1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2016 Gary Mills
26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28 * Copyright 2019 Joyent, Inc.
29 */
30
31 #include <sys/dsl_scan.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dnode.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/arc_impl.h>
42 #include <sys/zap.h>
43 #include <sys/zio.h>
44 #include <sys/zfs_context.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/spa_impl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/zil_impl.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/brt.h>
52 #include <sys/ddt.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/range_tree.h>
58 #include <sys/dbuf.h>
59 #ifdef _KERNEL
60 #include <sys/zfs_vfsops.h>
61 #endif
62
63 /*
64 * Grand theory statement on scan queue sorting
65 *
66 * Scanning is implemented by recursively traversing all indirection levels
67 * in an object and reading all blocks referenced from said objects. This
68 * results in us approximately traversing the object from lowest logical
69 * offset to the highest. For best performance, we would want the logical
70 * blocks to be physically contiguous. However, this is frequently not the
71 * case with pools given the allocation patterns of copy-on-write filesystems.
72 * So instead, we put the I/Os into a reordering queue and issue them in a
73 * way that will most benefit physical disks (LBA-order).
74 *
75 * Queue management:
76 *
77 * Ideally, we would want to scan all metadata and queue up all block I/O
78 * prior to starting to issue it, because that allows us to do an optimal
79 * sorting job. This can however consume large amounts of memory. Therefore
80 * we continuously monitor the size of the queues and constrain them to 5%
81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82 * limit, we clear out a few of the largest extents at the head of the queues
83 * to make room for more scanning. Hopefully, these extents will be fairly
84 * large and contiguous, allowing us to approach sequential I/O throughput
85 * even without a fully sorted tree.
86 *
87 * Metadata scanning takes place in dsl_scan_visit(), which is called from
88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89 * metadata on the pool, or we need to make room in memory because our
90 * queues are too large, dsl_scan_visit() is postponed and
91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92 * that metadata scanning and queued I/O issuing are mutually exclusive. This
93 * allows us to provide maximum sequential I/O throughput for the majority of
94 * I/O's issued since sequential I/O performance is significantly negatively
95 * impacted if it is interleaved with random I/O.
96 *
97 * Implementation Notes
98 *
99 * One side effect of the queued scanning algorithm is that the scanning code
100 * needs to be notified whenever a block is freed. This is needed to allow
101 * the scanning code to remove these I/Os from the issuing queue. Additionally,
102 * we do not attempt to queue gang blocks to be issued sequentially since this
103 * is very hard to do and would have an extremely limited performance benefit.
104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
105 * algorithm.
106 *
107 * Backwards compatibility
108 *
109 * This new algorithm is backwards compatible with the legacy on-disk data
110 * structures (and therefore does not require a new feature flag).
111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112 * will stop scanning metadata (in logical order) and wait for all outstanding
113 * sorted I/O to complete. Once this is done, we write out a checkpoint
114 * bookmark, indicating that we have scanned everything logically before it.
115 * If the pool is imported on a machine without the new sorting algorithm,
116 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 */
118
119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120 const zbookmark_phys_t *);
121
122 static scan_cb_t dsl_scan_scrub_cb;
123
124 static int scan_ds_queue_compare(const void *a, const void *b);
125 static int scan_prefetch_queue_compare(const void *a, const void *b);
126 static void scan_ds_queue_clear(dsl_scan_t *scn);
127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129 uint64_t *txg);
130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137 static int zfs_scan_blkstats = 0;
138
139 /*
140 * 'zpool status' uses bytes processed per pass to report throughput and
141 * estimate time remaining. We define a pass to start when the scanning
142 * phase completes for a sequential resilver. Optionally, this value
143 * may be used to reset the pass statistics every N txgs to provide an
144 * estimated completion time based on currently observed performance.
145 */
146 static uint_t zfs_scan_report_txgs = 0;
147
148 /*
149 * By default zfs will check to ensure it is not over the hard memory
150 * limit before each txg. If finer-grained control of this is needed
151 * this value can be set to 1 to enable checking before scanning each
152 * block.
153 */
154 static int zfs_scan_strict_mem_lim = B_FALSE;
155
156 /*
157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
158 * to strike a balance here between keeping the vdev queues full of I/Os
159 * at all times and not overflowing the queues to cause long latency,
160 * which would cause long txg sync times. No matter what, we will not
161 * overload the drives with I/O, since that is protected by
162 * zfs_vdev_scrub_max_active.
163 */
164 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166 static uint_t zfs_scan_issue_strategy = 0;
167
168 /* don't queue & sort zios, go direct */
169 static int zfs_scan_legacy = B_FALSE;
170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172 /*
173 * fill_weight is non-tunable at runtime, so we copy it at module init from
174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175 * break queue sorting.
176 */
177 static uint_t zfs_scan_fill_weight = 3;
178 static uint64_t fill_weight;
179
180 /* See dsl_scan_should_clear() for details on the memory limit tunables */
181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185 /* fraction of physmem */
186 static uint_t zfs_scan_mem_lim_fact = 20;
187
188 /* fraction of mem lim above */
189 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191 /* minimum milliseconds to scrub per txg */
192 static uint_t zfs_scrub_min_time_ms = 750;
193
194 /* minimum milliseconds to obsolete per txg */
195 static uint_t zfs_obsolete_min_time_ms = 500;
196
197 /* minimum milliseconds to free per txg */
198 static uint_t zfs_free_min_time_ms = 500;
199
200 /* minimum milliseconds to resilver per txg */
201 static uint_t zfs_resilver_min_time_ms = 1500;
202
203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208 /* max number of blocks to free in a single TXG */
209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210 /* max number of dedup blocks to free in a single TXG */
211 static uint64_t zfs_max_async_dedup_frees = 250000;
212
213 /*
214 * After freeing this many async ZIOs (dedup, clone, gang blocks), wait for
215 * them to complete before continuing. This prevents unbounded I/O queueing.
216 */
217 static uint64_t zfs_async_free_zio_wait_interval = 2000;
218
219 /* set to disable resilver deferring */
220 static int zfs_resilver_disable_defer = B_FALSE;
221
222 /* Don't defer a resilver if the one in progress only got this far: */
223 static uint_t zfs_resilver_defer_percent = 10;
224
225 /*
226 * Number of TXGs to wait after importing before starting background
227 * work (async destroys, scan/scrub/resilver operations). This allows
228 * the import command and filesystem mounts to complete quickly without
229 * being delayed by background activities. The value is somewhat arbitrary
230 * since userspace triggers filesystem mounts asynchronously, but 5 TXGs
231 * provides a reasonable window for import completion in most cases.
232 */
233 static uint_t zfs_import_defer_txgs = 5;
234
235 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
237 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
238
239 #define DSL_SCAN_IS_SCRUB(scn) \
240 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
241
242 #define DSL_SCAN_IS_RESILVER(scn) \
243 ((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
244
245 /*
246 * Enable/disable the processing of the free_bpobj object.
247 */
248 static int zfs_free_bpobj_enabled = 1;
249
250 /* Error blocks to be scrubbed in one txg. */
251 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
252
253 /* the order has to match pool_scan_type */
254 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
255 NULL,
256 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
257 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
258 };
259
260 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
261 typedef struct {
262 uint64_t sds_dsobj;
263 uint64_t sds_txg;
264 avl_node_t sds_node;
265 } scan_ds_t;
266
267 /*
268 * This controls what conditions are placed on dsl_scan_sync_state():
269 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
270 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
271 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
272 * write out the scn_phys_cached version.
273 * See dsl_scan_sync_state for details.
274 */
275 typedef enum {
276 SYNC_OPTIONAL,
277 SYNC_MANDATORY,
278 SYNC_CACHED
279 } state_sync_type_t;
280
281 /*
282 * This struct represents the minimum information needed to reconstruct a
283 * zio for sequential scanning. This is useful because many of these will
284 * accumulate in the sequential IO queues before being issued, so saving
285 * memory matters here.
286 */
287 typedef struct scan_io {
288 /* fields from blkptr_t */
289 uint64_t sio_blk_prop;
290 uint64_t sio_phys_birth;
291 uint64_t sio_birth;
292 zio_cksum_t sio_cksum;
293 uint32_t sio_nr_dvas;
294
295 /* fields from zio_t */
296 uint32_t sio_flags;
297 zbookmark_phys_t sio_zb;
298
299 /* members for queue sorting */
300 union {
301 avl_node_t sio_addr_node; /* link into issuing queue */
302 list_node_t sio_list_node; /* link for issuing to disk */
303 } sio_nodes;
304
305 /*
306 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
307 * depending on how many were in the original bp. Only the
308 * first DVA is really used for sorting and issuing purposes.
309 * The other DVAs (if provided) simply exist so that the zio
310 * layer can find additional copies to repair from in the
311 * event of an error. This array must go at the end of the
312 * struct to allow this for the variable number of elements.
313 */
314 dva_t sio_dva[];
315 } scan_io_t;
316
317 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
318 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
319 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
320 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
321 #define SIO_GET_END_OFFSET(sio) \
322 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
323 #define SIO_GET_MUSED(sio) \
324 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
325
326 struct dsl_scan_io_queue {
327 dsl_scan_t *q_scn; /* associated dsl_scan_t */
328 vdev_t *q_vd; /* top-level vdev that this queue represents */
329 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
330
331 /* trees used for sorting I/Os and extents of I/Os */
332 zfs_range_tree_t *q_exts_by_addr;
333 zfs_btree_t q_exts_by_size;
334 avl_tree_t q_sios_by_addr;
335 uint64_t q_sio_memused;
336 uint64_t q_last_ext_addr;
337
338 /* members for zio rate limiting */
339 uint64_t q_maxinflight_bytes;
340 uint64_t q_inflight_bytes;
341 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
342
343 /* per txg statistics */
344 uint64_t q_total_seg_size_this_txg;
345 uint64_t q_segs_this_txg;
346 uint64_t q_total_zio_size_this_txg;
347 uint64_t q_zios_this_txg;
348 };
349
350 /* private data for dsl_scan_prefetch_cb() */
351 typedef struct scan_prefetch_ctx {
352 zfs_refcount_t spc_refcnt; /* refcount for memory management */
353 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
354 boolean_t spc_root; /* is this prefetch for an objset? */
355 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
356 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
357 } scan_prefetch_ctx_t;
358
359 /* private data for dsl_scan_prefetch() */
360 typedef struct scan_prefetch_issue_ctx {
361 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
362 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
363 blkptr_t spic_bp; /* bp to prefetch */
364 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
365 } scan_prefetch_issue_ctx_t;
366
367 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
368 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
369 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
370 scan_io_t *sio);
371
372 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
373 static void scan_io_queues_destroy(dsl_scan_t *scn);
374
375 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
376
377 /* sio->sio_nr_dvas must be set so we know which cache to free from */
378 static void
sio_free(scan_io_t * sio)379 sio_free(scan_io_t *sio)
380 {
381 ASSERT3U(sio->sio_nr_dvas, >, 0);
382 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
383
384 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
385 }
386
387 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
388 static scan_io_t *
sio_alloc(unsigned short nr_dvas)389 sio_alloc(unsigned short nr_dvas)
390 {
391 ASSERT3U(nr_dvas, >, 0);
392 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
393
394 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
395 }
396
397 void
scan_init(void)398 scan_init(void)
399 {
400 /*
401 * This is used in ext_size_compare() to weight segments
402 * based on how sparse they are. This cannot be changed
403 * mid-scan and the tree comparison functions don't currently
404 * have a mechanism for passing additional context to the
405 * compare functions. Thus we store this value globally and
406 * we only allow it to be set at module initialization time
407 */
408 fill_weight = zfs_scan_fill_weight;
409
410 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
411 char name[36];
412
413 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
414 sio_cache[i] = kmem_cache_create(name,
415 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
416 0, NULL, NULL, NULL, NULL, NULL, 0);
417 }
418 }
419
420 void
scan_fini(void)421 scan_fini(void)
422 {
423 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
424 kmem_cache_destroy(sio_cache[i]);
425 }
426 }
427
428 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)429 dsl_scan_is_running(const dsl_scan_t *scn)
430 {
431 return (scn->scn_phys.scn_state == DSS_SCANNING);
432 }
433
434 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)435 dsl_scan_resilvering(dsl_pool_t *dp)
436 {
437 return (dsl_scan_is_running(dp->dp_scan) &&
438 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
439 }
440
441 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)442 sio2bp(const scan_io_t *sio, blkptr_t *bp)
443 {
444 memset(bp, 0, sizeof (*bp));
445 bp->blk_prop = sio->sio_blk_prop;
446 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
447 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
448 bp->blk_fill = 1; /* we always only work with data pointers */
449 bp->blk_cksum = sio->sio_cksum;
450
451 ASSERT3U(sio->sio_nr_dvas, >, 0);
452 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
453
454 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
455 }
456
457 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)458 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
459 {
460 sio->sio_blk_prop = bp->blk_prop;
461 sio->sio_phys_birth = BP_GET_RAW_PHYSICAL_BIRTH(bp);
462 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
463 sio->sio_cksum = bp->blk_cksum;
464 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
465
466 /*
467 * Copy the DVAs to the sio. We need all copies of the block so
468 * that the self healing code can use the alternate copies if the
469 * first is corrupted. We want the DVA at index dva_i to be first
470 * in the sio since this is the primary one that we want to issue.
471 */
472 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
473 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
474 }
475 }
476
477 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)478 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
479 {
480 int err;
481 dsl_scan_t *scn;
482 spa_t *spa = dp->dp_spa;
483 uint64_t f;
484
485 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
486 scn->scn_dp = dp;
487
488 /*
489 * It's possible that we're resuming a scan after a reboot so
490 * make sure that the scan_async_destroying flag is initialized
491 * appropriately.
492 */
493 ASSERT(!scn->scn_async_destroying);
494 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
495 SPA_FEATURE_ASYNC_DESTROY);
496
497 /*
498 * Calculate the max number of in-flight bytes for pool-wide
499 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
500 * Limits for the issuing phase are done per top-level vdev and
501 * are handled separately.
502 */
503 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
504 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
505
506 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
507 offsetof(scan_ds_t, sds_node));
508 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
509 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
510 sizeof (scan_prefetch_issue_ctx_t),
511 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
512
513 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
514 "scrub_func", sizeof (uint64_t), 1, &f);
515 if (err == 0) {
516 /*
517 * There was an old-style scrub in progress. Restart a
518 * new-style scrub from the beginning.
519 */
520 scn->scn_restart_txg = txg;
521 zfs_dbgmsg("old-style scrub was in progress for %s; "
522 "restarting new-style scrub in txg %llu",
523 spa->spa_name,
524 (longlong_t)scn->scn_restart_txg);
525
526 /*
527 * Load the queue obj from the old location so that it
528 * can be freed by dsl_scan_done().
529 */
530 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531 "scrub_queue", sizeof (uint64_t), 1,
532 &scn->scn_phys.scn_queue_obj);
533 } else {
534 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
535 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
536 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
537
538 if (err != 0 && err != ENOENT)
539 return (err);
540
541 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
542 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
543 &scn->scn_phys);
544
545 /*
546 * Detect if the pool contains the signature of #2094. If it
547 * does properly update the scn->scn_phys structure and notify
548 * the administrator by setting an errata for the pool.
549 */
550 if (err == EOVERFLOW) {
551 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
552 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
553 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
554 (23 * sizeof (uint64_t)));
555
556 err = zap_lookup(dp->dp_meta_objset,
557 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
558 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
559 if (err == 0) {
560 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
561
562 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
563 scn->scn_async_destroying) {
564 spa->spa_errata =
565 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
566 return (EOVERFLOW);
567 }
568
569 memcpy(&scn->scn_phys, zaptmp,
570 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
571 scn->scn_phys.scn_flags = overflow;
572
573 /* Required scrub already in progress. */
574 if (scn->scn_phys.scn_state == DSS_FINISHED ||
575 scn->scn_phys.scn_state == DSS_CANCELED)
576 spa->spa_errata =
577 ZPOOL_ERRATA_ZOL_2094_SCRUB;
578 }
579 }
580
581 if (err == ENOENT)
582 return (0);
583 else if (err)
584 return (err);
585
586 /*
587 * We might be restarting after a reboot, so jump the issued
588 * counter to how far we've scanned. We know we're consistent
589 * up to here.
590 */
591 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
592 scn->scn_phys.scn_skipped;
593
594 if (dsl_scan_is_running(scn) &&
595 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
596 /*
597 * A new-type scrub was in progress on an old
598 * pool, and the pool was accessed by old
599 * software. Restart from the beginning, since
600 * the old software may have changed the pool in
601 * the meantime.
602 */
603 scn->scn_restart_txg = txg;
604 zfs_dbgmsg("new-style scrub for %s was modified "
605 "by old software; restarting in txg %llu",
606 spa->spa_name,
607 (longlong_t)scn->scn_restart_txg);
608 } else if (dsl_scan_resilvering(dp)) {
609 /*
610 * If a resilver is in progress and there are already
611 * errors, restart it instead of finishing this scan and
612 * then restarting it. If there haven't been any errors
613 * then remember that the incore DTL is valid.
614 */
615 if (scn->scn_phys.scn_errors > 0) {
616 scn->scn_restart_txg = txg;
617 zfs_dbgmsg("resilver can't excise DTL_MISSING "
618 "when finished; restarting on %s in txg "
619 "%llu",
620 spa->spa_name,
621 (u_longlong_t)scn->scn_restart_txg);
622 } else {
623 /* it's safe to excise DTL when finished */
624 spa->spa_scrub_started = B_TRUE;
625 }
626 }
627 }
628
629 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
630
631 /* reload the queue into the in-core state */
632 if (scn->scn_phys.scn_queue_obj != 0) {
633 zap_cursor_t zc;
634 zap_attribute_t *za = zap_attribute_alloc();
635
636 for (zap_cursor_init(&zc, dp->dp_meta_objset,
637 scn->scn_phys.scn_queue_obj);
638 zap_cursor_retrieve(&zc, za) == 0;
639 (void) zap_cursor_advance(&zc)) {
640 scan_ds_queue_insert(scn,
641 zfs_strtonum(za->za_name, NULL),
642 za->za_first_integer);
643 }
644 zap_cursor_fini(&zc);
645 zap_attribute_free(za);
646 }
647
648 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
649
650 spa_scan_stat_init(spa);
651 vdev_scan_stat_init(spa->spa_root_vdev);
652
653 return (0);
654 }
655
656 void
dsl_scan_fini(dsl_pool_t * dp)657 dsl_scan_fini(dsl_pool_t *dp)
658 {
659 if (dp->dp_scan != NULL) {
660 dsl_scan_t *scn = dp->dp_scan;
661
662 if (scn->scn_taskq != NULL)
663 taskq_destroy(scn->scn_taskq);
664
665 scan_ds_queue_clear(scn);
666 avl_destroy(&scn->scn_queue);
667 mutex_destroy(&scn->scn_queue_lock);
668 scan_ds_prefetch_queue_clear(scn);
669 avl_destroy(&scn->scn_prefetch_queue);
670
671 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
672 dp->dp_scan = NULL;
673 }
674 }
675
676 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)677 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
678 {
679 return (scn->scn_restart_txg != 0 &&
680 scn->scn_restart_txg <= tx->tx_txg);
681 }
682
683 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)684 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
685 {
686 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
687 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
688 }
689
690 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)691 dsl_scan_scrubbing(const dsl_pool_t *dp)
692 {
693 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
694
695 return (scn_phys->scn_state == DSS_SCANNING &&
696 scn_phys->scn_func == POOL_SCAN_SCRUB);
697 }
698
699 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)700 dsl_errorscrubbing(const dsl_pool_t *dp)
701 {
702 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
703
704 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
705 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
706 }
707
708 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)709 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
710 {
711 return (dsl_errorscrubbing(scn->scn_dp) &&
712 scn->errorscrub_phys.dep_paused_flags);
713 }
714
715 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)716 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
717 {
718 return (dsl_scan_scrubbing(scn->scn_dp) &&
719 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
720 }
721
722 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)723 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
724 {
725 scn->errorscrub_phys.dep_cursor =
726 zap_cursor_serialize(&scn->errorscrub_cursor);
727
728 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
729 DMU_POOL_DIRECTORY_OBJECT,
730 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
731 &scn->errorscrub_phys, tx));
732 }
733
734 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)735 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
736 {
737 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
738 pool_scan_func_t *funcp = arg;
739 dsl_pool_t *dp = scn->scn_dp;
740 spa_t *spa = dp->dp_spa;
741
742 ASSERT(!dsl_scan_is_running(scn));
743 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
744 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
745
746 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
747 scn->errorscrub_phys.dep_func = *funcp;
748 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
749 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
750 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
751 scn->errorscrub_phys.dep_examined = 0;
752 scn->errorscrub_phys.dep_errors = 0;
753 scn->errorscrub_phys.dep_cursor = 0;
754 zap_cursor_init_serialized(&scn->errorscrub_cursor,
755 spa->spa_meta_objset, spa->spa_errlog_last,
756 scn->errorscrub_phys.dep_cursor);
757
758 vdev_config_dirty(spa->spa_root_vdev);
759 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
760
761 dsl_errorscrub_sync_state(scn, tx);
762
763 spa_history_log_internal(spa, "error scrub setup", tx,
764 "func=%u mintxg=%u maxtxg=%llu",
765 *funcp, 0, (u_longlong_t)tx->tx_txg);
766 }
767
768 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)769 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
770 {
771 (void) arg;
772 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
773
774 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
775 return (SET_ERROR(EBUSY));
776 }
777
778 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
779 return (ECANCELED);
780 }
781 return (0);
782 }
783
784 /*
785 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
786 * Because we can be running in the block sorting algorithm, we do not always
787 * want to write out the record, only when it is "safe" to do so. This safety
788 * condition is achieved by making sure that the sorting queues are empty
789 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
790 * is inconsistent with how much actual scanning progress has been made. The
791 * kind of sync to be performed is specified by the sync_type argument. If the
792 * sync is optional, we only sync if the queues are empty. If the sync is
793 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
794 * third possible state is a "cached" sync. This is done in response to:
795 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
796 * destroyed, so we wouldn't be able to restart scanning from it.
