1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, Datto, Inc.
30 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
31 */
32
33 #include <sys/sysmacros.h>
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa.h>
37 #include <sys/txg.h>
38 #include <sys/spa_impl.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_trim.h>
41 #include <sys/zio_impl.h>
42 #include <sys/zio_compress.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/arc.h>
46 #include <sys/brt.h>
47 #include <sys/ddt.h>
48 #include <sys/blkptr.h>
49 #include <sys/zfeature.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/time.h>
53 #include <sys/trace_zfs.h>
54 #include <sys/abd.h>
55 #include <sys/dsl_crypt.h>
56 #include <cityhash.h>
57
58 /*
59 * ==========================================================================
60 * I/O type descriptions
61 * ==========================================================================
62 */
63 const char *const zio_type_name[ZIO_TYPES] = {
64 /*
65 * Note: Linux kernel thread name length is limited
66 * so these names will differ from upstream open zfs.
67 */
68 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
69 };
70
71 int zio_dva_throttle_enabled = B_TRUE;
72 static int zio_deadman_log_all = B_FALSE;
73
74 /*
75 * ==========================================================================
76 * I/O kmem caches
77 * ==========================================================================
78 */
79 static kmem_cache_t *zio_cache;
80 static kmem_cache_t *zio_link_cache;
81 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
84 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
85 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
86 #endif
87
88 /* Mark IOs as "slow" if they take longer than 30 seconds */
89 static uint_t zio_slow_io_ms = (30 * MILLISEC);
90
91 #define BP_SPANB(indblkshift, level) \
92 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
93 #define COMPARE_META_LEVEL 0x80000000ul
94 /*
95 * The following actions directly effect the spa's sync-to-convergence logic.
96 * The values below define the sync pass when we start performing the action.
97 * Care should be taken when changing these values as they directly impact
98 * spa_sync() performance. Tuning these values may introduce subtle performance
99 * pathologies and should only be done in the context of performance analysis.
100 * These tunables will eventually be removed and replaced with #defines once
101 * enough analysis has been done to determine optimal values.
102 *
103 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
104 * regular blocks are not deferred.
105 *
106 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
107 * compression (including of metadata). In practice, we don't have this
108 * many sync passes, so this has no effect.
109 *
110 * The original intent was that disabling compression would help the sync
111 * passes to converge. However, in practice disabling compression increases
112 * the average number of sync passes, because when we turn compression off, a
113 * lot of block's size will change and thus we have to re-allocate (not
114 * overwrite) them. It also increases the number of 128KB allocations (e.g.
115 * for indirect blocks and spacemaps) because these will not be compressed.
116 * The 128K allocations are especially detrimental to performance on highly
117 * fragmented systems, which may have very few free segments of this size,
118 * and may need to load new metaslabs to satisfy 128K allocations.
119 */
120
121 /* defer frees starting in this pass */
122 uint_t zfs_sync_pass_deferred_free = 2;
123
124 /* don't compress starting in this pass */
125 static uint_t zfs_sync_pass_dont_compress = 8;
126
127 /* rewrite new bps starting in this pass */
128 static uint_t zfs_sync_pass_rewrite = 2;
129
130 /*
131 * An allocating zio is one that either currently has the DVA allocate
132 * stage set or will have it later in its lifetime.
133 */
134 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
135
136 /*
137 * Enable smaller cores by excluding metadata
138 * allocations as well.
139 */
140 int zio_exclude_metadata = 0;
141 static int zio_requeue_io_start_cut_in_line = 1;
142
143 #ifdef ZFS_DEBUG
144 static const int zio_buf_debug_limit = 16384;
145 #else
146 static const int zio_buf_debug_limit = 0;
147 #endif
148
149 typedef struct zio_stats {
150 kstat_named_t ziostat_total_allocations;
151 kstat_named_t ziostat_alloc_class_fallbacks;
152 kstat_named_t ziostat_gang_writes;
153 kstat_named_t ziostat_gang_multilevel;
154 } zio_stats_t;
155
156 static zio_stats_t zio_stats = {
157 { "total_allocations", KSTAT_DATA_UINT64 },
158 { "alloc_class_fallbacks", KSTAT_DATA_UINT64 },
159 { "gang_writes", KSTAT_DATA_UINT64 },
160 { "gang_multilevel", KSTAT_DATA_UINT64 },
161 };
162
163 struct {
164 wmsum_t ziostat_total_allocations;
165 wmsum_t ziostat_alloc_class_fallbacks;
166 wmsum_t ziostat_gang_writes;
167 wmsum_t ziostat_gang_multilevel;
168 } ziostat_sums;
169
170 #define ZIOSTAT_BUMP(stat) wmsum_add(&ziostat_sums.stat, 1);
171
172 static kstat_t *zio_ksp;
173
174 static inline void __zio_execute(zio_t *zio);
175
176 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
177
178 static int
zio_kstats_update(kstat_t * ksp,int rw)179 zio_kstats_update(kstat_t *ksp, int rw)
180 {
181 zio_stats_t *zs = ksp->ks_data;
182 if (rw == KSTAT_WRITE)
183 return (EACCES);
184
185 zs->ziostat_total_allocations.value.ui64 =
186 wmsum_value(&ziostat_sums.ziostat_total_allocations);
187 zs->ziostat_alloc_class_fallbacks.value.ui64 =
188 wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks);
189 zs->ziostat_gang_writes.value.ui64 =
190 wmsum_value(&ziostat_sums.ziostat_gang_writes);
191 zs->ziostat_gang_multilevel.value.ui64 =
192 wmsum_value(&ziostat_sums.ziostat_gang_multilevel);
193 return (0);
194 }
195
196 void
zio_init(void)197 zio_init(void)
198 {
199 size_t c;
200
201 zio_cache = kmem_cache_create("zio_cache",
202 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
203 zio_link_cache = kmem_cache_create("zio_link_cache",
204 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
205
206 wmsum_init(&ziostat_sums.ziostat_total_allocations, 0);
207 wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0);
208 wmsum_init(&ziostat_sums.ziostat_gang_writes, 0);
209 wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0);
210 zio_ksp = kstat_create("zfs", 0, "zio_stats",
211 "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) /
212 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
213 if (zio_ksp != NULL) {
214 zio_ksp->ks_data = &zio_stats;
215 zio_ksp->ks_update = zio_kstats_update;
216 kstat_install(zio_ksp);
217 }
218
219 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
220 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
221 size_t align, cflags, data_cflags;
222 char name[32];
223
224 /*
225 * Create cache for each half-power of 2 size, starting from
226 * SPA_MINBLOCKSIZE. It should give us memory space efficiency
227 * of ~7/8, sufficient for transient allocations mostly using
228 * these caches.
229 */
230 size_t p2 = size;
231 while (!ISP2(p2))
232 p2 &= p2 - 1;
233 if (!IS_P2ALIGNED(size, p2 / 2))
234 continue;
235
236 #ifndef _KERNEL
237 /*
238 * If we are using watchpoints, put each buffer on its own page,
239 * to eliminate the performance overhead of trapping to the
240 * kernel when modifying a non-watched buffer that shares the
241 * page with a watched buffer.
242 */
243 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
244 continue;
245 #endif
246
247 if (IS_P2ALIGNED(size, PAGESIZE))
248 align = PAGESIZE;
249 else
250 align = 1 << (highbit64(size ^ (size - 1)) - 1);
251
252 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
253 KMC_NODEBUG : 0;
254 data_cflags = KMC_NODEBUG;
255 if (abd_size_alloc_linear(size)) {
256 cflags |= KMC_RECLAIMABLE;
257 data_cflags |= KMC_RECLAIMABLE;
258 }
259 if (cflags == data_cflags) {
260 /*
261 * Resulting kmem caches would be identical.
262 * Save memory by creating only one.
263 */
264 (void) snprintf(name, sizeof (name),
265 "zio_buf_comb_%lu", (ulong_t)size);
266 zio_buf_cache[c] = kmem_cache_create(name, size, align,
267 NULL, NULL, NULL, NULL, NULL, cflags);
268 zio_data_buf_cache[c] = zio_buf_cache[c];
269 continue;
270 }
271 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
272 (ulong_t)size);
273 zio_buf_cache[c] = kmem_cache_create(name, size, align,
274 NULL, NULL, NULL, NULL, NULL, cflags);
275
276 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
277 (ulong_t)size);
278 zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
279 NULL, NULL, NULL, NULL, NULL, data_cflags);
280 }
281
282 while (--c != 0) {
283 ASSERT(zio_buf_cache[c] != NULL);
284 if (zio_buf_cache[c - 1] == NULL)
285 zio_buf_cache[c - 1] = zio_buf_cache[c];
286
287 ASSERT(zio_data_buf_cache[c] != NULL);
288 if (zio_data_buf_cache[c - 1] == NULL)
289 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
290 }
291
292 zio_inject_init();
293
294 lz4_init();
295 }
296
297 void
zio_fini(void)298 zio_fini(void)
299 {
300 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
301
302 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
303 for (size_t i = 0; i < n; i++) {
304 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
305 (void) printf("zio_fini: [%d] %llu != %llu\n",
306 (int)((i + 1) << SPA_MINBLOCKSHIFT),
307 (long long unsigned)zio_buf_cache_allocs[i],
308 (long long unsigned)zio_buf_cache_frees[i]);
309 }
310 #endif
311
312 /*
313 * The same kmem cache can show up multiple times in both zio_buf_cache
314 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
315 * sort it out.
316 */
317 for (size_t i = 0; i < n; i++) {
318 kmem_cache_t *cache = zio_buf_cache[i];
319 if (cache == NULL)
320 continue;
321 for (size_t j = i; j < n; j++) {
322 if (cache == zio_buf_cache[j])
323 zio_buf_cache[j] = NULL;
324 if (cache == zio_data_buf_cache[j])
325 zio_data_buf_cache[j] = NULL;
326 }
327 kmem_cache_destroy(cache);
328 }
329
330 for (size_t i = 0; i < n; i++) {
331 kmem_cache_t *cache = zio_data_buf_cache[i];
332 if (cache == NULL)
333 continue;
334 for (size_t j = i; j < n; j++) {
335 if (cache == zio_data_buf_cache[j])
336 zio_data_buf_cache[j] = NULL;
337 }
338 kmem_cache_destroy(cache);
339 }
340
341 for (size_t i = 0; i < n; i++) {
342 VERIFY3P(zio_buf_cache[i], ==, NULL);
343 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
344 }
345
346 if (zio_ksp != NULL) {
347 kstat_delete(zio_ksp);
348 zio_ksp = NULL;
349 }
350
351 wmsum_fini(&ziostat_sums.ziostat_total_allocations);
352 wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks);
353 wmsum_fini(&ziostat_sums.ziostat_gang_writes);
354 wmsum_fini(&ziostat_sums.ziostat_gang_multilevel);
355
356 kmem_cache_destroy(zio_link_cache);
357 kmem_cache_destroy(zio_cache);
358
359 zio_inject_fini();
360
361 lz4_fini();
362 }
363
364 /*
365 * ==========================================================================
366 * Allocate and free I/O buffers
367 * ==========================================================================
368 */
369
370 #if defined(ZFS_DEBUG) && defined(_KERNEL)
371 #define ZFS_ZIO_BUF_CANARY 1
372 #endif
373
374 #ifdef ZFS_ZIO_BUF_CANARY
375 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
376
377 /*
378 * Use empty space after the buffer to detect overflows.
379 *
380 * Since zio_init() creates kmem caches only for certain set of buffer sizes,
381 * allocations of different sizes may have some unused space after the data.
382 * Filling part of that space with a known pattern on allocation and checking
383 * it on free should allow us to detect some buffer overflows.
384 */
385 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)386 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
387 {
388 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
389 ulong_t *canary = p + off / sizeof (ulong_t);
390 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
391 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
392 cache[c] == cache[c + 1])
393 asize = (c + 2) << SPA_MINBLOCKSHIFT;
394 for (; off < asize; canary++, off += sizeof (ulong_t))
395 *canary = zio_buf_canary;
396 }
397
398 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)399 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
400 {
401 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
402 ulong_t *canary = p + off / sizeof (ulong_t);
403 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
404 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
405 cache[c] == cache[c + 1])
406 asize = (c + 2) << SPA_MINBLOCKSHIFT;
407 for (; off < asize; canary++, off += sizeof (ulong_t)) {
408 if (unlikely(*canary != zio_buf_canary)) {
409 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
410 p, size, (canary - p) * sizeof (ulong_t),
411 *canary, zio_buf_canary);
412 }
413 }
414 }
415 #endif
416
417 /*
418 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
419 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
420 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
421 * excess / transient data in-core during a crashdump.
422 */
423 void *
zio_buf_alloc(size_t size)424 zio_buf_alloc(size_t size)
425 {
426 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
427
428 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
429 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
430 atomic_add_64(&zio_buf_cache_allocs[c], 1);
431 #endif
432
433 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
434 #ifdef ZFS_ZIO_BUF_CANARY
435 zio_buf_put_canary(p, size, zio_buf_cache, c);
436 #endif
437 return (p);
438 }
439
440 /*
441 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
442 * crashdump if the kernel panics. This exists so that we will limit the amount
443 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
444 * of kernel heap dumped to disk when the kernel panics)
445 */
446 void *
zio_data_buf_alloc(size_t size)447 zio_data_buf_alloc(size_t size)
448 {
449 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
450
451 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
452
453 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
454 #ifdef ZFS_ZIO_BUF_CANARY
455 zio_buf_put_canary(p, size, zio_data_buf_cache, c);
456 #endif
457 return (p);
458 }
459
460 void
zio_buf_free(void * buf,size_t size)461 zio_buf_free(void *buf, size_t size)
462 {
463 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
464
465 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
466 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
467 atomic_add_64(&zio_buf_cache_frees[c], 1);
468 #endif
469
470 #ifdef ZFS_ZIO_BUF_CANARY
471 zio_buf_check_canary(buf, size, zio_buf_cache, c);
472 #endif
473 kmem_cache_free(zio_buf_cache[c], buf);
474 }
475
476 void
zio_data_buf_free(void * buf,size_t size)477 zio_data_buf_free(void *buf, size_t size)
478 {
479 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
480
481 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
482
483 #ifdef ZFS_ZIO_BUF_CANARY
484 zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
485 #endif
486 kmem_cache_free(zio_data_buf_cache[c], buf);
487 }
488
489 static void
zio_abd_free(void * abd,size_t size)490 zio_abd_free(void *abd, size_t size)
491 {
492 (void) size;
493 abd_free((abd_t *)abd);
494 }
495
496 /*
497 * ==========================================================================
498 * Push and pop I/O transform buffers
499 * ==========================================================================
500 */
501 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)502 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
503 zio_transform_func_t *transform)
504 {
505 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
506
507 zt->zt_orig_abd = zio->io_abd;
508 zt->zt_orig_size = zio->io_size;
509 zt->zt_bufsize = bufsize;
510 zt->zt_transform = transform;
511
512 zt->zt_next = zio->io_transform_stack;
513 zio->io_transform_stack = zt;
514
515 zio->io_abd = data;
516 zio->io_size = size;
517 }
518
519 void
zio_pop_transforms(zio_t * zio)520 zio_pop_transforms(zio_t *zio)
521 {
522 zio_transform_t *zt;
523
524 while ((zt = zio->io_transform_stack) != NULL) {
525 if (zt->zt_transform != NULL)
526 zt->zt_transform(zio,
527 zt->zt_orig_abd, zt->zt_orig_size);
528
529 if (zt->zt_bufsize != 0)
530 abd_free(zio->io_abd);
531
532 zio->io_abd = zt->zt_orig_abd;
533 zio->io_size = zt->zt_orig_size;
534 zio->io_transform_stack = zt->zt_next;
535
536 kmem_free(zt, sizeof (zio_transform_t));
537 }
538 }
539
540 /*
541 * ==========================================================================
542 * I/O transform callbacks for subblocks, decompression, and decryption
543 * ==========================================================================
544 */
545 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)546 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
547 {
548 ASSERT(zio->io_size > size);
549
550 if (zio->io_type == ZIO_TYPE_READ)
551 abd_copy(data, zio->io_abd, size);
552 }
553
554 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)555 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
556 {
557 if (zio->io_error == 0) {
558 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
559 zio->io_abd, data, zio->io_size, size,
560 &zio->io_prop.zp_complevel);
561
562 if (zio_injection_enabled && ret == 0)
563 ret = zio_handle_fault_injection(zio, EINVAL);
564
565 if (ret != 0)
566 zio->io_error = SET_ERROR(EIO);
567 }
568 }
569
570 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)571 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
572 {
573 int ret;
574 void *tmp;
575 blkptr_t *bp = zio->io_bp;
576 spa_t *spa = zio->io_spa;
577 uint64_t dsobj = zio->io_bookmark.zb_objset;
578 uint64_t lsize = BP_GET_LSIZE(bp);
579 dmu_object_type_t ot = BP_GET_TYPE(bp);
580 uint8_t salt[ZIO_DATA_SALT_LEN];
581 uint8_t iv[ZIO_DATA_IV_LEN];
582 uint8_t mac[ZIO_DATA_MAC_LEN];
583 boolean_t no_crypt = B_FALSE;
584
585 ASSERT(BP_USES_CRYPT(bp));
586 ASSERT3U(size, !=, 0);
587
588 if (zio->io_error != 0)
589 return;
590
591 /*
592 * Verify the cksum of MACs stored in an indirect bp. It will always
593 * be possible to verify this since it does not require an encryption
594 * key.
595 */
596 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
597 zio_crypt_decode_mac_bp(bp, mac);
598
599 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
600 /*
601 * We haven't decompressed the data yet, but
602 * zio_crypt_do_indirect_mac_checksum() requires
603 * decompressed data to be able to parse out the MACs
604 * from the indirect block. We decompress it now and
605 * throw away the result after we are finished.
606 */
607 abd_t *abd = abd_alloc_linear(lsize, B_TRUE);
608 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
609 zio->io_abd, abd, zio->io_size, lsize,
610 &zio->io_prop.zp_complevel);
611 if (ret != 0) {
612 abd_free(abd);
613 ret = SET_ERROR(EIO);
614 goto error;
615 }
616 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
617 abd, lsize, BP_SHOULD_BYTESWAP(bp), mac);
618 abd_free(abd);
619 } else {
620 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
621 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
622 }
623 abd_copy(data, zio->io_abd, size);
624
625 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
626 ret = zio_handle_decrypt_injection(spa,
627 &zio->io_bookmark, ot, ECKSUM);
628 }
629 if (ret != 0)
630 goto error;
631
632 return;
633 }
634
635 /*
636 * If this is an authenticated block, just check the MAC. It would be
637 * nice to separate this out into its own flag, but when this was done,
638 * we had run out of bits in what is now zio_flag_t. Future cleanup
639 * could make this a flag bit.
640 */
641 if (BP_IS_AUTHENTICATED(bp)) {
642 if (ot == DMU_OT_OBJSET) {
643 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
644 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
645 } else {
646 zio_crypt_decode_mac_bp(bp, mac);
647 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
648 zio->io_abd, size, mac);
649 if (zio_injection_enabled && ret == 0) {
650 ret = zio_handle_decrypt_injection(spa,
651 &zio->io_bookmark, ot, ECKSUM);
652 }
653 }
654 abd_copy(data, zio->io_abd, size);
655
656 if (ret != 0)
657 goto error;
658
659 return;
660 }
661
662 zio_crypt_decode_params_bp(bp, salt, iv);
663
664 if (ot == DMU_OT_INTENT_LOG) {
665 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
666 zio_crypt_decode_mac_zil(tmp, mac);
667 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
668 } else {
669 zio_crypt_decode_mac_bp(bp, mac);
670 }
671
672 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
673 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
674 zio->io_abd, &no_crypt);
675 if (no_crypt)
676 abd_copy(data, zio->io_abd, size);
677
678 if (ret != 0)
679 goto error;
680
681 return;
682
683 error:
684 /* assert that the key was found unless this was speculative */
685 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
686
687 /*
688 * If there was a decryption / authentication error return EIO as
689 * the io_error. If this was not a speculative zio, create an ereport.
690 */
691 if (ret == ECKSUM) {
692 zio->io_error = SET_ERROR(EIO);
693 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
694 spa_log_error(spa, &zio->io_bookmark,
695 BP_GET_LOGICAL_BIRTH(zio->io_bp));
696 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
697 spa, NULL, &zio->io_bookmark, zio, 0);
698 }
699 } else {
700 zio->io_error = ret;
701 }
702 }
703
704 /*
705 * ==========================================================================
706 * I/O parent/child relationships and pipeline interlocks
707 * ==========================================================================
708 */
709 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)710 zio_walk_parents(zio_t *cio, zio_link_t **zl)
711 {
712 list_t *pl = &cio->io_parent_list;
713
714 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
715 if (*zl == NULL)
716 return (NULL);
717
718 ASSERT((*zl)->zl_child == cio);
719 return ((*zl)->zl_parent);
720 }
721
722 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)723 zio_walk_children(zio_t *pio, zio_link_t **zl)
724 {
725 list_t *cl = &pio->io_child_list;
726
727 ASSERT(MUTEX_HELD(&pio->io_lock));
728
729 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
730 if (*zl == NULL)
731 return (NULL);
732
733 ASSERT((*zl)->zl_parent == pio);
734 return ((*zl)->zl_child);
735 }
736
737 zio_t *
zio_unique_parent(zio_t * cio)738 zio_unique_parent(zio_t *cio)
739 {
740 zio_link_t *zl = NULL;
741 zio_t *pio = zio_walk_parents(cio, &zl);
742
743 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
744 return (pio);
745 }
746
747 static void
zio_add_child_impl(zio_t * pio,zio_t * cio,boolean_t first)748 zio_add_child_impl(zio_t *pio, zio_t *cio, boolean_t first)
749 {
750 /*
751 * Logical I/Os can have logical, gang, or vdev children.
752 * Gang I/Os can have gang or vdev children.
753 * Vdev I/Os can only have vdev children.
754 * The following ASSERT captures all of these constraints.
