xref: /freebsd/sys/contrib/openzfs/module/zfs/zcp.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * This file and its contents are supplied under the terms of the
6  * Common Development and Distribution License ("CDDL"), version 1.0.
7  * You may only use this file in accordance with the terms of version
8  * 1.0 of the CDDL.
9  *
10  * A full copy of the text of the CDDL should have accompanied this
11  * source.  A copy of the CDDL is also available via the Internet at
12  * http://www.illumos.org/license/CDDL.
13  *
14  * CDDL HEADER END
15  */
16 
17 /*
18  * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
19  */
20 
21 /*
22  * ZFS Channel Programs (ZCP)
23  *
24  * The ZCP interface allows various ZFS commands and operations ZFS
25  * administrative operations (e.g. creating and destroying snapshots, typically
26  * performed via an ioctl to /dev/zfs by the zfs(8) command and
27  * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
28  * script is run as a dsl_sync_task and fully executed during one transaction
29  * group sync.  This ensures that no other changes can be written concurrently
30  * with a running Lua script.  Combining multiple calls to the exposed ZFS
31  * functions into one script gives a number of benefits:
32  *
33  * 1. Atomicity.  For some compound or iterative operations, it's useful to be
34  * able to guarantee that the state of a pool has not changed between calls to
35  * ZFS.
36  *
37  * 2. Performance.  If a large number of changes need to be made (e.g. deleting
38  * many filesystems), there can be a significant performance penalty as a
39  * result of the need to wait for a transaction group sync to pass for every
40  * single operation.  When expressed as a single ZCP script, all these changes
41  * can be performed at once in one txg sync.
42  *
43  * A modified version of the Lua 5.2 interpreter is used to run channel program
44  * scripts. The Lua 5.2 manual can be found at:
45  *
46  *      http://www.lua.org/manual/5.2/
47  *
48  * If being run by a user (via an ioctl syscall), executing a ZCP script
49  * requires root privileges in the global zone.
50  *
51  * Scripts are passed to zcp_eval() as a string, then run in a synctask by
52  * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
53  * which will be converted to a Lua table.  Similarly, values returned from
54  * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
55  * for details on exact allowed types and conversion.
56  *
57  * ZFS functionality is exposed to a ZCP script as a library of function calls.
58  * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
59  * iterators and synctasks, respectively.  Each of these submodules resides in
60  * its own source file, with a zcp_*_info structure describing each library
61  * call in the submodule.
62  *
63  * Error handling in ZCP scripts is handled by a number of different methods
64  * based on severity:
65  *
66  * 1. Memory and time limits are in place to prevent a channel program from
67  * consuming excessive system or running forever.  If one of these limits is
68  * hit, the channel program will be stopped immediately and return from
69  * zcp_eval() with an error code. No attempt will be made to roll back or undo
70  * any changes made by the channel program before the error occurred.
71  * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
72  * limit of 0, disabling the time limit.
73  *
74  * 2. Internal Lua errors can occur as a result of a syntax error, calling a
75  * library function with incorrect arguments, invoking the error() function,
76  * failing an assert(), or other runtime errors.  In these cases the channel
77  * program will stop executing and return from zcp_eval() with an error code.
78  * In place of a return value, an error message will also be returned in the
79  * 'result' nvlist containing information about the error. No attempt will be
80  * made to roll back or undo any changes made by the channel program before the
81  * error occurred.
82  *
83  * 3. If an error occurs inside a ZFS library call which returns an error code,
84  * the error is returned to the Lua script to be handled as desired.
85  *
86  * In the first two cases, Lua's error-throwing mechanism is used, which
87  * longjumps out of the script execution with luaL_error() and returns with the
88  * error.
89  *
90  * See zfs-program(8) for more information on high level usage.
91  */
92 
93 #include <sys/lua/lua.h>
94 #include <sys/lua/lualib.h>
95 #include <sys/lua/lauxlib.h>
96 
97 #include <sys/dsl_prop.h>
98 #include <sys/dsl_synctask.h>
99 #include <sys/dsl_dataset.h>
100 #include <sys/zcp.h>
101 #include <sys/zcp_iter.h>
102 #include <sys/zcp_prop.h>
103 #include <sys/zcp_global.h>
104 #include <sys/zvol.h>
105 
106 #ifndef KM_NORMALPRI
107 #define	KM_NORMALPRI	0
108 #endif
109 
110 #define	ZCP_NVLIST_MAX_DEPTH 20
111 
112 static const uint64_t zfs_lua_check_instrlimit_interval = 100;
113 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
114 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
115 
116 /*
117  * Forward declarations for mutually recursive functions
118  */
119 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
120 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
121     int);
122 
123 /*
124  * The outer-most error callback handler for use with lua_pcall(). On
125  * error Lua will call this callback with a single argument that
126  * represents the error value. In most cases this will be a string
127  * containing an error message, but channel programs can use Lua's
128  * error() function to return arbitrary objects as errors. This callback
129  * returns (on the Lua stack) the original error object along with a traceback.
130  *
131  * Fatal Lua errors can occur while resources are held, so we also call any
132  * registered cleanup function here.
133  */
134 static int
zcp_error_handler(lua_State * state)135 zcp_error_handler(lua_State *state)
136 {
137 	const char *msg;
138 
139 	zcp_cleanup(state);
140 
141 	VERIFY3U(1, ==, lua_gettop(state));
142 	msg = lua_tostring(state, 1);
143 	luaL_traceback(state, state, msg, 1);
144 	return (1);
145 }
146 
147 int
zcp_argerror(lua_State * state,int narg,const char * msg,...)148 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
149 {
150 	va_list alist;
151 
152 	va_start(alist, msg);
153 	const char *buf = lua_pushvfstring(state, msg, alist);
154 	va_end(alist);
155 
156 	return (luaL_argerror(state, narg, buf));
157 }
158 
159 /*
160  * Install a new cleanup function, which will be invoked with the given
161  * opaque argument if a fatal error causes the Lua interpreter to longjump out
162  * of a function call.
163  *
164  * If an error occurs, the cleanup function will be invoked exactly once and
165  * then unregistered.
166  *
167  * Returns the registered cleanup handler so the caller can deregister it
168  * if no error occurs.
