1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zfs_events.h>
68 #include "zfs_comutil.h"
69
70 int zfsfstype;
71 vfsops_t *zfs_vfsops = NULL;
72 static major_t zfs_major;
73 static minor_t zfs_minor;
74 static kmutex_t zfs_dev_mtx;
75
76 extern int sys_shutdown;
77
78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
84 static void zfs_freevfs(vfs_t *vfsp);
85
86 static const fs_operation_def_t zfs_vfsops_template[] = {
87 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
88 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
89 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
90 VFSNAME_ROOT, { .vfs_root = zfs_root },
91 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
92 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
93 VFSNAME_VGET, { .vfs_vget = zfs_vget },
94 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
95 NULL, NULL
96 };
97
98 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
99 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
100 NULL, NULL
101 };
102
103 /*
104 * We need to keep a count of active fs's.
105 * This is necessary to prevent our module
106 * from being unloaded after a umount -f
107 */
108 static uint32_t zfs_active_fs_count = 0;
109
110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
114
115 /*
116 * MO_DEFAULT is not used since the default value is determined
117 * by the equivalent property.
118 */
119 static mntopt_t mntopts[] = {
120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
124 };
125
126 static mntopts_t zfs_mntopts = {
127 sizeof (mntopts) / sizeof (mntopt_t),
128 mntopts
129 };
130
131 /*ARGSUSED*/
132 int
zfs_sync(vfs_t * vfsp,short flag,cred_t * cr)133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
134 {
135 /*
136 * Data integrity is job one. We don't want a compromised kernel
137 * writing to the storage pool, so we never sync during panic.
138 */
139 if (panicstr)
140 return (0);
141
142 /*
143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
144 * to sync metadata, which they would otherwise cache indefinitely.
145 * Semantically, the only requirement is that the sync be initiated.
146 * The DMU syncs out txgs frequently, so there's nothing to do.
147 */
148 if (flag & SYNC_ATTR)
149 return (0);
150
151 if (vfsp != NULL) {
152 /*
153 * Sync a specific filesystem.
154 */
155 zfsvfs_t *zfsvfs = vfsp->vfs_data;
156 dsl_pool_t *dp;
157
158 ZFS_ENTER(zfsvfs);
159 dp = dmu_objset_pool(zfsvfs->z_os);
160
161 /*
162 * If the system is shutting down, then skip any
163 * filesystems which may exist on a suspended pool.
164 */
165 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
166 ZFS_EXIT(zfsvfs);
167 return (0);
168 }
169
170 if (zfsvfs->z_log != NULL)
171 zil_commit(zfsvfs->z_log, 0);
172
173 ZFS_EXIT(zfsvfs);
174 } else {
175 /*
176 * Sync all ZFS filesystems. This is what happens when you
177 * run sync(1M). Unlike other filesystems, ZFS honors the
178 * request by waiting for all pools to commit all dirty data.
179 */
180 spa_sync_allpools();
181 }
182
183 return (0);
184 }
185
186 static int
zfs_create_unique_device(dev_t * dev)187 zfs_create_unique_device(dev_t *dev)
188 {
189 major_t new_major;
190
191 do {
192 ASSERT3U(zfs_minor, <=, MAXMIN32);
193 minor_t start = zfs_minor;
194 do {
195 mutex_enter(&zfs_dev_mtx);
196 if (zfs_minor >= MAXMIN32) {
197 /*
198 * If we're still using the real major
199 * keep out of /dev/zfs and /dev/zvol minor
200 * number space. If we're using a getudev()'ed
201 * major number, we can use all of its minors.
202 */
203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
204 zfs_minor = ZFS_MIN_MINOR;
205 else
206 zfs_minor = 0;
207 } else {
208 zfs_minor++;
209 }
210 *dev = makedevice(zfs_major, zfs_minor);
211 mutex_exit(&zfs_dev_mtx);
212 } while (vfs_devismounted(*dev) && zfs_minor != start);
213 if (zfs_minor == start) {
214 /*
215 * We are using all ~262,000 minor numbers for the
216 * current major number. Create a new major number.
217 */
218 if ((new_major = getudev()) == (major_t)-1) {
219 cmn_err(CE_WARN,
220 "zfs_mount: Can't get unique major "
221 "device number.");
222 return (-1);
223 }
224 mutex_enter(&zfs_dev_mtx);
225 zfs_major = new_major;
226 zfs_minor = 0;
227
228 mutex_exit(&zfs_dev_mtx);
229 } else {
230 break;
231 }
232 /* CONSTANTCONDITION */
233 } while (1);
234
235 return (0);
236 }
237
238 static void
atime_changed_cb(void * arg,uint64_t newval)239 atime_changed_cb(void *arg, uint64_t newval)
240 {
241 zfsvfs_t *zfsvfs = arg;
242
243 if (newval == TRUE) {
244 zfsvfs->z_atime = TRUE;
245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247 } else {
248 zfsvfs->z_atime = FALSE;
249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
251 }
252 }
253
254 static void
xattr_changed_cb(void * arg,uint64_t newval)255 xattr_changed_cb(void *arg, uint64_t newval)
256 {
257 zfsvfs_t *zfsvfs = arg;
258
259 if (newval == TRUE) {
260 /* XXX locking on vfs_flag? */
261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
264 } else {
265 /* XXX locking on vfs_flag? */
266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
269 }
270 }
271
272 static void
blksz_changed_cb(void * arg,uint64_t newval)273 blksz_changed_cb(void *arg, uint64_t newval)
274 {
275 zfsvfs_t *zfsvfs = arg;
276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
278 ASSERT(ISP2(newval));
279
280 zfsvfs->z_max_blksz = newval;
281 zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283
284 static void
readonly_changed_cb(void * arg,uint64_t newval)285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 zfsvfs_t *zfsvfs = arg;
288
289 if (newval) {
290 /* XXX locking on vfs_flag? */
291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 } else {
295 /* XXX locking on vfs_flag? */
296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 }
300 }
301
302 static void
devices_changed_cb(void * arg,uint64_t newval)303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 zfsvfs_t *zfsvfs = arg;
306
307 if (newval == FALSE) {
308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 } else {
312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 }
316 }
317
318 static void
setuid_changed_cb(void * arg,uint64_t newval)319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 zfsvfs_t *zfsvfs = arg;
322
323 if (newval == FALSE) {
324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 } else {
328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 }
332 }
333
334 static void
exec_changed_cb(void * arg,uint64_t newval)335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 zfsvfs_t *zfsvfs = arg;
338
339 if (newval == FALSE) {
340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 } else {
344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 }
348 }
349
350 /*
351 * The nbmand mount option can be changed at mount time.
352 * We can't allow it to be toggled on live file systems or incorrect
353 * behavior may be seen from cifs clients
354 *
355 * This property isn't registered via dsl_prop_register(), but this callback
356 * will be called when a file system is first mounted
357 */
358 static void
nbmand_changed_cb(void * arg,uint64_t newval)359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 zfsvfs_t *zfsvfs = arg;
362 if (newval == FALSE) {
363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 } else {
366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 }
369 }
370
371 static void
snapdir_changed_cb(void * arg,uint64_t newval)372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 zfsvfs_t *zfsvfs = arg;
375
376 zfsvfs->z_show_ctldir = newval;
377 }
378
379 static void
vscan_changed_cb(void * arg,uint64_t newval)380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 zfsvfs_t *zfsvfs = arg;
383
384 zfsvfs->z_vscan = newval;
385 }
386
387 static void
acl_mode_changed_cb(void * arg,uint64_t newval)388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 {
390 zfsvfs_t *zfsvfs = arg;
391
392 zfsvfs->z_acl_mode = newval;
393 }
394
395 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 {
398 zfsvfs_t *zfsvfs = arg;
399
400 zfsvfs->z_acl_inherit = newval;
401 }
402
403 static int
zfs_register_callbacks(vfs_t * vfsp)404 zfs_register_callbacks(vfs_t *vfsp)
405 {
406 struct dsl_dataset *ds = NULL;
407 objset_t *os = NULL;
408 zfsvfs_t *zfsvfs = NULL;
409 uint64_t nbmand;
410 boolean_t readonly = B_FALSE;
411 boolean_t do_readonly = B_FALSE;
412 boolean_t setuid = B_FALSE;
413 boolean_t do_setuid = B_FALSE;
414 boolean_t exec = B_FALSE;
415 boolean_t do_exec = B_FALSE;
416 boolean_t devices = B_FALSE;
417 boolean_t do_devices = B_FALSE;
418 boolean_t xattr = B_FALSE;
419 boolean_t do_xattr = B_FALSE;
420 boolean_t atime = B_FALSE;
421 boolean_t do_atime = B_FALSE;
422 int error = 0;
423
424 ASSERT(vfsp);
425 zfsvfs = vfsp->vfs_data;
426 ASSERT(zfsvfs);
427 os = zfsvfs->z_os;
428
429 /*
430 * The act of registering our callbacks will destroy any mount
431 * options we may have. In order to enable temporary overrides
432 * of mount options, we stash away the current values and
433 * restore them after we register the callbacks.