755 */
756 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
757
758 /* Parent should not have READY stage if child doesn't have it. */
759 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
760 (cio->io_child_type != ZIO_CHILD_VDEV),
761 (pio->io_pipeline & ZIO_STAGE_READY) == 0);
762
763 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
764 zl->zl_parent = pio;
765 zl->zl_child = cio;
766
767 mutex_enter(&pio->io_lock);
768
769 if (first)
770 ASSERT(list_is_empty(&cio->io_parent_list));
771 else
772 mutex_enter(&cio->io_lock);
773
774 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
775
776 uint64_t *countp = pio->io_children[cio->io_child_type];
777 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
778 countp[w] += !cio->io_state[w];
779
780 list_insert_head(&pio->io_child_list, zl);
781 list_insert_head(&cio->io_parent_list, zl);
782
783 if (!first)
784 mutex_exit(&cio->io_lock);
785
786 mutex_exit(&pio->io_lock);
787 }
788
789 void
zio_add_child(zio_t * pio,zio_t * cio)790 zio_add_child(zio_t *pio, zio_t *cio)
791 {
792 zio_add_child_impl(pio, cio, B_FALSE);
793 }
794
795 static void
zio_add_child_first(zio_t * pio,zio_t * cio)796 zio_add_child_first(zio_t *pio, zio_t *cio)
797 {
798 zio_add_child_impl(pio, cio, B_TRUE);
799 }
800
801 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)802 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
803 {
804 ASSERT(zl->zl_parent == pio);
805 ASSERT(zl->zl_child == cio);
806
807 mutex_enter(&pio->io_lock);
808 mutex_enter(&cio->io_lock);
809
810 list_remove(&pio->io_child_list, zl);
811 list_remove(&cio->io_parent_list, zl);
812
813 mutex_exit(&cio->io_lock);
814 mutex_exit(&pio->io_lock);
815 kmem_cache_free(zio_link_cache, zl);
816 }
817
818 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)819 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
820 {
821 boolean_t waiting = B_FALSE;
822
823 mutex_enter(&zio->io_lock);
824 ASSERT(zio->io_stall == NULL);
825 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
826 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
827 continue;
828
829 uint64_t *countp = &zio->io_children[c][wait];
830 if (*countp != 0) {
831 zio->io_stage >>= 1;
832 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
833 zio->io_stall = countp;
834 waiting = B_TRUE;
835 break;
836 }
837 }
838 mutex_exit(&zio->io_lock);
839 return (waiting);
840 }
841
842 __attribute__((always_inline))
843 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)844 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
845 zio_t **next_to_executep)
846 {
847 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
848 int *errorp = &pio->io_child_error[zio->io_child_type];
849
850 mutex_enter(&pio->io_lock);
851 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
852 *errorp = zio_worst_error(*errorp, zio->io_error);
853 pio->io_reexecute |= zio->io_reexecute;
854 ASSERT3U(*countp, >, 0);
855
856 /*
857 * Propogate the Direct I/O checksum verify failure to the parent.
858 */
859 if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)
860 pio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
861
862 (*countp)--;
863
864 if (*countp == 0 && pio->io_stall == countp) {
865 zio_taskq_type_t type =
866 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
867 ZIO_TASKQ_INTERRUPT;
868 pio->io_stall = NULL;
869 mutex_exit(&pio->io_lock);
870
871 /*
872 * If we can tell the caller to execute this parent next, do
873 * so. We do this if the parent's zio type matches the child's
874 * type, or if it's a zio_null() with no done callback, and so
875 * has no actual work to do. Otherwise dispatch the parent zio
876 * in its own taskq.
877 *
878 * Having the caller execute the parent when possible reduces
879 * locking on the zio taskq's, reduces context switch
880 * overhead, and has no recursion penalty. Note that one
881 * read from disk typically causes at least 3 zio's: a
882 * zio_null(), the logical zio_read(), and then a physical
883 * zio. When the physical ZIO completes, we are able to call
884 * zio_done() on all 3 of these zio's from one invocation of
885 * zio_execute() by returning the parent back to
886 * zio_execute(). Since the parent isn't executed until this
887 * thread returns back to zio_execute(), the caller should do
888 * so promptly.
889 *
890 * In other cases, dispatching the parent prevents
891 * overflowing the stack when we have deeply nested
892 * parent-child relationships, as we do with the "mega zio"
893 * of writes for spa_sync(), and the chain of ZIL blocks.
894 */
895 if (next_to_executep != NULL && *next_to_executep == NULL &&
896 (pio->io_type == zio->io_type ||
897 (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
898 *next_to_executep = pio;
899 } else {
900 zio_taskq_dispatch(pio, type, B_FALSE);
901 }
902 } else {
903 mutex_exit(&pio->io_lock);
904 }
905 }
906
907 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)908 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
909 {
910 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
911 zio->io_error = zio->io_child_error[c];
912 }
913
914 int
zio_bookmark_compare(const void * x1,const void * x2)915 zio_bookmark_compare(const void *x1, const void *x2)
916 {
917 const zio_t *z1 = x1;
918 const zio_t *z2 = x2;
919
920 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
921 return (-1);
922 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
923 return (1);
924
925 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
926 return (-1);
927 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
928 return (1);
929
930 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
931 return (-1);
932 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
933 return (1);
934
935 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
936 return (-1);
937 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
938 return (1);
939
940 if (z1 < z2)
941 return (-1);
942 if (z1 > z2)
943 return (1);
944
945 return (0);
946 }
947
948 /*
949 * ==========================================================================
950 * Create the various types of I/O (read, write, free, etc)
951 * ==========================================================================
952 */
953 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)954 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
955 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
956 void *private, zio_type_t type, zio_priority_t priority,
957 zio_flag_t flags, vdev_t *vd, uint64_t offset,
958 const zbookmark_phys_t *zb, enum zio_stage stage,
959 enum zio_stage pipeline)
960 {
961 zio_t *zio;
962
963 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
964 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
965 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
966
967 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
968 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
969 ASSERT(vd || stage == ZIO_STAGE_OPEN);
970
971 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
972
973 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
974 memset(zio, 0, sizeof (zio_t));
975
976 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
977 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
978
979 list_create(&zio->io_parent_list, sizeof (zio_link_t),
980 offsetof(zio_link_t, zl_parent_node));
981 list_create(&zio->io_child_list, sizeof (zio_link_t),
982 offsetof(zio_link_t, zl_child_node));
983 metaslab_trace_init(&zio->io_alloc_list);
984
985 if (vd != NULL)
986 zio->io_child_type = ZIO_CHILD_VDEV;
987 else if (flags & ZIO_FLAG_GANG_CHILD)
988 zio->io_child_type = ZIO_CHILD_GANG;
989 else if (flags & ZIO_FLAG_DDT_CHILD)
990 zio->io_child_type = ZIO_CHILD_DDT;
991 else
992 zio->io_child_type = ZIO_CHILD_LOGICAL;
993
994 if (bp != NULL) {
995 if (type != ZIO_TYPE_WRITE ||
996 zio->io_child_type == ZIO_CHILD_DDT) {
997 zio->io_bp_copy = *bp;
998 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
999 } else {
1000 zio->io_bp = (blkptr_t *)bp;
1001 }
1002 zio->io_bp_orig = *bp;
1003 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
1004 zio->io_logical = zio;
1005 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
1006 pipeline |= ZIO_GANG_STAGES;
1007 if (flags & ZIO_FLAG_PREALLOCATED) {
1008 BP_ZERO_DVAS(zio->io_bp);
1009 BP_SET_BIRTH(zio->io_bp, 0, 0);
1010 }
1011 }
1012
1013 zio->io_spa = spa;
1014 zio->io_txg = txg;
1015 zio->io_done = done;
1016 zio->io_private = private;
1017 zio->io_type = type;
1018 zio->io_priority = priority;
1019 zio->io_vd = vd;
1020 zio->io_offset = offset;
1021 zio->io_orig_abd = zio->io_abd = data;
1022 zio->io_orig_size = zio->io_size = psize;
1023 zio->io_lsize = lsize;
1024 zio->io_orig_flags = zio->io_flags = flags;
1025 zio->io_orig_stage = zio->io_stage = stage;
1026 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
1027 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
1028 zio->io_allocator = ZIO_ALLOCATOR_NONE;
1029
1030 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
1031 (pipeline & ZIO_STAGE_READY) == 0;
1032 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
1033
1034 if (zb != NULL)
1035 zio->io_bookmark = *zb;
1036
1037 if (pio != NULL) {
1038 zio->io_metaslab_class = pio->io_metaslab_class;
1039 if (zio->io_logical == NULL)
1040 zio->io_logical = pio->io_logical;
1041 if (zio->io_child_type == ZIO_CHILD_GANG)
1042 zio->io_gang_leader = pio->io_gang_leader;
1043 zio_add_child_first(pio, zio);
1044 }
1045
1046 taskq_init_ent(&zio->io_tqent);
1047
1048 return (zio);
1049 }
1050
1051 void
zio_destroy(zio_t * zio)1052 zio_destroy(zio_t *zio)
1053 {
1054 metaslab_trace_fini(&zio->io_alloc_list);
1055 list_destroy(&zio->io_parent_list);
1056 list_destroy(&zio->io_child_list);
1057 mutex_destroy(&zio->io_lock);
1058 cv_destroy(&zio->io_cv);
1059 kmem_cache_free(zio_cache, zio);
1060 }
1061
1062 /*
1063 * ZIO intended to be between others. Provides synchronization at READY
1064 * and DONE pipeline stages and calls the respective callbacks.
1065 */
1066 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)1067 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1068 void *private, zio_flag_t flags)
1069 {
1070 zio_t *zio;
1071
1072 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1073 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1074 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1075
1076 return (zio);
1077 }
1078
1079 /*
1080 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a
1081 * READY pipeline stage (is ready on creation), so it should not be used
1082 * as child of any ZIO that may need waiting for grandchildren READY stage
1083 * (any other ZIO type).
1084 */
1085 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1086 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1087 {
1088 zio_t *zio;
1089
1090 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1091 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1092 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1093
1094 return (zio);
1095 }
1096
1097 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1098 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1099 enum blk_verify_flag blk_verify, const char *fmt, ...)
1100 {
1101 va_list adx;
1102 char buf[256];
1103
1104 va_start(adx, fmt);
1105 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
1106 va_end(adx);
1107
1108 zfs_dbgmsg("bad blkptr at %px: "
1109 "DVA[0]=%#llx/%#llx "
1110 "DVA[1]=%#llx/%#llx "
1111 "DVA[2]=%#llx/%#llx "
1112 "prop=%#llx "
1113 "pad=%#llx,%#llx "
1114 "phys_birth=%#llx "
1115 "birth=%#llx "
1116 "fill=%#llx "
1117 "cksum=%#llx/%#llx/%#llx/%#llx",
1118 bp,
1119 (long long)bp->blk_dva[0].dva_word[0],
1120 (long long)bp->blk_dva[0].dva_word[1],
1121 (long long)bp->blk_dva[1].dva_word[0],
1122 (long long)bp->blk_dva[1].dva_word[1],
1123 (long long)bp->blk_dva[2].dva_word[0],
1124 (long long)bp->blk_dva[2].dva_word[1],
1125 (long long)bp->blk_prop,
1126 (long long)bp->blk_pad[0],
1127 (long long)bp->blk_pad[1],
1128 (long long)BP_GET_PHYSICAL_BIRTH(bp),
1129 (long long)BP_GET_LOGICAL_BIRTH(bp),
1130 (long long)bp->blk_fill,
1131 (long long)bp->blk_cksum.zc_word[0],
1132 (long long)bp->blk_cksum.zc_word[1],
1133 (long long)bp->blk_cksum.zc_word[2],
1134 (long long)bp->blk_cksum.zc_word[3]);
1135 switch (blk_verify) {
1136 case BLK_VERIFY_HALT:
1137 zfs_panic_recover("%s: %s", spa_name(spa), buf);
1138 break;
1139 case BLK_VERIFY_LOG:
1140 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1141 break;
1142 case BLK_VERIFY_ONLY:
1143 break;
1144 }
1145
1146 return (1);
1147 }
1148
1149 /*
1150 * Verify the block pointer fields contain reasonable values. This means
1151 * it only contains known object types, checksum/compression identifiers,
1152 * block sizes within the maximum allowed limits, valid DVAs, etc.
1153 *
1154 * If everything checks out 0 is returned. The zfs_blkptr_verify
1155 * argument controls the behavior when an invalid field is detected.
1156 *
1157 * Values for blk_verify_flag:
1158 * BLK_VERIFY_ONLY: evaluate the block
1159 * BLK_VERIFY_LOG: evaluate the block and log problems
1160 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1161 *
1162 * Values for blk_config_flag:
1163 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1164 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1165 * obtained for reader
1166 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1167 * performance
1168 */
1169 int
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1170 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1171 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1172 {
1173 int errors = 0;
1174
1175 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1176 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1177 "blkptr at %px has invalid TYPE %llu",
1178 bp, (longlong_t)BP_GET_TYPE(bp));
1179 }
1180 if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1181 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1182 "blkptr at %px has invalid COMPRESS %llu",
1183 bp, (longlong_t)BP_GET_COMPRESS(bp));
1184 }
1185 if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1186 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1187 "blkptr at %px has invalid LSIZE %llu",
1188 bp, (longlong_t)BP_GET_LSIZE(bp));
1189 }
1190 if (BP_IS_EMBEDDED(bp)) {
1191 if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1192 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1193 "blkptr at %px has invalid ETYPE %llu",
1194 bp, (longlong_t)BPE_GET_ETYPE(bp));
1195 }
1196 if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1197 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1198 "blkptr at %px has invalid PSIZE %llu",
1199 bp, (longlong_t)BPE_GET_PSIZE(bp));
1200 }
1201 return (errors ? ECKSUM : 0);
1202 } else if (BP_IS_HOLE(bp)) {
1203 /*
1204 * Holes are allowed (expected, even) to have no DVAs, no
1205 * checksum, and no psize.
1206 */
1207 return (errors ? ECKSUM : 0);
1208 } else if (unlikely(!DVA_IS_VALID(&bp->blk_dva[0]))) {
1209 /* Non-hole, non-embedded BPs _must_ have at least one DVA */
1210 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1211 "blkptr at %px has no valid DVAs", bp);
1212 }
1213 if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1214 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1215 "blkptr at %px has invalid CHECKSUM %llu",
1216 bp, (longlong_t)BP_GET_CHECKSUM(bp));
1217 }
1218 if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1219 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1220 "blkptr at %px has invalid PSIZE %llu",
1221 bp, (longlong_t)BP_GET_PSIZE(bp));
1222 }
1223
1224 /*
1225 * Do not verify individual DVAs if the config is not trusted. This
1226 * will be done once the zio is executed in vdev_mirror_map_alloc.
1227 */
1228 if (unlikely(!spa->spa_trust_config))
1229 return (errors ? ECKSUM : 0);
1230
1231 switch (blk_config) {
1232 case BLK_CONFIG_HELD:
1233 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1234 break;
1235 case BLK_CONFIG_NEEDED:
1236 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1237 break;
1238 case BLK_CONFIG_NEEDED_TRY:
1239 if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER))
1240 return (EBUSY);
1241 break;
1242 case BLK_CONFIG_SKIP:
1243 return (errors ? ECKSUM : 0);
1244 default:
1245 panic("invalid blk_config %u", blk_config);
1246 }
1247
1248 /*
1249 * Pool-specific checks.
1250 *
1251 * Note: it would be nice to verify that the logical birth
1252 * and physical birth are not too large. However,
1253 * spa_freeze() allows the birth time of log blocks (and
1254 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1255 * large.
1256 */
1257 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1258 const dva_t *dva = &bp->blk_dva[i];
1259 uint64_t vdevid = DVA_GET_VDEV(dva);
1260
1261 if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1262 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1263 "blkptr at %px DVA %u has invalid VDEV %llu",
1264 bp, i, (longlong_t)vdevid);
1265 continue;
1266 }
1267 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1268 if (unlikely(vd == NULL)) {
1269 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1270 "blkptr at %px DVA %u has invalid VDEV %llu",
1271 bp, i, (longlong_t)vdevid);
1272 continue;
1273 }
1274 if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1275 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1276 "blkptr at %px DVA %u has hole VDEV %llu",
1277 bp, i, (longlong_t)vdevid);
1278 continue;
1279 }
1280 if (vd->vdev_ops == &vdev_missing_ops) {
1281 /*
1282 * "missing" vdevs are valid during import, but we
1283 * don't have their detailed info (e.g. asize), so
1284 * we can't perform any more checks on them.
1285 */
1286 continue;
1287 }
1288 uint64_t offset = DVA_GET_OFFSET(dva);
1289 uint64_t asize = DVA_GET_ASIZE(dva);
1290 if (DVA_GET_GANG(dva))
1291 asize = vdev_gang_header_asize(vd);
1292 if (unlikely(offset + asize > vd->vdev_asize)) {
1293 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1294 "blkptr at %px DVA %u has invalid OFFSET %llu",
1295 bp, i, (longlong_t)offset);
1296 }
1297 }
1298 if (blk_config == BLK_CONFIG_NEEDED || blk_config ==
1299 BLK_CONFIG_NEEDED_TRY)
1300 spa_config_exit(spa, SCL_VDEV, bp);
1301
1302 return (errors ? ECKSUM : 0);
1303 }
1304
1305 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1306 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1307 {
1308 (void) bp;
1309 uint64_t vdevid = DVA_GET_VDEV(dva);
1310
1311 if (vdevid >= spa->spa_root_vdev->vdev_children)
1312 return (B_FALSE);
1313
1314 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1315 if (vd == NULL)
1316 return (B_FALSE);
1317
1318 if (vd->vdev_ops == &vdev_hole_ops)
1319 return (B_FALSE);
1320
1321 if (vd->vdev_ops == &vdev_missing_ops) {
1322 return (B_FALSE);
1323 }
1324
1325 uint64_t offset = DVA_GET_OFFSET(dva);
1326 uint64_t asize = DVA_GET_ASIZE(dva);
1327
1328 if (DVA_GET_GANG(dva))
1329 asize = vdev_gang_header_asize(vd);
1330 if (offset + asize > vd->vdev_asize)
1331 return (B_FALSE);
1332
1333 return (B_TRUE);
1334 }
1335
1336 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1337 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1338 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1339 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1340 {
1341 zio_t *zio;
1342
1343 zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1344 data, size, size, done, private,
1345 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1346 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1347 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1348
1349 return (zio);
1350 }
1351
1352 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1353 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1354 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1355 zio_done_func_t *ready, zio_done_func_t *children_ready,
1356 zio_done_func_t *done, void *private, zio_priority_t priority,
1357 zio_flag_t flags, const zbookmark_phys_t *zb)
1358 {
1359 zio_t *zio;
1360 enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ?
1361 ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ?
1362 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE;
1363
1364
1365 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1366 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1367 ZIO_STAGE_OPEN, pipeline);
1368
1369 zio->io_ready = ready;
1370 zio->io_children_ready = children_ready;
1371 zio->io_prop = *zp;
1372
1373 /*
1374 * Data can be NULL if we are going to call zio_write_override() to
1375 * provide the already-allocated BP. But we may need the data to
1376 * verify a dedup hit (if requested). In this case, don't try to
1377 * dedup (just take the already-allocated BP verbatim). Encrypted
1378 * dedup blocks need data as well so we also disable dedup in this
1379 * case.
1380 */
1381 if (data == NULL &&
1382 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1383 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1384 }
1385
1386 return (zio);
1387 }
1388
1389 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1390 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1391 uint64_t size, zio_done_func_t *done, void *private,
1392 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1393 {
1394 zio_t *zio;
1395
1396 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1397 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1398 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1399
1400 return (zio);
1401 }
1402
1403 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,int gang_copies,boolean_t nopwrite,boolean_t brtwrite)1404 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, int gang_copies,
1405 boolean_t nopwrite, boolean_t brtwrite)
1406 {
1407 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1408 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1409 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1410 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1411 ASSERT(!brtwrite || !nopwrite);
1412
1413 /*
1414 * We must reset the io_prop to match the values that existed
1415 * when the bp was first written by dmu_sync() keeping in mind
1416 * that nopwrite and dedup are mutually exclusive.
1417 */
1418 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1419 zio->io_prop.zp_nopwrite = nopwrite;
1420 zio->io_prop.zp_brtwrite = brtwrite;
1421 zio->io_prop.zp_copies = copies;
1422 zio->io_prop.zp_gang_copies = gang_copies;
1423 zio->io_bp_override = bp;
1424 }
1425
1426 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1427 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1428 {
1429
1430 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1431
1432 /*
1433 * The check for EMBEDDED is a performance optimization. We
1434 * process the free here (by ignoring it) rather than
1435 * putting it on the list and then processing it in zio_free_sync().
1436 */
1437 if (BP_IS_EMBEDDED(bp))
1438 return;
1439
1440 /*
1441 * Frees that are for the currently-syncing txg, are not going to be
1442 * deferred, and which will not need to do a read (i.e. not GANG or
1443 * DEDUP), can be processed immediately. Otherwise, put them on the
1444 * in-memory list for later processing.
1445 *
1446 * Note that we only defer frees after zfs_sync_pass_deferred_free
1447 * when the log space map feature is disabled. [see relevant comment
1448 * in spa_sync_iterate_to_convergence()]
1449 */
1450 if (BP_IS_GANG(bp) ||
1451 BP_GET_DEDUP(bp) ||
1452 txg != spa->spa_syncing_txg ||
1453 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1454 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1455 brt_maybe_exists(spa, bp)) {
1456 metaslab_check_free(spa, bp);
1457 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1458 } else {
1459 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1460 }
1461 }
1462
1463 /*
1464 * To improve performance, this function may return NULL if we were able
1465 * to do the free immediately. This avoids the cost of creating a zio
1466 * (and linking it to the parent, etc).
1467 */
1468 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1469 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1470 zio_flag_t flags)
1471 {
1472 ASSERT(!BP_IS_HOLE(bp));
1473 ASSERT(spa_syncing_txg(spa) == txg);
1474
1475 if (BP_IS_EMBEDDED(bp))
1476 return (NULL);
1477
1478 metaslab_check_free(spa, bp);
1479 arc_freed(spa, bp);
1480 dsl_scan_freed(spa, bp);
1481
1482 if (BP_IS_GANG(bp) ||
1483 BP_GET_DEDUP(bp) ||
1484 brt_maybe_exists(spa, bp)) {
1485 /*
1486 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1487 * block header, the DDT or the BRT), so issue them
1488 * asynchronously so that this thread is not tied up.
1489 */
1490 enum zio_stage stage =
1491 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1492
1493 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1494 BP_GET_PSIZE(bp), NULL, NULL,
1495 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1496 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1497 } else {
1498 metaslab_free(spa, bp, txg, B_FALSE);
1499 return (NULL);
1500 }
1501 }
1502
1503 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1504 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1505 zio_done_func_t *done, void *private, zio_flag_t flags)
1506 {
1507 zio_t *zio;
1508
1509 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1510 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1511
1512 if (BP_IS_EMBEDDED(bp))
1513 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1514
1515 /*
1516 * A claim is an allocation of a specific block. Claims are needed
1517 * to support immediate writes in the intent log. The issue is that
1518 * immediate writes contain committed data, but in a txg that was
1519 * *not* committed. Upon opening the pool after an unclean shutdown,
1520 * the intent log claims all blocks that contain immediate write data
1521 * so that the SPA knows they're in use.