797 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
798 * superseded by a newer snapshot.
799 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
800 * swapped with its clone.
801 * In all cases, a cached sync simply rewrites the last record we've written,
802 * just slightly modified. For the modifications that are performed to the
803 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
804 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
805 */
806 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)807 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
808 {
809 int i;
810 spa_t *spa = scn->scn_dp->dp_spa;
811
812 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
813 if (scn->scn_queues_pending == 0) {
814 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
815 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
816 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
817
818 if (q == NULL)
819 continue;
820
821 mutex_enter(&vd->vdev_scan_io_queue_lock);
822 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
823 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
824 NULL);
825 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
826 NULL);
827 mutex_exit(&vd->vdev_scan_io_queue_lock);
828 }
829
830 if (scn->scn_phys.scn_queue_obj != 0)
831 scan_ds_queue_sync(scn, tx);
832 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
833 DMU_POOL_DIRECTORY_OBJECT,
834 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
835 &scn->scn_phys, tx));
836 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
837 sizeof (scn->scn_phys));
838
839 if (scn->scn_checkpointing)
840 zfs_dbgmsg("finish scan checkpoint for %s",
841 spa->spa_name);
842
843 scn->scn_checkpointing = B_FALSE;
844 scn->scn_last_checkpoint = ddi_get_lbolt();
845 } else if (sync_type == SYNC_CACHED) {
846 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
847 DMU_POOL_DIRECTORY_OBJECT,
848 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
849 &scn->scn_phys_cached, tx));
850 }
851 }
852
853 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)854 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
855 {
856 (void) arg;
857 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
858 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
859
860 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
861 dsl_errorscrubbing(scn->scn_dp))
862 return (SET_ERROR(EBUSY));
863
864 return (0);
865 }
866
867 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)868 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
869 {
870 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
871 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
872 dmu_object_type_t ot = 0;
873 dsl_pool_t *dp = scn->scn_dp;
874 spa_t *spa = dp->dp_spa;
875
876 ASSERT(!dsl_scan_is_running(scn));
877 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
878 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
879 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
880
881 /*
882 * If we are starting a fresh scrub, we erase the error scrub
883 * information from disk.
884 */
885 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
886 dsl_errorscrub_sync_state(scn, tx);
887
888 scn->scn_phys.scn_func = setup_sync_arg->func;
889 scn->scn_phys.scn_state = DSS_SCANNING;
890 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
891 if (setup_sync_arg->txgend == 0) {
892 scn->scn_phys.scn_max_txg = tx->tx_txg;
893 } else {
894 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
895 }
896 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
897 scn->scn_phys.scn_start_time = gethrestime_sec();
898 scn->scn_phys.scn_errors = 0;
899 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
900 scn->scn_issued_before_pass = 0;
901 scn->scn_restart_txg = 0;
902 scn->scn_done_txg = 0;
903 scn->scn_last_checkpoint = 0;
904 scn->scn_checkpointing = B_FALSE;
905 spa_scan_stat_init(spa);
906 vdev_scan_stat_init(spa->spa_root_vdev);
907
908 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
909 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
910
911 /* rewrite all disk labels */
912 vdev_config_dirty(spa->spa_root_vdev);
913
914 if (vdev_resilver_needed(spa->spa_root_vdev,
915 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
916 nvlist_t *aux = fnvlist_alloc();
917 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
918 "healing");
919 spa_event_notify(spa, NULL, aux,
920 ESC_ZFS_RESILVER_START);
921 nvlist_free(aux);
922 } else {
923 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
924 }
925
926 spa->spa_scrub_started = B_TRUE;
927 /*
928 * If this is an incremental scrub, limit the DDT scrub phase
929 * to just the auto-ditto class (for correctness); the rest
930 * of the scrub should go faster using top-down pruning.
931 */
932 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
933 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
934
935 /*
936 * When starting a resilver clear any existing rebuild state.
937 * This is required to prevent stale rebuild status from
938 * being reported when a rebuild is run, then a resilver and
939 * finally a scrub. In which case only the scrub status
940 * should be reported by 'zpool status'.
941 */
942 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
943 vdev_t *rvd = spa->spa_root_vdev;
944 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
945 vdev_t *vd = rvd->vdev_child[i];
946 vdev_rebuild_clear_sync(
947 (void *)(uintptr_t)vd->vdev_id, tx);
948 }
949 }
950 }
951
952 /* back to the generic stuff */
953
954 if (zfs_scan_blkstats) {
955 if (dp->dp_blkstats == NULL) {
956 dp->dp_blkstats =
957 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
958 }
959 memset(&dp->dp_blkstats->zab_type, 0,
960 sizeof (dp->dp_blkstats->zab_type));
961 } else {
962 if (dp->dp_blkstats) {
963 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
964 dp->dp_blkstats = NULL;
965 }
966 }
967
968 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
969 ot = DMU_OT_ZAP_OTHER;
970
971 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
972 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
973
974 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
975
976 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
977
978 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
979
980 spa_history_log_internal(spa, "scan setup", tx,
981 "func=%u mintxg=%llu maxtxg=%llu",
982 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
983 (u_longlong_t)scn->scn_phys.scn_max_txg);
984 }
985
986 /*
987 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
988 * error scrub or resilver. Can also be called to resume a paused scrub or
989 * error scrub.
990 */
991 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)992 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
993 uint64_t txgend)
994 {
995 spa_t *spa = dp->dp_spa;
996 dsl_scan_t *scn = dp->dp_scan;
997 setup_sync_arg_t setup_sync_arg;
998
999 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
1000 return (EINVAL);
1001 }
1002
1003 /*
1004 * Purge all vdev caches and probe all devices. We do this here
1005 * rather than in sync context because this requires a writer lock
1006 * on the spa_config lock, which we can't do from sync context. The
1007 * spa_scrub_reopen flag indicates that vdev_open() should not
1008 * attempt to start another scrub.
1009 */
1010 spa_vdev_state_enter(spa, SCL_NONE);
1011 spa->spa_scrub_reopen = B_TRUE;
1012 vdev_reopen(spa->spa_root_vdev);
1013 spa->spa_scrub_reopen = B_FALSE;
1014 (void) spa_vdev_state_exit(spa, NULL, 0);
1015
1016 if (func == POOL_SCAN_RESILVER) {
1017 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1018 return (0);
1019 }
1020
1021 if (func == POOL_SCAN_ERRORSCRUB) {
1022 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1023 /*
1024 * got error scrub start cmd, resume paused error scrub.
1025 */
1026 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1027 POOL_SCRUB_NORMAL);
1028 if (err == 0) {
1029 spa_event_notify(spa, NULL, NULL,
1030 ESC_ZFS_ERRORSCRUB_RESUME);
1031 return (0);
1032 }
1033 return (SET_ERROR(err));
1034 }
1035
1036 return (dsl_sync_task(spa_name(dp->dp_spa),
1037 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1038 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1039 }
1040
1041 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1042 /* got scrub start cmd, resume paused scrub */
1043 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1044 POOL_SCRUB_NORMAL);
1045 if (err == 0) {
1046 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1047 return (0);
1048 }
1049 return (SET_ERROR(err));
1050 }
1051
1052 setup_sync_arg.func = func;
1053 setup_sync_arg.txgstart = txgstart;
1054 setup_sync_arg.txgend = txgend;
1055
1056 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1057 dsl_scan_setup_sync, &setup_sync_arg, 0,
1058 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1059 }
1060
1061 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1062 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1063 {
1064 dsl_pool_t *dp = scn->scn_dp;
1065 spa_t *spa = dp->dp_spa;
1066
1067 if (complete) {
1068 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1069 spa_history_log_internal(spa, "error scrub done", tx,
1070 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1071 } else {
1072 spa_history_log_internal(spa, "error scrub canceled", tx,
1073 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1074 }
1075
1076 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1077 spa->spa_scrub_active = B_FALSE;
1078 spa_errlog_rotate(spa);
1079 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1080 zap_cursor_fini(&scn->errorscrub_cursor);
1081
1082 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1083 spa->spa_errata = 0;
1084
1085 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1086 }
1087
1088 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1089 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1090 {
1091 static const char *old_names[] = {
1092 "scrub_bookmark",
1093 "scrub_ddt_bookmark",
1094 "scrub_ddt_class_max",
1095 "scrub_queue",
1096 "scrub_min_txg",
1097 "scrub_max_txg",
1098 "scrub_func",
1099 "scrub_errors",
1100 NULL
1101 };
1102
1103 dsl_pool_t *dp = scn->scn_dp;
1104 spa_t *spa = dp->dp_spa;
1105 int i;
1106
1107 /* Remove any remnants of an old-style scrub. */
1108 for (i = 0; old_names[i]; i++) {
1109 (void) zap_remove(dp->dp_meta_objset,
1110 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1111 }
1112
1113 if (scn->scn_phys.scn_queue_obj != 0) {
1114 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1115 scn->scn_phys.scn_queue_obj, tx));
1116 scn->scn_phys.scn_queue_obj = 0;
1117 }
1118 scan_ds_queue_clear(scn);
1119 scan_ds_prefetch_queue_clear(scn);
1120
1121 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1122
1123 /*
1124 * If we were "restarted" from a stopped state, don't bother
1125 * with anything else.
1126 */
1127 if (!dsl_scan_is_running(scn)) {
1128 ASSERT(!scn->scn_is_sorted);
1129 return;
1130 }
1131
1132 if (scn->scn_is_sorted) {
1133 scan_io_queues_destroy(scn);
1134 scn->scn_is_sorted = B_FALSE;
1135
1136 if (scn->scn_taskq != NULL) {
1137 taskq_destroy(scn->scn_taskq);
1138 scn->scn_taskq = NULL;
1139 }
1140 }
1141
1142 if (dsl_scan_restarting(scn, tx)) {
1143 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1144 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1145 } else if (!complete) {
1146 spa_history_log_internal(spa, "scan cancelled", tx,
1147 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1148 } else {
1149 spa_history_log_internal(spa, "scan done", tx,
1150 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1151 if (DSL_SCAN_IS_SCRUB(scn)) {
1152 VERIFY0(zap_update(dp->dp_meta_objset,
1153 DMU_POOL_DIRECTORY_OBJECT,
1154 DMU_POOL_LAST_SCRUBBED_TXG,
1155 sizeof (uint64_t), 1,
1156 &scn->scn_phys.scn_max_txg, tx));
1157 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1158 }
1159 }
1160
1161 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1162 spa->spa_scrub_active = B_FALSE;
1163
1164 /*
1165 * If the scrub/resilver completed, update all DTLs to
1166 * reflect this. Whether it succeeded or not, vacate
1167 * all temporary scrub DTLs.
1168 *
1169 * As the scrub does not currently support traversing
1170 * data that have been freed but are part of a checkpoint,
1171 * we don't mark the scrub as done in the DTLs as faults
1172 * may still exist in those vdevs.
1173 */
1174 if (complete &&
1175 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1176 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1177 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1178
1179 if (DSL_SCAN_IS_RESILVER(scn)) {
1180 nvlist_t *aux = fnvlist_alloc();
1181 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1182 "healing");
1183 spa_event_notify(spa, NULL, aux,
1184 ESC_ZFS_RESILVER_FINISH);
1185 nvlist_free(aux);
1186 } else {
1187 spa_event_notify(spa, NULL, NULL,
1188 ESC_ZFS_SCRUB_FINISH);
1189 }
1190 } else {
1191 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1192 0, B_TRUE, B_FALSE);
1193 }
1194 spa_errlog_rotate(spa);
1195
1196 /*
1197 * Don't clear flag until after vdev_dtl_reassess to ensure that
1198 * DTL_MISSING will get updated when possible.
1199 */
1200 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1201 DSS_CANCELED;
1202 scn->scn_phys.scn_end_time = gethrestime_sec();
1203 spa->spa_scrub_started = B_FALSE;
1204
1205 /*
1206 * We may have finished replacing a device.
1207 * Let the async thread assess this and handle the detach.
1208 */
1209 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1210
1211 /*
1212 * Clear any resilver_deferred flags in the config.
1213 * If there are drives that need resilvering, kick
1214 * off an asynchronous request to start resilver.
1215 * vdev_clear_resilver_deferred() may update the config
1216 * before the resilver can restart. In the event of
1217 * a crash during this period, the spa loading code
1218 * will find the drives that need to be resilvered
1219 * and start the resilver then.
1220 */
1221 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1222 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1223 spa_history_log_internal(spa,
1224 "starting deferred resilver", tx, "errors=%llu",
1225 (u_longlong_t)spa_approx_errlog_size(spa));
1226 spa_async_request(spa, SPA_ASYNC_RESILVER);
1227 }
1228
1229 /* Clear recent error events (i.e. duplicate events tracking) */
1230 if (complete)
1231 zfs_ereport_clear(spa, NULL);
1232 } else {
1233 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1234 DSS_CANCELED;
1235 scn->scn_phys.scn_end_time = gethrestime_sec();
1236 }
1237
1238 spa_notify_waiters(spa);
1239
1240 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1241 spa->spa_errata = 0;
1242
1243 ASSERT(!dsl_scan_is_running(scn));
1244 }
1245
1246 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1247 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1248 {
1249 pool_scrub_cmd_t *cmd = arg;
1250 dsl_pool_t *dp = dmu_tx_pool(tx);
1251 dsl_scan_t *scn = dp->dp_scan;
1252
1253 if (*cmd == POOL_SCRUB_PAUSE) {
1254 /*
1255 * can't pause a error scrub when there is no in-progress
1256 * error scrub.
1257 */
1258 if (!dsl_errorscrubbing(dp))
1259 return (SET_ERROR(ENOENT));
1260
1261 /* can't pause a paused error scrub */
1262 if (dsl_errorscrub_is_paused(scn))
1263 return (SET_ERROR(EBUSY));
1264 } else if (*cmd != POOL_SCRUB_NORMAL) {
1265 return (SET_ERROR(ENOTSUP));
1266 }
1267
1268 return (0);
1269 }
1270
1271 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1272 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1273 {
1274 pool_scrub_cmd_t *cmd = arg;
1275 dsl_pool_t *dp = dmu_tx_pool(tx);
1276 spa_t *spa = dp->dp_spa;
1277 dsl_scan_t *scn = dp->dp_scan;
1278
1279 if (*cmd == POOL_SCRUB_PAUSE) {
1280 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1281 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1282 dsl_errorscrub_sync_state(scn, tx);
1283 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1284 } else {
1285 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1286 if (dsl_errorscrub_is_paused(scn)) {
1287 /*
1288 * We need to keep track of how much time we spend
1289 * paused per pass so that we can adjust the error scrub
1290 * rate shown in the output of 'zpool status'.
1291 */
1292 spa->spa_scan_pass_errorscrub_spent_paused +=
1293 gethrestime_sec() -
1294 spa->spa_scan_pass_errorscrub_pause;
1295
1296 spa->spa_scan_pass_errorscrub_pause = 0;
1297 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1298
1299 zap_cursor_init_serialized(
1300 &scn->errorscrub_cursor,
1301 spa->spa_meta_objset, spa->spa_errlog_last,
1302 scn->errorscrub_phys.dep_cursor);
1303
1304 dsl_errorscrub_sync_state(scn, tx);
1305 }
1306 }
1307 }
1308
1309 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1310 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1311 {
1312 (void) arg;
1313 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1314 /* can't cancel a error scrub when there is no one in-progress */
1315 if (!dsl_errorscrubbing(scn->scn_dp))
1316 return (SET_ERROR(ENOENT));
1317 return (0);
1318 }
1319
1320 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1321 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1322 {
1323 (void) arg;
1324 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1325
1326 dsl_errorscrub_done(scn, B_FALSE, tx);
1327 dsl_errorscrub_sync_state(scn, tx);
1328 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1329 ESC_ZFS_ERRORSCRUB_ABORT);
1330 }
1331
1332 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1333 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1334 {
1335 (void) arg;
1336 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1337
1338 if (!dsl_scan_is_running(scn))
1339 return (SET_ERROR(ENOENT));
1340 return (0);
1341 }
1342
1343 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1344 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1345 {
1346 (void) arg;
1347 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1348
1349 dsl_scan_done(scn, B_FALSE, tx);
1350 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1351 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1352 }
1353
1354 int
dsl_scan_cancel(dsl_pool_t * dp)1355 dsl_scan_cancel(dsl_pool_t *dp)
1356 {
1357 if (dsl_errorscrubbing(dp)) {
1358 return (dsl_sync_task(spa_name(dp->dp_spa),
1359 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1360 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1361 }
1362 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1363 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1364 }
1365
1366 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1367 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1368 {
1369 pool_scrub_cmd_t *cmd = arg;
1370 dsl_pool_t *dp = dmu_tx_pool(tx);
1371 dsl_scan_t *scn = dp->dp_scan;
1372
1373 if (*cmd == POOL_SCRUB_PAUSE) {
1374 /* can't pause a scrub when there is no in-progress scrub */
1375 if (!dsl_scan_scrubbing(dp))
1376 return (SET_ERROR(ENOENT));
1377
1378 /* can't pause a paused scrub */
1379 if (dsl_scan_is_paused_scrub(scn))
1380 return (SET_ERROR(EBUSY));
1381 } else if (*cmd != POOL_SCRUB_NORMAL) {
1382 return (SET_ERROR(ENOTSUP));
1383 }
1384
1385 return (0);
1386 }
1387
1388 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1389 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1390 {
1391 pool_scrub_cmd_t *cmd = arg;
1392 dsl_pool_t *dp = dmu_tx_pool(tx);
1393 spa_t *spa = dp->dp_spa;
1394 dsl_scan_t *scn = dp->dp_scan;
1395
1396 if (*cmd == POOL_SCRUB_PAUSE) {
1397 /* can't pause a scrub when there is no in-progress scrub */
1398 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1399 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1400 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1401 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1402 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1403 spa_notify_waiters(spa);
1404 } else {
1405 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1406 if (dsl_scan_is_paused_scrub(scn)) {
1407 /*
1408 * We need to keep track of how much time we spend
1409 * paused per pass so that we can adjust the scrub rate
1410 * shown in the output of 'zpool status'
1411 */
1412 spa->spa_scan_pass_scrub_spent_paused +=
1413 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1414 spa->spa_scan_pass_scrub_pause = 0;
1415 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1416 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1417 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1418 }
1419 }
1420 }
1421
1422 /*
1423 * Set scrub pause/resume state if it makes sense to do so
1424 */
1425 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1426 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1427 {
1428 if (dsl_errorscrubbing(dp)) {
1429 return (dsl_sync_task(spa_name(dp->dp_spa),
1430 dsl_errorscrub_pause_resume_check,
1431 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1432 ZFS_SPACE_CHECK_RESERVED));
1433 }
1434 return (dsl_sync_task(spa_name(dp->dp_spa),
1435 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1436 ZFS_SPACE_CHECK_RESERVED));
1437 }
1438
1439
1440 /* start a new scan, or restart an existing one. */
1441 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1442 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1443 {
1444 if (txg == 0) {
1445 dmu_tx_t *tx;
1446 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1447 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1448
1449 txg = dmu_tx_get_txg(tx);
1450 dp->dp_scan->scn_restart_txg = txg;
1451 dmu_tx_commit(tx);
1452 } else {
1453 dp->dp_scan->scn_restart_txg = txg;
1454 }
1455 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1456 dp->dp_spa->spa_name, (longlong_t)txg);
1457 }
1458
1459 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1460 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1461 {
1462 zio_free(dp->dp_spa, txg, bp);
1463 }
1464
1465 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1466 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1467 {
1468 ASSERT(dsl_pool_sync_context(dp));
1469 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1470 }
1471
1472 static int
scan_ds_queue_compare(const void * a,const void * b)1473 scan_ds_queue_compare(const void *a, const void *b)
1474 {
1475 const scan_ds_t *sds_a = a, *sds_b = b;
1476
1477 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1478 return (-1);
1479 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1480 return (0);
1481 return (1);
1482 }
1483
1484 static void
scan_ds_queue_clear(dsl_scan_t * scn)1485 scan_ds_queue_clear(dsl_scan_t *scn)
1486 {
1487 void *cookie = NULL;
1488 scan_ds_t *sds;
1489 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1490 kmem_free(sds, sizeof (*sds));
1491 }
1492 }
1493
1494 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1495 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1496 {
1497 scan_ds_t srch, *sds;
1498
1499 srch.sds_dsobj = dsobj;
1500 sds = avl_find(&scn->scn_queue, &srch, NULL);
1501 if (sds != NULL && txg != NULL)
1502 *txg = sds->sds_txg;
1503 return (sds != NULL);
1504 }
1505
1506 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1507 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1508 {
1509 scan_ds_t *sds;
1510 avl_index_t where;
1511
1512 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1513 sds->sds_dsobj = dsobj;
1514 sds->sds_txg = txg;
1515
1516 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1517 avl_insert(&scn->scn_queue, sds, where);
1518 }
1519
1520 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1521 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1522 {
1523 scan_ds_t srch, *sds;
1524
1525 srch.sds_dsobj = dsobj;
1526
1527 sds = avl_find(&scn->scn_queue, &srch, NULL);
1528 VERIFY(sds != NULL);
1529 avl_remove(&scn->scn_queue, sds);
1530 kmem_free(sds, sizeof (*sds));
1531 }
1532
1533 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1534 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1535 {
1536 dsl_pool_t *dp = scn->scn_dp;
1537 spa_t *spa = dp->dp_spa;
1538 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1539 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1540
1541 ASSERT0(scn->scn_queues_pending);
1542 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1543
1544 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1545 scn->scn_phys.scn_queue_obj, tx));
1546 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1547 DMU_OT_NONE, 0, tx);
1548 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1549 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1550 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1551 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1552 sds->sds_txg, tx));
1553 }
1554 }
1555
1556 /*
1557 * Computes the memory limit state that we're currently in. A sorted scan
1558 * needs quite a bit of memory to hold the sorting queue, so we need to
1559 * reasonably constrain the size so it doesn't impact overall system
1560 * performance. We compute two limits:
1561 * 1) Hard memory limit: if the amount of memory used by the sorting
1562 * queues on a pool gets above this value, we stop the metadata
1563 * scanning portion and start issuing the queued up and sorted
1564 * I/Os to reduce memory usage.
