtime, 16);
1791 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1792 	    &ctime, 16);
1793 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1794 	    &outzp->z_size, 8);
1795 
1796 	zilog = outzfsvfs->z_log;
1797 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1798 	    sizeof (bps[0]);
1799 
1800 	uid = KUID_TO_SUID(ZTOUID(outzp));
1801 	gid = KGID_TO_SGID(ZTOGID(outzp));
1802 	projid = outzp->z_projid;
1803 
1804 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1805 
1806 	/*
1807 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1808 	 * in a separate transaction; this keeps the intent log records small
1809 	 * and allows us to do more fine-grained space accounting.
1810 	 */
1811 	while (len > 0) {
1812 		size = MIN(inblksz * maxblocks, len);
1813 
1814 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1815 		    uid) ||
1816 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1817 		    gid) ||
1818 		    (projid != ZFS_DEFAULT_PROJID &&
1819 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1820 		    projid))) {
1821 			error = SET_ERROR(EDQUOT);
1822 			break;
1823 		}
1824 
1825 		nbps = maxblocks;
1826 		last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
1827 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1828 		    &nbps);
1829 		if (error != 0) {
1830 			/*
1831 			 * If we are trying to clone a block that was created
1832 			 * in the current transaction group, the error will be
1833 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
1834 			 * return a shortened range to the caller so it can
1835 			 * fallback, or wait for the next TXG and check again.
1836 			 */
1837 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
1838 				txg_wait_flag_t wait_flags =
1839 				    spa_get_failmode(dmu_objset_spa(inos)) ==
1840 				    ZIO_FAILURE_MODE_CONTINUE ?
1841 				    TXG_WAIT_SUSPEND : 0;
1842 				error = txg_wait_synced_flags(
1843 				    dmu_objset_pool(inos), last_synced_txg + 1,
1844 				    wait_flags);
1845 				if (error == 0)
1846 					continue;
1847 				ASSERT3U(error, ==, ESHUTDOWN);
1848 				error = SET_ERROR(EIO);
1849 			}
1850 
1851 			break;
1852 		}
1853 
1854 		/*
1855 		 * Start a transaction.
1856 		 */
1857 		tx = dmu_tx_create(outos);
1858 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1859 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1860 		DB_DNODE_ENTER(db);
1861 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size,
1862 		    inblksz);
1863 		DB_DNODE_EXIT(db);
1864 		zfs_sa_upgrade_txholds(tx, outzp);
1865 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
1866 		if (error != 0) {
1867 			dmu_tx_abort(tx);
1868 			break;
1869 		}
1870 
1871 		/*
1872 		 * Copy source znode's block size. This is done only if the
1873 		 * whole znode is locked (see zfs_rangelock_cb()) and only
1874 		 * on the first iteration since zfs_rangelock_reduce() will
1875 		 * shrink down lr_length to the appropriate size.
1876 		 */
1877 		if (outlr->lr_length == UINT64_MAX) {
1878 			zfs_grow_blocksize(outzp, inblksz, tx);
1879 
1880 			/*
1881 			 * Block growth may fail for many reasons we can not
1882 			 * predict here.  If it happen the cloning is doomed.
1883 			 */
1884 			if (inblksz != outzp->z_blksz) {
1885 				error = SET_ERROR(EINVAL);
1886 				dmu_tx_commit(tx);
1887 				break;
1888 			}
1889 
1890 			/*
1891 			 * Round range lock up to the block boundary, so we
1892 			 * prevent appends until we are done.
1893 			 */
1894 			zfs_rangelock_reduce(outlr, outoff,
1895 			    ((len - 1) / inblksz + 1) * inblksz);
1896 		}
1897 
1898 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1899 		    bps, nbps);
1900 		if (error != 0) {
1901 			dmu_tx_commit(tx);
1902 			break;
1903 		}
1904 
1905 		if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1906 			update_pages(outzp, outoff, size, outos);
1907 		}
1908 
1909 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1910 		    &clear_setid_bits_txg, tx);
1911 
1912 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1913 
1914 		/*
1915 		 * Update the file size (zp_size) if it has changed;
1916 		 * account for possible concurrent updates.
1917 		 */
1918 		while ((outsize = outzp->z_size) < outoff + size) {
1919 			(void) atomic_cas_64(&outzp->z_size, outsize,
1920 			    outoff + size);
1921 		}
1922 
1923 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1924 
1925 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1926 		    size, inblksz, bps, nbps);
1927 
1928 		dmu_tx_commit(tx);
1929 
1930 		if (error != 0)
1931 			break;
1932 
1933 		inoff += size;
1934 		outoff += size;
1935 		len -= size;
1936 		done += size;
1937 
1938 		if (issig()) {
1939 			error = SET_ERROR(EINTR);
1940 			break;
1941 		}
1942 	}
1943 
1944 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1945 	zfs_znode_update_vfs(outzp);
1946 
1947 unlock:
1948 	zfs_rangelock_exit(outlr);
1949 	zfs_rangelock_exit(inlr);
1950 
1951 	if (done > 0) {
1952 		/*
1953 		 * If we have made at least partial progress, reset the error.