1522 *
1523 * All claims *must* be resolved in the first txg -- before the SPA
1524 * starts allocating blocks -- so that nothing is allocated twice.
1525 * If txg == 0 we just verify that the block is claimable.
1526 */
1527 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1528 spa_min_claim_txg(spa));
1529 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1530 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1531
1532 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1533 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1534 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1535 ASSERT0(zio->io_queued_timestamp);
1536
1537 return (zio);
1538 }
1539
1540 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1541 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1542 zio_done_func_t *done, void *private, zio_priority_t priority,
1543 zio_flag_t flags, enum trim_flag trim_flags)
1544 {
1545 zio_t *zio;
1546
1547 ASSERT0(vd->vdev_children);
1548 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1549 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1550 ASSERT3U(size, !=, 0);
1551
1552 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1553 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1554 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1555 zio->io_trim_flags = trim_flags;
1556
1557 return (zio);
1558 }
1559
1560 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1561 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1562 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1563 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1564 {
1565 zio_t *zio;
1566
1567 ASSERT(vd->vdev_children == 0);
1568 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1569 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1570 ASSERT3U(offset + size, <=, vd->vdev_psize);
1571
1572 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1573 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1574 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1575
1576 zio->io_prop.zp_checksum = checksum;
1577
1578 return (zio);
1579 }
1580
1581 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1582 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1583 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1584 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1585 {
1586 zio_t *zio;
1587
1588 ASSERT(vd->vdev_children == 0);
1589 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1590 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1591 ASSERT3U(offset + size, <=, vd->vdev_psize);
1592
1593 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1594 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1595 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1596
1597 zio->io_prop.zp_checksum = checksum;
1598
1599 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1600 /*
1601 * zec checksums are necessarily destructive -- they modify
1602 * the end of the write buffer to hold the verifier/checksum.
1603 * Therefore, we must make a local copy in case the data is
1604 * being written to multiple places in parallel.
1605 */
1606 abd_t *wbuf = abd_alloc_sametype(data, size);
1607 abd_copy(wbuf, data, size);
1608
1609 zio_push_transform(zio, wbuf, size, size, NULL);
1610 }
1611
1612 return (zio);
1613 }
1614
1615 /*
1616 * Create a child I/O to do some work for us.
1617 */
1618 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1619 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1620 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1621 zio_flag_t flags, zio_done_func_t *done, void *private)
1622 {
1623 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1624 zio_t *zio;
1625
1626 /*
1627 * vdev child I/Os do not propagate their error to the parent.
1628 * Therefore, for correct operation the caller *must* check for
1629 * and handle the error in the child i/o's done callback.
1630 * The only exceptions are i/os that we don't care about
1631 * (OPTIONAL or REPAIR).
1632 */
1633 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1634 done != NULL);
1635
1636 if (type == ZIO_TYPE_READ && bp != NULL) {
1637 /*
1638 * If we have the bp, then the child should perform the
1639 * checksum and the parent need not. This pushes error
1640 * detection as close to the leaves as possible and
1641 * eliminates redundant checksums in the interior nodes.
1642 */
1643 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1644 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1645 /*
1646 * We never allow the mirror VDEV to attempt reading from any
1647 * additional data copies after the first Direct I/O checksum
1648 * verify failure. This is to avoid bad data being written out
1649 * through the mirror during self healing. See comment in
1650 * vdev_mirror_io_done() for more details.
1651 */
1652 ASSERT0(pio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
1653 } else if (type == ZIO_TYPE_WRITE &&
1654 pio->io_prop.zp_direct_write == B_TRUE) {
1655 /*
1656 * By default we only will verify checksums for Direct I/O
1657 * writes for Linux. FreeBSD is able to place user pages under
1658 * write protection before issuing them to the ZIO pipeline.
1659 *
1660 * Checksum validation errors will only be reported through
1661 * the top-level VDEV, which is set by this child ZIO.
1662 */
1663 ASSERT3P(bp, !=, NULL);
1664 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
1665 pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY;
1666 }
1667
1668 if (vd->vdev_ops->vdev_op_leaf) {
1669 ASSERT0(vd->vdev_children);
1670 offset += VDEV_LABEL_START_SIZE;
1671 }
1672
1673 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1674
1675 /*
1676 * If we've decided to do a repair, the write is not speculative --
1677 * even if the original read was.
1678 */
1679 if (flags & ZIO_FLAG_IO_REPAIR)
1680 flags &= ~ZIO_FLAG_SPECULATIVE;
1681
1682 /*
1683 * If we're creating a child I/O that is not associated with a
1684 * top-level vdev, then the child zio is not an allocating I/O.
1685 * If this is a retried I/O then we ignore it since we will
1686 * have already processed the original allocating I/O.
1687 */
1688 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1689 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1690 ASSERT(pio->io_metaslab_class != NULL);
1691 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1692 ASSERT(type == ZIO_TYPE_WRITE);
1693 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1694 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1695 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1696 pio->io_child_type == ZIO_CHILD_GANG);
1697
1698 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1699 }
1700
1701 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1702 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1703 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1704 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1705
1706 return (zio);
1707 }
1708
1709 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1710 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1711 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1712 zio_done_func_t *done, void *private)
1713 {
1714 zio_t *zio;
1715
1716 ASSERT(vd->vdev_ops->vdev_op_leaf);
1717
1718 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1719 data, size, size, done, private, type, priority,
1720 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1721 vd, offset, NULL,
1722 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1723
1724 return (zio);
1725 }
1726
1727
1728 /*
1729 * Send a flush command to the given vdev. Unlike most zio creation functions,
1730 * the flush zios are issued immediately. You can wait on pio to pause until
1731 * the flushes complete.
1732 */
1733 void
zio_flush(zio_t * pio,vdev_t * vd)1734 zio_flush(zio_t *pio, vdev_t *vd)
1735 {
1736 const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1737 ZIO_FLAG_DONT_RETRY;
1738
1739 if (vd->vdev_nowritecache)
1740 return;
1741
1742 if (vd->vdev_children == 0) {
1743 zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1744 NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1745 NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1746 } else {
1747 for (uint64_t c = 0; c < vd->vdev_children; c++)
1748 zio_flush(pio, vd->vdev_child[c]);
1749 }
1750 }
1751
1752 void
zio_shrink(zio_t * zio,uint64_t size)1753 zio_shrink(zio_t *zio, uint64_t size)
1754 {
1755 ASSERT3P(zio->io_executor, ==, NULL);
1756 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1757 ASSERT3U(size, <=, zio->io_size);
1758
1759 /*
1760 * We don't shrink for raidz because of problems with the
1761 * reconstruction when reading back less than the block size.
1762 * Note, BP_IS_RAIDZ() assumes no compression.
1763 */
1764 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1765 if (!BP_IS_RAIDZ(zio->io_bp)) {
1766 /* we are not doing a raw write */
1767 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1768 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1769 }
1770 }
1771
1772 /*
1773 * Round provided allocation size up to a value that can be allocated
1774 * by at least some vdev(s) in the pool with minimum or no additional
1775 * padding and without extra space usage on others
1776 */
1777 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1778 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1779 {
1780 if (size > spa->spa_min_alloc)
1781 return (roundup(size, spa->spa_gcd_alloc));
1782 return (spa->spa_min_alloc);
1783 }
1784
1785 size_t
zio_get_compression_max_size(enum zio_compress compress,uint64_t gcd_alloc,uint64_t min_alloc,size_t s_len)1786 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc,
1787 uint64_t min_alloc, size_t s_len)
1788 {
1789 size_t d_len;
1790
1791 /* minimum 12.5% must be saved (legacy value, may be changed later) */
1792 d_len = s_len - (s_len >> 3);
1793
1794 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1795 if (compress == ZIO_COMPRESS_ZLE)
1796 return (d_len);
1797
1798 d_len = d_len - d_len % gcd_alloc;
1799
1800 if (d_len < min_alloc)
1801 return (BPE_PAYLOAD_SIZE);
1802 return (d_len);
1803 }
1804
1805 /*
1806 * ==========================================================================
1807 * Prepare to read and write logical blocks
1808 * ==========================================================================
1809 */
1810
1811 static zio_t *
zio_read_bp_init(zio_t * zio)1812 zio_read_bp_init(zio_t *zio)
1813 {
1814 blkptr_t *bp = zio->io_bp;
1815 uint64_t psize =
1816 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1817
1818 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1819
1820 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1821 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1822 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1823 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1824 psize, psize, zio_decompress);
1825 }
1826
1827 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1828 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1829 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1830 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1831 psize, psize, zio_decrypt);
1832 }
1833
1834 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1835 int psize = BPE_GET_PSIZE(bp);
1836 void *data = abd_borrow_buf(zio->io_abd, psize);
1837
1838 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1839 decode_embedded_bp_compressed(bp, data);
1840 abd_return_buf_copy(zio->io_abd, data, psize);
1841 } else {
1842 ASSERT(!BP_IS_EMBEDDED(bp));
1843 }
1844
1845 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1846 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1847
1848 return (zio);
1849 }
1850
1851 static zio_t *
zio_write_bp_init(zio_t * zio)1852 zio_write_bp_init(zio_t *zio)
1853 {
1854 if (!IO_IS_ALLOCATING(zio))
1855 return (zio);
1856
1857 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1858
1859 if (zio->io_bp_override) {
1860 blkptr_t *bp = zio->io_bp;
1861 zio_prop_t *zp = &zio->io_prop;
1862
1863 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1864
1865 *bp = *zio->io_bp_override;
1866 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1867
1868 if (zp->zp_brtwrite)
1869 return (zio);
1870
1871 ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1872
1873 if (BP_IS_EMBEDDED(bp))
1874 return (zio);
1875
1876 /*
1877 * If we've been overridden and nopwrite is set then
1878 * set the flag accordingly to indicate that a nopwrite
1879 * has already occurred.
1880 */
1881 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1882 ASSERT(!zp->zp_dedup);
1883 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1884 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1885 return (zio);
1886 }
1887
1888 ASSERT(!zp->zp_nopwrite);
1889
1890 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1891 return (zio);
1892
1893 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1894 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1895
1896 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1897 !zp->zp_encrypt) {
1898 BP_SET_DEDUP(bp, 1);
1899 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1900 return (zio);
1901 }
1902
1903 /*
1904 * We were unable to handle this as an override bp, treat
1905 * it as a regular write I/O.
1906 */
1907 zio->io_bp_override = NULL;
1908 *bp = zio->io_bp_orig;
1909 zio->io_pipeline = zio->io_orig_pipeline;
1910 }
1911
1912 return (zio);
1913 }
1914
1915 static zio_t *
zio_write_compress(zio_t * zio)1916 zio_write_compress(zio_t *zio)
1917 {
1918 spa_t *spa = zio->io_spa;
1919 zio_prop_t *zp = &zio->io_prop;
1920 enum zio_compress compress = zp->zp_compress;
1921 blkptr_t *bp = zio->io_bp;
1922 uint64_t lsize = zio->io_lsize;
1923 uint64_t psize = zio->io_size;
1924 uint32_t pass = 1;
1925
1926 /*
1927 * If our children haven't all reached the ready stage,
1928 * wait for them and then repeat this pipeline stage.
1929 */
1930 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1931 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1932 return (NULL);
1933 }
1934
1935 if (!IO_IS_ALLOCATING(zio))
1936 return (zio);
1937
1938 if (zio->io_children_ready != NULL) {
1939 /*
1940 * Now that all our children are ready, run the callback
1941 * associated with this zio in case it wants to modify the
1942 * data to be written.
1943 */
1944 ASSERT3U(zp->zp_level, >, 0);
1945 zio->io_children_ready(zio);
1946 }
1947
1948 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1949 ASSERT(zio->io_bp_override == NULL);
1950
1951 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1952 /*
1953 * We're rewriting an existing block, which means we're
1954 * working on behalf of spa_sync(). For spa_sync() to
1955 * converge, it must eventually be the case that we don't
1956 * have to allocate new blocks. But compression changes
1957 * the blocksize, which forces a reallocate, and makes
1958 * convergence take longer. Therefore, after the first
1959 * few passes, stop compressing to ensure convergence.
1960 */
1961 pass = spa_sync_pass(spa);
1962
1963 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1964 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1965 ASSERT(!BP_GET_DEDUP(bp));
1966
1967 if (pass >= zfs_sync_pass_dont_compress)
1968 compress = ZIO_COMPRESS_OFF;
1969
1970 /* Make sure someone doesn't change their mind on overwrites */
1971 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1972 MIN(zp->zp_copies, spa_max_replication(spa))
1973 == BP_GET_NDVAS(bp));
1974 }
1975
1976 /* If it's a compressed write that is not raw, compress the buffer. */
1977 if (compress != ZIO_COMPRESS_OFF &&
1978 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1979 abd_t *cabd = NULL;
1980 if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1981 psize = 0;
1982 else if (compress == ZIO_COMPRESS_EMPTY)
1983 psize = lsize;
1984 else
1985 psize = zio_compress_data(compress, zio->io_abd, &cabd,
1986 lsize,
1987 zio_get_compression_max_size(compress,
1988 spa->spa_gcd_alloc, spa->spa_min_alloc, lsize),
1989 zp->zp_complevel);
1990 if (psize == 0) {
1991 compress = ZIO_COMPRESS_OFF;
1992 } else if (psize >= lsize) {
1993 compress = ZIO_COMPRESS_OFF;
1994 if (cabd != NULL)
1995 abd_free(cabd);
1996 } else if (psize <= BPE_PAYLOAD_SIZE && !zp->zp_encrypt &&
1997 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1998 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1999 void *cbuf = abd_borrow_buf_copy(cabd, lsize);
2000 encode_embedded_bp_compressed(bp,
2001 cbuf, compress, lsize, psize);
2002 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
2003 BP_SET_TYPE(bp, zio->io_prop.zp_type);
2004 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
2005 abd_return_buf(cabd, cbuf, lsize);
2006 abd_free(cabd);
2007 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
2008 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2009 ASSERT(spa_feature_is_active(spa,
2010 SPA_FEATURE_EMBEDDED_DATA));
2011 return (zio);
2012 } else {
2013 /*
2014 * Round compressed size up to the minimum allocation
2015 * size of the smallest-ashift device, and zero the
2016 * tail. This ensures that the compressed size of the
2017 * BP (and thus compressratio property) are correct,
2018 * in that we charge for the padding used to fill out
2019 * the last sector.
2020 */
2021 size_t rounded = (size_t)zio_roundup_alloc_size(spa,
2022 psize);
2023 if (rounded >= lsize) {
2024 compress = ZIO_COMPRESS_OFF;
2025 abd_free(cabd);
2026 psize = lsize;
2027 } else {
2028 abd_zero_off(cabd, psize, rounded - psize);
2029 psize = rounded;
2030 zio_push_transform(zio, cabd,
2031 psize, lsize, NULL);
2032 }
2033 }
2034
2035 /*
2036 * We were unable to handle this as an override bp, treat
2037 * it as a regular write I/O.
2038 */
2039 zio->io_bp_override = NULL;
2040 *bp = zio->io_bp_orig;
2041 zio->io_pipeline = zio->io_orig_pipeline;
2042
2043 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
2044 zp->zp_type == DMU_OT_DNODE) {
2045 /*
2046 * The DMU actually relies on the zio layer's compression
2047 * to free metadnode blocks that have had all contained
2048 * dnodes freed. As a result, even when doing a raw
2049 * receive, we must check whether the block can be compressed
2050 * to a hole.
2051 */
2052 if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
2053 psize = 0;
2054 compress = ZIO_COMPRESS_OFF;
2055 } else {
2056 psize = lsize;
2057 }
2058 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
2059 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
2060 /*
2061 * If we are raw receiving an encrypted dataset we should not
2062 * take this codepath because it will change the on-disk block
2063 * and decryption will fail.
2064 */
2065 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
2066 lsize);
2067
2068 if (rounded != psize) {
2069 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
2070 abd_zero_off(cdata, psize, rounded - psize);
2071 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
2072 psize = rounded;
2073 zio_push_transform(zio, cdata,
2074 psize, rounded, NULL);
2075 }
2076 } else {
2077 ASSERT3U(psize, !=, 0);
2078 }
2079
2080 /*
2081 * The final pass of spa_sync() must be all rewrites, but the first
2082 * few passes offer a trade-off: allocating blocks defers convergence,
2083 * but newly allocated blocks are sequential, so they can be written
2084 * to disk faster. Therefore, we allow the first few passes of
2085 * spa_sync() to allocate new blocks, but force rewrites after that.
2086 * There should only be a handful of blocks after pass 1 in any case.
2087 */
2088 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
2089 BP_GET_PSIZE(bp) == psize &&
2090 pass >= zfs_sync_pass_rewrite) {
2091 VERIFY3U(psize, !=, 0);
2092 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
2093
2094 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
2095 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
2096 } else {
2097 BP_ZERO(bp);
2098 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2099 }
2100
2101 if (psize == 0) {
2102 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
2103 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
2104 BP_SET_LSIZE(bp, lsize);
2105 BP_SET_TYPE(bp, zp->zp_type);
2106 BP_SET_LEVEL(bp, zp->zp_level);
2107 BP_SET_BIRTH(bp, zio->io_txg, 0);
2108 }
2109 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2110 } else {
2111 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
2112 BP_SET_LSIZE(bp, lsize);
2113 BP_SET_TYPE(bp, zp->zp_type);
2114 BP_SET_LEVEL(bp, zp->zp_level);
2115 BP_SET_PSIZE(bp, psize);
2116 BP_SET_COMPRESS(bp, compress);
2117 BP_SET_CHECKSUM(bp, zp->zp_checksum);
2118 BP_SET_DEDUP(bp, zp->zp_dedup);
2119 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2120 if (zp->zp_dedup) {
2121 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2122 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2123 ASSERT(!zp->zp_encrypt ||
2124 DMU_OT_IS_ENCRYPTED(zp->zp_type));
2125 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2126 }
2127 if (zp->zp_nopwrite) {
2128 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2129 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2130 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2131 }
2132 }
2133 return (zio);
2134 }
2135
2136 static zio_t *
zio_free_bp_init(zio_t * zio)2137 zio_free_bp_init(zio_t *zio)
2138 {
2139 blkptr_t *bp = zio->io_bp;
2140
2141 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2142 if (BP_GET_DEDUP(bp))
2143 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2144 }
2145
2146 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2147
2148 return (zio);
2149 }
2150
2151 /*
2152 * ==========================================================================
2153 * Execute the I/O pipeline
2154 * ==========================================================================
2155 */
2156
2157 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2158 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2159 {
2160 spa_t *spa = zio->io_spa;
2161 zio_type_t t = zio->io_type;
2162
2163 /*
2164 * If we're a config writer or a probe, the normal issue and
2165 * interrupt threads may all be blocked waiting for the config lock.
2166 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2167 */
2168 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2169 t = ZIO_TYPE_NULL;
2170
2171 /*
2172 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2173 */
2174 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2175 t = ZIO_TYPE_NULL;
2176
2177 /*
2178 * If this is a high priority I/O, then use the high priority taskq if
2179 * available or cut the line otherwise.
2180 */
2181 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2182 if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2183 q++;
2184 else
2185 cutinline = B_TRUE;
2186 }
2187
2188 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2189
2190 spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2191 }
2192
2193 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2194 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2195 {
2196 spa_t *spa = zio->io_spa;
2197
2198 taskq_t *tq = taskq_of_curthread();
2199
2200 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2201 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2202 uint_t i;
2203 for (i = 0; i < tqs->stqs_count; i++) {
2204 if (tqs->stqs_taskq[i] == tq)
2205 return (B_TRUE);
2206 }
2207 }
2208
2209 return (B_FALSE);
2210 }
2211
2212 static zio_t *
zio_issue_async(zio_t * zio)2213 zio_issue_async(zio_t *zio)
2214 {
2215 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2216 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2217 return (NULL);
2218 }
2219
2220 void
zio_interrupt(void * zio)2221 zio_interrupt(void *zio)
2222 {
2223 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2224 }
2225
2226 void
zio_delay_interrupt(zio_t * zio)2227 zio_delay_interrupt(zio_t *zio)
2228 {
2229 /*
2230 * The timeout_generic() function isn't defined in userspace, so
2231 * rather than trying to implement the function, the zio delay
2232 * functionality has been disabled for userspace builds.
2233 */
2234
2235 #ifdef _KERNEL
2236 /*
2237 * If io_target_timestamp is zero, then no delay has been registered
2238 * for this IO, thus jump to the end of this function and "skip" the
2239 * delay; issuing it directly to the zio layer.
2240 */
2241 if (zio->io_target_timestamp != 0) {
2242 hrtime_t now = gethrtime();
2243
2244 if (now >= zio->io_target_timestamp) {
2245 /*
2246 * This IO has already taken longer than the target
2247 * delay to complete, so we don't want to delay it
2248 * any longer; we "miss" the delay and issue it
2249 * directly to the zio layer. This is likely due to
2250 * the target latency being set to a value less than
2251 * the underlying hardware can satisfy (e.g. delay
2252 * set to 1ms, but the disks take 10ms to complete an
2253 * IO request).
2254 */
2255
2256 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2257 hrtime_t, now);
2258
2259 zio_interrupt(zio);
2260 } else {
2261 taskqid_t tid;
2262 hrtime_t diff = zio->io_target_timestamp - now;
2263 int ticks = MAX(1, NSEC_TO_TICK(diff));
2264 clock_t expire_at_tick = ddi_get_lbolt() + ticks;
2265
2266 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2267 hrtime_t, now, hrtime_t, diff);
2268
2269 tid = taskq_dispatch_delay(system_taskq, zio_interrupt,
2270 zio, TQ_NOSLEEP, expire_at_tick);
2271 if (tid == TASKQID_INVALID) {
2272 /*
2273 * Couldn't allocate a task. Just finish the
2274 * zio without a delay.