1565 * This limit is calculated as a fraction of physmem (by default 5%).
1566 * We constrain the lower bound of the hard limit to an absolute
1567 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1568 * the upper bound to 5% of the total pool size - no chance we'll
1569 * ever need that much memory, but just to keep the value in check.
1570 * 2) Soft memory limit: once we hit the hard memory limit, we start
1571 * issuing I/O to reduce queue memory usage, but we don't want to
1572 * completely empty out the queues, since we might be able to find I/Os
1573 * that will fill in the gaps of our non-sequential IOs at some point
1574 * in the future. So we stop the issuing of I/Os once the amount of
1575 * memory used drops below the soft limit (at which point we stop issuing
1576 * I/O and start scanning metadata again).
1577 *
1578 * This limit is calculated by subtracting a fraction of the hard
1579 * limit from the hard limit. By default this fraction is 5%, so
1580 * the soft limit is 95% of the hard limit. We cap the size of the
1581 * difference between the hard and soft limits at an absolute
1582 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1583 * sufficient to not cause too frequent switching between the
1584 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1585 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1586 * that should take at least a decent fraction of a second).
1587 */
1588 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1589 dsl_scan_should_clear(dsl_scan_t *scn)
1590 {
1591 spa_t *spa = scn->scn_dp->dp_spa;
1592 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1593 uint64_t alloc, mlim_hard, mlim_soft, mused;
1594
1595 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1596 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1597 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1598
1599 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1600 zfs_scan_mem_lim_min);
1601 mlim_hard = MIN(mlim_hard, alloc / 20);
1602 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1603 zfs_scan_mem_lim_soft_max);
1604 mused = 0;
1605 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1606 vdev_t *tvd = rvd->vdev_child[i];
1607 dsl_scan_io_queue_t *queue;
1608
1609 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1610 queue = tvd->vdev_scan_io_queue;
1611 if (queue != NULL) {
1612 /*
1613 * # of extents in exts_by_addr = # in exts_by_size.
1614 * B-tree efficiency is ~75%, but can be as low as 50%.
1615 */
1616 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1617 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1618 3 / 2) + queue->q_sio_memused;
1619 }
1620 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1621 }
1622
1623 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1624
1625 if (mused == 0)
1626 ASSERT0(scn->scn_queues_pending);
1627
1628 /*
1629 * If we are above our hard limit, we need to clear out memory.
1630 * If we are below our soft limit, we need to accumulate sequential IOs.
1631 * Otherwise, we should keep doing whatever we are currently doing.
1632 */
1633 if (mused >= mlim_hard)
1634 return (B_TRUE);
1635 else if (mused < mlim_soft)
1636 return (B_FALSE);
1637 else
1638 return (scn->scn_clearing);
1639 }
1640
1641 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1642 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1643 {
1644 /* we never skip user/group accounting objects */
1645 if (zb && (int64_t)zb->zb_object < 0)
1646 return (B_FALSE);
1647
1648 if (scn->scn_suspending)
1649 return (B_TRUE); /* we're already suspending */
1650
1651 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1652 return (B_FALSE); /* we're resuming */
1653
1654 /* We only know how to resume from level-0 and objset blocks. */
1655 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1656 return (B_FALSE);
1657
1658 /*
1659 * We suspend if:
1660 * - we have scanned for at least the minimum time (default 1 sec
1661 * for scrub, 3 sec for resilver), and either we have sufficient
1662 * dirty data that we are starting to write more quickly
1663 * (default 30%), someone is explicitly waiting for this txg
1664 * to complete, or we have used up all of the time in the txg
1665 * timeout (default 5 sec).
1666 * or
1667 * - the spa is shutting down because this pool is being exported
1668 * or the machine is rebooting.
1669 * or
1670 * - the scan queue has reached its memory use limit
1671 */
1672 uint64_t curr_time_ns = getlrtime();
1673 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1674 uint64_t sync_time_ns = curr_time_ns -
1675 scn->scn_dp->dp_spa->spa_sync_starttime;
1676 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1677 zfs_vdev_async_write_active_min_dirty_percent / 100;
1678 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1679 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1680
1681 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1682 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1683 txg_sync_waiting(scn->scn_dp) ||
1684 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1685 spa_shutting_down(scn->scn_dp->dp_spa) ||
1686 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1687 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1688 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1689 dprintf("suspending at first available bookmark "
1690 "%llx/%llx/%llx/%llx\n",
1691 (longlong_t)zb->zb_objset,
1692 (longlong_t)zb->zb_object,
1693 (longlong_t)zb->zb_level,
1694 (longlong_t)zb->zb_blkid);
1695 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1696 zb->zb_objset, 0, 0, 0);
1697 } else if (zb != NULL) {
1698 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1699 (longlong_t)zb->zb_objset,
1700 (longlong_t)zb->zb_object,
1701 (longlong_t)zb->zb_level,
1702 (longlong_t)zb->zb_blkid);
1703 scn->scn_phys.scn_bookmark = *zb;
1704 } else {
1705 #ifdef ZFS_DEBUG
1706 dsl_scan_phys_t *scnp = &scn->scn_phys;
1707 dprintf("suspending at at DDT bookmark "
1708 "%llx/%llx/%llx/%llx\n",
1709 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1710 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1711 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1712 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1713 #endif
1714 }
1715 scn->scn_suspending = B_TRUE;
1716 return (B_TRUE);
1717 }
1718 return (B_FALSE);
1719 }
1720
1721 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1722 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1723 {
1724 /*
1725 * We suspend if:
1726 * - we have scrubbed for at least the minimum time (default 1 sec
1727 * for error scrub), someone is explicitly waiting for this txg
1728 * to complete, or we have used up all of the time in the txg
1729 * timeout (default 5 sec).
1730 * or
1731 * - the spa is shutting down because this pool is being exported
1732 * or the machine is rebooting.
1733 */
1734 uint64_t curr_time_ns = getlrtime();
1735 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1736 uint64_t sync_time_ns = curr_time_ns -
1737 scn->scn_dp->dp_spa->spa_sync_starttime;
1738 int mintime = zfs_scrub_min_time_ms;
1739
1740 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1741 (txg_sync_waiting(scn->scn_dp) ||
1742 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1743 spa_shutting_down(scn->scn_dp->dp_spa)) {
1744 if (zb) {
1745 dprintf("error scrub suspending at bookmark "
1746 "%llx/%llx/%llx/%llx\n",
1747 (longlong_t)zb->zb_objset,
1748 (longlong_t)zb->zb_object,
1749 (longlong_t)zb->zb_level,
1750 (longlong_t)zb->zb_blkid);
1751 }
1752 return (B_TRUE);
1753 }
1754 return (B_FALSE);
1755 }
1756
1757 typedef struct zil_scan_arg {
1758 dsl_pool_t *zsa_dp;
1759 zil_header_t *zsa_zh;
1760 } zil_scan_arg_t;
1761
1762 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1763 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1764 uint64_t claim_txg)
1765 {
1766 (void) zilog;
1767 zil_scan_arg_t *zsa = arg;
1768 dsl_pool_t *dp = zsa->zsa_dp;
1769 dsl_scan_t *scn = dp->dp_scan;
1770 zil_header_t *zh = zsa->zsa_zh;
1771 zbookmark_phys_t zb;
1772
1773 ASSERT(!BP_IS_REDACTED(bp));
1774 if (BP_IS_HOLE(bp) ||
1775 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1776 return (0);
1777
1778 /*
1779 * One block ("stubby") can be allocated a long time ago; we
1780 * want to visit that one because it has been allocated
1781 * (on-disk) even if it hasn't been claimed (even though for
1782 * scrub there's nothing to do to it).
1783 */
1784 if (claim_txg == 0 &&
1785 BP_GET_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1786 return (0);
1787
1788 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1789 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1790
1791 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1792 return (0);
1793 }
1794
1795 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1796 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1797 uint64_t claim_txg)
1798 {
1799 (void) zilog;
1800 if (lrc->lrc_txtype == TX_WRITE) {
1801 zil_scan_arg_t *zsa = arg;
1802 dsl_pool_t *dp = zsa->zsa_dp;
1803 dsl_scan_t *scn = dp->dp_scan;
1804 zil_header_t *zh = zsa->zsa_zh;
1805 const lr_write_t *lr = (const lr_write_t *)lrc;
1806 const blkptr_t *bp = &lr->lr_blkptr;
1807 zbookmark_phys_t zb;
1808
1809 ASSERT(!BP_IS_REDACTED(bp));
1810 if (BP_IS_HOLE(bp) ||
1811 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1812 return (0);
1813
1814 /*
1815 * birth can be < claim_txg if this record's txg is
1816 * already txg sync'ed (but this log block contains
1817 * other records that are not synced)
1818 */
1819 if (claim_txg == 0 || BP_GET_BIRTH(bp) < claim_txg)
1820 return (0);
1821
1822 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1823 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1824 lr->lr_foid, ZB_ZIL_LEVEL,
1825 lr->lr_offset / BP_GET_LSIZE(bp));
1826
1827 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1828 }
1829 return (0);
1830 }
1831
1832 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1833 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1834 {
1835 uint64_t claim_txg = zh->zh_claim_txg;
1836 zil_scan_arg_t zsa = { dp, zh };
1837 zilog_t *zilog;
1838
1839 ASSERT(spa_writeable(dp->dp_spa));
1840
1841 /*
1842 * We only want to visit blocks that have been claimed but not yet
1843 * replayed (or, in read-only mode, blocks that *would* be claimed).
1844 */
1845 if (claim_txg == 0)
1846 return;
1847
1848 zilog = zil_alloc(dp->dp_meta_objset, zh);
1849
1850 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1851 claim_txg, B_FALSE);
1852
1853 zil_free(zilog);
1854 }
1855
1856 /*
1857 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1858 * here is to sort the AVL tree by the order each block will be needed.
1859 */
1860 static int
scan_prefetch_queue_compare(const void * a,const void * b)1861 scan_prefetch_queue_compare(const void *a, const void *b)
1862 {
1863 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1864 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1865 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1866
1867 return (zbookmark_compare(spc_a->spc_datablkszsec,
1868 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1869 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1870 }
1871
1872 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1873 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1874 {
1875 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1876 zfs_refcount_destroy(&spc->spc_refcnt);
1877 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1878 }
1879 }
1880
1881 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1882 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1883 {
1884 scan_prefetch_ctx_t *spc;
1885
1886 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1887 zfs_refcount_create(&spc->spc_refcnt);
1888 zfs_refcount_add(&spc->spc_refcnt, tag);
1889 spc->spc_scn = scn;
1890 if (dnp != NULL) {
1891 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1892 spc->spc_indblkshift = dnp->dn_indblkshift;
1893 spc->spc_root = B_FALSE;
1894 } else {
1895 spc->spc_datablkszsec = 0;
1896 spc->spc_indblkshift = 0;
1897 spc->spc_root = B_TRUE;
1898 }
1899
1900 return (spc);
1901 }
1902
1903 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1904 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1905 {
1906 zfs_refcount_add(&spc->spc_refcnt, tag);
1907 }
1908
1909 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1910 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1911 {
1912 spa_t *spa = scn->scn_dp->dp_spa;
1913 void *cookie = NULL;
1914 scan_prefetch_issue_ctx_t *spic = NULL;
1915
1916 mutex_enter(&spa->spa_scrub_lock);
1917 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1918 &cookie)) != NULL) {
1919 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1920 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1921 }
1922 mutex_exit(&spa->spa_scrub_lock);
1923 }
1924
1925 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1926 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1927 const zbookmark_phys_t *zb)
1928 {
1929 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1930 dnode_phys_t tmp_dnp;
1931 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1932
1933 if (zb->zb_objset != last_zb->zb_objset)
1934 return (B_TRUE);
1935 if ((int64_t)zb->zb_object < 0)
1936 return (B_FALSE);
1937
1938 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1939 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1940
1941 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1942 return (B_TRUE);
1943
1944 return (B_FALSE);
1945 }
1946
1947 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1948 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1949 {
1950 avl_index_t idx;
1951 dsl_scan_t *scn = spc->spc_scn;
1952 spa_t *spa = scn->scn_dp->dp_spa;
1953 scan_prefetch_issue_ctx_t *spic;
1954
1955 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1956 return;
1957
1958 if (BP_IS_HOLE(bp) ||
1959 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1960 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1961 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1962 return;
1963
1964 if (dsl_scan_check_prefetch_resume(spc, zb))
1965 return;
1966
1967 scan_prefetch_ctx_add_ref(spc, scn);
1968 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1969 spic->spic_spc = spc;
1970 spic->spic_bp = *bp;
1971 spic->spic_zb = *zb;
1972
1973 /*
1974 * Add the IO to the queue of blocks to prefetch. This allows us to
1975 * prioritize blocks that we will need first for the main traversal
1976 * thread.
1977 */
1978 mutex_enter(&spa->spa_scrub_lock);
1979 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1980 /* this block is already queued for prefetch */
1981 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1982 scan_prefetch_ctx_rele(spc, scn);
1983 mutex_exit(&spa->spa_scrub_lock);
1984 return;
1985 }
1986
1987 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1988 cv_broadcast(&spa->spa_scrub_io_cv);
1989 mutex_exit(&spa->spa_scrub_lock);
1990 }
1991
1992 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1993 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1994 uint64_t objset, uint64_t object)
1995 {
1996 int i;
1997 zbookmark_phys_t zb;
1998 scan_prefetch_ctx_t *spc;
1999
2000 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2001 return;
2002
2003 SET_BOOKMARK(&zb, objset, object, 0, 0);
2004
2005 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
2006
2007 for (i = 0; i < dnp->dn_nblkptr; i++) {
2008 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
2009 zb.zb_blkid = i;
2010 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2011 }
2012
2013 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2014 zb.zb_level = 0;
2015 zb.zb_blkid = DMU_SPILL_BLKID;
2016 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2017 }
2018
2019 scan_prefetch_ctx_rele(spc, FTAG);
2020 }
2021
2022 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2023 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2024 arc_buf_t *buf, void *private)
2025 {
2026 (void) zio;
2027 scan_prefetch_ctx_t *spc = private;
2028 dsl_scan_t *scn = spc->spc_scn;
2029 spa_t *spa = scn->scn_dp->dp_spa;
2030
2031 /* broadcast that the IO has completed for rate limiting purposes */
2032 mutex_enter(&spa->spa_scrub_lock);
2033 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2034 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2035 cv_broadcast(&spa->spa_scrub_io_cv);
2036 mutex_exit(&spa->spa_scrub_lock);
2037
2038 /* if there was an error or we are done prefetching, just cleanup */
2039 if (buf == NULL || scn->scn_prefetch_stop)
2040 goto out;
2041
2042 if (BP_GET_LEVEL(bp) > 0) {
2043 int i;
2044 blkptr_t *cbp;
2045 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2046 zbookmark_phys_t czb;
2047
2048 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2049 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2050 zb->zb_level - 1, zb->zb_blkid * epb + i);
2051 dsl_scan_prefetch(spc, cbp, &czb);
2052 }
2053 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2054 dnode_phys_t *cdnp;
2055 int i;
2056 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2057
2058 for (i = 0, cdnp = buf->b_data; i < epb;
2059 i += cdnp->dn_extra_slots + 1,
2060 cdnp += cdnp->dn_extra_slots + 1) {
2061 dsl_scan_prefetch_dnode(scn, cdnp,
2062 zb->zb_objset, zb->zb_blkid * epb + i);
2063 }
2064 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2065 objset_phys_t *osp = buf->b_data;
2066
2067 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2068 zb->zb_objset, DMU_META_DNODE_OBJECT);
2069
2070 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2071 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2072 dsl_scan_prefetch_dnode(scn,
2073 &osp->os_projectused_dnode, zb->zb_objset,
2074 DMU_PROJECTUSED_OBJECT);
2075 }
2076 dsl_scan_prefetch_dnode(scn,
2077 &osp->os_groupused_dnode, zb->zb_objset,
2078 DMU_GROUPUSED_OBJECT);
2079 dsl_scan_prefetch_dnode(scn,
2080 &osp->os_userused_dnode, zb->zb_objset,
2081 DMU_USERUSED_OBJECT);
2082 }
2083 }
2084
2085 out:
2086 if (buf != NULL)
2087 arc_buf_destroy(buf, private);
2088 scan_prefetch_ctx_rele(spc, scn);
2089 }
2090
2091 static void
dsl_scan_prefetch_thread(void * arg)2092 dsl_scan_prefetch_thread(void *arg)
2093 {
2094 dsl_scan_t *scn = arg;
2095 spa_t *spa = scn->scn_dp->dp_spa;
2096 scan_prefetch_issue_ctx_t *spic;
2097
2098 /* loop until we are told to stop */
2099 while (!scn->scn_prefetch_stop) {
2100 arc_flags_t flags = ARC_FLAG_NOWAIT |
2101 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2102 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2103
2104 mutex_enter(&spa->spa_scrub_lock);
2105
2106 /*
2107 * Wait until we have an IO to issue and are not above our
2108 * maximum in flight limit.