169  */
170 zcp_cleanup_handler_t *
zcp_register_cleanup(lua_State * state,zcp_cleanup_t cleanfunc,void * cleanarg)171 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
172 {
173 	zcp_run_info_t *ri = zcp_run_info(state);
174 
175 	zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
176 	zch->zch_cleanup_func = cleanfunc;
177 	zch->zch_cleanup_arg = cleanarg;
178 	list_insert_head(&ri->zri_cleanup_handlers, zch);
179 
180 	return (zch);
181 }
182 
183 void
zcp_deregister_cleanup(lua_State * state,zcp_cleanup_handler_t * zch)184 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
185 {
186 	zcp_run_info_t *ri = zcp_run_info(state);
187 	list_remove(&ri->zri_cleanup_handlers, zch);
188 	kmem_free(zch, sizeof (*zch));
189 }
190 
191 /*
192  * Execute the currently registered cleanup handlers then free them and
193  * destroy the handler list.
194  */
195 void
zcp_cleanup(lua_State * state)196 zcp_cleanup(lua_State *state)
197 {
198 	zcp_run_info_t *ri = zcp_run_info(state);
199 
200 	for (zcp_cleanup_handler_t *zch =
201 	    list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
202 	    zch = list_remove_head(&ri->zri_cleanup_handlers)) {
203 		zch->zch_cleanup_func(zch->zch_cleanup_arg);
204 		kmem_free(zch, sizeof (*zch));
205 	}
206 }
207 
208 /*
209  * Convert the lua table at the given index on the Lua stack to an nvlist
210  * and return it.
211  *
212  * If the table can not be converted for any reason, NULL is returned and
213  * an error message is pushed onto the Lua stack.
214  */
215 static nvlist_t *
zcp_table_to_nvlist(lua_State * state,int index,int depth)216 zcp_table_to_nvlist(lua_State *state, int index, int depth)
217 {
218 	nvlist_t *nvl;
219 	/*
220 	 * Converting a Lua table to an nvlist with key uniqueness checking is
221 	 * O(n^2) in the number of keys in the nvlist, which can take a long
222 	 * time when we return a large table from a channel program.
223 	 * Furthermore, Lua's table interface *almost* guarantees unique keys
224 	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
225 	 * here to avoid the built-in uniqueness checking.
226 	 *
227 	 * The *almost* is because it's possible to have key collisions between
228 	 * e.g. the string "1" and the number 1, or the string "true" and the
229 	 * boolean true, so we explicitly check that when we're looking at a
230 	 * key which is an integer / boolean or a string that can be parsed as
231 	 * one of those types. In the worst case this could still devolve into
232 	 * O(n^2), so we only start doing these checks on boolean/integer keys
233 	 * once we've seen a string key which fits this weird usage pattern.
234 	 *
235 	 * Ultimately, we still want callers to know that the keys in this
236 	 * nvlist are unique, so before we return this we set the nvlist's
237 	 * flags to reflect that.
238 	 */
239 	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
240 
241 	/*
242 	 * Push an empty stack slot where lua_next() will store each
243 	 * table key.
244 	 */
245 	lua_pushnil(state);
246 	boolean_t saw_str_could_collide = B_FALSE;
247 	while (lua_next(state, index) != 0) {
248 		/*
249 		 * The next key-value pair from the table at index is
250 		 * now on the stack, with the key at stack slot -2 and
251 		 * the value at slot -1.
252 		 */
253 		int err = 0;
254 		char buf[32];
255 		const char *key = NULL;
256 		boolean_t key_could_collide = B_FALSE;
257 
258 		switch (lua_type(state, -2)) {
259 		case LUA_TSTRING:
260 			key = lua_tostring(state, -2);
261 
262 			/* check if this could collide with a number or bool */
263 			long long tmp;
264 			int parselen;
265 			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
266 			    parselen == strlen(key)) ||
267 			    strcmp(key, "true") == 0 ||
268 			    strcmp(key, "false") == 0) {
269 				key_could_collide = B_TRUE;
270 				saw_str_could_collide = B_TRUE;
271 			}
272 			break;
273 		case LUA_TBOOLEAN:
274 			key = (lua_toboolean(state, -2) == B_TRUE ?
275 			    "true" : "false");
276 			if (saw_str_could_collide) {
277 				key_could_collide = B_TRUE;
278 			}
279 			break;
280 		case LUA_TNUMBER:
281 			(void) snprintf(buf, sizeof (buf), "%lld",
282 			    (longlong_t)lua_tonumber(state, -2));
283 
284 			key = buf;
285 			if (saw_str_could_collide) {
286 				key_could_collide = B_TRUE;
287 			}
288 			break;
289 		default:
290 			fnvlist_free(nvl);
291 			(void) lua_pushfstring(state, "Invalid key "
292 			    "type '%s' in table",
293 			    lua_typename(state, lua_type(state, -2)));
294 			return (NULL);
295 		}
296 		/*
297 		 * Check for type-mismatched key collisions, and throw an error.
298 		 */
299 		if (key_could_collide && nvlist_exists(nvl, key)) {
300 			fnvlist_free(nvl);
301 			(void) lua_pushfstring(state, "Collision of "
302 			    "key '%s' in table", key);
303 			return (NULL);
304 		}
305 		/*
306 		 * Recursively convert the table value and insert into
307 		 * the new nvlist with the parsed key.  To prevent
308 		 * stack overflow on circular or heavily nested tables,
309 		 * we track the current nvlist depth.
310 		 */
311 		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
312 			fnvlist_free(nvl);
313 			(void) lua_pushfstring(state, "Maximum table "
314 			    "depth (%d) exceeded for table",
315 			    ZCP_NVLIST_MAX_DEPTH);
316 			return (NULL);
317 		}
318 		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
319 		    depth + 1);
320 		if (err != 0) {
321 			fnvlist_free(nvl);
322 			/*
323 			 * Error message has been pushed to the lua
324 			 * stack by the recursive call.
325 			 */
326 			return (NULL);
327 		}
328 		/*
329 		 * Pop the value pushed by lua_next().
330 		 */
331 		lua_pop(state, 1);
332 	}
333 
334 	/*
335 	 * Mark the nvlist as having unique keys. This is a little ugly, but we
336 	 * ensured above that there are no duplicate keys in the nvlist.
337 	 */
338 	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
339 
340 	return (nvl);
341 }
342 
343 /*
344  * Convert a value from the given index into the lua stack to an nvpair, adding
345  * it to an nvlist with the given key.
346  *
347  * Values are converted as follows:
348  *
349  *   string -> string
350  *   number -> int64
351  *   boolean -> boolean
352  *   nil -> boolean (no value)
353  *
354  * Lua tables are converted to nvlists and then inserted. The table's keys
355  * are converted to strings then used as keys in the nvlist to store each table
356  * element.  Keys are converted as follows:
357  *
358  *   string -> no change
359  *   number -> "%lld"
360  *   boolean -> "true" | "false"
361  *   nil -> error
362  *
363  * In the case of a key collision, an error is thrown.