2275 */
2276 zio_interrupt(zio);
2277 }
2278 }
2279 return;
2280 }
2281 #endif
2282 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2283 zio_interrupt(zio);
2284 }
2285
2286 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2287 zio_deadman_impl(zio_t *pio, int ziodepth)
2288 {
2289 zio_t *cio, *cio_next;
2290 zio_link_t *zl = NULL;
2291 vdev_t *vd = pio->io_vd;
2292 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2293
2294 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2295 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2296 zbookmark_phys_t *zb = &pio->io_bookmark;
2297 uint64_t delta = gethrtime() - pio->io_timestamp;
2298
2299 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2300 "delta=%llu queued=%llu io=%llu "
2301 "path=%s "
2302 "last=%llu type=%d "
2303 "priority=%d flags=0x%llx stage=0x%x "
2304 "pipeline=0x%x pipeline-trace=0x%x "
2305 "objset=%llu object=%llu "
2306 "level=%llu blkid=%llu "
2307 "offset=%llu size=%llu "
2308 "error=%d",
2309 ziodepth, pio, pio->io_timestamp,
2310 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2311 vd ? vd->vdev_path : "NULL",
2312 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2313 pio->io_priority, (u_longlong_t)pio->io_flags,
2314 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2315 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2316 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2317 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2318 pio->io_error);
2319 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2320 pio->io_spa, vd, zb, pio, 0);
2321 }
2322
2323 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2324 list_is_empty(&pio->io_child_list) &&
2325 failmode == ZIO_FAILURE_MODE_CONTINUE &&
2326 taskq_empty_ent(&pio->io_tqent) &&
2327 pio->io_queue_state == ZIO_QS_ACTIVE) {
2328 pio->io_error = EINTR;
2329 zio_interrupt(pio);
2330 }
2331
2332 mutex_enter(&pio->io_lock);
2333 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2334 cio_next = zio_walk_children(pio, &zl);
2335 zio_deadman_impl(cio, ziodepth + 1);
2336 }
2337 mutex_exit(&pio->io_lock);
2338 }
2339
2340 /*
2341 * Log the critical information describing this zio and all of its children
2342 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2343 */
2344 void
zio_deadman(zio_t * pio,const char * tag)2345 zio_deadman(zio_t *pio, const char *tag)
2346 {
2347 spa_t *spa = pio->io_spa;
2348 char *name = spa_name(spa);
2349
2350 if (!zfs_deadman_enabled || spa_suspended(spa))
2351 return;
2352
2353 zio_deadman_impl(pio, 0);
2354
2355 switch (spa_get_deadman_failmode(spa)) {
2356 case ZIO_FAILURE_MODE_WAIT:
2357 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2358 break;
2359
2360 case ZIO_FAILURE_MODE_CONTINUE:
2361 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2362 break;
2363
2364 case ZIO_FAILURE_MODE_PANIC:
2365 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2366 break;
2367 }
2368 }
2369
2370 /*
2371 * Execute the I/O pipeline until one of the following occurs:
2372 * (1) the I/O completes; (2) the pipeline stalls waiting for
2373 * dependent child I/Os; (3) the I/O issues, so we're waiting
2374 * for an I/O completion interrupt; (4) the I/O is delegated by
2375 * vdev-level caching or aggregation; (5) the I/O is deferred
2376 * due to vdev-level queueing; (6) the I/O is handed off to
2377 * another thread. In all cases, the pipeline stops whenever
2378 * there's no CPU work; it never burns a thread in cv_wait_io().
2379 *
2380 * There's no locking on io_stage because there's no legitimate way
2381 * for multiple threads to be attempting to process the same I/O.
2382 */
2383 static zio_pipe_stage_t *zio_pipeline[];
2384
2385 /*
2386 * zio_execute() is a wrapper around the static function
2387 * __zio_execute() so that we can force __zio_execute() to be
2388 * inlined. This reduces stack overhead which is important
2389 * because __zio_execute() is called recursively in several zio
2390 * code paths. zio_execute() itself cannot be inlined because
2391 * it is externally visible.
2392 */
2393 void
zio_execute(void * zio)2394 zio_execute(void *zio)
2395 {
2396 fstrans_cookie_t cookie;
2397
2398 cookie = spl_fstrans_mark();
2399 __zio_execute(zio);
2400 spl_fstrans_unmark(cookie);
2401 }
2402
2403 /*
2404 * Used to determine if in the current context the stack is sized large
2405 * enough to allow zio_execute() to be called recursively. A minimum
2406 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2407 */
2408 static boolean_t
zio_execute_stack_check(zio_t * zio)2409 zio_execute_stack_check(zio_t *zio)
2410 {
2411 #if !defined(HAVE_LARGE_STACKS)
2412 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2413
2414 /* Executing in txg_sync_thread() context. */
2415 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2416 return (B_TRUE);
2417
2418 /* Pool initialization outside of zio_taskq context. */
2419 if (dp && spa_is_initializing(dp->dp_spa) &&
2420 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2421 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2422 return (B_TRUE);
2423 #else
2424 (void) zio;
2425 #endif /* HAVE_LARGE_STACKS */
2426
2427 return (B_FALSE);
2428 }
2429
2430 __attribute__((always_inline))
2431 static inline void
__zio_execute(zio_t * zio)2432 __zio_execute(zio_t *zio)
2433 {
2434 ASSERT3U(zio->io_queued_timestamp, >, 0);
2435
2436 while (zio->io_stage < ZIO_STAGE_DONE) {
2437 enum zio_stage pipeline = zio->io_pipeline;
2438 enum zio_stage stage = zio->io_stage;
2439
2440 zio->io_executor = curthread;
2441
2442 ASSERT(!MUTEX_HELD(&zio->io_lock));
2443 ASSERT(ISP2(stage));
2444 ASSERT(zio->io_stall == NULL);
2445
2446 do {
2447 stage <<= 1;
2448 } while ((stage & pipeline) == 0);
2449
2450 ASSERT(stage <= ZIO_STAGE_DONE);
2451
2452 /*
2453 * If we are in interrupt context and this pipeline stage
2454 * will grab a config lock that is held across I/O,
2455 * or may wait for an I/O that needs an interrupt thread
2456 * to complete, issue async to avoid deadlock.
2457 *
2458 * For VDEV_IO_START, we cut in line so that the io will
2459 * be sent to disk promptly.
2460 */
2461 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2462 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2463 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2464 zio_requeue_io_start_cut_in_line : B_FALSE;
2465 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2466 return;
2467 }
2468
2469 /*
2470 * If the current context doesn't have large enough stacks
2471 * the zio must be issued asynchronously to prevent overflow.
2472 */
2473 if (zio_execute_stack_check(zio)) {
2474 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2475 zio_requeue_io_start_cut_in_line : B_FALSE;
2476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2477 return;
2478 }
2479
2480 zio->io_stage = stage;
2481 zio->io_pipeline_trace |= zio->io_stage;
2482
2483 /*
2484 * The zio pipeline stage returns the next zio to execute
2485 * (typically the same as this one), or NULL if we should
2486 * stop.
2487 */
2488 zio = zio_pipeline[highbit64(stage) - 1](zio);
2489
2490 if (zio == NULL)
2491 return;
2492 }
2493 }
2494
2495
2496 /*
2497 * ==========================================================================
2498 * Initiate I/O, either sync or async
2499 * ==========================================================================
2500 */
2501 int
zio_wait(zio_t * zio)2502 zio_wait(zio_t *zio)
2503 {
2504 /*
2505 * Some routines, like zio_free_sync(), may return a NULL zio
2506 * to avoid the performance overhead of creating and then destroying
2507 * an unneeded zio. For the callers' simplicity, we accept a NULL
2508 * zio and ignore it.
2509 */
2510 if (zio == NULL)
2511 return (0);
2512
2513 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2514 int error;
2515
2516 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2517 ASSERT3P(zio->io_executor, ==, NULL);
2518
2519 zio->io_waiter = curthread;
2520 ASSERT0(zio->io_queued_timestamp);
2521 zio->io_queued_timestamp = gethrtime();
2522
2523 if (zio->io_type == ZIO_TYPE_WRITE) {
2524 spa_select_allocator(zio);
2525 }
2526 __zio_execute(zio);
2527
2528 mutex_enter(&zio->io_lock);
2529 while (zio->io_executor != NULL) {
2530 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2531 ddi_get_lbolt() + timeout);
2532
2533 if (zfs_deadman_enabled && error == -1 &&
2534 gethrtime() - zio->io_queued_timestamp >
2535 spa_deadman_ziotime(zio->io_spa)) {
2536 mutex_exit(&zio->io_lock);
2537 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2538 zio_deadman(zio, FTAG);
2539 mutex_enter(&zio->io_lock);
2540 }
2541 }
2542 mutex_exit(&zio->io_lock);
2543
2544 error = zio->io_error;
2545 zio_destroy(zio);
2546
2547 return (error);
2548 }
2549
2550 void
zio_nowait(zio_t * zio)2551 zio_nowait(zio_t *zio)
2552 {
2553 /*
2554 * See comment in zio_wait().
2555 */
2556 if (zio == NULL)
2557 return;
2558
2559 ASSERT3P(zio->io_executor, ==, NULL);
2560
2561 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2562 list_is_empty(&zio->io_parent_list)) {
2563 zio_t *pio;
2564
2565 /*
2566 * This is a logical async I/O with no parent to wait for it.
2567 * We add it to the spa_async_root_zio "Godfather" I/O which
2568 * will ensure they complete prior to unloading the pool.
2569 */
2570 spa_t *spa = zio->io_spa;
2571 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2572
2573 zio_add_child(pio, zio);
2574 }
2575
2576 ASSERT0(zio->io_queued_timestamp);
2577 zio->io_queued_timestamp = gethrtime();
2578 if (zio->io_type == ZIO_TYPE_WRITE) {
2579 spa_select_allocator(zio);
2580 }
2581 __zio_execute(zio);
2582 }
2583
2584 /*
2585 * ==========================================================================
2586 * Reexecute, cancel, or suspend/resume failed I/O
2587 * ==========================================================================
2588 */
2589
2590 static void
zio_reexecute(void * arg)2591 zio_reexecute(void *arg)
2592 {
2593 zio_t *pio = arg;
2594 zio_t *cio, *cio_next, *gio;
2595
2596 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2597 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2598 ASSERT(pio->io_gang_leader == NULL);
2599 ASSERT(pio->io_gang_tree == NULL);
2600
2601 mutex_enter(&pio->io_lock);
2602 pio->io_flags = pio->io_orig_flags;
2603 pio->io_stage = pio->io_orig_stage;
2604 pio->io_pipeline = pio->io_orig_pipeline;
2605 pio->io_reexecute = 0;
2606 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2607 pio->io_pipeline_trace = 0;
2608 pio->io_error = 0;
2609 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2610 (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2611 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2612
2613 /*
2614 * It's possible for a failed ZIO to be a descendant of more than one
2615 * ZIO tree. When reexecuting it, we have to be sure to add its wait
2616 * states to all parent wait counts.
2617 *
2618 * Those parents, in turn, may have other children that are currently
2619 * active, usually because they've already been reexecuted after
2620 * resuming. Those children may be executing and may call
2621 * zio_notify_parent() at the same time as we're updating our parent's
2622 * counts. To avoid races while updating the counts, we take
2623 * gio->io_lock before each update.
2624 */
2625 zio_link_t *zl = NULL;
2626 while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2627 mutex_enter(&gio->io_lock);
2628 for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2629 gio->io_children[pio->io_child_type][w] +=
2630 !pio->io_state[w];
2631 }
2632 mutex_exit(&gio->io_lock);
2633 }
2634
2635 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2636 pio->io_child_error[c] = 0;
2637
2638 if (IO_IS_ALLOCATING(pio))
2639 BP_ZERO(pio->io_bp);
2640
2641 /*
2642 * As we reexecute pio's children, new children could be created.
2643 * New children go to the head of pio's io_child_list, however,
2644 * so we will (correctly) not reexecute them. The key is that
2645 * the remainder of pio's io_child_list, from 'cio_next' onward,
2646 * cannot be affected by any side effects of reexecuting 'cio'.
2647 */
2648 zl = NULL;
2649 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2650 cio_next = zio_walk_children(pio, &zl);
2651 mutex_exit(&pio->io_lock);
2652 zio_reexecute(cio);
2653 mutex_enter(&pio->io_lock);
2654 }
2655 mutex_exit(&pio->io_lock);
2656
2657 /*
2658 * Now that all children have been reexecuted, execute the parent.
2659 * We don't reexecute "The Godfather" I/O here as it's the
2660 * responsibility of the caller to wait on it.
2661 */
2662 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2663 pio->io_queued_timestamp = gethrtime();
2664 __zio_execute(pio);
2665 }
2666 }
2667
2668 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2669 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2670 {
2671 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2672 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2673 "failure and the failure mode property for this pool "
2674 "is set to panic.", spa_name(spa));
2675
2676 if (reason != ZIO_SUSPEND_MMP) {
2677 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2678 "I/O failure and has been suspended.", spa_name(spa));
2679 }
2680
2681 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2682 NULL, NULL, 0);
2683
2684 mutex_enter(&spa->spa_suspend_lock);
2685
2686 if (spa->spa_suspend_zio_root == NULL)
2687 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2688 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2689 ZIO_FLAG_GODFATHER);
2690
2691 spa->spa_suspended = reason;
2692
2693 if (zio != NULL) {
2694 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2695 ASSERT(zio != spa->spa_suspend_zio_root);
2696 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2697 ASSERT(zio_unique_parent(zio) == NULL);
2698 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2699 zio_add_child(spa->spa_suspend_zio_root, zio);
2700 }
2701
2702 mutex_exit(&spa->spa_suspend_lock);
2703
2704 txg_wait_kick(spa->spa_dsl_pool);
2705 }
2706
2707 int
zio_resume(spa_t * spa)2708 zio_resume(spa_t *spa)
2709 {
2710 zio_t *pio;
2711
2712 /*
2713 * Reexecute all previously suspended i/o.
2714 */
2715 mutex_enter(&spa->spa_suspend_lock);
2716 if (spa->spa_suspended != ZIO_SUSPEND_NONE)
2717 cmn_err(CE_WARN, "Pool '%s' was suspended and is being "
2718 "resumed. Failed I/O will be retried.",
2719 spa_name(spa));
2720 spa->spa_suspended = ZIO_SUSPEND_NONE;
2721 cv_broadcast(&spa->spa_suspend_cv);
2722 pio = spa->spa_suspend_zio_root;
2723 spa->spa_suspend_zio_root = NULL;
2724 mutex_exit(&spa->spa_suspend_lock);
2725
2726 if (pio == NULL)
2727 return (0);
2728
2729 zio_reexecute(pio);
2730 return (zio_wait(pio));
2731 }
2732
2733 void
zio_resume_wait(spa_t * spa)2734 zio_resume_wait(spa_t *spa)
2735 {
2736 mutex_enter(&spa->spa_suspend_lock);
2737 while (spa_suspended(spa))
2738 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2739 mutex_exit(&spa->spa_suspend_lock);
2740 }
2741
2742 /*
2743 * ==========================================================================
2744 * Gang blocks.
2745 *
2746 * A gang block is a collection of small blocks that looks to the DMU
2747 * like one large block. When zio_dva_allocate() cannot find a block
2748 * of the requested size, due to either severe fragmentation or the pool
2749 * being nearly full, it calls zio_write_gang_block() to construct the
2750 * block from smaller fragments.
2751 *
2752 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2753 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2754 * an indirect block: it's an array of block pointers. It consumes
2755 * only one sector and hence is allocatable regardless of fragmentation.
2756 * The gang header's bps point to its gang members, which hold the data.
2757 *
2758 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2759 * as the verifier to ensure uniqueness of the SHA256 checksum.
2760 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2761 * not the gang header. This ensures that data block signatures (needed for
2762 * deduplication) are independent of how the block is physically stored.
2763 *
2764 * Gang blocks can be nested: a gang member may itself be a gang block.
2765 * Thus every gang block is a tree in which root and all interior nodes are
2766 * gang headers, and the leaves are normal blocks that contain user data.
2767 * The root of the gang tree is called the gang leader.
2768 *
2769 * To perform any operation (read, rewrite, free, claim) on a gang block,
2770 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2771 * in the io_gang_tree field of the original logical i/o by recursively
2772 * reading the gang leader and all gang headers below it. This yields
2773 * an in-core tree containing the contents of every gang header and the
2774 * bps for every constituent of the gang block.
2775 *
2776 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2777 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2778 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2779 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2780 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2781 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2782 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2783 * of the gang header plus zio_checksum_compute() of the data to update the
2784 * gang header's blk_cksum as described above.
2785 *
2786 * The two-phase assemble/issue model solves the problem of partial failure --
2787 * what if you'd freed part of a gang block but then couldn't read the
2788 * gang header for another part? Assembling the entire gang tree first
2789 * ensures that all the necessary gang header I/O has succeeded before
2790 * starting the actual work of free, claim, or write. Once the gang tree
2791 * is assembled, free and claim are in-memory operations that cannot fail.
2792 *
2793 * In the event that a gang write fails, zio_dva_unallocate() walks the
2794 * gang tree to immediately free (i.e. insert back into the space map)
2795 * everything we've allocated. This ensures that we don't get ENOSPC
2796 * errors during repeated suspend/resume cycles due to a flaky device.
2797 *
2798 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2799 * the gang tree, we won't modify the block, so we can safely defer the free
2800 * (knowing that the block is still intact). If we *can* assemble the gang
2801 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2802 * each constituent bp and we can allocate a new block on the next sync pass.
2803 *
2804 * In all cases, the gang tree allows complete recovery from partial failure.
2805 * ==========================================================================
2806 */
2807
2808 static void
zio_gang_issue_func_done(zio_t * zio)2809 zio_gang_issue_func_done(zio_t *zio)
2810 {
2811 abd_free(zio->io_abd);
2812 }
2813
2814 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2815 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2816 uint64_t offset)
2817 {
2818 if (gn != NULL)
2819 return (pio);
2820
2821 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2822 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2823 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2824 &pio->io_bookmark));
2825 }
2826
2827 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2828 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2829 uint64_t offset)
2830 {
2831 zio_t *zio;
2832
2833 if (gn != NULL) {
2834 abd_t *gbh_abd =
2835 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2836 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2837 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2838 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2839 &pio->io_bookmark);
2840 /*
2841 * As we rewrite each gang header, the pipeline will compute
2842 * a new gang block header checksum for it; but no one will
2843 * compute a new data checksum, so we do that here. The one
2844 * exception is the gang leader: the pipeline already computed
2845 * its data checksum because that stage precedes gang assembly.
2846 * (Presently, nothing actually uses interior data checksums;
2847 * this is just good hygiene.)
2848 */
2849 if (gn != pio->io_gang_leader->io_gang_tree) {
2850 abd_t *buf = abd_get_offset(data, offset);
2851
2852 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2853 buf, BP_GET_PSIZE(bp));
2854
2855 abd_free(buf);
2856 }
2857 /*
2858 * If we are here to damage data for testing purposes,
2859 * leave the GBH alone so that we can detect the damage.
2860 */
2861 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2862 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2863 } else {
2864 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2865 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2866 zio_gang_issue_func_done, NULL, pio->io_priority,
2867 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2868 }
2869
2870 return (zio);
2871 }
2872
2873 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2874 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2875 uint64_t offset)
2876 {
2877 (void) gn, (void) data, (void) offset;
2878
2879 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2880 ZIO_GANG_CHILD_FLAGS(pio));
2881 if (zio == NULL) {
2882 zio = zio_null(pio, pio->io_spa,
2883 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2884 }
2885 return (zio);
2886 }
2887
2888 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2889 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2890 uint64_t offset)
2891 {
2892 (void) gn, (void) data, (void) offset;
2893 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2894 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2895 }
2896
2897 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2898 NULL,
2899 zio_read_gang,
2900 zio_rewrite_gang,
2901 zio_free_gang,
2902 zio_claim_gang,
2903 NULL
2904 };
2905
2906 static void zio_gang_tree_assemble_done(zio_t *zio);
2907
2908 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp)2909 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2910 {
2911 zio_gang_node_t *gn;
2912
2913 ASSERT(*gnpp == NULL);
2914
2915 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2916 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2917 *gnpp = gn;
2918
2919 return (gn);
2920 }
2921
2922 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2923 zio_gang_node_free(zio_gang_node_t **gnpp)
2924 {
2925 zio_gang_node_t *gn = *gnpp;
2926
2927 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2928 ASSERT(gn->gn_child[g] == NULL);
2929
2930 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2931 kmem_free(gn, sizeof (*gn));
2932 *gnpp = NULL;
2933 }
2934
2935 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2936 zio_gang_tree_free(zio_gang_node_t **gnpp)
2937 {
2938 zio_gang_node_t *gn = *gnpp;
2939
2940 if (gn == NULL)
2941 return;
2942
2943 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2944 zio_gang_tree_free(&gn->gn_child[g]);
2945
2946 zio_gang_node_free(gnpp);
2947 }
2948
2949 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2950 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2951 {
2952 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2953 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2954
2955 ASSERT(gio->io_gang_leader == gio);
2956 ASSERT(BP_IS_GANG(bp));
2957
2958 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2959 zio_gang_tree_assemble_done, gn, gio->io_priority,
2960 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2961 }
2962
2963 static void
zio_gang_tree_assemble_done(zio_t * zio)2964 zio_gang_tree_assemble_done(zio_t *zio)
2965 {
2966 zio_t *gio = zio->io_gang_leader;
2967 zio_gang_node_t *gn = zio->io_private;
2968 blkptr_t *bp = zio->io_bp;
2969
2970 ASSERT(gio == zio_unique_parent(zio));
2971 ASSERT(list_is_empty(&zio->io_child_list));
2972
2973 if (zio->io_error)
2974 return;
2975
2976 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2977 if (BP_SHOULD_BYTESWAP(bp))
2978 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2979
2980 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2981 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2982 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2983
2984 abd_free(zio->io_abd);
2985
2986 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2987 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2988 if (!BP_IS_GANG(gbp))
2989 continue;
2990 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2991 }
2992 }
2993
2994 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)2995 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2996 uint64_t offset)
2997 {
2998 zio_t *gio = pio->io_gang_leader;
2999 zio_t *zio;
3000
3001 ASSERT(BP_IS_GANG(bp) == !!gn);
3002 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
3003 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
3004
3005 /*
3006 * If you're a gang header, your data is in gn->gn_gbh.
3007 * If you're a gang member, your data is in 'data' and gn == NULL.
3008 */
3009 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
3010
3011 if (gn != NULL) {
3012 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
3013
3014 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3015 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
3016 if (BP_IS_HOLE(gbp))
3017 continue;
3018 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
3019 offset);
3020 offset += BP_GET_PSIZE(gbp);
3021 }
3022 }
3023
3024 if (gn == gio->io_gang_tree)
3025 ASSERT3U(gio->io_size, ==, offset);
3026
3027 if (zio != pio)
3028 zio_nowait(zio);
3029 }
3030
3031 static zio_t *
zio_gang_assemble(zio_t * zio)3032 zio_gang_assemble(zio_t *zio)
3033 {
3034 blkptr_t *bp = zio->io_bp;
3035
3036 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
3037 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3038
3039 zio->io_gang_leader = zio;
3040
3041 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
3042
3043 return (zio);
3044 }
3045
3046 static zio_t *
zio_gang_issue(zio_t * zio)3047 zio_gang_issue(zio_t *zio)
3048 {
3049 blkptr_t *bp = zio->io_bp;
3050
3051 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
3052 return (NULL);
3053 }
3054
3055 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
3056 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3057
3058 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
3059 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
3060 0);
3061 else
3062 zio_gang_tree_free(&zio->io_gang_tree);
3063
3064 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3065
3066 return (zio);
3067 }
3068
3069 static void
zio_gang_inherit_allocator(zio_t * pio,zio_t * cio)3070 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
3071 {
3072 cio->io_allocator = pio->io_allocator;
3073 }
3074
3075 static void
zio_write_gang_member_ready(zio_t * zio)3076 zio_write_gang_member_ready(zio_t *zio)
3077 {
3078 zio_t *pio = zio_unique_parent(zio);
3079 dva_t *cdva = zio->io_bp->blk_dva;
3080 dva_t *pdva = pio->io_bp->blk_dva;
3081 uint64_t asize;
3082 zio_t *gio __maybe_unused = zio->io_gang_leader;
3083
3084 if (BP_IS_HOLE(zio->io_bp))
3085 return;
3086
3087 /*
3088 * If we're getting direct-invoked from zio_write_gang_block(),
3089 * the bp_orig will be set.