2109 */
2110 while (!scn->scn_prefetch_stop &&
2111 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2112 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2113 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2114 }
2115
2116 /* recheck if we should stop since we waited for the cv */
2117 if (scn->scn_prefetch_stop) {
2118 mutex_exit(&spa->spa_scrub_lock);
2119 break;
2120 }
2121
2122 /* remove the prefetch IO from the tree */
2123 spic = avl_first(&scn->scn_prefetch_queue);
2124 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2125 avl_remove(&scn->scn_prefetch_queue, spic);
2126
2127 mutex_exit(&spa->spa_scrub_lock);
2128
2129 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2130 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2131 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2132 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2133 zio_flags |= ZIO_FLAG_RAW;
2134 }
2135
2136 /* We don't need data L1 buffer since we do not prefetch L0. */
2137 blkptr_t *bp = &spic->spic_bp;
2138 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2139 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2140 flags |= ARC_FLAG_NO_BUF;
2141
2142 /* issue the prefetch asynchronously */
2143 (void) arc_read(scn->scn_zio_root, spa, bp,
2144 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2145 zio_flags, &flags, &spic->spic_zb);
2146
2147 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2148 }
2149
2150 ASSERT(scn->scn_prefetch_stop);
2151
2152 /* free any prefetches we didn't get to complete */
2153 mutex_enter(&spa->spa_scrub_lock);
2154 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2155 avl_remove(&scn->scn_prefetch_queue, spic);
2156 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2157 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2158 }
2159 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2160 mutex_exit(&spa->spa_scrub_lock);
2161 }
2162
2163 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2164 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2165 const zbookmark_phys_t *zb)
2166 {
2167 /*
2168 * We never skip over user/group accounting objects (obj<0)
2169 */
2170 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2171 (int64_t)zb->zb_object >= 0) {
2172 /*
2173 * If we already visited this bp & everything below (in
2174 * a prior txg sync), don't bother doing it again.
2175 */
2176 if (zbookmark_subtree_completed(dnp, zb,
2177 &scn->scn_phys.scn_bookmark))
2178 return (B_TRUE);
2179
2180 /*
2181 * If we found the block we're trying to resume from, or
2182 * we went past it, zero it out to indicate that it's OK
2183 * to start checking for suspending again.
2184 */
2185 if (zbookmark_subtree_tbd(dnp, zb,
2186 &scn->scn_phys.scn_bookmark)) {
2187 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2188 (longlong_t)zb->zb_objset,
2189 (longlong_t)zb->zb_object,
2190 (longlong_t)zb->zb_level,
2191 (longlong_t)zb->zb_blkid);
2192 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2193 }
2194 }
2195 return (B_FALSE);
2196 }
2197
2198 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2199 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2200 dmu_objset_type_t ostype, dmu_tx_t *tx);
2201 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2202 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2203 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2204
2205 /*
2206 * Return nonzero on i/o error.
2207 * Return new buf to write out in *bufp.
2208 */
2209 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2210 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2211 dnode_phys_t *dnp, const blkptr_t *bp,
2212 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2213 {
2214 dsl_pool_t *dp = scn->scn_dp;
2215 spa_t *spa = dp->dp_spa;
2216 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2217 int err;
2218
2219 ASSERT(!BP_IS_REDACTED(bp));
2220
2221 /*
2222 * There is an unlikely case of encountering dnodes with contradicting
2223 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2224 * or modified before commit 4254acb was merged. As it is not possible
2225 * to know which of the two is correct, report an error.
2226 */
2227 if (dnp != NULL &&
2228 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2229 scn->scn_phys.scn_errors++;
2230 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2231 return (SET_ERROR(EINVAL));
2232 }
2233
2234 if (BP_GET_LEVEL(bp) > 0) {
2235 arc_flags_t flags = ARC_FLAG_WAIT;
2236 int i;
2237 blkptr_t *cbp;
2238 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2239 arc_buf_t *buf;
2240
2241 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2242 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2243 if (err) {
2244 scn->scn_phys.scn_errors++;
2245 return (err);
2246 }
2247 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2248 zbookmark_phys_t czb;
2249
2250 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2251 zb->zb_level - 1,
2252 zb->zb_blkid * epb + i);
2253 dsl_scan_visitbp(cbp, &czb, dnp,
2254 ds, scn, ostype, tx);
2255 }
2256 arc_buf_destroy(buf, &buf);
2257 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2258 arc_flags_t flags = ARC_FLAG_WAIT;
2259 dnode_phys_t *cdnp;
2260 int i;
2261 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2262 arc_buf_t *buf;
2263
2264 if (BP_IS_PROTECTED(bp)) {
2265 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2266 zio_flags |= ZIO_FLAG_RAW;
2267 }
2268
2269 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2270 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2271 if (err) {
2272 scn->scn_phys.scn_errors++;
2273 return (err);
2274 }
2275 for (i = 0, cdnp = buf->b_data; i < epb;
2276 i += cdnp->dn_extra_slots + 1,
2277 cdnp += cdnp->dn_extra_slots + 1) {
2278 dsl_scan_visitdnode(scn, ds, ostype,
2279 cdnp, zb->zb_blkid * epb + i, tx);
2280 }
2281
2282 arc_buf_destroy(buf, &buf);
2283 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2284 arc_flags_t flags = ARC_FLAG_WAIT;
2285 objset_phys_t *osp;
2286 arc_buf_t *buf;
2287
2288 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2289 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2290 if (err) {
2291 scn->scn_phys.scn_errors++;
2292 return (err);
2293 }
2294
2295 osp = buf->b_data;
2296
2297 dsl_scan_visitdnode(scn, ds, osp->os_type,
2298 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2299
2300 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2301 /*
2302 * We also always visit user/group/project accounting
2303 * objects, and never skip them, even if we are
2304 * suspending. This is necessary so that the
2305 * space deltas from this txg get integrated.
2306 */
2307 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2308 dsl_scan_visitdnode(scn, ds, osp->os_type,
2309 &osp->os_projectused_dnode,
2310 DMU_PROJECTUSED_OBJECT, tx);
2311 dsl_scan_visitdnode(scn, ds, osp->os_type,
2312 &osp->os_groupused_dnode,
2313 DMU_GROUPUSED_OBJECT, tx);
2314 dsl_scan_visitdnode(scn, ds, osp->os_type,
2315 &osp->os_userused_dnode,
2316 DMU_USERUSED_OBJECT, tx);
2317 }
2318 arc_buf_destroy(buf, &buf);
2319 } else if (zfs_blkptr_verify(spa, bp,
2320 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2321 /*
2322 * Sanity check the block pointer contents, this is handled
2323 * by arc_read() for the cases above.
2324 */
2325 scn->scn_phys.scn_errors++;
2326 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2327 return (SET_ERROR(EINVAL));
2328 }
2329
2330 return (0);
2331 }
2332
2333 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2334 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2335 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2336 uint64_t object, dmu_tx_t *tx)
2337 {
2338 int j;
2339
2340 for (j = 0; j < dnp->dn_nblkptr; j++) {
2341 zbookmark_phys_t czb;
2342
2343 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2344 dnp->dn_nlevels - 1, j);
2345 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2346 &czb, dnp, ds, scn, ostype, tx);
2347 }
2348
2349 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2350 zbookmark_phys_t czb;
2351 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2352 0, DMU_SPILL_BLKID);
2353 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2354 &czb, dnp, ds, scn, ostype, tx);
2355 }
2356 }
2357
2358 /*
2359 * The arguments are in this order because mdb can only print the
2360 * first 5; we want them to be useful.
2361 */
2362 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2363 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2364 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2365 dmu_objset_type_t ostype, dmu_tx_t *tx)
2366 {
2367 dsl_pool_t *dp = scn->scn_dp;
2368
2369 if (dsl_scan_check_suspend(scn, zb))
2370 return;
2371
2372 if (dsl_scan_check_resume(scn, dnp, zb))
2373 return;
2374
2375 scn->scn_visited_this_txg++;
2376
2377 if (BP_IS_HOLE(bp)) {
2378 scn->scn_holes_this_txg++;
2379 return;
2380 }
2381
2382 if (BP_IS_REDACTED(bp)) {
2383 ASSERT(dsl_dataset_feature_is_active(ds,
2384 SPA_FEATURE_REDACTED_DATASETS));
2385 return;
2386 }
2387
2388 /*
2389 * Check if this block contradicts any filesystem flags.
2390 */
2391 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2392 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2393 ASSERT(dsl_dataset_feature_is_active(ds, f));
2394
2395 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2396 if (f != SPA_FEATURE_NONE)
2397 ASSERT(dsl_dataset_feature_is_active(ds, f));
2398
2399 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2400 if (f != SPA_FEATURE_NONE)
2401 ASSERT(dsl_dataset_feature_is_active(ds, f));
2402
2403 /*
2404 * Recurse any blocks that were written either logically or physically
2405 * at or after cur_min_txg. About logical birth we care for traversal,
2406 * looking for any changes, while about physical for the actual scan.
2407 */
2408 if (BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2409 scn->scn_lt_min_this_txg++;
2410 return;
2411 }
2412
2413 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2414 return;
2415
2416 /*
2417 * If dsl_scan_ddt() has already visited this block, it will have
2418 * already done any translations or scrubbing, so don't call the
2419 * callback again.
2420 */
2421 if (ddt_class_contains(dp->dp_spa,
2422 scn->scn_phys.scn_ddt_class_max, bp)) {
2423 scn->scn_ddt_contained_this_txg++;
2424 return;
2425 }
2426
2427 /*
2428 * If this block is from the future (after cur_max_txg), then we
2429 * are doing this on behalf of a deleted snapshot, and we will
2430 * revisit the future block on the next pass of this dataset.
2431 * Don't scan it now unless we need to because something
2432 * under it was modified.
2433 */
2434 if (BP_GET_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2435 scn->scn_gt_max_this_txg++;
2436 return;
2437 }
2438
2439 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2440 }
2441
2442 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2443 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2444 dmu_tx_t *tx)
2445 {
2446 zbookmark_phys_t zb;
2447 scan_prefetch_ctx_t *spc;
2448
2449 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2450 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2451
2452 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2453 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2454 zb.zb_objset, 0, 0, 0);
2455 } else {
2456 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2457 }
2458
2459 scn->scn_objsets_visited_this_txg++;
2460
2461 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2462 dsl_scan_prefetch(spc, bp, &zb);
2463 scan_prefetch_ctx_rele(spc, FTAG);
2464
2465 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2466
2467 dprintf_ds(ds, "finished scan%s", "");
2468 }
2469
2470 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2471 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2472 {
2473 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2474 if (ds->ds_is_snapshot) {
2475 /*
2476 * Note:
2477 * - scn_cur_{min,max}_txg stays the same.
2478 * - Setting the flag is not really necessary if
2479 * scn_cur_max_txg == scn_max_txg, because there
2480 * is nothing after this snapshot that we care
2481 * about. However, we set it anyway and then
2482 * ignore it when we retraverse it in
2483 * dsl_scan_visitds().
2484 */
2485 scn_phys->scn_bookmark.zb_objset =
2486 dsl_dataset_phys(ds)->ds_next_snap_obj;
2487 zfs_dbgmsg("destroying ds %llu on %s; currently "
2488 "traversing; reset zb_objset to %llu",
2489 (u_longlong_t)ds->ds_object,
2490 ds->ds_dir->dd_pool->dp_spa->spa_name,
2491 (u_longlong_t)dsl_dataset_phys(ds)->
2492 ds_next_snap_obj);
2493 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2494 } else {
2495 SET_BOOKMARK(&scn_phys->scn_bookmark,
2496 ZB_DESTROYED_OBJSET, 0, 0, 0);
2497 zfs_dbgmsg("destroying ds %llu on %s; currently "
2498 "traversing; reset bookmark to -1,0,0,0",
2499 (u_longlong_t)ds->ds_object,
2500 ds->ds_dir->dd_pool->dp_spa->spa_name);
2501 }
2502 }
2503 }
2504
2505 /*
2506 * Invoked when a dataset is destroyed. We need to make sure that:
2507 *
2508 * 1) If it is the dataset that was currently being scanned, we write
2509 * a new dsl_scan_phys_t and marking the objset reference in it
2510 * as destroyed.
2511 * 2) Remove it from the work queue, if it was present.
2512 *
2513 * If the dataset was actually a snapshot, instead of marking the dataset
2514 * as destroyed, we instead substitute the next snapshot in line.
2515 */
2516 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2517 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2518 {
2519 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2520 dsl_scan_t *scn = dp->dp_scan;
2521 uint64_t mintxg;
2522
2523 if (!dsl_scan_is_running(scn))
2524 return;
2525
2526 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2527 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2528
2529 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2530 scan_ds_queue_remove(scn, ds->ds_object);
2531 if (ds->ds_is_snapshot)
2532 scan_ds_queue_insert(scn,
2533 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2534 }
2535
2536 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2537 ds->ds_object, &mintxg) == 0) {
2538 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2539 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2540 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2541 if (ds->ds_is_snapshot) {
2542 /*
2543 * We keep the same mintxg; it could be >
2544 * ds_creation_txg if the previous snapshot was
2545 * deleted too.
2546 */
2547 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2548 scn->scn_phys.scn_queue_obj,
2549 dsl_dataset_phys(ds)->ds_next_snap_obj,
2550 mintxg, tx) == 0);
2551 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2552 "replacing with %llu",
2553 (u_longlong_t)ds->ds_object,
2554 dp->dp_spa->spa_name,
2555 (u_longlong_t)dsl_dataset_phys(ds)->
2556 ds_next_snap_obj);
2557 } else {
2558 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2559 "removing",
2560 (u_longlong_t)ds->ds_object,
2561 dp->dp_spa->spa_name);
2562 }
2563 }
2564
2565 /*
2566 * dsl_scan_sync() should be called after this, and should sync
2567 * out our changed state, but just to be safe, do it here.
2568 */
2569 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2570 }
2571
2572 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2573 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2574 {
2575 if (scn_bookmark->zb_objset == ds->ds_object) {
2576 scn_bookmark->zb_objset =
2577 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2578 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2579 "reset zb_objset to %llu",
2580 (u_longlong_t)ds->ds_object,
2581 ds->ds_dir->dd_pool->dp_spa->spa_name,
2582 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2583 }
2584 }
2585
2586 /*
2587 * Called when a dataset is snapshotted. If we were currently traversing
2588 * this snapshot, we reset our bookmark to point at the newly created
2589 * snapshot. We also modify our work queue to remove the old snapshot and
2590 * replace with the new one.
2591 */
2592 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2593 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2594 {
2595 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2596 dsl_scan_t *scn = dp->dp_scan;
2597 uint64_t mintxg;
2598
2599 if (!dsl_scan_is_running(scn))
2600 return;
2601
2602 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2603
2604 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2605 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2606
2607 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2608 scan_ds_queue_remove(scn, ds->ds_object);
2609 scan_ds_queue_insert(scn,
2610 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2611 }
2612
2613 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2614 ds->ds_object, &mintxg) == 0) {
2615 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2616 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2617 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2618 scn->scn_phys.scn_queue_obj,
2619 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2620 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2621 "replacing with %llu",
2622 (u_longlong_t)ds->ds_object,
2623 dp->dp_spa->spa_name,
2624 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2625 }
2626
2627 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2628 }
2629
2630 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2631 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2632 zbookmark_phys_t *scn_bookmark)
2633 {
2634 if (scn_bookmark->zb_objset == ds1->ds_object) {
2635 scn_bookmark->zb_objset = ds2->ds_object;
2636 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2637 "reset zb_objset to %llu",
2638 (u_longlong_t)ds1->ds_object,
2639 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2640 (u_longlong_t)ds2->ds_object);
2641 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2642 scn_bookmark->zb_objset = ds1->ds_object;
2643 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2644 "reset zb_objset to %llu",
2645 (u_longlong_t)ds2->ds_object,
2646 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2647 (u_longlong_t)ds1->ds_object);
2648 }
2649 }
2650
2651 /*
2652 * Called when an origin dataset and its clone are swapped. If we were
2653 * currently traversing the dataset, we need to switch to traversing the
2654 * newly promoted clone.
2655 */
2656 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2657 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2658 {
2659 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2660 dsl_scan_t *scn = dp->dp_scan;
2661 uint64_t mintxg1, mintxg2;
2662 boolean_t ds1_queued, ds2_queued;
2663
2664 if (!dsl_scan_is_running(scn))
2665 return;
2666
2667 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2668 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2669
2670 /*
2671 * Handle the in-memory scan queue.
2672 */
2673 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2674 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2675
2676 /* Sanity checking. */
2677 if (ds1_queued) {
2678 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2679 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2680 }
2681 if (ds2_queued) {
2682 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2683 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2684 }
2685
2686 if (ds1_queued && ds2_queued) {
2687 /*
2688 * If both are queued, we don't need to do anything.
2689 * The swapping code below would not handle this case correctly,
2690 * since we can't insert ds2 if it is already there. That's
2691 * because scan_ds_queue_insert() prohibits a duplicate insert
2692 * and panics.
2693 */
2694 } else if (ds1_queued) {
2695 scan_ds_queue_remove(scn, ds1->ds_object);
2696 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2697 } else if (ds2_queued) {
2698 scan_ds_queue_remove(scn, ds2->ds_object);
2699 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2700 }
2701
2702 /*
2703 * Handle the on-disk scan queue.
2704 * The on-disk state is an out-of-date version of the in-memory state,
2705 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2706 * be different. Therefore we need to apply the swap logic to the
2707 * on-disk state independently of the in-memory state.
2708 */
2709 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2710 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2711 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2712 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2713
2714 /* Sanity checking. */
2715 if (ds1_queued) {
2716 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2717 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2718 }
2719 if (ds2_queued) {
2720 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2721 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2722 }
2723
2724 if (ds1_queued && ds2_queued) {
2725 /*
2726 * If both are queued, we don't need to do anything.
2727 * Alternatively, we could check for EEXIST from
2728 * zap_add_int_key() and back out to the original state, but
2729 * that would be more work than checking for this case upfront.
2730 */
2731 } else if (ds1_queued) {
2732 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2733 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2734 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2735 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2736 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2737 "replacing with %llu",
2738 (u_longlong_t)ds1->ds_object,
2739 dp->dp_spa->spa_name,
2740 (u_longlong_t)ds2->ds_object);
2741 } else if (ds2_queued) {
2742 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2743 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2744 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2745 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2746 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2747 "replacing with %llu",
2748 (u_longlong_t)ds2->ds_object,
2749 dp->dp_spa->spa_name,
2750 (u_longlong_t)ds1->ds_object);
2751 }
2752
2753 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2754 }
2755
2756 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2757 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2758 {
2759 uint64_t originobj = *(uint64_t *)arg;
2760 dsl_dataset_t *ds;
2761 int err;
2762 dsl_scan_t *scn = dp->dp_scan;
2763
2764 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2765 return (0);
2766
2767 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2768 if (err)
2769 return (err);
2770
2771 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2772 dsl_dataset_t *prev;
2773 err = dsl_dataset_hold_obj(dp,
2774 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2775
2776 dsl_dataset_rele(ds, FTAG);
2777 if (err)
2778 return (err);
2779 ds = prev;
2780 }
2781 mutex_enter(&scn->scn_queue_lock);
2782 scan_ds_queue_insert(scn, ds->ds_object,
2783 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2784 mutex_exit(&scn->scn_queue_lock);
2785 dsl_dataset_rele(ds, FTAG);
2786 return (0);
2787 }
2788
2789 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2790 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2791 {
2792 dsl_pool_t *dp = scn->scn_dp;
2793 dsl_dataset_t *ds;
2794
2795 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2796
2797 if (scn->scn_phys.scn_cur_min_txg >=
2798 scn->scn_phys.scn_max_txg) {
2799 /*
2800 * This can happen if this snapshot was created after the
2801 * scan started, and we already completed a previous snapshot
2802 * that was created after the scan started. This snapshot
2803 * only references blocks with:
2804 *
2805 * birth < our ds_creation_txg
2806 * cur_min_txg is no less than ds_creation_txg.