364  *
365  * If an error is encountered, a nonzero error code is returned, and an error
366  * string will be pushed onto the Lua stack.
367  */
368 static int
zcp_lua_to_nvlist_impl(lua_State * state,int index,nvlist_t * nvl,const char * key,int depth)369 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
370     const char *key, int depth)
371 {
372 	/*
373 	 * Verify that we have enough remaining space in the lua stack to parse
374 	 * a key-value pair and push an error.
375 	 */
376 	if (!lua_checkstack(state, 3)) {
377 		(void) lua_pushstring(state, "Lua stack overflow");
378 		return (1);
379 	}
380 
381 	index = lua_absindex(state, index);
382 
383 	switch (lua_type(state, index)) {
384 	case LUA_TNIL:
385 		fnvlist_add_boolean(nvl, key);
386 		break;
387 	case LUA_TBOOLEAN:
388 		fnvlist_add_boolean_value(nvl, key,
389 		    lua_toboolean(state, index));
390 		break;
391 	case LUA_TNUMBER:
392 		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
393 		break;
394 	case LUA_TSTRING:
395 		fnvlist_add_string(nvl, key, lua_tostring(state, index));
396 		break;
397 	case LUA_TTABLE: {
398 		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
399 		if (value_nvl == NULL)
400 			return (SET_ERROR(EINVAL));
401 
402 		fnvlist_add_nvlist(nvl, key, value_nvl);
403 		fnvlist_free(value_nvl);
404 		break;
405 	}
406 	default:
407 		(void) lua_pushfstring(state,
408 		    "Invalid value type '%s' for key '%s'",
409 		    lua_typename(state, lua_type(state, index)), key);
410 		return (SET_ERROR(EINVAL));
411 	}
412 
413 	return (0);
414 }
415 
416 /*
417  * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
418  */
419 static void
zcp_lua_to_nvlist(lua_State * state,int index,nvlist_t * nvl,const char * key)420 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
421 {
422 	/*
423 	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
424 	 * stack before returning with a nonzero error code. If an error is
425 	 * returned, throw a fatal lua error with the given string.
426 	 */
427 	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
428 		(void) lua_error(state);
429 }
430 
431 static int
zcp_lua_to_nvlist_helper(lua_State * state)432 zcp_lua_to_nvlist_helper(lua_State *state)
433 {
434 	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
435 	const char *key = (const char *)lua_touserdata(state, 1);
436 	zcp_lua_to_nvlist(state, 3, nv, key);
437 	return (0);
438 }
439 
440 static void
zcp_convert_return_values(lua_State * state,nvlist_t * nvl,const char * key,int * result)441 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
442     const char *key, int *result)
443 {
444 	int err;
445 	VERIFY3U(1, ==, lua_gettop(state));
446 	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
447 	lua_pushlightuserdata(state, (char *)key);
448 	lua_pushlightuserdata(state, nvl);
449 	lua_pushvalue(state, 1);
450 	lua_remove(state, 1);
451 	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
452 	if (err != 0) {
453 		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
454 		*result = SET_ERROR(ECHRNG);
455 	}
456 }
457 
458 /*
459  * Push a Lua table representing nvl onto the stack.  If it can't be
460  * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
461  * be specified as NULL, in which case no error string will be output.
462  *
463  * Most nvlists are converted as simple key->value Lua tables, but we make
464  * an exception for the case where all nvlist entries are BOOLEANs (a string
465  * key without a value). In Lua, a table key pointing to a value of Nil
466  * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
467  * entry can't be directly converted to a Lua table entry. Nvlists of entirely
468  * BOOLEAN entries are frequently used to pass around lists of datasets, so for
469  * convenience we check for this case, and convert it to a simple Lua array of
470  * strings.
471  */
472 int
zcp_nvlist_to_lua(lua_State * state,nvlist_t * nvl,char * errbuf,int errbuf_len)473 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
474     char *errbuf, int errbuf_len)
475 {
476 	nvpair_t *pair;
477 	lua_newtable(state);
478 	boolean_t has_values = B_FALSE;
479 	/*
480 	 * If the list doesn't have any values, just convert it to a string
481 	 * array.
482 	 */
483 	for (pair = nvlist_next_nvpair(nvl, NULL);
484 	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
485 		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
486 			has_values = B_TRUE;
487 			break;
488 		}
489 	}
490 	if (!has_values) {
491 		int i = 1;
492 		for (pair = nvlist_next_nvpair(nvl, NULL);
493 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
494 			(void) lua_pushinteger(state, i);
495 			(void) lua_pushstring(state, nvpair_name(pair));
496 			(void) lua_settable(state, -3);
497 			i++;
498 		}
499 	} else {
500 		for (pair = nvlist_next_nvpair(nvl, NULL);
501 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
502 			int err = zcp_nvpair_value_to_lua(state, pair,
503 			    errbuf, errbuf_len);
504 			if (err != 0) {
505 				lua_pop(state, 1);
506 				return (err);
507 			}
508 			(void) lua_setfield(state, -2, nvpair_name(pair));
509 		}
510 	}
511 	return (0);
512 }
513 
514 /*
515  * Push a Lua object representing the value of "pair" onto the stack.
516  *
517  * Only understands boolean_value, string, int64, nvlist,
518  * string_array, and int64_array type values.  For other
519  * types, returns EINVAL, fills in errbuf, and pushes nothing.