3090 */
3091 ASSERT(BP_IS_HOLE(&zio->io_bp_orig) ||
3092 zio->io_flags & ZIO_FLAG_PREALLOCATED);
3093
3094 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
3095 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
3096 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
3097 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
3098 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
3099
3100 mutex_enter(&pio->io_lock);
3101 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
3102 ASSERT(DVA_GET_GANG(&pdva[d]));
3103 asize = DVA_GET_ASIZE(&pdva[d]);
3104 asize += DVA_GET_ASIZE(&cdva[d]);
3105 DVA_SET_ASIZE(&pdva[d], asize);
3106 }
3107 mutex_exit(&pio->io_lock);
3108 }
3109
3110 static void
zio_write_gang_done(zio_t * zio)3111 zio_write_gang_done(zio_t *zio)
3112 {
3113 /*
3114 * The io_abd field will be NULL for a zio with no data. The io_flags
3115 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3116 * check for it here as it is cleared in zio_ready.
3117 */
3118 if (zio->io_abd != NULL)
3119 abd_free(zio->io_abd);
3120 }
3121
3122 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)3123 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
3124 {
3125 spa_t *spa = pio->io_spa;
3126 blkptr_t *bp = pio->io_bp;
3127 zio_t *gio = pio->io_gang_leader;
3128 zio_t *zio;
3129 zio_gang_node_t *gn, **gnpp;
3130 zio_gbh_phys_t *gbh;
3131 abd_t *gbh_abd;
3132 uint64_t txg = pio->io_txg;
3133 uint64_t resid = pio->io_size;
3134 zio_prop_t zp;
3135 int error;
3136 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
3137
3138 /*
3139 * Store multiple copies of the GBH, so that we can still traverse
3140 * all the data (e.g. to free or scrub) even if a block is damaged.
3141 * This value respects the redundant_metadata property.
3142 */
3143 int gbh_copies = gio->io_prop.zp_gang_copies;
3144 if (gbh_copies == 0) {
3145 /*
3146 * This should only happen in the case where we're filling in
3147 * DDT entries for a parent that wants more copies than the DDT
3148 * has. In that case, we cannot gang without creating a mixed
3149 * blkptr, which is illegal.
3150 */
3151 ASSERT3U(gio->io_child_type, ==, ZIO_CHILD_DDT);
3152 pio->io_error = EAGAIN;
3153 return (pio);
3154 }
3155 ASSERT3S(gbh_copies, >, 0);
3156 ASSERT3S(gbh_copies, <=, SPA_DVAS_PER_BP);
3157
3158 ASSERT(ZIO_HAS_ALLOCATOR(pio));
3159 int flags = METASLAB_GANG_HEADER;
3160 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3161 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3162 ASSERT(has_data);
3163
3164 flags |= METASLAB_ASYNC_ALLOC;
3165 }
3166
3167 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3168 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3169 &pio->io_alloc_list, pio->io_allocator, pio);
3170 if (error) {
3171 pio->io_error = error;
3172 return (pio);
3173 }
3174
3175 if (pio == gio) {
3176 gnpp = &gio->io_gang_tree;
3177 } else {
3178 gnpp = pio->io_private;
3179 ASSERT(pio->io_ready == zio_write_gang_member_ready);
3180 }
3181
3182 gn = zio_gang_node_alloc(gnpp);
3183 gbh = gn->gn_gbh;
3184 memset(gbh, 0, SPA_GANGBLOCKSIZE);
3185 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3186
3187 /*
3188 * Create the gang header.
3189 */
3190 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3191 zio_write_gang_done, NULL, pio->io_priority,
3192 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3193
3194 zio_gang_inherit_allocator(pio, zio);
3195 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3196 boolean_t more;
3197 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies,
3198 zio, B_TRUE, &more));
3199 }
3200
3201 /*
3202 * Create and nowait the gang children. First, we try to do
3203 * opportunistic allocations. If that fails to generate enough
3204 * space, we fall back to normal zio_write calls for nested gang.
3205 */
3206 for (int g = 0; resid != 0; g++) {
3207 flags &= METASLAB_ASYNC_ALLOC;
3208 flags |= METASLAB_GANG_CHILD;
3209 zp.zp_checksum = gio->io_prop.zp_checksum;
3210 zp.zp_compress = ZIO_COMPRESS_OFF;
3211 zp.zp_complevel = gio->io_prop.zp_complevel;
3212 zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3213 zp.zp_level = 0;
3214 zp.zp_copies = gio->io_prop.zp_copies;
3215 zp.zp_gang_copies = gio->io_prop.zp_gang_copies;
3216 zp.zp_dedup = B_FALSE;
3217 zp.zp_dedup_verify = B_FALSE;
3218 zp.zp_nopwrite = B_FALSE;
3219 zp.zp_encrypt = gio->io_prop.zp_encrypt;
3220 zp.zp_byteorder = gio->io_prop.zp_byteorder;
3221 zp.zp_direct_write = B_FALSE;
3222 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3223 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3224 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3225
3226 uint64_t min_size = zio_roundup_alloc_size(spa,
3227 resid / (SPA_GBH_NBLKPTRS - g));
3228 min_size = MIN(min_size, resid);
3229 bp = &gbh->zg_blkptr[g];
3230
3231 zio_alloc_list_t cio_list;
3232 metaslab_trace_init(&cio_list);
3233 uint64_t allocated_size = UINT64_MAX;
3234 error = metaslab_alloc_range(spa, mc, min_size, resid,
3235 bp, gio->io_prop.zp_copies, txg, NULL,
3236 flags, &cio_list, zio->io_allocator, NULL, &allocated_size);
3237
3238 boolean_t allocated = error == 0;
3239
3240 uint64_t psize = allocated ? MIN(resid, allocated_size) :
3241 min_size;
3242
3243 zio_t *cio = zio_write(zio, spa, txg, bp, has_data ?
3244 abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL,
3245 psize, psize, &zp, zio_write_gang_member_ready, NULL,
3246 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3247 ZIO_GANG_CHILD_FLAGS(pio) |
3248 (allocated ? ZIO_FLAG_PREALLOCATED : 0), &pio->io_bookmark);
3249
3250 resid -= psize;
3251 zio_gang_inherit_allocator(zio, cio);
3252 if (allocated) {
3253 metaslab_trace_move(&cio_list, &cio->io_alloc_list);
3254 metaslab_group_alloc_increment_all(spa,
3255 &cio->io_bp_orig, zio->io_allocator, flags, psize,
3256 cio);
3257 }
3258 /*
3259 * We do not reserve for the child writes, since we already
3260 * reserved for the parent. Unreserve though will be called
3261 * for individual children. We can do this since sum of all
3262 * child's physical sizes is equal to parent's physical size.
3263 * It would not work for potentially bigger allocation sizes.
3264 */
3265
3266 zio_nowait(cio);
3267 }
3268
3269 /*
3270 * Set pio's pipeline to just wait for zio to finish.
3271 */
3272 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3273
3274 zio_nowait(zio);
3275
3276 return (pio);
3277 }
3278
3279 /*
3280 * The zio_nop_write stage in the pipeline determines if allocating a
3281 * new bp is necessary. The nopwrite feature can handle writes in
3282 * either syncing or open context (i.e. zil writes) and as a result is
3283 * mutually exclusive with dedup.
3284 *
3285 * By leveraging a cryptographically secure checksum, such as SHA256, we
3286 * can compare the checksums of the new data and the old to determine if
3287 * allocating a new block is required. Note that our requirements for
3288 * cryptographic strength are fairly weak: there can't be any accidental
3289 * hash collisions, but we don't need to be secure against intentional
3290 * (malicious) collisions. To trigger a nopwrite, you have to be able
3291 * to write the file to begin with, and triggering an incorrect (hash
3292 * collision) nopwrite is no worse than simply writing to the file.
3293 * That said, there are no known attacks against the checksum algorithms
3294 * used for nopwrite, assuming that the salt and the checksums
3295 * themselves remain secret.
3296 */
3297 static zio_t *
zio_nop_write(zio_t * zio)3298 zio_nop_write(zio_t *zio)
3299 {
3300 blkptr_t *bp = zio->io_bp;
3301 blkptr_t *bp_orig = &zio->io_bp_orig;
3302 zio_prop_t *zp = &zio->io_prop;
3303
3304 ASSERT(BP_IS_HOLE(bp));
3305 ASSERT(BP_GET_LEVEL(bp) == 0);
3306 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3307 ASSERT(zp->zp_nopwrite);
3308 ASSERT(!zp->zp_dedup);
3309 ASSERT(zio->io_bp_override == NULL);
3310 ASSERT(IO_IS_ALLOCATING(zio));
3311
3312 /*
3313 * Check to see if the original bp and the new bp have matching
3314 * characteristics (i.e. same checksum, compression algorithms, etc).
3315 * If they don't then just continue with the pipeline which will
3316 * allocate a new bp.
3317 */
3318 if (BP_IS_HOLE(bp_orig) ||
3319 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3320 ZCHECKSUM_FLAG_NOPWRITE) ||
3321 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3322 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3323 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3324 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3325 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3326 return (zio);
3327
3328 /*
3329 * If the checksums match then reset the pipeline so that we
3330 * avoid allocating a new bp and issuing any I/O.
3331 */
3332 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3333 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3334 ZCHECKSUM_FLAG_NOPWRITE);
3335 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3336 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3337 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3338 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3339
3340 /*
3341 * If we're overwriting a block that is currently on an
3342 * indirect vdev, then ignore the nopwrite request and
3343 * allow a new block to be allocated on a concrete vdev.
3344 */
3345 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3346 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3347 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3348 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3349 if (tvd->vdev_ops == &vdev_indirect_ops) {
3350 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3351 return (zio);
3352 }
3353 }
3354 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3355
3356 *bp = *bp_orig;
3357 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3358 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3359 }
3360
3361 return (zio);
3362 }
3363
3364 /*
3365 * ==========================================================================
3366 * Block Reference Table
3367 * ==========================================================================
3368 */
3369 static zio_t *
zio_brt_free(zio_t * zio)3370 zio_brt_free(zio_t *zio)
3371 {
3372 blkptr_t *bp;
3373
3374 bp = zio->io_bp;
3375
3376 if (BP_GET_LEVEL(bp) > 0 ||
3377 BP_IS_METADATA(bp) ||
3378 !brt_maybe_exists(zio->io_spa, bp)) {
3379 return (zio);
3380 }
3381
3382 if (!brt_entry_decref(zio->io_spa, bp)) {
3383 /*
3384 * This isn't the last reference, so we cannot free
3385 * the data yet.
3386 */
3387 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3388 }
3389
3390 return (zio);
3391 }
3392
3393 /*
3394 * ==========================================================================
3395 * Dedup
3396 * ==========================================================================
3397 */
3398 static void
zio_ddt_child_read_done(zio_t * zio)3399 zio_ddt_child_read_done(zio_t *zio)
3400 {
3401 blkptr_t *bp = zio->io_bp;
3402 ddt_t *ddt;
3403 ddt_entry_t *dde = zio->io_private;
3404 zio_t *pio = zio_unique_parent(zio);
3405
3406 mutex_enter(&pio->io_lock);
3407 ddt = ddt_select(zio->io_spa, bp);
3408
3409 if (zio->io_error == 0) {
3410 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3411 /* this phys variant doesn't need repair */
3412 ddt_phys_clear(dde->dde_phys, v);
3413 }
3414
3415 if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL)
3416 dde->dde_io->dde_repair_abd = zio->io_abd;
3417 else
3418 abd_free(zio->io_abd);
3419 mutex_exit(&pio->io_lock);
3420 }
3421
3422 static zio_t *
zio_ddt_read_start(zio_t * zio)3423 zio_ddt_read_start(zio_t *zio)
3424 {
3425 blkptr_t *bp = zio->io_bp;
3426
3427 ASSERT(BP_GET_DEDUP(bp));
3428 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3429 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3430
3431 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3432 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3433 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3434 ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp);
3435 ddt_univ_phys_t *ddp = dde->dde_phys;
3436 blkptr_t blk;
3437
3438 ASSERT(zio->io_vsd == NULL);
3439 zio->io_vsd = dde;
3440
3441 if (v_self == DDT_PHYS_NONE)
3442 return (zio);
3443
3444 /* issue I/O for the other copies */
3445 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3446 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3447
3448 if (ddt_phys_birth(ddp, v) == 0 || v == v_self)
3449 continue;
3450
3451 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key,
3452 ddp, v, &blk);
3453 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3454 abd_alloc_for_io(zio->io_size, B_TRUE),
3455 zio->io_size, zio_ddt_child_read_done, dde,
3456 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3457 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3458 }
3459 return (zio);
3460 }
3461
3462 zio_nowait(zio_read(zio, zio->io_spa, bp,
3463 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3464 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3465
3466 return (zio);
3467 }
3468
3469 static zio_t *
zio_ddt_read_done(zio_t * zio)3470 zio_ddt_read_done(zio_t *zio)
3471 {
3472 blkptr_t *bp = zio->io_bp;
3473
3474 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3475 return (NULL);
3476 }
3477
3478 ASSERT(BP_GET_DEDUP(bp));
3479 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3480 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3481
3482 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3483 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3484 ddt_entry_t *dde = zio->io_vsd;
3485 if (ddt == NULL) {
3486 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3487 return (zio);
3488 }
3489 if (dde == NULL) {
3490 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3491 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3492 return (NULL);
3493 }
3494 if (dde->dde_io->dde_repair_abd != NULL) {
3495 abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd,
3496 zio->io_size);
3497 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3498 }
3499 ddt_repair_done(ddt, dde);
3500 zio->io_vsd = NULL;
3501 }
3502
3503 ASSERT(zio->io_vsd == NULL);
3504
3505 return (zio);
3506 }
3507
3508 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3509 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3510 {
3511 spa_t *spa = zio->io_spa;
3512 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3513
3514 ASSERT(!(zio->io_bp_override && do_raw));
3515
3516 /*
3517 * Note: we compare the original data, not the transformed data,
3518 * because when zio->io_bp is an override bp, we will not have
3519 * pushed the I/O transforms. That's an important optimization
3520 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3521 * However, we should never get a raw, override zio so in these
3522 * cases we can compare the io_abd directly. This is useful because
3523 * it allows us to do dedup verification even if we don't have access
3524 * to the original data (for instance, if the encryption keys aren't
3525 * loaded).
3526 */
3527
3528 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3529 if (DDT_PHYS_IS_DITTO(ddt, p))
3530 continue;
3531
3532 if (dde->dde_io == NULL)
3533 continue;
3534
3535 zio_t *lio = dde->dde_io->dde_lead_zio[p];
3536 if (lio == NULL)
3537 continue;
3538
3539 if (do_raw)
3540 return (lio->io_size != zio->io_size ||
3541 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3542
3543 return (lio->io_orig_size != zio->io_orig_size ||
3544 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3545 }
3546
3547 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3548 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3549 uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v);
3550
3551 if (phys_birth != 0 && do_raw) {
3552 blkptr_t blk = *zio->io_bp;
3553 uint64_t psize;
3554 abd_t *tmpabd;
3555 int error;
3556
3557 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3558 psize = BP_GET_PSIZE(&blk);
3559
3560 if (psize != zio->io_size)
3561 return (B_TRUE);
3562
3563 ddt_exit(ddt);
3564
3565 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3566
3567 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3568 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3569 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3570 ZIO_FLAG_RAW, &zio->io_bookmark));
3571
3572 if (error == 0) {
3573 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3574 error = SET_ERROR(ENOENT);
3575 }
3576
3577 abd_free(tmpabd);
3578 ddt_enter(ddt);
3579 return (error != 0);
3580 } else if (phys_birth != 0) {
3581 arc_buf_t *abuf = NULL;
3582 arc_flags_t aflags = ARC_FLAG_WAIT;
3583 blkptr_t blk = *zio->io_bp;
3584 int error;
3585
3586 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3587
3588 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3589 return (B_TRUE);
3590
3591 ddt_exit(ddt);
3592
3593 error = arc_read(NULL, spa, &blk,
3594 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3595 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3596 &aflags, &zio->io_bookmark);
3597
3598 if (error == 0) {
3599 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3600 zio->io_orig_size) != 0)
3601 error = SET_ERROR(ENOENT);
3602 arc_buf_destroy(abuf, &abuf);
3603 }
3604
3605 ddt_enter(ddt);
3606 return (error != 0);
3607 }
3608 }
3609
3610 return (B_FALSE);
3611 }
3612
3613 static void
zio_ddt_child_write_done(zio_t * zio)3614 zio_ddt_child_write_done(zio_t *zio)
3615 {
3616 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3617 ddt_entry_t *dde = zio->io_private;
3618
3619 zio_link_t *zl = NULL;
3620 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3621
3622 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3623 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3624 ddt_univ_phys_t *ddp = dde->dde_phys;
3625
3626 ddt_enter(ddt);
3627
3628 /* we're the lead, so once we're done there's no one else outstanding */
3629 if (dde->dde_io->dde_lead_zio[p] == zio)
3630 dde->dde_io->dde_lead_zio[p] = NULL;
3631
3632 ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys;
3633
3634 if (zio->io_error != 0) {
3635 /*
3636 * The write failed, so we're about to abort the entire IO
3637 * chain. We need to revert the entry back to what it was at
3638 * the last time it was successfully extended.
3639 */
3640 ddt_phys_unextend(ddp, orig, v);
3641 ddt_phys_clear(orig, v);
3642
3643 ddt_exit(ddt);
3644 return;
3645 }
3646
3647 /*
3648 * Add references for all dedup writes that were waiting on the
3649 * physical one, skipping any other physical writes that are waiting.
3650 */
3651 zio_t *pio;
3652 zl = NULL;
3653 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3654 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3655 ddt_phys_addref(ddp, v);
3656 }
3657
3658 /*
3659 * We've successfully added new DVAs to the entry. Clear the saved
3660 * state or, if there's still outstanding IO, remember it so we can
3661 * revert to a known good state if that IO fails.
3662 */
3663 if (dde->dde_io->dde_lead_zio[p] == NULL)
3664 ddt_phys_clear(orig, v);
3665 else
3666 ddt_phys_copy(orig, ddp, v);
3667
3668 ddt_exit(ddt);
3669 }
3670
3671 static void
zio_ddt_child_write_ready(zio_t * zio)3672 zio_ddt_child_write_ready(zio_t *zio)
3673 {
3674 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3675 ddt_entry_t *dde = zio->io_private;
3676
3677 zio_link_t *zl = NULL;
3678 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3679
3680 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3681 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3682
3683 if (ddt_phys_is_gang(dde->dde_phys, v)) {
3684 for (int i = 0; i < BP_GET_NDVAS(zio->io_bp); i++) {
3685 dva_t *d = &zio->io_bp->blk_dva[i];
3686 metaslab_group_alloc_decrement(zio->io_spa,
3687 DVA_GET_VDEV(d), zio->io_allocator,
3688 METASLAB_ASYNC_ALLOC, zio->io_size, zio);
3689 }
3690 zio->io_error = EAGAIN;
3691 }
3692
3693 if (zio->io_error != 0)
3694 return;
3695
3696 ddt_enter(ddt);
3697
3698 ddt_phys_extend(dde->dde_phys, v, zio->io_bp);
3699
3700 zio_t *pio;
3701 zl = NULL;
3702 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3703 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3704 ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg);
3705 }
3706
3707 ddt_exit(ddt);
3708 }
3709
3710 static zio_t *
zio_ddt_write(zio_t * zio)3711 zio_ddt_write(zio_t *zio)
3712 {
3713 spa_t *spa = zio->io_spa;
3714 blkptr_t *bp = zio->io_bp;
3715 uint64_t txg = zio->io_txg;
3716 zio_prop_t *zp = &zio->io_prop;
3717 ddt_t *ddt = ddt_select(spa, bp);
3718 ddt_entry_t *dde;
3719
3720 ASSERT(BP_GET_DEDUP(bp));
3721 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3722 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3723 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3724 /*
3725 * Deduplication will not take place for Direct I/O writes. The
3726 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3727 * place in the open-context. Direct I/O write can not attempt to
3728 * modify the ddt_tree while issuing out a write.
3729 */
3730 ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE);
3731
3732 ddt_enter(ddt);
3733 /*
3734 * Search DDT for matching entry. Skip DVAs verification here, since
3735 * they can go only from override, and once we get here the override
3736 * pointer can't have "D" flag to be confused with pruned DDT entries.
3737 */
3738 IMPLY(zio->io_bp_override, !BP_GET_DEDUP(zio->io_bp_override));
3739 dde = ddt_lookup(ddt, bp, B_FALSE);
3740 if (dde == NULL) {
3741 /* DDT size is over its quota so no new entries */
3742 zp->zp_dedup = B_FALSE;
3743 BP_SET_DEDUP(bp, B_FALSE);
3744 if (zio->io_bp_override == NULL)
3745 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3746 ddt_exit(ddt);
3747 return (zio);
3748 }
3749
3750 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3751 /*
3752 * If we're using a weak checksum, upgrade to a strong checksum
3753 * and try again. If we're already using a strong checksum,
3754 * we can't resolve it, so just convert to an ordinary write.
3755 * (And automatically e-mail a paper to Nature?)
3756 */
3757 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3758 ZCHECKSUM_FLAG_DEDUP)) {
3759 zp->zp_checksum = spa_dedup_checksum(spa);
3760 zio_pop_transforms(zio);
3761 zio->io_stage = ZIO_STAGE_OPEN;
3762 BP_ZERO(bp);
3763 } else {
3764 zp->zp_dedup = B_FALSE;
3765 BP_SET_DEDUP(bp, B_FALSE);
3766 }
3767 ASSERT(!BP_GET_DEDUP(bp));
3768 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3769 ddt_exit(ddt);
3770 return (zio);
3771 }
3772
3773 int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies);
3774 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3775 ddt_univ_phys_t *ddp = dde->dde_phys;
3776
3777 /*
3778 * In the common cases, at this point we have a regular BP with no
3779 * allocated DVAs, and the corresponding DDT entry for its checksum.