2807 * We have already visited these blocks.
2808 * or
2809 * birth > scn_max_txg
2810 * The scan requested not to visit these blocks.
2811 *
2812 * Subsequent snapshots (and clones) can reference our
2813 * blocks, or blocks with even higher birth times.
2814 * Therefore we do not need to visit them either,
2815 * so we do not add them to the work queue.
2816 *
2817 * Note that checking for cur_min_txg >= cur_max_txg
2818 * is not sufficient, because in that case we may need to
2819 * visit subsequent snapshots. This happens when min_txg > 0,
2820 * which raises cur_min_txg. In this case we will visit
2821 * this dataset but skip all of its blocks, because the
2822 * rootbp's birth time is < cur_min_txg. Then we will
2823 * add the next snapshots/clones to the work queue.
2824 */
2825 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2826 dsl_dataset_name(ds, dsname);
2827 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2828 "cur_min_txg (%llu) >= max_txg (%llu)",
2829 (longlong_t)dsobj, dsname,
2830 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2831 (longlong_t)scn->scn_phys.scn_max_txg);
2832 kmem_free(dsname, MAXNAMELEN);
2833
2834 goto out;
2835 }
2836
2837 /*
2838 * Only the ZIL in the head (non-snapshot) is valid. Even though
2839 * snapshots can have ZIL block pointers (which may be the same
2840 * BP as in the head), they must be ignored. In addition, $ORIGIN
2841 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2842 * need to look for a ZIL in it either. So we traverse the ZIL here,
2843 * rather than in scan_recurse(), because the regular snapshot
2844 * block-sharing rules don't apply to it.
2845 */
2846 if (!dsl_dataset_is_snapshot(ds) &&
2847 (dp->dp_origin_snap == NULL ||
2848 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2849 objset_t *os;
2850 if (dmu_objset_from_ds(ds, &os) != 0) {
2851 goto out;
2852 }
2853 dsl_scan_zil(dp, &os->os_zil_header);
2854 }
2855
2856 /*
2857 * Iterate over the bps in this ds.
2858 */
2859 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2860 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2861 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2862 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2863
2864 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2865 dsl_dataset_name(ds, dsname);
2866 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2867 "suspending=%u",
2868 (longlong_t)dsobj, dsname,
2869 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2870 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2871 (int)scn->scn_suspending);
2872 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2873
2874 if (scn->scn_suspending)
2875 goto out;
2876
2877 /*
2878 * We've finished this pass over this dataset.
2879 */
2880
2881 /*
2882 * If we did not completely visit this dataset, do another pass.
2883 */
2884 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2885 zfs_dbgmsg("incomplete pass on %s; visiting again",
2886 dp->dp_spa->spa_name);
2887 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2888 scan_ds_queue_insert(scn, ds->ds_object,
2889 scn->scn_phys.scn_cur_max_txg);
2890 goto out;
2891 }
2892
2893 /*
2894 * Add descendant datasets to work queue.
2895 */
2896 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2897 scan_ds_queue_insert(scn,
2898 dsl_dataset_phys(ds)->ds_next_snap_obj,
2899 dsl_dataset_phys(ds)->ds_creation_txg);
2900 }
2901 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2902 boolean_t usenext = B_FALSE;
2903 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2904 uint64_t count;
2905 /*
2906 * A bug in a previous version of the code could
2907 * cause upgrade_clones_cb() to not set
2908 * ds_next_snap_obj when it should, leading to a
2909 * missing entry. Therefore we can only use the
2910 * next_clones_obj when its count is correct.
2911 */
2912 int err = zap_count(dp->dp_meta_objset,
2913 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2914 if (err == 0 &&
2915 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2916 usenext = B_TRUE;
2917 }
2918
2919 if (usenext) {
2920 zap_cursor_t zc;
2921 zap_attribute_t *za = zap_attribute_alloc();
2922 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2923 dsl_dataset_phys(ds)->ds_next_clones_obj);
2924 zap_cursor_retrieve(&zc, za) == 0;
2925 (void) zap_cursor_advance(&zc)) {
2926 scan_ds_queue_insert(scn,
2927 zfs_strtonum(za->za_name, NULL),
2928 dsl_dataset_phys(ds)->ds_creation_txg);
2929 }
2930 zap_cursor_fini(&zc);
2931 zap_attribute_free(za);
2932 } else {
2933 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2934 enqueue_clones_cb, &ds->ds_object,
2935 DS_FIND_CHILDREN));
2936 }
2937 }
2938
2939 out:
2940 dsl_dataset_rele(ds, FTAG);
2941 }
2942
2943 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2944 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2945 {
2946 (void) arg;
2947 dsl_dataset_t *ds;
2948 int err;
2949 dsl_scan_t *scn = dp->dp_scan;
2950
2951 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2952 if (err)
2953 return (err);
2954
2955 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2956 dsl_dataset_t *prev;
2957 err = dsl_dataset_hold_obj(dp,
2958 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2959 if (err) {
2960 dsl_dataset_rele(ds, FTAG);
2961 return (err);
2962 }
2963
2964 /*
2965 * If this is a clone, we don't need to worry about it for now.
2966 */
2967 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2968 dsl_dataset_rele(ds, FTAG);
2969 dsl_dataset_rele(prev, FTAG);
2970 return (0);
2971 }
2972 dsl_dataset_rele(ds, FTAG);
2973 ds = prev;
2974 }
2975
2976 mutex_enter(&scn->scn_queue_lock);
2977 scan_ds_queue_insert(scn, ds->ds_object,
2978 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2979 mutex_exit(&scn->scn_queue_lock);
2980 dsl_dataset_rele(ds, FTAG);
2981 return (0);
2982 }
2983
2984 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2985 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2986 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2987 {
2988 (void) tx;
2989 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2990 blkptr_t bp;
2991 zbookmark_phys_t zb = { 0 };
2992
2993 if (!dsl_scan_is_running(scn))
2994 return;
2995
2996 /*
2997 * This function is special because it is the only thing
2998 * that can add scan_io_t's to the vdev scan queues from
2999 * outside dsl_scan_sync(). For the most part this is ok
3000 * as long as it is called from within syncing context.
3001 * However, dsl_scan_sync() expects that no new sio's will
3002 * be added between when all the work for a scan is done
3003 * and the next txg when the scan is actually marked as
3004 * completed. This check ensures we do not issue new sio's
3005 * during this period.
3006 */
3007 if (scn->scn_done_txg != 0)
3008 return;
3009
3010 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3011 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3012 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
3013
3014 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3015 continue;
3016 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3017
3018 scn->scn_visited_this_txg++;
3019 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3020 }
3021 }
3022
3023 /*
3024 * Scrub/dedup interaction.
3025 *
3026 * If there are N references to a deduped block, we don't want to scrub it
3027 * N times -- ideally, we should scrub it exactly once.
3028 *
3029 * We leverage the fact that the dde's replication class (ddt_class_t)
3030 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3031 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3032 *
3033 * To prevent excess scrubbing, the scrub begins by walking the DDT
3034 * to find all blocks with refcnt > 1, and scrubs each of these once.
3035 * Since there are two replication classes which contain blocks with
3036 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3037 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3038 *
3039 * There would be nothing more to say if a block's refcnt couldn't change
3040 * during a scrub, but of course it can so we must account for changes
3041 * in a block's replication class.
3042 *
3043 * Here's an example of what can occur:
3044 *
3045 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3046 * when visited during the top-down scrub phase, it will be scrubbed twice.
3047 * This negates our scrub optimization, but is otherwise harmless.
3048 *
3049 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3050 * on each visit during the top-down scrub phase, it will never be scrubbed.
3051 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3052 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3053 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3054 * while a scrub is in progress, it scrubs the block right then.
3055 */
3056 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3057 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3058 {
3059 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3060 ddt_lightweight_entry_t ddlwe = {0};
3061 int error;
3062 uint64_t n = 0;
3063
3064 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3065 ddt_t *ddt;
3066
3067 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3068 break;
3069 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3070 (longlong_t)ddb->ddb_class,
3071 (longlong_t)ddb->ddb_type,
3072 (longlong_t)ddb->ddb_checksum,
3073 (longlong_t)ddb->ddb_cursor);
3074
3075 /* There should be no pending changes to the dedup table */
3076 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3077 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3078
3079 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3080 n++;
3081
3082 if (dsl_scan_check_suspend(scn, NULL))
3083 break;
3084 }
3085
3086 if (error == EAGAIN) {
3087 dsl_scan_check_suspend(scn, NULL);
3088 error = 0;
3089
3090 zfs_dbgmsg("waiting for ddt to become ready for scan "
3091 "on %s with class_max = %u; suspending=%u",
3092 scn->scn_dp->dp_spa->spa_name,
3093 (int)scn->scn_phys.scn_ddt_class_max,
3094 (int)scn->scn_suspending);
3095 } else
3096 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3097 "class_max = %u; suspending=%u", (longlong_t)n,
3098 scn->scn_dp->dp_spa->spa_name,
3099 (int)scn->scn_phys.scn_ddt_class_max,
3100 (int)scn->scn_suspending);
3101
3102 ASSERT(error == 0 || error == ENOENT);
3103 ASSERT(error != ENOENT ||
3104 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3105 }
3106
3107 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3108 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3109 {
3110 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3111 if (ds->ds_is_snapshot)
3112 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3113 return (smt);
3114 }
3115
3116 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3117 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3118 {
3119 scan_ds_t *sds;
3120 dsl_pool_t *dp = scn->scn_dp;
3121
3122 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3123 scn->scn_phys.scn_ddt_class_max) {
3124 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3125 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3126 dsl_scan_ddt(scn, tx);
3127 if (scn->scn_suspending)
3128 return;
3129 }
3130
3131 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3132 /* First do the MOS & ORIGIN */
3133
3134 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3135 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3136 dsl_scan_visit_rootbp(scn, NULL,
3137 &dp->dp_meta_rootbp, tx);
3138 if (scn->scn_suspending)
3139 return;
3140
3141 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3142 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3143 enqueue_cb, NULL, DS_FIND_CHILDREN));
3144 } else {
3145 dsl_scan_visitds(scn,
3146 dp->dp_origin_snap->ds_object, tx);
3147 }
3148 ASSERT(!scn->scn_suspending);
3149 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3150 ZB_DESTROYED_OBJSET) {
3151 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3152 /*
3153 * If we were suspended, continue from here. Note if the
3154 * ds we were suspended on was deleted, the zb_objset may
3155 * be -1, so we will skip this and find a new objset
3156 * below.
3157 */
3158 dsl_scan_visitds(scn, dsobj, tx);
3159 if (scn->scn_suspending)
3160 return;
3161 }
3162
3163 /*
3164 * In case we suspended right at the end of the ds, zero the
3165 * bookmark so we don't think that we're still trying to resume.
3166 */
3167 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3168
3169 /*
3170 * Keep pulling things out of the dataset avl queue. Updates to the
3171 * persistent zap-object-as-queue happen only at checkpoints.
3172 */
3173 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3174 dsl_dataset_t *ds;
3175 uint64_t dsobj = sds->sds_dsobj;
3176 uint64_t txg = sds->sds_txg;
3177
3178 /* dequeue and free the ds from the queue */
3179 scan_ds_queue_remove(scn, dsobj);
3180 sds = NULL;
3181
3182 /* set up min / max txg */
3183 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3184 if (txg != 0) {
3185 scn->scn_phys.scn_cur_min_txg =
3186 MAX(scn->scn_phys.scn_min_txg, txg);
3187 } else {
3188 scn->scn_phys.scn_cur_min_txg =
3189 MAX(scn->scn_phys.scn_min_txg,
3190 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3191 }
3192 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3193 dsl_dataset_rele(ds, FTAG);
3194
3195 dsl_scan_visitds(scn, dsobj, tx);
3196 if (scn->scn_suspending)
3197 return;
3198 }
3199
3200 /* No more objsets to fetch, we're done */
3201 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3202 ASSERT0(scn->scn_suspending);
3203 }
3204
3205 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3206 dsl_scan_count_data_disks(spa_t *spa)
3207 {
3208 vdev_t *rvd = spa->spa_root_vdev;
3209 uint64_t i, leaves = 0;
3210
3211 for (i = 0; i < rvd->vdev_children; i++) {
3212 vdev_t *vd = rvd->vdev_child[i];
3213 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3214 continue;
3215 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3216 }
3217 return (leaves);
3218 }
3219
3220 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3221 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3222 {
3223 int i;
3224 uint64_t cur_size = 0;
3225
3226 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3227 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3228 }
3229
3230 q->q_total_zio_size_this_txg += cur_size;
3231 q->q_zios_this_txg++;
3232 }
3233
3234 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3235 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3236 uint64_t end)
3237 {
3238 q->q_total_seg_size_this_txg += end - start;
3239 q->q_segs_this_txg++;
3240 }
3241
3242 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3243 scan_io_queue_check_suspend(dsl_scan_t *scn)
3244 {
3245 /* See comment in dsl_scan_check_suspend() */
3246 uint64_t curr_time_ns = getlrtime();
3247 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3248 uint64_t sync_time_ns = curr_time_ns -
3249 scn->scn_dp->dp_spa->spa_sync_starttime;
3250 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3251 zfs_vdev_async_write_active_min_dirty_percent / 100;
3252 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3253 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3254
3255 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3256 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3257 txg_sync_waiting(scn->scn_dp) ||
3258 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3259 spa_shutting_down(scn->scn_dp->dp_spa));
3260 }
3261
3262 /*
3263 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3264 * disk. This consumes the io_list and frees the scan_io_t's. This is
3265 * called when emptying queues, either when we're up against the memory
3266 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3267 * processing the list before we finished. Any sios that were not issued
3268 * will remain in the io_list.
3269 */
3270 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3271 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3272 {
3273 dsl_scan_t *scn = queue->q_scn;
3274 scan_io_t *sio;
3275 boolean_t suspended = B_FALSE;
3276
3277 while ((sio = list_head(io_list)) != NULL) {
3278 blkptr_t bp;
3279
3280 if (scan_io_queue_check_suspend(scn)) {
3281 suspended = B_TRUE;
3282 break;
3283 }
3284
3285 sio2bp(sio, &bp);
3286 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3287 &sio->sio_zb, queue);
3288 (void) list_remove_head(io_list);
3289 scan_io_queues_update_zio_stats(queue, &bp);
3290 sio_free(sio);
3291 }
3292 return (suspended);
3293 }
3294
3295 /*
3296 * This function removes sios from an IO queue which reside within a given
3297 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3298 * we only ever return a maximum of 32 sios at once. If there are more sios
3299 * to process within this segment that did not make it onto the list we
3300 * return B_TRUE and otherwise B_FALSE.
3301 */
3302 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3303 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3304 list_t *list)
3305 {
3306 scan_io_t *srch_sio, *sio, *next_sio;
3307 avl_index_t idx;
3308 uint_t num_sios = 0;
3309 int64_t bytes_issued = 0;
3310
3311 ASSERT(rs != NULL);
3312 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3313
3314 srch_sio = sio_alloc(1);
3315 srch_sio->sio_nr_dvas = 1;
3316 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3317
3318 /*
3319 * The exact start of the extent might not contain any matching zios,
3320 * so if that's the case, examine the next one in the tree.
3321 */
3322 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3323 sio_free(srch_sio);
3324
3325 if (sio == NULL)
3326 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3327
3328 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3329 queue->q_exts_by_addr) && num_sios <= 32) {
3330 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3331 queue->q_exts_by_addr));
3332 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3333 queue->q_exts_by_addr));
3334
3335 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3336 avl_remove(&queue->q_sios_by_addr, sio);
3337 if (avl_is_empty(&queue->q_sios_by_addr))
3338 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3339 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3340
3341 bytes_issued += SIO_GET_ASIZE(sio);
3342 num_sios++;
3343 list_insert_tail(list, sio);
3344 sio = next_sio;
3345 }
3346
3347 /*
3348 * We limit the number of sios we process at once to 32 to avoid
3349 * biting off more than we can chew. If we didn't take everything
3350 * in the segment we update it to reflect the work we were able to
3351 * complete. Otherwise, we remove it from the range tree entirely.
3352 */
3353 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3354 queue->q_exts_by_addr)) {
3355 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3356 -bytes_issued);
3357 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3358 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3359 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3360 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3361 return (B_TRUE);
3362 } else {
3363 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3364 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3365 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3366 rstart);
3367 queue->q_last_ext_addr = -1;
3368 return (B_FALSE);
3369 }
3370 }
3371
3372 /*
3373 * This is called from the queue emptying thread and selects the next
3374 * extent from which we are to issue I/Os. The behavior of this function
3375 * depends on the state of the scan, the current memory consumption and
3376 * whether or not we are performing a scan shutdown.
3377 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3378 * needs to perform a checkpoint
3379 * 2) We select the largest available extent if we are up against the
3380 * memory limit.
3381 * 3) Otherwise we don't select any extents.
3382 */
3383 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3384 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3385 {
3386 dsl_scan_t *scn = queue->q_scn;
3387 zfs_range_tree_t *rt = queue->q_exts_by_addr;
3388
3389 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3390 ASSERT(scn->scn_is_sorted);
3391
3392 if (!scn->scn_checkpointing && !scn->scn_clearing)
3393 return (NULL);
3394
3395 /*
3396 * During normal clearing, we want to issue our largest segments
3397 * first, keeping IO as sequential as possible, and leaving the
3398 * smaller extents for later with the hope that they might eventually
3399 * grow to larger sequential segments. However, when the scan is
3400 * checkpointing, no new extents will be added to the sorting queue,
3401 * so the way we are sorted now is as good as it will ever get.
3402 * In this case, we instead switch to issuing extents in LBA order.
3403 */
3404 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3405 zfs_scan_issue_strategy == 1)
3406 return (zfs_range_tree_first(rt));
3407
3408 /*
3409 * Try to continue previous extent if it is not completed yet. After
3410 * shrink in scan_io_queue_gather() it may no longer be the best, but
3411 * otherwise we leave shorter remnant every txg.
3412 */
3413 uint64_t start;
3414 uint64_t size = 1ULL << rt->rt_shift;
3415 zfs_range_seg_t *addr_rs;
3416 if (queue->q_last_ext_addr != -1) {
3417 start = queue->q_last_ext_addr;
3418 addr_rs = zfs_range_tree_find(rt, start, size);
3419 if (addr_rs != NULL)
3420 return (addr_rs);
3421 }
3422
3423 /*
3424 * Nothing to continue, so find new best extent.
3425 */
3426 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3427 if (v == NULL)
3428 return (NULL);
3429 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3430
3431 /*
3432 * We need to get the original entry in the by_addr tree so we can
3433 * modify it.
3434 */
3435 addr_rs = zfs_range_tree_find(rt, start, size);
3436 ASSERT3P(addr_rs, !=, NULL);
3437 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3438 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3439 return (addr_rs);
3440 }
3441
3442 static void
scan_io_queues_run_one(void * arg)3443 scan_io_queues_run_one(void *arg)
3444 {
3445 dsl_scan_io_queue_t *queue = arg;
3446 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3447 boolean_t suspended = B_FALSE;
3448 zfs_range_seg_t *rs;
3449 scan_io_t *sio;
3450 zio_t *zio;
3451 list_t sio_list;
3452
3453 ASSERT(queue->q_scn->scn_is_sorted);
3454
3455 list_create(&sio_list, sizeof (scan_io_t),
3456 offsetof(scan_io_t, sio_nodes.sio_list_node));
3457 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3458 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3459 mutex_enter(q_lock);
3460 queue->q_zio = zio;
3461
3462 /* Calculate maximum in-flight bytes for this vdev. */
3463 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3464 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3465
3466 /* reset per-queue scan statistics for this txg */
3467 queue->q_total_seg_size_this_txg = 0;
3468 queue->q_segs_this_txg = 0;
3469 queue->q_total_zio_size_this_txg = 0;
3470 queue->q_zios_this_txg = 0;
3471
3472 /* loop until we run out of time or sios */
3473 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3474 uint64_t seg_start = 0, seg_end = 0;
3475 boolean_t more_left;
3476
3477 ASSERT(list_is_empty(&sio_list));
3478
3479 /* loop while we still have sios left to process in this rs */
3480 do {
3481 scan_io_t *first_sio, *last_sio;
3482
3483 /*
3484 * We have selected which extent needs to be
3485 * processed next. Gather up the corresponding sios.