434 */
435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 !spa_writeable(dmu_objset_spa(os))) {
437 readonly = B_TRUE;
438 do_readonly = B_TRUE;
439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 readonly = B_FALSE;
441 do_readonly = B_TRUE;
442 }
443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 devices = B_FALSE;
445 setuid = B_FALSE;
446 do_devices = B_TRUE;
447 do_setuid = B_TRUE;
448 } else {
449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 devices = B_FALSE;
451 do_devices = B_TRUE;
452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 devices = B_TRUE;
454 do_devices = B_TRUE;
455 }
456
457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 setuid = B_FALSE;
459 do_setuid = B_TRUE;
460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 setuid = B_TRUE;
462 do_setuid = B_TRUE;
463 }
464 }
465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 exec = B_FALSE;
467 do_exec = B_TRUE;
468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 exec = B_TRUE;
470 do_exec = B_TRUE;
471 }
472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 xattr = B_FALSE;
474 do_xattr = B_TRUE;
475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 xattr = B_TRUE;
477 do_xattr = B_TRUE;
478 }
479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 atime = B_FALSE;
481 do_atime = B_TRUE;
482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 atime = B_TRUE;
484 do_atime = B_TRUE;
485 }
486
487 /*
488 * nbmand is a special property. It can only be changed at
489 * mount time.
490 *
491 * This is weird, but it is documented to only be changeable
492 * at mount time.
493 */
494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 nbmand = B_FALSE;
496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 nbmand = B_TRUE;
498 } else {
499 char osname[ZFS_MAX_DATASET_NAME_LEN];
500
501 dmu_objset_name(os, osname);
502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 NULL)) {
504 return (error);
505 }
506 }
507
508 /*
509 * Register property callbacks.
510 *
511 * It would probably be fine to just check for i/o error from
512 * the first prop_register(), but I guess I like to go
513 * overboard...
514 */
515 ds = dmu_objset_ds(os);
516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
517 error = dsl_prop_register(ds,
518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
519 error = error ? error : dsl_prop_register(ds,
520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
521 error = error ? error : dsl_prop_register(ds,
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
523 error = error ? error : dsl_prop_register(ds,
524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
525 error = error ? error : dsl_prop_register(ds,
526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
527 error = error ? error : dsl_prop_register(ds,
528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
529 error = error ? error : dsl_prop_register(ds,
530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
531 error = error ? error : dsl_prop_register(ds,
532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
533 error = error ? error : dsl_prop_register(ds,
534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
535 error = error ? error : dsl_prop_register(ds,
536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
537 zfsvfs);
538 error = error ? error : dsl_prop_register(ds,
539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
541 if (error)
542 goto unregister;
543
544 /*
545 * Invoke our callbacks to restore temporary mount options.
546 */
547 if (do_readonly)
548 readonly_changed_cb(zfsvfs, readonly);
549 if (do_setuid)
550 setuid_changed_cb(zfsvfs, setuid);
551 if (do_exec)
552 exec_changed_cb(zfsvfs, exec);
553 if (do_devices)
554 devices_changed_cb(zfsvfs, devices);
555 if (do_xattr)
556 xattr_changed_cb(zfsvfs, xattr);
557 if (do_atime)
558 atime_changed_cb(zfsvfs, atime);
559
560 nbmand_changed_cb(zfsvfs, nbmand);
561
562 return (0);
563
564 unregister:
565 /*
566 * We may attempt to unregister some callbacks that are not
567 * registered, but this is OK; it will simply return ENOMSG,
568 * which we will ignore.
569 */
570 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
571 atime_changed_cb, zfsvfs);
572 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
573 xattr_changed_cb, zfsvfs);
574 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
575 blksz_changed_cb, zfsvfs);
576 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
577 readonly_changed_cb, zfsvfs);
578 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
579 devices_changed_cb, zfsvfs);
580 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
581 setuid_changed_cb, zfsvfs);
582 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
583 exec_changed_cb, zfsvfs);
584 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
585 snapdir_changed_cb, zfsvfs);
586 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
587 acl_mode_changed_cb, zfsvfs);
588 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
589 acl_inherit_changed_cb, zfsvfs);
590 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
591 vscan_changed_cb, zfsvfs);
592 return (error);
593 }
594
595 static int
zfs_space_delta_cb(dmu_object_type_t bonustype,void * data,uint64_t * userp,uint64_t * groupp)596 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
597 uint64_t *userp, uint64_t *groupp)
598 {
599 /*
600 * Is it a valid type of object to track?
601 */
602 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
603 return (SET_ERROR(ENOENT));
604
605 /*
606 * If we have a NULL data pointer
607 * then assume the id's aren't changing and
608 * return EEXIST to the dmu to let it know to
609 * use the same ids
610 */
611 if (data == NULL)
612 return (SET_ERROR(EEXIST));
613
614 if (bonustype == DMU_OT_ZNODE) {
615 znode_phys_t *znp = data;
616 *userp = znp->zp_uid;
617 *groupp = znp->zp_gid;
618 } else {
619 int hdrsize;
620 sa_hdr_phys_t *sap = data;
621 sa_hdr_phys_t sa = *sap;
622 boolean_t swap = B_FALSE;
623
624 ASSERT(bonustype == DMU_OT_SA);
625
626 if (sa.sa_magic == 0) {
627 /*
628 * This should only happen for newly created
629 * files that haven't had the znode data filled
630 * in yet.