520  */
521 static int
zcp_nvpair_value_to_lua(lua_State * state,nvpair_t * pair,char * errbuf,int errbuf_len)522 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
523     char *errbuf, int errbuf_len)
524 {
525 	int err = 0;
526 
527 	if (pair == NULL) {
528 		lua_pushnil(state);
529 		return (0);
530 	}
531 
532 	switch (nvpair_type(pair)) {
533 	case DATA_TYPE_BOOLEAN_VALUE:
534 		(void) lua_pushboolean(state,
535 		    fnvpair_value_boolean_value(pair));
536 		break;
537 	case DATA_TYPE_STRING:
538 		(void) lua_pushstring(state, fnvpair_value_string(pair));
539 		break;
540 	case DATA_TYPE_INT64:
541 		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
542 		break;
543 	case DATA_TYPE_NVLIST:
544 		err = zcp_nvlist_to_lua(state,
545 		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
546 		break;
547 	case DATA_TYPE_STRING_ARRAY: {
548 		const char **strarr;
549 		uint_t nelem;
550 		(void) nvpair_value_string_array(pair, &strarr, &nelem);
551 		lua_newtable(state);
552 		for (int i = 0; i < nelem; i++) {
553 			(void) lua_pushinteger(state, i + 1);
554 			(void) lua_pushstring(state, strarr[i]);
555 			(void) lua_settable(state, -3);
556 		}
557 		break;
558 	}
559 	case DATA_TYPE_UINT64_ARRAY: {
560 		uint64_t *intarr;
561 		uint_t nelem;
562 		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
563 		lua_newtable(state);
564 		for (int i = 0; i < nelem; i++) {
565 			(void) lua_pushinteger(state, i + 1);
566 			(void) lua_pushinteger(state, intarr[i]);
567 			(void) lua_settable(state, -3);
568 		}
569 		break;
570 	}
571 	case DATA_TYPE_INT64_ARRAY: {
572 		int64_t *intarr;
573 		uint_t nelem;
574 		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
575 		lua_newtable(state);
576 		for (int i = 0; i < nelem; i++) {
577 			(void) lua_pushinteger(state, i + 1);
578 			(void) lua_pushinteger(state, intarr[i]);
579 			(void) lua_settable(state, -3);
580 		}
581 		break;
582 	}
583 	default: {
584 		if (errbuf != NULL) {
585 			(void) snprintf(errbuf, errbuf_len,
586 			    "Unhandled nvpair type %d for key '%s'",
587 			    nvpair_type(pair), nvpair_name(pair));
588 		}
589 		return (SET_ERROR(EINVAL));
590 	}
591 	}
592 	return (err);
593 }
594 
595 int
zcp_dataset_hold_error(lua_State * state,dsl_pool_t * dp,const char * dsname,int error)596 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
597     int error)
598 {
599 	if (error == ENOENT) {
600 		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
601 		return (0); /* not reached; zcp_argerror will longjmp */
602 	} else if (error == EXDEV) {
603 		(void) zcp_argerror(state, 1,
604 		    "dataset '%s' is not in the target pool '%s'",
605 		    dsname, spa_name(dp->dp_spa));
606 		return (0); /* not reached; zcp_argerror will longjmp */
607 	} else if (error == EIO) {
608 		(void) luaL_error(state,
609 		    "I/O error while accessing dataset '%s'", dsname);
610 		return (0); /* not reached; luaL_error will longjmp */
611 	} else if (error != 0) {
612 		(void) luaL_error(state,
613 		    "unexpected error %d while accessing dataset '%s'",
614 		    error, dsname);
615 		return (0); /* not reached; luaL_error will longjmp */
616 	}
617 	return (0);
618 }
619 
620 /*
621  * Note: will longjmp (via lua_error()) on error.
622  * Assumes that the dsname is argument #1 (for error reporting purposes).
623  */
624 dsl_dataset_t *
zcp_dataset_hold(lua_State * state,dsl_pool_t * dp,const char * dsname,const void * tag)625 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
626     const void *tag)
627 {
628 	dsl_dataset_t *ds;
629 	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
630 	(void) zcp_dataset_hold_error(state, dp, dsname, error);
631 	return (ds);
632 }
633 
634 static int zcp_debug(lua_State *);
635 static const zcp_lib_info_t zcp_debug_info = {
636 	.name = "debug",
637 	.func = zcp_debug,
638 	.pargs = {
639 	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
640 	    {NULL, 0}
641 	},
642 	.kwargs = {
643 	    {NULL, 0}
644 	}
645 };
646 
647 static int
zcp_debug(lua_State * state)648 zcp_debug(lua_State *state)
649 {
650 	const char *dbgstring;
651 	zcp_run_info_t *ri = zcp_run_info(state);
652 	const zcp_lib_info_t *libinfo = &zcp_debug_info;
653 
654 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
655 
656 	dbgstring = lua_tostring(state, 1);
657 
658 	zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
659 	    dbgstring);
660 
661 	return (0);
662 }
663 
664 static int zcp_exists(lua_State *);
665 static const zcp_lib_info_t zcp_exists_info = {
666 	.name = "exists",
667 	.func = zcp_exists,
668 	.pargs = {
669 	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
670 	    {NULL, 0}
671 	},
672 	.kwargs = {
673 	    {NULL, 0}
674 	}
675 };
676 
677 static int
zcp_exists(lua_State * state)678 zcp_exists(lua_State *state)
679 {
680 	zcp_run_info_t *ri = zcp_run_info(state);
681 	dsl_pool_t *dp = ri->zri_pool;
682 	const zcp_lib_info_t *libinfo = &zcp_exists_info;
683 
684 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
685 
686 	const char *dsname = lua_tostring(state, 1);
687 
688 	dsl_dataset_t *ds;
689 	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
690 	if (error == 0) {
691 		dsl_dataset_rele(ds, FTAG);
692 		lua_pushboolean(state, B_TRUE);
693 	} else if (error == ENOENT) {
694 		lua_pushboolean(state, B_FALSE);
695 	} else if (error == EXDEV) {
696 		return (luaL_error(state, "dataset '%s' is not in the "
697 		    "target pool", dsname));
698 	} else if (error == EIO) {
699 		return (luaL_error(state, "I/O error opening dataset '%s'",
700 		    dsname));
701 	} else if (error != 0) {
702 		return (luaL_error(state, "unexpected error %d", error));
703 	}
704 
705 	return (1);
706 }
707 
708 /*
709  * Allocate/realloc/free a buffer for the lua interpreter.
710  *
711  * When nsize is 0, behaves as free() and returns NULL.
712  *
713  * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
714  * at least nsize.
715  *
716  * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
717  * Shrinking the buffer size never fails.
718  *
719  * The original allocated buffer size is stored as a uint64 at the beginning of
720  * the buffer to avoid actually reallocating when shrinking a buffer, since lua
721  * requires that this operation never fail.