3486 */
3487 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3488 ASSERT(!list_is_empty(&sio_list));
3489 first_sio = list_head(&sio_list);
3490 last_sio = list_tail(&sio_list);
3491
3492 seg_end = SIO_GET_END_OFFSET(last_sio);
3493 if (seg_start == 0)
3494 seg_start = SIO_GET_OFFSET(first_sio);
3495
3496 /*
3497 * Issuing sios can take a long time so drop the
3498 * queue lock. The sio queue won't be updated by
3499 * other threads since we're in syncing context so
3500 * we can be sure that our trees will remain exactly
3501 * as we left them.
3502 */
3503 mutex_exit(q_lock);
3504 suspended = scan_io_queue_issue(queue, &sio_list);
3505 mutex_enter(q_lock);
3506
3507 if (suspended)
3508 break;
3509 } while (more_left);
3510
3511 /* update statistics for debugging purposes */
3512 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3513
3514 if (suspended)
3515 break;
3516 }
3517
3518 /*
3519 * If we were suspended in the middle of processing,
3520 * requeue any unfinished sios and exit.
3521 */
3522 while ((sio = list_remove_head(&sio_list)) != NULL)
3523 scan_io_queue_insert_impl(queue, sio);
3524
3525 queue->q_zio = NULL;
3526 mutex_exit(q_lock);
3527 zio_nowait(zio);
3528 list_destroy(&sio_list);
3529 }
3530
3531 /*
3532 * Performs an emptying run on all scan queues in the pool. This just
3533 * punches out one thread per top-level vdev, each of which processes
3534 * only that vdev's scan queue. We can parallelize the I/O here because
3535 * we know that each queue's I/Os only affect its own top-level vdev.
3536 *
3537 * This function waits for the queue runs to complete, and must be
3538 * called from dsl_scan_sync (or in general, syncing context).
3539 */
3540 static void
scan_io_queues_run(dsl_scan_t * scn)3541 scan_io_queues_run(dsl_scan_t *scn)
3542 {
3543 spa_t *spa = scn->scn_dp->dp_spa;
3544
3545 ASSERT(scn->scn_is_sorted);
3546 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3547
3548 if (scn->scn_queues_pending == 0)
3549 return;
3550
3551 if (scn->scn_taskq == NULL) {
3552 int nthreads = spa->spa_root_vdev->vdev_children;
3553
3554 /*
3555 * We need to make this taskq *always* execute as many
3556 * threads in parallel as we have top-level vdevs and no
3557 * less, otherwise strange serialization of the calls to
3558 * scan_io_queues_run_one can occur during spa_sync runs
3559 * and that significantly impacts performance.
3560 */
3561 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3562 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3563 }
3564
3565 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3566 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3567
3568 mutex_enter(&vd->vdev_scan_io_queue_lock);
3569 if (vd->vdev_scan_io_queue != NULL) {
3570 VERIFY(taskq_dispatch(scn->scn_taskq,
3571 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3572 TQ_SLEEP) != TASKQID_INVALID);
3573 }
3574 mutex_exit(&vd->vdev_scan_io_queue_lock);
3575 }
3576
3577 /*
3578 * Wait for the queues to finish issuing their IOs for this run
3579 * before we return. There may still be IOs in flight at this
3580 * point.
3581 */
3582 taskq_wait(scn->scn_taskq);
3583 }
3584
3585 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3586 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3587 {
3588 uint64_t elapsed_nanosecs;
3589
3590 if (zfs_recover)
3591 return (B_FALSE);
3592
3593 if (zfs_async_block_max_blocks != 0 &&
3594 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3595 return (B_TRUE);
3596 }
3597
3598 if (zfs_max_async_dedup_frees != 0 &&
3599 scn->scn_async_frees_this_txg >= zfs_max_async_dedup_frees) {
3600 return (B_TRUE);
3601 }
3602
3603 elapsed_nanosecs = getlrtime() - scn->scn_sync_start_time;
3604 return (elapsed_nanosecs / (NANOSEC / 2) > zfs_txg_timeout ||
3605 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3606 txg_sync_waiting(scn->scn_dp)) ||
3607 spa_shutting_down(scn->scn_dp->dp_spa));
3608 }
3609
3610 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3611 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3612 {
3613 dsl_scan_t *scn = arg;
3614
3615 if (!scn->scn_is_bptree ||
3616 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3617 if (dsl_scan_async_block_should_pause(scn))
3618 return (SET_ERROR(ERESTART));
3619 }
3620
3621 zio_t *zio = zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3622 dmu_tx_get_txg(tx), bp, 0);
3623 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3624 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3625 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3626 scn->scn_visited_this_txg++;
3627 if (zio != NULL) {
3628 /*
3629 * zio_free_sync() returned a ZIO, meaning this is an
3630 * async I/O (dedup, clone or gang block).
3631 */
3632 scn->scn_async_frees_this_txg++;
3633 zio_nowait(zio);
3634
3635 /*
3636 * After issuing N async ZIOs, wait for them to complete.
3637 * This makes time limits work with actual I/O completion
3638 * times, not just queuing times.
3639 */
3640 uint64_t i = zfs_async_free_zio_wait_interval;
3641 if (i != 0 && (scn->scn_async_frees_this_txg % i) == 0) {
3642 VERIFY0(zio_wait(scn->scn_zio_root));
3643 scn->scn_zio_root = zio_root(scn->scn_dp->dp_spa, NULL,
3644 NULL, ZIO_FLAG_MUSTSUCCEED);
3645 }
3646 }
3647 return (0);
3648 }
3649
3650 static void
dsl_scan_update_stats(dsl_scan_t * scn)3651 dsl_scan_update_stats(dsl_scan_t *scn)
3652 {
3653 spa_t *spa = scn->scn_dp->dp_spa;
3654 uint64_t i;
3655 uint64_t seg_size_total = 0, zio_size_total = 0;
3656 uint64_t seg_count_total = 0, zio_count_total = 0;
3657
3658 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3659 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3660 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3661
3662 if (queue == NULL)
3663 continue;
3664
3665 seg_size_total += queue->q_total_seg_size_this_txg;
3666 zio_size_total += queue->q_total_zio_size_this_txg;
3667 seg_count_total += queue->q_segs_this_txg;
3668 zio_count_total += queue->q_zios_this_txg;
3669 }
3670
3671 if (seg_count_total == 0 || zio_count_total == 0) {
3672 scn->scn_avg_seg_size_this_txg = 0;
3673 scn->scn_avg_zio_size_this_txg = 0;
3674 scn->scn_segs_this_txg = 0;
3675 scn->scn_zios_this_txg = 0;
3676 return;
3677 }
3678
3679 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3680 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3681 scn->scn_segs_this_txg = seg_count_total;
3682 scn->scn_zios_this_txg = zio_count_total;
3683 }
3684
3685 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3686 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3687 dmu_tx_t *tx)
3688 {
3689 ASSERT(!bp_freed);
3690 return (dsl_scan_free_block_cb(arg, bp, tx));
3691 }
3692
3693 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3694 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3695 dmu_tx_t *tx)
3696 {
3697 ASSERT(!bp_freed);
3698 dsl_scan_t *scn = arg;
3699 const dva_t *dva = &bp->blk_dva[0];
3700
3701 if (dsl_scan_async_block_should_pause(scn))
3702 return (SET_ERROR(ERESTART));
3703
3704 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3705 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3706 DVA_GET_ASIZE(dva), tx);
3707 scn->scn_visited_this_txg++;
3708 return (0);
3709 }
3710
3711 boolean_t
dsl_scan_active(dsl_scan_t * scn)3712 dsl_scan_active(dsl_scan_t *scn)
3713 {
3714 spa_t *spa = scn->scn_dp->dp_spa;
3715 uint64_t used = 0, comp, uncomp;
3716 boolean_t clones_left;
3717
3718 if (spa->spa_load_state != SPA_LOAD_NONE)
3719 return (B_FALSE);
3720 if (spa_shutting_down(spa))
3721 return (B_FALSE);
3722 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3723 (scn->scn_async_destroying && !scn->scn_async_stalled))
3724 return (B_TRUE);
3725
3726 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3727 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3728 &used, &comp, &uncomp);
3729 }
3730 clones_left = spa_livelist_delete_check(spa);
3731 return ((used != 0) || (clones_left));
3732 }
3733
3734 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3735 dsl_errorscrub_active(dsl_scan_t *scn)
3736 {
3737 spa_t *spa = scn->scn_dp->dp_spa;
3738 if (spa->spa_load_state != SPA_LOAD_NONE)
3739 return (B_FALSE);
3740 if (spa_shutting_down(spa))
3741 return (B_FALSE);
3742 if (dsl_errorscrubbing(scn->scn_dp))
3743 return (B_TRUE);
3744 return (B_FALSE);
3745 }
3746
3747 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3748 dsl_scan_check_deferred(vdev_t *vd)
3749 {
3750 boolean_t need_resilver = B_FALSE;
3751
3752 for (int c = 0; c < vd->vdev_children; c++) {
3753 need_resilver |=
3754 dsl_scan_check_deferred(vd->vdev_child[c]);
3755 }
3756
3757 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3758 !vd->vdev_ops->vdev_op_leaf)
3759 return (need_resilver);
3760
3761 if (!vd->vdev_resilver_deferred)
3762 need_resilver = B_TRUE;
3763
3764 return (need_resilver);
3765 }
3766
3767 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3768 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3769 uint64_t phys_birth)
3770 {
3771 vdev_t *vd;
3772
3773 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3774
3775 if (vd->vdev_ops == &vdev_indirect_ops) {
3776 /*
3777 * The indirect vdev can point to multiple
3778 * vdevs. For simplicity, always create
3779 * the resilver zio_t. zio_vdev_io_start()
3780 * will bypass the child resilver i/o's if
3781 * they are on vdevs that don't have DTL's.
3782 */
3783 return (B_TRUE);
3784 }
3785
3786 if (DVA_GET_GANG(dva)) {
3787 /*
3788 * Gang members may be spread across multiple
3789 * vdevs, so the best estimate we have is the
3790 * scrub range, which has already been checked.
3791 * XXX -- it would be better to change our
3792 * allocation policy to ensure that all
3793 * gang members reside on the same vdev.
3794 */
3795 return (B_TRUE);
3796 }
3797
3798 /*
3799 * Check if the top-level vdev must resilver this offset.
3800 * When the offset does not intersect with a dirty leaf DTL
3801 * then it may be possible to skip the resilver IO. The psize
3802 * is provided instead of asize to simplify the check for RAIDZ.
3803 */
3804 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3805 return (B_FALSE);
3806
3807 /*
3808 * Check that this top-level vdev has a device under it which
3809 * is resilvering and is not deferred.
3810 */
3811 if (!dsl_scan_check_deferred(vd))
3812 return (B_FALSE);
3813
3814 return (B_TRUE);
3815 }
3816
3817 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3818 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3819 {
3820 dsl_scan_t *scn = dp->dp_scan;
3821 spa_t *spa = dp->dp_spa;
3822 int err = 0;
3823
3824 if (spa_suspend_async_destroy(spa))
3825 return (0);
3826
3827 if (zfs_free_bpobj_enabled &&
3828 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3829 scn->scn_is_bptree = B_FALSE;
3830 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3831 scn->scn_zio_root = zio_root(spa, NULL,
3832 NULL, ZIO_FLAG_MUSTSUCCEED);
3833 err = bpobj_iterate(&dp->dp_free_bpobj,
3834 bpobj_dsl_scan_free_block_cb, scn, tx);
3835 VERIFY0(zio_wait(scn->scn_zio_root));
3836 scn->scn_zio_root = NULL;
3837
3838 if (err != 0 && err != ERESTART)
3839 zfs_panic_recover("error %u from bpobj_iterate()", err);
3840 }
3841
3842 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3843 ASSERT(scn->scn_async_destroying);
3844 scn->scn_is_bptree = B_TRUE;
3845 scn->scn_zio_root = zio_root(spa, NULL,
3846 NULL, ZIO_FLAG_MUSTSUCCEED);
3847 err = bptree_iterate(dp->dp_meta_objset,
3848 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3849 VERIFY0(zio_wait(scn->scn_zio_root));
3850 scn->scn_zio_root = NULL;
3851
3852 if (err == EIO || err == ECKSUM) {
3853 err = 0;
3854 } else if (err != 0 && err != ERESTART) {
3855 zfs_panic_recover("error %u from "
3856 "traverse_dataset_destroyed()", err);
3857 }
3858
3859 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3860 /* finished; deactivate async destroy feature */
3861 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3862 ASSERT(!spa_feature_is_active(spa,
3863 SPA_FEATURE_ASYNC_DESTROY));
3864 VERIFY0(zap_remove(dp->dp_meta_objset,
3865 DMU_POOL_DIRECTORY_OBJECT,
3866 DMU_POOL_BPTREE_OBJ, tx));
3867 VERIFY0(bptree_free(dp->dp_meta_objset,
3868 dp->dp_bptree_obj, tx));
3869 dp->dp_bptree_obj = 0;
3870 scn->scn_async_destroying = B_FALSE;
3871 scn->scn_async_stalled = B_FALSE;
3872 } else {
3873 /*
3874 * If we didn't make progress, mark the async
3875 * destroy as stalled, so that we will not initiate
3876 * a spa_sync() on its behalf. Note that we only
3877 * check this if we are not finished, because if the
3878 * bptree had no blocks for us to visit, we can
3879 * finish without "making progress".
3880 */
3881 scn->scn_async_stalled =
3882 (scn->scn_visited_this_txg == 0);
3883 }
3884 }
3885 if (scn->scn_visited_this_txg) {
3886 zfs_dbgmsg("freed %llu blocks in %llums from "
3887 "free_bpobj/bptree on %s in txg %llu; err=%u",
3888 (longlong_t)scn->scn_visited_this_txg,
3889 (longlong_t)
3890 NSEC2MSEC(getlrtime() - scn->scn_sync_start_time),
3891 spa->spa_name, (longlong_t)tx->tx_txg, err);
3892 scn->scn_visited_this_txg = 0;
3893 scn->scn_async_frees_this_txg = 0;
3894
3895 /*
3896 * Write out changes to the DDT and the BRT that may be required
3897 * as a result of the blocks freed. This ensures that the DDT
3898 * and the BRT are clean when a scrub/resilver runs.
3899 */
3900 ddt_sync(spa, tx->tx_txg);
3901 brt_sync(spa, tx->tx_txg);
3902 }
3903 if (err != 0)
3904 return (err);
3905 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3906 zfs_free_leak_on_eio &&
3907 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3908 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3909 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3910 /*
3911 * We have finished background destroying, but there is still
3912 * some space left in the dp_free_dir. Transfer this leaked
3913 * space to the dp_leak_dir.
3914 */
3915 if (dp->dp_leak_dir == NULL) {
3916 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3917 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3918 LEAK_DIR_NAME, tx);
3919 VERIFY0(dsl_pool_open_special_dir(dp,
3920 LEAK_DIR_NAME, &dp->dp_leak_dir));
3921 rrw_exit(&dp->dp_config_rwlock, FTAG);
3922 }
3923 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3924 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3925 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3926 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3927 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3928 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3929 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3930 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3931 }
3932
3933 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3934 !spa_livelist_delete_check(spa)) {
3935 /* finished; verify that space accounting went to zero */
3936 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3937 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3938 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3939 }
3940
3941 spa_notify_waiters(spa);
3942
3943 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3944 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3945 DMU_POOL_OBSOLETE_BPOBJ));
3946 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3947 ASSERT(spa_feature_is_active(dp->dp_spa,
3948 SPA_FEATURE_OBSOLETE_COUNTS));
3949
3950 scn->scn_is_bptree = B_FALSE;
3951 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3952 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3953 dsl_scan_obsolete_block_cb, scn, tx);
3954 if (err != 0 && err != ERESTART)
3955 zfs_panic_recover("error %u from bpobj_iterate()", err);
3956
3957 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3958 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3959 }
3960 return (0);
3961 }
3962
3963 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3964 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3965 {
3966 zb->zb_objset = zfs_strtonum(buf, &buf);
3967 ASSERT(*buf == ':');
3968 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3969 ASSERT(*buf == ':');
3970 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3971 ASSERT(*buf == ':');
3972 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3973 ASSERT(*buf == '\0');
3974 }
3975
3976 static void
name_to_object(char * buf,uint64_t * obj)3977 name_to_object(char *buf, uint64_t *obj)
3978 {
3979 *obj = zfs_strtonum(buf, &buf);
3980 ASSERT(*buf == '\0');
3981 }
3982
3983 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3984 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3985 {
3986 dsl_pool_t *dp = scn->scn_dp;
3987 dsl_dataset_t *ds;
3988 objset_t *os;
3989 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3990 return;
3991
3992 if (dmu_objset_from_ds(ds, &os) != 0) {
3993 dsl_dataset_rele(ds, FTAG);
3994 return;
3995 }
3996
3997 /*
3998 * If the key is not loaded dbuf_dnode_findbp() will error out with
3999 * EACCES. However in that case dnode_hold() will eventually call
4000 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
4001 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
4002 * Avoid this by checking here if the keys are loaded, if not return.
4003 * If the keys are not loaded the head_errlog feature is meaningless
4004 * as we cannot figure out the birth txg of the block pointer.
4005 */
4006 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
4007 ZFS_KEYSTATUS_UNAVAILABLE) {
4008 dsl_dataset_rele(ds, FTAG);
4009 return;
4010 }
4011
4012 dnode_t *dn;
4013 blkptr_t bp;
4014
4015 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
4016 dsl_dataset_rele(ds, FTAG);
4017 return;
4018 }
4019
4020 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4021 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
4022 NULL);
4023
4024 if (error) {
4025 rw_exit(&dn->dn_struct_rwlock);
4026 dnode_rele(dn, FTAG);
4027 dsl_dataset_rele(ds, FTAG);
4028 return;
4029 }
4030
4031 if (!error && BP_IS_HOLE(&bp)) {
4032 rw_exit(&dn->dn_struct_rwlock);
4033 dnode_rele(dn, FTAG);
4034 dsl_dataset_rele(ds, FTAG);
4035 return;
4036 }
4037
4038 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4039 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4040
4041 /* If it's an intent log block, failure is expected. */
4042 if (zb.zb_level == ZB_ZIL_LEVEL)
4043 zio_flags |= ZIO_FLAG_SPECULATIVE;
4044
4045 ASSERT(!BP_IS_EMBEDDED(&bp));
4046 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4047 rw_exit(&dn->dn_struct_rwlock);
4048 dnode_rele(dn, FTAG);
4049 dsl_dataset_rele(ds, FTAG);
4050 }
4051
4052 /*
4053 * We keep track of the scrubbed error blocks in "count". This will be used
4054 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4055 * function is modelled after check_filesystem().
4056 */
4057 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4058 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4059 int *count)
4060 {
4061 dsl_dataset_t *ds;
4062 dsl_pool_t *dp = spa->spa_dsl_pool;
4063 dsl_scan_t *scn = dp->dp_scan;
4064
4065 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4066 if (error != 0)
4067 return (error);
4068
4069 uint64_t latest_txg;
4070 uint64_t txg_to_consider = spa->spa_syncing_txg;
4071 boolean_t check_snapshot = B_TRUE;
4072
4073 error = find_birth_txg(ds, zep, &latest_txg);
4074
4075 /*
4076 * If find_birth_txg() errors out, then err on the side of caution and
4077 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4078 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4079 * scrub all objects.
4080 */
4081 if (error == 0 && zep->zb_birth == latest_txg) {
4082 /* Block neither free nor re written. */
4083 zbookmark_phys_t zb;
4084 zep_to_zb(fs, zep, &zb);
4085 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4086 ZIO_FLAG_CANFAIL);
4087 /* We have already acquired the config lock for spa */
4088 read_by_block_level(scn, zb);
4089
4090 (void) zio_wait(scn->scn_zio_root);
4091 scn->scn_zio_root = NULL;
4092
4093 scn->errorscrub_phys.dep_examined++;
4094 scn->errorscrub_phys.dep_to_examine--;
4095 (*count)++;
4096 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4097 dsl_error_scrub_check_suspend(scn, &zb)) {
4098 dsl_dataset_rele(ds, FTAG);
4099 return (SET_ERROR(EFAULT));
4100 }
4101
4102 check_snapshot = B_FALSE;
4103 } else if (error == 0) {
4104 txg_to_consider = latest_txg;
4105 }
4106
4107 /*
4108 * Retrieve the number of snapshots if the dataset is not a snapshot.