631 */
632 *userp = 0;
633 *groupp = 0;
634 return (0);
635 }
636 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
637 sa.sa_magic = SA_MAGIC;
638 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
639 swap = B_TRUE;
640 } else {
641 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
642 }
643
644 hdrsize = sa_hdrsize(&sa);
645 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
646 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
647 SA_UID_OFFSET));
648 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
649 SA_GID_OFFSET));
650 if (swap) {
651 *userp = BSWAP_64(*userp);
652 *groupp = BSWAP_64(*groupp);
653 }
654 }
655 return (0);
656 }
657
658 static void
fuidstr_to_sid(zfsvfs_t * zfsvfs,const char * fuidstr,char * domainbuf,int buflen,uid_t * ridp)659 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
660 char *domainbuf, int buflen, uid_t *ridp)
661 {
662 uint64_t fuid;
663 const char *domain;
664
665 fuid = strtonum(fuidstr, NULL);
666
667 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
668 if (domain)
669 (void) strlcpy(domainbuf, domain, buflen);
670 else
671 domainbuf[0] = '\0';
672 *ridp = FUID_RID(fuid);
673 }
674
675 static uint64_t
zfs_userquota_prop_to_obj(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type)676 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
677 {
678 switch (type) {
679 case ZFS_PROP_USERUSED:
680 return (DMU_USERUSED_OBJECT);
681 case ZFS_PROP_GROUPUSED:
682 return (DMU_GROUPUSED_OBJECT);
683 case ZFS_PROP_USERQUOTA:
684 return (zfsvfs->z_userquota_obj);
685 case ZFS_PROP_GROUPQUOTA:
686 return (zfsvfs->z_groupquota_obj);
687 }
688 return (0);
689 }
690
691 int
zfs_userspace_many(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,uint64_t * cookiep,void * vbuf,uint64_t * bufsizep)692 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
693 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
694 {
695 int error;
696 zap_cursor_t zc;
697 zap_attribute_t za;
698 zfs_useracct_t *buf = vbuf;
699 uint64_t obj;
700
701 if (!dmu_objset_userspace_present(zfsvfs->z_os))
702 return (SET_ERROR(ENOTSUP));
703
704 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
705 if (obj == 0) {
706 *bufsizep = 0;
707 return (0);
708 }
709
710 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
711 (error = zap_cursor_retrieve(&zc, &za)) == 0;
712 zap_cursor_advance(&zc)) {
713 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
714 *bufsizep)
715 break;
716
717 fuidstr_to_sid(zfsvfs, za.za_name,
718 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
719
720 buf->zu_space = za.za_first_integer;
721 buf++;
722 }
723 if (error == ENOENT)
724 error = 0;
725
726 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
727 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
728 *cookiep = zap_cursor_serialize(&zc);
729 zap_cursor_fini(&zc);
730 return (error);
731 }
732
733 /*
734 * buf must be big enough (eg, 32 bytes)
735 */
736 static int
id_to_fuidstr(zfsvfs_t * zfsvfs,const char * domain,uid_t rid,char * buf,boolean_t addok)737 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
738 char *buf, boolean_t addok)
739 {
740 uint64_t fuid;
741 int domainid = 0;
742
743 if (domain && domain[0]) {
744 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
745 if (domainid == -1)
746 return (SET_ERROR(ENOENT));
747 }
748 fuid = FUID_ENCODE(domainid, rid);
749 (void) sprintf(buf, "%llx", (longlong_t)fuid);
750 return (0);
751 }
752
753 int
zfs_userspace_one(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,const char * domain,uint64_t rid,uint64_t * valp)754 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
755 const char *domain, uint64_t rid, uint64_t *valp)
756 {
757 char buf[32];
758 int err;
759 uint64_t obj;
760
761 *valp = 0;
762
763 if (!dmu_objset_userspace_present(zfsvfs->z_os))
764 return (SET_ERROR(ENOTSUP));
765
766 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
767 if (obj == 0)
768 return (0);
769
770 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
771 if (err)
772 return (err);
773
774 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
775 if (err == ENOENT)
776 err = 0;
777 return (err);
778 }
779
780 int
zfs_set_userquota(zfsvfs_t * zfsvfs,zfs_userquota_prop_t type,const char * domain,uint64_t rid,uint64_t quota)781 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
782 const char *domain, uint64_t rid, uint64_t quota)
783 {
784 char buf[32];
785 int err;
786 dmu_tx_t *tx;
787 uint64_t *objp;
788 boolean_t fuid_dirtied;
789
790 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
791 return (SET_ERROR(EINVAL));
792
793 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
794 return (SET_ERROR(ENOTSUP));
795
796 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
797 &zfsvfs->z_groupquota_obj;
798
799 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
800 if (err)
801 return (err);
802 fuid_dirtied = zfsvfs->z_fuid_dirty;
803
804 tx = dmu_tx_create(zfsvfs->z_os);
805 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
806 if (*objp == 0) {
807 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
808 zfs_userquota_prop_prefixes[type]);
809 }
810 if (fuid_dirtied)
811 zfs_fuid_txhold(zfsvfs, tx);
812 err = dmu_tx_assign(tx, TXG_WAIT);
813 if (err) {
814 dmu_tx_abort(tx);
815 return (err);
816 }
817
818 mutex_enter(&zfsvfs->z_lock);
819 if (*objp == 0) {
820 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
821 DMU_OT_NONE, 0, tx);
822 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
823 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
824 }
825 mutex_exit(&zfsvfs->z_lock);
826
827 if (quota == 0) {
828 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
829 if (err == ENOENT)
830 err = 0;
831 } else {
832 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
833 }
834 ASSERT(err == 0);
835 if (fuid_dirtied)
836 zfs_fuid_sync(zfsvfs, tx);
837 dmu_tx_commit(tx);
838 return (err);
839 }
840
841 boolean_t
zfs_fuid_overquota(zfsvfs_t * zfsvfs,boolean_t isgroup,uint64_t fuid)842 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
843 {
844 char buf[32];
845 uint64_t used, quota, usedobj, quotaobj;
846 int err;
847
848 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
849 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
850
851 if (quotaobj == 0 || zfsvfs->z_replay)
852 return (B_FALSE);
853
854 (void) sprintf(buf, "%llx", (longlong_t)fuid);
855 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
856 if (err != 0)
857 return (B_FALSE);
858
859 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
860 if (err != 0)
861 return (B_FALSE);
862 return (used >= quota);
863 }
864
865 boolean_t
zfs_owner_overquota(zfsvfs_t * zfsvfs,znode_t * zp,boolean_t isgroup)866 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
867 {
868 uint64_t fuid;
869 uint64_t quotaobj;
870
871 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
872
873 fuid = isgroup ? zp->z_gid : zp->z_uid;
874
875 if (quotaobj == 0 || zfsvfs->z_replay)
876 return (B_FALSE);
877
878 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
879 }
880
881 int
zfsvfs_create(const char * osname,zfsvfs_t ** zfvp)882 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
883 {
884 objset_t *os;
885 zfsvfs_t *zfsvfs;
886 uint64_t zval;
887 int i, error;
888 uint64_t sa_obj;
889
890 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
891
892 /*
893 * We claim to always be readonly so we can open snapshots;
894 * other ZPL code will prevent us from writing to snapshots.
895 */
896 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
897 if (error) {
898 kmem_free(zfsvfs, sizeof (zfsvfs_t));
899 return (error);
900 }
901
902 /*
903 * Initialize the zfs-specific filesystem structure.
904 * Should probably make this a kmem cache, shuffle fields,
905 * and just bzero up to z_hold_mtx[].
906 */
907 zfsvfs->z_vfs = NULL;
908 zfsvfs->z_parent = zfsvfs;
909 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
910 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
911 zfsvfs->z_os = os;
912
913 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
914 if (error) {
915 goto out;
916 } else if (zfsvfs->z_version >
917 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
918 (void) printf("Can't mount a version %lld file system "
919 "on a version %lld pool\n. Pool must be upgraded to mount "
920 "this file system.", (u_longlong_t)zfsvfs->z_version,
921 (u_longlong_t)spa_version(dmu_objset_spa(os)));
922 error = SET_ERROR(ENOTSUP);
923 goto out;
924 }
925 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
926 goto out;
927 zfsvfs->z_norm = (int)zval;
928
929 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
930 goto out;
931 zfsvfs->z_utf8 = (zval != 0);
932
933 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
934 goto out;
935 zfsvfs->z_case = (uint_t)zval;
936
937 /*
938 * Fold case on file systems that are always or sometimes case
939 * insensitive.
940 */
941 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
942 zfsvfs->z_case == ZFS_CASE_MIXED)
943 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
944
945 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
946 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
947
948 if (zfsvfs->z_use_sa) {
949 /* should either have both of these objects or none */
950 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
951 &sa_obj);
952 if (error)
953 goto out;
954 } else {
955 /*
956 * Pre SA versions file systems should never touch
957 * either the attribute registration or layout objects.