722  */
723 static void *
zcp_lua_alloc(void * ud,void * ptr,size_t osize,size_t nsize)724 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
725 {
726 	zcp_alloc_arg_t *allocargs = ud;
727 
728 	if (nsize == 0) {
729 		if (ptr != NULL) {
730 			int64_t *allocbuf = (int64_t *)ptr - 1;
731 			int64_t allocsize = *allocbuf;
732 			ASSERT3S(allocsize, >, 0);
733 			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
734 			    allocargs->aa_alloc_limit);
735 			allocargs->aa_alloc_remaining += allocsize;
736 			vmem_free(allocbuf, allocsize);
737 		}
738 		return (NULL);
739 	} else if (ptr == NULL) {
740 		int64_t *allocbuf;
741 		int64_t allocsize = nsize + sizeof (int64_t);
742 
743 		if (!allocargs->aa_must_succeed &&
744 		    (allocsize <= 0 ||
745 		    allocsize > allocargs->aa_alloc_remaining)) {
746 			return (NULL);
747 		}
748 
749 		allocbuf = vmem_alloc(allocsize, KM_SLEEP);
750 		allocargs->aa_alloc_remaining -= allocsize;
751 
752 		*allocbuf = allocsize;
753 		return (allocbuf + 1);
754 	} else if (nsize <= osize) {
755 		/*
756 		 * If shrinking the buffer, lua requires that the reallocation
757 		 * never fail.
758 		 */
759 		return (ptr);
760 	} else {
761 		ASSERT3U(nsize, >, osize);
762 
763 		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
764 		if (luabuf == NULL) {
765 			return (NULL);
766 		}
767 		(void) memcpy(luabuf, ptr, osize);
768 		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
769 		return (luabuf);
770 	}
771 }
772 
773 static void
zcp_lua_counthook(lua_State * state,lua_Debug * ar)774 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
775 {
776 	(void) ar;
777 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
778 	zcp_run_info_t *ri = lua_touserdata(state, -1);
779 
780 	/*
781 	 * Check if we were canceled while waiting for the
782 	 * txg to sync or from our open context thread
783 	 */
784 	if (ri->zri_canceled || (!ri->zri_sync && issig())) {
785 		ri->zri_canceled = B_TRUE;
786 		(void) lua_pushstring(state, "Channel program was canceled.");
787 		(void) lua_error(state);
788 		/* Unreachable */
789 	}
790 
791 	/*
792 	 * Check how many instructions the channel program has
793 	 * executed so far, and compare against the limit.
794 	 */
795 	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
796 	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
797 		ri->zri_timed_out = B_TRUE;
798 		(void) lua_pushstring(state,
799 		    "Channel program timed out.");
800 		(void) lua_error(state);
801 		/* Unreachable */
802 	}
803 }
804 
805 static int
zcp_panic_cb(lua_State * state)806 zcp_panic_cb(lua_State *state)
807 {
808 	panic("unprotected error in call to Lua API (%s)\n",
809 	    lua_tostring(state, -1));
810 	return (0);
811 }
812 
813 static void
zcp_eval_impl(dmu_tx_t * tx,zcp_run_info_t * ri)814 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
815 {
816 	int err;
817 	lua_State *state = ri->zri_state;
818 
819 	VERIFY3U(3, ==, lua_gettop(state));
820 
821 	/* finish initializing our runtime state */
822 	ri->zri_pool = dmu_tx_pool(tx);
823 	ri->zri_tx = tx;
824 	list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
825 	    offsetof(zcp_cleanup_handler_t, zch_node));
826 
827 	/*
828 	 * Store the zcp_run_info_t struct for this run in the Lua registry.
829 	 * Registry entries are not directly accessible by the Lua scripts but
830 	 * can be accessed by our callbacks.
831 	 */
832 	lua_pushlightuserdata(state, ri);
833 	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
834 	VERIFY3U(3, ==, lua_gettop(state));
835 
836 	/*
837 	 * Tell the Lua interpreter to call our handler every count
838 	 * instructions. Channel programs that execute too many instructions
839 	 * should die with ETIME.
840 	 */
841 	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
842 	    zfs_lua_check_instrlimit_interval);
843 
844 	/*
845 	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
846 	 * off control to the channel program. Channel programs that use too
847 	 * much memory should die with ENOSPC.
848 	 */
849 	ri->zri_allocargs->aa_must_succeed = B_FALSE;
850 
851 	/*
852 	 * Call the Lua function that open-context passed us. This pops the
853 	 * function and its input from the stack and pushes any return
854 	 * or error values.
855 	 */
856 	err = lua_pcall(state, 1, LUA_MULTRET, 1);
857 
858 	/*
859 	 * Let Lua use KM_SLEEP while we interpret the return values.
860 	 */
861 	ri->zri_allocargs->aa_must_succeed = B_TRUE;
862 
863 	/*
864 	 * Remove the error handler callback from the stack. At this point,
865 	 * there shouldn't be any cleanup handler registered in the handler
866 	 * list (zri_cleanup_handlers), regardless of whether it ran or not.
867 	 */
868 	list_destroy(&ri->zri_cleanup_handlers);
869 	lua_remove(state, 1);
870 
871 	switch (err) {
872 	case LUA_OK: {
873 		/*
874 		 * Lua supports returning multiple values in a single return
875 		 * statement.  Return values will have been pushed onto the
876 		 * stack:
877 		 * 1: Return value 1
878 		 * 2: Return value 2
879 		 * 3: etc...
880 		 * To simplify the process of retrieving a return value from a
881 		 * channel program, we disallow returning more than one value
882 		 * to ZFS from the Lua script, yielding a singleton return
883 		 * nvlist of the form { "return": Return value 1 }.
884 		 */
885 		int return_count = lua_gettop(state);
886 
887 		if (return_count == 1) {
888 			ri->zri_result = 0;
889 			zcp_convert_return_values(state, ri->zri_outnvl,
890 			    ZCP_RET_RETURN, &ri->zri_result);
891 		} else if (return_count > 1) {
892 			ri->zri_result = SET_ERROR(ECHRNG);
893 			lua_settop(state, 0);
894 			(void) lua_pushfstring(state, "Multiple return "
895 			    "values not supported");
896 			zcp_convert_return_values(state, ri->zri_outnvl,
897 			    ZCP_RET_ERROR, &ri->zri_result);
898 		}
899 		break;
900 	}
901 	case LUA_ERRRUN:
902 	case LUA_ERRGCMM: {
903 		/*
904 		 * The channel program encountered a fatal error within the
905 		 * script, such as failing an assertion, or calling a function
906 		 * with incompatible arguments. The error value and the
907 		 * traceback generated by zcp_error_handler() should be on the
908 		 * stack.