4109 */
4110 uint64_t snap_count = 0;
4111 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4112
4113 error = zap_count(spa->spa_meta_objset,
4114 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4115
4116 if (error != 0) {
4117 dsl_dataset_rele(ds, FTAG);
4118 return (error);
4119 }
4120 }
4121
4122 if (snap_count == 0) {
4123 /* Filesystem without snapshots. */
4124 dsl_dataset_rele(ds, FTAG);
4125 return (0);
4126 }
4127
4128 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4129 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4130
4131 dsl_dataset_rele(ds, FTAG);
4132
4133 /* Check only snapshots created from this file system. */
4134 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4135 snap_obj_txg <= txg_to_consider) {
4136
4137 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4138 if (error != 0)
4139 return (error);
4140
4141 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4142 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4143 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4144 dsl_dataset_rele(ds, FTAG);
4145 continue;
4146 }
4147
4148 boolean_t affected = B_TRUE;
4149 if (check_snapshot) {
4150 uint64_t blk_txg;
4151 error = find_birth_txg(ds, zep, &blk_txg);
4152
4153 /*
4154 * Scrub the snapshot also when zb_birth == 0 or when
4155 * find_birth_txg() returns an error.
4156 */
4157 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4158 (error != 0) || (zep->zb_birth == 0);
4159 }
4160
4161 /* Scrub snapshots. */
4162 if (affected) {
4163 zbookmark_phys_t zb;
4164 zep_to_zb(snap_obj, zep, &zb);
4165 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4166 ZIO_FLAG_CANFAIL);
4167 /* We have already acquired the config lock for spa */
4168 read_by_block_level(scn, zb);
4169
4170 (void) zio_wait(scn->scn_zio_root);
4171 scn->scn_zio_root = NULL;
4172
4173 scn->errorscrub_phys.dep_examined++;
4174 scn->errorscrub_phys.dep_to_examine--;
4175 (*count)++;
4176 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4177 dsl_error_scrub_check_suspend(scn, &zb)) {
4178 dsl_dataset_rele(ds, FTAG);
4179 return (EFAULT);
4180 }
4181 }
4182 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4183 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4184 dsl_dataset_rele(ds, FTAG);
4185 }
4186 return (0);
4187 }
4188
4189 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4190 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4191 {
4192 spa_t *spa = dp->dp_spa;
4193 dsl_scan_t *scn = dp->dp_scan;
4194
4195 /*
4196 * Only process scans in sync pass 1.
4197 */
4198
4199 if (spa_sync_pass(spa) > 1)
4200 return;
4201
4202 /*
4203 * If the spa is shutting down, then stop scanning. This will
4204 * ensure that the scan does not dirty any new data during the
4205 * shutdown phase.
4206 */
4207 if (spa_shutting_down(spa))
4208 return;
4209
4210 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4211 return;
4212 }
4213
4214 if (dsl_scan_resilvering(scn->scn_dp)) {
4215 /* cancel the error scrub if resilver started */
4216 dsl_scan_cancel(scn->scn_dp);
4217 return;
4218 }
4219
4220 spa->spa_scrub_active = B_TRUE;
4221 scn->scn_sync_start_time = getlrtime();
4222
4223 /*
4224 * zfs_scan_suspend_progress can be set to disable scrub progress.
4225 * See more detailed comment in dsl_scan_sync().
4226 */
4227 if (zfs_scan_suspend_progress) {
4228 uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4229 int mintime = zfs_scrub_min_time_ms;
4230
4231 while (zfs_scan_suspend_progress &&
4232 !txg_sync_waiting(scn->scn_dp) &&
4233 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4234 NSEC2MSEC(scan_time_ns) < mintime) {
4235 delay(hz);
4236 scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4237 }
4238 return;
4239 }
4240
4241 int i = 0;
4242 zap_attribute_t *za;
4243 zbookmark_phys_t *zb;
4244 boolean_t limit_exceeded = B_FALSE;
4245
4246 za = zap_attribute_alloc();
4247 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4248
4249 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4250 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4251 zap_cursor_advance(&scn->errorscrub_cursor)) {
4252 name_to_bookmark(za->za_name, zb);
4253
4254 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4255 NULL, ZIO_FLAG_CANFAIL);
4256 dsl_pool_config_enter(dp, FTAG);
4257 read_by_block_level(scn, *zb);
4258 dsl_pool_config_exit(dp, FTAG);
4259
4260 (void) zio_wait(scn->scn_zio_root);
4261 scn->scn_zio_root = NULL;
4262
4263 scn->errorscrub_phys.dep_examined += 1;
4264 scn->errorscrub_phys.dep_to_examine -= 1;
4265 i++;
4266 if (i == zfs_scrub_error_blocks_per_txg ||
4267 dsl_error_scrub_check_suspend(scn, zb)) {
4268 limit_exceeded = B_TRUE;
4269 break;
4270 }
4271 }
4272
4273 if (!limit_exceeded)
4274 dsl_errorscrub_done(scn, B_TRUE, tx);
4275
4276 dsl_errorscrub_sync_state(scn, tx);
4277 zap_attribute_free(za);
4278 kmem_free(zb, sizeof (*zb));
4279 return;
4280 }
4281
4282 int error = 0;
4283 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4284 zap_cursor_advance(&scn->errorscrub_cursor)) {
4285
4286 zap_cursor_t *head_ds_cursor;
4287 zap_attribute_t *head_ds_attr;
4288 zbookmark_err_phys_t head_ds_block;
4289
4290 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4291 head_ds_attr = zap_attribute_alloc();
4292
4293 uint64_t head_ds_err_obj = za->za_first_integer;
4294 uint64_t head_ds;
4295 name_to_object(za->za_name, &head_ds);
4296 boolean_t config_held = B_FALSE;
4297 uint64_t top_affected_fs;
4298
4299 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4300 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4301 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4302
4303 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4304
4305 /*
4306 * In case we are called from spa_sync the pool
4307 * config is already held.
4308 */
4309 if (!dsl_pool_config_held(dp)) {
4310 dsl_pool_config_enter(dp, FTAG);
4311 config_held = B_TRUE;
4312 }
4313
4314 error = find_top_affected_fs(spa,
4315 head_ds, &head_ds_block, &top_affected_fs);
4316 if (error)
4317 break;
4318
4319 error = scrub_filesystem(spa, top_affected_fs,
4320 &head_ds_block, &i);
4321
4322 if (error == SET_ERROR(EFAULT)) {
4323 limit_exceeded = B_TRUE;
4324 break;
4325 }
4326 }
4327
4328 zap_cursor_fini(head_ds_cursor);
4329 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4330 zap_attribute_free(head_ds_attr);
4331
4332 if (config_held)
4333 dsl_pool_config_exit(dp, FTAG);
4334 }
4335
4336 zap_attribute_free(za);
4337 kmem_free(zb, sizeof (*zb));
4338 if (!limit_exceeded)
4339 dsl_errorscrub_done(scn, B_TRUE, tx);
4340
4341 dsl_errorscrub_sync_state(scn, tx);
4342 }
4343
4344 /*
4345 * This is the primary entry point for scans that is called from syncing
4346 * context. Scans must happen entirely during syncing context so that we
4347 * can guarantee that blocks we are currently scanning will not change out
4348 * from under us. While a scan is active, this function controls how quickly
4349 * transaction groups proceed, instead of the normal handling provided by
4350 * txg_sync_thread().
4351 */
4352 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4353 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4354 {
4355 int err = 0;
4356 dsl_scan_t *scn = dp->dp_scan;
4357 spa_t *spa = dp->dp_spa;
4358 state_sync_type_t sync_type = SYNC_OPTIONAL;
4359 int restart_early = 0;
4360
4361 if (spa->spa_resilver_deferred) {
4362 uint64_t to_issue, issued;
4363
4364 if (!spa_feature_is_active(dp->dp_spa,
4365 SPA_FEATURE_RESILVER_DEFER))
4366 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4367
4368 /*
4369 * See print_scan_scrub_resilver_status() issued/total_i
4370 * @ cmd/zpool/zpool_main.c
4371 */
4372 to_issue =
4373 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4374 issued =
4375 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4376 restart_early =
4377 zfs_resilver_disable_defer ||
4378 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4379 }
4380
4381 /*
4382 * Only process scans in sync pass 1.
4383 */
4384 if (spa_sync_pass(spa) > 1)
4385 return;
4386
4387
4388 /*
4389 * Check for scn_restart_txg before checking spa_load_state, so
4390 * that we can restart an old-style scan while the pool is being
4391 * imported (see dsl_scan_init). We also restart scans if there
4392 * is a deferred resilver and the user has manually disabled
4393 * deferred resilvers via zfs_resilver_disable_defer, or if the
4394 * current scan progress is below zfs_resilver_defer_percent.
4395 */
4396 if (dsl_scan_restarting(scn, tx) || restart_early) {
4397 setup_sync_arg_t setup_sync_arg = {
4398 .func = POOL_SCAN_SCRUB,
4399 .txgstart = 0,
4400 .txgend = 0,
4401 };
4402 dsl_scan_done(scn, B_FALSE, tx);
4403 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4404 setup_sync_arg.func = POOL_SCAN_RESILVER;
4405 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4406 setup_sync_arg.func, dp->dp_spa->spa_name,
4407 (longlong_t)tx->tx_txg, restart_early);
4408 dsl_scan_setup_sync(&setup_sync_arg, tx);
4409 }
4410
4411 /*
4412 * If the spa is shutting down, then stop scanning. This will
4413 * ensure that the scan does not dirty any new data during the
4414 * shutdown phase.
4415 */
4416 if (spa_shutting_down(spa))
4417 return;
4418
4419 /*
4420 * Wait a few txgs after importing before doing background work
4421 * (async destroys and scanning). This should help the import
4422 * command to complete quickly.
4423 */
4424 if (spa->spa_syncing_txg < spa->spa_first_txg + zfs_import_defer_txgs)
4425 return;
4426
4427 /*
4428 * If the scan is inactive due to a stalled async destroy, try again.
4429 */
4430 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4431 return;
4432
4433 /* reset scan statistics */
4434 scn->scn_visited_this_txg = 0;
4435 scn->scn_async_frees_this_txg = 0;
4436 scn->scn_holes_this_txg = 0;
4437 scn->scn_lt_min_this_txg = 0;
4438 scn->scn_gt_max_this_txg = 0;
4439 scn->scn_ddt_contained_this_txg = 0;
4440 scn->scn_objsets_visited_this_txg = 0;
4441 scn->scn_avg_seg_size_this_txg = 0;
4442 scn->scn_segs_this_txg = 0;
4443 scn->scn_avg_zio_size_this_txg = 0;
4444 scn->scn_zios_this_txg = 0;
4445 scn->scn_suspending = B_FALSE;
4446 scn->scn_sync_start_time = getlrtime();
4447 spa->spa_scrub_active = B_TRUE;
4448
4449 /*
4450 * First process the async destroys. If we suspend, don't do
4451 * any scrubbing or resilvering. This ensures that there are no
4452 * async destroys while we are scanning, so the scan code doesn't
4453 * have to worry about traversing it. It is also faster to free the
4454 * blocks than to scrub them.
4455 */
4456 err = dsl_process_async_destroys(dp, tx);
4457 if (err != 0)
4458 return;
4459
4460 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4461 return;
4462
4463 /*
4464 * zfs_scan_suspend_progress can be set to disable scan progress.
4465 * We don't want to spin the txg_sync thread, so we add a delay
4466 * here to simulate the time spent doing a scan. This is mostly
4467 * useful for testing and debugging.
4468 */
4469 if (zfs_scan_suspend_progress) {
4470 uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4471 uint_t mintime = (scn->scn_phys.scn_func ==
4472 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4473 zfs_scrub_min_time_ms;
4474
4475 while (zfs_scan_suspend_progress &&
4476 !txg_sync_waiting(scn->scn_dp) &&
4477 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4478 NSEC2MSEC(scan_time_ns) < mintime) {
4479 delay(hz);
4480 scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4481 }
4482 return;
4483 }
4484
4485 /*
4486 * Disabled by default, set zfs_scan_report_txgs to report
4487 * average performance over the last zfs_scan_report_txgs TXGs.
4488 */
4489 if (zfs_scan_report_txgs != 0 &&
4490 tx->tx_txg % zfs_scan_report_txgs == 0) {
4491 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4492 spa_scan_stat_init(spa);
4493 }
4494
4495 /*
4496 * It is possible to switch from unsorted to sorted at any time,
4497 * but afterwards the scan will remain sorted unless reloaded from
4498 * a checkpoint after a reboot.
4499 */
4500 if (!zfs_scan_legacy) {
4501 scn->scn_is_sorted = B_TRUE;
4502 if (scn->scn_last_checkpoint == 0)
4503 scn->scn_last_checkpoint = ddi_get_lbolt();
4504 }
4505
4506 /*
4507 * For sorted scans, determine what kind of work we will be doing
4508 * this txg based on our memory limitations and whether or not we
4509 * need to perform a checkpoint.
4510 */
4511 if (scn->scn_is_sorted) {
4512 /*
4513 * If we are over our checkpoint interval, set scn_clearing
4514 * so that we can begin checkpointing immediately. The
4515 * checkpoint allows us to save a consistent bookmark
4516 * representing how much data we have scrubbed so far.
4517 * Otherwise, use the memory limit to determine if we should
4518 * scan for metadata or start issue scrub IOs. We accumulate
4519 * metadata until we hit our hard memory limit at which point
4520 * we issue scrub IOs until we are at our soft memory limit.
4521 */
4522 if (scn->scn_checkpointing ||
4523 ddi_get_lbolt() - scn->scn_last_checkpoint >
4524 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4525 if (!scn->scn_checkpointing)
4526 zfs_dbgmsg("begin scan checkpoint for %s",
4527 spa->spa_name);
4528
4529 scn->scn_checkpointing = B_TRUE;
4530 scn->scn_clearing = B_TRUE;
4531 } else {
4532 boolean_t should_clear = dsl_scan_should_clear(scn);
4533 if (should_clear && !scn->scn_clearing) {
4534 zfs_dbgmsg("begin scan clearing for %s",
4535 spa->spa_name);
4536 scn->scn_clearing = B_TRUE;
4537 } else if (!should_clear && scn->scn_clearing) {
4538 zfs_dbgmsg("finish scan clearing for %s",
4539 spa->spa_name);
4540 scn->scn_clearing = B_FALSE;
4541 }
4542 }
4543 } else {
4544 ASSERT0(scn->scn_checkpointing);
4545 ASSERT0(scn->scn_clearing);
4546 }
4547
4548 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4549 /* Need to scan metadata for more blocks to scrub */
4550 dsl_scan_phys_t *scnp = &scn->scn_phys;
4551 taskqid_t prefetch_tqid;
4552
4553 /*
4554 * Calculate the max number of in-flight bytes for pool-wide
4555 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4556 * Limits for the issuing phase are done per top-level vdev and
4557 * are handled separately.
4558 */
4559 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4560 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4561
4562 if (scnp->scn_ddt_bookmark.ddb_class <=
4563 scnp->scn_ddt_class_max) {
4564 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4565 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4566 "ddt bm=%llu/%llu/%llu/%llx",
4567 spa->spa_name,
4568 (longlong_t)tx->tx_txg,
4569 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4570 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4571 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4572 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4573 } else {
4574 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4575 "bm=%llu/%llu/%llu/%llu",
4576 spa->spa_name,
4577 (longlong_t)tx->tx_txg,
4578 (longlong_t)scnp->scn_bookmark.zb_objset,
4579 (longlong_t)scnp->scn_bookmark.zb_object,
4580 (longlong_t)scnp->scn_bookmark.zb_level,
4581 (longlong_t)scnp->scn_bookmark.zb_blkid);
4582 }
4583
4584 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4585 NULL, ZIO_FLAG_CANFAIL);
4586
4587 scn->scn_prefetch_stop = B_FALSE;
4588 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4589 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4590 ASSERT(prefetch_tqid != TASKQID_INVALID);
4591
4592 dsl_pool_config_enter(dp, FTAG);
4593 dsl_scan_visit(scn, tx);
4594 dsl_pool_config_exit(dp, FTAG);
4595
4596 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4597 scn->scn_prefetch_stop = B_TRUE;
4598 cv_broadcast(&spa->spa_scrub_io_cv);
4599 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4600
4601 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4602 (void) zio_wait(scn->scn_zio_root);
4603 scn->scn_zio_root = NULL;
4604
4605 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4606 "(%llu os's, %llu holes, %llu < mintxg, "
4607 "%llu in ddt, %llu > maxtxg)",
4608 (longlong_t)scn->scn_visited_this_txg,
4609 spa->spa_name,
4610 (longlong_t)NSEC2MSEC(getlrtime() -
4611 scn->scn_sync_start_time),
4612 (longlong_t)scn->scn_objsets_visited_this_txg,
4613 (longlong_t)scn->scn_holes_this_txg,
4614 (longlong_t)scn->scn_lt_min_this_txg,
4615 (longlong_t)scn->scn_ddt_contained_this_txg,
4616 (longlong_t)scn->scn_gt_max_this_txg);
4617
4618 if (!scn->scn_suspending) {
4619 ASSERT0(avl_numnodes(&scn->scn_queue));
4620 scn->scn_done_txg = tx->tx_txg + 1;
4621 if (scn->scn_is_sorted) {
4622 scn->scn_checkpointing = B_TRUE;
4623 scn->scn_clearing = B_TRUE;
4624 scn->scn_issued_before_pass +=
4625 spa->spa_scan_pass_issued;
4626 spa_scan_stat_init(spa);
4627 }
4628 zfs_dbgmsg("scan complete for %s txg %llu",
4629 spa->spa_name,
4630 (longlong_t)tx->tx_txg);
4631 }
4632 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4633 ASSERT(scn->scn_clearing);
4634
4635 /* need to issue scrubbing IOs from per-vdev queues */
4636 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4637 NULL, ZIO_FLAG_CANFAIL);
4638 scan_io_queues_run(scn);
4639 (void) zio_wait(scn->scn_zio_root);
4640 scn->scn_zio_root = NULL;
4641
4642 /* calculate and dprintf the current memory usage */
4643 (void) dsl_scan_should_clear(scn);
4644 dsl_scan_update_stats(scn);
4645
4646 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4647 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4648 (longlong_t)scn->scn_zios_this_txg,
4649 spa->spa_name,
4650 (longlong_t)scn->scn_segs_this_txg,
4651 (longlong_t)NSEC2MSEC(getlrtime() -
4652 scn->scn_sync_start_time),
4653 (longlong_t)scn->scn_avg_zio_size_this_txg,
4654 (longlong_t)scn->scn_avg_seg_size_this_txg);
4655 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4656 /* Finished with everything. Mark the scrub as complete */
4657 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4658 (longlong_t)tx->tx_txg,
4659 spa->spa_name);
4660 ASSERT3U(scn->scn_done_txg, !=, 0);
4661 ASSERT0(spa->spa_scrub_inflight);
4662 ASSERT0(scn->scn_queues_pending);
4663 dsl_scan_done(scn, B_TRUE, tx);
4664 sync_type = SYNC_MANDATORY;
4665 }
4666
4667 dsl_scan_sync_state(scn, tx, sync_type);
4668 }
4669
4670 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4671 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4672 {
4673 /*
4674 * Don't count embedded bp's, since we already did the work of
4675 * scanning these when we scanned the containing block.
4676 */
4677 if (BP_IS_EMBEDDED(bp))
4678 return;
4679
4680 /*
4681 * Update the spa's stats on how many bytes we have issued.
4682 * Sequential scrubs create a zio for each DVA of the bp. Each
4683 * of these will include all DVAs for repair purposes, but the
4684 * zio code will only try the first one unless there is an issue.
4685 * Therefore, we should only count the first DVA for these IOs.
4686 */
4687 atomic_add_64(&spa->spa_scan_pass_issued,
4688 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4689 }
4690
4691 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4692 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4693 {
4694 if (BP_IS_EMBEDDED(bp))
4695 return;
4696 atomic_add_64(&scn->scn_phys.scn_skipped,
4697 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4698 }
4699
4700 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4701 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4702 {
4703 /*
4704 * If we resume after a reboot, zab will be NULL; don't record
4705 * incomplete stats in that case.