958 */
959 sa_obj = 0;
960 }
961
962 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
963 &zfsvfs->z_attr_table);
964 if (error)
965 goto out;
966
967 if (zfsvfs->z_version >= ZPL_VERSION_SA)
968 sa_register_update_callback(os, zfs_sa_upgrade);
969
970 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
971 &zfsvfs->z_root);
972 if (error)
973 goto out;
974 ASSERT(zfsvfs->z_root != 0);
975
976 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
977 &zfsvfs->z_unlinkedobj);
978 if (error)
979 goto out;
980
981 error = zap_lookup(os, MASTER_NODE_OBJ,
982 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
983 8, 1, &zfsvfs->z_userquota_obj);
984 if (error && error != ENOENT)
985 goto out;
986
987 error = zap_lookup(os, MASTER_NODE_OBJ,
988 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
989 8, 1, &zfsvfs->z_groupquota_obj);
990 if (error && error != ENOENT)
991 goto out;
992
993 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
994 &zfsvfs->z_fuid_obj);
995 if (error && error != ENOENT)
996 goto out;
997
998 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
999 &zfsvfs->z_shares_dir);
1000 if (error && error != ENOENT)
1001 goto out;
1002
1003 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1004 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1005 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1006 offsetof(znode_t, z_link_node));
1007 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1008 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1009 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1010 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1011 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1012
1013 *zfvp = zfsvfs;
1014 return (0);
1015
1016 out:
1017 dmu_objset_disown(os, zfsvfs);
1018 *zfvp = NULL;
1019 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1020 return (error);
1021 }
1022
1023 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)1024 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1025 {
1026 int error;
1027
1028 error = zfs_register_callbacks(zfsvfs->z_vfs);
1029 if (error)
1030 return (error);
1031
1032 /*
1033 * Set the objset user_ptr to track its zfsvfs.
1034 */
1035 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1036 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1037 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1038
1039 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1040
1041 /*
1042 * If we are not mounting (ie: online recv), then we don't
1043 * have to worry about replaying the log as we blocked all
1044 * operations out since we closed the ZIL.
1045 */
1046 if (mounting) {
1047 boolean_t readonly;
1048
1049 /*
1050 * During replay we remove the read only flag to
1051 * allow replays to succeed.
1052 */
1053 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1054 if (readonly != 0)
1055 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1056 else
1057 zfs_unlinked_drain(zfsvfs);
1058
1059 /*
1060 * Parse and replay the intent log.
1061 *
1062 * Because of ziltest, this must be done after
1063 * zfs_unlinked_drain(). (Further note: ziltest
1064 * doesn't use readonly mounts, where
1065 * zfs_unlinked_drain() isn't called.) This is because
1066 * ziltest causes spa_sync() to think it's committed,
1067 * but actually it is not, so the intent log contains
1068 * many txg's worth of changes.
1069 *
1070 * In particular, if object N is in the unlinked set in
1071 * the last txg to actually sync, then it could be
1072 * actually freed in a later txg and then reallocated
1073 * in a yet later txg. This would write a "create
1074 * object N" record to the intent log. Normally, this
1075 * would be fine because the spa_sync() would have
1076 * written out the fact that object N is free, before
1077 * we could write the "create object N" intent log
1078 * record.
1079 *
1080 * But when we are in ziltest mode, we advance the "open
1081 * txg" without actually spa_sync()-ing the changes to
1082 * disk. So we would see that object N is still
1083 * allocated and in the unlinked set, and there is an
1084 * intent log record saying to allocate it.
1085 */
1086 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1087 if (zil_replay_disable) {
1088 zil_destroy(zfsvfs->z_log, B_FALSE);
1089 } else {
1090 zfsvfs->z_replay = B_TRUE;
1091 zil_replay(zfsvfs->z_os, zfsvfs,
1092 zfs_replay_vector);
1093 zfsvfs->z_replay = B_FALSE;
1094 }
1095 }
1096 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1097 }
1098
1099 return (0);
1100 }
1101
1102 void
zfsvfs_free(zfsvfs_t * zfsvfs)1103 zfsvfs_free(zfsvfs_t *zfsvfs)
1104 {
1105 int i;
1106 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1107
1108 /*
1109 * This is a barrier to prevent the filesystem from going away in
1110 * zfs_znode_move() until we can safely ensure that the filesystem is
1111 * not unmounted. We consider the filesystem valid before the barrier
1112 * and invalid after the barrier.
1113 */
1114 rw_enter(&zfsvfs_lock, RW_READER);
1115 rw_exit(&zfsvfs_lock);
1116
1117 zfs_fuid_destroy(zfsvfs);
1118
1119 mutex_destroy(&zfsvfs->z_znodes_lock);
1120 mutex_destroy(&zfsvfs->z_lock);
1121 list_destroy(&zfsvfs->z_all_znodes);
1122 rrm_destroy(&zfsvfs->z_teardown_lock);
1123 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1124 rw_destroy(&zfsvfs->z_fuid_lock);
1125 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1126 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1127 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1128 }
1129
1130 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)1131 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1132 {
1133 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1134 if (zfsvfs->z_vfs) {
1135 if (zfsvfs->z_use_fuids) {
1136 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1137 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1138 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1139 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1140 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1141 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1142 } else {
1143 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1144 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1145 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1146 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1147 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1148 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1149 }
1150 }
1151 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1152 }
1153
1154 static int
zfs_domount(vfs_t * vfsp,char * osname)1155 zfs_domount(vfs_t *vfsp, char *osname)
1156 {
1157 dev_t mount_dev;
1158 uint64_t recordsize, fsid_guid;
1159 int error = 0;
1160 zfsvfs_t *zfsvfs;
1161
1162 ASSERT(vfsp);
1163 ASSERT(osname);
1164
1165 error = zfsvfs_create(osname, &zfsvfs);
1166 if (error)
1167 return (error);
1168 zfsvfs->z_vfs = vfsp;
1169
1170 /* Initialize the generic filesystem structure. */
1171 vfsp->vfs_bcount = 0;
1172 vfsp->vfs_data = NULL;
1173
1174 if (zfs_create_unique_device(&mount_dev) == -1) {
1175 error = SET_ERROR(ENODEV);
1176 goto out;
1177 }
1178 ASSERT(vfs_devismounted(mount_dev) == 0);
1179
1180 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1181 NULL))
1182 goto out;
1183
1184 vfsp->vfs_dev = mount_dev;
1185 vfsp->vfs_fstype = zfsfstype;
1186 vfsp->vfs_bsize = recordsize;
1187 vfsp->vfs_flag |= VFS_NOTRUNC;
1188 vfsp->vfs_data = zfsvfs;
1189
1190 /*
1191 * The fsid is 64 bits, composed of an 8-bit fs type, which
1192 * separates our fsid from any other filesystem types, and a
1193 * 56-bit objset unique ID. The objset unique ID is unique to
1194 * all objsets open on this system, provided by unique_create().
1195 * The 8-bit fs type must be put in the low bits of fsid[1]
1196 * because that's where other Solaris filesystems put it.
1197 */
1198 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1199 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1200 vfsp->vfs_fsid.val[0] = fsid_guid;
1201 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1202 zfsfstype & 0xFF;
1203
1204 /*
1205 * Set features for file system.
1206 */
1207 zfs_set_fuid_feature(zfsvfs);
1208 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1209 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1210 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1211 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1212 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1213 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1214 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1215 }
1216 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1217
1218 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1219 uint64_t pval;
1220
1221 atime_changed_cb(zfsvfs, B_FALSE);
1222 readonly_changed_cb(zfsvfs, B_TRUE);
1223 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1224 goto out;
1225 xattr_changed_cb(zfsvfs, pval);
1226 zfsvfs->z_issnap = B_TRUE;
1227 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1228
1229 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1230 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1231 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1232 } else {
1233 error = zfsvfs_setup(zfsvfs, B_TRUE);
1234 }
1235
1236 if (!zfsvfs->z_issnap)
1237 zfsctl_create(zfsvfs);
1238 out:
1239 if (error) {
1240 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1241 zfsvfs_free(zfsvfs);
1242 } else {
1243 atomic_inc_32(&zfs_active_fs_count);
1244 }
1245
1246 return (error);
1247 }
1248
1249 void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)1250 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1251 {
1252 objset_t *os = zfsvfs->z_os;
1253 struct dsl_dataset *ds;
1254
1255 /*
1256 * Unregister properties.