3780 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3781 * requirement.
3782 *
3783 * One of three things needs to happen to fulfill this:
3784 *
3785 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3786 * them out of the entry and return;
3787 *
3788 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3789 * issue the write as normal so that DVAs can be allocated and the
3790 * data land on disk. We then copy the DVAs into the DDT entry on
3791 * return.
3792 *
3793 * - if the DDT entry has some DVAs, but too few, we have to issue the
3794 * write, adjusted to have allocate fewer copies. When it returns, we
3795 * add the new DVAs to the DDT entry, and update the BP to have the
3796 * full amount it originally requested.
3797 *
3798 * In all cases, if there's already a writing IO in flight, we need to
3799 * defer the action until after the write is done. If our action is to
3800 * write, we need to adjust our request for additional DVAs to match
3801 * what will be in the DDT entry after it completes. In this way every
3802 * IO can be guaranteed to recieve enough DVAs simply by joining the
3803 * end of the chain and letting the sequence play out.
3804 */
3805
3806 /*
3807 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3808 * the third one as normal.
3809 */
3810 int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp));
3811 IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0);
3812 boolean_t is_ganged = ddt_phys_is_gang(ddp, v);
3813
3814 /* Number of DVAs requested by the IO. */
3815 uint8_t need_dvas = zp->zp_copies;
3816 /* Number of DVAs in outstanding writes for this dde. */
3817 uint8_t parent_dvas = 0;
3818
3819 /*
3820 * What we do next depends on whether or not there's IO outstanding that
3821 * will update this entry.
3822 */
3823 if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) {
3824 /*
3825 * No IO outstanding, so we only need to worry about ourselves.
3826 */
3827
3828 /*
3829 * Override BPs bring their own DVAs and their own problems.
3830 */
3831 if (zio->io_bp_override) {
3832 /*
3833 * For a brand-new entry, all the work has been done
3834 * for us, and we can just fill it out from the provided
3835 * block and leave.
3836 */
3837 if (have_dvas == 0) {
3838 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3839 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3840 ddt_phys_extend(ddp, v, bp);
3841 ddt_phys_addref(ddp, v);
3842 ddt_exit(ddt);
3843 return (zio);
3844 }
3845
3846 /*
3847 * If we already have this entry, then we want to treat
3848 * it like a regular write. To do this we just wipe
3849 * them out and proceed like a regular write.
3850 *
3851 * Even if there are some DVAs in the entry, we still
3852 * have to clear them out. We can't use them to fill
3853 * out the dedup entry, as they are all referenced
3854 * together by a bp already on disk, and will be freed
3855 * as a group.
3856 */
3857 BP_ZERO_DVAS(bp);
3858 BP_SET_BIRTH(bp, 0, 0);
3859 }
3860
3861 /*
3862 * If there are enough DVAs in the entry to service our request,
3863 * then we can just use them as-is.
3864 */
3865 if (have_dvas >= need_dvas) {
3866 ddt_bp_fill(ddp, v, bp, txg);
3867 ddt_phys_addref(ddp, v);
3868 ddt_exit(ddt);
3869 return (zio);
3870 }
3871
3872 /*
3873 * Otherwise, we have to issue IO to fill the entry up to the
3874 * amount we need.
3875 */
3876 need_dvas -= have_dvas;
3877 } else {
3878 /*
3879 * There's a write in-flight. If there's already enough DVAs on
3880 * the entry, then either there were already enough to start
3881 * with, or the in-flight IO is between READY and DONE, and so
3882 * has extended the entry with new DVAs. Either way, we don't
3883 * need to do anything, we can just slot in behind it.
3884 */
3885
3886 if (zio->io_bp_override) {
3887 /*
3888 * If there's a write out, then we're soon going to
3889 * have our own copies of this block, so clear out the
3890 * override block and treat it as a regular dedup
3891 * write. See comment above.
3892 */
3893 BP_ZERO_DVAS(bp);
3894 BP_SET_BIRTH(bp, 0, 0);
3895 }
3896
3897 if (have_dvas >= need_dvas) {
3898 /*
3899 * A minor point: there might already be enough
3900 * committed DVAs in the entry to service our request,
3901 * but we don't know which are completed and which are
3902 * allocated but not yet written. In this case, should
3903 * the IO for the new DVAs fail, we will be on the end
3904 * of the IO chain and will also recieve an error, even
3905 * though our request could have been serviced.
3906 *
3907 * This is an extremely rare case, as it requires the
3908 * original block to be copied with a request for a
3909 * larger number of DVAs, then copied again requesting
3910 * the same (or already fulfilled) number of DVAs while
3911 * the first request is active, and then that first
3912 * request errors. In return, the logic required to
3913 * catch and handle it is complex. For now, I'm just
3914 * not going to bother with it.
3915 */
3916
3917 /*
3918 * We always fill the bp here as we may have arrived
3919 * after the in-flight write has passed READY, and so
3920 * missed out.
3921 */
3922 ddt_bp_fill(ddp, v, bp, txg);
3923 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3924 ddt_exit(ddt);
3925 return (zio);
3926 }
3927
3928 /*
3929 * There's not enough in the entry yet, so we need to look at
3930 * the write in-flight and see how many DVAs it will have once
3931 * it completes.
3932 *
3933 * The in-flight write has potentially had its copies request
3934 * reduced (if we're filling out an existing entry), so we need
3935 * to reach in and get the original write to find out what it is
3936 * expecting.
3937 *
3938 * Note that the parent of the lead zio will always have the
3939 * highest zp_copies of any zio in the chain, because ones that
3940 * can be serviced without additional IO are always added to
3941 * the back of the chain.
3942 */
3943 zio_link_t *zl = NULL;
3944 zio_t *pio =
3945 zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl);
3946 ASSERT(pio);
3947 parent_dvas = pio->io_prop.zp_copies;
3948
3949 if (parent_dvas >= need_dvas) {
3950 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
3951 ddt_exit(ddt);
3952 return (zio);
3953 }
3954
3955 /*
3956 * Still not enough, so we will need to issue to get the
3957 * shortfall.
3958 */
3959 need_dvas -= parent_dvas;
3960 }
3961
3962 if (is_ganged) {
3963 zp->zp_dedup = B_FALSE;
3964 BP_SET_DEDUP(bp, B_FALSE);
3965 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3966 ddt_exit(ddt);
3967 return (zio);
3968 }
3969
3970 /*
3971 * We need to write. We will create a new write with the copies
3972 * property adjusted to match the number of DVAs we need to need to
3973 * grow the DDT entry by to satisfy the request.
3974 */
3975 zio_prop_t czp = *zp;
3976 if (have_dvas > 0 || parent_dvas > 0) {
3977 czp.zp_copies = need_dvas;
3978 czp.zp_gang_copies = 0;
3979 } else {
3980 ASSERT3U(czp.zp_copies, ==, need_dvas);
3981 }
3982
3983 zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3984 zio->io_orig_size, zio->io_orig_size, &czp,
3985 zio_ddt_child_write_ready, NULL,
3986 zio_ddt_child_write_done, dde, zio->io_priority,
3987 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3988
3989 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3990
3991 /*
3992 * We are the new lead zio, because our parent has the highest
3993 * zp_copies that has been requested for this entry so far.
3994 */
3995 ddt_alloc_entry_io(dde);
3996 if (dde->dde_io->dde_lead_zio[p] == NULL) {
3997 /*
3998 * First time out, take a copy of the stable entry to revert
3999 * to if there's an error (see zio_ddt_child_write_done())
4000 */
4001 ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v);
4002 } else {
4003 /*
4004 * Make the existing chain our child, because it cannot
4005 * complete until we have.
4006 */
4007 zio_add_child(cio, dde->dde_io->dde_lead_zio[p]);
4008 }
4009 dde->dde_io->dde_lead_zio[p] = cio;
4010
4011 ddt_exit(ddt);
4012
4013 zio_nowait(cio);
4014
4015 return (zio);
4016 }
4017
4018 static ddt_entry_t *freedde; /* for debugging */
4019
4020 static zio_t *
zio_ddt_free(zio_t * zio)4021 zio_ddt_free(zio_t *zio)
4022 {
4023 spa_t *spa = zio->io_spa;
4024 blkptr_t *bp = zio->io_bp;
4025 ddt_t *ddt = ddt_select(spa, bp);
4026 ddt_entry_t *dde = NULL;
4027
4028 ASSERT(BP_GET_DEDUP(bp));
4029 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4030
4031 ddt_enter(ddt);
4032 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
4033 if (dde) {
4034 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
4035 if (v != DDT_PHYS_NONE)
4036 ddt_phys_decref(dde->dde_phys, v);
4037 }
4038 ddt_exit(ddt);
4039
4040 /*
4041 * When no entry was found, it must have been pruned,
4042 * so we can free it now instead of decrementing the
4043 * refcount in the DDT.
4044 */
4045 if (!dde) {
4046 BP_SET_DEDUP(bp, 0);
4047 zio->io_pipeline |= ZIO_STAGE_DVA_FREE;
4048 }
4049
4050 return (zio);
4051 }
4052
4053 /*
4054 * ==========================================================================
4055 * Allocate and free blocks
4056 * ==========================================================================
4057 */
4058
4059 static zio_t *
zio_io_to_allocate(metaslab_class_allocator_t * mca,boolean_t * more)4060 zio_io_to_allocate(metaslab_class_allocator_t *mca, boolean_t *more)
4061 {
4062 zio_t *zio;
4063
4064 ASSERT(MUTEX_HELD(&mca->mca_lock));
4065
4066 zio = avl_first(&mca->mca_tree);
4067 if (zio == NULL) {
4068 *more = B_FALSE;
4069 return (NULL);
4070 }
4071
4072 ASSERT(IO_IS_ALLOCATING(zio));
4073 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4074
4075 /*
4076 * Try to place a reservation for this zio. If we're unable to
4077 * reserve then we throttle.
4078 */
4079 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
4080 zio->io_prop.zp_copies, zio, B_FALSE, more)) {
4081 return (NULL);
4082 }
4083
4084 avl_remove(&mca->mca_tree, zio);
4085 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
4086
4087 if (avl_is_empty(&mca->mca_tree))
4088 *more = B_FALSE;
4089 return (zio);
4090 }
4091
4092 static zio_t *
zio_dva_throttle(zio_t * zio)4093 zio_dva_throttle(zio_t *zio)
4094 {
4095 spa_t *spa = zio->io_spa;
4096 zio_t *nio;
4097 metaslab_class_t *mc;
4098 boolean_t more;
4099
4100 /*
4101 * If not already chosen, choose an appropriate allocation class.
4102 */
4103 mc = zio->io_metaslab_class;
4104 if (mc == NULL)
4105 mc = spa_preferred_class(spa, zio);
4106
4107 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
4108 !mc->mc_alloc_throttle_enabled ||
4109 zio->io_child_type == ZIO_CHILD_GANG ||
4110 zio->io_flags & ZIO_FLAG_NODATA) {
4111 return (zio);
4112 }
4113
4114 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4115 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4116 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4117 ASSERT3U(zio->io_queued_timestamp, >, 0);
4118 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
4119
4120 zio->io_metaslab_class = mc;
4121 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
4122 mutex_enter(&mca->mca_lock);
4123 avl_add(&mca->mca_tree, zio);
4124 nio = zio_io_to_allocate(mca, &more);
4125 mutex_exit(&mca->mca_lock);
4126 return (nio);
4127 }
4128
4129 static void
zio_allocate_dispatch(metaslab_class_t * mc,int allocator)4130 zio_allocate_dispatch(metaslab_class_t *mc, int allocator)
4131 {
4132 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
4133 zio_t *zio;
4134 boolean_t more;
4135
4136 do {
4137 mutex_enter(&mca->mca_lock);
4138 zio = zio_io_to_allocate(mca, &more);
4139 mutex_exit(&mca->mca_lock);
4140 if (zio == NULL)
4141 return;
4142
4143 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
4144 ASSERT0(zio->io_error);
4145 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
4146 } while (more);
4147 }
4148
4149 static zio_t *
zio_dva_allocate(zio_t * zio)4150 zio_dva_allocate(zio_t *zio)
4151 {
4152 spa_t *spa = zio->io_spa;
4153 metaslab_class_t *mc, *newmc;
4154 blkptr_t *bp = zio->io_bp;
4155 int error;
4156 int flags = 0;
4157
4158 if (zio->io_gang_leader == NULL) {
4159 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4160 zio->io_gang_leader = zio;
4161 }
4162 if (zio->io_flags & ZIO_FLAG_PREALLOCATED) {
4163 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_GANG);
4164 memcpy(zio->io_bp->blk_dva, zio->io_bp_orig.blk_dva,
4165 3 * sizeof (dva_t));
4166 BP_SET_BIRTH(zio->io_bp, BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig),
4167 BP_GET_PHYSICAL_BIRTH(&zio->io_bp_orig));
4168 return (zio);
4169 }
4170
4171 ASSERT(BP_IS_HOLE(bp));
4172 ASSERT0(BP_GET_NDVAS(bp));
4173 ASSERT3U(zio->io_prop.zp_copies, >, 0);
4174
4175 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
4176 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
4177
4178 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
4179 flags |= METASLAB_GANG_CHILD;
4180 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
4181 flags |= METASLAB_ASYNC_ALLOC;
4182
4183 /*
4184 * If not already chosen, choose an appropriate allocation class.
4185 */
4186 mc = zio->io_metaslab_class;
4187 if (mc == NULL) {
4188 mc = spa_preferred_class(spa, zio);
4189 zio->io_metaslab_class = mc;
4190 }
4191 ZIOSTAT_BUMP(ziostat_total_allocations);
4192
4193 again:
4194 /*
4195 * Try allocating the block in the usual metaslab class.
4196 * If that's full, allocate it in some other class(es).
4197 * If that's full, allocate as a gang block,
4198 * and if all are full, the allocation fails (which shouldn't happen).
4199 *
4200 * Note that we do not fall back on embedded slog (ZIL) space, to
4201 * preserve unfragmented slog space, which is critical for decent
4202 * sync write performance. If a log allocation fails, we will fall
4203 * back to spa_sync() which is abysmal for performance.
4204 */
4205 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4206 error = metaslab_alloc(spa, mc, zio->io_size, bp,
4207 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4208 &zio->io_alloc_list, zio->io_allocator, zio);
4209
4210 /*
4211 * When the dedup or special class is spilling into the normal class,
4212 * there can still be significant space available due to deferred
4213 * frees that are in-flight. We track the txg when this occurred and
4214 * back off adding new DDT entries for a few txgs to allow the free
4215 * blocks to be processed.
4216 */
4217 if (error == ENOSPC && spa->spa_dedup_class_full_txg != zio->io_txg &&
4218 (mc == spa_dedup_class(spa) || (mc == spa_special_class(spa) &&
4219 !spa_has_dedup(spa) && spa_special_has_ddt(spa)))) {
4220 spa->spa_dedup_class_full_txg = zio->io_txg;
4221 zfs_dbgmsg("%s[%llu]: %s class spilling, req size %llu, "
4222 "%llu allocated of %llu",
4223 spa_name(spa), (u_longlong_t)zio->io_txg,
4224 metaslab_class_get_name(mc),
4225 (u_longlong_t)zio->io_size,
4226 (u_longlong_t)metaslab_class_get_alloc(mc),
4227 (u_longlong_t)metaslab_class_get_space(mc));
4228 }
4229
4230 /*
4231 * Fall back to some other class when this one is full.
4232 */
4233 if (error == ENOSPC && (newmc = spa_preferred_class(spa, zio)) != mc) {
4234 /*
4235 * If we are holding old class reservation, drop it.
4236 * Dispatch the next ZIO(s) there if some are waiting.
4237 */
4238 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4239 if (metaslab_class_throttle_unreserve(mc,
4240 zio->io_prop.zp_copies, zio)) {
4241 zio_allocate_dispatch(zio->io_metaslab_class,
4242 zio->io_allocator);
4243 }
4244 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
4245 }
4246
4247 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4248 zfs_dbgmsg("%s: metaslab allocation failure in %s "
4249 "class, trying fallback to %s class: zio %px, "
4250 "size %llu, error %d", spa_name(spa),
4251 metaslab_class_get_name(mc),
4252 metaslab_class_get_name(newmc),
4253 zio, (u_longlong_t)zio->io_size, error);
4254 }
4255 zio->io_metaslab_class = mc = newmc;
4256 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4257
4258 /*
4259 * If the new class uses throttling, return to that pipeline
4260 * stage. Otherwise just do another allocation attempt.
4261 */
4262 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
4263 mc->mc_alloc_throttle_enabled &&
4264 zio->io_child_type != ZIO_CHILD_GANG &&
4265 !(zio->io_flags & ZIO_FLAG_NODATA)) {
4266 zio->io_stage = ZIO_STAGE_DVA_THROTTLE >> 1;
4267 return (zio);
4268 }
4269 goto again;
4270 }
4271
4272 if (error == ENOSPC && zio->io_size > spa->spa_min_alloc) {
4273 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4274 zfs_dbgmsg("%s: metaslab allocation failure, "
4275 "trying ganging: zio %px, size %llu, error %d",
4276 spa_name(spa), zio, (u_longlong_t)zio->io_size,
4277 error);
4278 }
4279 ZIOSTAT_BUMP(ziostat_gang_writes);
4280 if (flags & METASLAB_GANG_CHILD)
4281 ZIOSTAT_BUMP(ziostat_gang_multilevel);
4282 return (zio_write_gang_block(zio, mc));
4283 }
4284 if (error != 0) {
4285 if (error != ENOSPC ||
4286 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
4287 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4288 "size %llu, error %d",
4289 spa_name(spa), zio, (u_longlong_t)zio->io_size,
4290 error);
4291 }
4292 zio->io_error = error;
4293 }
4294
4295 return (zio);
4296 }
4297
4298 static zio_t *
zio_dva_free(zio_t * zio)4299 zio_dva_free(zio_t *zio)
4300 {
4301 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
4302
4303 return (zio);
4304 }
4305
4306 static zio_t *
zio_dva_claim(zio_t * zio)4307 zio_dva_claim(zio_t *zio)
4308 {
4309 int error;
4310
4311 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
4312 if (error)
4313 zio->io_error = error;
4314
4315 return (zio);
4316 }
4317
4318 /*
4319 * Undo an allocation. This is used by zio_done() when an I/O fails
4320 * and we want to give back the block we just allocated.
4321 * This handles both normal blocks and gang blocks.
4322 */
4323 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)4324 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
4325 {
4326 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
4327 ASSERT(zio->io_bp_override == NULL);
4328
4329 if (!BP_IS_HOLE(bp)) {
4330 metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
4331 B_TRUE);
4332 }
4333
4334 if (gn != NULL) {
4335 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
4336 zio_dva_unallocate(zio, gn->gn_child[g],
4337 &gn->gn_gbh->zg_blkptr[g]);
4338 }
4339 }
4340 }
4341
4342 /*
4343 * Try to allocate an intent log block. Return 0 on success, errno on failure.
4344 */
4345 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)4346 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
4347 uint64_t size, boolean_t *slog)
4348 {
4349 int error = 1;
4350 zio_alloc_list_t io_alloc_list;
4351
4352 ASSERT(txg > spa_syncing_txg(spa));
4353
4354 metaslab_trace_init(&io_alloc_list);
4355
4356 /*
4357 * Block pointer fields are useful to metaslabs for stats and debugging.
4358 * Fill in the obvious ones before calling into metaslab_alloc().
4359 */
4360 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4361 BP_SET_PSIZE(new_bp, size);
4362 BP_SET_LEVEL(new_bp, 0);
4363
4364 /*
4365 * When allocating a zil block, we don't have information about
4366 * the final destination of the block except the objset it's part
4367 * of, so we just hash the objset ID to pick the allocator to get
4368 * some parallelism.
4369 */
4370 int flags = METASLAB_ZIL;
4371 int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object)
4372 % spa->spa_alloc_count;
4373 ZIOSTAT_BUMP(ziostat_total_allocations);
4374 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
4375 txg, NULL, flags, &io_alloc_list, allocator, NULL);
4376 *slog = (error == 0);
4377 if (error != 0) {
4378 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
4379 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4380 NULL);
4381 }
4382 if (error != 0) {
4383 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4384 error = metaslab_alloc(spa, spa_normal_class(spa), size,
4385 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4386 NULL);
4387 }
4388 metaslab_trace_fini(&io_alloc_list);
4389
4390 if (error == 0) {
4391 BP_SET_LSIZE(new_bp, size);
4392 BP_SET_PSIZE(new_bp, size);
4393 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
4394 BP_SET_CHECKSUM(new_bp,
4395 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
4396 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
4397 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4398 BP_SET_LEVEL(new_bp, 0);
4399 BP_SET_DEDUP(new_bp, 0);
4400 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
4401
4402 /*
4403 * encrypted blocks will require an IV and salt. We generate
4404 * these now since we will not be rewriting the bp at
4405 * rewrite time.
4406 */
4407 if (os->os_encrypted) {
4408 uint8_t iv[ZIO_DATA_IV_LEN];
4409 uint8_t salt[ZIO_DATA_SALT_LEN];
4410
4411 BP_SET_CRYPT(new_bp, B_TRUE);
4412 VERIFY0(spa_crypt_get_salt(spa,
4413 dmu_objset_id(os), salt));
4414 VERIFY0(zio_crypt_generate_iv(iv));
4415
4416 zio_crypt_encode_params_bp(new_bp, salt, iv);
4417 }
4418 } else {
4419 zfs_dbgmsg("%s: zil block allocation failure: "
4420 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
4421 error);
4422 }
4423
4424 return (error);
4425 }
4426
4427 /*
4428 * ==========================================================================
4429 * Read and write to physical devices
4430 * ==========================================================================
4431 */
4432
4433 /*
4434 * Issue an I/O to the underlying vdev. Typically the issue pipeline
4435 * stops after this stage and will resume upon I/O completion.
4436 * However, there are instances where the vdev layer may need to
4437 * continue the pipeline when an I/O was not issued. Since the I/O
4438 * that was sent to the vdev layer might be different than the one
4439 * currently active in the pipeline (see vdev_queue_io()), we explicitly
4440 * force the underlying vdev layers to call either zio_execute() or
4441 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4442 */
4443 static zio_t *
zio_vdev_io_start(zio_t * zio)4444 zio_vdev_io_start(zio_t *zio)
4445 {
4446 vdev_t *vd = zio->io_vd;
4447 uint64_t align;
4448 spa_t *spa = zio->io_spa;
4449
4450 zio->io_delay = 0;
4451
4452 ASSERT(zio->io_error == 0);
4453 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
4454
4455 if (vd == NULL) {
4456 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4457 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
4458
4459 /*
4460 * The mirror_ops handle multiple DVAs in a single BP.