4706 */
4707 if (zab == NULL)
4708 return;
4709
4710 for (int i = 0; i < 4; i++) {
4711 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4712 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4713
4714 if (t & DMU_OT_NEWTYPE)
4715 t = DMU_OT_OTHER;
4716 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4717 int equal;
4718
4719 zb->zb_count++;
4720 zb->zb_asize += BP_GET_ASIZE(bp);
4721 zb->zb_lsize += BP_GET_LSIZE(bp);
4722 zb->zb_psize += BP_GET_PSIZE(bp);
4723 zb->zb_gangs += BP_COUNT_GANG(bp);
4724
4725 switch (BP_GET_NDVAS(bp)) {
4726 case 2:
4727 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4728 DVA_GET_VDEV(&bp->blk_dva[1]))
4729 zb->zb_ditto_2_of_2_samevdev++;
4730 break;
4731 case 3:
4732 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4733 DVA_GET_VDEV(&bp->blk_dva[1])) +
4734 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4735 DVA_GET_VDEV(&bp->blk_dva[2])) +
4736 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4737 DVA_GET_VDEV(&bp->blk_dva[2]));
4738 if (equal == 1)
4739 zb->zb_ditto_2_of_3_samevdev++;
4740 else if (equal == 3)
4741 zb->zb_ditto_3_of_3_samevdev++;
4742 break;
4743 }
4744 }
4745 }
4746
4747 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4748 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4749 {
4750 avl_index_t idx;
4751 dsl_scan_t *scn = queue->q_scn;
4752
4753 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4754
4755 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4756 atomic_add_64(&scn->scn_queues_pending, 1);
4757 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4758 /* block is already scheduled for reading */
4759 sio_free(sio);
4760 return;
4761 }
4762 avl_insert(&queue->q_sios_by_addr, sio, idx);
4763 queue->q_sio_memused += SIO_GET_MUSED(sio);
4764 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4765 SIO_GET_ASIZE(sio));
4766 }
4767
4768 /*
4769 * Given all the info we got from our metadata scanning process, we
4770 * construct a scan_io_t and insert it into the scan sorting queue. The
4771 * I/O must already be suitable for us to process. This is controlled
4772 * by dsl_scan_enqueue().
4773 */
4774 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4775 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4776 int zio_flags, const zbookmark_phys_t *zb)
4777 {
4778 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4779
4780 ASSERT0(BP_IS_GANG(bp));
4781 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4782
4783 bp2sio(bp, sio, dva_i);
4784 sio->sio_flags = zio_flags;
4785 sio->sio_zb = *zb;
4786
4787 queue->q_last_ext_addr = -1;
4788 scan_io_queue_insert_impl(queue, sio);
4789 }
4790
4791 /*
4792 * Given a set of I/O parameters as discovered by the metadata traversal
4793 * process, attempts to place the I/O into the sorted queues (if allowed),
4794 * or immediately executes the I/O.
4795 */
4796 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4797 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4798 const zbookmark_phys_t *zb)
4799 {
4800 spa_t *spa = dp->dp_spa;
4801
4802 ASSERT(!BP_IS_EMBEDDED(bp));
4803
4804 /*
4805 * Gang blocks are hard to issue sequentially, so we just issue them
4806 * here immediately instead of queuing them.
4807 */
4808 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4809 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4810 return;
4811 }
4812
4813 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4814 dva_t dva;
4815 vdev_t *vdev;
4816
4817 dva = bp->blk_dva[i];
4818 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4819 ASSERT(vdev != NULL);
4820
4821 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4822 if (vdev->vdev_scan_io_queue == NULL)
4823 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4824 ASSERT(dp->dp_scan != NULL);
4825 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4826 i, zio_flags, zb);
4827 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4828 }
4829 }
4830
4831 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4832 dsl_scan_scrub_cb(dsl_pool_t *dp,
4833 const blkptr_t *bp, const zbookmark_phys_t *zb)
4834 {
4835 dsl_scan_t *scn = dp->dp_scan;
4836 spa_t *spa = dp->dp_spa;
4837 uint64_t phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
4838 size_t psize = BP_GET_PSIZE(bp);
4839 boolean_t needs_io = B_FALSE;
4840 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4841
4842 count_block(dp->dp_blkstats, bp);
4843 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4844 phys_birth >= scn->scn_phys.scn_max_txg) {
4845 count_block_skipped(scn, bp, B_TRUE);
4846 return (0);
4847 }
4848
4849 /* Embedded BP's have phys_birth==0, so we reject them above. */
4850 ASSERT(!BP_IS_EMBEDDED(bp));
4851
4852 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4853 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4854 zio_flags |= ZIO_FLAG_SCRUB;
4855 needs_io = B_TRUE;
4856 } else {
4857 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4858 zio_flags |= ZIO_FLAG_RESILVER;
4859 needs_io = B_FALSE;
4860 }
4861
4862 /* If it's an intent log block, failure is expected. */
4863 if (zb->zb_level == ZB_ZIL_LEVEL)
4864 zio_flags |= ZIO_FLAG_SPECULATIVE;
4865
4866 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4867 const dva_t *dva = &bp->blk_dva[d];
4868
4869 /*
4870 * Keep track of how much data we've examined so that
4871 * zpool(8) status can make useful progress reports.
4872 */
4873 uint64_t asize = DVA_GET_ASIZE(dva);
4874 scn->scn_phys.scn_examined += asize;
4875 spa->spa_scan_pass_exam += asize;
4876
4877 /* if it's a resilver, this may not be in the target range */
4878 if (!needs_io)
4879 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4880 phys_birth);
4881 }
4882
4883 if (needs_io && !zfs_no_scrub_io) {
4884 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4885 } else {
4886 count_block_skipped(scn, bp, B_TRUE);
4887 }
4888
4889 /* do not relocate this block */
4890 return (0);
4891 }
4892
4893 static void
dsl_scan_scrub_done(zio_t * zio)4894 dsl_scan_scrub_done(zio_t *zio)
4895 {
4896 spa_t *spa = zio->io_spa;
4897 blkptr_t *bp = zio->io_bp;
4898 dsl_scan_io_queue_t *queue = zio->io_private;
4899
4900 abd_free(zio->io_abd);
4901
4902 if (queue == NULL) {
4903 mutex_enter(&spa->spa_scrub_lock);
4904 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4905 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4906 cv_broadcast(&spa->spa_scrub_io_cv);
4907 mutex_exit(&spa->spa_scrub_lock);
4908 } else {
4909 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4910 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4911 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4912 cv_broadcast(&queue->q_zio_cv);
4913 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4914 }
4915
4916 if (zio->io_error && (zio->io_error != ECKSUM ||
4917 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4918 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4919 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4920 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4921 ->errorscrub_phys.dep_errors);
4922 } else {
4923 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4924 .scn_errors);
4925 }
4926 }
4927 }
4928
4929 /*
4930 * Given a scanning zio's information, executes the zio. The zio need
4931 * not necessarily be only sortable, this function simply executes the
4932 * zio, no matter what it is. The optional queue argument allows the
4933 * caller to specify that they want per top level vdev IO rate limiting
4934 * instead of the legacy global limiting.
4935 */
4936 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4937 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4938 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4939 {
4940 spa_t *spa = dp->dp_spa;
4941 dsl_scan_t *scn = dp->dp_scan;
4942 size_t size = BP_GET_PSIZE(bp);
4943 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4944 zio_t *pio;
4945
4946 if (queue == NULL) {
4947 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4948 mutex_enter(&spa->spa_scrub_lock);
4949 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4950 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4951 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4952 mutex_exit(&spa->spa_scrub_lock);
4953 pio = scn->scn_zio_root;
4954 } else {
4955 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4956
4957 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4958 mutex_enter(q_lock);
4959 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4960 cv_wait(&queue->q_zio_cv, q_lock);
4961 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4962 pio = queue->q_zio;
4963 mutex_exit(q_lock);
4964 }
4965
4966 ASSERT(pio != NULL);
4967 count_block_issued(spa, bp, queue == NULL);
4968 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4969 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4970 }
4971
4972 /*
4973 * This is the primary extent sorting algorithm. We balance two parameters:
4974 * 1) how many bytes of I/O are in an extent
4975 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4976 * Since we allow extents to have gaps between their constituent I/Os, it's
4977 * possible to have a fairly large extent that contains the same amount of
4978 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4979 * The algorithm sorts based on a score calculated from the extent's size,
4980 * the relative fill volume (in %) and a "fill weight" parameter that controls
4981 * the split between whether we prefer larger extents or more well populated
4982 * extents:
4983 *
4984 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4985 *
4986 * Example:
4987 * 1) assume extsz = 64 MiB
4988 * 2) assume fill = 32 MiB (extent is half full)
4989 * 3) assume fill_weight = 3
4990 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4991 * SCORE = 32M + (50 * 3 * 32M) / 100
4992 * SCORE = 32M + (4800M / 100)
4993 * SCORE = 32M + 48M
4994 * ^ ^
4995 * | +--- final total relative fill-based score
4996 * +--------- final total fill-based score
4997 * SCORE = 80M
4998 *
4999 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
5000 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
5001 * Note that as an optimization, we replace multiplication and division by
5002 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
5003 *
5004 * Since we do not care if one extent is only few percent better than another,
5005 * compress the score into 6 bits via binary logarithm AKA highbit64() and
5006 * put into otherwise unused due to ashift high bits of offset. This allows
5007 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
5008 * with single operation. Plus it makes scrubs more sequential and reduces
5009 * chances that minor extent change move it within the B-tree.
5010 */
5011 __attribute__((always_inline)) inline
5012 static int
ext_size_compare(const void * x,const void * y)5013 ext_size_compare(const void *x, const void *y)
5014 {
5015 const uint64_t *a = x, *b = y;
5016
5017 return (TREE_CMP(*a, *b));
5018 }
5019
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)5020 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
5021 ext_size_compare)
5022
5023 static void
5024 ext_size_create(zfs_range_tree_t *rt, void *arg)
5025 {
5026 (void) rt;
5027 zfs_btree_t *size_tree = arg;
5028
5029 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
5030 sizeof (uint64_t));
5031 }
5032
5033 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)5034 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5035 {
5036 (void) rt;
5037 zfs_btree_t *size_tree = arg;
5038 ASSERT0(zfs_btree_numnodes(size_tree));
5039
5040 zfs_btree_destroy(size_tree);
5041 }
5042
5043 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5044 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5045 {
5046 (void) rt;
5047 uint64_t size = rsg->rs_end - rsg->rs_start;
5048 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5049 fill_weight * rsg->rs_fill) >> 7);
5050 ASSERT3U(rt->rt_shift, >=, 8);
5051 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5052 }
5053
5054 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5055 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5056 {
5057 zfs_btree_t *size_tree = arg;
5058 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5059 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5060 zfs_btree_add(size_tree, &v);
5061 }
5062
5063 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5064 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5065 {
5066 zfs_btree_t *size_tree = arg;
5067 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5068 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5069 zfs_btree_remove(size_tree, &v);
5070 }
5071
5072 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5073 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5074 {
5075 zfs_btree_t *size_tree = arg;
5076 zfs_btree_clear(size_tree);
5077 zfs_btree_destroy(size_tree);
5078
5079 ext_size_create(rt, arg);
5080 }
5081
5082 static const zfs_range_tree_ops_t ext_size_ops = {
5083 .rtop_create = ext_size_create,
5084 .rtop_destroy = ext_size_destroy,
5085 .rtop_add = ext_size_add,
5086 .rtop_remove = ext_size_remove,
5087 .rtop_vacate = ext_size_vacate
5088 };
5089
5090 /*
5091 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5092 * based on LBA-order (from lowest to highest).
5093 */
5094 static int
sio_addr_compare(const void * x,const void * y)5095 sio_addr_compare(const void *x, const void *y)
5096 {
5097 const scan_io_t *a = x, *b = y;
5098
5099 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5100 }
5101
5102 /* IO queues are created on demand when they are needed. */
5103 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5104 scan_io_queue_create(vdev_t *vd)
5105 {
5106 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5107 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5108
5109 q->q_scn = scn;
5110 q->q_vd = vd;
5111 q->q_sio_memused = 0;
5112 q->q_last_ext_addr = -1;
5113 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5114 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5115 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5116 zfs_scan_max_ext_gap);
5117 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5118 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5119
5120 return (q);
5121 }
5122
5123 /*
5124 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5125 * No further execution of I/O occurs, anything pending in the queue is
5126 * simply freed without being executed.
5127 */
5128 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5129 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5130 {
5131 dsl_scan_t *scn = queue->q_scn;
5132 scan_io_t *sio;
5133 void *cookie = NULL;
5134
5135 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5136
5137 if (!avl_is_empty(&queue->q_sios_by_addr))
5138 atomic_add_64(&scn->scn_queues_pending, -1);
5139 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5140 NULL) {
5141 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5142 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5143 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5144 sio_free(sio);
5145 }
5146
5147 ASSERT0(queue->q_sio_memused);
5148 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5149 zfs_range_tree_destroy(queue->q_exts_by_addr);
5150 avl_destroy(&queue->q_sios_by_addr);
5151 cv_destroy(&queue->q_zio_cv);
5152
5153 kmem_free(queue, sizeof (*queue));
5154 }
5155
5156 /*
5157 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5158 * called on behalf of vdev_top_transfer when creating or destroying
5159 * a mirror vdev due to zpool attach/detach.
5160 */
5161 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5162 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5163 {
5164 mutex_enter(&svd->vdev_scan_io_queue_lock);
5165 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5166
5167 VERIFY0P(tvd->vdev_scan_io_queue);
5168 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5169 svd->vdev_scan_io_queue = NULL;
5170 if (tvd->vdev_scan_io_queue != NULL)
5171 tvd->vdev_scan_io_queue->q_vd = tvd;
5172
5173 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5174 mutex_exit(&svd->vdev_scan_io_queue_lock);
5175 }
5176
5177 static void
scan_io_queues_destroy(dsl_scan_t * scn)5178 scan_io_queues_destroy(dsl_scan_t *scn)
5179 {
5180 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5181
5182 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5183 vdev_t *tvd = rvd->vdev_child[i];
5184
5185 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5186 if (tvd->vdev_scan_io_queue != NULL)
5187 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5188 tvd->vdev_scan_io_queue = NULL;
5189 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5190 }
5191 }
5192
5193 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5194 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5195 {
5196 dsl_pool_t *dp = spa->spa_dsl_pool;
5197 dsl_scan_t *scn = dp->dp_scan;
5198 vdev_t *vdev;
5199 kmutex_t *q_lock;
5200 dsl_scan_io_queue_t *queue;
5201 scan_io_t *srch_sio, *sio;
5202 avl_index_t idx;
5203 uint64_t start, size;
5204
5205 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5206 ASSERT(vdev != NULL);
5207 q_lock = &vdev->vdev_scan_io_queue_lock;
5208 queue = vdev->vdev_scan_io_queue;
5209
5210 mutex_enter(q_lock);
5211 if (queue == NULL) {
5212 mutex_exit(q_lock);
5213 return;
5214 }
5215
5216 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5217 bp2sio(bp, srch_sio, dva_i);
5218 start = SIO_GET_OFFSET(srch_sio);
5219 size = SIO_GET_ASIZE(srch_sio);
5220
5221 /*
5222 * We can find the zio in two states:
5223 * 1) Cold, just sitting in the queue of zio's to be issued at
5224 * some point in the future. In this case, all we do is
5225 * remove the zio from the q_sios_by_addr tree, decrement
5226 * its data volume from the containing zfs_range_seg_t and
5227 * resort the q_exts_by_size tree to reflect that the
5228 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5229 * the zfs_range_seg_t - this is usually rare enough not to be
5230 * worth the extra hassle of trying keep track of precise
5231 * extent boundaries.
5232 * 2) Hot, where the zio is currently in-flight in
5233 * dsl_scan_issue_ios. In this case, we can't simply
5234 * reach in and stop the in-flight zio's, so we instead
5235 * block the caller. Eventually, dsl_scan_issue_ios will
5236 * be done with issuing the zio's it gathered and will
5237 * signal us.
5238 */
5239 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5240 sio_free(srch_sio);
5241
5242 if (sio != NULL) {
5243 blkptr_t tmpbp;
5244
5245 /* Got it while it was cold in the queue */
5246 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5247 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5248 avl_remove(&queue->q_sios_by_addr, sio);
5249 if (avl_is_empty(&queue->q_sios_by_addr))
5250 atomic_add_64(&scn->scn_queues_pending, -1);
5251 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5252
5253 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5254 size));
5255 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5256
5257 /* count the block as though we skipped it */
5258 sio2bp(sio, &tmpbp);
5259 count_block_skipped(scn, &tmpbp, B_FALSE);
5260
5261 sio_free(sio);
5262 }
5263 mutex_exit(q_lock);
5264 }
5265
5266 /*
5267 * Callback invoked when a zio_free() zio is executing. This needs to be
5268 * intercepted to prevent the zio from deallocating a particular portion
5269 * of disk space and it then getting reallocated and written to, while we
5270 * still have it queued up for processing.
5271 */
5272 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5273 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5274 {
5275 dsl_pool_t *dp = spa->spa_dsl_pool;
5276 dsl_scan_t *scn = dp->dp_scan;
5277
5278 ASSERT(!BP_IS_EMBEDDED(bp));
5279 ASSERT(scn != NULL);
5280 if (!dsl_scan_is_running(scn))
5281 return;
5282
5283 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5284 dsl_scan_freed_dva(spa, bp, i);
5285 }
5286
5287 /*
5288 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5289 * not started, start it. Otherwise, only restart if max txg in DTL range is
5290 * greater than the max txg in the current scan. If the DTL max is less than
5291 * the scan max, then the vdev has not missed any new data since the resilver
5292 * started, so a restart is not needed.
5293 */
5294 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5295 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5296 {
5297 uint64_t min, max;
5298
5299 if (!vdev_resilver_needed(vd, &min, &max))
5300 return;
5301
5302 if (!dsl_scan_resilvering(dp)) {
5303 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5304 return;
5305 }
5306
5307 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5308 return;
5309
5310 /* restart is needed, check if it can be deferred */
5311 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5312 vdev_defer_resilver(vd);
5313 else
5314 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5315 }
5316
5317 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5318 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5319
5320 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5321 "Min millisecs to scrub per txg");
5322
5323 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5324 "Min millisecs to obsolete per txg");
5325
5326 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5327 "Min millisecs to free per txg");
5328
5329 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5330 "Min millisecs to resilver per txg");
5331
5332 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5333 "Set to prevent scans from progressing");
5334
5335 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5336 "Set to disable scrub I/O");
5337
5338 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5339 "Set to disable scrub prefetching");
5340
5341 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5342 "Max number of blocks freed in one txg");
5343
5344 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5345 "Max number of dedup, clone or gang blocks freed in one txg");
5346
5347 ZFS_MODULE_PARAM(zfs, zfs_, async_free_zio_wait_interval, U64, ZMOD_RW,
5348 "Wait for pending free I/Os after issuing this many asynchronously");
5349
5350 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5351 "Enable processing of the free_bpobj");
5352
5353 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5354 "Enable block statistics calculation during scrub");
5355
5356 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5357 "Fraction of RAM for scan hard limit");
5358
5359 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5360 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5361
5362 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5363 "Scrub using legacy non-sequential method");
5364
5365 ZFS_MODULE_PARAM(zfs, zfs_, import_defer_txgs, UINT, ZMOD_RW,
5366 "Number of TXGs to defer background work after pool import");
5367
5368 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5369 "Scan progress on-disk checkpointing interval");
5370
5371 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5372 "Max gap in bytes between sequential scrub / resilver I/Os");
5373
5374 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5375 "Fraction of hard limit used as soft limit");
5376
5377 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5378 "Tunable to attempt to reduce lock contention");
5379
5380 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5381 "Tunable to adjust bias towards more filled segments during scans");
5382
5383 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5384 "Tunable to report resilver performance over the last N txgs");
5385
5386 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5387 "Process all resilvers immediately");
5388
5389 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5390 "Issued IO percent complete after which resilvers are deferred");
5391
5392 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5393 "Error blocks to be scrubbed in one txg");
5394