1257 */
1258 if (!dmu_objset_is_snapshot(os)) {
1259 ds = dmu_objset_ds(os);
1260 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1261 zfsvfs) == 0);
1262
1263 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1264 zfsvfs) == 0);
1265
1266 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1267 zfsvfs) == 0);
1268
1269 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1270 zfsvfs) == 0);
1271
1272 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1273 zfsvfs) == 0);
1274
1275 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1276 zfsvfs) == 0);
1277
1278 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1279 zfsvfs) == 0);
1280
1281 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1282 zfsvfs) == 0);
1283
1284 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1285 zfsvfs) == 0);
1286
1287 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1288 acl_inherit_changed_cb, zfsvfs) == 0);
1289
1290 VERIFY(dsl_prop_unregister(ds, "vscan",
1291 vscan_changed_cb, zfsvfs) == 0);
1292 }
1293 }
1294
1295 /*
1296 * Convert a decimal digit string to a uint64_t integer.
1297 */
1298 static int
str_to_uint64(char * str,uint64_t * objnum)1299 str_to_uint64(char *str, uint64_t *objnum)
1300 {
1301 uint64_t num = 0;
1302
1303 while (*str) {
1304 if (*str < '0' || *str > '9')
1305 return (SET_ERROR(EINVAL));
1306
1307 num = num*10 + *str++ - '0';
1308 }
1309
1310 *objnum = num;
1311 return (0);
1312 }
1313
1314 /*
1315 * The boot path passed from the boot loader is in the form of
1316 * "rootpool-name/root-filesystem-object-number'. Convert this
1317 * string to a dataset name: "rootpool-name/root-filesystem-name".
1318 */
1319 static int
zfs_parse_bootfs(char * bpath,char * outpath)1320 zfs_parse_bootfs(char *bpath, char *outpath)
1321 {
1322 char *slashp;
1323 uint64_t objnum;
1324 int error;
1325
1326 if (*bpath == 0 || *bpath == '/')
1327 return (SET_ERROR(EINVAL));
1328
1329 (void) strcpy(outpath, bpath);
1330
1331 slashp = strchr(bpath, '/');
1332
1333 /* if no '/', just return the pool name */
1334 if (slashp == NULL) {
1335 return (0);
1336 }
1337
1338 /* if not a number, just return the root dataset name */
1339 if (str_to_uint64(slashp+1, &objnum)) {
1340 return (0);
1341 }
1342
1343 *slashp = '\0';
1344 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1345 *slashp = '/';
1346
1347 return (error);
1348 }
1349
1350 /*
1351 * Check that the hex label string is appropriate for the dataset being
1352 * mounted into the global_zone proper.
1353 *
1354 * Return an error if the hex label string is not default or
1355 * admin_low/admin_high. For admin_low labels, the corresponding
1356 * dataset must be readonly.
1357 */
1358 int
zfs_check_global_label(const char * dsname,const char * hexsl)1359 zfs_check_global_label(const char *dsname, const char *hexsl)
1360 {
1361 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1362 return (0);
1363 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1364 return (0);
1365 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1366 /* must be readonly */
1367 uint64_t rdonly;
1368
1369 if (dsl_prop_get_integer(dsname,
1370 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1371 return (SET_ERROR(EACCES));
1372 return (rdonly ? 0 : EACCES);
1373 }
1374 return (SET_ERROR(EACCES));
1375 }
1376
1377 /*
1378 * Determine whether the mount is allowed according to MAC check.
1379 * by comparing (where appropriate) label of the dataset against
1380 * the label of the zone being mounted into. If the dataset has
1381 * no label, create one.
1382 *
1383 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1384 */
1385 static int
zfs_mount_label_policy(vfs_t * vfsp,char * osname)1386 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1387 {
1388 int error, retv;
1389 zone_t *mntzone = NULL;
1390 ts_label_t *mnt_tsl;
1391 bslabel_t *mnt_sl;
1392 bslabel_t ds_sl;
1393 char ds_hexsl[MAXNAMELEN];
1394
1395 retv = EACCES; /* assume the worst */
1396
1397 /*
1398 * Start by getting the dataset label if it exists.
1399 */
1400 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1401 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1402 if (error)
1403 return (SET_ERROR(EACCES));
1404
1405 /*
1406 * If labeling is NOT enabled, then disallow the mount of datasets
1407 * which have a non-default label already. No other label checks
1408 * are needed.
1409 */
1410 if (!is_system_labeled()) {
1411 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1412 return (0);
1413 return (SET_ERROR(EACCES));
1414 }
1415
1416 /*
1417 * Get the label of the mountpoint. If mounting into the global
1418 * zone (i.e. mountpoint is not within an active zone and the
1419 * zoned property is off), the label must be default or
1420 * admin_low/admin_high only; no other checks are needed.
1421 */
1422 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1423 if (mntzone->zone_id == GLOBAL_ZONEID) {
1424 uint64_t zoned;
1425
1426 zone_rele(mntzone);
1427
1428 if (dsl_prop_get_integer(osname,
1429 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1430 return (SET_ERROR(EACCES));
1431 if (!zoned)
1432 return (zfs_check_global_label(osname, ds_hexsl));
1433 else
1434 /*
1435 * This is the case of a zone dataset being mounted
1436 * initially, before the zone has been fully created;
1437 * allow this mount into global zone.
1438 */
1439 return (0);
1440 }
1441
1442 mnt_tsl = mntzone->zone_slabel;
1443 ASSERT(mnt_tsl != NULL);
1444 label_hold(mnt_tsl);
1445 mnt_sl = label2bslabel(mnt_tsl);
1446
1447 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1448 /*
1449 * The dataset doesn't have a real label, so fabricate one.
1450 */
1451 char *str = NULL;
1452
1453 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1454 dsl_prop_set_string(osname,
1455 zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1456 ZPROP_SRC_LOCAL, str) == 0)
1457 retv = 0;
1458 if (str != NULL)
1459 kmem_free(str, strlen(str) + 1);
1460 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1461 /*
1462 * Now compare labels to complete the MAC check. If the
1463 * labels are equal then allow access. If the mountpoint
1464 * label dominates the dataset label, allow readonly access.
1465 * Otherwise, access is denied.
1466 */
1467 if (blequal(mnt_sl, &ds_sl))
1468 retv = 0;
1469 else if (bldominates(mnt_sl, &ds_sl)) {
1470 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1471 retv = 0;
1472 }
1473 }
1474
1475 label_rele(mnt_tsl);
1476 zone_rele(mntzone);
1477 return (retv);
1478 }
1479
1480 static int
zfs_mountroot(vfs_t * vfsp,enum whymountroot why)1481 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1482 {
1483 int error = 0;
1484 static int zfsrootdone = 0;
1485 zfsvfs_t *zfsvfs = NULL;
1486 znode_t *zp = NULL;
1487 vnode_t *vp = NULL;
1488 char *zfs_bootfs;
1489 char *zfs_devid;
1490
1491 ASSERT(vfsp);
1492
1493 /*
1494 * The filesystem that we mount as root is defined in the
1495 * boot property "zfs-bootfs" with a format of
1496 * "poolname/root-dataset-objnum".
1497 */
1498 if (why == ROOT_INIT) {
1499 if (zfsrootdone++)
1500 return (SET_ERROR(EBUSY));
1501 /*
1502 * the process of doing a spa_load will require the
1503 * clock to be set before we could (for example) do
1504 * something better by looking at the timestamp on
1505 * an uberblock, so just set it to -1.