4461 */
4462 vdev_mirror_ops.vdev_op_io_start(zio);
4463 return (NULL);
4464 }
4465
4466 ASSERT3P(zio->io_logical, !=, zio);
4467 if (zio->io_type == ZIO_TYPE_WRITE) {
4468 ASSERT(spa->spa_trust_config);
4469
4470 /*
4471 * Note: the code can handle other kinds of writes,
4472 * but we don't expect them.
4473 */
4474 if (zio->io_vd->vdev_noalloc) {
4475 ASSERT(zio->io_flags &
4476 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4477 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4478 }
4479 }
4480
4481 align = 1ULL << vd->vdev_top->vdev_ashift;
4482
4483 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4484 P2PHASE(zio->io_size, align) != 0) {
4485 /* Transform logical writes to be a full physical block size. */
4486 uint64_t asize = P2ROUNDUP(zio->io_size, align);
4487 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4488 ASSERT(vd == vd->vdev_top);
4489 if (zio->io_type == ZIO_TYPE_WRITE) {
4490 abd_copy(abuf, zio->io_abd, zio->io_size);
4491 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4492 }
4493 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4494 }
4495
4496 /*
4497 * If this is not a physical io, make sure that it is properly aligned
4498 * before proceeding.
4499 */
4500 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4501 ASSERT0(P2PHASE(zio->io_offset, align));
4502 ASSERT0(P2PHASE(zio->io_size, align));
4503 } else {
4504 /*
4505 * For physical writes, we allow 512b aligned writes and assume
4506 * the device will perform a read-modify-write as necessary.
4507 */
4508 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4509 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4510 }
4511
4512 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4513
4514 /*
4515 * If this is a repair I/O, and there's no self-healing involved --
4516 * that is, we're just resilvering what we expect to resilver --
4517 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4518 * This prevents spurious resilvering.
4519 *
4520 * There are a few ways that we can end up creating these spurious
4521 * resilver i/os:
4522 *
4523 * 1. A resilver i/o will be issued if any DVA in the BP has a
4524 * dirty DTL. The mirror code will issue resilver writes to
4525 * each DVA, including the one(s) that are not on vdevs with dirty
4526 * DTLs.
4527 *
4528 * 2. With nested replication, which happens when we have a
4529 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4530 * For example, given mirror(replacing(A+B), C), it's likely that
4531 * only A is out of date (it's the new device). In this case, we'll
4532 * read from C, then use the data to resilver A+B -- but we don't
4533 * actually want to resilver B, just A. The top-level mirror has no
4534 * way to know this, so instead we just discard unnecessary repairs
4535 * as we work our way down the vdev tree.
4536 *
4537 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4538 * The same logic applies to any form of nested replication: ditto
4539 * + mirror, RAID-Z + replacing, etc.
4540 *
4541 * However, indirect vdevs point off to other vdevs which may have
4542 * DTL's, so we never bypass them. The child i/os on concrete vdevs
4543 * will be properly bypassed instead.
4544 *
4545 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4546 * a dRAID spare vdev. For example, when a dRAID spare is first
4547 * used, its spare blocks need to be written to but the leaf vdev's
4548 * of such blocks can have empty DTL_PARTIAL.
4549 *
4550 * There seemed no clean way to allow such writes while bypassing
4551 * spurious ones. At this point, just avoid all bypassing for dRAID
4552 * for correctness.
4553 */
4554 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4555 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4556 zio->io_txg != 0 && /* not a delegated i/o */
4557 vd->vdev_ops != &vdev_indirect_ops &&
4558 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4559 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4560 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4561 zio_vdev_io_bypass(zio);
4562 return (zio);
4563 }
4564
4565 /*
4566 * Select the next best leaf I/O to process. Distributed spares are
4567 * excluded since they dispatch the I/O directly to a leaf vdev after
4568 * applying the dRAID mapping.
4569 */
4570 if (vd->vdev_ops->vdev_op_leaf &&
4571 vd->vdev_ops != &vdev_draid_spare_ops &&
4572 (zio->io_type == ZIO_TYPE_READ ||
4573 zio->io_type == ZIO_TYPE_WRITE ||
4574 zio->io_type == ZIO_TYPE_TRIM)) {
4575
4576 if ((zio = vdev_queue_io(zio)) == NULL)
4577 return (NULL);
4578
4579 if (!vdev_accessible(vd, zio)) {
4580 zio->io_error = SET_ERROR(ENXIO);
4581 zio_interrupt(zio);
4582 return (NULL);
4583 }
4584 zio->io_delay = gethrtime();
4585
4586 if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4587 /*
4588 * "no-op" injections return success, but do no actual
4589 * work. Just return it.
4590 */
4591 zio_delay_interrupt(zio);
4592 return (NULL);
4593 }
4594 }
4595
4596 vd->vdev_ops->vdev_op_io_start(zio);
4597 return (NULL);
4598 }
4599
4600 static zio_t *
zio_vdev_io_done(zio_t * zio)4601 zio_vdev_io_done(zio_t *zio)
4602 {
4603 vdev_t *vd = zio->io_vd;
4604 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4605 boolean_t unexpected_error = B_FALSE;
4606
4607 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4608 return (NULL);
4609 }
4610
4611 ASSERT(zio->io_type == ZIO_TYPE_READ ||
4612 zio->io_type == ZIO_TYPE_WRITE ||
4613 zio->io_type == ZIO_TYPE_FLUSH ||
4614 zio->io_type == ZIO_TYPE_TRIM);
4615
4616 if (zio->io_delay)
4617 zio->io_delay = gethrtime() - zio->io_delay;
4618
4619 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4620 vd->vdev_ops != &vdev_draid_spare_ops) {
4621 if (zio->io_type != ZIO_TYPE_FLUSH)
4622 vdev_queue_io_done(zio);
4623
4624 if (zio_injection_enabled && zio->io_error == 0)
4625 zio->io_error = zio_handle_device_injections(vd, zio,
4626 EIO, EILSEQ);
4627
4628 if (zio_injection_enabled && zio->io_error == 0)
4629 zio->io_error = zio_handle_label_injection(zio, EIO);
4630
4631 if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4632 zio->io_type != ZIO_TYPE_TRIM) {
4633 if (!vdev_accessible(vd, zio)) {
4634 zio->io_error = SET_ERROR(ENXIO);
4635 } else {
4636 unexpected_error = B_TRUE;
4637 }
4638 }
4639 }
4640
4641 ops->vdev_op_io_done(zio);
4642
4643 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4644 VERIFY(vdev_probe(vd, zio) == NULL);
4645
4646 return (zio);
4647 }
4648
4649 /*
4650 * This function is used to change the priority of an existing zio that is
4651 * currently in-flight. This is used by the arc to upgrade priority in the
4652 * event that a demand read is made for a block that is currently queued
4653 * as a scrub or async read IO. Otherwise, the high priority read request
4654 * would end up having to wait for the lower priority IO.
4655 */
4656 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4657 zio_change_priority(zio_t *pio, zio_priority_t priority)
4658 {
4659 zio_t *cio, *cio_next;
4660 zio_link_t *zl = NULL;
4661
4662 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4663
4664 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4665 vdev_queue_change_io_priority(pio, priority);
4666 } else {
4667 pio->io_priority = priority;
4668 }
4669
4670 mutex_enter(&pio->io_lock);
4671 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4672 cio_next = zio_walk_children(pio, &zl);
4673 zio_change_priority(cio, priority);
4674 }
4675 mutex_exit(&pio->io_lock);
4676 }
4677
4678 /*
4679 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4680 * disk, and use that to finish the checksum ereport later.
4681 */
4682 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4683 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4684 const abd_t *good_buf)
4685 {
4686 /* no processing needed */
4687 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4688 }
4689
4690 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4691 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4692 {
4693 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4694
4695 abd_copy(abd, zio->io_abd, zio->io_size);
4696
4697 zcr->zcr_cbinfo = zio->io_size;
4698 zcr->zcr_cbdata = abd;
4699 zcr->zcr_finish = zio_vsd_default_cksum_finish;
4700 zcr->zcr_free = zio_abd_free;
4701 }
4702
4703 static zio_t *
zio_vdev_io_assess(zio_t * zio)4704 zio_vdev_io_assess(zio_t *zio)
4705 {
4706 vdev_t *vd = zio->io_vd;
4707
4708 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4709 return (NULL);
4710 }
4711
4712 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4713 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4714
4715 if (zio->io_vsd != NULL) {
4716 zio->io_vsd_ops->vsd_free(zio);
4717 zio->io_vsd = NULL;
4718 }
4719
4720 /*
4721 * If a Direct I/O operation has a checksum verify error then this I/O
4722 * should not attempt to be issued again.
4723 */
4724 if (zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) {
4725 if (zio->io_type == ZIO_TYPE_WRITE) {
4726 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4727 ASSERT3U(zio->io_error, ==, EIO);
4728 }
4729 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4730 return (zio);
4731 }
4732
4733 if (zio_injection_enabled && zio->io_error == 0)
4734 zio->io_error = zio_handle_fault_injection(zio, EIO);
4735
4736 /*
4737 * If the I/O failed, determine whether we should attempt to retry it.
4738 *
4739 * On retry, we cut in line in the issue queue, since we don't want
4740 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4741 */
4742 if (zio->io_error && vd == NULL &&
4743 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4744 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4745 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4746 zio->io_error = 0;
4747 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4748 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4749 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4750 zio_requeue_io_start_cut_in_line);
4751 return (NULL);
4752 }
4753
4754 /*
4755 * If we got an error on a leaf device, convert it to ENXIO
4756 * if the device is not accessible at all.
4757 */
4758 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4759 !vdev_accessible(vd, zio))
4760 zio->io_error = SET_ERROR(ENXIO);
4761
4762 /*
4763 * If we can't write to an interior vdev (mirror or RAID-Z),
4764 * set vdev_cant_write so that we stop trying to allocate from it.
4765 */
4766 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4767 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4768 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4769 "cant_write=TRUE due to write failure with ENXIO",
4770 zio);
4771 vd->vdev_cant_write = B_TRUE;
4772 }
4773
4774 /*
4775 * If a cache flush returns ENOTSUP we know that no future
4776 * attempts will ever succeed. In this case we set a persistent
4777 * boolean flag so that we don't bother with it in the future, and
4778 * then we act like the flush succeeded.
4779 */
4780 if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH &&
4781 vd != NULL) {
4782 vd->vdev_nowritecache = B_TRUE;
4783 zio->io_error = 0;
4784 }
4785
4786 if (zio->io_error)
4787 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4788
4789 return (zio);
4790 }
4791
4792 void
zio_vdev_io_reissue(zio_t * zio)4793 zio_vdev_io_reissue(zio_t *zio)
4794 {
4795 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4796 ASSERT(zio->io_error == 0);
4797
4798 zio->io_stage >>= 1;
4799 }
4800
4801 void
zio_vdev_io_redone(zio_t * zio)4802 zio_vdev_io_redone(zio_t *zio)
4803 {
4804 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4805
4806 zio->io_stage >>= 1;
4807 }
4808
4809 void
zio_vdev_io_bypass(zio_t * zio)4810 zio_vdev_io_bypass(zio_t *zio)
4811 {
4812 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4813 ASSERT(zio->io_error == 0);
4814
4815 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4816 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4817 }
4818
4819 /*
4820 * ==========================================================================
4821 * Encrypt and store encryption parameters
4822 * ==========================================================================
4823 */
4824
4825
4826 /*
4827 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4828 * managing the storage of encryption parameters and passing them to the
4829 * lower-level encryption functions.
4830 */
4831 static zio_t *
zio_encrypt(zio_t * zio)4832 zio_encrypt(zio_t *zio)
4833 {
4834 zio_prop_t *zp = &zio->io_prop;
4835 spa_t *spa = zio->io_spa;
4836 blkptr_t *bp = zio->io_bp;
4837 uint64_t psize = BP_GET_PSIZE(bp);
4838 uint64_t dsobj = zio->io_bookmark.zb_objset;
4839 dmu_object_type_t ot = BP_GET_TYPE(bp);
4840 void *enc_buf = NULL;
4841 abd_t *eabd = NULL;
4842 uint8_t salt[ZIO_DATA_SALT_LEN];
4843 uint8_t iv[ZIO_DATA_IV_LEN];
4844 uint8_t mac[ZIO_DATA_MAC_LEN];
4845 boolean_t no_crypt = B_FALSE;
4846
4847 /* the root zio already encrypted the data */
4848 if (zio->io_child_type == ZIO_CHILD_GANG)
4849 return (zio);
4850
4851 /* only ZIL blocks are re-encrypted on rewrite */
4852 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4853 return (zio);
4854
4855 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4856 BP_SET_CRYPT(bp, B_FALSE);
4857 return (zio);
4858 }
4859
4860 /* if we are doing raw encryption set the provided encryption params */
4861 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4862 ASSERT0(BP_GET_LEVEL(bp));
4863 BP_SET_CRYPT(bp, B_TRUE);
4864 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4865 if (ot != DMU_OT_OBJSET)
4866 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4867
4868 /* dnode blocks must be written out in the provided byteorder */
4869 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4870 ot == DMU_OT_DNODE) {
4871 void *bswap_buf = zio_buf_alloc(psize);
4872 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4873
4874 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4875 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4876 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4877 psize);
4878
4879 abd_take_ownership_of_buf(babd, B_TRUE);
4880 zio_push_transform(zio, babd, psize, psize, NULL);
4881 }
4882
4883 if (DMU_OT_IS_ENCRYPTED(ot))
4884 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4885 return (zio);
4886 }
4887
4888 /* indirect blocks only maintain a cksum of the lower level MACs */
4889 if (BP_GET_LEVEL(bp) > 0) {
4890 BP_SET_CRYPT(bp, B_TRUE);
4891 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4892 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4893 mac));
4894 zio_crypt_encode_mac_bp(bp, mac);
4895 return (zio);
4896 }
4897
4898 /*
4899 * Objset blocks are a special case since they have 2 256-bit MACs
4900 * embedded within them.
4901 */
4902 if (ot == DMU_OT_OBJSET) {
4903 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4904 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4905 BP_SET_CRYPT(bp, B_TRUE);
4906 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4907 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4908 return (zio);
4909 }
4910
4911 /* unencrypted object types are only authenticated with a MAC */
4912 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4913 BP_SET_CRYPT(bp, B_TRUE);
4914 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4915 zio->io_abd, psize, mac));
4916 zio_crypt_encode_mac_bp(bp, mac);
4917 return (zio);
4918 }
4919
4920 /*
4921 * Later passes of sync-to-convergence may decide to rewrite data
4922 * in place to avoid more disk reallocations. This presents a problem
4923 * for encryption because this constitutes rewriting the new data with
4924 * the same encryption key and IV. However, this only applies to blocks
4925 * in the MOS (particularly the spacemaps) and we do not encrypt the
4926 * MOS. We assert that the zio is allocating or an intent log write
4927 * to enforce this.
4928 */
4929 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4930 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4931 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4932 ASSERT3U(psize, !=, 0);
4933
4934 enc_buf = zio_buf_alloc(psize);
4935 eabd = abd_get_from_buf(enc_buf, psize);
4936 abd_take_ownership_of_buf(eabd, B_TRUE);
4937
4938 /*
4939 * For an explanation of what encryption parameters are stored
4940 * where, see the block comment in zio_crypt.c.
4941 */
4942 if (ot == DMU_OT_INTENT_LOG) {
4943 zio_crypt_decode_params_bp(bp, salt, iv);
4944 } else {
4945 BP_SET_CRYPT(bp, B_TRUE);
4946 }
4947
4948 /* Perform the encryption. This should not fail */
4949 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4950 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4951 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4952
4953 /* encode encryption metadata into the bp */
4954 if (ot == DMU_OT_INTENT_LOG) {
4955 /*
4956 * ZIL blocks store the MAC in the embedded checksum, so the
4957 * transform must always be applied.
4958 */
4959 zio_crypt_encode_mac_zil(enc_buf, mac);
4960 zio_push_transform(zio, eabd, psize, psize, NULL);
4961 } else {
4962 BP_SET_CRYPT(bp, B_TRUE);
4963 zio_crypt_encode_params_bp(bp, salt, iv);
4964 zio_crypt_encode_mac_bp(bp, mac);
4965
4966 if (no_crypt) {
4967 ASSERT3U(ot, ==, DMU_OT_DNODE);
4968 abd_free(eabd);
4969 } else {
4970 zio_push_transform(zio, eabd, psize, psize, NULL);
4971 }
4972 }
4973
4974 return (zio);
4975 }
4976
4977 /*
4978 * ==========================================================================
4979 * Generate and verify checksums
4980 * ==========================================================================
4981 */
4982 static zio_t *
zio_checksum_generate(zio_t * zio)4983 zio_checksum_generate(zio_t *zio)
4984 {
4985 blkptr_t *bp = zio->io_bp;
4986 enum zio_checksum checksum;
4987
4988 if (bp == NULL) {
4989 /*
4990 * This is zio_write_phys().
4991 * We're either generating a label checksum, or none at all.
4992 */
4993 checksum = zio->io_prop.zp_checksum;
4994
4995 if (checksum == ZIO_CHECKSUM_OFF)
4996 return (zio);
4997
4998 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4999 } else {
5000 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
5001 ASSERT(!IO_IS_ALLOCATING(zio));
5002 checksum = ZIO_CHECKSUM_GANG_HEADER;
5003 } else {
5004 checksum = BP_GET_CHECKSUM(bp);
5005 }
5006 }
5007
5008 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
5009
5010 return (zio);
5011 }
5012
5013 static zio_t *
zio_checksum_verify(zio_t * zio)5014 zio_checksum_verify(zio_t *zio)
5015 {
5016 zio_bad_cksum_t info;
5017 blkptr_t *bp = zio->io_bp;
5018 int error;
5019
5020 ASSERT(zio->io_vd != NULL);
5021
5022 if (bp == NULL) {
5023 /*
5024 * This is zio_read_phys().
5025 * We're either verifying a label checksum, or nothing at all.
5026 */
5027 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
5028 return (zio);
5029
5030 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
5031 }
5032
5033 ASSERT0(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
5034 IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ,
5035 !(zio->io_flags & ZIO_FLAG_SPECULATIVE));
5036
5037 if ((error = zio_checksum_error(zio, &info)) != 0) {
5038 zio->io_error = error;
5039 if (error == ECKSUM &&
5040 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5041 if (zio->io_flags & ZIO_FLAG_DIO_READ) {
5042 zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
5043 zio_t *pio = zio_unique_parent(zio);
5044 /*
5045 * Any Direct I/O read that has a checksum
5046 * error must be treated as suspicous as the
5047 * contents of the buffer could be getting
5048 * manipulated while the I/O is taking place.
5049 *
5050 * The checksum verify error will only be
5051 * reported here for disk and file VDEV's and
5052 * will be reported on those that the failure
5053 * occurred on. Other types of VDEV's report the
5054 * verify failure in their own code paths.
5055 */
5056 if (pio->io_child_type == ZIO_CHILD_LOGICAL) {
5057 zio_dio_chksum_verify_error_report(zio);
5058 }
5059 } else {
5060 mutex_enter(&zio->io_vd->vdev_stat_lock);
5061 zio->io_vd->vdev_stat.vs_checksum_errors++;
5062 mutex_exit(&zio->io_vd->vdev_stat_lock);
5063 (void) zfs_ereport_start_checksum(zio->io_spa,
5064 zio->io_vd, &zio->io_bookmark, zio,
5065 zio->io_offset, zio->io_size, &info);
5066 }
5067 }
5068 }
5069
5070 return (zio);
5071 }
5072
5073 static zio_t *
zio_dio_checksum_verify(zio_t * zio)5074 zio_dio_checksum_verify(zio_t *zio)
5075 {
5076 zio_t *pio = zio_unique_parent(zio);
5077 int error;
5078
5079 ASSERT3P(zio->io_vd, !=, NULL);
5080 ASSERT3P(zio->io_bp, !=, NULL);
5081 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5082 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5083 ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE);
5084 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
5085
5086 if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0)
5087 goto out;
5088
5089 if ((error = zio_checksum_error(zio, NULL)) != 0) {
5090 zio->io_error = error;
5091 if (error == ECKSUM) {
5092 zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
5093 zio_dio_chksum_verify_error_report(zio);
5094 }
5095 }
5096
5097 out:
5098 return (zio);
5099 }
5100
5101
5102 /*
5103 * Called by RAID-Z to ensure we don't compute the checksum twice.
5104 */
5105 void
zio_checksum_verified(zio_t * zio)5106 zio_checksum_verified(zio_t *zio)
5107 {
5108 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
5109 }
5110
5111 /*
5112 * Report Direct I/O checksum verify error and create ZED event.
5113 */
5114 void
zio_dio_chksum_verify_error_report(zio_t * zio)5115 zio_dio_chksum_verify_error_report(zio_t *zio)
5116 {
5117 ASSERT(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR);
5118
5119 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
5120 return;
5121
5122 mutex_enter(&zio->io_vd->vdev_stat_lock);
5123 zio->io_vd->vdev_stat.vs_dio_verify_errors++;
5124 mutex_exit(&zio->io_vd->vdev_stat_lock);
5125 if (zio->io_type == ZIO_TYPE_WRITE) {
5126 /*
5127 * Convert checksum error for writes into EIO.
5128 */
5129 zio->io_error = SET_ERROR(EIO);
5130 /*
5131 * Report dio_verify_wr ZED event.
5132 */
5133 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR,
5134 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5135 } else {
5136 /*
5137 * Report dio_verify_rd ZED event.
5138 */
5139 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD,
5140 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5141 }
5142 }
5143
5144 /*
5145 * ==========================================================================
5146 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
5147 * An error of 0 indicates success. ENXIO indicates whole-device failure,
5148 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
5149 * indicate errors that are specific to one I/O, and most likely permanent.
5150 * Any other error is presumed to be worse because we weren't expecting it.