909 		 */
910 		VERIFY3U(1, ==, lua_gettop(state));
911 		if (ri->zri_timed_out) {
912 			ri->zri_result = SET_ERROR(ETIME);
913 		} else if (ri->zri_canceled) {
914 			ri->zri_result = SET_ERROR(EINTR);
915 		} else {
916 			ri->zri_result = SET_ERROR(ECHRNG);
917 		}
918 
919 		zcp_convert_return_values(state, ri->zri_outnvl,
920 		    ZCP_RET_ERROR, &ri->zri_result);
921 
922 		if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
923 			(void) nvlist_add_uint64(ri->zri_outnvl,
924 			    ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
925 		}
926 		break;
927 	}
928 	case LUA_ERRERR: {
929 		/*
930 		 * The channel program encountered a fatal error within the
931 		 * script, and we encountered another error while trying to
932 		 * compute the traceback in zcp_error_handler(). We can only
933 		 * return the error message.
934 		 */
935 		VERIFY3U(1, ==, lua_gettop(state));
936 		if (ri->zri_timed_out) {
937 			ri->zri_result = SET_ERROR(ETIME);
938 		} else if (ri->zri_canceled) {
939 			ri->zri_result = SET_ERROR(EINTR);
940 		} else {
941 			ri->zri_result = SET_ERROR(ECHRNG);
942 		}
943 
944 		zcp_convert_return_values(state, ri->zri_outnvl,
945 		    ZCP_RET_ERROR, &ri->zri_result);
946 		break;
947 	}
948 	case LUA_ERRMEM:
949 		/*
950 		 * Lua ran out of memory while running the channel program.
951 		 * There's not much we can do.
952 		 */
953 		ri->zri_result = SET_ERROR(ENOSPC);
954 		break;
955 	default:
956 		VERIFY0(err);
957 	}
958 }
959 
960 static void
zcp_pool_error(zcp_run_info_t * ri,const char * poolname,int error)961 zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
962 {
963 	ri->zri_result = SET_ERROR(ECHRNG);
964 	lua_settop(ri->zri_state, 0);
965 	(void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
966 	    "errno: %d", poolname, error);
967 	zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
968 	    ZCP_RET_ERROR, &ri->zri_result);
969 
970 }
971 
972 /*
973  * This callback is called when txg_wait_synced_sig encountered a signal.
974  * The txg_wait_synced_sig will continue to wait for the txg to complete
975  * after calling this callback.
976  */
977 static void
zcp_eval_sig(void * arg,dmu_tx_t * tx)978 zcp_eval_sig(void *arg, dmu_tx_t *tx)
979 {
980 	(void) tx;
981 	zcp_run_info_t *ri = arg;
982 
983 	ri->zri_canceled = B_TRUE;
984 }
985 
986 static void
zcp_eval_sync(void * arg,dmu_tx_t * tx)987 zcp_eval_sync(void *arg, dmu_tx_t *tx)
988 {
989 	zcp_run_info_t *ri = arg;
990 
991 	/*
992 	 * Open context should have setup the stack to contain:
993 	 * 1: Error handler callback
994 	 * 2: Script to run (converted to a Lua function)
995 	 * 3: nvlist input to function (converted to Lua table or nil)
996 	 */
997 	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
998 
999 	zcp_eval_impl(tx, ri);
1000 }
1001 
1002 static void
zcp_eval_open(zcp_run_info_t * ri,const char * poolname)1003 zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
1004 {
1005 	int error;
1006 	dsl_pool_t *dp;
1007 	dmu_tx_t *tx;
1008 
1009 	/*
1010 	 * See comment from the same assertion in zcp_eval_sync().
1011 	 */
1012 	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
1013 
1014 	error = dsl_pool_hold(poolname, FTAG, &dp);
1015 	if (error != 0) {
1016 		zcp_pool_error(ri, poolname, error);
1017 		return;
1018 	}
1019 
1020 	/*
1021 	 * As we are running in open-context, we have no transaction associated
1022 	 * with the channel program. At the same time, functions from the
1023 	 * zfs.check submodule need to be associated with a transaction as
1024 	 * they are basically dry-runs of their counterparts in the zfs.sync
1025 	 * submodule. These functions should be able to run in open-context.
1026 	 * Therefore we create a new transaction that we later abort once
1027 	 * the channel program has been evaluated.
1028 	 */
1029 	tx = dmu_tx_create_dd(dp->dp_mos_dir);
1030 
1031 	zcp_eval_impl(tx, ri);
1032 
1033 	dmu_tx_abort(tx);
1034 
1035 	dsl_pool_rele(dp, FTAG);
1036 }
1037 
1038 int
zcp_eval(const char * poolname,const char * program,boolean_t sync,uint64_t instrlimit,uint64_t memlimit,nvpair_t * nvarg,nvlist_t * outnvl)1039 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1040     uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1041 {
1042 	int err;
1043 	lua_State *state;
1044 	zcp_run_info_t runinfo;
1045 
1046 	if (instrlimit > zfs_lua_max_instrlimit)
1047 		return (SET_ERROR(EINVAL));
1048 	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1049 		return (SET_ERROR(EINVAL));
1050 
1051 	zcp_alloc_arg_t allocargs = {
1052 		.aa_must_succeed = B_TRUE,
1053 		.aa_alloc_remaining = (int64_t)memlimit,
1054 		.aa_alloc_limit = (int64_t)memlimit,
1055 	};
1056 
1057 	/*
1058 	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1059 	 * This should never fail.
1060 	 */
1061 	state = lua_newstate(zcp_lua_alloc, &allocargs);
1062 	VERIFY(state != NULL);
1063 	(void) lua_atpanic(state, zcp_panic_cb);
1064 
1065 	/*
1066 	 * Load core Lua libraries we want access to.
1067 	 */
1068 	VERIFY3U(1, ==, luaopen_base(state));
1069 	lua_pop(state, 1);
1070 	VERIFY3U(1, ==, luaopen_coroutine(state));
1071 	lua_setglobal(state, LUA_COLIBNAME);
1072 	VERIFY0(lua_gettop(state));
1073 	VERIFY3U(1, ==, luaopen_string(state));
1074 	lua_setglobal(state, LUA_STRLIBNAME);
1075 	VERIFY0(lua_gettop(state));
1076 	VERIFY3U(1, ==, luaopen_table(state));
1077 	lua_setglobal(state, LUA_TABLIBNAME);
1078 	VERIFY0(lua_gettop(state));
1079 
1080 	/*
1081 	 * Load globally visible variables such as errno aliases.
1082 	 */
1083 	zcp_load_globals(state);
1084 	VERIFY0(lua_gettop(state));
1085 
1086 	/*
1087 	 * Load ZFS-specific modules.