1506 */
1507 clkset(-1);
1508
1509 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1510 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1511 "bootfs name");
1512 return (SET_ERROR(EINVAL));
1513 }
1514 zfs_devid = spa_get_bootprop("diskdevid");
1515 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1516 if (zfs_devid)
1517 spa_free_bootprop(zfs_devid);
1518 if (error) {
1519 spa_free_bootprop(zfs_bootfs);
1520 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1521 error);
1522 return (error);
1523 }
1524 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1525 spa_free_bootprop(zfs_bootfs);
1526 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1527 error);
1528 return (error);
1529 }
1530
1531 spa_free_bootprop(zfs_bootfs);
1532
1533 if (error = vfs_lock(vfsp))
1534 return (error);
1535
1536 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1537 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1538 goto out;
1539 }
1540
1541 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1542 ASSERT(zfsvfs);
1543 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1544 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1545 goto out;
1546 }
1547
1548 vp = ZTOV(zp);
1549 mutex_enter(&vp->v_lock);
1550 vp->v_flag |= VROOT;
1551 mutex_exit(&vp->v_lock);
1552 rootvp = vp;
1553
1554 /*
1555 * Leave rootvp held. The root file system is never unmounted.
1556 */
1557
1558 vfs_add((struct vnode *)0, vfsp,
1559 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1560 out:
1561 vfs_unlock(vfsp);
1562 return (error);
1563 } else if (why == ROOT_REMOUNT) {
1564 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1565 vfsp->vfs_flag |= VFS_REMOUNT;
1566
1567 /* refresh mount options */
1568 zfs_unregister_callbacks(vfsp->vfs_data);
1569 return (zfs_register_callbacks(vfsp));
1570
1571 } else if (why == ROOT_UNMOUNT) {
1572 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1573 (void) zfs_sync(vfsp, 0, 0);
1574 return (0);
1575 }
1576
1577 /*
1578 * if "why" is equal to anything else other than ROOT_INIT,
1579 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1580 */
1581 return (SET_ERROR(ENOTSUP));
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
zfs_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)1586 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1587 {
1588 char *osname;
1589 pathname_t spn;
1590 int error = 0;
1591 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1592 UIO_SYSSPACE : UIO_USERSPACE;
1593 int canwrite;
1594
1595 if (mvp->v_type != VDIR)
1596 return (SET_ERROR(ENOTDIR));
1597
1598 mutex_enter(&mvp->v_lock);
1599 if ((uap->flags & MS_REMOUNT) == 0 &&
1600 (uap->flags & MS_OVERLAY) == 0 &&
1601 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1602 mutex_exit(&mvp->v_lock);
1603 return (SET_ERROR(EBUSY));
1604 }
1605 mutex_exit(&mvp->v_lock);
1606
1607 /*
1608 * ZFS does not support passing unparsed data in via MS_DATA.
1609 * Users should use the MS_OPTIONSTR interface; this means
1610 * that all option parsing is already done and the options struct
1611 * can be interrogated.
1612 */
1613 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1614 return (SET_ERROR(EINVAL));
1615
1616 /*
1617 * Get the objset name (the "special" mount argument).
1618 */
1619 if (error = pn_get(uap->spec, fromspace, &spn))
1620 return (error);
1621
1622 osname = spn.pn_path;
1623
1624 /*
1625 * Check for mount privilege?
1626 *
1627 * If we don't have privilege then see if
1628 * we have local permission to allow it
1629 */
1630 error = secpolicy_fs_mount(cr, mvp, vfsp);
1631 if (error) {
1632 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1633 vattr_t vattr;
1634
1635 /*
1636 * Make sure user is the owner of the mount point
1637 * or has sufficient privileges.
1638 */
1639
1640 vattr.va_mask = AT_UID;
1641
1642 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1643 goto out;
1644 }
1645
1646 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1647 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1648 goto out;
1649 }
1650 secpolicy_fs_mount_clearopts(cr, vfsp);
1651 } else {
1652 goto out;
1653 }
1654 }
1655
1656 /*
1657 * Refuse to mount a filesystem if we are in a local zone and the
1658 * dataset is not visible.
1659 */
1660 if (!INGLOBALZONE(curproc) &&
1661 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1662 error = SET_ERROR(EPERM);
1663 goto out;
1664 }
1665
1666 error = zfs_mount_label_policy(vfsp, osname);
1667 if (error)
1668 goto out;
1669
1670 /*
1671 * When doing a remount, we simply refresh our temporary properties
1672 * according to those options set in the current VFS options.
1673 */
1674 if (uap->flags & MS_REMOUNT) {
1675 /* refresh mount options */
1676 zfs_unregister_callbacks(vfsp->vfs_data);
1677 error = zfs_register_callbacks(vfsp);
1678 goto out;
1679 }
1680
1681 error = zfs_domount(vfsp, osname);
1682
1683 /*
1684 * Add an extra VFS_HOLD on our parent vfs so that it can't
1685 * disappear due to a forced unmount.
1686 */
1687 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1688 VFS_HOLD(mvp->v_vfsp);
1689
1690 out:
1691 if (error == 0) {
1692 rw_enter(&rz_zev_rwlock, RW_READER);
1693 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount)
1694 rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname,
1695 uap->flags & MS_REMOUNT ? B_TRUE : B_FALSE);
1696 rw_exit(&rz_zev_rwlock);
1697 }
1698 pn_free(&spn);
1699 return (error);
1700 }
1701
1702 static int
zfs_statvfs(vfs_t * vfsp,struct statvfs64 * statp)1703 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1704 {
1705 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1706 dev32_t d32;
1707 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1708
1709 ZFS_ENTER(zfsvfs);
1710
1711 dmu_objset_space(zfsvfs->z_os,
1712 &refdbytes, &availbytes, &usedobjs, &availobjs);
1713
1714 /*
1715 * The underlying storage pool actually uses multiple block sizes.
1716 * We report the fragsize as the smallest block size we support,
1717 * and we report our blocksize as the filesystem's maximum blocksize.
1718 */
1719 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1720 statp->f_bsize = zfsvfs->z_max_blksz;
1721
1722 /*
1723 * The following report "total" blocks of various kinds in the
1724 * file system, but reported in terms of f_frsize - the
1725 * "fragment" size.
1726 */
1727
1728 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1729 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1730 statp->f_bavail = statp->f_bfree; /* no root reservation */
1731
1732 /*
1733 * statvfs() should really be called statufs(), because it assumes
1734 * static metadata. ZFS doesn't preallocate files, so the best
1735 * we can do is report the max that could possibly fit in f_files,
1736 * and that minus the number actually used in f_ffree.
1737 * For f_ffree, report the smaller of the number of object available
1738 * and the number of blocks (each object will take at least a block).
1739 */
1740 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1741 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1742 statp->f_files = statp->f_ffree + usedobjs;
1743
1744 (void) cmpldev(&d32, vfsp->vfs_dev);
1745 statp->f_fsid = d32;
1746
1747 /*
1748 * We're a zfs filesystem.
1749 */
1750 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1751
1752 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1753
1754 statp->f_namemax = MAXNAMELEN - 1;
1755
1756 /*
1757 * We have all of 32 characters to stuff a string here.
1758 * Is there anything useful we could/should provide?
1759 */
1760 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1761
1762 ZFS_EXIT(zfsvfs);
1763 return (0);
1764 }
1765
1766 static int
zfs_root(vfs_t * vfsp,vnode_t ** vpp)1767 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1768 {
1769 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1770 znode_t *rootzp;
1771 int error;
1772
1773 ZFS_ENTER(zfsvfs);
1774
1775 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1776 if (error == 0)
1777 *vpp = ZTOV(rootzp);
1778
1779 ZFS_EXIT(zfsvfs);
1780 return (error);
1781 }
1782
1783 /*
1784 * Teardown the zfsvfs::z_os.
1785 *
1786 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1787 * and 'z_teardown_inactive_lock' held.
1788 */
1789 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1790 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1791 {
1792 znode_t *zp;
1793
1794 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1795
1796 if (!unmounting) {
1797 /*
1798 * We purge the parent filesystem's vfsp as the parent
1799 * filesystem and all of its snapshots have their vnode's
1800 * v_vfsp set to the parent's filesystem's vfsp. Note,
1801 * 'z_parent' is self referential for non-snapshots.