1954 		 */
1955 		error = 0;
1956 
1957 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1958 
1959 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1960 			error = zil_commit(zilog, outzp->z_id);
1961 		}
1962 
1963 		*inoffp += done;
1964 		*outoffp += done;
1965 		*lenp = done;
1966 	} else {
1967 		/*
1968 		 * If we made no progress, there must be a good reason.
1969 		 * EOF is handled explicitly above, before the loop.
1970 		 */
1971 		ASSERT3S(error, !=, 0);
1972 	}
1973 
1974 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1975 
1976 	return (error);
1977 }
1978 
1979 /*
1980  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1981  * but we cannot do that, because when replaying we don't have source znode
1982  * available. This is why we need a dedicated replay function.
1983  */
1984 int
zfs_clone_range_replay(znode_t * zp,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)1985 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1986     const blkptr_t *bps, size_t nbps)
1987 {
1988 	zfsvfs_t	*zfsvfs;
1989 	dmu_buf_impl_t	*db;
1990 	dmu_tx_t	*tx;
1991 	int		error;
1992 	int		count = 0;
1993 	sa_bulk_attr_t	bulk[3];
1994 	uint64_t	mtime[2], ctime[2];
1995 
1996 	ASSERT3U(off, <, MAXOFFSET_T);
1997 	ASSERT3U(len, >, 0);
1998 	ASSERT3U(nbps, >, 0);
1999 
2000 	zfsvfs = ZTOZSB(zp);
2001 
2002 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
2003 	    SPA_FEATURE_BLOCK_CLONING));
2004 
2005 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
2006 		return (error);
2007 
2008 	ASSERT(zfsvfs->z_replay);
2009 	ASSERT(!zfs_is_readonly(zfsvfs));
2010 
2011 	if ((off % blksz) != 0) {
2012 		zfs_exit(zfsvfs, FTAG);
2013 		return (SET_ERROR(EINVAL));
2014 	}
2015 
2016 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2017 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2018 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
2019 	    &zp->z_size, 8);
2020 
2021 	/*
2022 	 * Start a transaction.
2023 	 */
2024 	tx = dmu_tx_create(zfsvfs->z_os);
2025 
2026 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2027 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
2028 	DB_DNODE_ENTER(db);
2029 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len, blksz);
2030 	DB_DNODE_EXIT(db);
2031 	zfs_sa_upgrade_txholds(tx, zp);
2032 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
2033 	if (error != 0) {
2034 		dmu_tx_abort(tx);
2035 		zfs_exit(zfsvfs, FTAG);
2036 		return (error);
2037 	}
2038 
2039 	if (zp->z_blksz < blksz)
2040 		zfs_grow_blocksize(zp, blksz, tx);
2041 
2042 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
2043 
2044 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
2045 
2046 	if (zp->z_size < off + len)
2047 		zp->z_size = off + len;
2048 
2049 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2050 
2051 	/*
2052 	 * zil_replaying() not only check if we are replaying ZIL, but also
2053 	 * updates the ZIL header to record replay progress.
2054 	 */
2055 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
2056 
2057 	dmu_tx_commit(tx);
2058 
2059 	zfs_znode_update_vfs(zp);
2060 
2061 	zfs_exit(zfsvfs, FTAG);
2062 
2063 	return (error);
2064 }
2065 
2066 EXPORT_SYMBOL(zfs_access);
2067 EXPORT_SYMBOL(zfs_fsync);
2068 EXPORT_SYMBOL(zfs_holey);
2069 EXPORT_SYMBOL(zfs_read);
2070 EXPORT_SYMBOL(zfs_write);
2071 EXPORT_SYMBOL(zfs_getsecattr);
2072 EXPORT_SYMBOL(zfs_setsecattr);
2073 EXPORT_SYMBOL(zfs_clone_range);
2074 EXPORT_SYMBOL(zfs_clone_range_replay);
2075 
2076 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
2077 	"Bytes to read per chunk");
2078 
2079 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
2080 	"Enable block cloning");
2081 
2082 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
2083 	"Wait for dirty blocks when cloning");
2084 
2085 ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW,
2086 	"Enable Direct I/O");
2087 
2088 ZFS_MODULE_PARAM(zfs, zfs_, dio_strict, INT, ZMOD_RW,
2089 	"Return errors on misaligned Direct I/O");
2090