1088 	 */
1089 	lua_newtable(state);
1090 	VERIFY3U(1, ==, zcp_load_list_lib(state));
1091 	lua_setfield(state, -2, "list");
1092 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1093 	lua_setfield(state, -2, "check");
1094 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1095 	lua_setfield(state, -2, "sync");
1096 	VERIFY3U(1, ==, zcp_load_get_lib(state));
1097 	lua_pushcclosure(state, zcp_debug_info.func, 0);
1098 	lua_setfield(state, -2, zcp_debug_info.name);
1099 	lua_pushcclosure(state, zcp_exists_info.func, 0);
1100 	lua_setfield(state, -2, zcp_exists_info.name);
1101 	lua_setglobal(state, "zfs");
1102 	VERIFY0(lua_gettop(state));
1103 
1104 	/*
1105 	 * Push the error-callback that calculates Lua stack traces on
1106 	 * unexpected failures.
1107 	 */
1108 	lua_pushcfunction(state, zcp_error_handler);
1109 	VERIFY3U(1, ==, lua_gettop(state));
1110 
1111 	/*
1112 	 * Load the actual script as a function onto the stack as text ("t").
1113 	 * The only valid error condition is a syntax error in the script.
1114 	 * ERRMEM should not be possible because our allocator is using
1115 	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1116 	 * any objects with __gc metamethods to the interpreter that could
1117 	 * fail.
1118 	 */
1119 	err = luaL_loadbufferx(state, program, strlen(program),
1120 	    "channel program", "t");
1121 	if (err == LUA_ERRSYNTAX) {
1122 		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1123 		    lua_tostring(state, -1));
1124 		lua_close(state);
1125 		return (SET_ERROR(EINVAL));
1126 	}
1127 	VERIFY0(err);
1128 	VERIFY3U(2, ==, lua_gettop(state));
1129 
1130 	/*
1131 	 * Convert the input nvlist to a Lua object and put it on top of the
1132 	 * stack.
1133 	 */
1134 	char errmsg[128];
1135 	err = zcp_nvpair_value_to_lua(state, nvarg,
1136 	    errmsg, sizeof (errmsg));
1137 	if (err != 0) {
1138 		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1139 		lua_close(state);
1140 		return (SET_ERROR(EINVAL));
1141 	}
1142 	VERIFY3U(3, ==, lua_gettop(state));
1143 
1144 	runinfo.zri_state = state;
1145 	runinfo.zri_allocargs = &allocargs;
1146 	runinfo.zri_outnvl = outnvl;
1147 	runinfo.zri_result = 0;
1148 	runinfo.zri_cred = CRED();
1149 	runinfo.zri_proc = curproc;
1150 	runinfo.zri_timed_out = B_FALSE;
1151 	runinfo.zri_canceled = B_FALSE;
1152 	runinfo.zri_sync = sync;
1153 	runinfo.zri_space_used = 0;
1154 	runinfo.zri_curinstrs = 0;
1155 	runinfo.zri_maxinstrs = instrlimit;
1156 	runinfo.zri_new_zvols = fnvlist_alloc();
1157 
1158 	if (sync) {
1159 		err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
1160 		    zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1161 		if (err != 0)
1162 			zcp_pool_error(&runinfo, poolname, err);
1163 	} else {
1164 		zcp_eval_open(&runinfo, poolname);
1165 	}
1166 	lua_close(state);
1167 
1168 	/*
1169 	 * Create device minor nodes for any new zvols.
1170 	 */
1171 	for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
1172 	    pair != NULL;
1173 	    pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
1174 		zvol_create_minor(nvpair_name(pair));
1175 	}
1176 	fnvlist_free(runinfo.zri_new_zvols);
1177 
1178 	return (runinfo.zri_result);
1179 }
1180 
1181 /*
1182  * Retrieve metadata about the currently running channel program.
1183  */
1184 zcp_run_info_t *
zcp_run_info(lua_State * state)1185 zcp_run_info(lua_State *state)
1186 {
1187 	zcp_run_info_t *ri;
1188 
1189 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1190 	ri = lua_touserdata(state, -1);
1191 	lua_pop(state, 1);
1192 	return (ri);
1193 }
1194 
1195 /*
1196  * Argument Parsing
1197  * ================
1198  *
1199  * The Lua language allows methods to be called with any number
1200  * of arguments of any type. When calling back into ZFS we need to sanitize
1201  * arguments from channel programs to make sure unexpected arguments or
1202  * arguments of the wrong type result in clear error messages. To do this
1203  * in a uniform way all callbacks from channel programs should use the
1204  * zcp_parse_args() function to interpret inputs.
1205  *
1206  * Positional vs Keyword Arguments
1207  * ===============================
1208  *
1209  * Every callback function takes a fixed set of required positional arguments
1210  * and optional keyword arguments. For example, the destroy function takes
1211  * a single positional string argument (the name of the dataset to destroy)
1212  * and an optional "defer" keyword boolean argument. When calling lua functions
1213  * with parentheses, only positional arguments can be used:
1214  *
1215  *     zfs.sync.snapshot("rpool@snap")
1216  *
1217  * To use keyword arguments functions should be called with a single argument
1218  * that is a lua table containing mappings of integer -> positional arguments
1219  * and string -> keyword arguments:
1220  *
1221  *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1222  *
1223  * The lua language allows curly braces to be used in place of parenthesis as
1224  * syntactic sugar for this calling convention:
1225  *
1226  *     zfs.sync.snapshot{"rpool@snap", defer=true}
1227  */
1228 
1229 /*
1230  * Throw an error and print the given arguments.  If there are too many
1231  * arguments to fit in the output buffer, only the error format string is
1232  * output.
1233  */
1234 static void
zcp_args_error(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs,const char * fmt,...)1235 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1236     const zcp_arg_t *kwargs, const char *fmt, ...)
1237 {
1238 	int i;
1239 	char errmsg[512];
1240 	size_t len = sizeof (errmsg);
1241 	size_t msglen = 0;
1242 	va_list argp;
1243 
1244 	va_start(argp, fmt);
1245 	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1246 	va_end(argp);
1247 
1248 	/*
1249 	 * Calculate the total length of the final string, including extra
1250 	 * formatting characters. If the argument dump would be too large,
1251 	 * only print the error string.