1802 */
1803 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1804 }
1805
1806 /*
1807 * Close the zil. NB: Can't close the zil while zfs_inactive
1808 * threads are blocked as zil_close can call zfs_inactive.
1809 */
1810 if (zfsvfs->z_log) {
1811 zil_close(zfsvfs->z_log);
1812 zfsvfs->z_log = NULL;
1813 }
1814
1815 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1816
1817 /*
1818 * If we are not unmounting (ie: online recv) and someone already
1819 * unmounted this file system while we were doing the switcheroo,
1820 * or a reopen of z_os failed then just bail out now.
1821 */
1822 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1823 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1824 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1825 return (SET_ERROR(EIO));
1826 }
1827
1828 /*
1829 * At this point there are no vops active, and any new vops will
1830 * fail with EIO since we have z_teardown_lock for writer (only
1831 * relavent for forced unmount).
1832 *
1833 * Release all holds on dbufs.
1834 */
1835 mutex_enter(&zfsvfs->z_znodes_lock);
1836 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1837 zp = list_next(&zfsvfs->z_all_znodes, zp))
1838 if (zp->z_sa_hdl) {
1839 ASSERT(ZTOV(zp)->v_count > 0);
1840 zfs_znode_dmu_fini(zp);
1841 }
1842 mutex_exit(&zfsvfs->z_znodes_lock);
1843
1844 /*
1845 * If we are unmounting, set the unmounted flag and let new vops
1846 * unblock. zfs_inactive will have the unmounted behavior, and all
1847 * other vops will fail with EIO.
1848 */
1849 if (unmounting) {
1850 zfsvfs->z_unmounted = B_TRUE;
1851 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1852 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1853 }
1854
1855 /*
1856 * z_os will be NULL if there was an error in attempting to reopen
1857 * zfsvfs, so just return as the properties had already been
1858 * unregistered and cached data had been evicted before.
1859 */
1860 if (zfsvfs->z_os == NULL)
1861 return (0);
1862
1863 /*
1864 * Unregister properties.
1865 */
1866 zfs_unregister_callbacks(zfsvfs);
1867
1868 /*
1869 * Evict cached data
1870 */
1871 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1872 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1873 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1874 dmu_objset_evict_dbufs(zfsvfs->z_os);
1875
1876 return (0);
1877 }
1878
1879 /*ARGSUSED*/
1880 static int
zfs_umount(vfs_t * vfsp,int fflag,cred_t * cr)1881 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1882 {
1883 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1884 objset_t *os;
1885 int ret;
1886
1887 ret = secpolicy_fs_unmount(cr, vfsp);
1888 if (ret) {
1889 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1890 ZFS_DELEG_PERM_MOUNT, cr))
1891 return (ret);
1892 }
1893
1894 /*
1895 * We purge the parent filesystem's vfsp as the parent filesystem
1896 * and all of its snapshots have their vnode's v_vfsp set to the
1897 * parent's filesystem's vfsp. Note, 'z_parent' is self
1898 * referential for non-snapshots.
1899 */
1900 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1901
1902 /*
1903 * Unmount any snapshots mounted under .zfs before unmounting the
1904 * dataset itself.
1905 */
1906 if (zfsvfs->z_ctldir != NULL &&
1907 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1908 return (ret);
1909 }
1910
1911 if (!(fflag & MS_FORCE)) {
1912 /*
1913 * Check the number of active vnodes in the file system.
1914 * Our count is maintained in the vfs structure, but the
1915 * number is off by 1 to indicate a hold on the vfs
1916 * structure itself.
1917 *
1918 * The '.zfs' directory maintains a reference of its
1919 * own, and any active references underneath are
1920 * reflected in the vnode count.
1921 */
1922 if (zfsvfs->z_ctldir == NULL) {
1923 if (vfsp->vfs_count > 1)
1924 return (SET_ERROR(EBUSY));
1925 } else {
1926 if (vfsp->vfs_count > 2 ||
1927 zfsvfs->z_ctldir->v_count > 1)
1928 return (SET_ERROR(EBUSY));
1929 }
1930 }
1931
1932 vfsp->vfs_flag |= VFS_UNMOUNTED;
1933
1934 rw_enter(&rz_zev_rwlock, RW_READER);
1935 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount)
1936 rz_zev_callbacks->rz_zev_zfs_umount(vfsp);
1937 rw_exit(&rz_zev_rwlock);
1938
1939 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1940 os = zfsvfs->z_os;
1941
1942 /*
1943 * z_os will be NULL if there was an error in
1944 * attempting to reopen zfsvfs.
1945 */
1946 if (os != NULL) {
1947 /*
1948 * Unset the objset user_ptr.
1949 */
1950 mutex_enter(&os->os_user_ptr_lock);
1951 dmu_objset_set_user(os, NULL);
1952 mutex_exit(&os->os_user_ptr_lock);
1953
1954 /*
1955 * Finally release the objset
1956 */
1957 dmu_objset_disown(os, zfsvfs);
1958 }
1959
1960 /*
1961 * We can now safely destroy the '.zfs' directory node.
1962 */
1963 if (zfsvfs->z_ctldir != NULL)
1964 zfsctl_destroy(zfsvfs);
1965
1966 return (0);
1967 }
1968
1969 static int
zfs_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)1970 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1971 {
1972 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1973 znode_t *zp;
1974 uint64_t object = 0;
1975 uint64_t fid_gen = 0;
1976 uint64_t gen_mask;
1977 uint64_t zp_gen;
1978 int i, err;
1979
1980 *vpp = NULL;
1981
1982 ZFS_ENTER(zfsvfs);
1983
1984 if (fidp->fid_len == LONG_FID_LEN) {
1985 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1986 uint64_t objsetid = 0;
1987 uint64_t setgen = 0;
1988
1989 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1990 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1991
1992 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1993 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1994
1995 ZFS_EXIT(zfsvfs);
1996
1997 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1998 if (err)
1999 return (SET_ERROR(EINVAL));
2000 ZFS_ENTER(zfsvfs);
2001 }
2002
2003 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2004 zfid_short_t *zfid = (zfid_short_t *)fidp;
2005
2006 for (i = 0; i < sizeof (zfid->zf_object); i++)
2007 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2008
2009 for (i = 0; i < sizeof (zfid->zf_gen); i++)
2010 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2011 } else {
2012 ZFS_EXIT(zfsvfs);
2013 return (SET_ERROR(EINVAL));
2014 }
2015
2016 /* A zero fid_gen means we are in the .zfs control directories */
2017 if (fid_gen == 0 &&
2018 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2019 *vpp = zfsvfs->z_ctldir;
2020 ASSERT(*vpp != NULL);
2021 if (object == ZFSCTL_INO_SNAPDIR) {
2022 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2023 0, NULL, NULL, NULL, NULL, NULL) == 0);
2024 } else {
2025 VN_HOLD(*vpp);
2026 }
2027 ZFS_EXIT(zfsvfs);
2028 return (0);
2029 }
2030
2031 gen_mask = -1ULL >> (64 - 8 * i);
2032
2033 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2034 if (err = zfs_zget(zfsvfs, object, &zp)) {
2035 ZFS_EXIT(zfsvfs);
2036 return (err);
2037 }
2038 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2039 sizeof (uint64_t));
2040 zp_gen = zp_gen & gen_mask;
2041 if (zp_gen == 0)
2042 zp_gen = 1;
2043 if (zp->z_unlinked || zp_gen != fid_gen) {
2044 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2045 VN_RELE(ZTOV(zp));
2046 ZFS_EXIT(zfsvfs);
2047 return (SET_ERROR(EINVAL));
2048 }
2049
2050 *vpp = ZTOV(zp);
2051 ZFS_EXIT(zfsvfs);
2052 return (0);
2053 }
2054
2055 /*
2056 * Block out VOPs and close zfsvfs_t::z_os
2057 *
2058 * Note, if successful, then we return with the 'z_teardown_lock' and
2059 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
2060 * dataset and objset intact so that they can be atomically handed off during
2061 * a subsequent rollback or recv operation and the resume thereafter.