5151 * ==========================================================================
5152 */
5153 int
zio_worst_error(int e1,int e2)5154 zio_worst_error(int e1, int e2)
5155 {
5156 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
5157 int r1, r2;
5158
5159 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
5160 if (e1 == zio_error_rank[r1])
5161 break;
5162
5163 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
5164 if (e2 == zio_error_rank[r2])
5165 break;
5166
5167 return (r1 > r2 ? e1 : e2);
5168 }
5169
5170 /*
5171 * ==========================================================================
5172 * I/O completion
5173 * ==========================================================================
5174 */
5175 static zio_t *
zio_ready(zio_t * zio)5176 zio_ready(zio_t *zio)
5177 {
5178 blkptr_t *bp = zio->io_bp;
5179 zio_t *pio, *pio_next;
5180 zio_link_t *zl = NULL;
5181
5182 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
5183 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
5184 return (NULL);
5185 }
5186
5187 if (zio->io_ready) {
5188 ASSERT(IO_IS_ALLOCATING(zio));
5189 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
5190 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
5191 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
5192
5193 zio->io_ready(zio);
5194 }
5195
5196 #ifdef ZFS_DEBUG
5197 if (bp != NULL && bp != &zio->io_bp_copy)
5198 zio->io_bp_copy = *bp;
5199 #endif
5200
5201 if (zio->io_error != 0) {
5202 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
5203
5204 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
5205 ASSERT(IO_IS_ALLOCATING(zio));
5206 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5207 ASSERT(zio->io_metaslab_class != NULL);
5208 ASSERT(ZIO_HAS_ALLOCATOR(zio));
5209
5210 /*
5211 * We were unable to allocate anything, unreserve and
5212 * issue the next I/O to allocate.
5213 */
5214 if (metaslab_class_throttle_unreserve(
5215 zio->io_metaslab_class, zio->io_prop.zp_copies,
5216 zio)) {
5217 zio_allocate_dispatch(zio->io_metaslab_class,
5218 zio->io_allocator);
5219 }
5220 }
5221 }
5222
5223 mutex_enter(&zio->io_lock);
5224 zio->io_state[ZIO_WAIT_READY] = 1;
5225 pio = zio_walk_parents(zio, &zl);
5226 mutex_exit(&zio->io_lock);
5227
5228 /*
5229 * As we notify zio's parents, new parents could be added.
5230 * New parents go to the head of zio's io_parent_list, however,
5231 * so we will (correctly) not notify them. The remainder of zio's
5232 * io_parent_list, from 'pio_next' onward, cannot change because
5233 * all parents must wait for us to be done before they can be done.
5234 */
5235 for (; pio != NULL; pio = pio_next) {
5236 pio_next = zio_walk_parents(zio, &zl);
5237 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
5238 }
5239
5240 if (zio->io_flags & ZIO_FLAG_NODATA) {
5241 if (bp != NULL && BP_IS_GANG(bp)) {
5242 zio->io_flags &= ~ZIO_FLAG_NODATA;
5243 } else {
5244 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
5245 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
5246 }
5247 }
5248
5249 if (zio_injection_enabled &&
5250 zio->io_spa->spa_syncing_txg == zio->io_txg)
5251 zio_handle_ignored_writes(zio);
5252
5253 return (zio);
5254 }
5255
5256 /*
5257 * Update the allocation throttle accounting.
5258 */
5259 static void
zio_dva_throttle_done(zio_t * zio)5260 zio_dva_throttle_done(zio_t *zio)
5261 {
5262 zio_t *pio = zio_unique_parent(zio);
5263 vdev_t *vd = zio->io_vd;
5264 int flags = METASLAB_ASYNC_ALLOC;
5265 const void *tag = pio;
5266
5267 ASSERT3P(zio->io_bp, !=, NULL);
5268 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5269 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
5270 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5271 ASSERT(vd != NULL);
5272 ASSERT3P(vd, ==, vd->vdev_top);
5273 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
5274 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5275 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
5276
5277 /*
5278 * Parents of gang children can have two flavors -- ones that allocated
5279 * the gang header (will have ZIO_FLAG_IO_REWRITE set) and ones that
5280 * allocated the constituent blocks. The first use their parent as tag.
5281 */
5282 if (pio->io_child_type == ZIO_CHILD_GANG &&
5283 (pio->io_flags & ZIO_FLAG_IO_REWRITE))
5284 tag = zio_unique_parent(pio);
5285
5286 ASSERT(IO_IS_ALLOCATING(pio) || (pio->io_child_type == ZIO_CHILD_GANG &&
5287 (pio->io_flags & ZIO_FLAG_IO_REWRITE)));
5288 ASSERT(ZIO_HAS_ALLOCATOR(pio));
5289 ASSERT3P(zio, !=, zio->io_logical);
5290 ASSERT(zio->io_logical != NULL);
5291 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5292 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
5293 ASSERT(zio->io_metaslab_class != NULL);
5294 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
5295
5296 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id,
5297 pio->io_allocator, flags, pio->io_size, tag);
5298
5299 if (metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, pio)) {
5300 zio_allocate_dispatch(zio->io_metaslab_class,
5301 pio->io_allocator);
5302 }
5303 }
5304
5305 static zio_t *
zio_done(zio_t * zio)5306 zio_done(zio_t *zio)
5307 {
5308 /*
5309 * Always attempt to keep stack usage minimal here since
5310 * we can be called recursively up to 19 levels deep.
5311 */
5312 const uint64_t psize = zio->io_size;
5313 zio_t *pio, *pio_next;
5314 zio_link_t *zl = NULL;
5315
5316 /*
5317 * If our children haven't all completed,
5318 * wait for them and then repeat this pipeline stage.
5319 */
5320 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
5321 return (NULL);
5322 }
5323
5324 /*
5325 * If the allocation throttle is enabled, then update the accounting.
5326 * We only track child I/Os that are part of an allocating async
5327 * write. We must do this since the allocation is performed
5328 * by the logical I/O but the actual write is done by child I/Os.
5329 */
5330 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
5331 zio->io_child_type == ZIO_CHILD_VDEV)
5332 zio_dva_throttle_done(zio);
5333
5334 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
5335 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
5336 ASSERT(zio->io_children[c][w] == 0);
5337
5338 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
5339 ASSERT(zio->io_bp->blk_pad[0] == 0);
5340 ASSERT(zio->io_bp->blk_pad[1] == 0);
5341 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
5342 sizeof (blkptr_t)) == 0 ||
5343 (zio->io_bp == zio_unique_parent(zio)->io_bp));
5344 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
5345 zio->io_bp_override == NULL &&
5346 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
5347 ASSERT3U(zio->io_prop.zp_copies, <=,
5348 BP_GET_NDVAS(zio->io_bp));
5349 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
5350 (BP_COUNT_GANG(zio->io_bp) ==
5351 BP_GET_NDVAS(zio->io_bp)));
5352 }
5353 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
5354 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
5355 }
5356
5357 /*
5358 * If there were child vdev/gang/ddt errors, they apply to us now.
5359 */
5360 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
5361 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
5362 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
5363
5364 /*
5365 * If the I/O on the transformed data was successful, generate any
5366 * checksum reports now while we still have the transformed data.
5367 */
5368 if (zio->io_error == 0) {
5369 while (zio->io_cksum_report != NULL) {
5370 zio_cksum_report_t *zcr = zio->io_cksum_report;
5371 uint64_t align = zcr->zcr_align;
5372 uint64_t asize = P2ROUNDUP(psize, align);
5373 abd_t *adata = zio->io_abd;
5374
5375 if (adata != NULL && asize != psize) {
5376 adata = abd_alloc(asize, B_TRUE);
5377 abd_copy(adata, zio->io_abd, psize);
5378 abd_zero_off(adata, psize, asize - psize);
5379 }
5380
5381 zio->io_cksum_report = zcr->zcr_next;
5382 zcr->zcr_next = NULL;
5383 zcr->zcr_finish(zcr, adata);
5384 zfs_ereport_free_checksum(zcr);
5385
5386 if (adata != NULL && asize != psize)
5387 abd_free(adata);
5388 }
5389 }
5390
5391 zio_pop_transforms(zio); /* note: may set zio->io_error */
5392
5393 vdev_stat_update(zio, psize);
5394
5395 /*
5396 * If this I/O is attached to a particular vdev is slow, exceeding
5397 * 30 seconds to complete, post an error described the I/O delay.
5398 * We ignore these errors if the device is currently unavailable.
5399 */
5400 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
5401 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
5402 /*
5403 * We want to only increment our slow IO counters if
5404 * the IO is valid (i.e. not if the drive is removed).
5405 *
5406 * zfs_ereport_post() will also do these checks, but
5407 * it can also ratelimit and have other failures, so we
5408 * need to increment the slow_io counters independent
5409 * of it.
5410 */
5411 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
5412 zio->io_spa, zio->io_vd, zio)) {
5413 mutex_enter(&zio->io_vd->vdev_stat_lock);
5414 zio->io_vd->vdev_stat.vs_slow_ios++;
5415 mutex_exit(&zio->io_vd->vdev_stat_lock);
5416
5417 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
5418 zio->io_spa, zio->io_vd, &zio->io_bookmark,
5419 zio, 0);
5420 }
5421 }
5422 }
5423
5424 if (zio->io_error) {
5425 /*
5426 * If this I/O is attached to a particular vdev,
5427 * generate an error message describing the I/O failure
5428 * at the block level. We ignore these errors if the
5429 * device is currently unavailable.
5430 */
5431 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
5432 !vdev_is_dead(zio->io_vd) &&
5433 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5434 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
5435 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5436 if (ret != EALREADY) {
5437 mutex_enter(&zio->io_vd->vdev_stat_lock);
5438 if (zio->io_type == ZIO_TYPE_READ)
5439 zio->io_vd->vdev_stat.vs_read_errors++;
5440 else if (zio->io_type == ZIO_TYPE_WRITE)
5441 zio->io_vd->vdev_stat.vs_write_errors++;
5442 mutex_exit(&zio->io_vd->vdev_stat_lock);
5443 }
5444 }
5445
5446 if ((zio->io_error == EIO || !(zio->io_flags &
5447 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
5448 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR) &&
5449 zio == zio->io_logical) {
5450 /*
5451 * For logical I/O requests, tell the SPA to log the
5452 * error and generate a logical data ereport.
5453 */
5454 spa_log_error(zio->io_spa, &zio->io_bookmark,
5455 BP_GET_LOGICAL_BIRTH(zio->io_bp));
5456 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
5457 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
5458 }
5459 }
5460
5461 if (zio->io_error && zio == zio->io_logical) {
5462
5463 /*
5464 * A DDT child tried to create a mixed gang/non-gang BP. We're
5465 * going to have to just retry as a non-dedup IO.
5466 */
5467 if (zio->io_error == EAGAIN && IO_IS_ALLOCATING(zio) &&
5468 zio->io_prop.zp_dedup) {
5469 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
5470 zio->io_prop.zp_dedup = B_FALSE;
5471 }
5472 /*
5473 * Determine whether zio should be reexecuted. This will
5474 * propagate all the way to the root via zio_notify_parent().
5475 */
5476 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
5477 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5478
5479 if (IO_IS_ALLOCATING(zio) &&
5480 !(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5481 !(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR)) {
5482 if (zio->io_error != ENOSPC)
5483 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
5484 else
5485 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5486 }
5487
5488 if ((zio->io_type == ZIO_TYPE_READ ||
5489 zio->io_type == ZIO_TYPE_FREE) &&
5490 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
5491 zio->io_error == ENXIO &&
5492 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
5493 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
5494 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5495
5496 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
5497 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
5498
5499 /*
5500 * Here is a possibly good place to attempt to do
5501 * either combinatorial reconstruction or error correction
5502 * based on checksums. It also might be a good place
5503 * to send out preliminary ereports before we suspend
5504 * processing.
5505 */
5506 }
5507
5508 /*
5509 * If there were logical child errors, they apply to us now.
5510 * We defer this until now to avoid conflating logical child
5511 * errors with errors that happened to the zio itself when
5512 * updating vdev stats and reporting FMA events above.
5513 */
5514 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
5515
5516 if ((zio->io_error || zio->io_reexecute) &&
5517 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
5518 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
5519 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
5520
5521 zio_gang_tree_free(&zio->io_gang_tree);
5522
5523 /*
5524 * Godfather I/Os should never suspend.
5525 */
5526 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
5527 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
5528 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
5529
5530 if (zio->io_reexecute) {
5531 /*
5532 * A Direct I/O operation that has a checksum verify error
5533 * should not attempt to reexecute. Instead, the error should
5534 * just be propagated back.
5535 */
5536 ASSERT(!(zio->io_flags & ZIO_FLAG_DIO_CHKSUM_ERR));
5537
5538 /*
5539 * This is a logical I/O that wants to reexecute.
5540 *
5541 * Reexecute is top-down. When an i/o fails, if it's not
5542 * the root, it simply notifies its parent and sticks around.
5543 * The parent, seeing that it still has children in zio_done(),
5544 * does the same. This percolates all the way up to the root.
5545 * The root i/o will reexecute or suspend the entire tree.
5546 *
5547 * This approach ensures that zio_reexecute() honors
5548 * all the original i/o dependency relationships, e.g.
5549 * parents not executing until children are ready.
5550 */
5551 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5552
5553 zio->io_gang_leader = NULL;
5554
5555 mutex_enter(&zio->io_lock);
5556 zio->io_state[ZIO_WAIT_DONE] = 1;
5557 mutex_exit(&zio->io_lock);
5558
5559 /*
5560 * "The Godfather" I/O monitors its children but is
5561 * not a true parent to them. It will track them through
5562 * the pipeline but severs its ties whenever they get into
5563 * trouble (e.g. suspended). This allows "The Godfather"
5564 * I/O to return status without blocking.
5565 */
5566 zl = NULL;
5567 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5568 pio = pio_next) {
5569 zio_link_t *remove_zl = zl;
5570 pio_next = zio_walk_parents(zio, &zl);
5571
5572 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5573 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
5574 zio_remove_child(pio, zio, remove_zl);
5575 /*
5576 * This is a rare code path, so we don't
5577 * bother with "next_to_execute".
5578 */
5579 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5580 NULL);
5581 }
5582 }
5583
5584 if ((pio = zio_unique_parent(zio)) != NULL) {
5585 /*
5586 * We're not a root i/o, so there's nothing to do
5587 * but notify our parent. Don't propagate errors
5588 * upward since we haven't permanently failed yet.
5589 */
5590 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5591 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5592 /*
5593 * This is a rare code path, so we don't bother with
5594 * "next_to_execute".
5595 */
5596 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5597 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
5598 /*
5599 * We'd fail again if we reexecuted now, so suspend
5600 * until conditions improve (e.g. device comes online).
5601 */
5602 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5603 } else {
5604 /*
5605 * Reexecution is potentially a huge amount of work.
5606 * Hand it off to the otherwise-unused claim taskq.
5607 */
5608 spa_taskq_dispatch(zio->io_spa,
5609 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5610 zio_reexecute, zio, B_FALSE);
5611 }
5612 return (NULL);
5613 }
5614
5615 ASSERT(list_is_empty(&zio->io_child_list));
5616 ASSERT(zio->io_reexecute == 0);
5617 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5618
5619 /*
5620 * Report any checksum errors, since the I/O is complete.
5621 */
5622 while (zio->io_cksum_report != NULL) {
5623 zio_cksum_report_t *zcr = zio->io_cksum_report;
5624 zio->io_cksum_report = zcr->zcr_next;
5625 zcr->zcr_next = NULL;
5626 zcr->zcr_finish(zcr, NULL);
5627 zfs_ereport_free_checksum(zcr);
5628 }
5629
5630 /*
5631 * It is the responsibility of the done callback to ensure that this
5632 * particular zio is no longer discoverable for adoption, and as
5633 * such, cannot acquire any new parents.
5634 */
5635 if (zio->io_done)
5636 zio->io_done(zio);
5637
5638 mutex_enter(&zio->io_lock);
5639 zio->io_state[ZIO_WAIT_DONE] = 1;
5640 mutex_exit(&zio->io_lock);
5641
5642 /*
5643 * We are done executing this zio. We may want to execute a parent
5644 * next. See the comment in zio_notify_parent().
5645 */
5646 zio_t *next_to_execute = NULL;
5647 zl = NULL;
5648 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5649 zio_link_t *remove_zl = zl;
5650 pio_next = zio_walk_parents(zio, &zl);
5651 zio_remove_child(pio, zio, remove_zl);
5652 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5653 }
5654
5655 if (zio->io_waiter != NULL) {
5656 mutex_enter(&zio->io_lock);
5657 zio->io_executor = NULL;
5658 cv_broadcast(&zio->io_cv);
5659 mutex_exit(&zio->io_lock);
5660 } else {
5661 zio_destroy(zio);
5662 }
5663
5664 return (next_to_execute);
5665 }
5666
5667 /*
5668 * ==========================================================================
5669 * I/O pipeline definition
5670 * ==========================================================================
5671 */
5672 static zio_pipe_stage_t *zio_pipeline[] = {
5673 NULL,
5674 zio_read_bp_init,
5675 zio_write_bp_init,
5676 zio_free_bp_init,
5677 zio_issue_async,
5678 zio_write_compress,
5679 zio_encrypt,
5680 zio_checksum_generate,
5681 zio_nop_write,
5682 zio_brt_free,
5683 zio_ddt_read_start,
5684 zio_ddt_read_done,
5685 zio_ddt_write,
5686 zio_ddt_free,
5687 zio_gang_assemble,
5688 zio_gang_issue,
5689 zio_dva_throttle,
5690 zio_dva_allocate,
5691 zio_dva_free,
5692 zio_dva_claim,
5693 zio_ready,
5694 zio_vdev_io_start,
5695 zio_vdev_io_done,
5696 zio_vdev_io_assess,
5697 zio_checksum_verify,
5698 zio_dio_checksum_verify,
5699 zio_done
5700 };
5701
5702
5703
5704
5705 /*
5706 * Compare two zbookmark_phys_t's to see which we would reach first in a
5707 * pre-order traversal of the object tree.
5708 *
5709 * This is simple in every case aside from the meta-dnode object. For all other
5710 * objects, we traverse them in order (object 1 before object 2, and so on).
5711 * However, all of these objects are traversed while traversing object 0, since
5712 * the data it points to is the list of objects. Thus, we need to convert to a
5713 * canonical representation so we can compare meta-dnode bookmarks to
5714 * non-meta-dnode bookmarks.
5715 *
5716 * We do this by calculating "equivalents" for each field of the zbookmark.
5717 * zbookmarks outside of the meta-dnode use their own object and level, and
5718 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5719 * blocks this bookmark refers to) by multiplying their blkid by their span
5720 * (the number of L0 blocks contained within one block at their level).
5721 * zbookmarks inside the meta-dnode calculate their object equivalent
5722 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5723 * level + 1<<31 (any value larger than a level could ever be) for their level.
5724 * This causes them to always compare before a bookmark in their object
5725 * equivalent, compare appropriately to bookmarks in other objects, and to
5726 * compare appropriately to other bookmarks in the meta-dnode.
5727 */
5728 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5729 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5730 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5731 {
5732 /*
5733 * These variables represent the "equivalent" values for the zbookmark,
5734 * after converting zbookmarks inside the meta dnode to their
5735 * normal-object equivalents.
5736 */
5737 uint64_t zb1obj, zb2obj;
5738 uint64_t zb1L0, zb2L0;
5739 uint64_t zb1level, zb2level;
5740
5741 if (zb1->zb_object == zb2->zb_object &&
5742 zb1->zb_level == zb2->zb_level &&
5743 zb1->zb_blkid == zb2->zb_blkid)
5744 return (0);
5745
5746 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5747 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5748
5749 /*
5750 * BP_SPANB calculates the span in blocks.
5751 */
5752 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5753 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5754
5755 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5756 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5757 zb1L0 = 0;
5758 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5759 } else {
5760 zb1obj = zb1->zb_object;
5761 zb1level = zb1->zb_level;
5762 }
5763
5764 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5765 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5766 zb2L0 = 0;
5767 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5768 } else {
5769 zb2obj = zb2->zb_object;
5770 zb2level = zb2->zb_level;
5771 }
5772
5773 /* Now that we have a canonical representation, do the comparison. */
5774 if (zb1obj != zb2obj)
5775 return (zb1obj < zb2obj ? -1 : 1);
5776 else if (zb1L0 != zb2L0)
5777 return (zb1L0 < zb2L0 ? -1 : 1);
5778 else if (zb1level != zb2level)
5779 return (zb1level > zb2level ? -1 : 1);
5780 /*
5781 * This can (theoretically) happen if the bookmarks have the same object
5782 * and level, but different blkids, if the block sizes are not the same.
5783 * There is presently no way to change the indirect block sizes
5784 */
5785 return (0);
5786 }
5787
5788 /*
5789 * This function checks the following: given that last_block is the place that
5790 * our traversal stopped last time, does that guarantee that we've visited
5791 * every node under subtree_root? Therefore, we can't just use the raw output
5792 * of zbookmark_compare. We have to pass in a modified version of
5793 * subtree_root; by incrementing the block id, and then checking whether
5794 * last_block is before or equal to that, we can tell whether or not having
5795 * visited last_block implies that all of subtree_root's children have been
5796 * visited.
5797 */
5798 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5799 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5800 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5801 {
5802 zbookmark_phys_t mod_zb = *subtree_root;
5803 mod_zb.zb_blkid++;
5804 ASSERT0(last_block->zb_level);
5805
5806 /* The objset_phys_t isn't before anything. */
5807 if (dnp == NULL)
5808 return (B_FALSE);
5809
5810 /*
5811 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5812 * data block size in sectors, because that variable is only used if
5813 * the bookmark refers to a block in the meta-dnode. Since we don't
5814 * know without examining it what object it refers to, and there's no
5815 * harm in passing in this value in other cases, we always pass it in.
5816 *
5817 * We pass in 0 for the indirect block size shift because zb2 must be
5818 * level 0. The indirect block size is only used to calculate the span
5819 * of the bookmark, but since the bookmark must be level 0, the span is
5820 * always 1, so the math works out.
5821 *
5822 * If you make changes to how the zbookmark_compare code works, be sure
5823 * to make sure that this code still works afterwards.
5824 */
5825 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5826 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5827 last_block) <= 0);
5828 }
5829
5830 /*
5831 * This function is similar to zbookmark_subtree_completed(), but returns true
5832 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5833 */
5834 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5835 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5836 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5837 {
5838 ASSERT0(last_block->zb_level);
5839 if (dnp == NULL)
5840 return (B_FALSE);
5841 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5842 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5843 last_block) >= 0);
5844 }
5845
5846 EXPORT_SYMBOL(zio_type_name);
5847 EXPORT_SYMBOL(zio_buf_alloc);
5848 EXPORT_SYMBOL(zio_data_buf_alloc);
5849 EXPORT_SYMBOL(zio_buf_free);
5850 EXPORT_SYMBOL(zio_data_buf_free);
5851
5852 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5853 "Max I/O completion time (milliseconds) before marking it as slow");
5854
5855 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5856 "Prioritize requeued I/O");
5857
5858 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5859 "Defer frees starting in this pass");
5860
5861 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5862 "Don't compress starting in this pass");
5863
5864 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5865 "Rewrite new bps starting in this pass");
5866
5867 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5868 "Throttle block allocations in the ZIO pipeline");
5869
5870 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5871 "Log all slow ZIOs, not just those with vdevs");
5872