1252 	 */
1253 	msglen = strlen(errmsg);
1254 	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1255 	for (i = 0; pargs[i].za_name != NULL; i++) {
1256 		msglen += strlen(pargs[i].za_name);
1257 		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1258 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1259 			msglen += 5; /* < + ( + )> + , */
1260 		else
1261 			msglen += 4; /* < + ( + )> */
1262 	}
1263 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1264 		msglen += strlen(kwargs[i].za_name);
1265 		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1266 		if (kwargs[i + 1].za_name != NULL)
1267 			msglen += 4; /* =( + ) + , */
1268 		else
1269 			msglen += 3; /* =( + ) */
1270 	}
1271 
1272 	if (msglen >= len)
1273 		(void) luaL_error(state, errmsg);
1274 
1275 	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1276 	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1277 	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1278 	for (i = 0; pargs[i].za_name != NULL; i++) {
1279 		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1280 		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1281 		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1282 		VERIFY3U(len, >, strlcat(errmsg,
1283 		    lua_typename(state, pargs[i].za_lua_type), len));
1284 		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1285 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1286 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1287 		}
1288 	}
1289 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1290 		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1291 		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1292 		VERIFY3U(len, >, strlcat(errmsg,
1293 		    lua_typename(state, kwargs[i].za_lua_type), len));
1294 		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1295 		if (kwargs[i + 1].za_name != NULL) {
1296 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1297 		}
1298 	}
1299 	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1300 
1301 	(void) luaL_error(state, errmsg);
1302 	panic("unreachable code");
1303 }
1304 
1305 static void
zcp_parse_table_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1306 zcp_parse_table_args(lua_State *state, const char *fname,
1307     const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1308 {
1309 	int i;
1310 	int type;
1311 
1312 	for (i = 0; pargs[i].za_name != NULL; i++) {
1313 		/*
1314 		 * Check the table for this positional argument, leaving it
1315 		 * on the top of the stack once we finish validating it.
1316 		 */
1317 		lua_pushinteger(state, i + 1);
1318 		lua_gettable(state, 1);
1319 
1320 		type = lua_type(state, -1);
1321 		if (type == LUA_TNIL) {
1322 			zcp_args_error(state, fname, pargs, kwargs,
1323 			    "too few arguments");
1324 			panic("unreachable code");
1325 		} else if (type != pargs[i].za_lua_type) {
1326 			zcp_args_error(state, fname, pargs, kwargs,
1327 			    "arg %d wrong type (is '%s', expected '%s')",
1328 			    i + 1, lua_typename(state, type),
1329 			    lua_typename(state, pargs[i].za_lua_type));
1330 			panic("unreachable code");
1331 		}
1332 
1333 		/*
1334 		 * Remove the positional argument from the table.
1335 		 */
1336 		lua_pushinteger(state, i + 1);
1337 		lua_pushnil(state);
1338 		lua_settable(state, 1);
1339 	}
1340 
1341 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1342 		/*
1343 		 * Check the table for this keyword argument, which may be
1344 		 * nil if it was omitted. Leave the value on the top of
1345 		 * the stack after validating it.
1346 		 */
1347 		lua_getfield(state, 1, kwargs[i].za_name);
1348 
1349 		type = lua_type(state, -1);
1350 		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1351 			zcp_args_error(state, fname, pargs, kwargs,
1352 			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1353 			    kwargs[i].za_name, lua_typename(state, type),
1354 			    lua_typename(state, kwargs[i].za_lua_type));
1355 			panic("unreachable code");
1356 		}
1357 
1358 		/*
1359 		 * Remove the keyword argument from the table.
1360 		 */
1361 		lua_pushnil(state);
1362 		lua_setfield(state, 1, kwargs[i].za_name);
1363 	}
1364 
1365 	/*
1366 	 * Any entries remaining in the table are invalid inputs, print
1367 	 * an error message based on what the entry is.
1368 	 */
1369 	lua_pushnil(state);
1370 	if (lua_next(state, 1)) {
1371 		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1372 			zcp_args_error(state, fname, pargs, kwargs,
1373 			    "too many positional arguments");
1374 		} else if (lua_isstring(state, -2)) {
1375 			zcp_args_error(state, fname, pargs, kwargs,
1376 			    "invalid kwarg '%s'", lua_tostring(state, -2));
1377 		} else {
1378 			zcp_args_error(state, fname, pargs, kwargs,
1379 			    "kwarg keys must be strings");
1380 		}
1381 		panic("unreachable code");
1382 	}
1383 
1384 	lua_remove(state, 1);
1385 }
1386 
1387 static void
zcp_parse_pos_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1388 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1389     const zcp_arg_t *kwargs)
1390 {
1391 	int i;
1392 	int type;
1393 
1394 	for (i = 0; pargs[i].za_name != NULL; i++) {
1395 		type = lua_type(state, i + 1);
1396 		if (type == LUA_TNONE) {
1397 			zcp_args_error(state, fname, pargs, kwargs,
1398 			    "too few arguments");
1399 			panic("unreachable code");
1400 		} else if (type != pargs[i].za_lua_type) {
1401 			zcp_args_error(state, fname, pargs, kwargs,
1402 			    "arg %d wrong type (is '%s', expected '%s')",
1403 			    i + 1, lua_typename(state, type),
1404 			    lua_typename(state, pargs[i].za_lua_type));
1405 			panic("unreachable code");
1406 		}
1407 	}
1408 	if (lua_gettop(state) != i) {
1409 		zcp_args_error(state, fname, pargs, kwargs,
1410 		    "too many positional arguments");
1411 		panic("unreachable code");
1412 	}
1413 
1414 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1415 		lua_pushnil(state);
1416 	}
1417 }
1418 
1419 /*
1420  * Checks the current Lua stack against an expected set of positional and
1421  * keyword arguments. If the stack does not match the expected arguments
1422  * aborts the current channel program with a useful error message, otherwise
1423  * it re-arranges the stack so that it contains the positional arguments
1424  * followed by the keyword argument values in declaration order. Any missing
1425  * keyword argument will be represented by a nil value on the stack.
1426  *
1427  * If the stack contains exactly one argument of type LUA_TTABLE the curly
1428  * braces calling convention is assumed, otherwise the stack is parsed for
1429  * positional arguments only.
1430  *
1431  * This function should be used by every function callback. It should be called
1432  * before the callback manipulates the Lua stack as it assumes the stack
1433  * represents the function arguments.
1434  */
1435 void
zcp_parse_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1436 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1437     const zcp_arg_t *kwargs)
1438 {
1439 	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1440 		zcp_parse_table_args(state, fname, pargs, kwargs);
1441 	} else {
1442 		zcp_parse_pos_args(state, fname, pargs, kwargs);
1443 	}
1444 }
1445 
1446 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
1447 	"Max instruction limit that can be specified for a channel program");
1448 
1449 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
1450 	"Max memory limit that can be specified for a channel program");
1451