2062 */
2063 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)2064 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2065 {
2066 int error;
2067
2068 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2069 return (error);
2070
2071 return (0);
2072 }
2073
2074 /*
2075 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
2076 * is an invariant across any of the operations that can be performed while the
2077 * filesystem was suspended. Whether it succeeded or failed, the preconditions
2078 * are the same: the relevant objset and associated dataset are owned by
2079 * zfsvfs, held, and long held on entry.
2080 */
2081 int
zfs_resume_fs(zfsvfs_t * zfsvfs,const char * osname)2082 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2083 {
2084 int err;
2085 znode_t *zp;
2086 uint64_t sa_obj = 0;
2087
2088 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2089 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2090
2091 /*
2092 * We already own this, so just hold and rele it to update the
2093 * objset_t, as the one we had before may have been evicted.
2094 */
2095 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2096 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2097 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2098 dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2099
2100 /*
2101 * Make sure version hasn't changed
2102 */
2103
2104 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2105 &zfsvfs->z_version);
2106
2107 if (err)
2108 goto bail;
2109
2110 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2111 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2112
2113 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2114 goto bail;
2115
2116 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2117 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2118 goto bail;
2119
2120 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2121 sa_register_update_callback(zfsvfs->z_os,
2122 zfs_sa_upgrade);
2123
2124 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2125
2126 zfs_set_fuid_feature(zfsvfs);
2127
2128 /*
2129 * Attempt to re-establish all the active znodes with
2130 * their dbufs. If a zfs_rezget() fails, then we'll let
2131 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2132 * when they try to use their znode.
2133 */
2134 mutex_enter(&zfsvfs->z_znodes_lock);
2135 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2136 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2137 (void) zfs_rezget(zp);
2138 }
2139 mutex_exit(&zfsvfs->z_znodes_lock);
2140
2141 bail:
2142 /* release the VOPs */
2143 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2144 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2145
2146 if (err) {
2147 /*
2148 * Since we couldn't setup the sa framework, try to force
2149 * unmount this file system.
2150 */
2151 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2152 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2153 }
2154 return (err);
2155 }
2156
2157 static void
zfs_freevfs(vfs_t * vfsp)2158 zfs_freevfs(vfs_t *vfsp)
2159 {
2160 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2161
2162 /*
2163 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2164 * from zfs_mount(). Release it here. If we came through
2165 * zfs_mountroot() instead, we didn't grab an extra hold, so
2166 * skip the VFS_RELE for rootvfs.
2167 */
2168 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2169 VFS_RELE(zfsvfs->z_parent->z_vfs);
2170
2171 zfsvfs_free(zfsvfs);
2172
2173 atomic_dec_32(&zfs_active_fs_count);
2174 }
2175
2176 /*
2177 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2178 * so we can't safely do any non-idempotent initialization here.
2179 * Leave that to zfs_init() and zfs_fini(), which are called
2180 * from the module's _init() and _fini() entry points.
2181 */
2182 /*ARGSUSED*/
2183 static int
zfs_vfsinit(int fstype,char * name)2184 zfs_vfsinit(int fstype, char *name)
2185 {
2186 int error;
2187
2188 zfsfstype = fstype;
2189
2190 /*
2191 * Setup vfsops and vnodeops tables.
2192 */
2193 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2194 if (error != 0) {
2195 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2196 }
2197
2198 error = zfs_create_op_tables();
2199 if (error) {
2200 zfs_remove_op_tables();
2201 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2202 (void) vfs_freevfsops_by_type(zfsfstype);
2203 return (error);
2204 }
2205
2206 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2207
2208 /*
2209 * Unique major number for all zfs mounts.
2210 * If we run out of 32-bit minors, we'll getudev() another major.
2211 */
2212 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2213 zfs_minor = ZFS_MIN_MINOR;
2214
2215 return (0);
2216 }
2217
2218 void
zfs_init(void)2219 zfs_init(void)
2220 {
2221 /*
2222 * Initialize .zfs directory structures
2223 */
2224 zfsctl_init();
2225
2226 /*
2227 * Initialize znode cache, vnode ops, etc...
2228 */
2229 zfs_znode_init();
2230
2231 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2232 }
2233
2234 void
zfs_fini(void)2235 zfs_fini(void)
2236 {
2237 zfsctl_fini();
2238 zfs_znode_fini();
2239 }
2240
2241 int
zfs_busy(void)2242 zfs_busy(void)
2243 {
2244 return (zfs_active_fs_count != 0);
2245 }
2246
2247 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)2248 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2249 {
2250 int error;
2251 objset_t *os = zfsvfs->z_os;
2252 dmu_tx_t *tx;
2253
2254 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2255 return (SET_ERROR(EINVAL));
2256
2257 if (newvers < zfsvfs->z_version)
2258 return (SET_ERROR(EINVAL));
2259
2260 if (zfs_spa_version_map(newvers) >
2261 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2262 return (SET_ERROR(ENOTSUP));
2263
2264 tx = dmu_tx_create(os);
2265 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2266 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2267 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2268 ZFS_SA_ATTRS);
2269 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2270 }
2271 error = dmu_tx_assign(tx, TXG_WAIT);
2272 if (error) {
2273 dmu_tx_abort(tx);
2274 return (error);
2275 }
2276
2277 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2278 8, 1, &newvers, tx);
2279
2280 if (error) {
2281 dmu_tx_commit(tx);
2282 return (error);
2283 }
2284
2285 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2286 uint64_t sa_obj;
2287
2288 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2289 SPA_VERSION_SA);
2290 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2291 DMU_OT_NONE, 0, tx);
2292
2293 error = zap_add(os, MASTER_NODE_OBJ,
2294 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2295 ASSERT0(error);
2296
2297 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2298 sa_register_update_callback(os, zfs_sa_upgrade);
2299 }
2300
2301 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2302 "from %llu to %llu", zfsvfs->z_version, newvers);
2303
2304 dmu_tx_commit(tx);
2305
2306 zfsvfs->z_version = newvers;
2307
2308 zfs_set_fuid_feature(zfsvfs);
2309
2310 return (0);
2311 }
2312
2313 /*
2314 * Read a property stored within the master node.
2315 */
2316 int
zfs_get_zplprop(objset_t * os,zfs_prop_t prop,uint64_t * value)2317 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2318 {
2319 const char *pname;
2320 int error = ENOENT;
2321
2322 /*
2323 * Look up the file system's value for the property. For the
2324 * version property, we look up a slightly different string.
2325 */
2326 if (prop == ZFS_PROP_VERSION)
2327 pname = ZPL_VERSION_STR;
2328 else
2329 pname = zfs_prop_to_name(prop);
2330
2331 if (os != NULL)
2332 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2333
2334 if (error == ENOENT) {
2335 /* No value set, use the default value */
2336 switch (prop) {
2337 case ZFS_PROP_VERSION:
2338 *value = ZPL_VERSION;
2339 break;
2340 case ZFS_PROP_NORMALIZE:
2341 case ZFS_PROP_UTF8ONLY:
2342 *value = 0;
2343 break;
2344 case ZFS_PROP_CASE:
2345 *value = ZFS_CASE_SENSITIVE;
2346 break;
2347 default:
2348 return (error);
2349 }
2350 error = 0;
2351 }
2352 return (error);
2353 }
2354
2355 static vfsdef_t vfw = {
2356 VFSDEF_VERSION,
2357 MNTTYPE_ZFS,
2358 zfs_vfsinit,
2359 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2360 VSW_XID|VSW_ZMOUNT,
2361 &zfs_mntopts
2362 };
2363
2364 struct modlfs zfs_modlfs = {
2365 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2366 };
2367